1 /*- 2 * Copyright (c) 2004 Poul-Henning Kamp 3 * Copyright (c) 1990 The Regents of the University of California. 4 * All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * Don Ahn. 8 * 9 * Libretto PCMCIA floppy support by David Horwitt (dhorwitt@ucsd.edu) 10 * aided by the Linux floppy driver modifications from David Bateman 11 * (dbateman@eng.uts.edu.au). 12 * 13 * Copyright (c) 1993, 1994 by 14 * jc@irbs.UUCP (John Capo) 15 * vak@zebub.msk.su (Serge Vakulenko) 16 * ache@astral.msk.su (Andrew A. Chernov) 17 * 18 * Copyright (c) 1993, 1994, 1995 by 19 * joerg_wunsch@uriah.sax.de (Joerg Wunsch) 20 * dufault@hda.com (Peter Dufault) 21 * 22 * Copyright (c) 2001 Joerg Wunsch, 23 * joerg_wunsch@uriah.heep.sax.de (Joerg Wunsch) 24 * 25 * Redistribution and use in source and binary forms, with or without 26 * modification, are permitted provided that the following conditions 27 * are met: 28 * 1. Redistributions of source code must retain the above copyright 29 * notice, this list of conditions and the following disclaimer. 30 * 2. Redistributions in binary form must reproduce the above copyright 31 * notice, this list of conditions and the following disclaimer in the 32 * documentation and/or other materials provided with the distribution. 33 * 4. Neither the name of the University nor the names of its contributors 34 * may be used to endorse or promote products derived from this software 35 * without specific prior written permission. 36 * 37 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 38 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 40 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 41 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 42 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 43 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 45 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 46 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 47 * SUCH DAMAGE. 48 * 49 * from: @(#)fd.c 7.4 (Berkeley) 5/25/91 50 * 51 */ 52 53 #include <sys/cdefs.h> 54 __FBSDID("$FreeBSD$"); 55 56 #include "opt_fdc.h" 57 58 #include <sys/param.h> 59 #include <sys/bio.h> 60 #include <sys/bus.h> 61 #include <sys/devicestat.h> 62 #include <sys/disk.h> 63 #include <sys/fcntl.h> 64 #include <sys/fdcio.h> 65 #include <sys/filio.h> 66 #include <sys/kernel.h> 67 #include <sys/kthread.h> 68 #include <sys/lock.h> 69 #include <sys/malloc.h> 70 #include <sys/module.h> 71 #include <sys/mutex.h> 72 #include <sys/proc.h> 73 #include <sys/rman.h> 74 #include <sys/sysctl.h> 75 #include <sys/systm.h> 76 77 #include <geom/geom.h> 78 79 #include <machine/bus.h> 80 #include <machine/clock.h> 81 #include <machine/stdarg.h> 82 83 #include <isa/isavar.h> 84 #include <isa/isareg.h> 85 #include <dev/fdc/fdcvar.h> 86 #include <isa/rtc.h> 87 88 #include <dev/ic/nec765.h> 89 90 /* 91 * Runtime configuration hints/flags 92 */ 93 94 /* configuration flags for fd */ 95 #define FD_TYPEMASK 0x0f /* drive type, matches enum 96 * fd_drivetype; on i386 machines, if 97 * given as 0, use RTC type for fd0 98 * and fd1 */ 99 #define FD_NO_PROBE 0x20 /* don't probe drive (seek test), just 100 * assume it is there */ 101 102 /* 103 * Things that could conceiveably considered parameters or tweakables 104 */ 105 106 /* 107 * Maximal number of bytes in a cylinder. 108 * This is used for ISADMA bouncebuffer allocation and sets the max 109 * xfersize we support. 110 * 111 * 2.88M format has 2 x 36 x 512, allow for hacked up density. 112 */ 113 #define MAX_BYTES_PER_CYL (2 * 40 * 512) 114 115 /* 116 * Timeout value for the PIO loops to wait until the FDC main status 117 * register matches our expectations (request for master, direction 118 * bit). This is supposed to be a number of microseconds, although 119 * timing might actually not be very accurate. 120 * 121 * Timeouts of 100 msec are believed to be required for some broken 122 * (old) hardware. 123 */ 124 #define FDSTS_TIMEOUT 100000 125 126 /* 127 * After this many errors, stop whining. Close will reset this count. 128 */ 129 #define FDC_ERRMAX 100 130 131 /* 132 * AutoDensity search lists for each drive type. 133 */ 134 135 static struct fd_type fd_searchlist_360k[] = { 136 { FDF_5_360 }, 137 { 0 } 138 }; 139 140 static struct fd_type fd_searchlist_12m[] = { 141 { FDF_5_1200 | FL_AUTO }, 142 { FDF_5_360 | FL_2STEP | FL_AUTO}, 143 { 0 } 144 }; 145 146 static struct fd_type fd_searchlist_720k[] = { 147 { FDF_3_720 }, 148 { 0 } 149 }; 150 151 static struct fd_type fd_searchlist_144m[] = { 152 { FDF_3_1440 | FL_AUTO}, 153 { FDF_3_720 | FL_AUTO}, 154 { 0 } 155 }; 156 157 static struct fd_type fd_searchlist_288m[] = { 158 { FDF_3_1440 | FL_AUTO }, 159 #if 0 160 { FDF_3_2880 | FL_AUTO }, /* XXX: probably doesn't work */ 161 #endif 162 { FDF_3_720 | FL_AUTO}, 163 { 0 } 164 }; 165 166 /* 167 * Order must match enum fd_drivetype in <sys/fdcio.h>. 168 */ 169 static struct fd_type *fd_native_types[] = { 170 NULL, /* FDT_NONE */ 171 fd_searchlist_360k, /* FDT_360K */ 172 fd_searchlist_12m, /* FDT_12M */ 173 fd_searchlist_720k, /* FDT_720K */ 174 fd_searchlist_144m, /* FDT_144M */ 175 fd_searchlist_288m, /* FDT_288M_1 (mapped to FDT_288M) */ 176 fd_searchlist_288m, /* FDT_288M */ 177 }; 178 179 /* 180 * Internals start here 181 */ 182 183 /* registers */ 184 #define FDOUT 2 /* Digital Output Register (W) */ 185 #define FDO_FDSEL 0x03 /* floppy device select */ 186 #define FDO_FRST 0x04 /* floppy controller reset */ 187 #define FDO_FDMAEN 0x08 /* enable floppy DMA and Interrupt */ 188 #define FDO_MOEN0 0x10 /* motor enable drive 0 */ 189 #define FDO_MOEN1 0x20 /* motor enable drive 1 */ 190 #define FDO_MOEN2 0x40 /* motor enable drive 2 */ 191 #define FDO_MOEN3 0x80 /* motor enable drive 3 */ 192 193 #define FDSTS 4 /* NEC 765 Main Status Register (R) */ 194 #define FDDSR 4 /* Data Rate Select Register (W) */ 195 #define FDDATA 5 /* NEC 765 Data Register (R/W) */ 196 #define FDCTL 7 /* Control Register (W) */ 197 198 /* 199 * The YE-DATA PC Card floppies use PIO to read in the data rather 200 * than DMA due to the wild variability of DMA for the PC Card 201 * devices. DMA was deleted from the PC Card specification in version 202 * 7.2 of the standard, but that post-dates the YE-DATA devices by many 203 * years. 204 * 205 * In addition, if we cannot setup the DMA resources for the ISA 206 * attachment, we'll use this same offset for data transfer. However, 207 * that almost certainly won't work. 208 * 209 * For this mode, offset 0 and 1 must be used to setup the transfer 210 * for this floppy. This is OK for PC Card YE Data devices, but for 211 * ISA this is likely wrong. These registers are only available on 212 * those systems that map them to the floppy drive. Newer systems do 213 * not do this, and we should likely prohibit access to them (or 214 * disallow NODMA to be set). 215 */ 216 #define FDBCDR 0 /* And 1 */ 217 #define FD_YE_DATAPORT 6 /* Drive Data port */ 218 219 #define FDI_DCHG 0x80 /* diskette has been changed */ 220 /* requires drive and motor being selected */ 221 /* is cleared by any step pulse to drive */ 222 223 /* 224 * We have three private BIO commands. 225 */ 226 #define BIO_PROBE BIO_CMD0 227 #define BIO_RDID BIO_CMD1 228 #define BIO_FMT BIO_CMD2 229 230 /* 231 * Per drive structure (softc). 232 */ 233 struct fd_data { 234 u_char *fd_ioptr; /* IO pointer */ 235 u_int fd_iosize; /* Size of IO chunks */ 236 u_int fd_iocount; /* Outstanding requests */ 237 struct fdc_data *fdc; /* pointer to controller structure */ 238 int fdsu; /* this units number on this controller */ 239 enum fd_drivetype type; /* drive type */ 240 struct fd_type *ft; /* pointer to current type descriptor */ 241 struct fd_type fts; /* type descriptors */ 242 int sectorsize; 243 int flags; 244 #define FD_WP (1<<0) /* Write protected */ 245 #define FD_MOTOR (1<<1) /* motor should be on */ 246 #define FD_MOTORWAIT (1<<2) /* motor should be on */ 247 #define FD_EMPTY (1<<3) /* no media */ 248 #define FD_NEWDISK (1<<4) /* media changed */ 249 #define FD_ISADMA (1<<5) /* isa dma started */ 250 int track; /* where we think the head is */ 251 #define FD_NO_TRACK -2 252 int options; /* FDOPT_* */ 253 struct callout toffhandle; 254 struct g_geom *fd_geom; 255 struct g_provider *fd_provider; 256 device_t dev; 257 struct bio_queue_head fd_bq; 258 }; 259 260 #define FD_NOT_VALID -2 261 262 static driver_intr_t fdc_intr; 263 static void fdc_reset(struct fdc_data *); 264 265 SYSCTL_NODE(_debug, OID_AUTO, fdc, CTLFLAG_RW, 0, "fdc driver"); 266 267 static int fifo_threshold = 8; 268 SYSCTL_INT(_debug_fdc, OID_AUTO, fifo, CTLFLAG_RW, &fifo_threshold, 0, 269 "FIFO threshold setting"); 270 271 static int debugflags = 0; 272 SYSCTL_INT(_debug_fdc, OID_AUTO, debugflags, CTLFLAG_RW, &debugflags, 0, 273 "Debug flags"); 274 275 static int retries = 10; 276 SYSCTL_INT(_debug_fdc, OID_AUTO, retries, CTLFLAG_RW, &retries, 0, 277 "Number of retries to attempt"); 278 279 static int spec1 = 0xaf; 280 SYSCTL_INT(_debug_fdc, OID_AUTO, spec1, CTLFLAG_RW, &spec1, 0, 281 "Specification byte one (step-rate + head unload)"); 282 283 static int spec2 = 0x10; 284 SYSCTL_INT(_debug_fdc, OID_AUTO, spec2, CTLFLAG_RW, &spec2, 0, 285 "Specification byte two (head load time + no-dma)"); 286 287 static int settle; 288 SYSCTL_INT(_debug_fdc, OID_AUTO, settle, CTLFLAG_RW, &settle, 0, 289 "Head settling time in sec/hz"); 290 291 static void 292 fdprinttype(struct fd_type *ft) 293 { 294 295 printf("(%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,0x%x)", 296 ft->sectrac, ft->secsize, ft->datalen, ft->gap, ft->tracks, 297 ft->size, ft->trans, ft->heads, ft->f_gap, ft->f_inter, 298 ft->offset_side2, ft->flags); 299 } 300 301 static void 302 fdsettype(struct fd_data *fd, struct fd_type *ft) 303 { 304 fd->ft = ft; 305 ft->size = ft->sectrac * ft->heads * ft->tracks; 306 fd->sectorsize = 128 << fd->ft->secsize; 307 } 308 309 /* 310 * Bus space handling (access to low-level IO). 311 */ 312 __inline static void 313 fdregwr(struct fdc_data *fdc, int reg, uint8_t v) 314 { 315 316 bus_space_write_1(fdc->iot, fdc->ioh[reg], fdc->ioff[reg], v); 317 } 318 319 __inline static uint8_t 320 fdregrd(struct fdc_data *fdc, int reg) 321 { 322 323 return bus_space_read_1(fdc->iot, fdc->ioh[reg], fdc->ioff[reg]); 324 } 325 326 static void 327 fdctl_wr(struct fdc_data *fdc, u_int8_t v) 328 { 329 330 fdregwr(fdc, FDCTL, v); 331 } 332 333 static void 334 fdout_wr(struct fdc_data *fdc, u_int8_t v) 335 { 336 337 fdregwr(fdc, FDOUT, v); 338 } 339 340 static u_int8_t 341 fdsts_rd(struct fdc_data *fdc) 342 { 343 344 return fdregrd(fdc, FDSTS); 345 } 346 347 static void 348 fddsr_wr(struct fdc_data *fdc, u_int8_t v) 349 { 350 351 fdregwr(fdc, FDDSR, v); 352 } 353 354 static void 355 fddata_wr(struct fdc_data *fdc, u_int8_t v) 356 { 357 358 fdregwr(fdc, FDDATA, v); 359 } 360 361 static u_int8_t 362 fddata_rd(struct fdc_data *fdc) 363 { 364 365 return fdregrd(fdc, FDDATA); 366 } 367 368 static u_int8_t 369 fdin_rd(struct fdc_data *fdc) 370 { 371 372 return fdregrd(fdc, FDCTL); 373 } 374 375 /* 376 * Magic pseudo-DMA initialization for YE FDC. Sets count and 377 * direction. 378 */ 379 static void 380 fdbcdr_wr(struct fdc_data *fdc, int iswrite, uint16_t count) 381 { 382 fdregwr(fdc, FDBCDR, (count - 1) & 0xff); 383 fdregwr(fdc, FDBCDR + 1, 384 (iswrite ? 0x80 : 0) | (((count - 1) >> 8) & 0x7f)); 385 } 386 387 static int 388 fdc_err(struct fdc_data *fdc, const char *s) 389 { 390 fdc->fdc_errs++; 391 if (s) { 392 if (fdc->fdc_errs < FDC_ERRMAX) 393 device_printf(fdc->fdc_dev, "%s", s); 394 else if (fdc->fdc_errs == FDC_ERRMAX) 395 device_printf(fdc->fdc_dev, "too many errors, not " 396 "logging any more\n"); 397 } 398 399 return (1); 400 } 401 402 /* 403 * FDC IO functions, take care of the main status register, timeout 404 * in case the desired status bits are never set. 405 * 406 * These PIO loops initially start out with short delays between 407 * each iteration in the expectation that the required condition 408 * is usually met quickly, so it can be handled immediately. 409 */ 410 static int 411 fdc_in(struct fdc_data *fdc, int *ptr) 412 { 413 int i, j, step; 414 415 step = 1; 416 for (j = 0; j < FDSTS_TIMEOUT; j += step) { 417 i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM); 418 if (i == (NE7_DIO|NE7_RQM)) { 419 i = fddata_rd(fdc); 420 if (ptr) 421 *ptr = i; 422 return (0); 423 } 424 if (i == NE7_RQM) 425 return (fdc_err(fdc, "ready for output in input\n")); 426 step += step; 427 DELAY(step); 428 } 429 return (fdc_err(fdc, bootverbose? "input ready timeout\n": 0)); 430 } 431 432 static int 433 fdc_out(struct fdc_data *fdc, int x) 434 { 435 int i, j, step; 436 437 step = 1; 438 for (j = 0; j < FDSTS_TIMEOUT; j += step) { 439 i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM); 440 if (i == NE7_RQM) { 441 fddata_wr(fdc, x); 442 return (0); 443 } 444 if (i == (NE7_DIO|NE7_RQM)) 445 return (fdc_err(fdc, "ready for input in output\n")); 446 step += step; 447 DELAY(step); 448 } 449 return (fdc_err(fdc, bootverbose? "output ready timeout\n": 0)); 450 } 451 452 /* 453 * fdc_cmd: Send a command to the chip. 454 * Takes a varargs with this structure: 455 * # of output bytes 456 * output bytes as int [...] 457 * # of input bytes 458 * input bytes as int* [...] 459 */ 460 static int 461 fdc_cmd(struct fdc_data *fdc, int n_out, ...) 462 { 463 u_char cmd = 0; 464 int n_in; 465 int n, i; 466 va_list ap; 467 468 va_start(ap, n_out); 469 for (n = 0; n < n_out; n++) { 470 i = va_arg(ap, int); 471 if (n == 0) 472 cmd = i; 473 if (fdc_out(fdc, i) < 0) { 474 char msg[50]; 475 snprintf(msg, sizeof(msg), 476 "cmd %x failed at out byte %d of %d\n", 477 cmd, n + 1, n_out); 478 fdc->flags |= FDC_NEEDS_RESET; 479 va_end(ap); 480 return fdc_err(fdc, msg); 481 } 482 } 483 n_in = va_arg(ap, int); 484 for (n = 0; n < n_in; n++) { 485 int *ptr = va_arg(ap, int *); 486 if (fdc_in(fdc, ptr) < 0) { 487 char msg[50]; 488 snprintf(msg, sizeof(msg), 489 "cmd %02x failed at in byte %d of %d\n", 490 cmd, n + 1, n_in); 491 fdc->flags |= FDC_NEEDS_RESET; 492 va_end(ap); 493 return fdc_err(fdc, msg); 494 } 495 } 496 va_end(ap); 497 return (0); 498 } 499 500 static void 501 fdc_reset(struct fdc_data *fdc) 502 { 503 int i, r[10]; 504 505 if (fdc->fdct == FDC_ENHANCED) { 506 /* Try a software reset, default precomp, and 500 kb/s */ 507 fddsr_wr(fdc, I8207X_DSR_SR); 508 } else { 509 /* Try a hardware reset, keep motor on */ 510 fdout_wr(fdc, fdc->fdout & ~(FDO_FRST|FDO_FDMAEN)); 511 DELAY(100); 512 /* enable FDC, but defer interrupts a moment */ 513 fdout_wr(fdc, fdc->fdout & ~FDO_FDMAEN); 514 DELAY(100); 515 fdout_wr(fdc, fdc->fdout); 516 } 517 518 /* XXX after a reset, silently believe the FDC will accept commands */ 519 if (fdc_cmd(fdc, 3, NE7CMD_SPECIFY, spec1, spec2, 0)) 520 device_printf(fdc->fdc_dev, " SPECIFY failed in reset\n"); 521 522 if (fdc->fdct == FDC_ENHANCED) { 523 if (fdc_cmd(fdc, 4, 524 I8207X_CONFIGURE, 525 0, 526 0x40 | /* Enable Implied Seek */ 527 0x10 | /* Polling disabled */ 528 (fifo_threshold - 1), /* Fifo threshold */ 529 0x00, /* Precomp track */ 530 0)) 531 device_printf(fdc->fdc_dev, 532 " CONFIGURE failed in reset\n"); 533 if (debugflags & 1) { 534 if (fdc_cmd(fdc, 1, 535 0x0e, /* DUMPREG */ 536 10, &r[0], &r[1], &r[2], &r[3], &r[4], 537 &r[5], &r[6], &r[7], &r[8], &r[9])) 538 device_printf(fdc->fdc_dev, 539 " DUMPREG failed in reset\n"); 540 for (i = 0; i < 10; i++) 541 printf(" %02x", r[i]); 542 printf("\n"); 543 } 544 } 545 } 546 547 static int 548 fdc_sense_drive(struct fdc_data *fdc, int *st3p) 549 { 550 int st3; 551 552 if (fdc_cmd(fdc, 2, NE7CMD_SENSED, fdc->fd->fdsu, 1, &st3)) 553 return (fdc_err(fdc, "Sense Drive Status failed\n")); 554 if (st3p) 555 *st3p = st3; 556 return (0); 557 } 558 559 static int 560 fdc_sense_int(struct fdc_data *fdc, int *st0p, int *cylp) 561 { 562 int cyl, st0, ret; 563 564 ret = fdc_cmd(fdc, 1, NE7CMD_SENSEI, 1, &st0); 565 if (ret) { 566 (void)fdc_err(fdc, "sense intr err reading stat reg 0\n"); 567 return (ret); 568 } 569 570 if (st0p) 571 *st0p = st0; 572 573 if ((st0 & NE7_ST0_IC) == NE7_ST0_IC_IV) { 574 /* 575 * There doesn't seem to have been an interrupt. 576 */ 577 return (FD_NOT_VALID); 578 } 579 580 if (fdc_in(fdc, &cyl) < 0) 581 return fdc_err(fdc, "can't get cyl num\n"); 582 583 if (cylp) 584 *cylp = cyl; 585 586 return (0); 587 } 588 589 static int 590 fdc_read_status(struct fdc_data *fdc) 591 { 592 int i, ret, status; 593 594 for (i = ret = 0; i < 7; i++) { 595 ret = fdc_in(fdc, &status); 596 fdc->status[i] = status; 597 if (ret != 0) 598 break; 599 } 600 601 if (ret == 0) 602 fdc->flags |= FDC_STAT_VALID; 603 else 604 fdc->flags &= ~FDC_STAT_VALID; 605 606 return ret; 607 } 608 609 /* 610 * Select this drive 611 */ 612 static void 613 fd_select(struct fd_data *fd) 614 { 615 struct fdc_data *fdc; 616 617 /* XXX: lock controller */ 618 fdc = fd->fdc; 619 fdc->fdout &= ~FDO_FDSEL; 620 fdc->fdout |= FDO_FDMAEN | FDO_FRST | fd->fdsu; 621 fdout_wr(fdc, fdc->fdout); 622 } 623 624 static void 625 fd_turnon(void *arg) 626 { 627 struct fd_data *fd; 628 struct bio *bp; 629 int once; 630 631 fd = arg; 632 mtx_assert(&fd->fdc->fdc_mtx, MA_OWNED); 633 fd->flags &= ~FD_MOTORWAIT; 634 fd->flags |= FD_MOTOR; 635 once = 0; 636 for (;;) { 637 bp = bioq_takefirst(&fd->fd_bq); 638 if (bp == NULL) 639 break; 640 bioq_disksort(&fd->fdc->head, bp); 641 once = 1; 642 } 643 if (once) 644 wakeup(&fd->fdc->head); 645 } 646 647 static void 648 fd_motor(struct fd_data *fd, int turnon) 649 { 650 struct fdc_data *fdc; 651 652 fdc = fd->fdc; 653 /* 654 mtx_assert(&fdc->fdc_mtx, MA_OWNED); 655 */ 656 if (turnon) { 657 fd->flags |= FD_MOTORWAIT; 658 fdc->fdout |= (FDO_MOEN0 << fd->fdsu); 659 callout_reset(&fd->toffhandle, hz, fd_turnon, fd); 660 } else { 661 callout_stop(&fd->toffhandle); 662 fd->flags &= ~(FD_MOTOR|FD_MOTORWAIT); 663 fdc->fdout &= ~(FDO_MOEN0 << fd->fdsu); 664 } 665 fdout_wr(fdc, fdc->fdout); 666 } 667 668 static void 669 fd_turnoff(void *xfd) 670 { 671 struct fd_data *fd = xfd; 672 673 mtx_assert(&fd->fdc->fdc_mtx, MA_OWNED); 674 fd_motor(fd, 0); 675 } 676 677 /* 678 * fdc_intr - wake up the worker thread. 679 */ 680 681 static void 682 fdc_intr(void *arg) 683 { 684 685 wakeup(arg); 686 } 687 688 /* 689 * fdc_pio(): perform programmed IO read/write for YE PCMCIA floppy. 690 */ 691 static void 692 fdc_pio(struct fdc_data *fdc) 693 { 694 u_char *cptr; 695 struct bio *bp; 696 u_int count; 697 698 bp = fdc->bp; 699 cptr = fdc->fd->fd_ioptr; 700 count = fdc->fd->fd_iosize; 701 702 if (bp->bio_cmd == BIO_READ) { 703 fdbcdr_wr(fdc, 0, count); 704 bus_space_read_multi_1(fdc->iot, fdc->ioh[FD_YE_DATAPORT], 705 fdc->ioff[FD_YE_DATAPORT], cptr, count); 706 } else { 707 bus_space_write_multi_1(fdc->iot, fdc->ioh[FD_YE_DATAPORT], 708 fdc->ioff[FD_YE_DATAPORT], cptr, count); 709 fdbcdr_wr(fdc, 0, count); /* needed? */ 710 } 711 } 712 713 static int 714 fdc_biodone(struct fdc_data *fdc, int error) 715 { 716 struct fd_data *fd; 717 struct bio *bp; 718 719 fd = fdc->fd; 720 bp = fdc->bp; 721 722 mtx_lock(&fdc->fdc_mtx); 723 if (--fd->fd_iocount == 0) 724 callout_reset(&fd->toffhandle, 4 * hz, fd_turnoff, fd); 725 fdc->bp = NULL; 726 fdc->fd = NULL; 727 mtx_unlock(&fdc->fdc_mtx); 728 if (bp->bio_to != NULL) { 729 if ((debugflags & 2) && fd->fdc->retry > 0) 730 printf("retries: %d\n", fd->fdc->retry); 731 g_io_deliver(bp, error); 732 return (0); 733 } 734 bp->bio_error = error; 735 bp->bio_flags |= BIO_DONE; 736 wakeup(bp); 737 return (0); 738 } 739 740 static int retry_line; 741 742 static int 743 fdc_worker(struct fdc_data *fdc) 744 { 745 struct fd_data *fd; 746 struct bio *bp; 747 int i, nsect; 748 int st0, st3, cyl, mfm, steptrac, cylinder, descyl, sec; 749 int head; 750 static int need_recal; 751 struct fdc_readid *idp; 752 struct fd_formb *finfo; 753 754 /* Have we exhausted our retries ? */ 755 bp = fdc->bp; 756 fd = fdc->fd; 757 if (bp != NULL && 758 (fdc->retry >= retries || (fd->options & FDOPT_NORETRY))) { 759 if ((debugflags & 4)) 760 printf("Too many retries (EIO)\n"); 761 mtx_lock(&fdc->fdc_mtx); 762 fd->flags |= FD_EMPTY; 763 mtx_unlock(&fdc->fdc_mtx); 764 return (fdc_biodone(fdc, EIO)); 765 } 766 767 /* Disable ISADMA if we bailed while it was active */ 768 if (fd != NULL && (fd->flags & FD_ISADMA)) { 769 mtx_lock(&Giant); 770 isa_dmadone( 771 bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE, 772 fd->fd_ioptr, fd->fd_iosize, fdc->dmachan); 773 mtx_unlock(&Giant); 774 mtx_lock(&fdc->fdc_mtx); 775 fd->flags &= ~FD_ISADMA; 776 mtx_unlock(&fdc->fdc_mtx); 777 } 778 779 /* Unwedge the controller ? */ 780 if (fdc->flags & FDC_NEEDS_RESET) { 781 fdc->flags &= ~FDC_NEEDS_RESET; 782 fdc_reset(fdc); 783 msleep(fdc, NULL, PRIBIO, "fdcrst", hz); 784 /* Discard results */ 785 for (i = 0; i < 4; i++) 786 fdc_sense_int(fdc, &st0, &cyl); 787 /* All drives must recal */ 788 need_recal = 0xf; 789 } 790 791 /* Pick up a request, if need be wait for it */ 792 if (fdc->bp == NULL) { 793 mtx_lock(&fdc->fdc_mtx); 794 do { 795 fdc->bp = bioq_takefirst(&fdc->head); 796 if (fdc->bp == NULL) 797 msleep(&fdc->head, &fdc->fdc_mtx, 798 PRIBIO, "-", hz); 799 } while (fdc->bp == NULL && 800 (fdc->flags & FDC_KTHREAD_EXIT) == 0); 801 mtx_unlock(&fdc->fdc_mtx); 802 803 if (fdc->bp == NULL) 804 /* 805 * Nothing to do, worker thread has been 806 * requested to stop. 807 */ 808 return (0); 809 810 bp = fdc->bp; 811 fd = fdc->fd = bp->bio_driver1; 812 fdc->retry = 0; 813 fd->fd_ioptr = bp->bio_data; 814 if (bp->bio_cmd & BIO_FMT) { 815 i = offsetof(struct fd_formb, fd_formb_cylno(0)); 816 fd->fd_ioptr += i; 817 fd->fd_iosize = bp->bio_length - i; 818 } 819 } 820 821 /* Select drive, setup params */ 822 fd_select(fd); 823 if (fdc->fdct == FDC_ENHANCED) 824 fddsr_wr(fdc, fd->ft->trans); 825 else 826 fdctl_wr(fdc, fd->ft->trans); 827 828 if (bp->bio_cmd & BIO_PROBE) { 829 830 if (!(fdin_rd(fdc) & FDI_DCHG) && !(fd->flags & FD_EMPTY)) 831 return (fdc_biodone(fdc, 0)); 832 833 /* 834 * Try to find out if we have a disk in the drive 835 * 836 * First recal, then seek to cyl#1, this clears the 837 * old condition on the disk change line so we can 838 * examine it for current status 839 */ 840 if (debugflags & 0x40) 841 printf("New disk in probe\n"); 842 mtx_lock(&fdc->fdc_mtx); 843 fd->flags |= FD_NEWDISK; 844 mtx_unlock(&fdc->fdc_mtx); 845 retry_line = __LINE__; 846 if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fd->fdsu, 0)) 847 return (1); 848 msleep(fdc, NULL, PRIBIO, "fdrecal", hz); 849 retry_line = __LINE__; 850 if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 851 return (1); /* XXX */ 852 retry_line = __LINE__; 853 if ((st0 & 0xc0) || cyl != 0) 854 return (1); 855 856 /* Seek to track 1 */ 857 retry_line = __LINE__; 858 if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fd->fdsu, 1, 0)) 859 return (1); 860 msleep(fdc, NULL, PRIBIO, "fdseek", hz); 861 retry_line = __LINE__; 862 if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 863 return (1); /* XXX */ 864 need_recal |= (1 << fd->fdsu); 865 if (fdin_rd(fdc) & FDI_DCHG) { 866 if (debugflags & 0x40) 867 printf("Empty in probe\n"); 868 mtx_lock(&fdc->fdc_mtx); 869 fd->flags |= FD_EMPTY; 870 mtx_unlock(&fdc->fdc_mtx); 871 } else { 872 if (debugflags & 0x40) 873 printf("Got disk in probe\n"); 874 mtx_lock(&fdc->fdc_mtx); 875 fd->flags &= ~FD_EMPTY; 876 mtx_unlock(&fdc->fdc_mtx); 877 retry_line = __LINE__; 878 if(fdc_sense_drive(fdc, &st3) != 0) 879 return (1); 880 mtx_lock(&fdc->fdc_mtx); 881 if(st3 & NE7_ST3_WP) 882 fd->flags |= FD_WP; 883 else 884 fd->flags &= ~FD_WP; 885 mtx_unlock(&fdc->fdc_mtx); 886 } 887 return (fdc_biodone(fdc, 0)); 888 } 889 890 /* 891 * If we are dead just flush the requests 892 */ 893 if (fd->flags & FD_EMPTY) 894 return (fdc_biodone(fdc, ENXIO)); 895 896 /* Check if we lost our media */ 897 if (fdin_rd(fdc) & FDI_DCHG) { 898 if (debugflags & 0x40) 899 printf("Lost disk\n"); 900 mtx_lock(&fdc->fdc_mtx); 901 fd->flags |= FD_EMPTY; 902 fd->flags |= FD_NEWDISK; 903 mtx_unlock(&fdc->fdc_mtx); 904 g_topology_lock(); 905 g_orphan_provider(fd->fd_provider, EXDEV); 906 fd->fd_provider->flags |= G_PF_WITHER; 907 fd->fd_provider = 908 g_new_providerf(fd->fd_geom, fd->fd_geom->name); 909 g_error_provider(fd->fd_provider, 0); 910 g_topology_unlock(); 911 return (fdc_biodone(fdc, ENXIO)); 912 } 913 914 /* Check if the floppy is write-protected */ 915 if(bp->bio_cmd & (BIO_FMT | BIO_WRITE)) { 916 retry_line = __LINE__; 917 if(fdc_sense_drive(fdc, &st3) != 0) 918 return (1); 919 if(st3 & NE7_ST3_WP) 920 return (fdc_biodone(fdc, EROFS)); 921 } 922 923 mfm = (fd->ft->flags & FL_MFM)? NE7CMD_MFM: 0; 924 steptrac = (fd->ft->flags & FL_2STEP)? 2: 1; 925 i = fd->ft->sectrac * fd->ft->heads; 926 cylinder = bp->bio_pblkno / i; 927 descyl = cylinder * steptrac; 928 sec = bp->bio_pblkno % i; 929 nsect = i - sec; 930 head = sec / fd->ft->sectrac; 931 sec = sec % fd->ft->sectrac + 1; 932 933 /* If everything is going swimmingly, use multisector xfer */ 934 if (fdc->retry == 0 && bp->bio_cmd & (BIO_READ|BIO_WRITE)) { 935 fd->fd_iosize = imin(nsect * fd->sectorsize, bp->bio_resid); 936 nsect = fd->fd_iosize / fd->sectorsize; 937 } else if (bp->bio_cmd & (BIO_READ|BIO_WRITE)) { 938 fd->fd_iosize = fd->sectorsize; 939 nsect = 1; 940 } 941 942 /* Do RECAL if we need to or are going to track zero anyway */ 943 if ((need_recal & (1 << fd->fdsu)) || 944 (cylinder == 0 && fd->track != 0) || 945 fdc->retry > 2) { 946 retry_line = __LINE__; 947 if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fd->fdsu, 0)) 948 return (1); 949 msleep(fdc, NULL, PRIBIO, "fdrecal", hz); 950 retry_line = __LINE__; 951 if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 952 return (1); /* XXX */ 953 retry_line = __LINE__; 954 if ((st0 & 0xc0) || cyl != 0) 955 return (1); 956 need_recal &= ~(1 << fd->fdsu); 957 fd->track = 0; 958 /* let the heads settle */ 959 if (settle) 960 msleep(fdc->fd, NULL, PRIBIO, "fdhdstl", settle); 961 } 962 963 /* 964 * SEEK to where we want to be 965 * 966 * Enhanced controllers do implied seeks for read&write as long as 967 * we do not need multiple steps per track. 968 */ 969 if (cylinder != fd->track && ( 970 fdc->fdct != FDC_ENHANCED || 971 descyl != cylinder || 972 (bp->bio_cmd & (BIO_RDID|BIO_FMT)))) { 973 retry_line = __LINE__; 974 if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fd->fdsu, descyl, 0)) 975 return (1); 976 msleep(fdc, NULL, PRIBIO, "fdseek", hz); 977 retry_line = __LINE__; 978 if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 979 return (1); /* XXX */ 980 retry_line = __LINE__; 981 if ((st0 & 0xc0) || cyl != descyl) { 982 need_recal |= (1 << fd->fdsu); 983 return (1); 984 } 985 /* let the heads settle */ 986 if (settle) 987 msleep(fdc->fd, NULL, PRIBIO, "fdhdstl", settle); 988 } 989 fd->track = cylinder; 990 991 if (debugflags & 8) 992 printf("op %x bn %ju siz %u ptr %p retry %d\n", 993 bp->bio_cmd, bp->bio_pblkno, fd->fd_iosize, 994 fd->fd_ioptr, fdc->retry); 995 996 /* Setup ISADMA if we need it and have it */ 997 if ((bp->bio_cmd & (BIO_READ|BIO_WRITE|BIO_FMT)) 998 && !(fdc->flags & FDC_NODMA)) { 999 mtx_lock(&Giant); 1000 isa_dmastart( 1001 bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE, 1002 fd->fd_ioptr, fd->fd_iosize, fdc->dmachan); 1003 mtx_unlock(&Giant); 1004 mtx_lock(&fdc->fdc_mtx); 1005 fd->flags |= FD_ISADMA; 1006 mtx_unlock(&fdc->fdc_mtx); 1007 } 1008 1009 /* Do PIO if we have to */ 1010 if (fdc->flags & FDC_NODMA) { 1011 if (bp->bio_cmd & (BIO_READ|BIO_WRITE|BIO_FMT)) 1012 fdbcdr_wr(fdc, 1, fd->fd_iosize); 1013 if (bp->bio_cmd & (BIO_WRITE|BIO_FMT)) 1014 fdc_pio(fdc); 1015 } 1016 1017 switch(bp->bio_cmd) { 1018 case BIO_FMT: 1019 /* formatting */ 1020 finfo = (struct fd_formb *)bp->bio_data; 1021 retry_line = __LINE__; 1022 if (fdc_cmd(fdc, 6, 1023 NE7CMD_FORMAT | mfm, 1024 head << 2 | fd->fdsu, 1025 finfo->fd_formb_secshift, 1026 finfo->fd_formb_nsecs, 1027 finfo->fd_formb_gaplen, 1028 finfo->fd_formb_fillbyte, 0)) 1029 return (1); 1030 break; 1031 case BIO_RDID: 1032 retry_line = __LINE__; 1033 if (fdc_cmd(fdc, 2, 1034 NE7CMD_READID | mfm, 1035 head << 2 | fd->fdsu, 0)) 1036 return (1); 1037 break; 1038 case BIO_READ: 1039 retry_line = __LINE__; 1040 if (fdc_cmd(fdc, 9, 1041 NE7CMD_READ | NE7CMD_SK | mfm | NE7CMD_MT, 1042 head << 2 | fd->fdsu, /* head & unit */ 1043 fd->track, /* track */ 1044 head, /* head */ 1045 sec, /* sector + 1 */ 1046 fd->ft->secsize, /* sector size */ 1047 fd->ft->sectrac, /* sectors/track */ 1048 fd->ft->gap, /* gap size */ 1049 fd->ft->datalen, /* data length */ 1050 0)) 1051 return (1); 1052 break; 1053 case BIO_WRITE: 1054 retry_line = __LINE__; 1055 if (fdc_cmd(fdc, 9, 1056 NE7CMD_WRITE | mfm | NE7CMD_MT, 1057 head << 2 | fd->fdsu, /* head & unit */ 1058 fd->track, /* track */ 1059 head, /* head */ 1060 sec, /* sector + 1 */ 1061 fd->ft->secsize, /* sector size */ 1062 fd->ft->sectrac, /* sectors/track */ 1063 fd->ft->gap, /* gap size */ 1064 fd->ft->datalen, /* data length */ 1065 0)) 1066 return (1); 1067 break; 1068 default: 1069 KASSERT(0 == 1, ("Wrong bio_cmd %x\n", bp->bio_cmd)); 1070 } 1071 1072 /* Wait for interrupt */ 1073 i = msleep(fdc, NULL, PRIBIO, "fddata", hz); 1074 1075 /* PIO if the read looks good */ 1076 if (i == 0 && (fdc->flags & FDC_NODMA) && (bp->bio_cmd & BIO_READ)) 1077 fdc_pio(fdc); 1078 1079 /* Finish DMA */ 1080 if (fd->flags & FD_ISADMA) { 1081 mtx_lock(&Giant); 1082 isa_dmadone( 1083 bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE, 1084 fd->fd_ioptr, fd->fd_iosize, fdc->dmachan); 1085 mtx_unlock(&Giant); 1086 mtx_lock(&fdc->fdc_mtx); 1087 fd->flags &= ~FD_ISADMA; 1088 mtx_unlock(&fdc->fdc_mtx); 1089 } 1090 1091 if (i != 0) { 1092 /* 1093 * Timeout. 1094 * 1095 * Due to IBM's brain-dead design, the FDC has a faked ready 1096 * signal, hardwired to ready == true. Thus, any command 1097 * issued if there's no diskette in the drive will _never_ 1098 * complete, and must be aborted by resetting the FDC. 1099 * Many thanks, Big Blue! 1100 */ 1101 retry_line = __LINE__; 1102 fdc->flags |= FDC_NEEDS_RESET; 1103 return (1); 1104 } 1105 1106 retry_line = __LINE__; 1107 if (fdc_read_status(fdc)) 1108 return (1); 1109 1110 if (debugflags & 0x10) 1111 printf(" -> %x %x %x %x\n", 1112 fdc->status[0], fdc->status[1], 1113 fdc->status[2], fdc->status[3]); 1114 1115 st0 = fdc->status[0] & NE7_ST0_IC; 1116 if (st0 != 0) { 1117 retry_line = __LINE__; 1118 if (st0 == NE7_ST0_IC_AT && fdc->status[1] & NE7_ST1_OR) { 1119 /* 1120 * DMA overrun. Someone hogged the bus and 1121 * didn't release it in time for the next 1122 * FDC transfer. 1123 */ 1124 return (1); 1125 } 1126 retry_line = __LINE__; 1127 if(st0 == NE7_ST0_IC_IV) { 1128 fdc->flags |= FDC_NEEDS_RESET; 1129 return (1); 1130 } 1131 retry_line = __LINE__; 1132 if(st0 == NE7_ST0_IC_AT && fdc->status[2] & NE7_ST2_WC) { 1133 need_recal |= (1 << fd->fdsu); 1134 return (1); 1135 } 1136 if (debugflags & 0x20) { 1137 printf("status %02x %02x %02x %02x %02x %02x\n", 1138 fdc->status[0], fdc->status[1], fdc->status[2], 1139 fdc->status[3], fdc->status[4], fdc->status[5]); 1140 } 1141 retry_line = __LINE__; 1142 return (1); 1143 } 1144 /* All OK */ 1145 switch(bp->bio_cmd) { 1146 case BIO_RDID: 1147 /* copy out ID field contents */ 1148 idp = (struct fdc_readid *)bp->bio_data; 1149 idp->cyl = fdc->status[3]; 1150 idp->head = fdc->status[4]; 1151 idp->sec = fdc->status[5]; 1152 idp->secshift = fdc->status[6]; 1153 if (debugflags & 0x40) 1154 printf("c %d h %d s %d z %d\n", 1155 idp->cyl, idp->head, idp->sec, idp->secshift); 1156 break; 1157 case BIO_READ: 1158 case BIO_WRITE: 1159 bp->bio_pblkno += nsect; 1160 bp->bio_resid -= fd->fd_iosize; 1161 bp->bio_completed += fd->fd_iosize; 1162 fd->fd_ioptr += fd->fd_iosize; 1163 /* Since we managed to get something done, reset the retry */ 1164 fdc->retry = 0; 1165 if (bp->bio_resid > 0) 1166 return (0); 1167 break; 1168 case BIO_FMT: 1169 break; 1170 } 1171 return (fdc_biodone(fdc, 0)); 1172 } 1173 1174 static void 1175 fdc_thread(void *arg) 1176 { 1177 struct fdc_data *fdc; 1178 1179 fdc = arg; 1180 int i; 1181 1182 mtx_lock(&fdc->fdc_mtx); 1183 fdc->flags |= FDC_KTHREAD_ALIVE; 1184 while ((fdc->flags & FDC_KTHREAD_EXIT) == 0) { 1185 mtx_unlock(&fdc->fdc_mtx); 1186 i = fdc_worker(fdc); 1187 if (i && debugflags & 0x20) { 1188 if (fdc->bp != NULL) { 1189 g_print_bio(fdc->bp); 1190 printf("\n"); 1191 } 1192 printf("Retry line %d\n", retry_line); 1193 } 1194 fdc->retry += i; 1195 mtx_lock(&fdc->fdc_mtx); 1196 } 1197 fdc->flags &= ~(FDC_KTHREAD_EXIT | FDC_KTHREAD_ALIVE); 1198 wakeup(&fdc->fdc_thread); 1199 mtx_unlock(&fdc->fdc_mtx); 1200 1201 kthread_exit(0); 1202 } 1203 1204 /* 1205 * Enqueue a request. 1206 */ 1207 static void 1208 fd_enqueue(struct fd_data *fd, struct bio *bp) 1209 { 1210 struct fdc_data *fdc; 1211 int call; 1212 1213 call = 0; 1214 fdc = fd->fdc; 1215 mtx_lock(&fdc->fdc_mtx); 1216 /* If we go from idle, cancel motor turnoff */ 1217 if (fd->fd_iocount++ == 0) 1218 callout_stop(&fd->toffhandle); 1219 if (fd->flags & FD_MOTOR) { 1220 /* The motor is on, send it directly to the controller */ 1221 bioq_disksort(&fdc->head, bp); 1222 wakeup(&fdc->head); 1223 } else { 1224 /* Queue it on the drive until the motor has started */ 1225 bioq_insert_tail(&fd->fd_bq, bp); 1226 if (!(fd->flags & FD_MOTORWAIT)) 1227 fd_motor(fd, 1); 1228 } 1229 mtx_unlock(&fdc->fdc_mtx); 1230 } 1231 1232 static int 1233 fdmisccmd(struct fd_data *fd, u_int cmd, void *data) 1234 { 1235 struct bio *bp; 1236 struct fd_formb *finfo; 1237 struct fdc_readid *idfield; 1238 int error; 1239 1240 bp = malloc(sizeof(struct bio), M_TEMP, M_WAITOK | M_ZERO); 1241 1242 /* 1243 * Set up a bio request for fdstrategy(). bio_offset is faked 1244 * so that fdstrategy() will seek to the the requested 1245 * cylinder, and use the desired head. 1246 */ 1247 bp->bio_cmd = cmd; 1248 if (cmd == BIO_FMT) { 1249 finfo = (struct fd_formb *)data; 1250 bp->bio_pblkno = 1251 (finfo->cyl * fd->ft->heads + finfo->head) * 1252 fd->ft->sectrac; 1253 bp->bio_length = sizeof *finfo; 1254 } else if (cmd == BIO_RDID) { 1255 idfield = (struct fdc_readid *)data; 1256 bp->bio_pblkno = 1257 (idfield->cyl * fd->ft->heads + idfield->head) * 1258 fd->ft->sectrac; 1259 bp->bio_length = sizeof(struct fdc_readid); 1260 } else if (cmd == BIO_PROBE) { 1261 /* nothing */ 1262 } else 1263 panic("wrong cmd in fdmisccmd()"); 1264 bp->bio_offset = bp->bio_pblkno * fd->sectorsize; 1265 bp->bio_data = data; 1266 bp->bio_driver1 = fd; 1267 bp->bio_flags = 0; 1268 1269 fd_enqueue(fd, bp); 1270 1271 do { 1272 msleep(bp, NULL, PRIBIO, "fdwait", hz); 1273 } while (!(bp->bio_flags & BIO_DONE)); 1274 error = bp->bio_error; 1275 1276 free(bp, M_TEMP); 1277 return (error); 1278 } 1279 1280 /* 1281 * Try figuring out the density of the media present in our device. 1282 */ 1283 static int 1284 fdautoselect(struct fd_data *fd) 1285 { 1286 struct fd_type *fdtp; 1287 struct fdc_readid id; 1288 int oopts, rv; 1289 1290 if (!(fd->ft->flags & FL_AUTO)) 1291 return (0); 1292 1293 fdtp = fd_native_types[fd->type]; 1294 fdsettype(fd, fdtp); 1295 if (!(fd->ft->flags & FL_AUTO)) 1296 return (0); 1297 1298 /* 1299 * Try reading sector ID fields, first at cylinder 0, head 0, 1300 * then at cylinder 2, head N. We don't probe cylinder 1, 1301 * since for 5.25in DD media in a HD drive, there are no data 1302 * to read (2 step pulses per media cylinder required). For 1303 * two-sided media, the second probe always goes to head 1, so 1304 * we can tell them apart from single-sided media. As a 1305 * side-effect this means that single-sided media should be 1306 * mentioned in the search list after two-sided media of an 1307 * otherwise identical density. Media with a different number 1308 * of sectors per track but otherwise identical parameters 1309 * cannot be distinguished at all. 1310 * 1311 * If we successfully read an ID field on both cylinders where 1312 * the recorded values match our expectation, we are done. 1313 * Otherwise, we try the next density entry from the table. 1314 * 1315 * Stepping to cylinder 2 has the side-effect of clearing the 1316 * unit attention bit. 1317 */ 1318 oopts = fd->options; 1319 fd->options |= FDOPT_NOERRLOG | FDOPT_NORETRY; 1320 for (; fdtp->heads; fdtp++) { 1321 fdsettype(fd, fdtp); 1322 1323 id.cyl = id.head = 0; 1324 rv = fdmisccmd(fd, BIO_RDID, &id); 1325 if (rv != 0) 1326 continue; 1327 if (id.cyl != 0 || id.head != 0 || id.secshift != fdtp->secsize) 1328 continue; 1329 id.cyl = 2; 1330 id.head = fd->ft->heads - 1; 1331 rv = fdmisccmd(fd, BIO_RDID, &id); 1332 if (id.cyl != 2 || id.head != fdtp->heads - 1 || 1333 id.secshift != fdtp->secsize) 1334 continue; 1335 if (rv == 0) 1336 break; 1337 } 1338 1339 fd->options = oopts; 1340 if (fdtp->heads == 0) { 1341 if (debugflags & 0x40) 1342 device_printf(fd->dev, "autoselection failed\n"); 1343 fdsettype(fd, fd_native_types[fd->type]); 1344 return (0); 1345 } else { 1346 if (debugflags & 0x40) { 1347 device_printf(fd->dev, 1348 "autoselected %d KB medium\n", fd->ft->size / 2); 1349 fdprinttype(fd->ft); 1350 } 1351 return (0); 1352 } 1353 } 1354 1355 /* 1356 * GEOM class implementation 1357 */ 1358 1359 static g_access_t fd_access; 1360 static g_start_t fd_start; 1361 static g_ioctl_t fd_ioctl; 1362 1363 struct g_class g_fd_class = { 1364 .name = "FD", 1365 .version = G_VERSION, 1366 .start = fd_start, 1367 .access = fd_access, 1368 .ioctl = fd_ioctl, 1369 }; 1370 1371 static int 1372 fd_access(struct g_provider *pp, int r, int w, int e) 1373 { 1374 struct fd_data *fd; 1375 struct fdc_data *fdc; 1376 int ar, aw, ae; 1377 1378 fd = pp->geom->softc; 1379 fdc = fd->fdc; 1380 1381 /* 1382 * If our provider is withering, we can only get negative requests 1383 * and we don't want to even see them 1384 */ 1385 if (pp->flags & G_PF_WITHER) 1386 return (0); 1387 1388 ar = r + pp->acr; 1389 aw = w + pp->acw; 1390 ae = e + pp->ace; 1391 1392 if (ar == 0 && aw == 0 && ae == 0) { 1393 device_unbusy(fd->dev); 1394 return (0); 1395 } 1396 1397 if (pp->acr == 0 && pp->acw == 0 && pp->ace == 0) { 1398 if (fdmisccmd(fd, BIO_PROBE, NULL)) 1399 return (ENXIO); 1400 if (fd->flags & FD_EMPTY) 1401 return (ENXIO); 1402 if (fd->flags & FD_NEWDISK) { 1403 fdautoselect(fd); 1404 mtx_lock(&fdc->fdc_mtx); 1405 fd->flags &= ~FD_NEWDISK; 1406 mtx_unlock(&fdc->fdc_mtx); 1407 } 1408 device_busy(fd->dev); 1409 } 1410 1411 if (w > 0 && (fd->flags & FD_WP)) 1412 return (EROFS); 1413 1414 pp->sectorsize = fd->sectorsize; 1415 pp->stripesize = fd->ft->heads * fd->ft->sectrac * fd->sectorsize; 1416 pp->mediasize = pp->stripesize * fd->ft->tracks; 1417 return (0); 1418 } 1419 1420 static void 1421 fd_start(struct bio *bp) 1422 { 1423 struct fdc_data * fdc; 1424 struct fd_data * fd; 1425 1426 fd = bp->bio_to->geom->softc; 1427 fdc = fd->fdc; 1428 bp->bio_driver1 = fd; 1429 if (bp->bio_cmd & BIO_GETATTR) { 1430 if (g_handleattr_int(bp, "GEOM::fwsectors", fd->ft->sectrac)) 1431 return; 1432 if (g_handleattr_int(bp, "GEOM::fwheads", fd->ft->heads)) 1433 return; 1434 g_io_deliver(bp, ENOIOCTL); 1435 return; 1436 } 1437 if (!(bp->bio_cmd & (BIO_READ|BIO_WRITE))) { 1438 g_io_deliver(bp, EOPNOTSUPP); 1439 return; 1440 } 1441 bp->bio_pblkno = bp->bio_offset / fd->sectorsize; 1442 bp->bio_resid = bp->bio_length; 1443 fd_enqueue(fd, bp); 1444 return; 1445 } 1446 1447 static int 1448 fd_ioctl(struct g_provider *pp, u_long cmd, void *data, int fflag, struct thread *td) 1449 { 1450 struct fd_data *fd; 1451 struct fdc_status *fsp; 1452 struct fdc_readid *rid; 1453 int error; 1454 1455 fd = pp->geom->softc; 1456 1457 switch (cmd) { 1458 case FD_GTYPE: /* get drive type */ 1459 *(struct fd_type *)data = *fd->ft; 1460 return (0); 1461 1462 case FD_STYPE: /* set drive type */ 1463 if (!(fflag & FWRITE)) 1464 return (EPERM); 1465 /* 1466 * Allow setting drive type temporarily iff 1467 * currently unset. Used for fdformat so any 1468 * user can set it, and then start formatting. 1469 */ 1470 fd->fts = *(struct fd_type *)data; 1471 if (fd->fts.sectrac) { 1472 /* XXX: check for rubbish */ 1473 fdsettype(fd, &fd->fts); 1474 } else { 1475 fdsettype(fd, fd_native_types[fd->type]); 1476 } 1477 if (debugflags & 0x40) 1478 fdprinttype(fd->ft); 1479 return (0); 1480 1481 case FD_GOPTS: /* get drive options */ 1482 *(int *)data = fd->options; 1483 return (0); 1484 1485 case FD_SOPTS: /* set drive options */ 1486 if (!(fflag & FWRITE)) 1487 return (EPERM); 1488 fd->options = *(int *)data; 1489 return (0); 1490 1491 case FD_CLRERR: 1492 if (suser(td) != 0) 1493 return (EPERM); 1494 fd->fdc->fdc_errs = 0; 1495 return (0); 1496 1497 case FD_GSTAT: 1498 fsp = (struct fdc_status *)data; 1499 if ((fd->fdc->flags & FDC_STAT_VALID) == 0) 1500 return (EINVAL); 1501 memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int)); 1502 return (0); 1503 1504 case FD_GDTYPE: 1505 *(enum fd_drivetype *)data = fd->type; 1506 return (0); 1507 1508 case FD_FORM: 1509 if (!(fflag & FWRITE)) 1510 return (EPERM); 1511 if (((struct fd_formb *)data)->format_version != 1512 FD_FORMAT_VERSION) 1513 return (EINVAL); /* wrong version of formatting prog */ 1514 error = fdmisccmd(fd, BIO_FMT, data); 1515 mtx_lock(&fd->fdc->fdc_mtx); 1516 fd->flags |= FD_NEWDISK; 1517 mtx_unlock(&fd->fdc->fdc_mtx); 1518 break; 1519 1520 case FD_READID: 1521 rid = (struct fdc_readid *)data; 1522 if (rid->cyl > 85 || rid->head > 1) 1523 return (EINVAL); 1524 error = fdmisccmd(fd, BIO_RDID, data); 1525 break; 1526 1527 case FIONBIO: 1528 case FIOASYNC: 1529 /* For backwards compat with old fd*(8) tools */ 1530 error = 0; 1531 break; 1532 1533 default: 1534 if (debugflags & 0x80) 1535 printf("Unknown ioctl %lx\n", cmd); 1536 error = ENOIOCTL; 1537 break; 1538 } 1539 return (error); 1540 }; 1541 1542 1543 1544 /* 1545 * Configuration/initialization stuff, per controller. 1546 */ 1547 1548 devclass_t fdc_devclass; 1549 static devclass_t fd_devclass; 1550 1551 struct fdc_ivars { 1552 int fdunit; 1553 int fdtype; 1554 }; 1555 1556 void 1557 fdc_release_resources(struct fdc_data *fdc) 1558 { 1559 device_t dev; 1560 struct resource *last; 1561 int i; 1562 1563 dev = fdc->fdc_dev; 1564 if (fdc->fdc_intr) 1565 bus_teardown_intr(dev, fdc->res_irq, fdc->fdc_intr); 1566 fdc->fdc_intr = NULL; 1567 if (fdc->res_irq != NULL) 1568 bus_release_resource(dev, SYS_RES_IRQ, fdc->rid_irq, 1569 fdc->res_irq); 1570 fdc->res_irq = NULL; 1571 last = NULL; 1572 for (i = 0; i < FDC_MAXREG; i++) { 1573 if (fdc->resio[i] != NULL && fdc->resio[i] != last) { 1574 bus_release_resource(dev, SYS_RES_IOPORT, 1575 fdc->ridio[i], fdc->resio[i]); 1576 last = fdc->resio[i]; 1577 fdc->resio[i] = NULL; 1578 } 1579 } 1580 if (fdc->res_drq != NULL) 1581 bus_release_resource(dev, SYS_RES_DRQ, fdc->rid_drq, 1582 fdc->res_drq); 1583 fdc->res_drq = NULL; 1584 } 1585 1586 int 1587 fdc_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) 1588 { 1589 struct fdc_ivars *ivars = device_get_ivars(child); 1590 1591 switch (which) { 1592 case FDC_IVAR_FDUNIT: 1593 *result = ivars->fdunit; 1594 break; 1595 case FDC_IVAR_FDTYPE: 1596 *result = ivars->fdtype; 1597 break; 1598 default: 1599 return (ENOENT); 1600 } 1601 return (0); 1602 } 1603 1604 int 1605 fdc_write_ivar(device_t dev, device_t child, int which, uintptr_t value) 1606 { 1607 struct fdc_ivars *ivars = device_get_ivars(child); 1608 1609 switch (which) { 1610 case FDC_IVAR_FDUNIT: 1611 ivars->fdunit = value; 1612 break; 1613 case FDC_IVAR_FDTYPE: 1614 ivars->fdtype = value; 1615 break; 1616 default: 1617 return (ENOENT); 1618 } 1619 return (0); 1620 } 1621 1622 int 1623 fdc_initial_reset(device_t dev, struct fdc_data *fdc) 1624 { 1625 int ic_type, part_id; 1626 1627 /* 1628 * A status value of 0xff is very unlikely, but not theoretically 1629 * impossible, but it is far more likely to indicate an empty bus. 1630 */ 1631 if (fdsts_rd(fdc) == 0xff) 1632 return (ENXIO); 1633 1634 /* 1635 * Assert a reset to the floppy controller and check that the status 1636 * register goes to zero. 1637 */ 1638 fdout_wr(fdc, 0); 1639 fdout_wr(fdc, 0); 1640 if (fdsts_rd(fdc) != 0) 1641 return (ENXIO); 1642 1643 /* 1644 * Clear the reset and see it come ready. 1645 */ 1646 fdout_wr(fdc, FDO_FRST); 1647 DELAY(100); 1648 if (fdsts_rd(fdc) != 0x80) 1649 return (ENXIO); 1650 1651 /* Then, see if it can handle a command. */ 1652 if (fdc_cmd(fdc, 3, NE7CMD_SPECIFY, 0xaf, 0x1e, 0)) 1653 return (ENXIO); 1654 1655 /* 1656 * Try to identify the chip. 1657 * 1658 * The i8272 datasheet documents that unknown commands 1659 * will return ST0 as 0x80. The i8272 is supposedly identical 1660 * to the NEC765. 1661 * The i82077SL datasheet says 0x90 for the VERSION command, 1662 * and several "superio" chips emulate this. 1663 */ 1664 if (fdc_cmd(fdc, 1, NE7CMD_VERSION, 1, &ic_type)) 1665 return (ENXIO); 1666 if (fdc_cmd(fdc, 1, 0x18, 1, &part_id)) 1667 return (ENXIO); 1668 if (bootverbose) 1669 device_printf(dev, 1670 "ic_type %02x part_id %02x\n", ic_type, part_id); 1671 switch (ic_type & 0xff) { 1672 case 0x80: 1673 device_set_desc(dev, "NEC 765 or clone"); 1674 fdc->fdct = FDC_NE765; 1675 break; 1676 case 0x81: 1677 case 0x90: 1678 device_set_desc(dev, 1679 "Enhanced floppy controller"); 1680 fdc->fdct = FDC_ENHANCED; 1681 break; 1682 default: 1683 device_set_desc(dev, "Generic floppy controller"); 1684 fdc->fdct = FDC_UNKNOWN; 1685 break; 1686 } 1687 return (0); 1688 } 1689 1690 int 1691 fdc_detach(device_t dev) 1692 { 1693 struct fdc_data *fdc; 1694 int error; 1695 1696 fdc = device_get_softc(dev); 1697 1698 /* have our children detached first */ 1699 if ((error = bus_generic_detach(dev))) 1700 return (error); 1701 1702 /* kill worker thread */ 1703 fdc->flags |= FDC_KTHREAD_EXIT; 1704 mtx_lock(&fdc->fdc_mtx); 1705 wakeup(&fdc->head); 1706 while ((fdc->flags & FDC_KTHREAD_ALIVE) != 0) 1707 msleep(&fdc->fdc_thread, &fdc->fdc_mtx, PRIBIO, "fdcdet", 0); 1708 mtx_unlock(&fdc->fdc_mtx); 1709 1710 /* reset controller, turn motor off */ 1711 fdout_wr(fdc, 0); 1712 1713 if (!(fdc->flags & FDC_NODMA)) 1714 isa_dma_release(fdc->dmachan); 1715 fdc_release_resources(fdc); 1716 mtx_destroy(&fdc->fdc_mtx); 1717 return (0); 1718 } 1719 1720 /* 1721 * Add a child device to the fdc controller. It will then be probed etc. 1722 */ 1723 device_t 1724 fdc_add_child(device_t dev, const char *name, int unit) 1725 { 1726 struct fdc_ivars *ivar; 1727 device_t child; 1728 1729 ivar = malloc(sizeof *ivar, M_DEVBUF /* XXX */, M_NOWAIT | M_ZERO); 1730 if (ivar == NULL) 1731 return (NULL); 1732 child = device_add_child(dev, name, unit); 1733 if (child == NULL) { 1734 free(ivar, M_DEVBUF); 1735 return (NULL); 1736 } 1737 device_set_ivars(child, ivar); 1738 ivar->fdunit = unit; 1739 ivar->fdtype = FDT_NONE; 1740 if (resource_disabled(name, unit)) 1741 device_disable(child); 1742 return (child); 1743 } 1744 1745 int 1746 fdc_attach(device_t dev) 1747 { 1748 struct fdc_data *fdc; 1749 int error; 1750 1751 fdc = device_get_softc(dev); 1752 fdc->fdc_dev = dev; 1753 error = fdc_initial_reset(dev, fdc); 1754 if (error) { 1755 device_printf(dev, "does not respond\n"); 1756 return (error); 1757 } 1758 error = bus_setup_intr(dev, fdc->res_irq, 1759 INTR_TYPE_BIO | INTR_ENTROPY | INTR_MPSAFE | 1760 ((fdc->flags & FDC_NOFAST) ? 0 : INTR_FAST), 1761 fdc_intr, fdc, &fdc->fdc_intr); 1762 if (error) { 1763 device_printf(dev, "cannot setup interrupt\n"); 1764 return (error); 1765 } 1766 if (!(fdc->flags & FDC_NODMA)) { 1767 error = isa_dma_acquire(fdc->dmachan); 1768 if (!error) { 1769 error = isa_dma_init(fdc->dmachan, 1770 MAX_BYTES_PER_CYL, M_WAITOK); 1771 if (error) 1772 isa_dma_release(fdc->dmachan); 1773 } 1774 if (error) 1775 return (error); 1776 } 1777 fdc->fdcu = device_get_unit(dev); 1778 fdc->flags |= FDC_NEEDS_RESET; 1779 1780 mtx_init(&fdc->fdc_mtx, "fdc lock", NULL, MTX_DEF); 1781 1782 /* reset controller, turn motor off, clear fdout mirror reg */ 1783 fdout_wr(fdc, fdc->fdout = 0); 1784 bioq_init(&fdc->head); 1785 1786 kthread_create(fdc_thread, fdc, &fdc->fdc_thread, 0, 0, 1787 "fdc%d", device_get_unit(dev)); 1788 1789 settle = hz / 8; 1790 1791 return (0); 1792 } 1793 1794 int 1795 fdc_hints_probe(device_t dev) 1796 { 1797 const char *name, *dname; 1798 int i, error, dunit; 1799 1800 /* 1801 * Probe and attach any children. We should probably detect 1802 * devices from the BIOS unless overridden. 1803 */ 1804 name = device_get_nameunit(dev); 1805 i = 0; 1806 while ((resource_find_match(&i, &dname, &dunit, "at", name)) == 0) { 1807 resource_int_value(dname, dunit, "drive", &dunit); 1808 fdc_add_child(dev, dname, dunit); 1809 } 1810 1811 if ((error = bus_generic_attach(dev)) != 0) 1812 return (error); 1813 return (0); 1814 } 1815 1816 int 1817 fdc_print_child(device_t me, device_t child) 1818 { 1819 int retval = 0, flags; 1820 1821 retval += bus_print_child_header(me, child); 1822 retval += printf(" on %s drive %d", device_get_nameunit(me), 1823 fdc_get_fdunit(child)); 1824 if ((flags = device_get_flags(me)) != 0) 1825 retval += printf(" flags %#x", flags); 1826 retval += printf("\n"); 1827 1828 return (retval); 1829 } 1830 1831 /* 1832 * Configuration/initialization, per drive. 1833 */ 1834 static int 1835 fd_probe(device_t dev) 1836 { 1837 int i, unit; 1838 u_int st0, st3; 1839 struct fd_data *fd; 1840 struct fdc_data *fdc; 1841 int fdsu; 1842 int flags, type; 1843 1844 fdsu = fdc_get_fdunit(dev); 1845 fd = device_get_softc(dev); 1846 fdc = device_get_softc(device_get_parent(dev)); 1847 flags = device_get_flags(dev); 1848 1849 fd->dev = dev; 1850 fd->fdc = fdc; 1851 fd->fdsu = fdsu; 1852 unit = device_get_unit(dev); 1853 1854 /* Auto-probe if fdinfo is present, but always allow override. */ 1855 type = flags & FD_TYPEMASK; 1856 if (type == FDT_NONE && (type = fdc_get_fdtype(dev)) != FDT_NONE) { 1857 fd->type = type; 1858 goto done; 1859 } else { 1860 /* make sure fdautoselect() will be called */ 1861 fd->flags = FD_EMPTY; 1862 fd->type = type; 1863 } 1864 1865 #if (defined(__i386__) && !defined(PC98)) || defined(__amd64__) 1866 if (fd->type == FDT_NONE && (unit == 0 || unit == 1)) { 1867 /* Look up what the BIOS thinks we have. */ 1868 if (unit == 0) 1869 fd->type = (rtcin(RTC_FDISKETTE) & 0xf0) >> 4; 1870 else 1871 fd->type = rtcin(RTC_FDISKETTE) & 0x0f; 1872 if (fd->type == FDT_288M_1) 1873 fd->type = FDT_288M; 1874 } 1875 #endif /* __i386__ || __amd64__ */ 1876 /* is there a unit? */ 1877 if (fd->type == FDT_NONE) 1878 return (ENXIO); 1879 1880 /* 1881 mtx_lock(&fdc->fdc_mtx); 1882 */ 1883 /* select it */ 1884 fd_select(fd); 1885 fd_motor(fd, 1); 1886 fdc->fd = fd; 1887 fdc_reset(fdc); /* XXX reset, then unreset, etc. */ 1888 DELAY(1000000); /* 1 sec */ 1889 1890 if ((flags & FD_NO_PROBE) == 0) { 1891 /* If we're at track 0 first seek inwards. */ 1892 if ((fdc_sense_drive(fdc, &st3) == 0) && 1893 (st3 & NE7_ST3_T0)) { 1894 /* Seek some steps... */ 1895 if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fdsu, 10, 0) == 0) { 1896 /* ...wait a moment... */ 1897 DELAY(300000); 1898 /* make ctrlr happy: */ 1899 fdc_sense_int(fdc, NULL, NULL); 1900 } 1901 } 1902 1903 for (i = 0; i < 2; i++) { 1904 /* 1905 * we must recalibrate twice, just in case the 1906 * heads have been beyond cylinder 76, since 1907 * most FDCs still barf when attempting to 1908 * recalibrate more than 77 steps 1909 */ 1910 /* go back to 0: */ 1911 if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fdsu, 0) == 0) { 1912 /* a second being enough for full stroke seek*/ 1913 DELAY(i == 0 ? 1000000 : 300000); 1914 1915 /* anything responding? */ 1916 if (fdc_sense_int(fdc, &st0, NULL) == 0 && 1917 (st0 & NE7_ST0_EC) == 0) 1918 break; /* already probed succesfully */ 1919 } 1920 } 1921 } 1922 1923 fd_motor(fd, 0); 1924 fdc->fd = NULL; 1925 /* 1926 mtx_unlock(&fdc->fdc_mtx); 1927 */ 1928 1929 if ((flags & FD_NO_PROBE) == 0 && 1930 (st0 & NE7_ST0_EC) != 0) /* no track 0 -> no drive present */ 1931 return (ENXIO); 1932 1933 done: 1934 1935 switch (fd->type) { 1936 case FDT_12M: 1937 device_set_desc(dev, "1200-KB 5.25\" drive"); 1938 break; 1939 case FDT_144M: 1940 device_set_desc(dev, "1440-KB 3.5\" drive"); 1941 break; 1942 case FDT_288M: 1943 device_set_desc(dev, "2880-KB 3.5\" drive (in 1440-KB mode)"); 1944 break; 1945 case FDT_360K: 1946 device_set_desc(dev, "360-KB 5.25\" drive"); 1947 break; 1948 case FDT_720K: 1949 device_set_desc(dev, "720-KB 3.5\" drive"); 1950 break; 1951 default: 1952 return (ENXIO); 1953 } 1954 fd->track = FD_NO_TRACK; 1955 fd->fdc = fdc; 1956 fd->fdsu = fdsu; 1957 fd->options = 0; 1958 callout_init_mtx(&fd->toffhandle, &fd->fdc->fdc_mtx, 0); 1959 1960 /* initialize densities for subdevices */ 1961 fdsettype(fd, fd_native_types[fd->type]); 1962 return (0); 1963 } 1964 1965 /* 1966 * We have to do this in a geom event because GEOM is not running 1967 * when fd_attach() is. 1968 * XXX: move fd_attach after geom like ata/scsi disks 1969 */ 1970 static void 1971 fd_attach2(void *arg, int flag) 1972 { 1973 struct fd_data *fd; 1974 1975 fd = arg; 1976 1977 fd->fd_geom = g_new_geomf(&g_fd_class, 1978 "fd%d", device_get_unit(fd->dev)); 1979 fd->fd_provider = g_new_providerf(fd->fd_geom, fd->fd_geom->name); 1980 fd->fd_geom->softc = fd; 1981 g_error_provider(fd->fd_provider, 0); 1982 } 1983 1984 static int 1985 fd_attach(device_t dev) 1986 { 1987 struct fd_data *fd; 1988 1989 fd = device_get_softc(dev); 1990 g_post_event(fd_attach2, fd, M_WAITOK, NULL); 1991 fd->flags |= FD_EMPTY; 1992 bioq_init(&fd->fd_bq); 1993 1994 return (0); 1995 } 1996 1997 static int 1998 fd_detach(device_t dev) 1999 { 2000 struct fd_data *fd; 2001 2002 fd = device_get_softc(dev); 2003 g_topology_lock(); 2004 g_wither_geom(fd->fd_geom, ENXIO); 2005 g_topology_unlock(); 2006 while (device_get_state(dev) == DS_BUSY) 2007 tsleep(fd, PZERO, "fdd", hz/10); 2008 callout_drain(&fd->toffhandle); 2009 2010 return (0); 2011 } 2012 2013 static device_method_t fd_methods[] = { 2014 /* Device interface */ 2015 DEVMETHOD(device_probe, fd_probe), 2016 DEVMETHOD(device_attach, fd_attach), 2017 DEVMETHOD(device_detach, fd_detach), 2018 DEVMETHOD(device_shutdown, bus_generic_shutdown), 2019 DEVMETHOD(device_suspend, bus_generic_suspend), /* XXX */ 2020 DEVMETHOD(device_resume, bus_generic_resume), /* XXX */ 2021 { 0, 0 } 2022 }; 2023 2024 static driver_t fd_driver = { 2025 "fd", 2026 fd_methods, 2027 sizeof(struct fd_data) 2028 }; 2029 2030 static int 2031 fdc_modevent(module_t mod, int type, void *data) 2032 { 2033 2034 g_modevent(NULL, type, &g_fd_class); 2035 return (0); 2036 } 2037 2038 DRIVER_MODULE(fd, fdc, fd_driver, fd_devclass, fdc_modevent, 0); 2039