1 /*- 2 * Copyright (c) 2009-2014 The FreeBSD Foundation 3 * All rights reserved. 4 * 5 * This software was developed by Andrew Turner under sponsorship from 6 * the FreeBSD Foundation. 7 * This software was developed by Semihalf under sponsorship from 8 * the FreeBSD Foundation. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/module.h> 39 #include <sys/bus.h> 40 #include <sys/limits.h> 41 42 #include <machine/resource.h> 43 44 #include <dev/fdt/fdt_common.h> 45 #include <dev/ofw/ofw_bus.h> 46 #include <dev/ofw/ofw_bus_subr.h> 47 #include <dev/ofw/openfirm.h> 48 49 #include "ofw_bus_if.h" 50 51 #ifdef DEBUG 52 #define debugf(fmt, args...) do { printf("%s(): ", __func__); \ 53 printf(fmt,##args); } while (0) 54 #else 55 #define debugf(fmt, args...) 56 #endif 57 58 #define FDT_COMPAT_LEN 255 59 #define FDT_TYPE_LEN 64 60 61 #define FDT_REG_CELLS 4 62 63 vm_paddr_t fdt_immr_pa; 64 vm_offset_t fdt_immr_va; 65 vm_offset_t fdt_immr_size; 66 67 struct fdt_ic_list fdt_ic_list_head = SLIST_HEAD_INITIALIZER(fdt_ic_list_head); 68 69 static int 70 fdt_get_range_by_busaddr(phandle_t node, u_long addr, u_long *base, 71 u_long *size) 72 { 73 pcell_t ranges[32], *rangesptr; 74 pcell_t addr_cells, size_cells, par_addr_cells; 75 u_long bus_addr, par_bus_addr, pbase, psize; 76 int err, i, len, tuple_size, tuples; 77 78 if (node == 0) { 79 *base = 0; 80 *size = ULONG_MAX; 81 return (0); 82 } 83 84 if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0) 85 return (ENXIO); 86 /* 87 * Process 'ranges' property. 88 */ 89 par_addr_cells = fdt_parent_addr_cells(node); 90 if (par_addr_cells > 2) { 91 return (ERANGE); 92 } 93 94 len = OF_getproplen(node, "ranges"); 95 if (len < 0) 96 return (-1); 97 if (len > sizeof(ranges)) 98 return (ENOMEM); 99 if (len == 0) { 100 return (fdt_get_range_by_busaddr(OF_parent(node), addr, 101 base, size)); 102 } 103 104 if (OF_getprop(node, "ranges", ranges, sizeof(ranges)) <= 0) 105 return (EINVAL); 106 107 tuple_size = addr_cells + par_addr_cells + size_cells; 108 tuples = len / (tuple_size * sizeof(cell_t)); 109 110 if (par_addr_cells > 2 || addr_cells > 2 || size_cells > 2) 111 return (ERANGE); 112 113 *base = 0; 114 *size = 0; 115 116 for (i = 0; i < tuples; i++) { 117 rangesptr = &ranges[i * tuple_size]; 118 119 bus_addr = fdt_data_get((void *)rangesptr, addr_cells); 120 if (bus_addr != addr) 121 continue; 122 rangesptr += addr_cells; 123 124 par_bus_addr = fdt_data_get((void *)rangesptr, par_addr_cells); 125 rangesptr += par_addr_cells; 126 127 err = fdt_get_range_by_busaddr(OF_parent(node), par_bus_addr, 128 &pbase, &psize); 129 if (err > 0) 130 return (err); 131 if (err == 0) 132 *base = pbase; 133 else 134 *base = par_bus_addr; 135 136 *size = fdt_data_get((void *)rangesptr, size_cells); 137 138 return (0); 139 } 140 141 return (EINVAL); 142 } 143 144 int 145 fdt_get_range(phandle_t node, int range_id, u_long *base, u_long *size) 146 { 147 pcell_t ranges[6], *rangesptr; 148 pcell_t addr_cells, size_cells, par_addr_cells; 149 u_long par_bus_addr, pbase, psize; 150 int err, len, tuple_size, tuples; 151 152 if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0) 153 return (ENXIO); 154 /* 155 * Process 'ranges' property. 156 */ 157 par_addr_cells = fdt_parent_addr_cells(node); 158 if (par_addr_cells > 2) 159 return (ERANGE); 160 161 len = OF_getproplen(node, "ranges"); 162 if (len > sizeof(ranges)) 163 return (ENOMEM); 164 if (len == 0) { 165 *base = 0; 166 *size = ULONG_MAX; 167 return (0); 168 } 169 170 if (!(range_id < len)) 171 return (ERANGE); 172 173 if (OF_getprop(node, "ranges", ranges, sizeof(ranges)) <= 0) 174 return (EINVAL); 175 176 tuple_size = sizeof(pcell_t) * (addr_cells + par_addr_cells + 177 size_cells); 178 tuples = len / tuple_size; 179 180 if (par_addr_cells > 2 || addr_cells > 2 || size_cells > 2) 181 return (ERANGE); 182 183 *base = 0; 184 *size = 0; 185 rangesptr = &ranges[range_id]; 186 187 *base = fdt_data_get((void *)rangesptr, addr_cells); 188 rangesptr += addr_cells; 189 190 par_bus_addr = fdt_data_get((void *)rangesptr, par_addr_cells); 191 rangesptr += par_addr_cells; 192 193 err = fdt_get_range_by_busaddr(OF_parent(node), par_bus_addr, 194 &pbase, &psize); 195 if (err == 0) 196 *base += pbase; 197 else 198 *base += par_bus_addr; 199 200 *size = fdt_data_get((void *)rangesptr, size_cells); 201 return (0); 202 } 203 204 int 205 fdt_immr_addr(vm_offset_t immr_va) 206 { 207 phandle_t node; 208 u_long base, size; 209 int r; 210 211 /* 212 * Try to access the SOC node directly i.e. through /aliases/. 213 */ 214 if ((node = OF_finddevice("soc")) != 0) 215 if (fdt_is_compatible(node, "simple-bus")) 216 goto moveon; 217 /* 218 * Find the node the long way. 219 */ 220 if ((node = OF_finddevice("/")) == 0) 221 return (ENXIO); 222 223 if ((node = fdt_find_compatible(node, "simple-bus", 0)) == 0) 224 return (ENXIO); 225 226 moveon: 227 if ((r = fdt_get_range(node, 0, &base, &size)) == 0) { 228 fdt_immr_pa = base; 229 fdt_immr_va = immr_va; 230 fdt_immr_size = size; 231 } 232 233 return (r); 234 } 235 236 /* 237 * This routine is an early-usage version of the ofw_bus_is_compatible() when 238 * the ofw_bus I/F is not available (like early console routines and similar). 239 * Note the buffer has to be on the stack since malloc() is usually not 240 * available in such cases either. 241 */ 242 int 243 fdt_is_compatible(phandle_t node, const char *compatstr) 244 { 245 char buf[FDT_COMPAT_LEN]; 246 char *compat; 247 int len, onelen, l, rv; 248 249 if ((len = OF_getproplen(node, "compatible")) <= 0) 250 return (0); 251 252 compat = (char *)&buf; 253 bzero(compat, FDT_COMPAT_LEN); 254 255 if (OF_getprop(node, "compatible", compat, FDT_COMPAT_LEN) < 0) 256 return (0); 257 258 onelen = strlen(compatstr); 259 rv = 0; 260 while (len > 0) { 261 if (strncasecmp(compat, compatstr, onelen) == 0) { 262 /* Found it. */ 263 rv = 1; 264 break; 265 } 266 /* Slide to the next sub-string. */ 267 l = strlen(compat) + 1; 268 compat += l; 269 len -= l; 270 } 271 272 return (rv); 273 } 274 275 int 276 fdt_is_compatible_strict(phandle_t node, const char *compatible) 277 { 278 char compat[FDT_COMPAT_LEN]; 279 280 if (OF_getproplen(node, "compatible") <= 0) 281 return (0); 282 283 if (OF_getprop(node, "compatible", compat, FDT_COMPAT_LEN) < 0) 284 return (0); 285 286 if (strncasecmp(compat, compatible, FDT_COMPAT_LEN) == 0) 287 /* This fits. */ 288 return (1); 289 290 return (0); 291 } 292 293 phandle_t 294 fdt_find_compatible(phandle_t start, const char *compat, int strict) 295 { 296 phandle_t child; 297 298 /* 299 * Traverse all children of 'start' node, and find first with 300 * matching 'compatible' property. 301 */ 302 for (child = OF_child(start); child != 0; child = OF_peer(child)) 303 if (fdt_is_compatible(child, compat)) { 304 if (strict) 305 if (!fdt_is_compatible_strict(child, compat)) 306 continue; 307 return (child); 308 } 309 return (0); 310 } 311 312 phandle_t 313 fdt_depth_search_compatible(phandle_t start, const char *compat, int strict) 314 { 315 phandle_t child, node; 316 317 /* 318 * Depth-search all descendants of 'start' node, and find first with 319 * matching 'compatible' property. 320 */ 321 for (node = OF_child(start); node != 0; node = OF_peer(node)) { 322 if (fdt_is_compatible(node, compat) && 323 (strict == 0 || fdt_is_compatible_strict(node, compat))) { 324 return (node); 325 } 326 child = fdt_depth_search_compatible(node, compat, strict); 327 if (child != 0) 328 return (child); 329 } 330 return (0); 331 } 332 333 int 334 fdt_is_enabled(phandle_t node) 335 { 336 char *stat; 337 int ena, len; 338 339 len = OF_getprop_alloc(node, "status", sizeof(char), 340 (void **)&stat); 341 342 if (len <= 0) 343 /* It is OK if no 'status' property. */ 344 return (1); 345 346 /* Anything other than 'okay' means disabled. */ 347 ena = 0; 348 if (strncmp((char *)stat, "okay", len) == 0) 349 ena = 1; 350 351 free(stat, M_OFWPROP); 352 return (ena); 353 } 354 355 int 356 fdt_is_type(phandle_t node, const char *typestr) 357 { 358 char type[FDT_TYPE_LEN]; 359 360 if (OF_getproplen(node, "device_type") <= 0) 361 return (0); 362 363 if (OF_getprop(node, "device_type", type, FDT_TYPE_LEN) < 0) 364 return (0); 365 366 if (strncasecmp(type, typestr, FDT_TYPE_LEN) == 0) 367 /* This fits. */ 368 return (1); 369 370 return (0); 371 } 372 373 int 374 fdt_parent_addr_cells(phandle_t node) 375 { 376 pcell_t addr_cells; 377 378 /* Find out #address-cells of the superior bus. */ 379 if (OF_searchprop(OF_parent(node), "#address-cells", &addr_cells, 380 sizeof(addr_cells)) <= 0) 381 return (2); 382 383 return ((int)fdt32_to_cpu(addr_cells)); 384 } 385 386 int 387 fdt_pm_is_enabled(phandle_t node) 388 { 389 int ret; 390 391 ret = 1; 392 393 #if defined(SOC_MV_KIRKWOOD) || defined(SOC_MV_DISCOVERY) 394 ret = fdt_pm(node); 395 #endif 396 return (ret); 397 } 398 399 u_long 400 fdt_data_get(void *data, int cells) 401 { 402 403 if (cells == 1) 404 return (fdt32_to_cpu(*((uint32_t *)data))); 405 406 return (fdt64_to_cpu(*((uint64_t *)data))); 407 } 408 409 int 410 fdt_addrsize_cells(phandle_t node, int *addr_cells, int *size_cells) 411 { 412 pcell_t cell; 413 int cell_size; 414 415 /* 416 * Retrieve #{address,size}-cells. 417 */ 418 cell_size = sizeof(cell); 419 if (OF_getprop(node, "#address-cells", &cell, cell_size) < cell_size) 420 cell = 2; 421 *addr_cells = fdt32_to_cpu((int)cell); 422 423 if (OF_getprop(node, "#size-cells", &cell, cell_size) < cell_size) 424 cell = 1; 425 *size_cells = fdt32_to_cpu((int)cell); 426 427 if (*addr_cells > 3 || *size_cells > 2) 428 return (ERANGE); 429 return (0); 430 } 431 432 int 433 fdt_data_to_res(pcell_t *data, int addr_cells, int size_cells, u_long *start, 434 u_long *count) 435 { 436 437 /* Address portion. */ 438 if (addr_cells > 2) 439 return (ERANGE); 440 441 *start = fdt_data_get((void *)data, addr_cells); 442 data += addr_cells; 443 444 /* Size portion. */ 445 if (size_cells > 2) 446 return (ERANGE); 447 448 *count = fdt_data_get((void *)data, size_cells); 449 return (0); 450 } 451 452 int 453 fdt_regsize(phandle_t node, u_long *base, u_long *size) 454 { 455 pcell_t reg[4]; 456 int addr_cells, len, size_cells; 457 458 if (fdt_addrsize_cells(OF_parent(node), &addr_cells, &size_cells)) 459 return (ENXIO); 460 461 if ((sizeof(pcell_t) * (addr_cells + size_cells)) > sizeof(reg)) 462 return (ENOMEM); 463 464 len = OF_getprop(node, "reg", ®, sizeof(reg)); 465 if (len <= 0) 466 return (EINVAL); 467 468 *base = fdt_data_get(®[0], addr_cells); 469 *size = fdt_data_get(®[addr_cells], size_cells); 470 return (0); 471 } 472 473 int 474 fdt_reg_to_rl(phandle_t node, struct resource_list *rl) 475 { 476 u_long end, count, start; 477 pcell_t *reg, *regptr; 478 pcell_t addr_cells, size_cells; 479 int tuple_size, tuples; 480 int i, rv; 481 long busaddr, bussize; 482 483 if (fdt_addrsize_cells(OF_parent(node), &addr_cells, &size_cells) != 0) 484 return (ENXIO); 485 if (fdt_get_range(OF_parent(node), 0, &busaddr, &bussize)) { 486 busaddr = 0; 487 bussize = 0; 488 } 489 490 tuple_size = sizeof(pcell_t) * (addr_cells + size_cells); 491 tuples = OF_getprop_alloc(node, "reg", tuple_size, (void **)®); 492 debugf("addr_cells = %d, size_cells = %d\n", addr_cells, size_cells); 493 debugf("tuples = %d, tuple size = %d\n", tuples, tuple_size); 494 if (tuples <= 0) 495 /* No 'reg' property in this node. */ 496 return (0); 497 498 regptr = reg; 499 for (i = 0; i < tuples; i++) { 500 501 rv = fdt_data_to_res(reg, addr_cells, size_cells, &start, 502 &count); 503 if (rv != 0) { 504 resource_list_free(rl); 505 goto out; 506 } 507 reg += addr_cells + size_cells; 508 509 /* Calculate address range relative to base. */ 510 start += busaddr; 511 end = start + count - 1; 512 513 debugf("reg addr start = %lx, end = %lx, count = %lx\n", start, 514 end, count); 515 516 resource_list_add(rl, SYS_RES_MEMORY, i, start, end, 517 count); 518 } 519 rv = 0; 520 521 out: 522 free(regptr, M_OFWPROP); 523 return (rv); 524 } 525 526 int 527 fdt_get_phyaddr(phandle_t node, device_t dev, int *phy_addr, void **phy_sc) 528 { 529 phandle_t phy_node; 530 pcell_t phy_handle, phy_reg; 531 uint32_t i; 532 device_t parent, child; 533 534 if (OF_getencprop(node, "phy-handle", (void *)&phy_handle, 535 sizeof(phy_handle)) <= 0) 536 return (ENXIO); 537 538 phy_node = OF_node_from_xref(phy_handle); 539 540 if (OF_getprop(phy_node, "reg", (void *)&phy_reg, 541 sizeof(phy_reg)) <= 0) 542 return (ENXIO); 543 544 *phy_addr = fdt32_to_cpu(phy_reg); 545 546 /* 547 * Search for softc used to communicate with phy. 548 */ 549 550 /* 551 * Step 1: Search for ancestor of the phy-node with a "phy-handle" 552 * property set. 553 */ 554 phy_node = OF_parent(phy_node); 555 while (phy_node != 0) { 556 if (OF_getprop(phy_node, "phy-handle", (void *)&phy_handle, 557 sizeof(phy_handle)) > 0) 558 break; 559 phy_node = OF_parent(phy_node); 560 } 561 if (phy_node == 0) 562 return (ENXIO); 563 564 /* 565 * Step 2: For each device with the same parent and name as ours 566 * compare its node with the one found in step 1, ancestor of phy 567 * node (stored in phy_node). 568 */ 569 parent = device_get_parent(dev); 570 i = 0; 571 child = device_find_child(parent, device_get_name(dev), i); 572 while (child != NULL) { 573 if (ofw_bus_get_node(child) == phy_node) 574 break; 575 i++; 576 child = device_find_child(parent, device_get_name(dev), i); 577 } 578 if (child == NULL) 579 return (ENXIO); 580 581 /* 582 * Use softc of the device found. 583 */ 584 *phy_sc = (void *)device_get_softc(child); 585 586 return (0); 587 } 588 589 int 590 fdt_get_reserved_regions(struct mem_region *mr, int *mrcnt) 591 { 592 pcell_t reserve[FDT_REG_CELLS * FDT_MEM_REGIONS]; 593 pcell_t *reservep; 594 phandle_t memory, root; 595 uint32_t memory_size; 596 int addr_cells, size_cells; 597 int i, max_size, res_len, rv, tuple_size, tuples; 598 599 max_size = sizeof(reserve); 600 root = OF_finddevice("/"); 601 memory = OF_finddevice("/memory"); 602 if (memory == -1) { 603 rv = ENXIO; 604 goto out; 605 } 606 607 if ((rv = fdt_addrsize_cells(OF_parent(memory), &addr_cells, 608 &size_cells)) != 0) 609 goto out; 610 611 if (addr_cells > 2) { 612 rv = ERANGE; 613 goto out; 614 } 615 616 tuple_size = sizeof(pcell_t) * (addr_cells + size_cells); 617 618 res_len = OF_getproplen(root, "memreserve"); 619 if (res_len <= 0 || res_len > sizeof(reserve)) { 620 rv = ERANGE; 621 goto out; 622 } 623 624 if (OF_getprop(root, "memreserve", reserve, res_len) <= 0) { 625 rv = ENXIO; 626 goto out; 627 } 628 629 memory_size = 0; 630 tuples = res_len / tuple_size; 631 reservep = (pcell_t *)&reserve; 632 for (i = 0; i < tuples; i++) { 633 634 rv = fdt_data_to_res(reservep, addr_cells, size_cells, 635 (u_long *)&mr[i].mr_start, (u_long *)&mr[i].mr_size); 636 637 if (rv != 0) 638 goto out; 639 640 reservep += addr_cells + size_cells; 641 } 642 643 *mrcnt = i; 644 rv = 0; 645 out: 646 return (rv); 647 } 648 649 int 650 fdt_get_mem_regions(struct mem_region *mr, int *mrcnt, uint32_t *memsize) 651 { 652 pcell_t reg[FDT_REG_CELLS * FDT_MEM_REGIONS]; 653 pcell_t *regp; 654 phandle_t memory; 655 uint32_t memory_size; 656 int addr_cells, size_cells; 657 int i, max_size, reg_len, rv, tuple_size, tuples; 658 659 max_size = sizeof(reg); 660 memory = OF_finddevice("/memory"); 661 if (memory == -1) { 662 rv = ENXIO; 663 goto out; 664 } 665 666 if ((rv = fdt_addrsize_cells(OF_parent(memory), &addr_cells, 667 &size_cells)) != 0) 668 goto out; 669 670 if (addr_cells > 2) { 671 rv = ERANGE; 672 goto out; 673 } 674 675 tuple_size = sizeof(pcell_t) * (addr_cells + size_cells); 676 reg_len = OF_getproplen(memory, "reg"); 677 if (reg_len <= 0 || reg_len > sizeof(reg)) { 678 rv = ERANGE; 679 goto out; 680 } 681 682 if (OF_getprop(memory, "reg", reg, reg_len) <= 0) { 683 rv = ENXIO; 684 goto out; 685 } 686 687 memory_size = 0; 688 tuples = reg_len / tuple_size; 689 regp = (pcell_t *)® 690 for (i = 0; i < tuples; i++) { 691 692 rv = fdt_data_to_res(regp, addr_cells, size_cells, 693 (u_long *)&mr[i].mr_start, (u_long *)&mr[i].mr_size); 694 695 if (rv != 0) 696 goto out; 697 698 regp += addr_cells + size_cells; 699 memory_size += mr[i].mr_size; 700 } 701 702 if (memory_size == 0) { 703 rv = ERANGE; 704 goto out; 705 } 706 707 *mrcnt = i; 708 *memsize = memory_size; 709 rv = 0; 710 out: 711 return (rv); 712 } 713 714 int 715 fdt_get_unit(device_t dev) 716 { 717 const char * name; 718 719 name = ofw_bus_get_name(dev); 720 name = strchr(name, '@') + 1; 721 722 return (strtol(name,NULL,0)); 723 } 724