xref: /freebsd/sys/dev/fdc/fdc.c (revision c3ae4c40ef8189c76b2b2801972a44b6dc0f5957)
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Don Ahn.
7  *
8  * Libretto PCMCIA floppy support by David Horwitt (dhorwitt@ucsd.edu)
9  * aided by the Linux floppy driver modifications from David Bateman
10  * (dbateman@eng.uts.edu.au).
11  *
12  * Copyright (c) 1993, 1994 by
13  *  jc@irbs.UUCP (John Capo)
14  *  vak@zebub.msk.su (Serge Vakulenko)
15  *  ache@astral.msk.su (Andrew A. Chernov)
16  *
17  * Copyright (c) 1993, 1994, 1995 by
18  *  joerg_wunsch@uriah.sax.de (Joerg Wunsch)
19  *  dufault@hda.com (Peter Dufault)
20  *
21  * Copyright (c) 2001 Joerg Wunsch,
22  *  joerg_wunsch@uriah.heep.sax.de (Joerg Wunsch)
23  *
24  * Redistribution and use in source and binary forms, with or without
25  * modification, are permitted provided that the following conditions
26  * are met:
27  * 1. Redistributions of source code must retain the above copyright
28  *    notice, this list of conditions and the following disclaimer.
29  * 2. Redistributions in binary form must reproduce the above copyright
30  *    notice, this list of conditions and the following disclaimer in the
31  *    documentation and/or other materials provided with the distribution.
32  * 4. Neither the name of the University nor the names of its contributors
33  *    may be used to endorse or promote products derived from this software
34  *    without specific prior written permission.
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
37  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
40  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46  * SUCH DAMAGE.
47  *
48  *	from:	@(#)fd.c	7.4 (Berkeley) 5/25/91
49  */
50 
51 #include <sys/cdefs.h>
52 __FBSDID("$FreeBSD$");
53 
54 #include "opt_fdc.h"
55 
56 #include <sys/param.h>
57 #include <sys/bio.h>
58 #include <sys/bus.h>
59 #include <sys/devicestat.h>
60 #include <sys/disk.h>
61 #include <sys/fcntl.h>
62 #include <sys/fdcio.h>
63 #include <sys/filio.h>
64 #include <sys/kernel.h>
65 #include <sys/lock.h>
66 #include <sys/malloc.h>
67 #include <sys/module.h>
68 #include <sys/mutex.h>
69 #include <sys/proc.h>
70 #include <sys/rman.h>
71 #include <sys/systm.h>
72 
73 #include <machine/bus.h>
74 #include <machine/clock.h>
75 #include <machine/stdarg.h>
76 
77 #include <isa/isavar.h>
78 #include <isa/isareg.h>
79 #include <dev/fdc/fdcreg.h>
80 #include <dev/fdc/fdcvar.h>
81 #include <isa/rtc.h>
82 
83 #define FDBIO_FORMAT	BIO_CMD2
84 
85 /* configuration flags for fdc */
86 #define FDC_NO_FIFO	(1 << 2)	/* do not enable FIFO  */
87 
88 /*
89  * Stop retrying after this many DMA overruns.  Since each retry takes
90  * one revolution, with 300 rpm., 25 retries take approximately 5
91  * seconds which the read attempt will block in case the DMA overrun
92  * is persistent.
93  */
94 #define FDC_DMAOV_MAX	25
95 
96 /*
97  * Timeout value for the PIO loops to wait until the FDC main status
98  * register matches our expectations (request for master, direction
99  * bit).  This is supposed to be a number of microseconds, although
100  * timing might actually not be very accurate.
101  *
102  * Timeouts of 100 msec are believed to be required for some broken
103  * (old) hardware.
104  */
105 #define	FDSTS_TIMEOUT	100000
106 
107 /*
108  * Number of subdevices that can be used for different density types.
109  */
110 #define NUMDENS		16
111 
112 #define FDBIO_RDSECTID	BIO_CMD1
113 
114 /*
115  * List of native drive densities.  Order must match enum fd_drivetype
116  * in <sys/fdcio.h>.  Upon attaching the drive, each of the
117  * programmable subdevices is initialized with the native density
118  * definition.
119  */
120 static struct fd_type fd_native_types[] =
121 {
122 { 0 },				/* FDT_NONE */
123 {  9,2,0xFF,0x2A,40, 720,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* FDT_360K */
124 { 15,2,0xFF,0x1B,80,2400,FDC_500KBPS,2,0x54,1,0,FL_MFM }, /* FDT_12M  */
125 {  9,2,0xFF,0x20,80,1440,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* FDT_720K */
126 { 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* FDT_144M */
127 #if 0				/* we currently don't handle 2.88 MB */
128 { 36,2,0xFF,0x1B,80,5760,FDC_1MBPS,  2,0x4C,1,1,FL_MFM|FL_PERPND } /*FDT_288M*/
129 #else
130 { 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* FDT_144M */
131 #endif
132 };
133 
134 /*
135  * 360 KB 5.25" and 720 KB 3.5" drives don't have automatic density
136  * selection, they just start out with their native density (or lose).
137  * So 1.2 MB 5.25", 1.44 MB 3.5", and 2.88 MB 3.5" drives have their
138  * respective lists of densities to search for.
139  */
140 static struct fd_type fd_searchlist_12m[] = {
141 { 15,2,0xFF,0x1B,80,2400,FDC_500KBPS,2,0x54,1,0,FL_MFM }, /* 1.2M */
142 {  9,2,0xFF,0x23,40, 720,FDC_300KBPS,2,0x50,1,0,FL_MFM|FL_2STEP }, /* 360K */
143 {  9,2,0xFF,0x20,80,1440,FDC_300KBPS,2,0x50,1,0,FL_MFM }, /* 720K */
144 };
145 
146 static struct fd_type fd_searchlist_144m[] = {
147 { 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* 1.44M */
148 {  9,2,0xFF,0x20,80,1440,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* 720K */
149 };
150 
151 /* We search for 1.44M first since this is the most common case. */
152 static struct fd_type fd_searchlist_288m[] = {
153 { 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* 1.44M */
154 #if 0
155 { 36,2,0xFF,0x1B,80,5760,FDC_1MBPS,  2,0x4C,1,1,FL_MFM|FL_PERPND } /* 2.88M */
156 #endif
157 {  9,2,0xFF,0x20,80,1440,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* 720K */
158 };
159 
160 #define MAX_SEC_SIZE	(128 << 3)
161 #define MAX_CYLINDER	85	/* some people really stress their drives
162 				 * up to cyl 82 */
163 #define MAX_HEAD	1
164 
165 devclass_t fdc_devclass;
166 
167 /*
168  * Per drive structure (softc).
169  */
170 struct fd_data {
171 	struct	fdc_data *fdc;	/* pointer to controller structure */
172 	int	fdsu;		/* this units number on this controller */
173 	enum	fd_drivetype type; /* drive type */
174 	struct	fd_type *ft;	/* pointer to current type descriptor */
175 	struct	fd_type fts[NUMDENS]; /* type descriptors */
176 	int	flags;
177 #define	FD_OPEN		0x01	/* it's open		*/
178 #define	FD_NONBLOCK	0x02	/* O_NONBLOCK set	*/
179 #define	FD_ACTIVE	0x04	/* it's active		*/
180 #define	FD_MOTOR	0x08	/* motor should be on	*/
181 #define	FD_MOTOR_WAIT	0x10	/* motor coming up	*/
182 #define	FD_UA		0x20	/* force unit attention */
183 	int	skip;
184 	int	hddrv;
185 #define FD_NO_TRACK -2
186 	int	track;		/* where we think the head is */
187 	int	options;	/* user configurable options, see fdcio.h */
188 	struct	callout_handle toffhandle;
189 	struct	callout_handle tohandle;
190 	struct	devstat *device_stats;
191 	struct cdev *masterdev;
192 	device_t dev;
193 	fdu_t	fdu;
194 };
195 
196 struct fdc_ivars {
197 	int	fdunit;
198 	int	fdtype;
199 };
200 
201 static devclass_t fd_devclass;
202 
203 /* configuration flags for fd */
204 #define FD_TYPEMASK	0x0f	/* drive type, matches enum
205 				 * fd_drivetype; on i386 machines, if
206 				 * given as 0, use RTC type for fd0
207 				 * and fd1 */
208 #define FD_DTYPE(flags)	((flags) & FD_TYPEMASK)
209 #define FD_NO_CHLINE	0x10	/* drive does not support changeline
210 				 * aka. unit attention */
211 #define FD_NO_PROBE	0x20	/* don't probe drive (seek test), just
212 				 * assume it is there */
213 
214 /*
215  * Throughout this file the following conventions will be used:
216  *
217  * fd is a pointer to the fd_data struct for the drive in question
218  * fdc is a pointer to the fdc_data struct for the controller
219  * fdu is the floppy drive unit number
220  * fdcu is the floppy controller unit number
221  * fdsu is the floppy drive unit number on that controller. (sub-unit)
222  */
223 
224 /*
225  * Function declarations, same (chaotic) order as they appear in the
226  * file.  Re-ordering is too late now, it would only obfuscate the
227  * diffs against old and offspring versions (like the PC98 one).
228  *
229  * Anyone adding functions here, please keep this sequence the same
230  * as below -- makes locating a particular function in the body much
231  * easier.
232  */
233 static u_int8_t fdsts_rd(fdc_p);
234 static void fddata_wr(fdc_p, u_int8_t);
235 static u_int8_t fddata_rd(fdc_p);
236 #if 0
237 static u_int8_t fdin_rd(fdc_p);
238 #endif
239 static int fdc_err(struct fdc_data *, const char *);
240 static int enable_fifo(fdc_p fdc);
241 static int fd_sense_drive_status(fdc_p, int *);
242 static int fd_sense_int(fdc_p, int *, int *);
243 static int fd_read_status(fdc_p);
244 static void fdc_add_child(device_t, const char *, int);
245 static int fd_probe(device_t);
246 static int fd_attach(device_t);
247 static int fd_detach(device_t);
248 static void set_motor(struct fdc_data *, int, int);
249 #  define TURNON 1
250 #  define TURNOFF 0
251 static timeout_t fd_turnoff;
252 static timeout_t fd_motor_on;
253 static void fd_turnon(struct fd_data *);
254 static void fdc_reset(fdc_p);
255 static int fd_in(struct fdc_data *, int *);
256 static int out_fdc(struct fdc_data *, int);
257 /*
258  * The open function is named fdopen() to avoid confusion with fdopen()
259  * in fd(4).  The difference is now only meaningful for debuggers.
260  */
261 static	d_open_t	fdopen;
262 static	d_close_t	fdclose;
263 static	d_strategy_t	fdstrategy;
264 static void fdstart(struct fdc_data *);
265 static timeout_t fd_iotimeout;
266 static timeout_t fd_pseudointr;
267 static driver_intr_t fdc_intr;
268 static int fdcpio(fdc_p, long, caddr_t, u_int);
269 static int fdautoselect(struct cdev *);
270 static int fdstate(struct fdc_data *);
271 static int retrier(struct fdc_data *);
272 static void fdbiodone(struct bio *);
273 static int fdmisccmd(struct cdev *, u_int, void *);
274 static	d_ioctl_t	fdioctl;
275 
276 static int fifo_threshold = 8;	/* XXX: should be accessible via sysctl */
277 
278 #ifdef	FDC_DEBUG
279 /* CAUTION: fd_debug causes huge amounts of logging output */
280 static int volatile fd_debug = 0;
281 #define TRACE0(arg) do { if (fd_debug) printf(arg); } while (0)
282 #define TRACE1(arg1, arg2) do { if (fd_debug) printf(arg1, arg2); } while (0)
283 #else /* FDC_DEBUG */
284 #define TRACE0(arg) do { } while (0)
285 #define TRACE1(arg1, arg2) do { } while (0)
286 #endif /* FDC_DEBUG */
287 
288 /*
289  * Bus space handling (access to low-level IO).
290  */
291 void
292 fdout_wr(fdc_p fdc, u_int8_t v)
293 {
294 	bus_space_write_1(fdc->portt, fdc->porth, FDOUT+fdc->port_off, v);
295 }
296 
297 static u_int8_t
298 fdsts_rd(fdc_p fdc)
299 {
300 	return bus_space_read_1(fdc->portt, fdc->porth, FDSTS+fdc->port_off);
301 }
302 
303 static void
304 fddata_wr(fdc_p fdc, u_int8_t v)
305 {
306 	bus_space_write_1(fdc->portt, fdc->porth, FDDATA+fdc->port_off, v);
307 }
308 
309 static u_int8_t
310 fddata_rd(fdc_p fdc)
311 {
312 	return bus_space_read_1(fdc->portt, fdc->porth, FDDATA+fdc->port_off);
313 }
314 
315 static u_int8_t
316 fdin_rd(fdc_p fdc)
317 {
318 	return bus_space_read_1(fdc->portt, fdc->porth, FDIN);
319 }
320 
321 static struct cdevsw fd_cdevsw = {
322 	.d_version =	D_VERSION,
323 	.d_open =	fdopen,
324 	.d_close =	fdclose,
325 	.d_read =	physread,
326 	.d_write =	physwrite,
327 	.d_ioctl =	fdioctl,
328 	.d_strategy =	fdstrategy,
329 	.d_name =	"fd",
330 	.d_flags =	D_DISK | D_NEEDGIANT,
331 };
332 
333 /*
334  * Auxiliary functions.  Well, some only.  Others are scattered
335  * throughout the entire file.
336  */
337 static int
338 fdc_err(struct fdc_data *fdc, const char *s)
339 {
340 	fdc->fdc_errs++;
341 	if (s) {
342 		if (fdc->fdc_errs < FDC_ERRMAX)
343 			device_printf(fdc->fdc_dev, "%s", s);
344 		else if (fdc->fdc_errs == FDC_ERRMAX)
345 			device_printf(fdc->fdc_dev, "too many errors, not "
346 						    "logging any more\n");
347 	}
348 
349 	return FD_FAILED;
350 }
351 
352 /*
353  * fd_cmd: Send a command to the chip.  Takes a varargs with this structure:
354  * Unit number,
355  * # of output bytes, output bytes as ints ...,
356  * # of input bytes, input bytes as ints ...
357  */
358 int
359 fd_cmd(struct fdc_data *fdc, int n_out, ...)
360 {
361 	u_char cmd;
362 	int n_in;
363 	int n;
364 	va_list ap;
365 
366 	va_start(ap, n_out);
367 	cmd = (u_char)(va_arg(ap, int));
368 	va_end(ap);
369 	va_start(ap, n_out);
370 	for (n = 0; n < n_out; n++)
371 	{
372 		if (out_fdc(fdc, va_arg(ap, int)) < 0)
373 		{
374 			char msg[50];
375 			snprintf(msg, sizeof(msg),
376 				"cmd %x failed at out byte %d of %d\n",
377 				cmd, n + 1, n_out);
378 			return fdc_err(fdc, msg);
379 		}
380 	}
381 	n_in = va_arg(ap, int);
382 	for (n = 0; n < n_in; n++)
383 	{
384 		int *ptr = va_arg(ap, int *);
385 		if (fd_in(fdc, ptr) < 0)
386 		{
387 			char msg[50];
388 			snprintf(msg, sizeof(msg),
389 				"cmd %02x failed at in byte %d of %d\n",
390 				cmd, n + 1, n_in);
391 			return fdc_err(fdc, msg);
392 		}
393 	}
394 
395 	return 0;
396 }
397 
398 static int
399 enable_fifo(fdc_p fdc)
400 {
401 	int i, j;
402 
403 	if ((fdc->flags & FDC_HAS_FIFO) == 0) {
404 
405 		/*
406 		 * Cannot use fd_cmd the normal way here, since
407 		 * this might be an invalid command. Thus we send the
408 		 * first byte, and check for an early turn of data directon.
409 		 */
410 
411 		if (out_fdc(fdc, I8207X_CONFIGURE) < 0)
412 			return fdc_err(fdc, "Enable FIFO failed\n");
413 
414 		/* If command is invalid, return */
415 		j = FDSTS_TIMEOUT;
416 		while ((i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM))
417 		       != NE7_RQM && j-- > 0) {
418 			if (i == (NE7_DIO | NE7_RQM)) {
419 				fdc_reset(fdc);
420 				return FD_FAILED;
421 			}
422 			DELAY(1);
423 		}
424 		if (j<0 ||
425 		    fd_cmd(fdc, 3,
426 			   0, (fifo_threshold - 1) & 0xf, 0, 0) < 0) {
427 			fdc_reset(fdc);
428 			return fdc_err(fdc, "Enable FIFO failed\n");
429 		}
430 		fdc->flags |= FDC_HAS_FIFO;
431 		return 0;
432 	}
433 	if (fd_cmd(fdc, 4,
434 		   I8207X_CONFIGURE, 0, (fifo_threshold - 1) & 0xf, 0, 0) < 0)
435 		return fdc_err(fdc, "Re-enable FIFO failed\n");
436 	return 0;
437 }
438 
439 static int
440 fd_sense_drive_status(fdc_p fdc, int *st3p)
441 {
442 	int st3;
443 
444 	if (fd_cmd(fdc, 2, NE7CMD_SENSED, fdc->fdu, 1, &st3))
445 	{
446 		return fdc_err(fdc, "Sense Drive Status failed\n");
447 	}
448 	if (st3p)
449 		*st3p = st3;
450 
451 	return 0;
452 }
453 
454 static int
455 fd_sense_int(fdc_p fdc, int *st0p, int *cylp)
456 {
457 	int cyl, st0, ret;
458 
459 	ret = fd_cmd(fdc, 1, NE7CMD_SENSEI, 1, &st0);
460 	if (ret) {
461 		(void)fdc_err(fdc,
462 			      "sense intr err reading stat reg 0\n");
463 		return ret;
464 	}
465 
466 	if (st0p)
467 		*st0p = st0;
468 
469 	if ((st0 & NE7_ST0_IC) == NE7_ST0_IC_IV) {
470 		/*
471 		 * There doesn't seem to have been an interrupt.
472 		 */
473 		return FD_NOT_VALID;
474 	}
475 
476 	if (fd_in(fdc, &cyl) < 0) {
477 		return fdc_err(fdc, "can't get cyl num\n");
478 	}
479 
480 	if (cylp)
481 		*cylp = cyl;
482 
483 	return 0;
484 }
485 
486 
487 static int
488 fd_read_status(fdc_p fdc)
489 {
490 	int i, ret;
491 
492 	for (i = ret = 0; i < 7; i++) {
493 		/*
494 		 * XXX types are poorly chosen.  Only bytes can be read
495 		 * from the hardware, but fdc->status[] wants u_ints and
496 		 * fd_in() gives ints.
497 		 */
498 		int status;
499 
500 		ret = fd_in(fdc, &status);
501 		fdc->status[i] = status;
502 		if (ret != 0)
503 			break;
504 	}
505 
506 	if (ret == 0)
507 		fdc->flags |= FDC_STAT_VALID;
508 	else
509 		fdc->flags &= ~FDC_STAT_VALID;
510 
511 	return ret;
512 }
513 
514 int
515 fdc_alloc_resources(struct fdc_data *fdc)
516 {
517 	device_t dev;
518 	int ispnp, ispcmcia, nports;
519 
520 	dev = fdc->fdc_dev;
521 	ispnp = (fdc->flags & FDC_ISPNP) != 0;
522 	ispcmcia = (fdc->flags & FDC_ISPCMCIA) != 0;
523 	fdc->rid_ioport = fdc->rid_irq = fdc->rid_drq = 0;
524 	fdc->res_ioport = fdc->res_irq = fdc->res_drq = 0;
525 	fdc->rid_ctl = 1;
526 
527 	/*
528 	 * On standard ISA, we don't just use an 8 port range
529 	 * (e.g. 0x3f0-0x3f7) since that covers an IDE control
530 	 * register at 0x3f6.
531 	 *
532 	 * Isn't PC hardware wonderful.
533 	 *
534 	 * The Y-E Data PCMCIA FDC doesn't have this problem, it
535 	 * uses the register with offset 6 for pseudo-DMA, and the
536 	 * one with offset 7 as control register.
537 	 */
538 	nports = ispcmcia ? 8 : (ispnp ? 1 : 6);
539 
540 	/*
541 	 * Some ACPI BIOSen have _CRS objects for the floppy device that
542 	 * split the I/O port resource into several resources.  We detect
543 	 * this case by checking if there are more than 2 IOPORT resources.
544 	 * If so, we use the resource with the smallest start address as
545 	 * the port RID and the largest start address as the control RID.
546 	 */
547 	if (bus_get_resource_count(dev, SYS_RES_IOPORT, 2) != 0) {
548 		u_long min_start, max_start, tmp;
549 		int i;
550 
551 		/* Find the min/max start addresses and their RIDs. */
552 		max_start = 0ul;
553 		min_start = ~0ul;
554 		for (i = 0; bus_get_resource_count(dev, SYS_RES_IOPORT, i) > 0;
555 		    i++) {
556 			tmp = bus_get_resource_start(dev, SYS_RES_IOPORT, i);
557 			KASSERT(tmp != 0, ("bogus resource"));
558 			if (tmp < min_start) {
559 				min_start = tmp;
560 				fdc->rid_ioport = i;
561 			}
562 			if (tmp > max_start) {
563 				max_start = tmp;
564 				fdc->rid_ctl = i;
565 			}
566 		}
567 		if (min_start + 7 != max_start) {
568 			device_printf(dev, "I/O to control range incorrect\n");
569 			return (ENXIO);
570 		}
571 	}
572 
573 	fdc->res_ioport = bus_alloc_resource(dev, SYS_RES_IOPORT,
574 					     &fdc->rid_ioport, 0ul, ~0ul,
575 					     nports, RF_ACTIVE);
576 	if (fdc->res_ioport == 0) {
577 		device_printf(dev, "cannot reserve I/O port range (%d ports)\n",
578 			      nports);
579 		return ENXIO;
580 	}
581 	fdc->portt = rman_get_bustag(fdc->res_ioport);
582 	fdc->porth = rman_get_bushandle(fdc->res_ioport);
583 
584 	if (!ispcmcia) {
585 		/*
586 		 * Some BIOSen report the device at 0x3f2-0x3f5,0x3f7
587 		 * and some at 0x3f0-0x3f5,0x3f7. We detect the former
588 		 * by checking the size and adjust the port address
589 		 * accordingly.
590 		 */
591 		if (bus_get_resource_count(dev, SYS_RES_IOPORT, 0) == 4)
592 			fdc->port_off = -2;
593 
594 		/*
595 		 * Register the control port range as rid 1 if it
596 		 * isn't there already. Most PnP BIOSen will have
597 		 * already done this but non-PnP configurations don't.
598 		 *
599 		 * And some (!!) report 0x3f2-0x3f5 and completely
600 		 * leave out the control register!  It seems that some
601 		 * non-antique controller chips have a different
602 		 * method of programming the transfer speed which
603 		 * doesn't require the control register, but it's
604 		 * mighty bogus as the chip still responds to the
605 		 * address for the control register.
606 		 */
607 		if (bus_get_resource_count(dev, SYS_RES_IOPORT, 1) == 0) {
608 			u_long ctlstart;
609 
610 			/* Find the control port, usually 0x3f7 */
611 			ctlstart = rman_get_start(fdc->res_ioport) +
612 				fdc->port_off + 7;
613 
614 			bus_set_resource(dev, SYS_RES_IOPORT, 1, ctlstart, 1);
615 		}
616 
617 		/*
618 		 * Now (finally!) allocate the control port.
619 		 */
620 		fdc->res_ctl = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
621 						      &fdc->rid_ctl, RF_ACTIVE);
622 		if (fdc->res_ctl == 0) {
623 			device_printf(dev,
624 		"cannot reserve control I/O port range (control port)\n");
625 			return ENXIO;
626 		}
627 		fdc->ctlt = rman_get_bustag(fdc->res_ctl);
628 		fdc->ctlh = rman_get_bushandle(fdc->res_ctl);
629 	}
630 
631 	fdc->res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &fdc->rid_irq,
632 					      RF_ACTIVE | RF_SHAREABLE);
633 	if (fdc->res_irq == 0) {
634 		device_printf(dev, "cannot reserve interrupt line\n");
635 		return ENXIO;
636 	}
637 
638 	if ((fdc->flags & FDC_NODMA) == 0) {
639 		fdc->res_drq = bus_alloc_resource_any(dev, SYS_RES_DRQ,
640 		    &fdc->rid_drq, RF_ACTIVE | RF_SHAREABLE);
641 		if (fdc->res_drq == 0) {
642 			device_printf(dev, "cannot reserve DMA request line\n");
643 			fdc->flags |= FDC_NODMA;
644 		} else
645 			fdc->dmachan = rman_get_start(fdc->res_drq);
646 	}
647 
648 	return 0;
649 }
650 
651 void
652 fdc_release_resources(struct fdc_data *fdc)
653 {
654 	device_t dev;
655 
656 	dev = fdc->fdc_dev;
657 	if (fdc->res_irq != 0) {
658 		bus_deactivate_resource(dev, SYS_RES_IRQ, fdc->rid_irq,
659 					fdc->res_irq);
660 		bus_release_resource(dev, SYS_RES_IRQ, fdc->rid_irq,
661 				     fdc->res_irq);
662 	}
663 	if (fdc->res_ctl != 0) {
664 		bus_deactivate_resource(dev, SYS_RES_IOPORT, fdc->rid_ctl,
665 					fdc->res_ctl);
666 		bus_release_resource(dev, SYS_RES_IOPORT, fdc->rid_ctl,
667 				     fdc->res_ctl);
668 	}
669 	if (fdc->res_ioport != 0) {
670 		bus_deactivate_resource(dev, SYS_RES_IOPORT, fdc->rid_ioport,
671 					fdc->res_ioport);
672 		bus_release_resource(dev, SYS_RES_IOPORT, fdc->rid_ioport,
673 				     fdc->res_ioport);
674 	}
675 	if (fdc->res_drq != 0) {
676 		bus_deactivate_resource(dev, SYS_RES_DRQ, fdc->rid_drq,
677 					fdc->res_drq);
678 		bus_release_resource(dev, SYS_RES_DRQ, fdc->rid_drq,
679 				     fdc->res_drq);
680 	}
681 }
682 
683 /*
684  * Configuration/initialization stuff, per controller.
685  */
686 
687 int
688 fdc_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
689 {
690 	struct fdc_ivars *ivars = device_get_ivars(child);
691 
692 	switch (which) {
693 	case FDC_IVAR_FDUNIT:
694 		*result = ivars->fdunit;
695 		break;
696 	case FDC_IVAR_FDTYPE:
697 		*result = ivars->fdtype;
698 		break;
699 	default:
700 		return (ENOENT);
701 	}
702 	return (0);
703 }
704 
705 int
706 fdc_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
707 {
708 	struct fdc_ivars *ivars = device_get_ivars(child);
709 
710 	switch (which) {
711 	case FDC_IVAR_FDUNIT:
712 		ivars->fdunit = value;
713 		break;
714 	case FDC_IVAR_FDTYPE:
715 		ivars->fdtype = value;
716 		break;
717 	default:
718 		return (ENOENT);
719 	}
720 	return (0);
721 }
722 
723 int
724 fdc_initial_reset(struct fdc_data *fdc)
725 {
726 	/* First, reset the floppy controller. */
727 	fdout_wr(fdc, 0);
728 	DELAY(100);
729 	fdout_wr(fdc, FDO_FRST);
730 
731 	/* Then, see if it can handle a command. */
732 	if (fd_cmd(fdc, 3, NE7CMD_SPECIFY, NE7_SPEC_1(3, 240),
733 	    NE7_SPEC_2(2, 0), 0))
734 		return (ENXIO);
735 	return (0);
736 }
737 
738 int
739 fdc_detach(device_t dev)
740 {
741 	struct	fdc_data *fdc;
742 	int	error;
743 
744 	fdc = device_get_softc(dev);
745 
746 	/* have our children detached first */
747 	if ((error = bus_generic_detach(dev)))
748 		return (error);
749 
750 	/* reset controller, turn motor off */
751 	fdout_wr(fdc, 0);
752 
753 	if ((fdc->flags & FDC_ATTACHED) == 0) {
754 		device_printf(dev, "already unloaded\n");
755 		return (0);
756 	}
757 	fdc->flags &= ~FDC_ATTACHED;
758 
759 	BUS_TEARDOWN_INTR(device_get_parent(dev), dev, fdc->res_irq,
760 			  fdc->fdc_intr);
761 	fdc_release_resources(fdc);
762 	return (0);
763 }
764 
765 /*
766  * Add a child device to the fdc controller.  It will then be probed etc.
767  */
768 static void
769 fdc_add_child(device_t dev, const char *name, int unit)
770 {
771 	int	fdu, flags;
772 	struct fdc_ivars *ivar;
773 	device_t child;
774 
775 	ivar = malloc(sizeof *ivar, M_DEVBUF /* XXX */, M_NOWAIT | M_ZERO);
776 	if (ivar == NULL)
777 		return;
778 	child = device_add_child(dev, name, unit);
779 	if (child == NULL) {
780 		free(ivar, M_DEVBUF);
781 		return;
782 	}
783 	device_set_ivars(child, ivar);
784 	if (resource_int_value(name, unit, "drive", &fdu) != 0)
785 		fdu = 0;
786 	fdc_set_fdunit(child, fdu);
787 	fdc_set_fdtype(child, FDT_NONE);
788 	if (resource_int_value(name, unit, "flags", &flags) == 0)
789 		device_set_flags(child, flags);
790 	if (resource_disabled(name, unit))
791 		device_disable(child);
792 }
793 
794 int
795 fdc_attach(device_t dev)
796 {
797 	struct	fdc_data *fdc;
798 	const char *name, *dname;
799 	int	i, error, dunit;
800 
801 	fdc = device_get_softc(dev);
802 	error = fdc_alloc_resources(fdc);
803 	if (error) {
804 		device_printf(dev, "cannot re-acquire resources\n");
805 		return error;
806 	}
807 	error = BUS_SETUP_INTR(device_get_parent(dev), dev, fdc->res_irq,
808 			       INTR_TYPE_BIO | INTR_ENTROPY, fdc_intr, fdc,
809 			       &fdc->fdc_intr);
810 	if (error) {
811 		device_printf(dev, "cannot setup interrupt\n");
812 		return error;
813 	}
814 	fdc->fdcu = device_get_unit(dev);
815 	fdc->flags |= FDC_ATTACHED | FDC_NEEDS_RESET;
816 
817 	fdc->state = DEVIDLE;
818 
819 	/* reset controller, turn motor off, clear fdout mirror reg */
820 	fdout_wr(fdc, fdc->fdout = 0);
821 	bioq_init(&fdc->head);
822 
823 	/*
824 	 * Probe and attach any children.  We should probably detect
825 	 * devices from the BIOS unless overridden.
826 	 */
827 	name = device_get_nameunit(dev);
828 	i = 0;
829 	while ((resource_find_match(&i, &dname, &dunit, "at", name)) == 0)
830 		fdc_add_child(dev, dname, dunit);
831 
832 	if ((error = bus_generic_attach(dev)) != 0)
833 		return (error);
834 
835 	return (0);
836 }
837 
838 int
839 fdc_print_child(device_t me, device_t child)
840 {
841 	int retval = 0, flags;
842 
843 	retval += bus_print_child_header(me, child);
844 	retval += printf(" on %s drive %d", device_get_nameunit(me),
845 	       fdc_get_fdunit(child));
846 	if ((flags = device_get_flags(me)) != 0)
847 		retval += printf(" flags %#x", flags);
848 	retval += printf("\n");
849 
850 	return (retval);
851 }
852 
853 /*
854  * Configuration/initialization, per drive.
855  */
856 static int
857 fd_probe(device_t dev)
858 {
859 	int	i;
860 	u_int	st0, st3;
861 	struct	fd_data *fd;
862 	struct	fdc_data *fdc;
863 	fdsu_t	fdsu;
864 	int	flags, type;
865 
866 	fdsu = fdc_get_fdunit(dev);
867 	fd = device_get_softc(dev);
868 	fdc = device_get_softc(device_get_parent(dev));
869 	flags = device_get_flags(dev);
870 
871 	fd->dev = dev;
872 	fd->fdc = fdc;
873 	fd->fdsu = fdsu;
874 	fd->fdu = device_get_unit(dev);
875 
876 	type = FD_DTYPE(flags);
877 
878 	/* Auto-probe if fdinfo is present, but always allow override. */
879 	if (type == FDT_NONE && (type = fdc_get_fdtype(dev)) != FDT_NONE) {
880 		fd->type = type;
881 		goto done;
882 	} else {
883 		/* make sure fdautoselect() will be called */
884 		fd->flags = FD_UA;
885 		fd->type = type;
886 	}
887 
888 /*
889  * XXX I think using __i386__ is wrong here since we actually want to probe
890  * for the machine type, not the CPU type (so non-PC arch's like the PC98 will
891  * fail the probe).  However, for whatever reason, testing for _MACHINE_ARCH
892  * == i386 breaks the test on FreeBSD/Alpha.
893  */
894 #if defined(__i386__) || defined(__amd64__)
895 	if (fd->type == FDT_NONE && (fd->fdu == 0 || fd->fdu == 1)) {
896 		/* Look up what the BIOS thinks we have. */
897 		if (fd->fdu == 0) {
898 			if ((fdc->flags & FDC_ISPCMCIA))
899 				/*
900 				 * Somewhat special.  No need to force the
901 				 * user to set device flags, since the Y-E
902 				 * Data PCMCIA floppy is always a 1.44 MB
903 				 * device.
904 				 */
905 				fd->type = FDT_144M;
906 			else
907 				fd->type = (rtcin(RTC_FDISKETTE) & 0xf0) >> 4;
908 		} else {
909 			fd->type = rtcin(RTC_FDISKETTE) & 0x0f;
910 		}
911 		if (fd->type == FDT_288M_1)
912 			fd->type = FDT_288M;
913 	}
914 #endif /* __i386__ || __amd64__ */
915 	/* is there a unit? */
916 	if (fd->type == FDT_NONE)
917 		return (ENXIO);
918 
919 	/* select it */
920 	set_motor(fdc, fdsu, TURNON);
921 	fdc_reset(fdc);		/* XXX reset, then unreset, etc. */
922 	DELAY(1000000);	/* 1 sec */
923 
924 	if ((flags & FD_NO_PROBE) == 0) {
925 		/* If we're at track 0 first seek inwards. */
926 		if ((fd_sense_drive_status(fdc, &st3) == 0) &&
927 		    (st3 & NE7_ST3_T0)) {
928 			/* Seek some steps... */
929 			if (fd_cmd(fdc, 3, NE7CMD_SEEK, fdsu, 10, 0) == 0) {
930 				/* ...wait a moment... */
931 				DELAY(300000);
932 				/* make ctrlr happy: */
933 				fd_sense_int(fdc, 0, 0);
934 			}
935 		}
936 
937 		for (i = 0; i < 2; i++) {
938 			/*
939 			 * we must recalibrate twice, just in case the
940 			 * heads have been beyond cylinder 76, since
941 			 * most FDCs still barf when attempting to
942 			 * recalibrate more than 77 steps
943 			 */
944 			/* go back to 0: */
945 			if (fd_cmd(fdc, 2, NE7CMD_RECAL, fdsu, 0) == 0) {
946 				/* a second being enough for full stroke seek*/
947 				DELAY(i == 0 ? 1000000 : 300000);
948 
949 				/* anything responding? */
950 				if (fd_sense_int(fdc, &st0, 0) == 0 &&
951 				    (st0 & NE7_ST0_EC) == 0)
952 					break; /* already probed succesfully */
953 			}
954 		}
955 	}
956 
957 	set_motor(fdc, fdsu, TURNOFF);
958 
959 	if ((flags & FD_NO_PROBE) == 0 &&
960 	    (st0 & NE7_ST0_EC) != 0) /* no track 0 -> no drive present */
961 		return (ENXIO);
962 
963 done:
964 	/* This doesn't work before the first reset.  Or set_motor?? */
965 	if ((fdc->flags & FDC_HAS_FIFO) == 0 &&
966 	    fdc->fdct == FDC_ENHANCED &&
967 	    (device_get_flags(fdc->fdc_dev) & FDC_NO_FIFO) == 0 &&
968 	    enable_fifo(fdc) == 0) {
969 		device_printf(device_get_parent(dev),
970 		    "FIFO enabled, %d bytes threshold\n", fifo_threshold);
971 	}
972 
973 	switch (fd->type) {
974 	case FDT_12M:
975 		device_set_desc(dev, "1200-KB 5.25\" drive");
976 		break;
977 	case FDT_144M:
978 		device_set_desc(dev, "1440-KB 3.5\" drive");
979 		break;
980 	case FDT_288M:
981 		device_set_desc(dev, "2880-KB 3.5\" drive (in 1440-KB mode)");
982 		break;
983 	case FDT_360K:
984 		device_set_desc(dev, "360-KB 5.25\" drive");
985 		break;
986 	case FDT_720K:
987 		device_set_desc(dev, "720-KB 3.5\" drive");
988 		break;
989 	default:
990 		return (ENXIO);
991 	}
992 	fd->track = FD_NO_TRACK;
993 	fd->fdc = fdc;
994 	fd->fdsu = fdsu;
995 	fd->options = 0;
996 	callout_handle_init(&fd->toffhandle);
997 	callout_handle_init(&fd->tohandle);
998 
999 	/* initialize densities for subdevices */
1000 	for (i = 0; i < NUMDENS; i++)
1001 		memcpy(fd->fts + i, fd_native_types + fd->type,
1002 		       sizeof(struct fd_type));
1003 	return (0);
1004 }
1005 
1006 static int
1007 fd_attach(device_t dev)
1008 {
1009 	struct	fd_data *fd;
1010 
1011 	fd = device_get_softc(dev);
1012 	fd->masterdev = make_dev(&fd_cdevsw, fd->fdu,
1013 				 UID_ROOT, GID_OPERATOR, 0640, "fd%d", fd->fdu);
1014 	fd->masterdev->si_drv1 = fd;
1015 	fd->device_stats = devstat_new_entry(device_get_name(dev),
1016 			  device_get_unit(dev), 0, DEVSTAT_NO_ORDERED_TAGS,
1017 			  DEVSTAT_TYPE_FLOPPY | DEVSTAT_TYPE_IF_OTHER,
1018 			  DEVSTAT_PRIORITY_FD);
1019 	return (0);
1020 }
1021 
1022 static int
1023 fd_detach(device_t dev)
1024 {
1025 	struct	fd_data *fd;
1026 
1027 	fd = device_get_softc(dev);
1028 	untimeout(fd_turnoff, fd, fd->toffhandle);
1029 	devstat_remove_entry(fd->device_stats);
1030 	destroy_dev(fd->masterdev);
1031 
1032 	return (0);
1033 }
1034 
1035 static device_method_t fd_methods[] = {
1036 	/* Device interface */
1037 	DEVMETHOD(device_probe,		fd_probe),
1038 	DEVMETHOD(device_attach,	fd_attach),
1039 	DEVMETHOD(device_detach,	fd_detach),
1040 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1041 	DEVMETHOD(device_suspend,	bus_generic_suspend), /* XXX */
1042 	DEVMETHOD(device_resume,	bus_generic_resume), /* XXX */
1043 
1044 	{ 0, 0 }
1045 };
1046 
1047 static driver_t fd_driver = {
1048 	"fd",
1049 	fd_methods,
1050 	sizeof(struct fd_data)
1051 };
1052 
1053 DRIVER_MODULE(fd, fdc, fd_driver, fd_devclass, 0, 0);
1054 
1055 /*
1056  * More auxiliary functions.
1057  */
1058 /*
1059  * Motor control stuff.
1060  * Remember to not deselect the drive we're working on.
1061  */
1062 static void
1063 set_motor(struct fdc_data *fdc, int fdsu, int turnon)
1064 {
1065 	int fdout;
1066 
1067 	fdout = fdc->fdout;
1068 	if (turnon) {
1069 		fdout &= ~FDO_FDSEL;
1070 		fdout |= (FDO_MOEN0 << fdsu) | FDO_FDMAEN | FDO_FRST | fdsu;
1071 	} else
1072 		fdout &= ~(FDO_MOEN0 << fdsu);
1073 	fdc->fdout = fdout;
1074 	fdout_wr(fdc, fdout);
1075 	TRACE1("[0x%x->FDOUT]", fdout);
1076 }
1077 
1078 static void
1079 fd_turnoff(void *xfd)
1080 {
1081 	int	s;
1082 	fd_p fd = xfd;
1083 
1084 	TRACE1("[fd%d: turnoff]", fd->fdu);
1085 
1086 	s = splbio();
1087 	/*
1088 	 * Don't turn off the motor yet if the drive is active.
1089 	 *
1090 	 * If we got here, this could only mean we missed an interrupt.
1091 	 * This can e. g. happen on the Y-E Date PCMCIA floppy controller
1092 	 * after a controller reset.  Just schedule a pseudo-interrupt
1093 	 * so the state machine gets re-entered.
1094 	 */
1095 	if (fd->fdc->state != DEVIDLE && fd->fdc->fdu == fd->fdu) {
1096 		fdc_intr(fd->fdc);
1097 		splx(s);
1098 		return;
1099 	}
1100 
1101 	fd->flags &= ~FD_MOTOR;
1102 	set_motor(fd->fdc, fd->fdsu, TURNOFF);
1103 	splx(s);
1104 }
1105 
1106 static void
1107 fd_motor_on(void *xfd)
1108 {
1109 	int	s;
1110 	fd_p fd = xfd;
1111 
1112 	s = splbio();
1113 	fd->flags &= ~FD_MOTOR_WAIT;
1114 	if((fd->fdc->fd == fd) && (fd->fdc->state == MOTORWAIT))
1115 	{
1116 		fdc_intr(fd->fdc);
1117 	}
1118 	splx(s);
1119 }
1120 
1121 static void
1122 fd_turnon(fd_p fd)
1123 {
1124 	if(!(fd->flags & FD_MOTOR))
1125 	{
1126 		fd->flags |= (FD_MOTOR + FD_MOTOR_WAIT);
1127 		set_motor(fd->fdc, fd->fdsu, TURNON);
1128 		timeout(fd_motor_on, fd, hz); /* in 1 sec its ok */
1129 	}
1130 }
1131 
1132 static void
1133 fdc_reset(fdc_p fdc)
1134 {
1135 	/* Try a reset, keep motor on */
1136 	fdout_wr(fdc, fdc->fdout & ~(FDO_FRST|FDO_FDMAEN));
1137 	TRACE1("[0x%x->FDOUT]", fdc->fdout & ~(FDO_FRST|FDO_FDMAEN));
1138 	DELAY(100);
1139 	/* enable FDC, but defer interrupts a moment */
1140 	fdout_wr(fdc, fdc->fdout & ~FDO_FDMAEN);
1141 	TRACE1("[0x%x->FDOUT]", fdc->fdout & ~FDO_FDMAEN);
1142 	DELAY(100);
1143 	fdout_wr(fdc, fdc->fdout);
1144 	TRACE1("[0x%x->FDOUT]", fdc->fdout);
1145 
1146 	/* XXX after a reset, silently believe the FDC will accept commands */
1147 	(void)fd_cmd(fdc, 3, NE7CMD_SPECIFY,
1148 		     NE7_SPEC_1(3, 240), NE7_SPEC_2(2, 0),
1149 		     0);
1150 	if (fdc->flags & FDC_HAS_FIFO)
1151 		(void) enable_fifo(fdc);
1152 }
1153 
1154 /*
1155  * FDC IO functions, take care of the main status register, timeout
1156  * in case the desired status bits are never set.
1157  *
1158  * These PIO loops initially start out with short delays between
1159  * each iteration in the expectation that the required condition
1160  * is usually met quickly, so it can be handled immediately.  After
1161  * about 1 ms, stepping is increased to achieve a better timing
1162  * accuracy in the calls to DELAY().
1163  */
1164 static int
1165 fd_in(struct fdc_data *fdc, int *ptr)
1166 {
1167 	int i, j, step;
1168 
1169 	for (j = 0, step = 1;
1170 	    (i = fdsts_rd(fdc) & (NE7_DIO|NE7_RQM)) != (NE7_DIO|NE7_RQM) &&
1171 	    j < FDSTS_TIMEOUT;
1172 	    j += step) {
1173 		if (i == NE7_RQM)
1174 			return (fdc_err(fdc, "ready for output in input\n"));
1175 		if (j == 1000)
1176 			step = 1000;
1177 		DELAY(step);
1178 	}
1179 	if (j >= FDSTS_TIMEOUT)
1180 		return (fdc_err(fdc, bootverbose? "input ready timeout\n": 0));
1181 #ifdef	FDC_DEBUG
1182 	i = fddata_rd(fdc);
1183 	TRACE1("[FDDATA->0x%x]", (unsigned char)i);
1184 	*ptr = i;
1185 	return (0);
1186 #else	/* !FDC_DEBUG */
1187 	i = fddata_rd(fdc);
1188 	if (ptr)
1189 		*ptr = i;
1190 	return (0);
1191 #endif	/* FDC_DEBUG */
1192 }
1193 
1194 static int
1195 out_fdc(struct fdc_data *fdc, int x)
1196 {
1197 	int i, j, step;
1198 
1199 	for (j = 0, step = 1;
1200 	    (i = fdsts_rd(fdc) & (NE7_DIO|NE7_RQM)) != NE7_RQM &&
1201 	    j < FDSTS_TIMEOUT;
1202 	    j += step) {
1203 		if (i == (NE7_DIO|NE7_RQM))
1204 			return (fdc_err(fdc, "ready for input in output\n"));
1205 		if (j == 1000)
1206 			step = 1000;
1207 		DELAY(step);
1208 	}
1209 	if (j >= FDSTS_TIMEOUT)
1210 		return (fdc_err(fdc, bootverbose? "output ready timeout\n": 0));
1211 
1212 	/* Send the command and return */
1213 	fddata_wr(fdc, x);
1214 	TRACE1("[0x%x->FDDATA]", x);
1215 	return (0);
1216 }
1217 
1218 /*
1219  * Block device driver interface functions (interspersed with even more
1220  * auxiliary functions).
1221  */
1222 static int
1223 fdopen(struct cdev *dev, int flags, int mode, struct thread *td)
1224 {
1225 	fd_p	fd;
1226 	fdc_p	fdc;
1227  	int rv, unitattn, dflags;
1228 
1229 	fd = dev->si_drv1;
1230 	if (fd == NULL)
1231 		return (ENXIO);
1232 	fdc = fd->fdc;
1233 	if ((fdc == NULL) || (fd->type == FDT_NONE))
1234 		return (ENXIO);
1235 	dflags = device_get_flags(fd->dev);
1236 	/*
1237 	 * This is a bit bogus.  It's still possible that e. g. a
1238 	 * descriptor gets inherited to a child, but then it's at
1239 	 * least for the same subdevice.  By checking FD_OPEN here, we
1240 	 * can ensure that a device isn't attempted to be opened with
1241 	 * different densities at the same time where the second open
1242 	 * could clobber the settings from the first one.
1243 	 */
1244 	if (fd->flags & FD_OPEN)
1245 		return (EBUSY);
1246 
1247 	if (flags & FNONBLOCK) {
1248 		/*
1249 		 * Unfortunately, physio(9) discards its ioflag
1250 		 * argument, thus preventing us from seeing the
1251 		 * IO_NDELAY bit.  So we need to keep track
1252 		 * ourselves.
1253 		 */
1254 		fd->flags |= FD_NONBLOCK;
1255 		fd->ft = 0;
1256 	} else {
1257 		/*
1258 		 * Figure out a unit attention condition.
1259 		 *
1260 		 * If UA has been forced, proceed.
1261 		 *
1262 		 * If the drive has no changeline support,
1263 		 * or if the drive parameters have been lost
1264 		 * due to previous non-blocking access,
1265 		 * assume a forced UA condition.
1266 		 *
1267 		 * If motor is off, turn it on for a moment
1268 		 * and select our drive, in order to read the
1269 		 * UA hardware signal.
1270 		 *
1271 		 * If motor is on, and our drive is currently
1272 		 * selected, just read the hardware bit.
1273 		 *
1274 		 * If motor is on, but active for another
1275 		 * drive on that controller, we are lost.  We
1276 		 * cannot risk to deselect the other drive, so
1277 		 * we just assume a forced UA condition to be
1278 		 * on the safe side.
1279 		 */
1280 		unitattn = 0;
1281 		if ((dflags & FD_NO_CHLINE) != 0 ||
1282 		    (fd->flags & FD_UA) != 0 ||
1283 		    fd->ft == 0) {
1284 			unitattn = 1;
1285 			fd->flags &= ~FD_UA;
1286 		} else if (fdc->fdout & (FDO_MOEN0 | FDO_MOEN1 |
1287 					 FDO_MOEN2 | FDO_MOEN3)) {
1288 			if ((fdc->fdout & FDO_FDSEL) == fd->fdsu)
1289 				unitattn = fdin_rd(fdc) & FDI_DCHG;
1290 			else
1291 				unitattn = 1;
1292 		} else {
1293 			set_motor(fdc, fd->fdsu, TURNON);
1294 			unitattn = fdin_rd(fdc) & FDI_DCHG;
1295 			set_motor(fdc, fd->fdsu, TURNOFF);
1296 		}
1297 		if (unitattn && (rv = fdautoselect(dev)) != 0)
1298 			return (rv);
1299 	}
1300 	fd->flags |= FD_OPEN;
1301 
1302 	if ((fdc->flags & FDC_NODMA) == 0) {
1303 		if (fdc->dmacnt++ == 0) {
1304 			isa_dma_acquire(fdc->dmachan);
1305 			isa_dmainit(fdc->dmachan, MAX_SEC_SIZE);
1306 		}
1307 	}
1308 
1309 	/*
1310 	 * Clearing the DMA overrun counter at open time is a bit messy.
1311 	 * Since we're only managing one counter per controller, opening
1312 	 * the second drive could mess it up.  Anyway, if the DMA overrun
1313 	 * condition is really persistent, it will eventually time out
1314 	 * still.  OTOH, clearing it here will ensure we'll at least start
1315 	 * trying again after a previous (maybe even long ago) failure.
1316 	 * Also, this is merely a stop-gap measure only that should not
1317 	 * happen during normal operation, so we can tolerate it to be a
1318 	 * bit sloppy about this.
1319 	 */
1320 	fdc->dma_overruns = 0;
1321 
1322 	return 0;
1323 }
1324 
1325 static int
1326 fdclose(struct cdev *dev, int flags, int mode, struct thread *td)
1327 {
1328 	struct fd_data *fd;
1329  	fdc_p	fdc;
1330 
1331 	fd = dev->si_drv1;
1332 	fdc = fd->fdc;
1333 	fd->flags &= ~(FD_OPEN | FD_NONBLOCK);
1334 	fd->options &= ~(FDOPT_NORETRY | FDOPT_NOERRLOG | FDOPT_NOERROR);
1335 
1336 	if ((fdc->flags & FDC_NODMA) == 0)
1337 		if (--fdc->dmacnt == 0)
1338 			isa_dma_release(fdc->dmachan);
1339 
1340 	return (0);
1341 }
1342 
1343 static void
1344 fdstrategy(struct bio *bp)
1345 {
1346 	long blknum, nblocks;
1347  	int	s;
1348  	fdu_t	fdu;
1349  	fdc_p	fdc;
1350  	fd_p	fd;
1351 	size_t	fdblk;
1352 
1353 	fd = bp->bio_dev->si_drv1;
1354  	fdu = fd->fdu;
1355 	fdc = fd->fdc;
1356 	bp->bio_resid = bp->bio_bcount;
1357 	if (fd->type == FDT_NONE || fd->ft == 0) {
1358 		if (fd->type != FDT_NONE && (fd->flags & FD_NONBLOCK))
1359 			bp->bio_error = EAGAIN;
1360 		else
1361 			bp->bio_error = ENXIO;
1362 		bp->bio_flags |= BIO_ERROR;
1363 		goto bad;
1364 	}
1365 	fdblk = 128 << (fd->ft->secsize);
1366 	if (bp->bio_cmd != FDBIO_FORMAT && bp->bio_cmd != FDBIO_RDSECTID) {
1367 		if (fd->flags & FD_NONBLOCK) {
1368 			bp->bio_error = EAGAIN;
1369 			bp->bio_flags |= BIO_ERROR;
1370 			goto bad;
1371 		}
1372 		if (bp->bio_offset < 0) {
1373 			printf(
1374 		"fd%d: fdstrat: bad request offset = %ju, bcount = %ld\n",
1375 			       fdu, (intmax_t)bp->bio_offset, bp->bio_bcount);
1376 			bp->bio_error = EINVAL;
1377 			bp->bio_flags |= BIO_ERROR;
1378 			goto bad;
1379 		}
1380 		if ((bp->bio_bcount % fdblk) != 0) {
1381 			bp->bio_error = EINVAL;
1382 			bp->bio_flags |= BIO_ERROR;
1383 			goto bad;
1384 		}
1385 	}
1386 
1387 	/*
1388 	 * Set up block calculations.
1389 	 */
1390 	if (bp->bio_offset >= ((off_t)128 << fd->ft->secsize) * fd->ft->size) {
1391 		bp->bio_error = EINVAL;
1392 		bp->bio_flags |= BIO_ERROR;
1393 		goto bad;
1394 	}
1395 	blknum = bp->bio_offset / fdblk;
1396  	nblocks = fd->ft->size;
1397 	if (blknum + bp->bio_bcount / fdblk > nblocks) {
1398 		if (blknum >= nblocks) {
1399 			if (bp->bio_cmd != BIO_READ) {
1400 				bp->bio_error = ENOSPC;
1401 				bp->bio_flags |= BIO_ERROR;
1402 			}
1403 			goto bad;	/* not always bad, but EOF */
1404 		}
1405 		bp->bio_bcount = (nblocks - blknum) * fdblk;
1406 	}
1407  	bp->bio_pblkno = blknum;
1408 	s = splbio();
1409 	bioq_disksort(&fdc->head, bp);
1410 	untimeout(fd_turnoff, fd, fd->toffhandle); /* a good idea */
1411 	devstat_start_transaction_bio(fd->device_stats, bp);
1412 	device_busy(fd->dev);
1413 	fdstart(fdc);
1414 	splx(s);
1415 	return;
1416 
1417 bad:
1418 	biodone(bp);
1419 }
1420 
1421 /*
1422  * fdstart
1423  *
1424  * We have just queued something.  If the controller is not busy
1425  * then simulate the case where it has just finished a command
1426  * So that it (the interrupt routine) looks on the queue for more
1427  * work to do and picks up what we just added.
1428  *
1429  * If the controller is already busy, we need do nothing, as it
1430  * will pick up our work when the present work completes.
1431  */
1432 static void
1433 fdstart(struct fdc_data *fdc)
1434 {
1435 	int s;
1436 
1437 	s = splbio();
1438 	if(fdc->state == DEVIDLE)
1439 	{
1440 		fdc_intr(fdc);
1441 	}
1442 	splx(s);
1443 }
1444 
1445 static void
1446 fd_iotimeout(void *xfdc)
1447 {
1448  	fdc_p fdc;
1449 	int s;
1450 
1451 	fdc = xfdc;
1452 	TRACE1("fd%d[fd_iotimeout()]", fdc->fdu);
1453 
1454 	/*
1455 	 * Due to IBM's brain-dead design, the FDC has a faked ready
1456 	 * signal, hardwired to ready == true. Thus, any command
1457 	 * issued if there's no diskette in the drive will _never_
1458 	 * complete, and must be aborted by resetting the FDC.
1459 	 * Many thanks, Big Blue!
1460 	 * The FDC must not be reset directly, since that would
1461 	 * interfere with the state machine.  Instead, pretend that
1462 	 * the command completed but was invalid.  The state machine
1463 	 * will reset the FDC and retry once.
1464 	 */
1465 	s = splbio();
1466 	fdc->status[0] = NE7_ST0_IC_IV;
1467 	fdc->flags &= ~FDC_STAT_VALID;
1468 	fdc->state = IOTIMEDOUT;
1469 	fdc_intr(fdc);
1470 	splx(s);
1471 }
1472 
1473 /* Just ensure it has the right spl. */
1474 static void
1475 fd_pseudointr(void *xfdc)
1476 {
1477 	int	s;
1478 
1479 	s = splbio();
1480 	fdc_intr(xfdc);
1481 	splx(s);
1482 }
1483 
1484 /*
1485  * fdc_intr
1486  *
1487  * Keep calling the state machine until it returns a 0.
1488  * Always called at splbio.
1489  */
1490 static void
1491 fdc_intr(void *xfdc)
1492 {
1493 	fdc_p fdc = xfdc;
1494 	while(fdstate(fdc))
1495 		;
1496 }
1497 
1498 /*
1499  * Magic pseudo-DMA initialization for YE FDC. Sets count and
1500  * direction.
1501  */
1502 #define SET_BCDR(fdc,wr,cnt,port) \
1503 	bus_space_write_1(fdc->portt, fdc->porth, fdc->port_off + port,	 \
1504 	    ((cnt)-1) & 0xff);						 \
1505 	bus_space_write_1(fdc->portt, fdc->porth, fdc->port_off + port + 1, \
1506 	    ((wr ? 0x80 : 0) | ((((cnt)-1) >> 8) & 0x7f)));
1507 
1508 /*
1509  * fdcpio(): perform programmed IO read/write for YE PCMCIA floppy.
1510  */
1511 static int
1512 fdcpio(fdc_p fdc, long flags, caddr_t addr, u_int count)
1513 {
1514 	u_char *cptr = (u_char *)addr;
1515 
1516 	if (flags == BIO_READ) {
1517 		if (fdc->state != PIOREAD) {
1518 			fdc->state = PIOREAD;
1519 			return(0);
1520 		}
1521 		SET_BCDR(fdc, 0, count, 0);
1522 		bus_space_read_multi_1(fdc->portt, fdc->porth, fdc->port_off +
1523 		    FDC_YE_DATAPORT, cptr, count);
1524 	} else {
1525 		bus_space_write_multi_1(fdc->portt, fdc->porth, fdc->port_off +
1526 		    FDC_YE_DATAPORT, cptr, count);
1527 		SET_BCDR(fdc, 0, count, 0);
1528 	}
1529 	return(1);
1530 }
1531 
1532 /*
1533  * Try figuring out the density of the media present in our device.
1534  */
1535 static int
1536 fdautoselect(struct cdev *dev)
1537 {
1538  	fd_p fd;
1539 	struct fd_type *fdtp;
1540 	struct fdc_readid id;
1541 	int i, n, oopts, rv;
1542 
1543 	fd = dev->si_drv1;
1544 
1545 	switch (fd->type) {
1546 	default:
1547 		return (ENXIO);
1548 
1549 	case FDT_360K:
1550 	case FDT_720K:
1551 		/* no autoselection on those drives */
1552 		fd->ft = fd_native_types + fd->type;
1553 		return (0);
1554 
1555 	case FDT_12M:
1556 		fdtp = fd_searchlist_12m;
1557 		n = sizeof fd_searchlist_12m / sizeof(struct fd_type);
1558 		break;
1559 
1560 	case FDT_144M:
1561 		fdtp = fd_searchlist_144m;
1562 		n = sizeof fd_searchlist_144m / sizeof(struct fd_type);
1563 		break;
1564 
1565 	case FDT_288M:
1566 		fdtp = fd_searchlist_288m;
1567 		n = sizeof fd_searchlist_288m / sizeof(struct fd_type);
1568 		break;
1569 	}
1570 
1571 	/*
1572 	 * Try reading sector ID fields, first at cylinder 0, head 0,
1573 	 * then at cylinder 2, head N.  We don't probe cylinder 1,
1574 	 * since for 5.25in DD media in a HD drive, there are no data
1575 	 * to read (2 step pulses per media cylinder required).  For
1576 	 * two-sided media, the second probe always goes to head 1, so
1577 	 * we can tell them apart from single-sided media.  As a
1578 	 * side-effect this means that single-sided media should be
1579 	 * mentioned in the search list after two-sided media of an
1580 	 * otherwise identical density.  Media with a different number
1581 	 * of sectors per track but otherwise identical parameters
1582 	 * cannot be distinguished at all.
1583 	 *
1584 	 * If we successfully read an ID field on both cylinders where
1585 	 * the recorded values match our expectation, we are done.
1586 	 * Otherwise, we try the next density entry from the table.
1587 	 *
1588 	 * Stepping to cylinder 2 has the side-effect of clearing the
1589 	 * unit attention bit.
1590 	 */
1591 	oopts = fd->options;
1592 	fd->options |= FDOPT_NOERRLOG | FDOPT_NORETRY;
1593 	for (i = 0; i < n; i++, fdtp++) {
1594 		fd->ft = fdtp;
1595 
1596 		id.cyl = id.head = 0;
1597 		rv = fdmisccmd(dev, FDBIO_RDSECTID, &id);
1598 		if (rv != 0)
1599 			continue;
1600 		if (id.cyl != 0 || id.head != 0 ||
1601 		    id.secshift != fdtp->secsize)
1602 			continue;
1603 		id.cyl = 2;
1604 		id.head = fd->ft->heads - 1;
1605 		rv = fdmisccmd(dev, FDBIO_RDSECTID, &id);
1606 		if (id.cyl != 2 || id.head != fdtp->heads - 1 ||
1607 		    id.secshift != fdtp->secsize)
1608 			continue;
1609 		if (rv == 0)
1610 			break;
1611 	}
1612 
1613 	fd->options = oopts;
1614 	if (i == n) {
1615 		if (bootverbose)
1616 			device_printf(fd->dev, "autoselection failed\n");
1617 		fd->ft = 0;
1618 		return (EIO);
1619 	} else {
1620 		if (bootverbose)
1621 			device_printf(fd->dev, "autoselected %d KB medium\n",
1622 				      fd->ft->size / 2);
1623 		return (0);
1624 	}
1625 }
1626 
1627 
1628 /*
1629  * The controller state machine.
1630  *
1631  * If it returns a non zero value, it should be called again immediately.
1632  */
1633 static int
1634 fdstate(fdc_p fdc)
1635 {
1636 	struct fdc_readid *idp;
1637 	int read, format, rdsectid, cylinder, head, i, sec = 0, sectrac;
1638 	int st0, cyl, st3, idf, ne7cmd, mfm, steptrac;
1639 	unsigned long blknum;
1640 	fdu_t fdu = fdc->fdu;
1641 	fd_p fd;
1642 	register struct bio *bp;
1643 	struct fd_formb *finfo = NULL;
1644 	size_t fdblk;
1645 
1646 	bp = fdc->bp;
1647 	if (bp == NULL) {
1648 		bp = bioq_first(&fdc->head);
1649 		if (bp != NULL) {
1650 			bioq_remove(&fdc->head, bp);
1651 			fdc->bp = bp;
1652 		}
1653 	}
1654 	if (bp == NULL) {
1655 		/*
1656 		 * Nothing left for this controller to do,
1657 		 * force into the IDLE state.
1658 		 */
1659 		fdc->state = DEVIDLE;
1660 		if (fdc->fd) {
1661 			device_printf(fdc->fdc_dev,
1662 			    "unexpected valid fd pointer\n");
1663 			fdc->fd = (fd_p) 0;
1664 			fdc->fdu = -1;
1665 		}
1666 		TRACE1("[fdc%d IDLE]", fdc->fdcu);
1667  		return (0);
1668 	}
1669 	fd = bp->bio_dev->si_drv1;
1670 	fdu = fd->fdu;
1671 	fdblk = 128 << fd->ft->secsize;
1672 	if (fdc->fd && (fd != fdc->fd))
1673 		device_printf(fd->dev, "confused fd pointers\n");
1674 	read = bp->bio_cmd == BIO_READ;
1675 	mfm = (fd->ft->flags & FL_MFM)? NE7CMD_MFM: 0;
1676 	steptrac = (fd->ft->flags & FL_2STEP)? 2: 1;
1677 	if (read)
1678 		idf = ISADMA_READ;
1679 	else
1680 		idf = ISADMA_WRITE;
1681 	format = bp->bio_cmd == FDBIO_FORMAT;
1682 	rdsectid = bp->bio_cmd == FDBIO_RDSECTID;
1683 	if (format)
1684 		finfo = (struct fd_formb *)bp->bio_data;
1685 	TRACE1("fd%d", fdu);
1686 	TRACE1("[%s]", fdstates[fdc->state]);
1687 	TRACE1("(0x%x)", fd->flags);
1688 	untimeout(fd_turnoff, fd, fd->toffhandle);
1689 	fd->toffhandle = timeout(fd_turnoff, fd, 4 * hz);
1690 	switch (fdc->state)
1691 	{
1692 	case DEVIDLE:
1693 	case FINDWORK:	/* we have found new work */
1694 		fdc->retry = 0;
1695 		fd->skip = 0;
1696 		fdc->fd = fd;
1697 		fdc->fdu = fdu;
1698 		fdc->fdctl_wr(fdc, fd->ft->trans);
1699 		TRACE1("[0x%x->FDCTL]", fd->ft->trans);
1700 		/*
1701 		 * If the next drive has a motor startup pending, then
1702 		 * it will start up in its own good time.
1703 		 */
1704 		if(fd->flags & FD_MOTOR_WAIT) {
1705 			fdc->state = MOTORWAIT;
1706 			return (0); /* will return later */
1707 		}
1708 		/*
1709 		 * Maybe if it's not starting, it SHOULD be starting.
1710 		 */
1711 		if (!(fd->flags & FD_MOTOR))
1712 		{
1713 			fdc->state = MOTORWAIT;
1714 			fd_turnon(fd);
1715 			return (0); /* will return later */
1716 		}
1717 		else	/* at least make sure we are selected */
1718 		{
1719 			set_motor(fdc, fd->fdsu, TURNON);
1720 		}
1721 		if (fdc->flags & FDC_NEEDS_RESET) {
1722 			fdc->state = RESETCTLR;
1723 			fdc->flags &= ~FDC_NEEDS_RESET;
1724 		} else
1725 			fdc->state = DOSEEK;
1726 		return (1);	/* will return immediately */
1727 
1728 	case DOSEEK:
1729 		blknum = bp->bio_pblkno + fd->skip / fdblk;
1730 		cylinder = blknum / (fd->ft->sectrac * fd->ft->heads);
1731 		if (cylinder == fd->track)
1732 		{
1733 			fdc->state = SEEKCOMPLETE;
1734 			return (1); /* will return immediately */
1735 		}
1736 		if (fd_cmd(fdc, 3, NE7CMD_SEEK,
1737 			   fd->fdsu, cylinder * steptrac, 0))
1738 		{
1739 			/*
1740 			 * Seek command not accepted, looks like
1741 			 * the FDC went off to the Saints...
1742 			 */
1743 			fdc->retry = 6;	/* try a reset */
1744 			return(retrier(fdc));
1745 		}
1746 		fd->track = FD_NO_TRACK;
1747 		fdc->state = SEEKWAIT;
1748 		return(0);	/* will return later */
1749 
1750 	case SEEKWAIT:
1751 		/* allow heads to settle */
1752 		timeout(fd_pseudointr, fdc, hz / 16);
1753 		fdc->state = SEEKCOMPLETE;
1754 		return(0);	/* will return later */
1755 
1756 	case SEEKCOMPLETE : /* seek done, start DMA */
1757 		blknum = bp->bio_pblkno + fd->skip / fdblk;
1758 		cylinder = blknum / (fd->ft->sectrac * fd->ft->heads);
1759 
1760 		/* Make sure seek really happened. */
1761 		if(fd->track == FD_NO_TRACK) {
1762 			int descyl = cylinder * steptrac;
1763 			do {
1764 				/*
1765 				 * This might be a "ready changed" interrupt,
1766 				 * which cannot really happen since the
1767 				 * RDY pin is hardwired to + 5 volts.  This
1768 				 * generally indicates a "bouncing" intr
1769 				 * line, so do one of the following:
1770 				 *
1771 				 * When running on an enhanced FDC that is
1772 				 * known to not go stuck after responding
1773 				 * with INVALID, fetch all interrupt states
1774 				 * until seeing either an INVALID or a
1775 				 * real interrupt condition.
1776 				 *
1777 				 * When running on a dumb old NE765, give
1778 				 * up immediately.  The controller will
1779 				 * provide up to four dummy RC interrupt
1780 				 * conditions right after reset (for the
1781 				 * corresponding four drives), so this is
1782 				 * our only chance to get notice that it
1783 				 * was not the FDC that caused the interrupt.
1784 				 */
1785 				if (fd_sense_int(fdc, &st0, &cyl)
1786 				    == FD_NOT_VALID)
1787 					return (0); /* will return later */
1788 				if(fdc->fdct == FDC_NE765
1789 				   && (st0 & NE7_ST0_IC) == NE7_ST0_IC_RC)
1790 					return (0); /* hope for a real intr */
1791 			} while ((st0 & NE7_ST0_IC) == NE7_ST0_IC_RC);
1792 
1793 			if (0 == descyl) {
1794 				int failed = 0;
1795 				/*
1796 				 * seek to cyl 0 requested; make sure we are
1797 				 * really there
1798 				 */
1799 				if (fd_sense_drive_status(fdc, &st3))
1800 					failed = 1;
1801 				if ((st3 & NE7_ST3_T0) == 0) {
1802 					printf(
1803 		"fd%d: Seek to cyl 0, but not really there (ST3 = %b)\n",
1804 					       fdu, st3, NE7_ST3BITS);
1805 					failed = 1;
1806 				}
1807 
1808 				if (failed) {
1809 					if(fdc->retry < 3)
1810 						fdc->retry = 3;
1811 					return (retrier(fdc));
1812 				}
1813 			}
1814 
1815 			if (cyl != descyl) {
1816 				printf(
1817 		"fd%d: Seek to cyl %d failed; am at cyl %d (ST0 = 0x%x)\n",
1818 				       fdu, descyl, cyl, st0);
1819 				if (fdc->retry < 3)
1820 					fdc->retry = 3;
1821 				return (retrier(fdc));
1822 			}
1823 		}
1824 
1825 		fd->track = cylinder;
1826 		if (format)
1827 			fd->skip = (char *)&(finfo->fd_formb_cylno(0))
1828 			    - (char *)finfo;
1829 		if (!rdsectid && !(fdc->flags & FDC_NODMA))
1830 			isa_dmastart(idf, bp->bio_data+fd->skip,
1831 				format ? bp->bio_bcount : fdblk, fdc->dmachan);
1832 		blknum = bp->bio_pblkno + fd->skip / fdblk;
1833 		sectrac = fd->ft->sectrac;
1834 		sec = blknum %  (sectrac * fd->ft->heads);
1835 		head = sec / sectrac;
1836 		sec = sec % sectrac + 1;
1837 		if (head != 0 && fd->ft->offset_side2 != 0)
1838 			sec += fd->ft->offset_side2;
1839 		fd->hddrv = ((head&1)<<2)+fdu;
1840 
1841 		if(format || !(read || rdsectid))
1842 		{
1843 			/* make sure the drive is writable */
1844 			if(fd_sense_drive_status(fdc, &st3) != 0)
1845 			{
1846 				/* stuck controller? */
1847 				if (!(fdc->flags & FDC_NODMA))
1848 					isa_dmadone(idf,
1849 						    bp->bio_data + fd->skip,
1850 						    format ? bp->bio_bcount : fdblk,
1851 						    fdc->dmachan);
1852 				fdc->retry = 6;	/* reset the beast */
1853 				return (retrier(fdc));
1854 			}
1855 			if(st3 & NE7_ST3_WP)
1856 			{
1857 				/*
1858 				 * XXX YES! this is ugly.
1859 				 * in order to force the current operation
1860 				 * to fail, we will have to fake an FDC
1861 				 * error - all error handling is done
1862 				 * by the retrier()
1863 				 */
1864 				fdc->status[0] = NE7_ST0_IC_AT;
1865 				fdc->status[1] = NE7_ST1_NW;
1866 				fdc->status[2] = 0;
1867 				fdc->status[3] = fd->track;
1868 				fdc->status[4] = head;
1869 				fdc->status[5] = sec;
1870 				fdc->retry = 8;	/* break out immediately */
1871 				fdc->state = IOTIMEDOUT; /* not really... */
1872 				return (1); /* will return immediately */
1873 			}
1874 		}
1875 
1876 		if (format) {
1877 			ne7cmd = NE7CMD_FORMAT | mfm;
1878 			if (fdc->flags & FDC_NODMA) {
1879 				/*
1880 				 * This seems to be necessary for
1881 				 * whatever obscure reason; if we omit
1882 				 * it, we end up filling the sector ID
1883 				 * fields of the newly formatted track
1884 				 * entirely with garbage, causing
1885 				 * `wrong cylinder' errors all over
1886 				 * the place when trying to read them
1887 				 * back.
1888 				 *
1889 				 * Umpf.
1890 				 */
1891 				SET_BCDR(fdc, 1, bp->bio_bcount, 0);
1892 
1893 				(void)fdcpio(fdc,bp->bio_cmd,
1894 					bp->bio_data+fd->skip,
1895 					bp->bio_bcount);
1896 
1897 			}
1898 			/* formatting */
1899 			if(fd_cmd(fdc, 6,  ne7cmd, head << 2 | fdu,
1900 				  finfo->fd_formb_secshift,
1901 				  finfo->fd_formb_nsecs,
1902 				  finfo->fd_formb_gaplen,
1903 				  finfo->fd_formb_fillbyte, 0)) {
1904 				/* controller fell over */
1905 				if (!(fdc->flags & FDC_NODMA))
1906 					isa_dmadone(idf,
1907 						    bp->bio_data + fd->skip,
1908 						    format ? bp->bio_bcount : fdblk,
1909 						    fdc->dmachan);
1910 				fdc->retry = 6;
1911 				return (retrier(fdc));
1912 			}
1913 		} else if (rdsectid) {
1914 			ne7cmd = NE7CMD_READID | mfm;
1915 			if (fd_cmd(fdc, 2, ne7cmd, head << 2 | fdu, 0)) {
1916 				/* controller jamming */
1917 				fdc->retry = 6;
1918 				return (retrier(fdc));
1919 			}
1920 		} else {
1921 			/* read or write operation */
1922 			ne7cmd = (read ? NE7CMD_READ | NE7CMD_SK : NE7CMD_WRITE) | mfm;
1923 			if (fdc->flags & FDC_NODMA) {
1924 				/*
1925 				 * This seems to be necessary even when
1926 				 * reading data.
1927 				 */
1928 				SET_BCDR(fdc, 1, fdblk, 0);
1929 
1930 				/*
1931 				 * Perform the write pseudo-DMA before
1932 				 * the WRITE command is sent.
1933 				 */
1934 				if (!read)
1935 					(void)fdcpio(fdc,bp->bio_cmd,
1936 					    bp->bio_data+fd->skip,
1937 					    fdblk);
1938 			}
1939 			if (fd_cmd(fdc, 9,
1940 				   ne7cmd,
1941 				   head << 2 | fdu,  /* head & unit */
1942 				   fd->track,        /* track */
1943 				   head,
1944 				   sec,              /* sector + 1 */
1945 				   fd->ft->secsize,  /* sector size */
1946 				   sectrac,          /* sectors/track */
1947 				   fd->ft->gap,      /* gap size */
1948 				   fd->ft->datalen,  /* data length */
1949 				   0)) {
1950 				/* the beast is sleeping again */
1951 				if (!(fdc->flags & FDC_NODMA))
1952 					isa_dmadone(idf,
1953 						    bp->bio_data + fd->skip,
1954 						    format ? bp->bio_bcount : fdblk,
1955 						    fdc->dmachan);
1956 				fdc->retry = 6;
1957 				return (retrier(fdc));
1958 			}
1959 		}
1960 		if (!rdsectid && (fdc->flags & FDC_NODMA))
1961 			/*
1962 			 * If this is a read, then simply await interrupt
1963 			 * before performing PIO.
1964 			 */
1965 			if (read && !fdcpio(fdc,bp->bio_cmd,
1966 			    bp->bio_data+fd->skip,fdblk)) {
1967 				fd->tohandle = timeout(fd_iotimeout, fdc, hz);
1968 				return(0);      /* will return later */
1969 			}
1970 
1971 		/*
1972 		 * Write (or format) operation will fall through and
1973 		 * await completion interrupt.
1974 		 */
1975 		fdc->state = IOCOMPLETE;
1976 		fd->tohandle = timeout(fd_iotimeout, fdc, hz);
1977 		return (0);	/* will return later */
1978 
1979 	case PIOREAD:
1980 		/*
1981 		 * Actually perform the PIO read.  The IOCOMPLETE case
1982 		 * removes the timeout for us.
1983 		 */
1984 		(void)fdcpio(fdc,bp->bio_cmd,bp->bio_data+fd->skip,fdblk);
1985 		fdc->state = IOCOMPLETE;
1986 		/* FALLTHROUGH */
1987 	case IOCOMPLETE: /* IO done, post-analyze */
1988 		untimeout(fd_iotimeout, fdc, fd->tohandle);
1989 
1990 		if (fd_read_status(fdc)) {
1991 			if (!rdsectid && !(fdc->flags & FDC_NODMA))
1992 				isa_dmadone(idf, bp->bio_data + fd->skip,
1993 					    format ? bp->bio_bcount : fdblk,
1994 					    fdc->dmachan);
1995 			if (fdc->retry < 6)
1996 				fdc->retry = 6;	/* force a reset */
1997 			return (retrier(fdc));
1998   		}
1999 
2000 		fdc->state = IOTIMEDOUT;
2001 
2002 		/* FALLTHROUGH */
2003 	case IOTIMEDOUT:
2004 		if (!rdsectid && !(fdc->flags & FDC_NODMA))
2005 			isa_dmadone(idf, bp->bio_data + fd->skip,
2006 				format ? bp->bio_bcount : fdblk, fdc->dmachan);
2007 		if (fdc->status[0] & NE7_ST0_IC) {
2008                         if ((fdc->status[0] & NE7_ST0_IC) == NE7_ST0_IC_AT
2009 			    && fdc->status[1] & NE7_ST1_OR) {
2010                                 /*
2011 				 * DMA overrun. Someone hogged the bus and
2012 				 * didn't release it in time for the next
2013 				 * FDC transfer.
2014 				 *
2015 				 * We normally restart this without bumping
2016 				 * the retry counter.  However, in case
2017 				 * something is seriously messed up (like
2018 				 * broken hardware), we rather limit the
2019 				 * number of retries so the IO operation
2020 				 * doesn't block indefinately.
2021 				 */
2022 				if (fdc->dma_overruns++ < FDC_DMAOV_MAX) {
2023 					fdc->state = SEEKCOMPLETE;
2024 					return (1);/* will return immediately */
2025 				} /* else fall through */
2026                         }
2027 			if((fdc->status[0] & NE7_ST0_IC) == NE7_ST0_IC_IV
2028 				&& fdc->retry < 6)
2029 				fdc->retry = 6;	/* force a reset */
2030 			else if((fdc->status[0] & NE7_ST0_IC) == NE7_ST0_IC_AT
2031 				&& fdc->status[2] & NE7_ST2_WC
2032 				&& fdc->retry < 3)
2033 				fdc->retry = 3;	/* force recalibrate */
2034 			return (retrier(fdc));
2035 		}
2036 		/* All OK */
2037 		if (rdsectid) {
2038 			/* copy out ID field contents */
2039 			idp = (struct fdc_readid *)bp->bio_data;
2040 			idp->cyl = fdc->status[3];
2041 			idp->head = fdc->status[4];
2042 			idp->sec = fdc->status[5];
2043 			idp->secshift = fdc->status[6];
2044 		}
2045 		/* Operation successful, retry DMA overruns again next time. */
2046 		fdc->dma_overruns = 0;
2047 		fd->skip += fdblk;
2048 		if (!rdsectid && !format && fd->skip < bp->bio_bcount) {
2049 			/* set up next transfer */
2050 			fdc->state = DOSEEK;
2051 		} else {
2052 			/* ALL DONE */
2053 			fd->skip = 0;
2054 			bp->bio_resid = 0;
2055 			fdc->bp = NULL;
2056 			device_unbusy(fd->dev);
2057 			biofinish(bp, fd->device_stats, 0);
2058 			fdc->fd = (fd_p) 0;
2059 			fdc->fdu = -1;
2060 			fdc->state = FINDWORK;
2061 		}
2062 		return (1);	/* will return immediately */
2063 
2064 	case RESETCTLR:
2065 		fdc_reset(fdc);
2066 		fdc->retry++;
2067 		fdc->state = RESETCOMPLETE;
2068 		return (0);	/* will return later */
2069 
2070 	case RESETCOMPLETE:
2071 		/*
2072 		 * Discard all the results from the reset so that they
2073 		 * can't cause an unexpected interrupt later.
2074 		 */
2075 		for (i = 0; i < 4; i++)
2076 			(void)fd_sense_int(fdc, &st0, &cyl);
2077 		fdc->state = STARTRECAL;
2078 		/* FALLTHROUGH */
2079 	case STARTRECAL:
2080 		if(fd_cmd(fdc, 2, NE7CMD_RECAL, fdu, 0)) {
2081 			/* arrgl */
2082 			fdc->retry = 6;
2083 			return (retrier(fdc));
2084 		}
2085 		fdc->state = RECALWAIT;
2086 		return (0);	/* will return later */
2087 
2088 	case RECALWAIT:
2089 		/* allow heads to settle */
2090 		timeout(fd_pseudointr, fdc, hz / 8);
2091 		fdc->state = RECALCOMPLETE;
2092 		return (0);	/* will return later */
2093 
2094 	case RECALCOMPLETE:
2095 		do {
2096 			/*
2097 			 * See SEEKCOMPLETE for a comment on this:
2098 			 */
2099 			if (fd_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID)
2100 				return (0); /* will return later */
2101 			if(fdc->fdct == FDC_NE765
2102 			   && (st0 & NE7_ST0_IC) == NE7_ST0_IC_RC)
2103 				return (0); /* hope for a real intr */
2104 		} while ((st0 & NE7_ST0_IC) == NE7_ST0_IC_RC);
2105 		if ((st0 & NE7_ST0_IC) != NE7_ST0_IC_NT || cyl != 0)
2106 		{
2107 			if(fdc->retry > 3)
2108 				/*
2109 				 * A recalibrate from beyond cylinder 77
2110 				 * will "fail" due to the FDC limitations;
2111 				 * since people used to complain much about
2112 				 * the failure message, try not logging
2113 				 * this one if it seems to be the first
2114 				 * time in a line.
2115 				 */
2116 				printf("fd%d: recal failed ST0 %b cyl %d\n",
2117 				       fdu, st0, NE7_ST0BITS, cyl);
2118 			if(fdc->retry < 3) fdc->retry = 3;
2119 			return (retrier(fdc));
2120 		}
2121 		fd->track = 0;
2122 		/* Seek (probably) necessary */
2123 		fdc->state = DOSEEK;
2124 		return (1);	/* will return immediately */
2125 
2126 	case MOTORWAIT:
2127 		if(fd->flags & FD_MOTOR_WAIT)
2128 		{
2129 			return (0); /* time's not up yet */
2130 		}
2131 		if (fdc->flags & FDC_NEEDS_RESET) {
2132 			fdc->state = RESETCTLR;
2133 			fdc->flags &= ~FDC_NEEDS_RESET;
2134 		} else
2135 			fdc->state = DOSEEK;
2136 		return (1);	/* will return immediately */
2137 
2138 	default:
2139 		device_printf(fdc->fdc_dev, "unexpected FD int->");
2140 		if (fd_read_status(fdc) == 0)
2141 			printf("FDC status :%x %x %x %x %x %x %x   ",
2142 			       fdc->status[0],
2143 			       fdc->status[1],
2144 			       fdc->status[2],
2145 			       fdc->status[3],
2146 			       fdc->status[4],
2147 			       fdc->status[5],
2148 			       fdc->status[6] );
2149 		else
2150 			printf("No status available   ");
2151 		if (fd_sense_int(fdc, &st0, &cyl) != 0)
2152 		{
2153 			printf("[controller is dead now]\n");
2154 			return (0); /* will return later */
2155 		}
2156 		printf("ST0 = %x, PCN = %x\n", st0, cyl);
2157 		return (0);	/* will return later */
2158 	}
2159 	/* noone should ever get here */
2160 }
2161 
2162 static int
2163 retrier(struct fdc_data *fdc)
2164 {
2165 	struct bio *bp;
2166 	struct fd_data *fd;
2167 	int fdu;
2168 
2169 	bp = fdc->bp;
2170 
2171 	/* XXX shouldn't this be cached somewhere?  */
2172 	fd = bp->bio_dev->si_drv1;
2173 	fdu = fd->fdu;
2174 	if (fd->options & FDOPT_NORETRY)
2175 		goto fail;
2176 
2177 	switch (fdc->retry) {
2178 	case 0: case 1: case 2:
2179 		fdc->state = SEEKCOMPLETE;
2180 		break;
2181 	case 3: case 4: case 5:
2182 		fdc->state = STARTRECAL;
2183 		break;
2184 	case 6:
2185 		fdc->state = RESETCTLR;
2186 		break;
2187 	case 7:
2188 		break;
2189 	default:
2190 	fail:
2191 		if ((fd->options & FDOPT_NOERRLOG) == 0) {
2192 			disk_err(bp, "hard error",
2193 			    fdc->fd->skip / DEV_BSIZE, 0);
2194 			if (fdc->flags & FDC_STAT_VALID) {
2195 				printf(
2196 				" (ST0 %b ST1 %b ST2 %b cyl %u hd %u sec %u)\n",
2197 				       fdc->status[0], NE7_ST0BITS,
2198 				       fdc->status[1], NE7_ST1BITS,
2199 				       fdc->status[2], NE7_ST2BITS,
2200 				       fdc->status[3], fdc->status[4],
2201 				       fdc->status[5]);
2202 			}
2203 			else
2204 				printf(" (No status)\n");
2205 		}
2206 		if ((fd->options & FDOPT_NOERROR) == 0) {
2207 			bp->bio_flags |= BIO_ERROR;
2208 			bp->bio_error = EIO;
2209 			bp->bio_resid = bp->bio_bcount - fdc->fd->skip;
2210 		} else
2211 			bp->bio_resid = 0;
2212 		fdc->bp = NULL;
2213 		fdc->fd->skip = 0;
2214 		device_unbusy(fd->dev);
2215 		biofinish(bp, fdc->fd->device_stats, 0);
2216 		fdc->state = FINDWORK;
2217 		fdc->flags |= FDC_NEEDS_RESET;
2218 		fdc->fd = (fd_p) 0;
2219 		fdc->fdu = -1;
2220 		return (1);
2221 	}
2222 	fdc->retry++;
2223 	return (1);
2224 }
2225 
2226 static void
2227 fdbiodone(struct bio *bp)
2228 {
2229 	wakeup(bp);
2230 }
2231 
2232 static int
2233 fdmisccmd(struct cdev *dev, u_int cmd, void *data)
2234 {
2235  	fdu_t fdu;
2236  	fd_p fd;
2237 	struct bio *bp;
2238 	struct fd_formb *finfo;
2239 	struct fdc_readid *idfield;
2240 	size_t fdblk;
2241 	int error;
2242 
2243 	fd = dev->si_drv1;
2244  	fdu = fd->fdu;
2245 	fdblk = 128 << fd->ft->secsize;
2246 	finfo = (struct fd_formb *)data;
2247 	idfield = (struct fdc_readid *)data;
2248 
2249 	bp = malloc(sizeof(struct bio), M_TEMP, M_WAITOK | M_ZERO);
2250 
2251 	/*
2252 	 * Set up a bio request for fdstrategy().  bio_offset is faked
2253 	 * so that fdstrategy() will seek to the the requested
2254 	 * cylinder, and use the desired head.
2255 	 */
2256 	bp->bio_cmd = cmd;
2257 	if (cmd == FDBIO_FORMAT) {
2258 		bp->bio_offset =
2259 		    (finfo->cyl * (fd->ft->sectrac * fd->ft->heads) +
2260 		     finfo->head * fd->ft->sectrac) * fdblk;
2261 		bp->bio_bcount = sizeof(struct fd_idfield_data) *
2262 		    finfo->fd_formb_nsecs;
2263 	} else if (cmd == FDBIO_RDSECTID) {
2264 		bp->bio_offset =
2265 		    (idfield->cyl * (fd->ft->sectrac * fd->ft->heads) +
2266 		     idfield->head * fd->ft->sectrac) * fdblk;
2267 		bp->bio_bcount = sizeof(struct fdc_readid);
2268 	} else
2269 		panic("wrong cmd in fdmisccmd()");
2270 	bp->bio_data = data;
2271 	bp->bio_dev = dev;
2272 	bp->bio_done = fdbiodone;
2273 	bp->bio_flags = 0;
2274 
2275 	/* Now run the command. */
2276 	fdstrategy(bp);
2277 	error = biowait(bp, "fdcmd");
2278 
2279 	free(bp, M_TEMP);
2280 	return (error);
2281 }
2282 
2283 static int
2284 fdioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
2285 {
2286  	fdu_t fdu;
2287  	fd_p fd;
2288 	struct fdc_status *fsp;
2289 	struct fdc_readid *rid;
2290 	int error;
2291 
2292  	fd = dev->si_drv1;
2293  	fdu = fd->fdu;
2294 
2295 	/*
2296 	 * First, handle everything that could be done with
2297 	 * FD_NONBLOCK still being set.
2298 	 */
2299 	switch (cmd) {
2300 
2301 	case DIOCGMEDIASIZE:
2302 		if (fd->ft == 0)
2303 			return ((fd->flags & FD_NONBLOCK) ? EAGAIN : ENXIO);
2304 		*(off_t *)addr = (128 << (fd->ft->secsize)) * fd->ft->size;
2305 		return (0);
2306 
2307 	case DIOCGSECTORSIZE:
2308 		if (fd->ft == 0)
2309 			return ((fd->flags & FD_NONBLOCK) ? EAGAIN : ENXIO);
2310 		*(u_int *)addr = 128 << (fd->ft->secsize);
2311 		return (0);
2312 
2313 	case FIONBIO:
2314 		if (*(int *)addr != 0)
2315 			fd->flags |= FD_NONBLOCK;
2316 		else {
2317 			if (fd->ft == 0) {
2318 				/*
2319 				 * No drive type has been selected yet,
2320 				 * cannot turn FNONBLOCK off.
2321 				 */
2322 				return (EINVAL);
2323 			}
2324 			fd->flags &= ~FD_NONBLOCK;
2325 		}
2326 		return (0);
2327 
2328 	case FIOASYNC:
2329 		/* keep the generic fcntl() code happy */
2330 		return (0);
2331 
2332 	case FD_GTYPE:                  /* get drive type */
2333 		if (fd->ft == 0)
2334 			/* no type known yet, return the native type */
2335 			*(struct fd_type *)addr = fd_native_types[fd->type];
2336 		else
2337 			*(struct fd_type *)addr = *fd->ft;
2338 		return (0);
2339 
2340 	case FD_STYPE:                  /* set drive type */
2341 		/*
2342 		 * Allow setting drive type temporarily iff
2343 		 * currently unset.  Used for fdformat so any
2344 		 * user can set it, and then start formatting.
2345 		 */
2346 		if (fd->ft)
2347 			return (EINVAL); /* already set */
2348 		fd->fts[0] = *(struct fd_type *)addr;
2349 		fd->ft = &fd->fts[0];
2350 		fd->flags |= FD_UA;
2351 		return (0);
2352 
2353 	case FD_GOPTS:			/* get drive options */
2354 		*(int *)addr = fd->options + FDOPT_AUTOSEL;
2355 		return (0);
2356 
2357 	case FD_SOPTS:			/* set drive options */
2358 		fd->options = *(int *)addr & ~FDOPT_AUTOSEL;
2359 		return (0);
2360 
2361 #ifdef FDC_DEBUG
2362 	case FD_DEBUG:
2363 		if ((fd_debug != 0) != (*(int *)addr != 0)) {
2364 			fd_debug = (*(int *)addr != 0);
2365 			printf("fd%d: debugging turned %s\n",
2366 			    fd->fdu, fd_debug ? "on" : "off");
2367 		}
2368 		return (0);
2369 #endif
2370 
2371 	case FD_CLRERR:
2372 		if (suser(td) != 0)
2373 			return (EPERM);
2374 		fd->fdc->fdc_errs = 0;
2375 		return (0);
2376 
2377 	case FD_GSTAT:
2378 		fsp = (struct fdc_status *)addr;
2379 		if ((fd->fdc->flags & FDC_STAT_VALID) == 0)
2380 			return (EINVAL);
2381 		memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int));
2382 		return (0);
2383 
2384 	case FD_GDTYPE:
2385 		*(enum fd_drivetype *)addr = fd->type;
2386 		return (0);
2387 	}
2388 
2389 	/*
2390 	 * Now handle everything else.  Make sure we have a valid
2391 	 * drive type.
2392 	 */
2393 	if (fd->flags & FD_NONBLOCK)
2394 		return (EAGAIN);
2395 	if (fd->ft == 0)
2396 		return (ENXIO);
2397 	error = 0;
2398 
2399 	switch (cmd) {
2400 
2401 	case FD_FORM:
2402 		if ((flag & FWRITE) == 0)
2403 			return (EBADF);	/* must be opened for writing */
2404 		if (((struct fd_formb *)addr)->format_version !=
2405 		    FD_FORMAT_VERSION)
2406 			return (EINVAL); /* wrong version of formatting prog */
2407 		error = fdmisccmd(dev, FDBIO_FORMAT, addr);
2408 		break;
2409 
2410 	case FD_GTYPE:                  /* get drive type */
2411 		*(struct fd_type *)addr = *fd->ft;
2412 		break;
2413 
2414 	case FD_STYPE:                  /* set drive type */
2415 		/* this is considered harmful; only allow for superuser */
2416 		if (suser(td) != 0)
2417 			return (EPERM);
2418 		*fd->ft = *(struct fd_type *)addr;
2419 		break;
2420 
2421 	case FD_GOPTS:			/* get drive options */
2422 		*(int *)addr = fd->options;
2423 		break;
2424 
2425 	case FD_SOPTS:			/* set drive options */
2426 		fd->options = *(int *)addr;
2427 		break;
2428 
2429 #ifdef FDC_DEBUG
2430 	case FD_DEBUG:
2431 		if ((fd_debug != 0) != (*(int *)addr != 0)) {
2432 			fd_debug = (*(int *)addr != 0);
2433 			printf("fd%d: debugging turned %s\n",
2434 			    fd->fdu, fd_debug ? "on" : "off");
2435 		}
2436 		break;
2437 #endif
2438 
2439 	case FD_CLRERR:
2440 		if (suser(td) != 0)
2441 			return (EPERM);
2442 		fd->fdc->fdc_errs = 0;
2443 		break;
2444 
2445 	case FD_GSTAT:
2446 		fsp = (struct fdc_status *)addr;
2447 		if ((fd->fdc->flags & FDC_STAT_VALID) == 0)
2448 			return (EINVAL);
2449 		memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int));
2450 		break;
2451 
2452 	case FD_READID:
2453 		rid = (struct fdc_readid *)addr;
2454 		if (rid->cyl > MAX_CYLINDER || rid->head > MAX_HEAD)
2455 			return (EINVAL);
2456 		error = fdmisccmd(dev, FDBIO_RDSECTID, addr);
2457 		break;
2458 
2459 	default:
2460 		error = ENOTTY;
2461 		break;
2462 	}
2463 	return (error);
2464 }
2465