xref: /freebsd/sys/dev/fdc/fdc.c (revision d056fa046c6a91b90cd98165face0e42a33a5173)
1 /*-
2  * Copyright (c) 2004 Poul-Henning Kamp
3  * Copyright (c) 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Don Ahn.
8  *
9  * Libretto PCMCIA floppy support by David Horwitt (dhorwitt@ucsd.edu)
10  * aided by the Linux floppy driver modifications from David Bateman
11  * (dbateman@eng.uts.edu.au).
12  *
13  * Copyright (c) 1993, 1994 by
14  *  jc@irbs.UUCP (John Capo)
15  *  vak@zebub.msk.su (Serge Vakulenko)
16  *  ache@astral.msk.su (Andrew A. Chernov)
17  *
18  * Copyright (c) 1993, 1994, 1995 by
19  *  joerg_wunsch@uriah.sax.de (Joerg Wunsch)
20  *  dufault@hda.com (Peter Dufault)
21  *
22  * Copyright (c) 2001 Joerg Wunsch,
23  *  joerg_wunsch@uriah.heep.sax.de (Joerg Wunsch)
24  *
25  * Redistribution and use in source and binary forms, with or without
26  * modification, are permitted provided that the following conditions
27  * are met:
28  * 1. Redistributions of source code must retain the above copyright
29  *    notice, this list of conditions and the following disclaimer.
30  * 2. Redistributions in binary form must reproduce the above copyright
31  *    notice, this list of conditions and the following disclaimer in the
32  *    documentation and/or other materials provided with the distribution.
33  * 4. Neither the name of the University nor the names of its contributors
34  *    may be used to endorse or promote products derived from this software
35  *    without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
38  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
40  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
41  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
42  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
43  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
45  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
46  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
47  * SUCH DAMAGE.
48  *
49  *	from:	@(#)fd.c	7.4 (Berkeley) 5/25/91
50  *
51  */
52 
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD$");
55 
56 #include "opt_fdc.h"
57 
58 #include <sys/param.h>
59 #include <sys/bio.h>
60 #include <sys/bus.h>
61 #include <sys/devicestat.h>
62 #include <sys/disk.h>
63 #include <sys/fcntl.h>
64 #include <sys/fdcio.h>
65 #include <sys/filio.h>
66 #include <sys/kernel.h>
67 #include <sys/kthread.h>
68 #include <sys/lock.h>
69 #include <sys/malloc.h>
70 #include <sys/module.h>
71 #include <sys/mutex.h>
72 #include <sys/proc.h>
73 #include <sys/rman.h>
74 #include <sys/sysctl.h>
75 #include <sys/systm.h>
76 
77 #include <geom/geom.h>
78 
79 #include <machine/bus.h>
80 #include <machine/clock.h>
81 #include <machine/stdarg.h>
82 
83 #include <isa/isavar.h>
84 #include <isa/isareg.h>
85 #include <dev/fdc/fdcvar.h>
86 #include <isa/rtc.h>
87 
88 #include <dev/ic/nec765.h>
89 
90 /*
91  * Runtime configuration hints/flags
92  */
93 
94 /* configuration flags for fd */
95 #define FD_TYPEMASK	0x0f	/* drive type, matches enum
96 				 * fd_drivetype; on i386 machines, if
97 				 * given as 0, use RTC type for fd0
98 				 * and fd1 */
99 #define FD_NO_PROBE	0x20	/* don't probe drive (seek test), just
100 				 * assume it is there */
101 
102 /*
103  * Things that could conceiveably considered parameters or tweakables
104  */
105 
106 /*
107  * Maximal number of bytes in a cylinder.
108  * This is used for ISADMA bouncebuffer allocation and sets the max
109  * xfersize we support.
110  *
111  * 2.88M format has 2 x 36 x 512, allow for hacked up density.
112  */
113 #define MAX_BYTES_PER_CYL	(2 * 40 * 512)
114 
115 /*
116  * Timeout value for the PIO loops to wait until the FDC main status
117  * register matches our expectations (request for master, direction
118  * bit).  This is supposed to be a number of microseconds, although
119  * timing might actually not be very accurate.
120  *
121  * Timeouts of 100 msec are believed to be required for some broken
122  * (old) hardware.
123  */
124 #define	FDSTS_TIMEOUT	100000
125 
126 /*
127  * After this many errors, stop whining.  Close will reset this count.
128  */
129 #define FDC_ERRMAX	100
130 
131 /*
132  * AutoDensity search lists for each drive type.
133  */
134 
135 static struct fd_type fd_searchlist_360k[] = {
136 	{ FDF_5_360 },
137 	{ 0 }
138 };
139 
140 static struct fd_type fd_searchlist_12m[] = {
141 	{ FDF_5_1200 | FL_AUTO },
142 	{ FDF_5_360 | FL_2STEP | FL_AUTO},
143 	{ 0 }
144 };
145 
146 static struct fd_type fd_searchlist_720k[] = {
147 	{ FDF_3_720 },
148 	{ 0 }
149 };
150 
151 static struct fd_type fd_searchlist_144m[] = {
152 	{ FDF_3_1440 | FL_AUTO},
153 	{ FDF_3_720 | FL_AUTO},
154 	{ 0 }
155 };
156 
157 static struct fd_type fd_searchlist_288m[] = {
158 	{ FDF_3_1440 | FL_AUTO },
159 #if 0
160 	{ FDF_3_2880 | FL_AUTO }, /* XXX: probably doesn't work */
161 #endif
162 	{ FDF_3_720 | FL_AUTO},
163 	{ 0 }
164 };
165 
166 /*
167  * Order must match enum fd_drivetype in <sys/fdcio.h>.
168  */
169 static struct fd_type *fd_native_types[] = {
170 	NULL,				/* FDT_NONE */
171 	fd_searchlist_360k, 		/* FDT_360K */
172 	fd_searchlist_12m, 		/* FDT_12M */
173 	fd_searchlist_720k, 		/* FDT_720K */
174 	fd_searchlist_144m, 		/* FDT_144M */
175 	fd_searchlist_288m,		/* FDT_288M_1 (mapped to FDT_288M) */
176 	fd_searchlist_288m, 		/* FDT_288M */
177 };
178 
179 /*
180  * Internals start here
181  */
182 
183 /* registers */
184 #define	FDOUT	2	/* Digital Output Register (W) */
185 #define	FDO_FDSEL	0x03	/*  floppy device select */
186 #define	FDO_FRST	0x04	/*  floppy controller reset */
187 #define	FDO_FDMAEN	0x08	/*  enable floppy DMA and Interrupt */
188 #define	FDO_MOEN0	0x10	/*  motor enable drive 0 */
189 #define	FDO_MOEN1	0x20	/*  motor enable drive 1 */
190 #define	FDO_MOEN2	0x40	/*  motor enable drive 2 */
191 #define	FDO_MOEN3	0x80	/*  motor enable drive 3 */
192 
193 #define	FDSTS	4	/* NEC 765 Main Status Register (R) */
194 #define FDDSR	4	/* Data Rate Select Register (W) */
195 #define	FDDATA	5	/* NEC 765 Data Register (R/W) */
196 #define	FDCTL	7	/* Control Register (W) */
197 
198 /*
199  * The YE-DATA PC Card floppies use PIO to read in the data rather
200  * than DMA due to the wild variability of DMA for the PC Card
201  * devices.  DMA was deleted from the PC Card specification in version
202  * 7.2 of the standard, but that post-dates the YE-DATA devices by many
203  * years.
204  *
205  * In addition, if we cannot setup the DMA resources for the ISA
206  * attachment, we'll use this same offset for data transfer.  However,
207  * that almost certainly won't work.
208  *
209  * For this mode, offset 0 and 1 must be used to setup the transfer
210  * for this floppy.  This is OK for PC Card YE Data devices, but for
211  * ISA this is likely wrong.  These registers are only available on
212  * those systems that map them to the floppy drive.  Newer systems do
213  * not do this, and we should likely prohibit access to them (or
214  * disallow NODMA to be set).
215  */
216 #define FDBCDR		0	/* And 1 */
217 #define FD_YE_DATAPORT	6	/* Drive Data port */
218 
219 #define	FDI_DCHG	0x80	/* diskette has been changed */
220 				/* requires drive and motor being selected */
221 				/* is cleared by any step pulse to drive */
222 
223 /*
224  * We have three private BIO commands.
225  */
226 #define BIO_PROBE	BIO_CMD0
227 #define BIO_RDID	BIO_CMD1
228 #define BIO_FMT		BIO_CMD2
229 
230 /*
231  * Per drive structure (softc).
232  */
233 struct fd_data {
234 	u_char 	*fd_ioptr;	/* IO pointer */
235 	u_int	fd_iosize;	/* Size of IO chunks */
236 	u_int	fd_iocount;	/* Outstanding requests */
237 	struct	fdc_data *fdc;	/* pointer to controller structure */
238 	int	fdsu;		/* this units number on this controller */
239 	enum	fd_drivetype type; /* drive type */
240 	struct	fd_type *ft;	/* pointer to current type descriptor */
241 	struct	fd_type fts;	/* type descriptors */
242 	int	sectorsize;
243 	int	flags;
244 #define	FD_WP		(1<<0)	/* Write protected	*/
245 #define	FD_MOTOR	(1<<1)	/* motor should be on	*/
246 #define	FD_MOTORWAIT	(1<<2)	/* motor should be on	*/
247 #define	FD_EMPTY	(1<<3)	/* no media		*/
248 #define	FD_NEWDISK	(1<<4)	/* media changed	*/
249 #define	FD_ISADMA	(1<<5)	/* isa dma started 	*/
250 	int	track;		/* where we think the head is */
251 #define FD_NO_TRACK	 -2
252 	int	options;	/* FDOPT_* */
253 	struct	callout toffhandle;
254 	struct g_geom *fd_geom;
255 	struct g_provider *fd_provider;
256 	device_t dev;
257 	struct bio_queue_head fd_bq;
258 };
259 
260 #define FD_NOT_VALID -2
261 
262 static driver_intr_t fdc_intr;
263 static void fdc_reset(struct fdc_data *);
264 
265 SYSCTL_NODE(_debug, OID_AUTO, fdc, CTLFLAG_RW, 0, "fdc driver");
266 
267 static int fifo_threshold = 8;
268 SYSCTL_INT(_debug_fdc, OID_AUTO, fifo, CTLFLAG_RW, &fifo_threshold, 0,
269 	"FIFO threshold setting");
270 
271 static int debugflags = 0;
272 SYSCTL_INT(_debug_fdc, OID_AUTO, debugflags, CTLFLAG_RW, &debugflags, 0,
273 	"Debug flags");
274 
275 static int retries = 10;
276 SYSCTL_INT(_debug_fdc, OID_AUTO, retries, CTLFLAG_RW, &retries, 0,
277 	"Number of retries to attempt");
278 
279 static int spec1 = 0xaf;
280 SYSCTL_INT(_debug_fdc, OID_AUTO, spec1, CTLFLAG_RW, &spec1, 0,
281 	"Specification byte one (step-rate + head unload)");
282 
283 static int spec2 = 0x10;
284 SYSCTL_INT(_debug_fdc, OID_AUTO, spec2, CTLFLAG_RW, &spec2, 0,
285 	"Specification byte two (head load time + no-dma)");
286 
287 static int settle;
288 SYSCTL_INT(_debug_fdc, OID_AUTO, settle, CTLFLAG_RW, &settle, 0,
289 	"Head settling time in sec/hz");
290 
291 static void
292 fdprinttype(struct fd_type *ft)
293 {
294 
295 	printf("(%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,0x%x)",
296 	    ft->sectrac, ft->secsize, ft->datalen, ft->gap, ft->tracks,
297 	    ft->size, ft->trans, ft->heads, ft->f_gap, ft->f_inter,
298 	    ft->offset_side2, ft->flags);
299 }
300 
301 static void
302 fdsettype(struct fd_data *fd, struct fd_type *ft)
303 {
304 	fd->ft = ft;
305 	ft->size = ft->sectrac * ft->heads * ft->tracks;
306 	fd->sectorsize = 128 << fd->ft->secsize;
307 }
308 
309 /*
310  * Bus space handling (access to low-level IO).
311  */
312 __inline static void
313 fdregwr(struct fdc_data *fdc, int reg, uint8_t v)
314 {
315 
316 	bus_space_write_1(fdc->iot, fdc->ioh[reg], fdc->ioff[reg], v);
317 }
318 
319 __inline static uint8_t
320 fdregrd(struct fdc_data *fdc, int reg)
321 {
322 
323 	return bus_space_read_1(fdc->iot, fdc->ioh[reg], fdc->ioff[reg]);
324 }
325 
326 static void
327 fdctl_wr(struct fdc_data *fdc, u_int8_t v)
328 {
329 
330 	fdregwr(fdc, FDCTL, v);
331 }
332 
333 static void
334 fdout_wr(struct fdc_data *fdc, u_int8_t v)
335 {
336 
337 	fdregwr(fdc, FDOUT, v);
338 }
339 
340 static u_int8_t
341 fdsts_rd(struct fdc_data *fdc)
342 {
343 
344 	return fdregrd(fdc, FDSTS);
345 }
346 
347 static void
348 fddsr_wr(struct fdc_data *fdc, u_int8_t v)
349 {
350 
351 	fdregwr(fdc, FDDSR, v);
352 }
353 
354 static void
355 fddata_wr(struct fdc_data *fdc, u_int8_t v)
356 {
357 
358 	fdregwr(fdc, FDDATA, v);
359 }
360 
361 static u_int8_t
362 fddata_rd(struct fdc_data *fdc)
363 {
364 
365 	return fdregrd(fdc, FDDATA);
366 }
367 
368 static u_int8_t
369 fdin_rd(struct fdc_data *fdc)
370 {
371 
372 	return fdregrd(fdc, FDCTL);
373 }
374 
375 /*
376  * Magic pseudo-DMA initialization for YE FDC. Sets count and
377  * direction.
378  */
379 static void
380 fdbcdr_wr(struct fdc_data *fdc, int iswrite, uint16_t count)
381 {
382 	fdregwr(fdc, FDBCDR, (count - 1) & 0xff);
383 	fdregwr(fdc, FDBCDR + 1,
384 	    (iswrite ? 0x80 : 0) | (((count - 1) >> 8) & 0x7f));
385 }
386 
387 static int
388 fdc_err(struct fdc_data *fdc, const char *s)
389 {
390 	fdc->fdc_errs++;
391 	if (s) {
392 		if (fdc->fdc_errs < FDC_ERRMAX)
393 			device_printf(fdc->fdc_dev, "%s", s);
394 		else if (fdc->fdc_errs == FDC_ERRMAX)
395 			device_printf(fdc->fdc_dev, "too many errors, not "
396 						    "logging any more\n");
397 	}
398 
399 	return (1);
400 }
401 
402 /*
403  * FDC IO functions, take care of the main status register, timeout
404  * in case the desired status bits are never set.
405  *
406  * These PIO loops initially start out with short delays between
407  * each iteration in the expectation that the required condition
408  * is usually met quickly, so it can be handled immediately.
409  */
410 static int
411 fdc_in(struct fdc_data *fdc, int *ptr)
412 {
413 	int i, j, step;
414 
415 	step = 1;
416 	for (j = 0; j < FDSTS_TIMEOUT; j += step) {
417 	        i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM);
418 	        if (i == (NE7_DIO|NE7_RQM)) {
419 			i = fddata_rd(fdc);
420 			if (ptr)
421 				*ptr = i;
422 			return (0);
423 		}
424 		if (i == NE7_RQM)
425 			return (fdc_err(fdc, "ready for output in input\n"));
426 		step += step;
427 		DELAY(step);
428 	}
429 	return (fdc_err(fdc, bootverbose? "input ready timeout\n": 0));
430 }
431 
432 static int
433 fdc_out(struct fdc_data *fdc, int x)
434 {
435 	int i, j, step;
436 
437 	step = 1;
438 	for (j = 0; j < FDSTS_TIMEOUT; j += step) {
439 	        i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM);
440 	        if (i == NE7_RQM) {
441 			fddata_wr(fdc, x);
442 			return (0);
443 		}
444 		if (i == (NE7_DIO|NE7_RQM))
445 			return (fdc_err(fdc, "ready for input in output\n"));
446 		step += step;
447 		DELAY(step);
448 	}
449 	return (fdc_err(fdc, bootverbose? "output ready timeout\n": 0));
450 }
451 
452 /*
453  * fdc_cmd: Send a command to the chip.
454  * Takes a varargs with this structure:
455  *	# of output bytes
456  *	output bytes as int [...]
457  *	# of input bytes
458  *	input bytes as int* [...]
459  */
460 static int
461 fdc_cmd(struct fdc_data *fdc, int n_out, ...)
462 {
463 	u_char cmd = 0;
464 	int n_in;
465 	int n, i;
466 	va_list ap;
467 
468 	va_start(ap, n_out);
469 	for (n = 0; n < n_out; n++) {
470 		i = va_arg(ap, int);
471 		if (n == 0)
472 			cmd = i;
473 		if (fdc_out(fdc, i) < 0) {
474 			char msg[50];
475 			snprintf(msg, sizeof(msg),
476 				"cmd %x failed at out byte %d of %d\n",
477 				cmd, n + 1, n_out);
478 			fdc->flags |= FDC_NEEDS_RESET;
479 			va_end(ap);
480 			return fdc_err(fdc, msg);
481 		}
482 	}
483 	n_in = va_arg(ap, int);
484 	for (n = 0; n < n_in; n++) {
485 		int *ptr = va_arg(ap, int *);
486 		if (fdc_in(fdc, ptr) < 0) {
487 			char msg[50];
488 			snprintf(msg, sizeof(msg),
489 				"cmd %02x failed at in byte %d of %d\n",
490 				cmd, n + 1, n_in);
491 			fdc->flags |= FDC_NEEDS_RESET;
492 			va_end(ap);
493 			return fdc_err(fdc, msg);
494 		}
495 	}
496 	va_end(ap);
497 	return (0);
498 }
499 
500 static void
501 fdc_reset(struct fdc_data *fdc)
502 {
503 	int i, r[10];
504 
505 	if (fdc->fdct == FDC_ENHANCED) {
506 		/* Try a software reset, default precomp, and 500 kb/s */
507 		fddsr_wr(fdc, I8207X_DSR_SR);
508 	} else {
509 		/* Try a hardware reset, keep motor on */
510 		fdout_wr(fdc, fdc->fdout & ~(FDO_FRST|FDO_FDMAEN));
511 		DELAY(100);
512 		/* enable FDC, but defer interrupts a moment */
513 		fdout_wr(fdc, fdc->fdout & ~FDO_FDMAEN);
514 		DELAY(100);
515 		fdout_wr(fdc, fdc->fdout);
516 	}
517 
518 	/* XXX after a reset, silently believe the FDC will accept commands */
519 	if (fdc_cmd(fdc, 3, NE7CMD_SPECIFY, spec1, spec2, 0))
520 		device_printf(fdc->fdc_dev, " SPECIFY failed in reset\n");
521 
522 	if (fdc->fdct == FDC_ENHANCED) {
523 		if (fdc_cmd(fdc, 4,
524 		    I8207X_CONFIGURE,
525 		    0,
526 		    0x40 |			/* Enable Implied Seek */
527 		    0x10 |			/* Polling disabled */
528 		    (fifo_threshold - 1),	/* Fifo threshold */
529 		    0x00,			/* Precomp track */
530 		    0))
531 			device_printf(fdc->fdc_dev,
532 			    " CONFIGURE failed in reset\n");
533 		if (debugflags & 1) {
534 			if (fdc_cmd(fdc, 1,
535 			    0x0e,			/* DUMPREG */
536 			    10, &r[0], &r[1], &r[2], &r[3], &r[4],
537 			    &r[5], &r[6], &r[7], &r[8], &r[9]))
538 				device_printf(fdc->fdc_dev,
539 				    " DUMPREG failed in reset\n");
540 			for (i = 0; i < 10; i++)
541 				printf(" %02x", r[i]);
542 			printf("\n");
543 		}
544 	}
545 }
546 
547 static int
548 fdc_sense_drive(struct fdc_data *fdc, int *st3p)
549 {
550 	int st3;
551 
552 	if (fdc_cmd(fdc, 2, NE7CMD_SENSED, fdc->fd->fdsu, 1, &st3))
553 		return (fdc_err(fdc, "Sense Drive Status failed\n"));
554 	if (st3p)
555 		*st3p = st3;
556 	return (0);
557 }
558 
559 static int
560 fdc_sense_int(struct fdc_data *fdc, int *st0p, int *cylp)
561 {
562 	int cyl, st0, ret;
563 
564 	ret = fdc_cmd(fdc, 1, NE7CMD_SENSEI, 1, &st0);
565 	if (ret) {
566 		(void)fdc_err(fdc, "sense intr err reading stat reg 0\n");
567 		return (ret);
568 	}
569 
570 	if (st0p)
571 		*st0p = st0;
572 
573 	if ((st0 & NE7_ST0_IC) == NE7_ST0_IC_IV) {
574 		/*
575 		 * There doesn't seem to have been an interrupt.
576 		 */
577 		return (FD_NOT_VALID);
578 	}
579 
580 	if (fdc_in(fdc, &cyl) < 0)
581 		return fdc_err(fdc, "can't get cyl num\n");
582 
583 	if (cylp)
584 		*cylp = cyl;
585 
586 	return (0);
587 }
588 
589 static int
590 fdc_read_status(struct fdc_data *fdc)
591 {
592 	int i, ret, status;
593 
594 	for (i = ret = 0; i < 7; i++) {
595 		ret = fdc_in(fdc, &status);
596 		fdc->status[i] = status;
597 		if (ret != 0)
598 			break;
599 	}
600 
601 	if (ret == 0)
602 		fdc->flags |= FDC_STAT_VALID;
603 	else
604 		fdc->flags &= ~FDC_STAT_VALID;
605 
606 	return ret;
607 }
608 
609 /*
610  * Select this drive
611  */
612 static void
613 fd_select(struct fd_data *fd)
614 {
615 	struct fdc_data *fdc;
616 
617 	/* XXX: lock controller */
618 	fdc = fd->fdc;
619 	fdc->fdout &= ~FDO_FDSEL;
620 	fdc->fdout |= FDO_FDMAEN | FDO_FRST | fd->fdsu;
621 	fdout_wr(fdc, fdc->fdout);
622 }
623 
624 static void
625 fd_turnon(void *arg)
626 {
627 	struct fd_data *fd;
628 	struct bio *bp;
629 	int once;
630 
631 	fd = arg;
632 	mtx_assert(&fd->fdc->fdc_mtx, MA_OWNED);
633 	fd->flags &= ~FD_MOTORWAIT;
634 	fd->flags |= FD_MOTOR;
635 	once = 0;
636 	for (;;) {
637 		bp = bioq_takefirst(&fd->fd_bq);
638 		if (bp == NULL)
639 			break;
640 		bioq_disksort(&fd->fdc->head, bp);
641 		once = 1;
642 	}
643 	if (once)
644 		wakeup(&fd->fdc->head);
645 }
646 
647 static void
648 fd_motor(struct fd_data *fd, int turnon)
649 {
650 	struct fdc_data *fdc;
651 
652 	fdc = fd->fdc;
653 /*
654 	mtx_assert(&fdc->fdc_mtx, MA_OWNED);
655 */
656 	if (turnon) {
657 		fd->flags |= FD_MOTORWAIT;
658 		fdc->fdout |= (FDO_MOEN0 << fd->fdsu);
659 		callout_reset(&fd->toffhandle, hz, fd_turnon, fd);
660 	} else {
661 		callout_stop(&fd->toffhandle);
662 		fd->flags &= ~(FD_MOTOR|FD_MOTORWAIT);
663 		fdc->fdout &= ~(FDO_MOEN0 << fd->fdsu);
664 	}
665 	fdout_wr(fdc, fdc->fdout);
666 }
667 
668 static void
669 fd_turnoff(void *xfd)
670 {
671 	struct fd_data *fd = xfd;
672 
673 	mtx_assert(&fd->fdc->fdc_mtx, MA_OWNED);
674 	fd_motor(fd, 0);
675 }
676 
677 /*
678  * fdc_intr - wake up the worker thread.
679  */
680 
681 static void
682 fdc_intr(void *arg)
683 {
684 
685 	wakeup(arg);
686 }
687 
688 /*
689  * fdc_pio(): perform programmed IO read/write for YE PCMCIA floppy.
690  */
691 static void
692 fdc_pio(struct fdc_data *fdc)
693 {
694 	u_char *cptr;
695 	struct bio *bp;
696 	u_int count;
697 
698 	bp = fdc->bp;
699 	cptr = fdc->fd->fd_ioptr;
700 	count = fdc->fd->fd_iosize;
701 
702 	if (bp->bio_cmd == BIO_READ) {
703 		fdbcdr_wr(fdc, 0, count);
704 		bus_space_read_multi_1(fdc->iot, fdc->ioh[FD_YE_DATAPORT],
705 		    fdc->ioff[FD_YE_DATAPORT], cptr, count);
706 	} else {
707 		bus_space_write_multi_1(fdc->iot, fdc->ioh[FD_YE_DATAPORT],
708 		    fdc->ioff[FD_YE_DATAPORT], cptr, count);
709 		fdbcdr_wr(fdc, 0, count);	/* needed? */
710 	}
711 }
712 
713 static int
714 fdc_biodone(struct fdc_data *fdc, int error)
715 {
716 	struct fd_data *fd;
717 	struct bio *bp;
718 
719 	fd = fdc->fd;
720 	bp = fdc->bp;
721 
722 	mtx_lock(&fdc->fdc_mtx);
723 	if (--fd->fd_iocount == 0)
724 		callout_reset(&fd->toffhandle, 4 * hz, fd_turnoff, fd);
725 	fdc->bp = NULL;
726 	fdc->fd = NULL;
727 	mtx_unlock(&fdc->fdc_mtx);
728 	if (bp->bio_to != NULL) {
729 		if ((debugflags & 2) && fd->fdc->retry > 0)
730 			printf("retries: %d\n", fd->fdc->retry);
731 		g_io_deliver(bp, error);
732 		return (0);
733 	}
734 	bp->bio_error = error;
735 	bp->bio_flags |= BIO_DONE;
736 	wakeup(bp);
737 	return (0);
738 }
739 
740 static int retry_line;
741 
742 static int
743 fdc_worker(struct fdc_data *fdc)
744 {
745 	struct fd_data *fd;
746 	struct bio *bp;
747 	int i, nsect;
748 	int st0, st3, cyl, mfm, steptrac, cylinder, descyl, sec;
749 	int head;
750 	static int need_recal;
751 	struct fdc_readid *idp;
752 	struct fd_formb *finfo;
753 
754 	/* Have we exhausted our retries ? */
755 	bp = fdc->bp;
756 	fd = fdc->fd;
757 	if (bp != NULL &&
758 		(fdc->retry >= retries || (fd->options & FDOPT_NORETRY))) {
759 		if ((debugflags & 4))
760 			printf("Too many retries (EIO)\n");
761 		mtx_lock(&fdc->fdc_mtx);
762 		fd->flags |= FD_EMPTY;
763 		mtx_unlock(&fdc->fdc_mtx);
764 		return (fdc_biodone(fdc, EIO));
765 	}
766 
767 	/* Disable ISADMA if we bailed while it was active */
768 	if (fd != NULL && (fd->flags & FD_ISADMA)) {
769 		mtx_lock(&Giant);
770 		isa_dmadone(
771 		    bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE,
772 		    fd->fd_ioptr, fd->fd_iosize, fdc->dmachan);
773 		mtx_unlock(&Giant);
774 		mtx_lock(&fdc->fdc_mtx);
775 		fd->flags &= ~FD_ISADMA;
776 		mtx_unlock(&fdc->fdc_mtx);
777 	}
778 
779 	/* Unwedge the controller ? */
780 	if (fdc->flags & FDC_NEEDS_RESET) {
781 		fdc->flags &= ~FDC_NEEDS_RESET;
782 		fdc_reset(fdc);
783 		msleep(fdc, NULL, PRIBIO, "fdcrst", hz);
784 		/* Discard results */
785 		for (i = 0; i < 4; i++)
786 			fdc_sense_int(fdc, &st0, &cyl);
787 		/* All drives must recal */
788 		need_recal = 0xf;
789 	}
790 
791 	/* Pick up a request, if need be wait for it */
792 	if (fdc->bp == NULL) {
793 		mtx_lock(&fdc->fdc_mtx);
794 		do {
795 			fdc->bp = bioq_takefirst(&fdc->head);
796 			if (fdc->bp == NULL)
797 				msleep(&fdc->head, &fdc->fdc_mtx,
798 				    PRIBIO, "-", hz);
799 		} while (fdc->bp == NULL &&
800 		    (fdc->flags & FDC_KTHREAD_EXIT) == 0);
801 		mtx_unlock(&fdc->fdc_mtx);
802 
803 		if (fdc->bp == NULL)
804 			/*
805 			 * Nothing to do, worker thread has been
806 			 * requested to stop.
807 			 */
808 			return (0);
809 
810 		bp = fdc->bp;
811 		fd = fdc->fd = bp->bio_driver1;
812 		fdc->retry = 0;
813 		fd->fd_ioptr = bp->bio_data;
814 		if (bp->bio_cmd & BIO_FMT) {
815 			i = offsetof(struct fd_formb, fd_formb_cylno(0));
816 			fd->fd_ioptr += i;
817 			fd->fd_iosize = bp->bio_length - i;
818 		}
819 	}
820 
821 	/* Select drive, setup params */
822 	fd_select(fd);
823 	if (fdc->fdct == FDC_ENHANCED)
824 		fddsr_wr(fdc, fd->ft->trans);
825 	else
826 		fdctl_wr(fdc, fd->ft->trans);
827 
828 	if (bp->bio_cmd & BIO_PROBE) {
829 
830 		if (!(fdin_rd(fdc) & FDI_DCHG) && !(fd->flags & FD_EMPTY))
831 			return (fdc_biodone(fdc, 0));
832 
833 		/*
834 		 * Try to find out if we have a disk in the drive
835 		 *
836 		 * First recal, then seek to cyl#1, this clears the
837 		 * old condition on the disk change line so we can
838 		 * examine it for current status
839 		 */
840 		if (debugflags & 0x40)
841 			printf("New disk in probe\n");
842 		mtx_lock(&fdc->fdc_mtx);
843 		fd->flags |= FD_NEWDISK;
844 		mtx_unlock(&fdc->fdc_mtx);
845 		retry_line = __LINE__;
846 		if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fd->fdsu, 0))
847 			return (1);
848 		msleep(fdc, NULL, PRIBIO, "fdrecal", hz);
849 		retry_line = __LINE__;
850 		if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID)
851 			return (1); /* XXX */
852 		retry_line = __LINE__;
853 		if ((st0 & 0xc0) || cyl != 0)
854 			return (1);
855 
856 		/* Seek to track 1 */
857 		retry_line = __LINE__;
858 		if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fd->fdsu, 1, 0))
859 			return (1);
860 		msleep(fdc, NULL, PRIBIO, "fdseek", hz);
861 		retry_line = __LINE__;
862 		if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID)
863 			return (1); /* XXX */
864 		need_recal |= (1 << fd->fdsu);
865 		if (fdin_rd(fdc) & FDI_DCHG) {
866 			if (debugflags & 0x40)
867 				printf("Empty in probe\n");
868 			mtx_lock(&fdc->fdc_mtx);
869 			fd->flags |= FD_EMPTY;
870 			mtx_unlock(&fdc->fdc_mtx);
871 		} else {
872 			if (debugflags & 0x40)
873 				printf("Got disk in probe\n");
874 			mtx_lock(&fdc->fdc_mtx);
875 			fd->flags &= ~FD_EMPTY;
876 			mtx_unlock(&fdc->fdc_mtx);
877 			retry_line = __LINE__;
878 			if(fdc_sense_drive(fdc, &st3) != 0)
879 				return (1);
880 			mtx_lock(&fdc->fdc_mtx);
881 			if(st3 & NE7_ST3_WP)
882 				fd->flags |= FD_WP;
883 			else
884 				fd->flags &= ~FD_WP;
885 			mtx_unlock(&fdc->fdc_mtx);
886 		}
887 		return (fdc_biodone(fdc, 0));
888 	}
889 
890 	/*
891 	 * If we are dead just flush the requests
892 	 */
893 	if (fd->flags & FD_EMPTY)
894 		return (fdc_biodone(fdc, ENXIO));
895 
896 	/* Check if we lost our media */
897 	if (fdin_rd(fdc) & FDI_DCHG) {
898 		if (debugflags & 0x40)
899 			printf("Lost disk\n");
900 		mtx_lock(&fdc->fdc_mtx);
901 		fd->flags |= FD_EMPTY;
902 		fd->flags |= FD_NEWDISK;
903 		mtx_unlock(&fdc->fdc_mtx);
904 		g_topology_lock();
905 		g_orphan_provider(fd->fd_provider, EXDEV);
906 		fd->fd_provider->flags |= G_PF_WITHER;
907 		fd->fd_provider =
908 		    g_new_providerf(fd->fd_geom, fd->fd_geom->name);
909 		g_error_provider(fd->fd_provider, 0);
910 		g_topology_unlock();
911 		return (fdc_biodone(fdc, ENXIO));
912 	}
913 
914 	/* Check if the floppy is write-protected */
915 	if(bp->bio_cmd & (BIO_FMT | BIO_WRITE)) {
916 		retry_line = __LINE__;
917 		if(fdc_sense_drive(fdc, &st3) != 0)
918 			return (1);
919 		if(st3 & NE7_ST3_WP)
920 			return (fdc_biodone(fdc, EROFS));
921 	}
922 
923 	mfm = (fd->ft->flags & FL_MFM)? NE7CMD_MFM: 0;
924 	steptrac = (fd->ft->flags & FL_2STEP)? 2: 1;
925 	i = fd->ft->sectrac * fd->ft->heads;
926 	cylinder = bp->bio_pblkno / i;
927 	descyl = cylinder * steptrac;
928 	sec = bp->bio_pblkno % i;
929 	nsect = i - sec;
930 	head = sec / fd->ft->sectrac;
931 	sec = sec % fd->ft->sectrac + 1;
932 
933 	/* If everything is going swimmingly, use multisector xfer */
934 	if (fdc->retry == 0 && bp->bio_cmd & (BIO_READ|BIO_WRITE)) {
935 		fd->fd_iosize = imin(nsect * fd->sectorsize, bp->bio_resid);
936 		nsect = fd->fd_iosize / fd->sectorsize;
937 	} else if (bp->bio_cmd & (BIO_READ|BIO_WRITE)) {
938 		fd->fd_iosize = fd->sectorsize;
939 		nsect = 1;
940 	}
941 
942 	/* Do RECAL if we need to or are going to track zero anyway */
943 	if ((need_recal & (1 << fd->fdsu)) ||
944 	    (cylinder == 0 && fd->track != 0) ||
945 	    fdc->retry > 2) {
946 		retry_line = __LINE__;
947 		if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fd->fdsu, 0))
948 			return (1);
949 		msleep(fdc, NULL, PRIBIO, "fdrecal", hz);
950 		retry_line = __LINE__;
951 		if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID)
952 			return (1); /* XXX */
953 		retry_line = __LINE__;
954 		if ((st0 & 0xc0) || cyl != 0)
955 			return (1);
956 		need_recal &= ~(1 << fd->fdsu);
957 		fd->track = 0;
958 		/* let the heads settle */
959 		if (settle)
960 			msleep(fdc->fd, NULL, PRIBIO, "fdhdstl", settle);
961 	}
962 
963 	/*
964 	 * SEEK to where we want to be
965 	 *
966 	 * Enhanced controllers do implied seeks for read&write as long as
967 	 * we do not need multiple steps per track.
968 	 */
969 	if (cylinder != fd->track && (
970 	    fdc->fdct != FDC_ENHANCED ||
971 	    descyl != cylinder ||
972 	    (bp->bio_cmd & (BIO_RDID|BIO_FMT)))) {
973 		retry_line = __LINE__;
974 		if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fd->fdsu, descyl, 0))
975 			return (1);
976 		msleep(fdc, NULL, PRIBIO, "fdseek", hz);
977 		retry_line = __LINE__;
978 		if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID)
979 			return (1); /* XXX */
980 		retry_line = __LINE__;
981 		if ((st0 & 0xc0) || cyl != descyl) {
982 			need_recal |= (1 << fd->fdsu);
983 			return (1);
984 		}
985 		/* let the heads settle */
986 		if (settle)
987 			msleep(fdc->fd, NULL, PRIBIO, "fdhdstl", settle);
988 	}
989 	fd->track = cylinder;
990 
991 	if (debugflags & 8)
992 		printf("op %x bn %ju siz %u ptr %p retry %d\n",
993 		    bp->bio_cmd, bp->bio_pblkno, fd->fd_iosize,
994 		    fd->fd_ioptr, fdc->retry);
995 
996 	/* Setup ISADMA if we need it and have it */
997 	if ((bp->bio_cmd & (BIO_READ|BIO_WRITE|BIO_FMT))
998 	     && !(fdc->flags & FDC_NODMA)) {
999 		mtx_lock(&Giant);
1000 		isa_dmastart(
1001 		    bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE,
1002 		    fd->fd_ioptr, fd->fd_iosize, fdc->dmachan);
1003 		mtx_unlock(&Giant);
1004 		mtx_lock(&fdc->fdc_mtx);
1005 		fd->flags |= FD_ISADMA;
1006 		mtx_unlock(&fdc->fdc_mtx);
1007 	}
1008 
1009 	/* Do PIO if we have to */
1010 	if (fdc->flags & FDC_NODMA) {
1011 		if (bp->bio_cmd & (BIO_READ|BIO_WRITE|BIO_FMT))
1012 			fdbcdr_wr(fdc, 1, fd->fd_iosize);
1013 		if (bp->bio_cmd & (BIO_WRITE|BIO_FMT))
1014 			fdc_pio(fdc);
1015 	}
1016 
1017 	switch(bp->bio_cmd) {
1018 	case BIO_FMT:
1019 		/* formatting */
1020 		finfo = (struct fd_formb *)bp->bio_data;
1021 		retry_line = __LINE__;
1022 		if (fdc_cmd(fdc, 6,
1023 		    NE7CMD_FORMAT | mfm,
1024 		    head << 2 | fd->fdsu,
1025 		    finfo->fd_formb_secshift,
1026 		    finfo->fd_formb_nsecs,
1027 		    finfo->fd_formb_gaplen,
1028 		    finfo->fd_formb_fillbyte, 0))
1029 			return (1);
1030 		break;
1031 	case BIO_RDID:
1032 		retry_line = __LINE__;
1033 		if (fdc_cmd(fdc, 2,
1034 		    NE7CMD_READID | mfm,
1035 		    head << 2 | fd->fdsu, 0))
1036 			return (1);
1037 		break;
1038 	case BIO_READ:
1039 		retry_line = __LINE__;
1040 		if (fdc_cmd(fdc, 9,
1041 		    NE7CMD_READ | NE7CMD_SK | mfm | NE7CMD_MT,
1042 		    head << 2 | fd->fdsu,	/* head & unit */
1043 		    fd->track,			/* track */
1044 		    head,			/* head */
1045 		    sec,			/* sector + 1 */
1046 		    fd->ft->secsize,		/* sector size */
1047 		    fd->ft->sectrac,		/* sectors/track */
1048 		    fd->ft->gap,		/* gap size */
1049 		    fd->ft->datalen,		/* data length */
1050 		    0))
1051 			return (1);
1052 		break;
1053 	case BIO_WRITE:
1054 		retry_line = __LINE__;
1055 		if (fdc_cmd(fdc, 9,
1056 		    NE7CMD_WRITE | mfm | NE7CMD_MT,
1057 		    head << 2 | fd->fdsu,	/* head & unit */
1058 		    fd->track,			/* track */
1059 		    head,			/* head */
1060 		    sec,			/* sector + 1 */
1061 		    fd->ft->secsize,		/* sector size */
1062 		    fd->ft->sectrac,		/* sectors/track */
1063 		    fd->ft->gap,		/* gap size */
1064 		    fd->ft->datalen,		/* data length */
1065 		    0))
1066 			return (1);
1067 		break;
1068 	default:
1069 		KASSERT(0 == 1, ("Wrong bio_cmd %x\n", bp->bio_cmd));
1070 	}
1071 
1072 	/* Wait for interrupt */
1073 	i = msleep(fdc, NULL, PRIBIO, "fddata", hz);
1074 
1075 	/* PIO if the read looks good */
1076 	if (i == 0 && (fdc->flags & FDC_NODMA) && (bp->bio_cmd & BIO_READ))
1077 		fdc_pio(fdc);
1078 
1079 	/* Finish DMA */
1080 	if (fd->flags & FD_ISADMA) {
1081 		mtx_lock(&Giant);
1082 		isa_dmadone(
1083 		    bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE,
1084 		    fd->fd_ioptr, fd->fd_iosize, fdc->dmachan);
1085 		mtx_unlock(&Giant);
1086 		mtx_lock(&fdc->fdc_mtx);
1087 		fd->flags &= ~FD_ISADMA;
1088 		mtx_unlock(&fdc->fdc_mtx);
1089 	}
1090 
1091 	if (i != 0) {
1092 		/*
1093 		 * Timeout.
1094 		 *
1095 		 * Due to IBM's brain-dead design, the FDC has a faked ready
1096 		 * signal, hardwired to ready == true. Thus, any command
1097 		 * issued if there's no diskette in the drive will _never_
1098 		 * complete, and must be aborted by resetting the FDC.
1099 		 * Many thanks, Big Blue!
1100 		 */
1101 		retry_line = __LINE__;
1102 		fdc->flags |= FDC_NEEDS_RESET;
1103 		return (1);
1104 	}
1105 
1106 	retry_line = __LINE__;
1107 	if (fdc_read_status(fdc))
1108 		return (1);
1109 
1110 	if (debugflags & 0x10)
1111 		printf("  -> %x %x %x %x\n",
1112 		    fdc->status[0], fdc->status[1],
1113 		    fdc->status[2], fdc->status[3]);
1114 
1115 	st0 = fdc->status[0] & NE7_ST0_IC;
1116 	if (st0 != 0) {
1117 		retry_line = __LINE__;
1118 		if (st0 == NE7_ST0_IC_AT && fdc->status[1] & NE7_ST1_OR) {
1119 			/*
1120 			 * DMA overrun. Someone hogged the bus and
1121 			 * didn't release it in time for the next
1122 			 * FDC transfer.
1123 			 */
1124 			return (1);
1125 		}
1126 		retry_line = __LINE__;
1127 		if(st0 == NE7_ST0_IC_IV) {
1128 			fdc->flags |= FDC_NEEDS_RESET;
1129 			return (1);
1130 		}
1131 		retry_line = __LINE__;
1132 		if(st0 == NE7_ST0_IC_AT && fdc->status[2] & NE7_ST2_WC) {
1133 			need_recal |= (1 << fd->fdsu);
1134 			return (1);
1135 		}
1136 		if (debugflags & 0x20) {
1137 			printf("status %02x %02x %02x %02x %02x %02x\n",
1138 			    fdc->status[0], fdc->status[1], fdc->status[2],
1139 			    fdc->status[3], fdc->status[4], fdc->status[5]);
1140 		}
1141 		retry_line = __LINE__;
1142 		return (1);
1143 	}
1144 	/* All OK */
1145 	switch(bp->bio_cmd) {
1146 	case BIO_RDID:
1147 		/* copy out ID field contents */
1148 		idp = (struct fdc_readid *)bp->bio_data;
1149 		idp->cyl = fdc->status[3];
1150 		idp->head = fdc->status[4];
1151 		idp->sec = fdc->status[5];
1152 		idp->secshift = fdc->status[6];
1153 		if (debugflags & 0x40)
1154 			printf("c %d h %d s %d z %d\n",
1155 			    idp->cyl, idp->head, idp->sec, idp->secshift);
1156 		break;
1157 	case BIO_READ:
1158 	case BIO_WRITE:
1159 		bp->bio_pblkno += nsect;
1160 		bp->bio_resid -= fd->fd_iosize;
1161 		bp->bio_completed += fd->fd_iosize;
1162 		fd->fd_ioptr += fd->fd_iosize;
1163 		/* Since we managed to get something done, reset the retry */
1164 		fdc->retry = 0;
1165 		if (bp->bio_resid > 0)
1166 			return (0);
1167 		break;
1168 	case BIO_FMT:
1169 		break;
1170 	}
1171 	return (fdc_biodone(fdc, 0));
1172 }
1173 
1174 static void
1175 fdc_thread(void *arg)
1176 {
1177 	struct fdc_data *fdc;
1178 
1179 	fdc = arg;
1180 	int i;
1181 
1182 	mtx_lock(&fdc->fdc_mtx);
1183 	fdc->flags |= FDC_KTHREAD_ALIVE;
1184 	while ((fdc->flags & FDC_KTHREAD_EXIT) == 0) {
1185 		mtx_unlock(&fdc->fdc_mtx);
1186 		i = fdc_worker(fdc);
1187 		if (i && debugflags & 0x20) {
1188 			if (fdc->bp != NULL) {
1189 				g_print_bio(fdc->bp);
1190 				printf("\n");
1191 			}
1192 			printf("Retry line %d\n", retry_line);
1193 		}
1194 		fdc->retry += i;
1195 		mtx_lock(&fdc->fdc_mtx);
1196 	}
1197 	fdc->flags &= ~(FDC_KTHREAD_EXIT | FDC_KTHREAD_ALIVE);
1198 	wakeup(&fdc->fdc_thread);
1199 	mtx_unlock(&fdc->fdc_mtx);
1200 
1201 	kthread_exit(0);
1202 }
1203 
1204 /*
1205  * Enqueue a request.
1206  */
1207 static void
1208 fd_enqueue(struct fd_data *fd, struct bio *bp)
1209 {
1210 	struct fdc_data *fdc;
1211 	int call;
1212 
1213 	call = 0;
1214 	fdc = fd->fdc;
1215 	mtx_lock(&fdc->fdc_mtx);
1216 	/* If we go from idle, cancel motor turnoff */
1217 	if (fd->fd_iocount++ == 0)
1218 		callout_stop(&fd->toffhandle);
1219 	if (fd->flags & FD_MOTOR) {
1220 		/* The motor is on, send it directly to the controller */
1221 		bioq_disksort(&fdc->head, bp);
1222 		wakeup(&fdc->head);
1223 	} else {
1224 		/* Queue it on the drive until the motor has started */
1225 		bioq_insert_tail(&fd->fd_bq, bp);
1226 		if (!(fd->flags & FD_MOTORWAIT))
1227 			fd_motor(fd, 1);
1228 	}
1229 	mtx_unlock(&fdc->fdc_mtx);
1230 }
1231 
1232 static int
1233 fdmisccmd(struct fd_data *fd, u_int cmd, void *data)
1234 {
1235 	struct bio *bp;
1236 	struct fd_formb *finfo;
1237 	struct fdc_readid *idfield;
1238 	int error;
1239 
1240 	bp = malloc(sizeof(struct bio), M_TEMP, M_WAITOK | M_ZERO);
1241 
1242 	/*
1243 	 * Set up a bio request for fdstrategy().  bio_offset is faked
1244 	 * so that fdstrategy() will seek to the the requested
1245 	 * cylinder, and use the desired head.
1246 	 */
1247 	bp->bio_cmd = cmd;
1248 	if (cmd == BIO_FMT) {
1249 		finfo = (struct fd_formb *)data;
1250 		bp->bio_pblkno =
1251 		    (finfo->cyl * fd->ft->heads + finfo->head) *
1252 		    fd->ft->sectrac;
1253 		bp->bio_length = sizeof *finfo;
1254 	} else if (cmd == BIO_RDID) {
1255 		idfield = (struct fdc_readid *)data;
1256 		bp->bio_pblkno =
1257 		    (idfield->cyl * fd->ft->heads + idfield->head) *
1258 		    fd->ft->sectrac;
1259 		bp->bio_length = sizeof(struct fdc_readid);
1260 	} else if (cmd == BIO_PROBE) {
1261 		/* nothing */
1262 	} else
1263 		panic("wrong cmd in fdmisccmd()");
1264 	bp->bio_offset = bp->bio_pblkno * fd->sectorsize;
1265 	bp->bio_data = data;
1266 	bp->bio_driver1 = fd;
1267 	bp->bio_flags = 0;
1268 
1269 	fd_enqueue(fd, bp);
1270 
1271 	do {
1272 		msleep(bp, NULL, PRIBIO, "fdwait", hz);
1273 	} while (!(bp->bio_flags & BIO_DONE));
1274 	error = bp->bio_error;
1275 
1276 	free(bp, M_TEMP);
1277 	return (error);
1278 }
1279 
1280 /*
1281  * Try figuring out the density of the media present in our device.
1282  */
1283 static int
1284 fdautoselect(struct fd_data *fd)
1285 {
1286 	struct fd_type *fdtp;
1287 	struct fdc_readid id;
1288 	int oopts, rv;
1289 
1290 	if (!(fd->ft->flags & FL_AUTO))
1291 		return (0);
1292 
1293 	fdtp = fd_native_types[fd->type];
1294 	fdsettype(fd, fdtp);
1295 	if (!(fd->ft->flags & FL_AUTO))
1296 		return (0);
1297 
1298 	/*
1299 	 * Try reading sector ID fields, first at cylinder 0, head 0,
1300 	 * then at cylinder 2, head N.  We don't probe cylinder 1,
1301 	 * since for 5.25in DD media in a HD drive, there are no data
1302 	 * to read (2 step pulses per media cylinder required).  For
1303 	 * two-sided media, the second probe always goes to head 1, so
1304 	 * we can tell them apart from single-sided media.  As a
1305 	 * side-effect this means that single-sided media should be
1306 	 * mentioned in the search list after two-sided media of an
1307 	 * otherwise identical density.  Media with a different number
1308 	 * of sectors per track but otherwise identical parameters
1309 	 * cannot be distinguished at all.
1310 	 *
1311 	 * If we successfully read an ID field on both cylinders where
1312 	 * the recorded values match our expectation, we are done.
1313 	 * Otherwise, we try the next density entry from the table.
1314 	 *
1315 	 * Stepping to cylinder 2 has the side-effect of clearing the
1316 	 * unit attention bit.
1317 	 */
1318 	oopts = fd->options;
1319 	fd->options |= FDOPT_NOERRLOG | FDOPT_NORETRY;
1320 	for (; fdtp->heads; fdtp++) {
1321 		fdsettype(fd, fdtp);
1322 
1323 		id.cyl = id.head = 0;
1324 		rv = fdmisccmd(fd, BIO_RDID, &id);
1325 		if (rv != 0)
1326 			continue;
1327 		if (id.cyl != 0 || id.head != 0 || id.secshift != fdtp->secsize)
1328 			continue;
1329 		id.cyl = 2;
1330 		id.head = fd->ft->heads - 1;
1331 		rv = fdmisccmd(fd, BIO_RDID, &id);
1332 		if (id.cyl != 2 || id.head != fdtp->heads - 1 ||
1333 		    id.secshift != fdtp->secsize)
1334 			continue;
1335 		if (rv == 0)
1336 			break;
1337 	}
1338 
1339 	fd->options = oopts;
1340 	if (fdtp->heads == 0) {
1341 		if (debugflags & 0x40)
1342 			device_printf(fd->dev, "autoselection failed\n");
1343 		fdsettype(fd, fd_native_types[fd->type]);
1344 		return (0);
1345 	} else {
1346 		if (debugflags & 0x40) {
1347 			device_printf(fd->dev,
1348 			    "autoselected %d KB medium\n", fd->ft->size / 2);
1349 			fdprinttype(fd->ft);
1350 		}
1351 		return (0);
1352 	}
1353 }
1354 
1355 /*
1356  * GEOM class implementation
1357  */
1358 
1359 static g_access_t	fd_access;
1360 static g_start_t	fd_start;
1361 static g_ioctl_t	fd_ioctl;
1362 
1363 struct g_class g_fd_class = {
1364 	.name =		"FD",
1365 	.version =	G_VERSION,
1366 	.start =	fd_start,
1367 	.access =	fd_access,
1368 	.ioctl =	fd_ioctl,
1369 };
1370 
1371 static int
1372 fd_access(struct g_provider *pp, int r, int w, int e)
1373 {
1374 	struct fd_data *fd;
1375 	struct fdc_data *fdc;
1376 	int ar, aw, ae;
1377 
1378 	fd = pp->geom->softc;
1379 	fdc = fd->fdc;
1380 
1381 	/*
1382 	 * If our provider is withering, we can only get negative requests
1383 	 * and we don't want to even see them
1384 	 */
1385 	if (pp->flags & G_PF_WITHER)
1386 		return (0);
1387 
1388 	ar = r + pp->acr;
1389 	aw = w + pp->acw;
1390 	ae = e + pp->ace;
1391 
1392 	if (ar == 0 && aw == 0 && ae == 0) {
1393 		device_unbusy(fd->dev);
1394 		return (0);
1395 	}
1396 
1397 	if (pp->acr == 0 && pp->acw == 0 && pp->ace == 0) {
1398 		if (fdmisccmd(fd, BIO_PROBE, NULL))
1399 			return (ENXIO);
1400 		if (fd->flags & FD_EMPTY)
1401 			return (ENXIO);
1402 		if (fd->flags & FD_NEWDISK) {
1403 			fdautoselect(fd);
1404 			mtx_lock(&fdc->fdc_mtx);
1405 			fd->flags &= ~FD_NEWDISK;
1406 			mtx_unlock(&fdc->fdc_mtx);
1407 		}
1408 		device_busy(fd->dev);
1409 	}
1410 
1411 	if (w > 0 && (fd->flags & FD_WP))
1412 		return (EROFS);
1413 
1414 	pp->sectorsize = fd->sectorsize;
1415 	pp->stripesize = fd->ft->heads * fd->ft->sectrac * fd->sectorsize;
1416 	pp->mediasize = pp->stripesize * fd->ft->tracks;
1417 	return (0);
1418 }
1419 
1420 static void
1421 fd_start(struct bio *bp)
1422 {
1423  	struct fdc_data *	fdc;
1424  	struct fd_data *	fd;
1425 
1426 	fd = bp->bio_to->geom->softc;
1427 	fdc = fd->fdc;
1428 	bp->bio_driver1 = fd;
1429 	if (bp->bio_cmd & BIO_GETATTR) {
1430 		if (g_handleattr_int(bp, "GEOM::fwsectors", fd->ft->sectrac))
1431 			return;
1432 		if (g_handleattr_int(bp, "GEOM::fwheads", fd->ft->heads))
1433 			return;
1434 		g_io_deliver(bp, ENOIOCTL);
1435 		return;
1436 	}
1437 	if (!(bp->bio_cmd & (BIO_READ|BIO_WRITE))) {
1438 		g_io_deliver(bp, EOPNOTSUPP);
1439 		return;
1440 	}
1441 	bp->bio_pblkno = bp->bio_offset / fd->sectorsize;
1442 	bp->bio_resid = bp->bio_length;
1443 	fd_enqueue(fd, bp);
1444 	return;
1445 }
1446 
1447 static int
1448 fd_ioctl(struct g_provider *pp, u_long cmd, void *data, int fflag, struct thread *td)
1449 {
1450 	struct fd_data *fd;
1451 	struct fdc_status *fsp;
1452 	struct fdc_readid *rid;
1453 	int error;
1454 
1455 	fd = pp->geom->softc;
1456 
1457 	switch (cmd) {
1458 	case FD_GTYPE:                  /* get drive type */
1459 		*(struct fd_type *)data = *fd->ft;
1460 		return (0);
1461 
1462 	case FD_STYPE:                  /* set drive type */
1463 		if (!(fflag & FWRITE))
1464 			return (EPERM);
1465 		/*
1466 		 * Allow setting drive type temporarily iff
1467 		 * currently unset.  Used for fdformat so any
1468 		 * user can set it, and then start formatting.
1469 		 */
1470 		fd->fts = *(struct fd_type *)data;
1471 		if (fd->fts.sectrac) {
1472 			/* XXX: check for rubbish */
1473 			fdsettype(fd, &fd->fts);
1474 		} else {
1475 			fdsettype(fd, fd_native_types[fd->type]);
1476 		}
1477 		if (debugflags & 0x40)
1478 			fdprinttype(fd->ft);
1479 		return (0);
1480 
1481 	case FD_GOPTS:			/* get drive options */
1482 		*(int *)data = fd->options;
1483 		return (0);
1484 
1485 	case FD_SOPTS:			/* set drive options */
1486 		if (!(fflag & FWRITE))
1487 			return (EPERM);
1488 		fd->options = *(int *)data;
1489 		return (0);
1490 
1491 	case FD_CLRERR:
1492 		if (suser(td) != 0)
1493 			return (EPERM);
1494 		fd->fdc->fdc_errs = 0;
1495 		return (0);
1496 
1497 	case FD_GSTAT:
1498 		fsp = (struct fdc_status *)data;
1499 		if ((fd->fdc->flags & FDC_STAT_VALID) == 0)
1500 			return (EINVAL);
1501 		memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int));
1502 		return (0);
1503 
1504 	case FD_GDTYPE:
1505 		*(enum fd_drivetype *)data = fd->type;
1506 		return (0);
1507 
1508 	case FD_FORM:
1509 		if (!(fflag & FWRITE))
1510 			return (EPERM);
1511 		if (((struct fd_formb *)data)->format_version !=
1512 		    FD_FORMAT_VERSION)
1513 			return (EINVAL); /* wrong version of formatting prog */
1514 		error = fdmisccmd(fd, BIO_FMT, data);
1515 		mtx_lock(&fd->fdc->fdc_mtx);
1516 		fd->flags |= FD_NEWDISK;
1517 		mtx_unlock(&fd->fdc->fdc_mtx);
1518 		break;
1519 
1520 	case FD_READID:
1521 		rid = (struct fdc_readid *)data;
1522 		if (rid->cyl > 85 || rid->head > 1)
1523 			return (EINVAL);
1524 		error = fdmisccmd(fd, BIO_RDID, data);
1525 		break;
1526 
1527 	case FIONBIO:
1528 	case FIOASYNC:
1529 		/* For backwards compat with old fd*(8) tools */
1530 		error = 0;
1531 		break;
1532 
1533 	default:
1534 		if (debugflags & 0x80)
1535 			printf("Unknown ioctl %lx\n", cmd);
1536 		error = ENOIOCTL;
1537 		break;
1538 	}
1539 	return (error);
1540 };
1541 
1542 
1543 
1544 /*
1545  * Configuration/initialization stuff, per controller.
1546  */
1547 
1548 devclass_t fdc_devclass;
1549 static devclass_t fd_devclass;
1550 
1551 struct fdc_ivars {
1552 	int	fdunit;
1553 	int	fdtype;
1554 };
1555 
1556 void
1557 fdc_release_resources(struct fdc_data *fdc)
1558 {
1559 	device_t dev;
1560 	struct resource *last;
1561 	int i;
1562 
1563 	dev = fdc->fdc_dev;
1564 	if (fdc->fdc_intr)
1565 		bus_teardown_intr(dev, fdc->res_irq, fdc->fdc_intr);
1566 	fdc->fdc_intr = NULL;
1567 	if (fdc->res_irq != NULL)
1568 		bus_release_resource(dev, SYS_RES_IRQ, fdc->rid_irq,
1569 		    fdc->res_irq);
1570 	fdc->res_irq = NULL;
1571 	last = NULL;
1572 	for (i = 0; i < FDC_MAXREG; i++) {
1573 		if (fdc->resio[i] != NULL && fdc->resio[i] != last) {
1574 			bus_release_resource(dev, SYS_RES_IOPORT,
1575 			    fdc->ridio[i], fdc->resio[i]);
1576 			last = fdc->resio[i];
1577 			fdc->resio[i] = NULL;
1578 		}
1579 	}
1580 	if (fdc->res_drq != NULL)
1581 		bus_release_resource(dev, SYS_RES_DRQ, fdc->rid_drq,
1582 		    fdc->res_drq);
1583 	fdc->res_drq = NULL;
1584 }
1585 
1586 int
1587 fdc_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1588 {
1589 	struct fdc_ivars *ivars = device_get_ivars(child);
1590 
1591 	switch (which) {
1592 	case FDC_IVAR_FDUNIT:
1593 		*result = ivars->fdunit;
1594 		break;
1595 	case FDC_IVAR_FDTYPE:
1596 		*result = ivars->fdtype;
1597 		break;
1598 	default:
1599 		return (ENOENT);
1600 	}
1601 	return (0);
1602 }
1603 
1604 int
1605 fdc_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
1606 {
1607 	struct fdc_ivars *ivars = device_get_ivars(child);
1608 
1609 	switch (which) {
1610 	case FDC_IVAR_FDUNIT:
1611 		ivars->fdunit = value;
1612 		break;
1613 	case FDC_IVAR_FDTYPE:
1614 		ivars->fdtype = value;
1615 		break;
1616 	default:
1617 		return (ENOENT);
1618 	}
1619 	return (0);
1620 }
1621 
1622 int
1623 fdc_initial_reset(device_t dev, struct fdc_data *fdc)
1624 {
1625 	int ic_type, part_id;
1626 
1627 	/*
1628 	 * A status value of 0xff is very unlikely, but not theoretically
1629 	 * impossible, but it is far more likely to indicate an empty bus.
1630 	 */
1631 	if (fdsts_rd(fdc) == 0xff)
1632 		return (ENXIO);
1633 
1634 	/*
1635 	 * Assert a reset to the floppy controller and check that the status
1636 	 * register goes to zero.
1637 	 */
1638 	fdout_wr(fdc, 0);
1639 	fdout_wr(fdc, 0);
1640 	if (fdsts_rd(fdc) != 0)
1641 		return (ENXIO);
1642 
1643 	/*
1644 	 * Clear the reset and see it come ready.
1645 	 */
1646 	fdout_wr(fdc, FDO_FRST);
1647 	DELAY(100);
1648 	if (fdsts_rd(fdc) != 0x80)
1649 		return (ENXIO);
1650 
1651 	/* Then, see if it can handle a command. */
1652 	if (fdc_cmd(fdc, 3, NE7CMD_SPECIFY, 0xaf, 0x1e, 0))
1653 		return (ENXIO);
1654 
1655 	/*
1656 	 * Try to identify the chip.
1657 	 *
1658 	 * The i8272 datasheet documents that unknown commands
1659 	 * will return ST0 as 0x80.  The i8272 is supposedly identical
1660 	 * to the NEC765.
1661 	 * The i82077SL datasheet says 0x90 for the VERSION command,
1662 	 * and several "superio" chips emulate this.
1663 	 */
1664 	if (fdc_cmd(fdc, 1, NE7CMD_VERSION, 1, &ic_type))
1665 		return (ENXIO);
1666 	if (fdc_cmd(fdc, 1, 0x18, 1, &part_id))
1667 		return (ENXIO);
1668 	if (bootverbose)
1669 		device_printf(dev,
1670 		    "ic_type %02x part_id %02x\n", ic_type, part_id);
1671 	switch (ic_type & 0xff) {
1672 	case 0x80:
1673 		device_set_desc(dev, "NEC 765 or clone");
1674 		fdc->fdct = FDC_NE765;
1675 		break;
1676 	case 0x81:
1677 	case 0x90:
1678 		device_set_desc(dev,
1679 		    "Enhanced floppy controller");
1680 		fdc->fdct = FDC_ENHANCED;
1681 		break;
1682 	default:
1683 		device_set_desc(dev, "Generic floppy controller");
1684 		fdc->fdct = FDC_UNKNOWN;
1685 		break;
1686 	}
1687 	return (0);
1688 }
1689 
1690 int
1691 fdc_detach(device_t dev)
1692 {
1693 	struct	fdc_data *fdc;
1694 	int	error;
1695 
1696 	fdc = device_get_softc(dev);
1697 
1698 	/* have our children detached first */
1699 	if ((error = bus_generic_detach(dev)))
1700 		return (error);
1701 
1702 	/* kill worker thread */
1703 	fdc->flags |= FDC_KTHREAD_EXIT;
1704 	mtx_lock(&fdc->fdc_mtx);
1705 	wakeup(&fdc->head);
1706 	while ((fdc->flags & FDC_KTHREAD_ALIVE) != 0)
1707 		msleep(&fdc->fdc_thread, &fdc->fdc_mtx, PRIBIO, "fdcdet", 0);
1708 	mtx_unlock(&fdc->fdc_mtx);
1709 
1710 	/* reset controller, turn motor off */
1711 	fdout_wr(fdc, 0);
1712 
1713 	if (!(fdc->flags & FDC_NODMA))
1714 		isa_dma_release(fdc->dmachan);
1715 	fdc_release_resources(fdc);
1716 	mtx_destroy(&fdc->fdc_mtx);
1717 	return (0);
1718 }
1719 
1720 /*
1721  * Add a child device to the fdc controller.  It will then be probed etc.
1722  */
1723 device_t
1724 fdc_add_child(device_t dev, const char *name, int unit)
1725 {
1726 	struct fdc_ivars *ivar;
1727 	device_t child;
1728 
1729 	ivar = malloc(sizeof *ivar, M_DEVBUF /* XXX */, M_NOWAIT | M_ZERO);
1730 	if (ivar == NULL)
1731 		return (NULL);
1732 	child = device_add_child(dev, name, unit);
1733 	if (child == NULL) {
1734 		free(ivar, M_DEVBUF);
1735 		return (NULL);
1736 	}
1737 	device_set_ivars(child, ivar);
1738 	ivar->fdunit = unit;
1739 	ivar->fdtype = FDT_NONE;
1740 	if (resource_disabled(name, unit))
1741 		device_disable(child);
1742 	return (child);
1743 }
1744 
1745 int
1746 fdc_attach(device_t dev)
1747 {
1748 	struct	fdc_data *fdc;
1749 	int	error;
1750 
1751 	fdc = device_get_softc(dev);
1752 	fdc->fdc_dev = dev;
1753 	error = fdc_initial_reset(dev, fdc);
1754 	if (error) {
1755 		device_printf(dev, "does not respond\n");
1756 		return (error);
1757 	}
1758 	error = bus_setup_intr(dev, fdc->res_irq,
1759 	    INTR_TYPE_BIO | INTR_ENTROPY | INTR_MPSAFE |
1760 	    ((fdc->flags & FDC_NOFAST) ? 0 : INTR_FAST),
1761 	    fdc_intr, fdc, &fdc->fdc_intr);
1762 	if (error) {
1763 		device_printf(dev, "cannot setup interrupt\n");
1764 		return (error);
1765 	}
1766 	if (!(fdc->flags & FDC_NODMA)) {
1767 		error = isa_dma_acquire(fdc->dmachan);
1768 		if (!error) {
1769 			error = isa_dma_init(fdc->dmachan,
1770 			    MAX_BYTES_PER_CYL, M_WAITOK);
1771 			if (error)
1772 				isa_dma_release(fdc->dmachan);
1773 		}
1774 		if (error)
1775 			return (error);
1776 	}
1777 	fdc->fdcu = device_get_unit(dev);
1778 	fdc->flags |= FDC_NEEDS_RESET;
1779 
1780 	mtx_init(&fdc->fdc_mtx, "fdc lock", NULL, MTX_DEF);
1781 
1782 	/* reset controller, turn motor off, clear fdout mirror reg */
1783 	fdout_wr(fdc, fdc->fdout = 0);
1784 	bioq_init(&fdc->head);
1785 
1786 	kthread_create(fdc_thread, fdc, &fdc->fdc_thread, 0, 0,
1787 	    "fdc%d", device_get_unit(dev));
1788 
1789 	settle = hz / 8;
1790 
1791 	return (0);
1792 }
1793 
1794 int
1795 fdc_hints_probe(device_t dev)
1796 {
1797 	const char *name, *dname;
1798 	int i, error, dunit;
1799 
1800 	/*
1801 	 * Probe and attach any children.  We should probably detect
1802 	 * devices from the BIOS unless overridden.
1803 	 */
1804 	name = device_get_nameunit(dev);
1805 	i = 0;
1806 	while ((resource_find_match(&i, &dname, &dunit, "at", name)) == 0) {
1807 		resource_int_value(dname, dunit, "drive", &dunit);
1808 		fdc_add_child(dev, dname, dunit);
1809 	}
1810 
1811 	if ((error = bus_generic_attach(dev)) != 0)
1812 		return (error);
1813 	return (0);
1814 }
1815 
1816 int
1817 fdc_print_child(device_t me, device_t child)
1818 {
1819 	int retval = 0, flags;
1820 
1821 	retval += bus_print_child_header(me, child);
1822 	retval += printf(" on %s drive %d", device_get_nameunit(me),
1823 	       fdc_get_fdunit(child));
1824 	if ((flags = device_get_flags(me)) != 0)
1825 		retval += printf(" flags %#x", flags);
1826 	retval += printf("\n");
1827 
1828 	return (retval);
1829 }
1830 
1831 /*
1832  * Configuration/initialization, per drive.
1833  */
1834 static int
1835 fd_probe(device_t dev)
1836 {
1837 	int	i, unit;
1838 	u_int	st0, st3;
1839 	struct	fd_data *fd;
1840 	struct	fdc_data *fdc;
1841 	int	fdsu;
1842 	int	flags, type;
1843 
1844 	fdsu = fdc_get_fdunit(dev);
1845 	fd = device_get_softc(dev);
1846 	fdc = device_get_softc(device_get_parent(dev));
1847 	flags = device_get_flags(dev);
1848 
1849 	fd->dev = dev;
1850 	fd->fdc = fdc;
1851 	fd->fdsu = fdsu;
1852 	unit = device_get_unit(dev);
1853 
1854 	/* Auto-probe if fdinfo is present, but always allow override. */
1855 	type = flags & FD_TYPEMASK;
1856 	if (type == FDT_NONE && (type = fdc_get_fdtype(dev)) != FDT_NONE) {
1857 		fd->type = type;
1858 		goto done;
1859 	} else {
1860 		/* make sure fdautoselect() will be called */
1861 		fd->flags = FD_EMPTY;
1862 		fd->type = type;
1863 	}
1864 
1865 #if (defined(__i386__) && !defined(PC98)) || defined(__amd64__)
1866 	if (fd->type == FDT_NONE && (unit == 0 || unit == 1)) {
1867 		/* Look up what the BIOS thinks we have. */
1868 		if (unit == 0)
1869 			fd->type = (rtcin(RTC_FDISKETTE) & 0xf0) >> 4;
1870 		else
1871 			fd->type = rtcin(RTC_FDISKETTE) & 0x0f;
1872 		if (fd->type == FDT_288M_1)
1873 			fd->type = FDT_288M;
1874 	}
1875 #endif /* __i386__ || __amd64__ */
1876 	/* is there a unit? */
1877 	if (fd->type == FDT_NONE)
1878 		return (ENXIO);
1879 
1880 /*
1881 	mtx_lock(&fdc->fdc_mtx);
1882 */
1883 	/* select it */
1884 	fd_select(fd);
1885 	fd_motor(fd, 1);
1886 	fdc->fd = fd;
1887 	fdc_reset(fdc);		/* XXX reset, then unreset, etc. */
1888 	DELAY(1000000);	/* 1 sec */
1889 
1890 	if ((flags & FD_NO_PROBE) == 0) {
1891 		/* If we're at track 0 first seek inwards. */
1892 		if ((fdc_sense_drive(fdc, &st3) == 0) &&
1893 		    (st3 & NE7_ST3_T0)) {
1894 			/* Seek some steps... */
1895 			if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fdsu, 10, 0) == 0) {
1896 				/* ...wait a moment... */
1897 				DELAY(300000);
1898 				/* make ctrlr happy: */
1899 				fdc_sense_int(fdc, NULL, NULL);
1900 			}
1901 		}
1902 
1903 		for (i = 0; i < 2; i++) {
1904 			/*
1905 			 * we must recalibrate twice, just in case the
1906 			 * heads have been beyond cylinder 76, since
1907 			 * most FDCs still barf when attempting to
1908 			 * recalibrate more than 77 steps
1909 			 */
1910 			/* go back to 0: */
1911 			if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fdsu, 0) == 0) {
1912 				/* a second being enough for full stroke seek*/
1913 				DELAY(i == 0 ? 1000000 : 300000);
1914 
1915 				/* anything responding? */
1916 				if (fdc_sense_int(fdc, &st0, NULL) == 0 &&
1917 				    (st0 & NE7_ST0_EC) == 0)
1918 					break; /* already probed succesfully */
1919 			}
1920 		}
1921 	}
1922 
1923 	fd_motor(fd, 0);
1924 	fdc->fd = NULL;
1925 /*
1926 	mtx_unlock(&fdc->fdc_mtx);
1927 */
1928 
1929 	if ((flags & FD_NO_PROBE) == 0 &&
1930 	    (st0 & NE7_ST0_EC) != 0) /* no track 0 -> no drive present */
1931 		return (ENXIO);
1932 
1933 done:
1934 
1935 	switch (fd->type) {
1936 	case FDT_12M:
1937 		device_set_desc(dev, "1200-KB 5.25\" drive");
1938 		break;
1939 	case FDT_144M:
1940 		device_set_desc(dev, "1440-KB 3.5\" drive");
1941 		break;
1942 	case FDT_288M:
1943 		device_set_desc(dev, "2880-KB 3.5\" drive (in 1440-KB mode)");
1944 		break;
1945 	case FDT_360K:
1946 		device_set_desc(dev, "360-KB 5.25\" drive");
1947 		break;
1948 	case FDT_720K:
1949 		device_set_desc(dev, "720-KB 3.5\" drive");
1950 		break;
1951 	default:
1952 		return (ENXIO);
1953 	}
1954 	fd->track = FD_NO_TRACK;
1955 	fd->fdc = fdc;
1956 	fd->fdsu = fdsu;
1957 	fd->options = 0;
1958 	callout_init_mtx(&fd->toffhandle, &fd->fdc->fdc_mtx, 0);
1959 
1960 	/* initialize densities for subdevices */
1961 	fdsettype(fd, fd_native_types[fd->type]);
1962 	return (0);
1963 }
1964 
1965 /*
1966  * We have to do this in a geom event because GEOM is not running
1967  * when fd_attach() is.
1968  * XXX: move fd_attach after geom like ata/scsi disks
1969  */
1970 static void
1971 fd_attach2(void *arg, int flag)
1972 {
1973 	struct	fd_data *fd;
1974 
1975 	fd = arg;
1976 
1977 	fd->fd_geom = g_new_geomf(&g_fd_class,
1978 	    "fd%d", device_get_unit(fd->dev));
1979 	fd->fd_provider = g_new_providerf(fd->fd_geom, fd->fd_geom->name);
1980 	fd->fd_geom->softc = fd;
1981 	g_error_provider(fd->fd_provider, 0);
1982 }
1983 
1984 static int
1985 fd_attach(device_t dev)
1986 {
1987 	struct	fd_data *fd;
1988 
1989 	fd = device_get_softc(dev);
1990 	g_post_event(fd_attach2, fd, M_WAITOK, NULL);
1991 	fd->flags |= FD_EMPTY;
1992 	bioq_init(&fd->fd_bq);
1993 
1994 	return (0);
1995 }
1996 
1997 static int
1998 fd_detach(device_t dev)
1999 {
2000 	struct	fd_data *fd;
2001 
2002 	fd = device_get_softc(dev);
2003 	g_topology_lock();
2004 	g_wither_geom(fd->fd_geom, ENXIO);
2005 	g_topology_unlock();
2006 	while (device_get_state(dev) == DS_BUSY)
2007 		tsleep(fd, PZERO, "fdd", hz/10);
2008 	callout_drain(&fd->toffhandle);
2009 
2010 	return (0);
2011 }
2012 
2013 static device_method_t fd_methods[] = {
2014 	/* Device interface */
2015 	DEVMETHOD(device_probe,		fd_probe),
2016 	DEVMETHOD(device_attach,	fd_attach),
2017 	DEVMETHOD(device_detach,	fd_detach),
2018 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
2019 	DEVMETHOD(device_suspend,	bus_generic_suspend), /* XXX */
2020 	DEVMETHOD(device_resume,	bus_generic_resume), /* XXX */
2021 	{ 0, 0 }
2022 };
2023 
2024 static driver_t fd_driver = {
2025 	"fd",
2026 	fd_methods,
2027 	sizeof(struct fd_data)
2028 };
2029 
2030 static int
2031 fdc_modevent(module_t mod, int type, void *data)
2032 {
2033 
2034 	g_modevent(NULL, type, &g_fd_class);
2035 	return (0);
2036 }
2037 
2038 DRIVER_MODULE(fd, fdc, fd_driver, fd_devclass, fdc_modevent, 0);
2039