1 /*- 2 * Copyright (c) 1990 The Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Don Ahn. 7 * 8 * Libretto PCMCIA floppy support by David Horwitt (dhorwitt@ucsd.edu) 9 * aided by the Linux floppy driver modifications from David Bateman 10 * (dbateman@eng.uts.edu.au). 11 * 12 * Copyright (c) 1993, 1994 by 13 * jc@irbs.UUCP (John Capo) 14 * vak@zebub.msk.su (Serge Vakulenko) 15 * ache@astral.msk.su (Andrew A. Chernov) 16 * 17 * Copyright (c) 1993, 1994, 1995 by 18 * joerg_wunsch@uriah.sax.de (Joerg Wunsch) 19 * dufault@hda.com (Peter Dufault) 20 * 21 * Copyright (c) 2001 Joerg Wunsch, 22 * joerg_wunsch@uriah.heep.sax.de (Joerg Wunsch) 23 * 24 * Redistribution and use in source and binary forms, with or without 25 * modification, are permitted provided that the following conditions 26 * are met: 27 * 1. Redistributions of source code must retain the above copyright 28 * notice, this list of conditions and the following disclaimer. 29 * 2. Redistributions in binary form must reproduce the above copyright 30 * notice, this list of conditions and the following disclaimer in the 31 * documentation and/or other materials provided with the distribution. 32 * 4. Neither the name of the University nor the names of its contributors 33 * may be used to endorse or promote products derived from this software 34 * without specific prior written permission. 35 * 36 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 37 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 39 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 40 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 41 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 42 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 44 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 45 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 46 * SUCH DAMAGE. 47 * 48 * from: @(#)fd.c 7.4 (Berkeley) 5/25/91 49 */ 50 51 #include <sys/cdefs.h> 52 __FBSDID("$FreeBSD$"); 53 54 #include "opt_fdc.h" 55 56 #include <sys/param.h> 57 #include <sys/bio.h> 58 #include <sys/bus.h> 59 #include <sys/devicestat.h> 60 #include <sys/disk.h> 61 #include <sys/fcntl.h> 62 #include <sys/fdcio.h> 63 #include <sys/filio.h> 64 #include <sys/kernel.h> 65 #include <sys/lock.h> 66 #include <sys/malloc.h> 67 #include <sys/module.h> 68 #include <sys/mutex.h> 69 #include <sys/proc.h> 70 #include <sys/rman.h> 71 #include <sys/systm.h> 72 73 #include <machine/bus.h> 74 #include <machine/clock.h> 75 #include <machine/stdarg.h> 76 77 #include <isa/isavar.h> 78 #include <isa/isareg.h> 79 #include <dev/fdc/fdcreg.h> 80 #include <dev/fdc/fdcvar.h> 81 #include <isa/rtc.h> 82 83 #define FDBIO_FORMAT BIO_CMD2 84 85 /* configuration flags for fdc */ 86 #define FDC_NO_FIFO (1 << 2) /* do not enable FIFO */ 87 88 /* 89 * Stop retrying after this many DMA overruns. Since each retry takes 90 * one revolution, with 300 rpm., 25 retries take approximately 5 91 * seconds which the read attempt will block in case the DMA overrun 92 * is persistent. 93 */ 94 #define FDC_DMAOV_MAX 25 95 96 /* 97 * Timeout value for the PIO loops to wait until the FDC main status 98 * register matches our expectations (request for master, direction 99 * bit). This is supposed to be a number of microseconds, although 100 * timing might actually not be very accurate. 101 * 102 * Timeouts of 100 msec are believed to be required for some broken 103 * (old) hardware. 104 */ 105 #define FDSTS_TIMEOUT 100000 106 107 /* 108 * Number of subdevices that can be used for different density types. 109 */ 110 #define NUMDENS 16 111 112 #define FDBIO_RDSECTID BIO_CMD1 113 114 /* 115 * List of native drive densities. Order must match enum fd_drivetype 116 * in <sys/fdcio.h>. Upon attaching the drive, each of the 117 * programmable subdevices is initialized with the native density 118 * definition. 119 */ 120 static struct fd_type fd_native_types[] = 121 { 122 { 0 }, /* FDT_NONE */ 123 { 9,2,0xFF,0x2A,40, 720,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* FDT_360K */ 124 { 15,2,0xFF,0x1B,80,2400,FDC_500KBPS,2,0x54,1,0,FL_MFM }, /* FDT_12M */ 125 { 9,2,0xFF,0x20,80,1440,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* FDT_720K */ 126 { 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* FDT_144M */ 127 #if 0 /* we currently don't handle 2.88 MB */ 128 { 36,2,0xFF,0x1B,80,5760,FDC_1MBPS, 2,0x4C,1,1,FL_MFM|FL_PERPND } /*FDT_288M*/ 129 #else 130 { 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* FDT_144M */ 131 #endif 132 }; 133 134 /* 135 * 360 KB 5.25" and 720 KB 3.5" drives don't have automatic density 136 * selection, they just start out with their native density (or lose). 137 * So 1.2 MB 5.25", 1.44 MB 3.5", and 2.88 MB 3.5" drives have their 138 * respective lists of densities to search for. 139 */ 140 static struct fd_type fd_searchlist_12m[] = { 141 { 15,2,0xFF,0x1B,80,2400,FDC_500KBPS,2,0x54,1,0,FL_MFM }, /* 1.2M */ 142 { 9,2,0xFF,0x23,40, 720,FDC_300KBPS,2,0x50,1,0,FL_MFM|FL_2STEP }, /* 360K */ 143 { 9,2,0xFF,0x20,80,1440,FDC_300KBPS,2,0x50,1,0,FL_MFM }, /* 720K */ 144 }; 145 146 static struct fd_type fd_searchlist_144m[] = { 147 { 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* 1.44M */ 148 { 9,2,0xFF,0x20,80,1440,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* 720K */ 149 }; 150 151 /* We search for 1.44M first since this is the most common case. */ 152 static struct fd_type fd_searchlist_288m[] = { 153 { 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* 1.44M */ 154 #if 0 155 { 36,2,0xFF,0x1B,80,5760,FDC_1MBPS, 2,0x4C,1,1,FL_MFM|FL_PERPND } /* 2.88M */ 156 #endif 157 { 9,2,0xFF,0x20,80,1440,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* 720K */ 158 }; 159 160 #define MAX_SEC_SIZE (128 << 3) 161 #define MAX_CYLINDER 85 /* some people really stress their drives 162 * up to cyl 82 */ 163 #define MAX_HEAD 1 164 165 devclass_t fdc_devclass; 166 167 /* 168 * Per drive structure (softc). 169 */ 170 struct fd_data { 171 struct fdc_data *fdc; /* pointer to controller structure */ 172 int fdsu; /* this units number on this controller */ 173 enum fd_drivetype type; /* drive type */ 174 struct fd_type *ft; /* pointer to current type descriptor */ 175 struct fd_type fts[NUMDENS]; /* type descriptors */ 176 int flags; 177 #define FD_OPEN 0x01 /* it's open */ 178 #define FD_NONBLOCK 0x02 /* O_NONBLOCK set */ 179 #define FD_ACTIVE 0x04 /* it's active */ 180 #define FD_MOTOR 0x08 /* motor should be on */ 181 #define FD_MOTOR_WAIT 0x10 /* motor coming up */ 182 #define FD_UA 0x20 /* force unit attention */ 183 int skip; 184 int hddrv; 185 #define FD_NO_TRACK -2 186 int track; /* where we think the head is */ 187 int options; /* user configurable options, see fdcio.h */ 188 struct callout_handle toffhandle; 189 struct callout_handle tohandle; 190 struct devstat *device_stats; 191 struct cdev *masterdev; 192 device_t dev; 193 fdu_t fdu; 194 }; 195 196 struct fdc_ivars { 197 int fdunit; 198 int fdtype; 199 }; 200 201 static devclass_t fd_devclass; 202 203 /* configuration flags for fd */ 204 #define FD_TYPEMASK 0x0f /* drive type, matches enum 205 * fd_drivetype; on i386 machines, if 206 * given as 0, use RTC type for fd0 207 * and fd1 */ 208 #define FD_DTYPE(flags) ((flags) & FD_TYPEMASK) 209 #define FD_NO_CHLINE 0x10 /* drive does not support changeline 210 * aka. unit attention */ 211 #define FD_NO_PROBE 0x20 /* don't probe drive (seek test), just 212 * assume it is there */ 213 214 /* 215 * Throughout this file the following conventions will be used: 216 * 217 * fd is a pointer to the fd_data struct for the drive in question 218 * fdc is a pointer to the fdc_data struct for the controller 219 * fdu is the floppy drive unit number 220 * fdcu is the floppy controller unit number 221 * fdsu is the floppy drive unit number on that controller. (sub-unit) 222 */ 223 224 /* 225 * Function declarations, same (chaotic) order as they appear in the 226 * file. Re-ordering is too late now, it would only obfuscate the 227 * diffs against old and offspring versions (like the PC98 one). 228 * 229 * Anyone adding functions here, please keep this sequence the same 230 * as below -- makes locating a particular function in the body much 231 * easier. 232 */ 233 static u_int8_t fdsts_rd(fdc_p); 234 static void fddata_wr(fdc_p, u_int8_t); 235 static u_int8_t fddata_rd(fdc_p); 236 #if 0 237 static u_int8_t fdin_rd(fdc_p); 238 #endif 239 static int fdc_err(struct fdc_data *, const char *); 240 static int enable_fifo(fdc_p fdc); 241 static int fd_sense_drive_status(fdc_p, int *); 242 static int fd_sense_int(fdc_p, int *, int *); 243 static int fd_read_status(fdc_p); 244 static void fdc_add_child(device_t, const char *, int); 245 static int fd_probe(device_t); 246 static int fd_attach(device_t); 247 static int fd_detach(device_t); 248 static void set_motor(struct fdc_data *, int, int); 249 # define TURNON 1 250 # define TURNOFF 0 251 static timeout_t fd_turnoff; 252 static timeout_t fd_motor_on; 253 static void fd_turnon(struct fd_data *); 254 static void fdc_reset(fdc_p); 255 static int fd_in(struct fdc_data *, int *); 256 static int out_fdc(struct fdc_data *, int); 257 /* 258 * The open function is named fdopen() to avoid confusion with fdopen() 259 * in fd(4). The difference is now only meaningful for debuggers. 260 */ 261 static d_open_t fdopen; 262 static d_close_t fdclose; 263 static d_strategy_t fdstrategy; 264 static void fdstart(struct fdc_data *); 265 static timeout_t fd_iotimeout; 266 static timeout_t fd_pseudointr; 267 static driver_intr_t fdc_intr; 268 static int fdcpio(fdc_p, long, caddr_t, u_int); 269 static int fdautoselect(struct cdev *); 270 static int fdstate(struct fdc_data *); 271 static int retrier(struct fdc_data *); 272 static void fdbiodone(struct bio *); 273 static int fdmisccmd(struct cdev *, u_int, void *); 274 static d_ioctl_t fdioctl; 275 276 static int fifo_threshold = 8; /* XXX: should be accessible via sysctl */ 277 278 #ifdef FDC_DEBUG 279 /* CAUTION: fd_debug causes huge amounts of logging output */ 280 static int volatile fd_debug = 0; 281 #define TRACE0(arg) do { if (fd_debug) printf(arg); } while (0) 282 #define TRACE1(arg1, arg2) do { if (fd_debug) printf(arg1, arg2); } while (0) 283 #else /* FDC_DEBUG */ 284 #define TRACE0(arg) do { } while (0) 285 #define TRACE1(arg1, arg2) do { } while (0) 286 #endif /* FDC_DEBUG */ 287 288 /* 289 * Bus space handling (access to low-level IO). 290 */ 291 void 292 fdout_wr(fdc_p fdc, u_int8_t v) 293 { 294 bus_space_write_1(fdc->portt, fdc->porth, FDOUT+fdc->port_off, v); 295 } 296 297 static u_int8_t 298 fdsts_rd(fdc_p fdc) 299 { 300 return bus_space_read_1(fdc->portt, fdc->porth, FDSTS+fdc->port_off); 301 } 302 303 static void 304 fddata_wr(fdc_p fdc, u_int8_t v) 305 { 306 bus_space_write_1(fdc->portt, fdc->porth, FDDATA+fdc->port_off, v); 307 } 308 309 static u_int8_t 310 fddata_rd(fdc_p fdc) 311 { 312 return bus_space_read_1(fdc->portt, fdc->porth, FDDATA+fdc->port_off); 313 } 314 315 static u_int8_t 316 fdin_rd(fdc_p fdc) 317 { 318 return bus_space_read_1(fdc->portt, fdc->porth, FDIN); 319 } 320 321 static struct cdevsw fd_cdevsw = { 322 .d_version = D_VERSION, 323 .d_open = fdopen, 324 .d_close = fdclose, 325 .d_read = physread, 326 .d_write = physwrite, 327 .d_ioctl = fdioctl, 328 .d_strategy = fdstrategy, 329 .d_name = "fd", 330 .d_flags = D_DISK | D_NEEDGIANT, 331 }; 332 333 /* 334 * Auxiliary functions. Well, some only. Others are scattered 335 * throughout the entire file. 336 */ 337 static int 338 fdc_err(struct fdc_data *fdc, const char *s) 339 { 340 fdc->fdc_errs++; 341 if (s) { 342 if (fdc->fdc_errs < FDC_ERRMAX) 343 device_printf(fdc->fdc_dev, "%s", s); 344 else if (fdc->fdc_errs == FDC_ERRMAX) 345 device_printf(fdc->fdc_dev, "too many errors, not " 346 "logging any more\n"); 347 } 348 349 return FD_FAILED; 350 } 351 352 /* 353 * fd_cmd: Send a command to the chip. Takes a varargs with this structure: 354 * Unit number, 355 * # of output bytes, output bytes as ints ..., 356 * # of input bytes, input bytes as ints ... 357 */ 358 int 359 fd_cmd(struct fdc_data *fdc, int n_out, ...) 360 { 361 u_char cmd; 362 int n_in; 363 int n; 364 va_list ap; 365 366 va_start(ap, n_out); 367 cmd = (u_char)(va_arg(ap, int)); 368 va_end(ap); 369 va_start(ap, n_out); 370 for (n = 0; n < n_out; n++) 371 { 372 if (out_fdc(fdc, va_arg(ap, int)) < 0) 373 { 374 char msg[50]; 375 snprintf(msg, sizeof(msg), 376 "cmd %x failed at out byte %d of %d\n", 377 cmd, n + 1, n_out); 378 return fdc_err(fdc, msg); 379 } 380 } 381 n_in = va_arg(ap, int); 382 for (n = 0; n < n_in; n++) 383 { 384 int *ptr = va_arg(ap, int *); 385 if (fd_in(fdc, ptr) < 0) 386 { 387 char msg[50]; 388 snprintf(msg, sizeof(msg), 389 "cmd %02x failed at in byte %d of %d\n", 390 cmd, n + 1, n_in); 391 return fdc_err(fdc, msg); 392 } 393 } 394 395 return 0; 396 } 397 398 static int 399 enable_fifo(fdc_p fdc) 400 { 401 int i, j; 402 403 if ((fdc->flags & FDC_HAS_FIFO) == 0) { 404 405 /* 406 * Cannot use fd_cmd the normal way here, since 407 * this might be an invalid command. Thus we send the 408 * first byte, and check for an early turn of data directon. 409 */ 410 411 if (out_fdc(fdc, I8207X_CONFIGURE) < 0) 412 return fdc_err(fdc, "Enable FIFO failed\n"); 413 414 /* If command is invalid, return */ 415 j = FDSTS_TIMEOUT; 416 while ((i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM)) 417 != NE7_RQM && j-- > 0) { 418 if (i == (NE7_DIO | NE7_RQM)) { 419 fdc_reset(fdc); 420 return FD_FAILED; 421 } 422 DELAY(1); 423 } 424 if (j<0 || 425 fd_cmd(fdc, 3, 426 0, (fifo_threshold - 1) & 0xf, 0, 0) < 0) { 427 fdc_reset(fdc); 428 return fdc_err(fdc, "Enable FIFO failed\n"); 429 } 430 fdc->flags |= FDC_HAS_FIFO; 431 return 0; 432 } 433 if (fd_cmd(fdc, 4, 434 I8207X_CONFIGURE, 0, (fifo_threshold - 1) & 0xf, 0, 0) < 0) 435 return fdc_err(fdc, "Re-enable FIFO failed\n"); 436 return 0; 437 } 438 439 static int 440 fd_sense_drive_status(fdc_p fdc, int *st3p) 441 { 442 int st3; 443 444 if (fd_cmd(fdc, 2, NE7CMD_SENSED, fdc->fdu, 1, &st3)) 445 { 446 return fdc_err(fdc, "Sense Drive Status failed\n"); 447 } 448 if (st3p) 449 *st3p = st3; 450 451 return 0; 452 } 453 454 static int 455 fd_sense_int(fdc_p fdc, int *st0p, int *cylp) 456 { 457 int cyl, st0, ret; 458 459 ret = fd_cmd(fdc, 1, NE7CMD_SENSEI, 1, &st0); 460 if (ret) { 461 (void)fdc_err(fdc, 462 "sense intr err reading stat reg 0\n"); 463 return ret; 464 } 465 466 if (st0p) 467 *st0p = st0; 468 469 if ((st0 & NE7_ST0_IC) == NE7_ST0_IC_IV) { 470 /* 471 * There doesn't seem to have been an interrupt. 472 */ 473 return FD_NOT_VALID; 474 } 475 476 if (fd_in(fdc, &cyl) < 0) { 477 return fdc_err(fdc, "can't get cyl num\n"); 478 } 479 480 if (cylp) 481 *cylp = cyl; 482 483 return 0; 484 } 485 486 487 static int 488 fd_read_status(fdc_p fdc) 489 { 490 int i, ret; 491 492 for (i = ret = 0; i < 7; i++) { 493 /* 494 * XXX types are poorly chosen. Only bytes can be read 495 * from the hardware, but fdc->status[] wants u_ints and 496 * fd_in() gives ints. 497 */ 498 int status; 499 500 ret = fd_in(fdc, &status); 501 fdc->status[i] = status; 502 if (ret != 0) 503 break; 504 } 505 506 if (ret == 0) 507 fdc->flags |= FDC_STAT_VALID; 508 else 509 fdc->flags &= ~FDC_STAT_VALID; 510 511 return ret; 512 } 513 514 int 515 fdc_alloc_resources(struct fdc_data *fdc) 516 { 517 device_t dev; 518 int ispnp, ispcmcia, nports; 519 520 dev = fdc->fdc_dev; 521 ispnp = (fdc->flags & FDC_ISPNP) != 0; 522 ispcmcia = (fdc->flags & FDC_ISPCMCIA) != 0; 523 fdc->rid_ioport = fdc->rid_irq = fdc->rid_drq = 0; 524 fdc->res_ioport = fdc->res_irq = fdc->res_drq = 0; 525 fdc->rid_ctl = 1; 526 527 /* 528 * On standard ISA, we don't just use an 8 port range 529 * (e.g. 0x3f0-0x3f7) since that covers an IDE control 530 * register at 0x3f6. 531 * 532 * Isn't PC hardware wonderful. 533 * 534 * The Y-E Data PCMCIA FDC doesn't have this problem, it 535 * uses the register with offset 6 for pseudo-DMA, and the 536 * one with offset 7 as control register. 537 */ 538 nports = ispcmcia ? 8 : (ispnp ? 1 : 6); 539 540 /* 541 * Some ACPI BIOSen have _CRS objects for the floppy device that 542 * split the I/O port resource into several resources. We detect 543 * this case by checking if there are more than 2 IOPORT resources. 544 * If so, we use the resource with the smallest start address as 545 * the port RID and the largest start address as the control RID. 546 */ 547 if (bus_get_resource_count(dev, SYS_RES_IOPORT, 2) != 0) { 548 u_long min_start, max_start, tmp; 549 int i; 550 551 /* Find the min/max start addresses and their RIDs. */ 552 max_start = 0ul; 553 min_start = ~0ul; 554 for (i = 0; bus_get_resource_count(dev, SYS_RES_IOPORT, i) > 0; 555 i++) { 556 tmp = bus_get_resource_start(dev, SYS_RES_IOPORT, i); 557 KASSERT(tmp != 0, ("bogus resource")); 558 if (tmp < min_start) { 559 min_start = tmp; 560 fdc->rid_ioport = i; 561 } 562 if (tmp > max_start) { 563 max_start = tmp; 564 fdc->rid_ctl = i; 565 } 566 } 567 if (min_start + 7 != max_start) { 568 device_printf(dev, "I/O to control range incorrect\n"); 569 return (ENXIO); 570 } 571 } 572 573 fdc->res_ioport = bus_alloc_resource(dev, SYS_RES_IOPORT, 574 &fdc->rid_ioport, 0ul, ~0ul, 575 nports, RF_ACTIVE); 576 if (fdc->res_ioport == 0) { 577 device_printf(dev, "cannot reserve I/O port range (%d ports)\n", 578 nports); 579 return ENXIO; 580 } 581 fdc->portt = rman_get_bustag(fdc->res_ioport); 582 fdc->porth = rman_get_bushandle(fdc->res_ioport); 583 584 if (!ispcmcia) { 585 /* 586 * Some BIOSen report the device at 0x3f2-0x3f5,0x3f7 587 * and some at 0x3f0-0x3f5,0x3f7. We detect the former 588 * by checking the size and adjust the port address 589 * accordingly. 590 */ 591 if (bus_get_resource_count(dev, SYS_RES_IOPORT, 0) == 4) 592 fdc->port_off = -2; 593 594 /* 595 * Register the control port range as rid 1 if it 596 * isn't there already. Most PnP BIOSen will have 597 * already done this but non-PnP configurations don't. 598 * 599 * And some (!!) report 0x3f2-0x3f5 and completely 600 * leave out the control register! It seems that some 601 * non-antique controller chips have a different 602 * method of programming the transfer speed which 603 * doesn't require the control register, but it's 604 * mighty bogus as the chip still responds to the 605 * address for the control register. 606 */ 607 if (bus_get_resource_count(dev, SYS_RES_IOPORT, 1) == 0) { 608 u_long ctlstart; 609 610 /* Find the control port, usually 0x3f7 */ 611 ctlstart = rman_get_start(fdc->res_ioport) + 612 fdc->port_off + 7; 613 614 bus_set_resource(dev, SYS_RES_IOPORT, 1, ctlstart, 1); 615 } 616 617 /* 618 * Now (finally!) allocate the control port. 619 */ 620 fdc->res_ctl = bus_alloc_resource_any(dev, SYS_RES_IOPORT, 621 &fdc->rid_ctl, RF_ACTIVE); 622 if (fdc->res_ctl == 0) { 623 device_printf(dev, 624 "cannot reserve control I/O port range (control port)\n"); 625 return ENXIO; 626 } 627 fdc->ctlt = rman_get_bustag(fdc->res_ctl); 628 fdc->ctlh = rman_get_bushandle(fdc->res_ctl); 629 } 630 631 fdc->res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &fdc->rid_irq, 632 RF_ACTIVE | RF_SHAREABLE); 633 if (fdc->res_irq == 0) { 634 device_printf(dev, "cannot reserve interrupt line\n"); 635 return ENXIO; 636 } 637 638 if ((fdc->flags & FDC_NODMA) == 0) { 639 fdc->res_drq = bus_alloc_resource_any(dev, SYS_RES_DRQ, 640 &fdc->rid_drq, RF_ACTIVE | RF_SHAREABLE); 641 if (fdc->res_drq == 0) { 642 device_printf(dev, "cannot reserve DMA request line\n"); 643 fdc->flags |= FDC_NODMA; 644 } else 645 fdc->dmachan = rman_get_start(fdc->res_drq); 646 } 647 648 return 0; 649 } 650 651 void 652 fdc_release_resources(struct fdc_data *fdc) 653 { 654 device_t dev; 655 656 dev = fdc->fdc_dev; 657 if (fdc->res_irq != 0) { 658 bus_deactivate_resource(dev, SYS_RES_IRQ, fdc->rid_irq, 659 fdc->res_irq); 660 bus_release_resource(dev, SYS_RES_IRQ, fdc->rid_irq, 661 fdc->res_irq); 662 } 663 if (fdc->res_ctl != 0) { 664 bus_deactivate_resource(dev, SYS_RES_IOPORT, fdc->rid_ctl, 665 fdc->res_ctl); 666 bus_release_resource(dev, SYS_RES_IOPORT, fdc->rid_ctl, 667 fdc->res_ctl); 668 } 669 if (fdc->res_ioport != 0) { 670 bus_deactivate_resource(dev, SYS_RES_IOPORT, fdc->rid_ioport, 671 fdc->res_ioport); 672 bus_release_resource(dev, SYS_RES_IOPORT, fdc->rid_ioport, 673 fdc->res_ioport); 674 } 675 if (fdc->res_drq != 0) { 676 bus_deactivate_resource(dev, SYS_RES_DRQ, fdc->rid_drq, 677 fdc->res_drq); 678 bus_release_resource(dev, SYS_RES_DRQ, fdc->rid_drq, 679 fdc->res_drq); 680 } 681 } 682 683 /* 684 * Configuration/initialization stuff, per controller. 685 */ 686 687 int 688 fdc_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) 689 { 690 struct fdc_ivars *ivars = device_get_ivars(child); 691 692 switch (which) { 693 case FDC_IVAR_FDUNIT: 694 *result = ivars->fdunit; 695 break; 696 case FDC_IVAR_FDTYPE: 697 *result = ivars->fdtype; 698 break; 699 default: 700 return (ENOENT); 701 } 702 return (0); 703 } 704 705 int 706 fdc_write_ivar(device_t dev, device_t child, int which, uintptr_t value) 707 { 708 struct fdc_ivars *ivars = device_get_ivars(child); 709 710 switch (which) { 711 case FDC_IVAR_FDUNIT: 712 ivars->fdunit = value; 713 break; 714 case FDC_IVAR_FDTYPE: 715 ivars->fdtype = value; 716 break; 717 default: 718 return (ENOENT); 719 } 720 return (0); 721 } 722 723 int 724 fdc_initial_reset(struct fdc_data *fdc) 725 { 726 /* First, reset the floppy controller. */ 727 fdout_wr(fdc, 0); 728 DELAY(100); 729 fdout_wr(fdc, FDO_FRST); 730 731 /* Then, see if it can handle a command. */ 732 if (fd_cmd(fdc, 3, NE7CMD_SPECIFY, NE7_SPEC_1(3, 240), 733 NE7_SPEC_2(2, 0), 0)) 734 return (ENXIO); 735 return (0); 736 } 737 738 int 739 fdc_detach(device_t dev) 740 { 741 struct fdc_data *fdc; 742 int error; 743 744 fdc = device_get_softc(dev); 745 746 /* have our children detached first */ 747 if ((error = bus_generic_detach(dev))) 748 return (error); 749 750 /* reset controller, turn motor off */ 751 fdout_wr(fdc, 0); 752 753 if ((fdc->flags & FDC_ATTACHED) == 0) { 754 device_printf(dev, "already unloaded\n"); 755 return (0); 756 } 757 fdc->flags &= ~FDC_ATTACHED; 758 759 BUS_TEARDOWN_INTR(device_get_parent(dev), dev, fdc->res_irq, 760 fdc->fdc_intr); 761 fdc_release_resources(fdc); 762 return (0); 763 } 764 765 /* 766 * Add a child device to the fdc controller. It will then be probed etc. 767 */ 768 static void 769 fdc_add_child(device_t dev, const char *name, int unit) 770 { 771 int fdu, flags; 772 struct fdc_ivars *ivar; 773 device_t child; 774 775 ivar = malloc(sizeof *ivar, M_DEVBUF /* XXX */, M_NOWAIT | M_ZERO); 776 if (ivar == NULL) 777 return; 778 child = device_add_child(dev, name, unit); 779 if (child == NULL) { 780 free(ivar, M_DEVBUF); 781 return; 782 } 783 device_set_ivars(child, ivar); 784 if (resource_int_value(name, unit, "drive", &fdu) != 0) 785 fdu = 0; 786 fdc_set_fdunit(child, fdu); 787 fdc_set_fdtype(child, FDT_NONE); 788 if (resource_int_value(name, unit, "flags", &flags) == 0) 789 device_set_flags(child, flags); 790 if (resource_disabled(name, unit)) 791 device_disable(child); 792 } 793 794 int 795 fdc_attach(device_t dev) 796 { 797 struct fdc_data *fdc; 798 const char *name, *dname; 799 int i, error, dunit; 800 801 fdc = device_get_softc(dev); 802 fdc->fdc_dev = dev; 803 error = fdc_alloc_resources(fdc); 804 if (error) { 805 device_printf(dev, "cannot re-acquire resources\n"); 806 return error; 807 } 808 error = BUS_SETUP_INTR(device_get_parent(dev), dev, fdc->res_irq, 809 INTR_TYPE_BIO | INTR_ENTROPY, fdc_intr, fdc, 810 &fdc->fdc_intr); 811 if (error) { 812 device_printf(dev, "cannot setup interrupt\n"); 813 return error; 814 } 815 fdc->fdcu = device_get_unit(dev); 816 fdc->flags |= FDC_ATTACHED | FDC_NEEDS_RESET; 817 818 fdc->state = DEVIDLE; 819 820 /* reset controller, turn motor off, clear fdout mirror reg */ 821 fdout_wr(fdc, fdc->fdout = 0); 822 bioq_init(&fdc->head); 823 824 /* 825 * Probe and attach any children. We should probably detect 826 * devices from the BIOS unless overridden. 827 */ 828 name = device_get_nameunit(dev); 829 i = 0; 830 while ((resource_find_match(&i, &dname, &dunit, "at", name)) == 0) 831 fdc_add_child(dev, dname, dunit); 832 833 if ((error = bus_generic_attach(dev)) != 0) 834 return (error); 835 836 return (0); 837 } 838 839 int 840 fdc_print_child(device_t me, device_t child) 841 { 842 int retval = 0, flags; 843 844 retval += bus_print_child_header(me, child); 845 retval += printf(" on %s drive %d", device_get_nameunit(me), 846 fdc_get_fdunit(child)); 847 if ((flags = device_get_flags(me)) != 0) 848 retval += printf(" flags %#x", flags); 849 retval += printf("\n"); 850 851 return (retval); 852 } 853 854 /* 855 * Configuration/initialization, per drive. 856 */ 857 static int 858 fd_probe(device_t dev) 859 { 860 int i; 861 u_int st0, st3; 862 struct fd_data *fd; 863 struct fdc_data *fdc; 864 fdsu_t fdsu; 865 int flags, type; 866 867 fdsu = fdc_get_fdunit(dev); 868 fd = device_get_softc(dev); 869 fdc = device_get_softc(device_get_parent(dev)); 870 flags = device_get_flags(dev); 871 872 fd->dev = dev; 873 fd->fdc = fdc; 874 fd->fdsu = fdsu; 875 fd->fdu = device_get_unit(dev); 876 877 type = FD_DTYPE(flags); 878 879 /* Auto-probe if fdinfo is present, but always allow override. */ 880 if (type == FDT_NONE && (type = fdc_get_fdtype(dev)) != FDT_NONE) { 881 fd->type = type; 882 goto done; 883 } else { 884 /* make sure fdautoselect() will be called */ 885 fd->flags = FD_UA; 886 fd->type = type; 887 } 888 889 /* 890 * XXX I think using __i386__ is wrong here since we actually want to probe 891 * for the machine type, not the CPU type (so non-PC arch's like the PC98 will 892 * fail the probe). However, for whatever reason, testing for _MACHINE_ARCH 893 * == i386 breaks the test on FreeBSD/Alpha. 894 */ 895 #if defined(__i386__) || defined(__amd64__) 896 if (fd->type == FDT_NONE && (fd->fdu == 0 || fd->fdu == 1)) { 897 /* Look up what the BIOS thinks we have. */ 898 if (fd->fdu == 0) { 899 if ((fdc->flags & FDC_ISPCMCIA)) 900 /* 901 * Somewhat special. No need to force the 902 * user to set device flags, since the Y-E 903 * Data PCMCIA floppy is always a 1.44 MB 904 * device. 905 */ 906 fd->type = FDT_144M; 907 else 908 fd->type = (rtcin(RTC_FDISKETTE) & 0xf0) >> 4; 909 } else { 910 fd->type = rtcin(RTC_FDISKETTE) & 0x0f; 911 } 912 if (fd->type == FDT_288M_1) 913 fd->type = FDT_288M; 914 } 915 #endif /* __i386__ || __amd64__ */ 916 /* is there a unit? */ 917 if (fd->type == FDT_NONE) 918 return (ENXIO); 919 920 /* select it */ 921 set_motor(fdc, fdsu, TURNON); 922 fdc_reset(fdc); /* XXX reset, then unreset, etc. */ 923 DELAY(1000000); /* 1 sec */ 924 925 if ((flags & FD_NO_PROBE) == 0) { 926 /* If we're at track 0 first seek inwards. */ 927 if ((fd_sense_drive_status(fdc, &st3) == 0) && 928 (st3 & NE7_ST3_T0)) { 929 /* Seek some steps... */ 930 if (fd_cmd(fdc, 3, NE7CMD_SEEK, fdsu, 10, 0) == 0) { 931 /* ...wait a moment... */ 932 DELAY(300000); 933 /* make ctrlr happy: */ 934 fd_sense_int(fdc, 0, 0); 935 } 936 } 937 938 for (i = 0; i < 2; i++) { 939 /* 940 * we must recalibrate twice, just in case the 941 * heads have been beyond cylinder 76, since 942 * most FDCs still barf when attempting to 943 * recalibrate more than 77 steps 944 */ 945 /* go back to 0: */ 946 if (fd_cmd(fdc, 2, NE7CMD_RECAL, fdsu, 0) == 0) { 947 /* a second being enough for full stroke seek*/ 948 DELAY(i == 0 ? 1000000 : 300000); 949 950 /* anything responding? */ 951 if (fd_sense_int(fdc, &st0, 0) == 0 && 952 (st0 & NE7_ST0_EC) == 0) 953 break; /* already probed succesfully */ 954 } 955 } 956 } 957 958 set_motor(fdc, fdsu, TURNOFF); 959 960 if ((flags & FD_NO_PROBE) == 0 && 961 (st0 & NE7_ST0_EC) != 0) /* no track 0 -> no drive present */ 962 return (ENXIO); 963 964 done: 965 /* This doesn't work before the first reset. Or set_motor?? */ 966 if ((fdc->flags & FDC_HAS_FIFO) == 0 && 967 fdc->fdct == FDC_ENHANCED && 968 (device_get_flags(fdc->fdc_dev) & FDC_NO_FIFO) == 0 && 969 enable_fifo(fdc) == 0) { 970 device_printf(device_get_parent(dev), 971 "FIFO enabled, %d bytes threshold\n", fifo_threshold); 972 } 973 974 switch (fd->type) { 975 case FDT_12M: 976 device_set_desc(dev, "1200-KB 5.25\" drive"); 977 break; 978 case FDT_144M: 979 device_set_desc(dev, "1440-KB 3.5\" drive"); 980 break; 981 case FDT_288M: 982 device_set_desc(dev, "2880-KB 3.5\" drive (in 1440-KB mode)"); 983 break; 984 case FDT_360K: 985 device_set_desc(dev, "360-KB 5.25\" drive"); 986 break; 987 case FDT_720K: 988 device_set_desc(dev, "720-KB 3.5\" drive"); 989 break; 990 default: 991 return (ENXIO); 992 } 993 fd->track = FD_NO_TRACK; 994 fd->fdc = fdc; 995 fd->fdsu = fdsu; 996 fd->options = 0; 997 callout_handle_init(&fd->toffhandle); 998 callout_handle_init(&fd->tohandle); 999 1000 /* initialize densities for subdevices */ 1001 for (i = 0; i < NUMDENS; i++) 1002 memcpy(fd->fts + i, fd_native_types + fd->type, 1003 sizeof(struct fd_type)); 1004 return (0); 1005 } 1006 1007 static int 1008 fd_attach(device_t dev) 1009 { 1010 struct fd_data *fd; 1011 1012 fd = device_get_softc(dev); 1013 fd->masterdev = make_dev(&fd_cdevsw, fd->fdu, 1014 UID_ROOT, GID_OPERATOR, 0640, "fd%d", fd->fdu); 1015 fd->masterdev->si_drv1 = fd; 1016 fd->device_stats = devstat_new_entry(device_get_name(dev), 1017 device_get_unit(dev), 0, DEVSTAT_NO_ORDERED_TAGS, 1018 DEVSTAT_TYPE_FLOPPY | DEVSTAT_TYPE_IF_OTHER, 1019 DEVSTAT_PRIORITY_FD); 1020 return (0); 1021 } 1022 1023 static int 1024 fd_detach(device_t dev) 1025 { 1026 struct fd_data *fd; 1027 1028 fd = device_get_softc(dev); 1029 untimeout(fd_turnoff, fd, fd->toffhandle); 1030 devstat_remove_entry(fd->device_stats); 1031 destroy_dev(fd->masterdev); 1032 1033 return (0); 1034 } 1035 1036 static device_method_t fd_methods[] = { 1037 /* Device interface */ 1038 DEVMETHOD(device_probe, fd_probe), 1039 DEVMETHOD(device_attach, fd_attach), 1040 DEVMETHOD(device_detach, fd_detach), 1041 DEVMETHOD(device_shutdown, bus_generic_shutdown), 1042 DEVMETHOD(device_suspend, bus_generic_suspend), /* XXX */ 1043 DEVMETHOD(device_resume, bus_generic_resume), /* XXX */ 1044 1045 { 0, 0 } 1046 }; 1047 1048 static driver_t fd_driver = { 1049 "fd", 1050 fd_methods, 1051 sizeof(struct fd_data) 1052 }; 1053 1054 DRIVER_MODULE(fd, fdc, fd_driver, fd_devclass, 0, 0); 1055 1056 /* 1057 * More auxiliary functions. 1058 */ 1059 /* 1060 * Motor control stuff. 1061 * Remember to not deselect the drive we're working on. 1062 */ 1063 static void 1064 set_motor(struct fdc_data *fdc, int fdsu, int turnon) 1065 { 1066 int fdout; 1067 1068 fdout = fdc->fdout; 1069 if (turnon) { 1070 fdout &= ~FDO_FDSEL; 1071 fdout |= (FDO_MOEN0 << fdsu) | FDO_FDMAEN | FDO_FRST | fdsu; 1072 } else 1073 fdout &= ~(FDO_MOEN0 << fdsu); 1074 fdc->fdout = fdout; 1075 fdout_wr(fdc, fdout); 1076 TRACE1("[0x%x->FDOUT]", fdout); 1077 } 1078 1079 static void 1080 fd_turnoff(void *xfd) 1081 { 1082 int s; 1083 fd_p fd = xfd; 1084 1085 TRACE1("[fd%d: turnoff]", fd->fdu); 1086 1087 s = splbio(); 1088 /* 1089 * Don't turn off the motor yet if the drive is active. 1090 * 1091 * If we got here, this could only mean we missed an interrupt. 1092 * This can e. g. happen on the Y-E Date PCMCIA floppy controller 1093 * after a controller reset. Just schedule a pseudo-interrupt 1094 * so the state machine gets re-entered. 1095 */ 1096 if (fd->fdc->state != DEVIDLE && fd->fdc->fdu == fd->fdu) { 1097 fdc_intr(fd->fdc); 1098 splx(s); 1099 return; 1100 } 1101 1102 fd->flags &= ~FD_MOTOR; 1103 set_motor(fd->fdc, fd->fdsu, TURNOFF); 1104 splx(s); 1105 } 1106 1107 static void 1108 fd_motor_on(void *xfd) 1109 { 1110 int s; 1111 fd_p fd = xfd; 1112 1113 s = splbio(); 1114 fd->flags &= ~FD_MOTOR_WAIT; 1115 if((fd->fdc->fd == fd) && (fd->fdc->state == MOTORWAIT)) 1116 { 1117 fdc_intr(fd->fdc); 1118 } 1119 splx(s); 1120 } 1121 1122 static void 1123 fd_turnon(fd_p fd) 1124 { 1125 if(!(fd->flags & FD_MOTOR)) 1126 { 1127 fd->flags |= (FD_MOTOR + FD_MOTOR_WAIT); 1128 set_motor(fd->fdc, fd->fdsu, TURNON); 1129 timeout(fd_motor_on, fd, hz); /* in 1 sec its ok */ 1130 } 1131 } 1132 1133 static void 1134 fdc_reset(fdc_p fdc) 1135 { 1136 /* Try a reset, keep motor on */ 1137 fdout_wr(fdc, fdc->fdout & ~(FDO_FRST|FDO_FDMAEN)); 1138 TRACE1("[0x%x->FDOUT]", fdc->fdout & ~(FDO_FRST|FDO_FDMAEN)); 1139 DELAY(100); 1140 /* enable FDC, but defer interrupts a moment */ 1141 fdout_wr(fdc, fdc->fdout & ~FDO_FDMAEN); 1142 TRACE1("[0x%x->FDOUT]", fdc->fdout & ~FDO_FDMAEN); 1143 DELAY(100); 1144 fdout_wr(fdc, fdc->fdout); 1145 TRACE1("[0x%x->FDOUT]", fdc->fdout); 1146 1147 /* XXX after a reset, silently believe the FDC will accept commands */ 1148 (void)fd_cmd(fdc, 3, NE7CMD_SPECIFY, 1149 NE7_SPEC_1(3, 240), NE7_SPEC_2(2, 0), 1150 0); 1151 if (fdc->flags & FDC_HAS_FIFO) 1152 (void) enable_fifo(fdc); 1153 } 1154 1155 /* 1156 * FDC IO functions, take care of the main status register, timeout 1157 * in case the desired status bits are never set. 1158 * 1159 * These PIO loops initially start out with short delays between 1160 * each iteration in the expectation that the required condition 1161 * is usually met quickly, so it can be handled immediately. After 1162 * about 1 ms, stepping is increased to achieve a better timing 1163 * accuracy in the calls to DELAY(). 1164 */ 1165 static int 1166 fd_in(struct fdc_data *fdc, int *ptr) 1167 { 1168 int i, j, step; 1169 1170 for (j = 0, step = 1; 1171 (i = fdsts_rd(fdc) & (NE7_DIO|NE7_RQM)) != (NE7_DIO|NE7_RQM) && 1172 j < FDSTS_TIMEOUT; 1173 j += step) { 1174 if (i == NE7_RQM) 1175 return (fdc_err(fdc, "ready for output in input\n")); 1176 if (j == 1000) 1177 step = 1000; 1178 DELAY(step); 1179 } 1180 if (j >= FDSTS_TIMEOUT) 1181 return (fdc_err(fdc, bootverbose? "input ready timeout\n": 0)); 1182 #ifdef FDC_DEBUG 1183 i = fddata_rd(fdc); 1184 TRACE1("[FDDATA->0x%x]", (unsigned char)i); 1185 *ptr = i; 1186 return (0); 1187 #else /* !FDC_DEBUG */ 1188 i = fddata_rd(fdc); 1189 if (ptr) 1190 *ptr = i; 1191 return (0); 1192 #endif /* FDC_DEBUG */ 1193 } 1194 1195 static int 1196 out_fdc(struct fdc_data *fdc, int x) 1197 { 1198 int i, j, step; 1199 1200 for (j = 0, step = 1; 1201 (i = fdsts_rd(fdc) & (NE7_DIO|NE7_RQM)) != NE7_RQM && 1202 j < FDSTS_TIMEOUT; 1203 j += step) { 1204 if (i == (NE7_DIO|NE7_RQM)) 1205 return (fdc_err(fdc, "ready for input in output\n")); 1206 if (j == 1000) 1207 step = 1000; 1208 DELAY(step); 1209 } 1210 if (j >= FDSTS_TIMEOUT) 1211 return (fdc_err(fdc, bootverbose? "output ready timeout\n": 0)); 1212 1213 /* Send the command and return */ 1214 fddata_wr(fdc, x); 1215 TRACE1("[0x%x->FDDATA]", x); 1216 return (0); 1217 } 1218 1219 /* 1220 * Block device driver interface functions (interspersed with even more 1221 * auxiliary functions). 1222 */ 1223 static int 1224 fdopen(struct cdev *dev, int flags, int mode, struct thread *td) 1225 { 1226 fd_p fd; 1227 fdc_p fdc; 1228 int rv, unitattn, dflags; 1229 1230 fd = dev->si_drv1; 1231 if (fd == NULL) 1232 return (ENXIO); 1233 fdc = fd->fdc; 1234 if ((fdc == NULL) || (fd->type == FDT_NONE)) 1235 return (ENXIO); 1236 dflags = device_get_flags(fd->dev); 1237 /* 1238 * This is a bit bogus. It's still possible that e. g. a 1239 * descriptor gets inherited to a child, but then it's at 1240 * least for the same subdevice. By checking FD_OPEN here, we 1241 * can ensure that a device isn't attempted to be opened with 1242 * different densities at the same time where the second open 1243 * could clobber the settings from the first one. 1244 */ 1245 if (fd->flags & FD_OPEN) 1246 return (EBUSY); 1247 1248 if (flags & FNONBLOCK) { 1249 /* 1250 * Unfortunately, physio(9) discards its ioflag 1251 * argument, thus preventing us from seeing the 1252 * IO_NDELAY bit. So we need to keep track 1253 * ourselves. 1254 */ 1255 fd->flags |= FD_NONBLOCK; 1256 fd->ft = 0; 1257 } else { 1258 /* 1259 * Figure out a unit attention condition. 1260 * 1261 * If UA has been forced, proceed. 1262 * 1263 * If the drive has no changeline support, 1264 * or if the drive parameters have been lost 1265 * due to previous non-blocking access, 1266 * assume a forced UA condition. 1267 * 1268 * If motor is off, turn it on for a moment 1269 * and select our drive, in order to read the 1270 * UA hardware signal. 1271 * 1272 * If motor is on, and our drive is currently 1273 * selected, just read the hardware bit. 1274 * 1275 * If motor is on, but active for another 1276 * drive on that controller, we are lost. We 1277 * cannot risk to deselect the other drive, so 1278 * we just assume a forced UA condition to be 1279 * on the safe side. 1280 */ 1281 unitattn = 0; 1282 if ((dflags & FD_NO_CHLINE) != 0 || 1283 (fd->flags & FD_UA) != 0 || 1284 fd->ft == 0) { 1285 unitattn = 1; 1286 fd->flags &= ~FD_UA; 1287 } else if (fdc->fdout & (FDO_MOEN0 | FDO_MOEN1 | 1288 FDO_MOEN2 | FDO_MOEN3)) { 1289 if ((fdc->fdout & FDO_FDSEL) == fd->fdsu) 1290 unitattn = fdin_rd(fdc) & FDI_DCHG; 1291 else 1292 unitattn = 1; 1293 } else { 1294 set_motor(fdc, fd->fdsu, TURNON); 1295 unitattn = fdin_rd(fdc) & FDI_DCHG; 1296 set_motor(fdc, fd->fdsu, TURNOFF); 1297 } 1298 if (unitattn && (rv = fdautoselect(dev)) != 0) 1299 return (rv); 1300 } 1301 fd->flags |= FD_OPEN; 1302 1303 if ((fdc->flags & FDC_NODMA) == 0) { 1304 if (fdc->dmacnt++ == 0) { 1305 isa_dma_acquire(fdc->dmachan); 1306 isa_dmainit(fdc->dmachan, MAX_SEC_SIZE); 1307 } 1308 } 1309 1310 /* 1311 * Clearing the DMA overrun counter at open time is a bit messy. 1312 * Since we're only managing one counter per controller, opening 1313 * the second drive could mess it up. Anyway, if the DMA overrun 1314 * condition is really persistent, it will eventually time out 1315 * still. OTOH, clearing it here will ensure we'll at least start 1316 * trying again after a previous (maybe even long ago) failure. 1317 * Also, this is merely a stop-gap measure only that should not 1318 * happen during normal operation, so we can tolerate it to be a 1319 * bit sloppy about this. 1320 */ 1321 fdc->dma_overruns = 0; 1322 1323 return 0; 1324 } 1325 1326 static int 1327 fdclose(struct cdev *dev, int flags, int mode, struct thread *td) 1328 { 1329 struct fd_data *fd; 1330 fdc_p fdc; 1331 1332 fd = dev->si_drv1; 1333 fdc = fd->fdc; 1334 fd->flags &= ~(FD_OPEN | FD_NONBLOCK); 1335 fd->options &= ~(FDOPT_NORETRY | FDOPT_NOERRLOG | FDOPT_NOERROR); 1336 1337 if ((fdc->flags & FDC_NODMA) == 0) 1338 if (--fdc->dmacnt == 0) 1339 isa_dma_release(fdc->dmachan); 1340 1341 return (0); 1342 } 1343 1344 static void 1345 fdstrategy(struct bio *bp) 1346 { 1347 long blknum, nblocks; 1348 int s; 1349 fdu_t fdu; 1350 fdc_p fdc; 1351 fd_p fd; 1352 size_t fdblk; 1353 1354 fd = bp->bio_dev->si_drv1; 1355 fdu = fd->fdu; 1356 fdc = fd->fdc; 1357 bp->bio_resid = bp->bio_bcount; 1358 if (fd->type == FDT_NONE || fd->ft == 0) { 1359 if (fd->type != FDT_NONE && (fd->flags & FD_NONBLOCK)) 1360 bp->bio_error = EAGAIN; 1361 else 1362 bp->bio_error = ENXIO; 1363 bp->bio_flags |= BIO_ERROR; 1364 goto bad; 1365 } 1366 fdblk = 128 << (fd->ft->secsize); 1367 if (bp->bio_cmd != FDBIO_FORMAT && bp->bio_cmd != FDBIO_RDSECTID) { 1368 if (fd->flags & FD_NONBLOCK) { 1369 bp->bio_error = EAGAIN; 1370 bp->bio_flags |= BIO_ERROR; 1371 goto bad; 1372 } 1373 if (bp->bio_offset < 0) { 1374 printf( 1375 "fd%d: fdstrat: bad request offset = %ju, bcount = %ld\n", 1376 fdu, (intmax_t)bp->bio_offset, bp->bio_bcount); 1377 bp->bio_error = EINVAL; 1378 bp->bio_flags |= BIO_ERROR; 1379 goto bad; 1380 } 1381 if ((bp->bio_bcount % fdblk) != 0) { 1382 bp->bio_error = EINVAL; 1383 bp->bio_flags |= BIO_ERROR; 1384 goto bad; 1385 } 1386 } 1387 1388 /* 1389 * Set up block calculations. 1390 */ 1391 if (bp->bio_offset >= ((off_t)128 << fd->ft->secsize) * fd->ft->size) { 1392 bp->bio_error = EINVAL; 1393 bp->bio_flags |= BIO_ERROR; 1394 goto bad; 1395 } 1396 blknum = bp->bio_offset / fdblk; 1397 nblocks = fd->ft->size; 1398 if (blknum + bp->bio_bcount / fdblk > nblocks) { 1399 if (blknum >= nblocks) { 1400 if (bp->bio_cmd != BIO_READ) { 1401 bp->bio_error = ENOSPC; 1402 bp->bio_flags |= BIO_ERROR; 1403 } 1404 goto bad; /* not always bad, but EOF */ 1405 } 1406 bp->bio_bcount = (nblocks - blknum) * fdblk; 1407 } 1408 bp->bio_pblkno = blknum; 1409 s = splbio(); 1410 bioq_disksort(&fdc->head, bp); 1411 untimeout(fd_turnoff, fd, fd->toffhandle); /* a good idea */ 1412 devstat_start_transaction_bio(fd->device_stats, bp); 1413 device_busy(fd->dev); 1414 fdstart(fdc); 1415 splx(s); 1416 return; 1417 1418 bad: 1419 biodone(bp); 1420 } 1421 1422 /* 1423 * fdstart 1424 * 1425 * We have just queued something. If the controller is not busy 1426 * then simulate the case where it has just finished a command 1427 * So that it (the interrupt routine) looks on the queue for more 1428 * work to do and picks up what we just added. 1429 * 1430 * If the controller is already busy, we need do nothing, as it 1431 * will pick up our work when the present work completes. 1432 */ 1433 static void 1434 fdstart(struct fdc_data *fdc) 1435 { 1436 int s; 1437 1438 s = splbio(); 1439 if(fdc->state == DEVIDLE) 1440 { 1441 fdc_intr(fdc); 1442 } 1443 splx(s); 1444 } 1445 1446 static void 1447 fd_iotimeout(void *xfdc) 1448 { 1449 fdc_p fdc; 1450 int s; 1451 1452 fdc = xfdc; 1453 TRACE1("fd%d[fd_iotimeout()]", fdc->fdu); 1454 1455 /* 1456 * Due to IBM's brain-dead design, the FDC has a faked ready 1457 * signal, hardwired to ready == true. Thus, any command 1458 * issued if there's no diskette in the drive will _never_ 1459 * complete, and must be aborted by resetting the FDC. 1460 * Many thanks, Big Blue! 1461 * The FDC must not be reset directly, since that would 1462 * interfere with the state machine. Instead, pretend that 1463 * the command completed but was invalid. The state machine 1464 * will reset the FDC and retry once. 1465 */ 1466 s = splbio(); 1467 fdc->status[0] = NE7_ST0_IC_IV; 1468 fdc->flags &= ~FDC_STAT_VALID; 1469 fdc->state = IOTIMEDOUT; 1470 fdc_intr(fdc); 1471 splx(s); 1472 } 1473 1474 /* Just ensure it has the right spl. */ 1475 static void 1476 fd_pseudointr(void *xfdc) 1477 { 1478 int s; 1479 1480 s = splbio(); 1481 fdc_intr(xfdc); 1482 splx(s); 1483 } 1484 1485 /* 1486 * fdc_intr 1487 * 1488 * Keep calling the state machine until it returns a 0. 1489 * Always called at splbio. 1490 */ 1491 static void 1492 fdc_intr(void *xfdc) 1493 { 1494 fdc_p fdc = xfdc; 1495 while(fdstate(fdc)) 1496 ; 1497 } 1498 1499 /* 1500 * Magic pseudo-DMA initialization for YE FDC. Sets count and 1501 * direction. 1502 */ 1503 #define SET_BCDR(fdc,wr,cnt,port) \ 1504 bus_space_write_1(fdc->portt, fdc->porth, fdc->port_off + port, \ 1505 ((cnt)-1) & 0xff); \ 1506 bus_space_write_1(fdc->portt, fdc->porth, fdc->port_off + port + 1, \ 1507 ((wr ? 0x80 : 0) | ((((cnt)-1) >> 8) & 0x7f))); 1508 1509 /* 1510 * fdcpio(): perform programmed IO read/write for YE PCMCIA floppy. 1511 */ 1512 static int 1513 fdcpio(fdc_p fdc, long flags, caddr_t addr, u_int count) 1514 { 1515 u_char *cptr = (u_char *)addr; 1516 1517 if (flags == BIO_READ) { 1518 if (fdc->state != PIOREAD) { 1519 fdc->state = PIOREAD; 1520 return(0); 1521 } 1522 SET_BCDR(fdc, 0, count, 0); 1523 bus_space_read_multi_1(fdc->portt, fdc->porth, fdc->port_off + 1524 FDC_YE_DATAPORT, cptr, count); 1525 } else { 1526 bus_space_write_multi_1(fdc->portt, fdc->porth, fdc->port_off + 1527 FDC_YE_DATAPORT, cptr, count); 1528 SET_BCDR(fdc, 0, count, 0); 1529 } 1530 return(1); 1531 } 1532 1533 /* 1534 * Try figuring out the density of the media present in our device. 1535 */ 1536 static int 1537 fdautoselect(struct cdev *dev) 1538 { 1539 fd_p fd; 1540 struct fd_type *fdtp; 1541 struct fdc_readid id; 1542 int i, n, oopts, rv; 1543 1544 fd = dev->si_drv1; 1545 1546 switch (fd->type) { 1547 default: 1548 return (ENXIO); 1549 1550 case FDT_360K: 1551 case FDT_720K: 1552 /* no autoselection on those drives */ 1553 fd->ft = fd_native_types + fd->type; 1554 return (0); 1555 1556 case FDT_12M: 1557 fdtp = fd_searchlist_12m; 1558 n = sizeof fd_searchlist_12m / sizeof(struct fd_type); 1559 break; 1560 1561 case FDT_144M: 1562 fdtp = fd_searchlist_144m; 1563 n = sizeof fd_searchlist_144m / sizeof(struct fd_type); 1564 break; 1565 1566 case FDT_288M: 1567 fdtp = fd_searchlist_288m; 1568 n = sizeof fd_searchlist_288m / sizeof(struct fd_type); 1569 break; 1570 } 1571 1572 /* 1573 * Try reading sector ID fields, first at cylinder 0, head 0, 1574 * then at cylinder 2, head N. We don't probe cylinder 1, 1575 * since for 5.25in DD media in a HD drive, there are no data 1576 * to read (2 step pulses per media cylinder required). For 1577 * two-sided media, the second probe always goes to head 1, so 1578 * we can tell them apart from single-sided media. As a 1579 * side-effect this means that single-sided media should be 1580 * mentioned in the search list after two-sided media of an 1581 * otherwise identical density. Media with a different number 1582 * of sectors per track but otherwise identical parameters 1583 * cannot be distinguished at all. 1584 * 1585 * If we successfully read an ID field on both cylinders where 1586 * the recorded values match our expectation, we are done. 1587 * Otherwise, we try the next density entry from the table. 1588 * 1589 * Stepping to cylinder 2 has the side-effect of clearing the 1590 * unit attention bit. 1591 */ 1592 oopts = fd->options; 1593 fd->options |= FDOPT_NOERRLOG | FDOPT_NORETRY; 1594 for (i = 0; i < n; i++, fdtp++) { 1595 fd->ft = fdtp; 1596 1597 id.cyl = id.head = 0; 1598 rv = fdmisccmd(dev, FDBIO_RDSECTID, &id); 1599 if (rv != 0) 1600 continue; 1601 if (id.cyl != 0 || id.head != 0 || 1602 id.secshift != fdtp->secsize) 1603 continue; 1604 id.cyl = 2; 1605 id.head = fd->ft->heads - 1; 1606 rv = fdmisccmd(dev, FDBIO_RDSECTID, &id); 1607 if (id.cyl != 2 || id.head != fdtp->heads - 1 || 1608 id.secshift != fdtp->secsize) 1609 continue; 1610 if (rv == 0) 1611 break; 1612 } 1613 1614 fd->options = oopts; 1615 if (i == n) { 1616 if (bootverbose) 1617 device_printf(fd->dev, "autoselection failed\n"); 1618 fd->ft = 0; 1619 return (EIO); 1620 } else { 1621 if (bootverbose) 1622 device_printf(fd->dev, "autoselected %d KB medium\n", 1623 fd->ft->size / 2); 1624 return (0); 1625 } 1626 } 1627 1628 1629 /* 1630 * The controller state machine. 1631 * 1632 * If it returns a non zero value, it should be called again immediately. 1633 */ 1634 static int 1635 fdstate(fdc_p fdc) 1636 { 1637 struct fdc_readid *idp; 1638 int read, format, rdsectid, cylinder, head, i, sec = 0, sectrac; 1639 int st0, cyl, st3, idf, ne7cmd, mfm, steptrac; 1640 unsigned long blknum; 1641 fdu_t fdu = fdc->fdu; 1642 fd_p fd; 1643 register struct bio *bp; 1644 struct fd_formb *finfo = NULL; 1645 size_t fdblk; 1646 1647 bp = fdc->bp; 1648 if (bp == NULL) { 1649 bp = bioq_first(&fdc->head); 1650 if (bp != NULL) { 1651 bioq_remove(&fdc->head, bp); 1652 fdc->bp = bp; 1653 } 1654 } 1655 if (bp == NULL) { 1656 /* 1657 * Nothing left for this controller to do, 1658 * force into the IDLE state. 1659 */ 1660 fdc->state = DEVIDLE; 1661 if (fdc->fd) { 1662 device_printf(fdc->fdc_dev, 1663 "unexpected valid fd pointer\n"); 1664 fdc->fd = (fd_p) 0; 1665 fdc->fdu = -1; 1666 } 1667 TRACE1("[fdc%d IDLE]", fdc->fdcu); 1668 return (0); 1669 } 1670 fd = bp->bio_dev->si_drv1; 1671 fdu = fd->fdu; 1672 fdblk = 128 << fd->ft->secsize; 1673 if (fdc->fd && (fd != fdc->fd)) 1674 device_printf(fd->dev, "confused fd pointers\n"); 1675 read = bp->bio_cmd == BIO_READ; 1676 mfm = (fd->ft->flags & FL_MFM)? NE7CMD_MFM: 0; 1677 steptrac = (fd->ft->flags & FL_2STEP)? 2: 1; 1678 if (read) 1679 idf = ISADMA_READ; 1680 else 1681 idf = ISADMA_WRITE; 1682 format = bp->bio_cmd == FDBIO_FORMAT; 1683 rdsectid = bp->bio_cmd == FDBIO_RDSECTID; 1684 if (format) 1685 finfo = (struct fd_formb *)bp->bio_data; 1686 TRACE1("fd%d", fdu); 1687 TRACE1("[%s]", fdstates[fdc->state]); 1688 TRACE1("(0x%x)", fd->flags); 1689 untimeout(fd_turnoff, fd, fd->toffhandle); 1690 fd->toffhandle = timeout(fd_turnoff, fd, 4 * hz); 1691 switch (fdc->state) 1692 { 1693 case DEVIDLE: 1694 case FINDWORK: /* we have found new work */ 1695 fdc->retry = 0; 1696 fd->skip = 0; 1697 fdc->fd = fd; 1698 fdc->fdu = fdu; 1699 fdc->fdctl_wr(fdc, fd->ft->trans); 1700 TRACE1("[0x%x->FDCTL]", fd->ft->trans); 1701 /* 1702 * If the next drive has a motor startup pending, then 1703 * it will start up in its own good time. 1704 */ 1705 if(fd->flags & FD_MOTOR_WAIT) { 1706 fdc->state = MOTORWAIT; 1707 return (0); /* will return later */ 1708 } 1709 /* 1710 * Maybe if it's not starting, it SHOULD be starting. 1711 */ 1712 if (!(fd->flags & FD_MOTOR)) 1713 { 1714 fdc->state = MOTORWAIT; 1715 fd_turnon(fd); 1716 return (0); /* will return later */ 1717 } 1718 else /* at least make sure we are selected */ 1719 { 1720 set_motor(fdc, fd->fdsu, TURNON); 1721 } 1722 if (fdc->flags & FDC_NEEDS_RESET) { 1723 fdc->state = RESETCTLR; 1724 fdc->flags &= ~FDC_NEEDS_RESET; 1725 } else 1726 fdc->state = DOSEEK; 1727 return (1); /* will return immediately */ 1728 1729 case DOSEEK: 1730 blknum = bp->bio_pblkno + fd->skip / fdblk; 1731 cylinder = blknum / (fd->ft->sectrac * fd->ft->heads); 1732 if (cylinder == fd->track) 1733 { 1734 fdc->state = SEEKCOMPLETE; 1735 return (1); /* will return immediately */ 1736 } 1737 if (fd_cmd(fdc, 3, NE7CMD_SEEK, 1738 fd->fdsu, cylinder * steptrac, 0)) 1739 { 1740 /* 1741 * Seek command not accepted, looks like 1742 * the FDC went off to the Saints... 1743 */ 1744 fdc->retry = 6; /* try a reset */ 1745 return(retrier(fdc)); 1746 } 1747 fd->track = FD_NO_TRACK; 1748 fdc->state = SEEKWAIT; 1749 return(0); /* will return later */ 1750 1751 case SEEKWAIT: 1752 /* allow heads to settle */ 1753 timeout(fd_pseudointr, fdc, hz / 16); 1754 fdc->state = SEEKCOMPLETE; 1755 return(0); /* will return later */ 1756 1757 case SEEKCOMPLETE : /* seek done, start DMA */ 1758 blknum = bp->bio_pblkno + fd->skip / fdblk; 1759 cylinder = blknum / (fd->ft->sectrac * fd->ft->heads); 1760 1761 /* Make sure seek really happened. */ 1762 if(fd->track == FD_NO_TRACK) { 1763 int descyl = cylinder * steptrac; 1764 do { 1765 /* 1766 * This might be a "ready changed" interrupt, 1767 * which cannot really happen since the 1768 * RDY pin is hardwired to + 5 volts. This 1769 * generally indicates a "bouncing" intr 1770 * line, so do one of the following: 1771 * 1772 * When running on an enhanced FDC that is 1773 * known to not go stuck after responding 1774 * with INVALID, fetch all interrupt states 1775 * until seeing either an INVALID or a 1776 * real interrupt condition. 1777 * 1778 * When running on a dumb old NE765, give 1779 * up immediately. The controller will 1780 * provide up to four dummy RC interrupt 1781 * conditions right after reset (for the 1782 * corresponding four drives), so this is 1783 * our only chance to get notice that it 1784 * was not the FDC that caused the interrupt. 1785 */ 1786 if (fd_sense_int(fdc, &st0, &cyl) 1787 == FD_NOT_VALID) 1788 return (0); /* will return later */ 1789 if(fdc->fdct == FDC_NE765 1790 && (st0 & NE7_ST0_IC) == NE7_ST0_IC_RC) 1791 return (0); /* hope for a real intr */ 1792 } while ((st0 & NE7_ST0_IC) == NE7_ST0_IC_RC); 1793 1794 if (0 == descyl) { 1795 int failed = 0; 1796 /* 1797 * seek to cyl 0 requested; make sure we are 1798 * really there 1799 */ 1800 if (fd_sense_drive_status(fdc, &st3)) 1801 failed = 1; 1802 if ((st3 & NE7_ST3_T0) == 0) { 1803 printf( 1804 "fd%d: Seek to cyl 0, but not really there (ST3 = %b)\n", 1805 fdu, st3, NE7_ST3BITS); 1806 failed = 1; 1807 } 1808 1809 if (failed) { 1810 if(fdc->retry < 3) 1811 fdc->retry = 3; 1812 return (retrier(fdc)); 1813 } 1814 } 1815 1816 if (cyl != descyl) { 1817 printf( 1818 "fd%d: Seek to cyl %d failed; am at cyl %d (ST0 = 0x%x)\n", 1819 fdu, descyl, cyl, st0); 1820 if (fdc->retry < 3) 1821 fdc->retry = 3; 1822 return (retrier(fdc)); 1823 } 1824 } 1825 1826 fd->track = cylinder; 1827 if (format) 1828 fd->skip = (char *)&(finfo->fd_formb_cylno(0)) 1829 - (char *)finfo; 1830 if (!rdsectid && !(fdc->flags & FDC_NODMA)) 1831 isa_dmastart(idf, bp->bio_data+fd->skip, 1832 format ? bp->bio_bcount : fdblk, fdc->dmachan); 1833 blknum = bp->bio_pblkno + fd->skip / fdblk; 1834 sectrac = fd->ft->sectrac; 1835 sec = blknum % (sectrac * fd->ft->heads); 1836 head = sec / sectrac; 1837 sec = sec % sectrac + 1; 1838 if (head != 0 && fd->ft->offset_side2 != 0) 1839 sec += fd->ft->offset_side2; 1840 fd->hddrv = ((head&1)<<2)+fdu; 1841 1842 if(format || !(read || rdsectid)) 1843 { 1844 /* make sure the drive is writable */ 1845 if(fd_sense_drive_status(fdc, &st3) != 0) 1846 { 1847 /* stuck controller? */ 1848 if (!(fdc->flags & FDC_NODMA)) 1849 isa_dmadone(idf, 1850 bp->bio_data + fd->skip, 1851 format ? bp->bio_bcount : fdblk, 1852 fdc->dmachan); 1853 fdc->retry = 6; /* reset the beast */ 1854 return (retrier(fdc)); 1855 } 1856 if(st3 & NE7_ST3_WP) 1857 { 1858 /* 1859 * XXX YES! this is ugly. 1860 * in order to force the current operation 1861 * to fail, we will have to fake an FDC 1862 * error - all error handling is done 1863 * by the retrier() 1864 */ 1865 fdc->status[0] = NE7_ST0_IC_AT; 1866 fdc->status[1] = NE7_ST1_NW; 1867 fdc->status[2] = 0; 1868 fdc->status[3] = fd->track; 1869 fdc->status[4] = head; 1870 fdc->status[5] = sec; 1871 fdc->retry = 8; /* break out immediately */ 1872 fdc->state = IOTIMEDOUT; /* not really... */ 1873 return (1); /* will return immediately */ 1874 } 1875 } 1876 1877 if (format) { 1878 ne7cmd = NE7CMD_FORMAT | mfm; 1879 if (fdc->flags & FDC_NODMA) { 1880 /* 1881 * This seems to be necessary for 1882 * whatever obscure reason; if we omit 1883 * it, we end up filling the sector ID 1884 * fields of the newly formatted track 1885 * entirely with garbage, causing 1886 * `wrong cylinder' errors all over 1887 * the place when trying to read them 1888 * back. 1889 * 1890 * Umpf. 1891 */ 1892 SET_BCDR(fdc, 1, bp->bio_bcount, 0); 1893 1894 (void)fdcpio(fdc,bp->bio_cmd, 1895 bp->bio_data+fd->skip, 1896 bp->bio_bcount); 1897 1898 } 1899 /* formatting */ 1900 if(fd_cmd(fdc, 6, ne7cmd, head << 2 | fdu, 1901 finfo->fd_formb_secshift, 1902 finfo->fd_formb_nsecs, 1903 finfo->fd_formb_gaplen, 1904 finfo->fd_formb_fillbyte, 0)) { 1905 /* controller fell over */ 1906 if (!(fdc->flags & FDC_NODMA)) 1907 isa_dmadone(idf, 1908 bp->bio_data + fd->skip, 1909 format ? bp->bio_bcount : fdblk, 1910 fdc->dmachan); 1911 fdc->retry = 6; 1912 return (retrier(fdc)); 1913 } 1914 } else if (rdsectid) { 1915 ne7cmd = NE7CMD_READID | mfm; 1916 if (fd_cmd(fdc, 2, ne7cmd, head << 2 | fdu, 0)) { 1917 /* controller jamming */ 1918 fdc->retry = 6; 1919 return (retrier(fdc)); 1920 } 1921 } else { 1922 /* read or write operation */ 1923 ne7cmd = (read ? NE7CMD_READ | NE7CMD_SK : NE7CMD_WRITE) | mfm; 1924 if (fdc->flags & FDC_NODMA) { 1925 /* 1926 * This seems to be necessary even when 1927 * reading data. 1928 */ 1929 SET_BCDR(fdc, 1, fdblk, 0); 1930 1931 /* 1932 * Perform the write pseudo-DMA before 1933 * the WRITE command is sent. 1934 */ 1935 if (!read) 1936 (void)fdcpio(fdc,bp->bio_cmd, 1937 bp->bio_data+fd->skip, 1938 fdblk); 1939 } 1940 if (fd_cmd(fdc, 9, 1941 ne7cmd, 1942 head << 2 | fdu, /* head & unit */ 1943 fd->track, /* track */ 1944 head, 1945 sec, /* sector + 1 */ 1946 fd->ft->secsize, /* sector size */ 1947 sectrac, /* sectors/track */ 1948 fd->ft->gap, /* gap size */ 1949 fd->ft->datalen, /* data length */ 1950 0)) { 1951 /* the beast is sleeping again */ 1952 if (!(fdc->flags & FDC_NODMA)) 1953 isa_dmadone(idf, 1954 bp->bio_data + fd->skip, 1955 format ? bp->bio_bcount : fdblk, 1956 fdc->dmachan); 1957 fdc->retry = 6; 1958 return (retrier(fdc)); 1959 } 1960 } 1961 if (!rdsectid && (fdc->flags & FDC_NODMA)) 1962 /* 1963 * If this is a read, then simply await interrupt 1964 * before performing PIO. 1965 */ 1966 if (read && !fdcpio(fdc,bp->bio_cmd, 1967 bp->bio_data+fd->skip,fdblk)) { 1968 fd->tohandle = timeout(fd_iotimeout, fdc, hz); 1969 return(0); /* will return later */ 1970 } 1971 1972 /* 1973 * Write (or format) operation will fall through and 1974 * await completion interrupt. 1975 */ 1976 fdc->state = IOCOMPLETE; 1977 fd->tohandle = timeout(fd_iotimeout, fdc, hz); 1978 return (0); /* will return later */ 1979 1980 case PIOREAD: 1981 /* 1982 * Actually perform the PIO read. The IOCOMPLETE case 1983 * removes the timeout for us. 1984 */ 1985 (void)fdcpio(fdc,bp->bio_cmd,bp->bio_data+fd->skip,fdblk); 1986 fdc->state = IOCOMPLETE; 1987 /* FALLTHROUGH */ 1988 case IOCOMPLETE: /* IO done, post-analyze */ 1989 untimeout(fd_iotimeout, fdc, fd->tohandle); 1990 1991 if (fd_read_status(fdc)) { 1992 if (!rdsectid && !(fdc->flags & FDC_NODMA)) 1993 isa_dmadone(idf, bp->bio_data + fd->skip, 1994 format ? bp->bio_bcount : fdblk, 1995 fdc->dmachan); 1996 if (fdc->retry < 6) 1997 fdc->retry = 6; /* force a reset */ 1998 return (retrier(fdc)); 1999 } 2000 2001 fdc->state = IOTIMEDOUT; 2002 2003 /* FALLTHROUGH */ 2004 case IOTIMEDOUT: 2005 if (!rdsectid && !(fdc->flags & FDC_NODMA)) 2006 isa_dmadone(idf, bp->bio_data + fd->skip, 2007 format ? bp->bio_bcount : fdblk, fdc->dmachan); 2008 if (fdc->status[0] & NE7_ST0_IC) { 2009 if ((fdc->status[0] & NE7_ST0_IC) == NE7_ST0_IC_AT 2010 && fdc->status[1] & NE7_ST1_OR) { 2011 /* 2012 * DMA overrun. Someone hogged the bus and 2013 * didn't release it in time for the next 2014 * FDC transfer. 2015 * 2016 * We normally restart this without bumping 2017 * the retry counter. However, in case 2018 * something is seriously messed up (like 2019 * broken hardware), we rather limit the 2020 * number of retries so the IO operation 2021 * doesn't block indefinately. 2022 */ 2023 if (fdc->dma_overruns++ < FDC_DMAOV_MAX) { 2024 fdc->state = SEEKCOMPLETE; 2025 return (1);/* will return immediately */ 2026 } /* else fall through */ 2027 } 2028 if((fdc->status[0] & NE7_ST0_IC) == NE7_ST0_IC_IV 2029 && fdc->retry < 6) 2030 fdc->retry = 6; /* force a reset */ 2031 else if((fdc->status[0] & NE7_ST0_IC) == NE7_ST0_IC_AT 2032 && fdc->status[2] & NE7_ST2_WC 2033 && fdc->retry < 3) 2034 fdc->retry = 3; /* force recalibrate */ 2035 return (retrier(fdc)); 2036 } 2037 /* All OK */ 2038 if (rdsectid) { 2039 /* copy out ID field contents */ 2040 idp = (struct fdc_readid *)bp->bio_data; 2041 idp->cyl = fdc->status[3]; 2042 idp->head = fdc->status[4]; 2043 idp->sec = fdc->status[5]; 2044 idp->secshift = fdc->status[6]; 2045 } 2046 /* Operation successful, retry DMA overruns again next time. */ 2047 fdc->dma_overruns = 0; 2048 fd->skip += fdblk; 2049 if (!rdsectid && !format && fd->skip < bp->bio_bcount) { 2050 /* set up next transfer */ 2051 fdc->state = DOSEEK; 2052 } else { 2053 /* ALL DONE */ 2054 fd->skip = 0; 2055 bp->bio_resid = 0; 2056 fdc->bp = NULL; 2057 device_unbusy(fd->dev); 2058 biofinish(bp, fd->device_stats, 0); 2059 fdc->fd = (fd_p) 0; 2060 fdc->fdu = -1; 2061 fdc->state = FINDWORK; 2062 } 2063 return (1); /* will return immediately */ 2064 2065 case RESETCTLR: 2066 fdc_reset(fdc); 2067 fdc->retry++; 2068 fdc->state = RESETCOMPLETE; 2069 return (0); /* will return later */ 2070 2071 case RESETCOMPLETE: 2072 /* 2073 * Discard all the results from the reset so that they 2074 * can't cause an unexpected interrupt later. 2075 */ 2076 for (i = 0; i < 4; i++) 2077 (void)fd_sense_int(fdc, &st0, &cyl); 2078 fdc->state = STARTRECAL; 2079 /* FALLTHROUGH */ 2080 case STARTRECAL: 2081 if(fd_cmd(fdc, 2, NE7CMD_RECAL, fdu, 0)) { 2082 /* arrgl */ 2083 fdc->retry = 6; 2084 return (retrier(fdc)); 2085 } 2086 fdc->state = RECALWAIT; 2087 return (0); /* will return later */ 2088 2089 case RECALWAIT: 2090 /* allow heads to settle */ 2091 timeout(fd_pseudointr, fdc, hz / 8); 2092 fdc->state = RECALCOMPLETE; 2093 return (0); /* will return later */ 2094 2095 case RECALCOMPLETE: 2096 do { 2097 /* 2098 * See SEEKCOMPLETE for a comment on this: 2099 */ 2100 if (fd_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 2101 return (0); /* will return later */ 2102 if(fdc->fdct == FDC_NE765 2103 && (st0 & NE7_ST0_IC) == NE7_ST0_IC_RC) 2104 return (0); /* hope for a real intr */ 2105 } while ((st0 & NE7_ST0_IC) == NE7_ST0_IC_RC); 2106 if ((st0 & NE7_ST0_IC) != NE7_ST0_IC_NT || cyl != 0) 2107 { 2108 if(fdc->retry > 3) 2109 /* 2110 * A recalibrate from beyond cylinder 77 2111 * will "fail" due to the FDC limitations; 2112 * since people used to complain much about 2113 * the failure message, try not logging 2114 * this one if it seems to be the first 2115 * time in a line. 2116 */ 2117 printf("fd%d: recal failed ST0 %b cyl %d\n", 2118 fdu, st0, NE7_ST0BITS, cyl); 2119 if(fdc->retry < 3) fdc->retry = 3; 2120 return (retrier(fdc)); 2121 } 2122 fd->track = 0; 2123 /* Seek (probably) necessary */ 2124 fdc->state = DOSEEK; 2125 return (1); /* will return immediately */ 2126 2127 case MOTORWAIT: 2128 if(fd->flags & FD_MOTOR_WAIT) 2129 { 2130 return (0); /* time's not up yet */ 2131 } 2132 if (fdc->flags & FDC_NEEDS_RESET) { 2133 fdc->state = RESETCTLR; 2134 fdc->flags &= ~FDC_NEEDS_RESET; 2135 } else 2136 fdc->state = DOSEEK; 2137 return (1); /* will return immediately */ 2138 2139 default: 2140 device_printf(fdc->fdc_dev, "unexpected FD int->"); 2141 if (fd_read_status(fdc) == 0) 2142 printf("FDC status :%x %x %x %x %x %x %x ", 2143 fdc->status[0], 2144 fdc->status[1], 2145 fdc->status[2], 2146 fdc->status[3], 2147 fdc->status[4], 2148 fdc->status[5], 2149 fdc->status[6] ); 2150 else 2151 printf("No status available "); 2152 if (fd_sense_int(fdc, &st0, &cyl) != 0) 2153 { 2154 printf("[controller is dead now]\n"); 2155 return (0); /* will return later */ 2156 } 2157 printf("ST0 = %x, PCN = %x\n", st0, cyl); 2158 return (0); /* will return later */ 2159 } 2160 /* noone should ever get here */ 2161 } 2162 2163 static int 2164 retrier(struct fdc_data *fdc) 2165 { 2166 struct bio *bp; 2167 struct fd_data *fd; 2168 int fdu; 2169 2170 bp = fdc->bp; 2171 2172 /* XXX shouldn't this be cached somewhere? */ 2173 fd = bp->bio_dev->si_drv1; 2174 fdu = fd->fdu; 2175 if (fd->options & FDOPT_NORETRY) 2176 goto fail; 2177 2178 switch (fdc->retry) { 2179 case 0: case 1: case 2: 2180 fdc->state = SEEKCOMPLETE; 2181 break; 2182 case 3: case 4: case 5: 2183 fdc->state = STARTRECAL; 2184 break; 2185 case 6: 2186 fdc->state = RESETCTLR; 2187 break; 2188 case 7: 2189 break; 2190 default: 2191 fail: 2192 if ((fd->options & FDOPT_NOERRLOG) == 0) { 2193 disk_err(bp, "hard error", 2194 fdc->fd->skip / DEV_BSIZE, 0); 2195 if (fdc->flags & FDC_STAT_VALID) { 2196 printf( 2197 " (ST0 %b ST1 %b ST2 %b cyl %u hd %u sec %u)\n", 2198 fdc->status[0], NE7_ST0BITS, 2199 fdc->status[1], NE7_ST1BITS, 2200 fdc->status[2], NE7_ST2BITS, 2201 fdc->status[3], fdc->status[4], 2202 fdc->status[5]); 2203 } 2204 else 2205 printf(" (No status)\n"); 2206 } 2207 if ((fd->options & FDOPT_NOERROR) == 0) { 2208 bp->bio_flags |= BIO_ERROR; 2209 bp->bio_error = EIO; 2210 bp->bio_resid = bp->bio_bcount - fdc->fd->skip; 2211 } else 2212 bp->bio_resid = 0; 2213 fdc->bp = NULL; 2214 fdc->fd->skip = 0; 2215 device_unbusy(fd->dev); 2216 biofinish(bp, fdc->fd->device_stats, 0); 2217 fdc->state = FINDWORK; 2218 fdc->flags |= FDC_NEEDS_RESET; 2219 fdc->fd = (fd_p) 0; 2220 fdc->fdu = -1; 2221 return (1); 2222 } 2223 fdc->retry++; 2224 return (1); 2225 } 2226 2227 static void 2228 fdbiodone(struct bio *bp) 2229 { 2230 wakeup(bp); 2231 } 2232 2233 static int 2234 fdmisccmd(struct cdev *dev, u_int cmd, void *data) 2235 { 2236 fdu_t fdu; 2237 fd_p fd; 2238 struct bio *bp; 2239 struct fd_formb *finfo; 2240 struct fdc_readid *idfield; 2241 size_t fdblk; 2242 int error; 2243 2244 fd = dev->si_drv1; 2245 fdu = fd->fdu; 2246 fdblk = 128 << fd->ft->secsize; 2247 finfo = (struct fd_formb *)data; 2248 idfield = (struct fdc_readid *)data; 2249 2250 bp = malloc(sizeof(struct bio), M_TEMP, M_WAITOK | M_ZERO); 2251 2252 /* 2253 * Set up a bio request for fdstrategy(). bio_offset is faked 2254 * so that fdstrategy() will seek to the the requested 2255 * cylinder, and use the desired head. 2256 */ 2257 bp->bio_cmd = cmd; 2258 if (cmd == FDBIO_FORMAT) { 2259 bp->bio_offset = 2260 (finfo->cyl * (fd->ft->sectrac * fd->ft->heads) + 2261 finfo->head * fd->ft->sectrac) * fdblk; 2262 bp->bio_bcount = sizeof(struct fd_idfield_data) * 2263 finfo->fd_formb_nsecs; 2264 } else if (cmd == FDBIO_RDSECTID) { 2265 bp->bio_offset = 2266 (idfield->cyl * (fd->ft->sectrac * fd->ft->heads) + 2267 idfield->head * fd->ft->sectrac) * fdblk; 2268 bp->bio_bcount = sizeof(struct fdc_readid); 2269 } else 2270 panic("wrong cmd in fdmisccmd()"); 2271 bp->bio_data = data; 2272 bp->bio_dev = dev; 2273 bp->bio_done = fdbiodone; 2274 bp->bio_flags = 0; 2275 2276 /* Now run the command. */ 2277 fdstrategy(bp); 2278 error = biowait(bp, "fdcmd"); 2279 2280 free(bp, M_TEMP); 2281 return (error); 2282 } 2283 2284 static int 2285 fdioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 2286 { 2287 fdu_t fdu; 2288 fd_p fd; 2289 struct fdc_status *fsp; 2290 struct fdc_readid *rid; 2291 int error; 2292 2293 fd = dev->si_drv1; 2294 fdu = fd->fdu; 2295 2296 /* 2297 * First, handle everything that could be done with 2298 * FD_NONBLOCK still being set. 2299 */ 2300 switch (cmd) { 2301 2302 case DIOCGMEDIASIZE: 2303 if (fd->ft == 0) 2304 return ((fd->flags & FD_NONBLOCK) ? EAGAIN : ENXIO); 2305 *(off_t *)addr = (128 << (fd->ft->secsize)) * fd->ft->size; 2306 return (0); 2307 2308 case DIOCGSECTORSIZE: 2309 if (fd->ft == 0) 2310 return ((fd->flags & FD_NONBLOCK) ? EAGAIN : ENXIO); 2311 *(u_int *)addr = 128 << (fd->ft->secsize); 2312 return (0); 2313 2314 case FIONBIO: 2315 if (*(int *)addr != 0) 2316 fd->flags |= FD_NONBLOCK; 2317 else { 2318 if (fd->ft == 0) { 2319 /* 2320 * No drive type has been selected yet, 2321 * cannot turn FNONBLOCK off. 2322 */ 2323 return (EINVAL); 2324 } 2325 fd->flags &= ~FD_NONBLOCK; 2326 } 2327 return (0); 2328 2329 case FIOASYNC: 2330 /* keep the generic fcntl() code happy */ 2331 return (0); 2332 2333 case FD_GTYPE: /* get drive type */ 2334 if (fd->ft == 0) 2335 /* no type known yet, return the native type */ 2336 *(struct fd_type *)addr = fd_native_types[fd->type]; 2337 else 2338 *(struct fd_type *)addr = *fd->ft; 2339 return (0); 2340 2341 case FD_STYPE: /* set drive type */ 2342 /* 2343 * Allow setting drive type temporarily iff 2344 * currently unset. Used for fdformat so any 2345 * user can set it, and then start formatting. 2346 */ 2347 if (fd->ft) 2348 return (EINVAL); /* already set */ 2349 fd->fts[0] = *(struct fd_type *)addr; 2350 fd->ft = &fd->fts[0]; 2351 fd->flags |= FD_UA; 2352 return (0); 2353 2354 case FD_GOPTS: /* get drive options */ 2355 *(int *)addr = fd->options + FDOPT_AUTOSEL; 2356 return (0); 2357 2358 case FD_SOPTS: /* set drive options */ 2359 fd->options = *(int *)addr & ~FDOPT_AUTOSEL; 2360 return (0); 2361 2362 #ifdef FDC_DEBUG 2363 case FD_DEBUG: 2364 if ((fd_debug != 0) != (*(int *)addr != 0)) { 2365 fd_debug = (*(int *)addr != 0); 2366 printf("fd%d: debugging turned %s\n", 2367 fd->fdu, fd_debug ? "on" : "off"); 2368 } 2369 return (0); 2370 #endif 2371 2372 case FD_CLRERR: 2373 if (suser(td) != 0) 2374 return (EPERM); 2375 fd->fdc->fdc_errs = 0; 2376 return (0); 2377 2378 case FD_GSTAT: 2379 fsp = (struct fdc_status *)addr; 2380 if ((fd->fdc->flags & FDC_STAT_VALID) == 0) 2381 return (EINVAL); 2382 memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int)); 2383 return (0); 2384 2385 case FD_GDTYPE: 2386 *(enum fd_drivetype *)addr = fd->type; 2387 return (0); 2388 } 2389 2390 /* 2391 * Now handle everything else. Make sure we have a valid 2392 * drive type. 2393 */ 2394 if (fd->flags & FD_NONBLOCK) 2395 return (EAGAIN); 2396 if (fd->ft == 0) 2397 return (ENXIO); 2398 error = 0; 2399 2400 switch (cmd) { 2401 2402 case FD_FORM: 2403 if ((flag & FWRITE) == 0) 2404 return (EBADF); /* must be opened for writing */ 2405 if (((struct fd_formb *)addr)->format_version != 2406 FD_FORMAT_VERSION) 2407 return (EINVAL); /* wrong version of formatting prog */ 2408 error = fdmisccmd(dev, FDBIO_FORMAT, addr); 2409 break; 2410 2411 case FD_GTYPE: /* get drive type */ 2412 *(struct fd_type *)addr = *fd->ft; 2413 break; 2414 2415 case FD_STYPE: /* set drive type */ 2416 /* this is considered harmful; only allow for superuser */ 2417 if (suser(td) != 0) 2418 return (EPERM); 2419 *fd->ft = *(struct fd_type *)addr; 2420 break; 2421 2422 case FD_GOPTS: /* get drive options */ 2423 *(int *)addr = fd->options; 2424 break; 2425 2426 case FD_SOPTS: /* set drive options */ 2427 fd->options = *(int *)addr; 2428 break; 2429 2430 #ifdef FDC_DEBUG 2431 case FD_DEBUG: 2432 if ((fd_debug != 0) != (*(int *)addr != 0)) { 2433 fd_debug = (*(int *)addr != 0); 2434 printf("fd%d: debugging turned %s\n", 2435 fd->fdu, fd_debug ? "on" : "off"); 2436 } 2437 break; 2438 #endif 2439 2440 case FD_CLRERR: 2441 if (suser(td) != 0) 2442 return (EPERM); 2443 fd->fdc->fdc_errs = 0; 2444 break; 2445 2446 case FD_GSTAT: 2447 fsp = (struct fdc_status *)addr; 2448 if ((fd->fdc->flags & FDC_STAT_VALID) == 0) 2449 return (EINVAL); 2450 memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int)); 2451 break; 2452 2453 case FD_READID: 2454 rid = (struct fdc_readid *)addr; 2455 if (rid->cyl > MAX_CYLINDER || rid->head > MAX_HEAD) 2456 return (EINVAL); 2457 error = fdmisccmd(dev, FDBIO_RDSECTID, addr); 2458 break; 2459 2460 default: 2461 error = ENOTTY; 2462 break; 2463 } 2464 return (error); 2465 } 2466