1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2004 Poul-Henning Kamp 5 * Copyright (c) 1990 The Regents of the University of California. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Don Ahn. 10 * 11 * Libretto PCMCIA floppy support by David Horwitt (dhorwitt@ucsd.edu) 12 * aided by the Linux floppy driver modifications from David Bateman 13 * (dbateman@eng.uts.edu.au). 14 * 15 * Copyright (c) 1993, 1994 by 16 * jc@irbs.UUCP (John Capo) 17 * vak@zebub.msk.su (Serge Vakulenko) 18 * ache@astral.msk.su (Andrew A. Chernov) 19 * 20 * Copyright (c) 1993, 1994, 1995 by 21 * joerg_wunsch@uriah.sax.de (Joerg Wunsch) 22 * dufault@hda.com (Peter Dufault) 23 * 24 * Copyright (c) 2001 Joerg Wunsch, 25 * joerg_wunsch@uriah.heep.sax.de (Joerg Wunsch) 26 * 27 * Redistribution and use in source and binary forms, with or without 28 * modification, are permitted provided that the following conditions 29 * are met: 30 * 1. Redistributions of source code must retain the above copyright 31 * notice, this list of conditions and the following disclaimer. 32 * 2. Redistributions in binary form must reproduce the above copyright 33 * notice, this list of conditions and the following disclaimer in the 34 * documentation and/or other materials provided with the distribution. 35 * 3. Neither the name of the University nor the names of its contributors 36 * may be used to endorse or promote products derived from this software 37 * without specific prior written permission. 38 * 39 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 40 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 42 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 43 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 44 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 45 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 47 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 48 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 49 * SUCH DAMAGE. 50 * 51 * from: @(#)fd.c 7.4 (Berkeley) 5/25/91 52 * 53 */ 54 55 #include <sys/cdefs.h> 56 __FBSDID("$FreeBSD$"); 57 58 #include "opt_fdc.h" 59 60 #include <sys/param.h> 61 #include <sys/bio.h> 62 #include <sys/bus.h> 63 #include <sys/devicestat.h> 64 #include <sys/disk.h> 65 #include <sys/fcntl.h> 66 #include <sys/fdcio.h> 67 #include <sys/filio.h> 68 #include <sys/kernel.h> 69 #include <sys/kthread.h> 70 #include <sys/lock.h> 71 #include <sys/malloc.h> 72 #include <sys/module.h> 73 #include <sys/mutex.h> 74 #include <sys/priv.h> 75 #include <sys/proc.h> 76 #include <sys/rman.h> 77 #include <sys/sysctl.h> 78 #include <sys/systm.h> 79 80 #include <geom/geom.h> 81 82 #include <machine/bus.h> 83 #include <machine/clock.h> 84 #include <machine/stdarg.h> 85 86 #include <isa/isavar.h> 87 #include <isa/isareg.h> 88 #include <isa/rtc.h> 89 #include <dev/fdc/fdcvar.h> 90 91 #include <dev/ic/nec765.h> 92 93 /* 94 * Runtime configuration hints/flags 95 */ 96 97 /* configuration flags for fd */ 98 #define FD_TYPEMASK 0x0f /* drive type, matches enum 99 * fd_drivetype; on i386 machines, if 100 * given as 0, use RTC type for fd0 101 * and fd1 */ 102 #define FD_NO_CHLINE 0x10 /* drive does not support changeline 103 * aka. unit attention */ 104 #define FD_NO_PROBE 0x20 /* don't probe drive (seek test), just 105 * assume it is there */ 106 107 /* 108 * Things that could conceiveably considered parameters or tweakables 109 */ 110 111 /* 112 * Maximal number of bytes in a cylinder. 113 * This is used for ISADMA bouncebuffer allocation and sets the max 114 * xfersize we support. 115 * 116 * 2.88M format has 2 x 36 x 512, allow for hacked up density. 117 */ 118 #define MAX_BYTES_PER_CYL (2 * 40 * 512) 119 120 /* 121 * Timeout value for the PIO loops to wait until the FDC main status 122 * register matches our expectations (request for master, direction 123 * bit). This is supposed to be a number of microseconds, although 124 * timing might actually not be very accurate. 125 * 126 * Timeouts of 100 msec are believed to be required for some broken 127 * (old) hardware. 128 */ 129 #define FDSTS_TIMEOUT 100000 130 131 /* 132 * After this many errors, stop whining. Close will reset this count. 133 */ 134 #define FDC_ERRMAX 100 135 136 /* 137 * AutoDensity search lists for each drive type. 138 */ 139 140 static struct fd_type fd_searchlist_360k[] = { 141 { FDF_5_360 }, 142 { 0 } 143 }; 144 145 static struct fd_type fd_searchlist_12m[] = { 146 { FDF_5_1200 | FL_AUTO }, 147 { FDF_5_400 | FL_AUTO }, 148 { FDF_5_360 | FL_2STEP | FL_AUTO}, 149 { 0 } 150 }; 151 152 static struct fd_type fd_searchlist_720k[] = { 153 { FDF_3_720 }, 154 { 0 } 155 }; 156 157 static struct fd_type fd_searchlist_144m[] = { 158 { FDF_3_1440 | FL_AUTO}, 159 { FDF_3_720 | FL_AUTO}, 160 { 0 } 161 }; 162 163 static struct fd_type fd_searchlist_288m[] = { 164 { FDF_3_1440 | FL_AUTO }, 165 #if 0 166 { FDF_3_2880 | FL_AUTO }, /* XXX: probably doesn't work */ 167 #endif 168 { FDF_3_720 | FL_AUTO}, 169 { 0 } 170 }; 171 172 /* 173 * Order must match enum fd_drivetype in <sys/fdcio.h>. 174 */ 175 static struct fd_type *fd_native_types[] = { 176 NULL, /* FDT_NONE */ 177 fd_searchlist_360k, /* FDT_360K */ 178 fd_searchlist_12m, /* FDT_12M */ 179 fd_searchlist_720k, /* FDT_720K */ 180 fd_searchlist_144m, /* FDT_144M */ 181 fd_searchlist_288m, /* FDT_288M_1 (mapped to FDT_288M) */ 182 fd_searchlist_288m, /* FDT_288M */ 183 }; 184 185 /* 186 * Internals start here 187 */ 188 189 /* registers */ 190 #define FDOUT 2 /* Digital Output Register (W) */ 191 #define FDO_FDSEL 0x03 /* floppy device select */ 192 #define FDO_FRST 0x04 /* floppy controller reset */ 193 #define FDO_FDMAEN 0x08 /* enable floppy DMA and Interrupt */ 194 #define FDO_MOEN0 0x10 /* motor enable drive 0 */ 195 #define FDO_MOEN1 0x20 /* motor enable drive 1 */ 196 #define FDO_MOEN2 0x40 /* motor enable drive 2 */ 197 #define FDO_MOEN3 0x80 /* motor enable drive 3 */ 198 199 #define FDSTS 4 /* NEC 765 Main Status Register (R) */ 200 #define FDDSR 4 /* Data Rate Select Register (W) */ 201 #define FDDATA 5 /* NEC 765 Data Register (R/W) */ 202 #define FDCTL 7 /* Control Register (W) */ 203 204 /* 205 * The YE-DATA PC Card floppies use PIO to read in the data rather 206 * than DMA due to the wild variability of DMA for the PC Card 207 * devices. DMA was deleted from the PC Card specification in version 208 * 7.2 of the standard, but that post-dates the YE-DATA devices by many 209 * years. 210 * 211 * In addition, if we cannot setup the DMA resources for the ISA 212 * attachment, we'll use this same offset for data transfer. However, 213 * that almost certainly won't work. 214 * 215 * For this mode, offset 0 and 1 must be used to setup the transfer 216 * for this floppy. This is OK for PC Card YE Data devices, but for 217 * ISA this is likely wrong. These registers are only available on 218 * those systems that map them to the floppy drive. Newer systems do 219 * not do this, and we should likely prohibit access to them (or 220 * disallow NODMA to be set). 221 */ 222 #define FDBCDR 0 /* And 1 */ 223 #define FD_YE_DATAPORT 6 /* Drive Data port */ 224 225 #define FDI_DCHG 0x80 /* diskette has been changed */ 226 /* requires drive and motor being selected */ 227 /* is cleared by any step pulse to drive */ 228 229 /* 230 * We have three private BIO commands. 231 */ 232 #define BIO_PROBE BIO_CMD0 233 #define BIO_RDID BIO_CMD1 234 #define BIO_FMT BIO_CMD2 235 236 /* 237 * Per drive structure (softc). 238 */ 239 struct fd_data { 240 u_char *fd_ioptr; /* IO pointer */ 241 u_int fd_iosize; /* Size of IO chunks */ 242 u_int fd_iocount; /* Outstanding requests */ 243 struct fdc_data *fdc; /* pointer to controller structure */ 244 int fdsu; /* this units number on this controller */ 245 enum fd_drivetype type; /* drive type */ 246 struct fd_type *ft; /* pointer to current type descriptor */ 247 struct fd_type fts; /* type descriptors */ 248 int sectorsize; 249 int flags; 250 #define FD_WP (1<<0) /* Write protected */ 251 #define FD_MOTOR (1<<1) /* motor should be on */ 252 #define FD_MOTORWAIT (1<<2) /* motor should be on */ 253 #define FD_EMPTY (1<<3) /* no media */ 254 #define FD_NEWDISK (1<<4) /* media changed */ 255 #define FD_ISADMA (1<<5) /* isa dma started */ 256 int track; /* where we think the head is */ 257 #define FD_NO_TRACK -2 258 int options; /* FDOPT_* */ 259 struct callout toffhandle; 260 struct g_geom *fd_geom; 261 struct g_provider *fd_provider; 262 device_t dev; 263 struct bio_queue_head fd_bq; 264 }; 265 266 #define FD_NOT_VALID -2 267 268 static driver_intr_t fdc_intr; 269 static driver_filter_t fdc_intr_fast; 270 static void fdc_reset(struct fdc_data *); 271 static int fd_probe_disk(struct fd_data *, int *); 272 273 static SYSCTL_NODE(_debug, OID_AUTO, fdc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 274 "fdc driver"); 275 276 static int fifo_threshold = 8; 277 SYSCTL_INT(_debug_fdc, OID_AUTO, fifo, CTLFLAG_RW, &fifo_threshold, 0, 278 "FIFO threshold setting"); 279 280 static int debugflags = 0; 281 SYSCTL_INT(_debug_fdc, OID_AUTO, debugflags, CTLFLAG_RW, &debugflags, 0, 282 "Debug flags"); 283 284 static int retries = 10; 285 SYSCTL_INT(_debug_fdc, OID_AUTO, retries, CTLFLAG_RW, &retries, 0, 286 "Number of retries to attempt"); 287 288 static int spec1 = NE7_SPEC_1(6, 240); 289 SYSCTL_INT(_debug_fdc, OID_AUTO, spec1, CTLFLAG_RW, &spec1, 0, 290 "Specification byte one (step-rate + head unload)"); 291 292 static int spec2 = NE7_SPEC_2(16, 0); 293 SYSCTL_INT(_debug_fdc, OID_AUTO, spec2, CTLFLAG_RW, &spec2, 0, 294 "Specification byte two (head load time + no-dma)"); 295 296 static int settle; 297 SYSCTL_INT(_debug_fdc, OID_AUTO, settle, CTLFLAG_RW, &settle, 0, 298 "Head settling time in sec/hz"); 299 300 static void 301 fdprinttype(struct fd_type *ft) 302 { 303 304 printf("(%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,0x%x)", 305 ft->sectrac, ft->secsize, ft->datalen, ft->gap, ft->tracks, 306 ft->size, ft->trans, ft->heads, ft->f_gap, ft->f_inter, 307 ft->offset_side2, ft->flags); 308 } 309 310 static void 311 fdsettype(struct fd_data *fd, struct fd_type *ft) 312 { 313 fd->ft = ft; 314 ft->size = ft->sectrac * ft->heads * ft->tracks; 315 fd->sectorsize = 128 << fd->ft->secsize; 316 } 317 318 /* 319 * Bus space handling (access to low-level IO). 320 */ 321 static inline void 322 fdregwr(struct fdc_data *fdc, int reg, uint8_t v) 323 { 324 325 bus_space_write_1(fdc->iot, fdc->ioh[reg], fdc->ioff[reg], v); 326 } 327 328 static inline uint8_t 329 fdregrd(struct fdc_data *fdc, int reg) 330 { 331 332 return bus_space_read_1(fdc->iot, fdc->ioh[reg], fdc->ioff[reg]); 333 } 334 335 static void 336 fdctl_wr(struct fdc_data *fdc, u_int8_t v) 337 { 338 339 fdregwr(fdc, FDCTL, v); 340 } 341 342 static void 343 fdout_wr(struct fdc_data *fdc, u_int8_t v) 344 { 345 346 fdregwr(fdc, FDOUT, v); 347 } 348 349 static u_int8_t 350 fdsts_rd(struct fdc_data *fdc) 351 { 352 353 return fdregrd(fdc, FDSTS); 354 } 355 356 static void 357 fddsr_wr(struct fdc_data *fdc, u_int8_t v) 358 { 359 360 fdregwr(fdc, FDDSR, v); 361 } 362 363 static void 364 fddata_wr(struct fdc_data *fdc, u_int8_t v) 365 { 366 367 fdregwr(fdc, FDDATA, v); 368 } 369 370 static u_int8_t 371 fddata_rd(struct fdc_data *fdc) 372 { 373 374 return fdregrd(fdc, FDDATA); 375 } 376 377 static u_int8_t 378 fdin_rd(struct fdc_data *fdc) 379 { 380 381 return fdregrd(fdc, FDCTL); 382 } 383 384 /* 385 * Magic pseudo-DMA initialization for YE FDC. Sets count and 386 * direction. 387 */ 388 static void 389 fdbcdr_wr(struct fdc_data *fdc, int iswrite, uint16_t count) 390 { 391 fdregwr(fdc, FDBCDR, (count - 1) & 0xff); 392 fdregwr(fdc, FDBCDR + 1, 393 (iswrite ? 0x80 : 0) | (((count - 1) >> 8) & 0x7f)); 394 } 395 396 static int 397 fdc_err(struct fdc_data *fdc, const char *s) 398 { 399 fdc->fdc_errs++; 400 if (s) { 401 if (fdc->fdc_errs < FDC_ERRMAX) 402 device_printf(fdc->fdc_dev, "%s", s); 403 else if (fdc->fdc_errs == FDC_ERRMAX) 404 device_printf(fdc->fdc_dev, "too many errors, not " 405 "logging any more\n"); 406 } 407 408 return (1); 409 } 410 411 /* 412 * FDC IO functions, take care of the main status register, timeout 413 * in case the desired status bits are never set. 414 * 415 * These PIO loops initially start out with short delays between 416 * each iteration in the expectation that the required condition 417 * is usually met quickly, so it can be handled immediately. 418 */ 419 static int 420 fdc_in(struct fdc_data *fdc, int *ptr) 421 { 422 int i, j, step; 423 424 step = 1; 425 for (j = 0; j < FDSTS_TIMEOUT; j += step) { 426 i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM); 427 if (i == (NE7_DIO|NE7_RQM)) { 428 i = fddata_rd(fdc); 429 if (ptr) 430 *ptr = i; 431 return (0); 432 } 433 if (i == NE7_RQM) 434 return (fdc_err(fdc, "ready for output in input\n")); 435 step += step; 436 DELAY(step); 437 } 438 return (fdc_err(fdc, bootverbose? "input ready timeout\n": 0)); 439 } 440 441 static int 442 fdc_out(struct fdc_data *fdc, int x) 443 { 444 int i, j, step; 445 446 step = 1; 447 for (j = 0; j < FDSTS_TIMEOUT; j += step) { 448 i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM); 449 if (i == NE7_RQM) { 450 fddata_wr(fdc, x); 451 return (0); 452 } 453 if (i == (NE7_DIO|NE7_RQM)) 454 return (fdc_err(fdc, "ready for input in output\n")); 455 step += step; 456 DELAY(step); 457 } 458 return (fdc_err(fdc, bootverbose? "output ready timeout\n": 0)); 459 } 460 461 /* 462 * fdc_cmd: Send a command to the chip. 463 * Takes a varargs with this structure: 464 * # of output bytes 465 * output bytes as int [...] 466 * # of input bytes 467 * input bytes as int* [...] 468 */ 469 static int 470 fdc_cmd(struct fdc_data *fdc, int n_out, ...) 471 { 472 u_char cmd = 0; 473 int n_in; 474 int n, i; 475 va_list ap; 476 477 va_start(ap, n_out); 478 for (n = 0; n < n_out; n++) { 479 i = va_arg(ap, int); 480 if (n == 0) 481 cmd = i; 482 if (fdc_out(fdc, i) < 0) { 483 char msg[50]; 484 snprintf(msg, sizeof(msg), 485 "cmd %x failed at out byte %d of %d\n", 486 cmd, n + 1, n_out); 487 fdc->flags |= FDC_NEEDS_RESET; 488 va_end(ap); 489 return fdc_err(fdc, msg); 490 } 491 } 492 n_in = va_arg(ap, int); 493 for (n = 0; n < n_in; n++) { 494 int *ptr = va_arg(ap, int *); 495 if (fdc_in(fdc, ptr) != 0) { 496 char msg[50]; 497 snprintf(msg, sizeof(msg), 498 "cmd %02x failed at in byte %d of %d\n", 499 cmd, n + 1, n_in); 500 fdc->flags |= FDC_NEEDS_RESET; 501 va_end(ap); 502 return fdc_err(fdc, msg); 503 } 504 } 505 va_end(ap); 506 return (0); 507 } 508 509 static void 510 fdc_reset(struct fdc_data *fdc) 511 { 512 int i, r[10]; 513 514 if (fdc->fdct == FDC_ENHANCED) { 515 /* Try a software reset, default precomp, and 500 kb/s */ 516 fddsr_wr(fdc, I8207X_DSR_SR); 517 } else { 518 /* Try a hardware reset, keep motor on */ 519 fdout_wr(fdc, fdc->fdout & ~(FDO_FRST|FDO_FDMAEN)); 520 DELAY(100); 521 /* enable FDC, but defer interrupts a moment */ 522 fdout_wr(fdc, fdc->fdout & ~FDO_FDMAEN); 523 } 524 DELAY(100); 525 fdout_wr(fdc, fdc->fdout); 526 527 /* XXX after a reset, silently believe the FDC will accept commands */ 528 if (fdc_cmd(fdc, 3, NE7CMD_SPECIFY, spec1, spec2, 0)) 529 device_printf(fdc->fdc_dev, " SPECIFY failed in reset\n"); 530 531 if (fdc->fdct == FDC_ENHANCED) { 532 if (fdc_cmd(fdc, 4, 533 I8207X_CONFIG, 534 0, 535 /* 0x40 | */ /* Enable Implied Seek - 536 * breaks 2step! */ 537 0x10 | /* Polling disabled */ 538 (fifo_threshold - 1), /* Fifo threshold */ 539 0x00, /* Precomp track */ 540 0)) 541 device_printf(fdc->fdc_dev, 542 " CONFIGURE failed in reset\n"); 543 if (debugflags & 1) { 544 if (fdc_cmd(fdc, 1, 545 I8207X_DUMPREG, 546 10, &r[0], &r[1], &r[2], &r[3], &r[4], 547 &r[5], &r[6], &r[7], &r[8], &r[9])) 548 device_printf(fdc->fdc_dev, 549 " DUMPREG failed in reset\n"); 550 for (i = 0; i < 10; i++) 551 printf(" %02x", r[i]); 552 printf("\n"); 553 } 554 } 555 } 556 557 static int 558 fdc_sense_drive(struct fdc_data *fdc, int *st3p) 559 { 560 int st3; 561 562 if (fdc_cmd(fdc, 2, NE7CMD_SENSED, fdc->fd->fdsu, 1, &st3)) 563 return (fdc_err(fdc, "Sense Drive Status failed\n")); 564 if (st3p) 565 *st3p = st3; 566 return (0); 567 } 568 569 static int 570 fdc_sense_int(struct fdc_data *fdc, int *st0p, int *cylp) 571 { 572 int cyl, st0, ret; 573 574 ret = fdc_cmd(fdc, 1, NE7CMD_SENSEI, 1, &st0); 575 if (ret) { 576 (void)fdc_err(fdc, "sense intr err reading stat reg 0\n"); 577 return (ret); 578 } 579 580 if (st0p) 581 *st0p = st0; 582 583 if ((st0 & NE7_ST0_IC) == NE7_ST0_IC_IV) { 584 /* 585 * There doesn't seem to have been an interrupt. 586 */ 587 return (FD_NOT_VALID); 588 } 589 590 if (fdc_in(fdc, &cyl) != 0) 591 return fdc_err(fdc, "can't get cyl num\n"); 592 593 if (cylp) 594 *cylp = cyl; 595 596 return (0); 597 } 598 599 static int 600 fdc_read_status(struct fdc_data *fdc) 601 { 602 int i, ret, status; 603 604 for (i = ret = 0; i < 7; i++) { 605 ret = fdc_in(fdc, &status); 606 fdc->status[i] = status; 607 if (ret != 0) 608 break; 609 } 610 611 if (ret == 0) 612 fdc->flags |= FDC_STAT_VALID; 613 else 614 fdc->flags &= ~FDC_STAT_VALID; 615 616 return ret; 617 } 618 619 /* 620 * Select this drive 621 */ 622 static void 623 fd_select(struct fd_data *fd) 624 { 625 struct fdc_data *fdc; 626 627 /* XXX: lock controller */ 628 fdc = fd->fdc; 629 fdc->fdout &= ~FDO_FDSEL; 630 fdc->fdout |= FDO_FDMAEN | FDO_FRST | fd->fdsu; 631 fdout_wr(fdc, fdc->fdout); 632 } 633 634 static void 635 fd_turnon(void *arg) 636 { 637 struct fd_data *fd; 638 struct bio *bp; 639 int once; 640 641 fd = arg; 642 mtx_assert(&fd->fdc->fdc_mtx, MA_OWNED); 643 fd->flags &= ~FD_MOTORWAIT; 644 fd->flags |= FD_MOTOR; 645 once = 0; 646 for (;;) { 647 bp = bioq_takefirst(&fd->fd_bq); 648 if (bp == NULL) 649 break; 650 bioq_disksort(&fd->fdc->head, bp); 651 once = 1; 652 } 653 if (once) 654 wakeup(&fd->fdc->head); 655 } 656 657 static void 658 fd_motor(struct fd_data *fd, int turnon) 659 { 660 struct fdc_data *fdc; 661 662 fdc = fd->fdc; 663 /* 664 mtx_assert(&fdc->fdc_mtx, MA_OWNED); 665 */ 666 if (turnon) { 667 fd->flags |= FD_MOTORWAIT; 668 fdc->fdout |= (FDO_MOEN0 << fd->fdsu); 669 callout_reset(&fd->toffhandle, hz, fd_turnon, fd); 670 } else { 671 callout_stop(&fd->toffhandle); 672 fd->flags &= ~(FD_MOTOR|FD_MOTORWAIT); 673 fdc->fdout &= ~(FDO_MOEN0 << fd->fdsu); 674 } 675 fdout_wr(fdc, fdc->fdout); 676 } 677 678 static void 679 fd_turnoff(void *xfd) 680 { 681 struct fd_data *fd = xfd; 682 683 mtx_assert(&fd->fdc->fdc_mtx, MA_OWNED); 684 fd_motor(fd, 0); 685 } 686 687 /* 688 * fdc_intr - wake up the worker thread. 689 */ 690 691 static void 692 fdc_intr(void *arg) 693 { 694 695 wakeup(arg); 696 } 697 698 static int 699 fdc_intr_fast(void *arg) 700 { 701 702 wakeup(arg); 703 return(FILTER_HANDLED); 704 } 705 706 /* 707 * fdc_pio(): perform programmed IO read/write for YE PCMCIA floppy. 708 */ 709 static void 710 fdc_pio(struct fdc_data *fdc) 711 { 712 u_char *cptr; 713 struct bio *bp; 714 u_int count; 715 716 bp = fdc->bp; 717 cptr = fdc->fd->fd_ioptr; 718 count = fdc->fd->fd_iosize; 719 720 if (bp->bio_cmd == BIO_READ) { 721 fdbcdr_wr(fdc, 0, count); 722 bus_space_read_multi_1(fdc->iot, fdc->ioh[FD_YE_DATAPORT], 723 fdc->ioff[FD_YE_DATAPORT], cptr, count); 724 } else { 725 bus_space_write_multi_1(fdc->iot, fdc->ioh[FD_YE_DATAPORT], 726 fdc->ioff[FD_YE_DATAPORT], cptr, count); 727 fdbcdr_wr(fdc, 0, count); /* needed? */ 728 } 729 } 730 731 static int 732 fdc_biodone(struct fdc_data *fdc, int error) 733 { 734 struct fd_data *fd; 735 struct bio *bp; 736 737 fd = fdc->fd; 738 bp = fdc->bp; 739 740 mtx_lock(&fdc->fdc_mtx); 741 if (--fd->fd_iocount == 0) 742 callout_reset(&fd->toffhandle, 4 * hz, fd_turnoff, fd); 743 fdc->bp = NULL; 744 fdc->fd = NULL; 745 mtx_unlock(&fdc->fdc_mtx); 746 if (bp->bio_to != NULL) { 747 if ((debugflags & 2) && fd->fdc->retry > 0) 748 printf("retries: %d\n", fd->fdc->retry); 749 g_io_deliver(bp, error); 750 return (0); 751 } 752 bp->bio_error = error; 753 bp->bio_flags |= BIO_DONE; 754 wakeup(bp); 755 return (0); 756 } 757 758 static int retry_line; 759 760 static int 761 fdc_worker(struct fdc_data *fdc) 762 { 763 struct fd_data *fd; 764 struct bio *bp; 765 int i, nsect; 766 int st0, st3, cyl, mfm, steptrac, cylinder, descyl, sec; 767 int head; 768 int override_error; 769 static int need_recal; 770 struct fdc_readid *idp; 771 struct fd_formb *finfo; 772 773 override_error = 0; 774 775 /* Have we exhausted our retries ? */ 776 bp = fdc->bp; 777 fd = fdc->fd; 778 if (bp != NULL && 779 (fdc->retry >= retries || (fd->options & FDOPT_NORETRY))) { 780 if ((debugflags & 4)) 781 printf("Too many retries (EIO)\n"); 782 if (fdc->flags & FDC_NEEDS_RESET) { 783 mtx_lock(&fdc->fdc_mtx); 784 fd->flags |= FD_EMPTY; 785 mtx_unlock(&fdc->fdc_mtx); 786 } 787 return (fdc_biodone(fdc, EIO)); 788 } 789 790 /* Disable ISADMA if we bailed while it was active */ 791 if (fd != NULL && (fd->flags & FD_ISADMA)) { 792 isa_dmadone( 793 bp->bio_cmd == BIO_READ ? ISADMA_READ : ISADMA_WRITE, 794 fd->fd_ioptr, fd->fd_iosize, fdc->dmachan); 795 mtx_lock(&fdc->fdc_mtx); 796 fd->flags &= ~FD_ISADMA; 797 mtx_unlock(&fdc->fdc_mtx); 798 } 799 800 /* Unwedge the controller ? */ 801 if (fdc->flags & FDC_NEEDS_RESET) { 802 fdc->flags &= ~FDC_NEEDS_RESET; 803 fdc_reset(fdc); 804 if (cold) 805 DELAY(1000000); 806 else 807 tsleep(fdc, PRIBIO, "fdcrst", hz); 808 /* Discard results */ 809 for (i = 0; i < 4; i++) 810 fdc_sense_int(fdc, &st0, &cyl); 811 /* All drives must recal */ 812 need_recal = 0xf; 813 } 814 815 /* Pick up a request, if need be wait for it */ 816 if (fdc->bp == NULL) { 817 mtx_lock(&fdc->fdc_mtx); 818 do { 819 fdc->bp = bioq_takefirst(&fdc->head); 820 if (fdc->bp == NULL) 821 msleep(&fdc->head, &fdc->fdc_mtx, 822 PRIBIO, "-", 0); 823 } while (fdc->bp == NULL && 824 (fdc->flags & FDC_KTHREAD_EXIT) == 0); 825 mtx_unlock(&fdc->fdc_mtx); 826 827 if (fdc->bp == NULL) 828 /* 829 * Nothing to do, worker thread has been 830 * requested to stop. 831 */ 832 return (0); 833 834 bp = fdc->bp; 835 fd = fdc->fd = bp->bio_driver1; 836 fdc->retry = 0; 837 fd->fd_ioptr = bp->bio_data; 838 if (bp->bio_cmd == BIO_FMT) { 839 i = offsetof(struct fd_formb, fd_formb_cylno(0)); 840 fd->fd_ioptr += i; 841 fd->fd_iosize = bp->bio_length - i; 842 } 843 } 844 845 /* Select drive, setup params */ 846 fd_select(fd); 847 if (fdc->fdct == FDC_ENHANCED) 848 fddsr_wr(fdc, fd->ft->trans); 849 else 850 fdctl_wr(fdc, fd->ft->trans); 851 852 if (bp->bio_cmd == BIO_PROBE) { 853 if ((!(device_get_flags(fd->dev) & FD_NO_CHLINE) && 854 !(fdin_rd(fdc) & FDI_DCHG) && 855 !(fd->flags & FD_EMPTY)) || 856 fd_probe_disk(fd, &need_recal) == 0) 857 return (fdc_biodone(fdc, 0)); 858 return (1); 859 } 860 861 /* 862 * If we are dead just flush the requests 863 */ 864 if (fd->flags & FD_EMPTY) 865 return (fdc_biodone(fdc, ENXIO)); 866 867 /* Check if we lost our media */ 868 if (fdin_rd(fdc) & FDI_DCHG) { 869 if (debugflags & 0x40) 870 printf("Lost disk\n"); 871 mtx_lock(&fdc->fdc_mtx); 872 fd->flags |= FD_EMPTY; 873 fd->flags |= FD_NEWDISK; 874 mtx_unlock(&fdc->fdc_mtx); 875 g_topology_lock(); 876 g_orphan_provider(fd->fd_provider, ENXIO); 877 fd->fd_provider->flags |= G_PF_WITHER; 878 fd->fd_provider = 879 g_new_providerf(fd->fd_geom, "%s", fd->fd_geom->name); 880 g_error_provider(fd->fd_provider, 0); 881 g_topology_unlock(); 882 return (fdc_biodone(fdc, ENXIO)); 883 } 884 885 /* Check if the floppy is write-protected */ 886 if (bp->bio_cmd == BIO_FMT || bp->bio_cmd == BIO_WRITE) { 887 retry_line = __LINE__; 888 if(fdc_sense_drive(fdc, &st3) != 0) 889 return (1); 890 if(st3 & NE7_ST3_WP) 891 return (fdc_biodone(fdc, EROFS)); 892 } 893 894 mfm = (fd->ft->flags & FL_MFM)? NE7CMD_MFM: 0; 895 steptrac = (fd->ft->flags & FL_2STEP)? 2: 1; 896 i = fd->ft->sectrac * fd->ft->heads; 897 cylinder = bp->bio_pblkno / i; 898 descyl = cylinder * steptrac; 899 sec = bp->bio_pblkno % i; 900 nsect = i - sec; 901 head = sec / fd->ft->sectrac; 902 sec = sec % fd->ft->sectrac + 1; 903 904 /* If everything is going swimmingly, use multisector xfer */ 905 if (fdc->retry == 0 && 906 (bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE)) { 907 fd->fd_iosize = imin(nsect * fd->sectorsize, bp->bio_resid); 908 nsect = fd->fd_iosize / fd->sectorsize; 909 } else if (bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE) { 910 fd->fd_iosize = fd->sectorsize; 911 nsect = 1; 912 } 913 914 /* Do RECAL if we need to or are going to track zero anyway */ 915 if ((need_recal & (1 << fd->fdsu)) || 916 (cylinder == 0 && fd->track != 0) || 917 fdc->retry > 2) { 918 retry_line = __LINE__; 919 if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fd->fdsu, 0)) 920 return (1); 921 tsleep(fdc, PRIBIO, "fdrecal", hz); 922 retry_line = __LINE__; 923 if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 924 return (1); /* XXX */ 925 retry_line = __LINE__; 926 if ((st0 & 0xc0) || cyl != 0) 927 return (1); 928 need_recal &= ~(1 << fd->fdsu); 929 fd->track = 0; 930 /* let the heads settle */ 931 if (settle) 932 tsleep(fdc->fd, PRIBIO, "fdhdstl", settle); 933 } 934 935 /* 936 * SEEK to where we want to be 937 */ 938 if (cylinder != fd->track) { 939 retry_line = __LINE__; 940 if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fd->fdsu, descyl, 0)) 941 return (1); 942 tsleep(fdc, PRIBIO, "fdseek", hz); 943 retry_line = __LINE__; 944 if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 945 return (1); /* XXX */ 946 retry_line = __LINE__; 947 if ((st0 & 0xc0) || cyl != descyl) { 948 need_recal |= (1 << fd->fdsu); 949 return (1); 950 } 951 /* let the heads settle */ 952 if (settle) 953 tsleep(fdc->fd, PRIBIO, "fdhdstl", settle); 954 } 955 fd->track = cylinder; 956 957 if (debugflags & 8) 958 printf("op %x bn %ju siz %u ptr %p retry %d\n", 959 bp->bio_cmd, bp->bio_pblkno, fd->fd_iosize, 960 fd->fd_ioptr, fdc->retry); 961 962 /* Setup ISADMA if we need it and have it */ 963 if ((bp->bio_cmd == BIO_READ || 964 bp->bio_cmd == BIO_WRITE || 965 bp->bio_cmd == BIO_FMT) 966 && !(fdc->flags & FDC_NODMA)) { 967 isa_dmastart( 968 bp->bio_cmd == BIO_READ ? ISADMA_READ : ISADMA_WRITE, 969 fd->fd_ioptr, fd->fd_iosize, fdc->dmachan); 970 mtx_lock(&fdc->fdc_mtx); 971 fd->flags |= FD_ISADMA; 972 mtx_unlock(&fdc->fdc_mtx); 973 } 974 975 /* Do PIO if we have to */ 976 if (fdc->flags & FDC_NODMA) { 977 if (bp->bio_cmd == BIO_READ || 978 bp->bio_cmd == BIO_WRITE || 979 bp->bio_cmd == BIO_FMT) 980 fdbcdr_wr(fdc, 1, fd->fd_iosize); 981 if (bp->bio_cmd == BIO_WRITE || 982 bp->bio_cmd == BIO_FMT) 983 fdc_pio(fdc); 984 } 985 986 switch(bp->bio_cmd) { 987 case BIO_FMT: 988 /* formatting */ 989 finfo = (struct fd_formb *)bp->bio_data; 990 retry_line = __LINE__; 991 if (fdc_cmd(fdc, 6, 992 NE7CMD_FORMAT | mfm, 993 head << 2 | fd->fdsu, 994 finfo->fd_formb_secshift, 995 finfo->fd_formb_nsecs, 996 finfo->fd_formb_gaplen, 997 finfo->fd_formb_fillbyte, 0)) 998 return (1); 999 break; 1000 case BIO_RDID: 1001 retry_line = __LINE__; 1002 if (fdc_cmd(fdc, 2, 1003 NE7CMD_READID | mfm, 1004 head << 2 | fd->fdsu, 0)) 1005 return (1); 1006 break; 1007 case BIO_READ: 1008 retry_line = __LINE__; 1009 if (fdc_cmd(fdc, 9, 1010 NE7CMD_READ | NE7CMD_SK | mfm | NE7CMD_MT, 1011 head << 2 | fd->fdsu, /* head & unit */ 1012 fd->track, /* track */ 1013 head, /* head */ 1014 sec, /* sector + 1 */ 1015 fd->ft->secsize, /* sector size */ 1016 fd->ft->sectrac, /* sectors/track */ 1017 fd->ft->gap, /* gap size */ 1018 fd->ft->datalen, /* data length */ 1019 0)) 1020 return (1); 1021 break; 1022 case BIO_WRITE: 1023 retry_line = __LINE__; 1024 if (fdc_cmd(fdc, 9, 1025 NE7CMD_WRITE | mfm | NE7CMD_MT, 1026 head << 2 | fd->fdsu, /* head & unit */ 1027 fd->track, /* track */ 1028 head, /* head */ 1029 sec, /* sector + 1 */ 1030 fd->ft->secsize, /* sector size */ 1031 fd->ft->sectrac, /* sectors/track */ 1032 fd->ft->gap, /* gap size */ 1033 fd->ft->datalen, /* data length */ 1034 0)) 1035 return (1); 1036 break; 1037 default: 1038 KASSERT(0 == 1, ("Wrong bio_cmd %x\n", bp->bio_cmd)); 1039 } 1040 1041 /* Wait for interrupt */ 1042 i = tsleep(fdc, PRIBIO, "fddata", hz); 1043 1044 /* PIO if the read looks good */ 1045 if (i == 0 && (fdc->flags & FDC_NODMA) && (bp->bio_cmd == BIO_READ)) 1046 fdc_pio(fdc); 1047 1048 /* Finish DMA */ 1049 if (fd->flags & FD_ISADMA) { 1050 isa_dmadone( 1051 bp->bio_cmd == BIO_READ ? ISADMA_READ : ISADMA_WRITE, 1052 fd->fd_ioptr, fd->fd_iosize, fdc->dmachan); 1053 mtx_lock(&fdc->fdc_mtx); 1054 fd->flags &= ~FD_ISADMA; 1055 mtx_unlock(&fdc->fdc_mtx); 1056 } 1057 1058 if (i != 0) { 1059 /* 1060 * Timeout. 1061 * 1062 * Due to IBM's brain-dead design, the FDC has a faked ready 1063 * signal, hardwired to ready == true. Thus, any command 1064 * issued if there's no diskette in the drive will _never_ 1065 * complete, and must be aborted by resetting the FDC. 1066 * Many thanks, Big Blue! 1067 */ 1068 retry_line = __LINE__; 1069 fdc->flags |= FDC_NEEDS_RESET; 1070 return (1); 1071 } 1072 1073 retry_line = __LINE__; 1074 if (fdc_read_status(fdc)) 1075 return (1); 1076 1077 if (debugflags & 0x10) 1078 printf(" -> %x %x %x %x\n", 1079 fdc->status[0], fdc->status[1], 1080 fdc->status[2], fdc->status[3]); 1081 1082 st0 = fdc->status[0] & NE7_ST0_IC; 1083 if (st0 != 0) { 1084 retry_line = __LINE__; 1085 if (st0 == NE7_ST0_IC_AT && fdc->status[1] & NE7_ST1_OR) { 1086 /* 1087 * DMA overrun. Someone hogged the bus and 1088 * didn't release it in time for the next 1089 * FDC transfer. 1090 */ 1091 return (1); 1092 } 1093 retry_line = __LINE__; 1094 if(st0 == NE7_ST0_IC_IV) { 1095 fdc->flags |= FDC_NEEDS_RESET; 1096 return (1); 1097 } 1098 retry_line = __LINE__; 1099 if(st0 == NE7_ST0_IC_AT && fdc->status[2] & NE7_ST2_WC) { 1100 need_recal |= (1 << fd->fdsu); 1101 return (1); 1102 } 1103 if (debugflags & 0x20) { 1104 printf("status %02x %02x %02x %02x %02x %02x\n", 1105 fdc->status[0], fdc->status[1], fdc->status[2], 1106 fdc->status[3], fdc->status[4], fdc->status[5]); 1107 } 1108 retry_line = __LINE__; 1109 if (fd->options & FDOPT_NOERROR) 1110 override_error = 1; 1111 else 1112 return (1); 1113 } 1114 /* All OK */ 1115 switch(bp->bio_cmd) { 1116 case BIO_RDID: 1117 /* copy out ID field contents */ 1118 idp = (struct fdc_readid *)bp->bio_data; 1119 idp->cyl = fdc->status[3]; 1120 idp->head = fdc->status[4]; 1121 idp->sec = fdc->status[5]; 1122 idp->secshift = fdc->status[6]; 1123 if (debugflags & 0x40) 1124 printf("c %d h %d s %d z %d\n", 1125 idp->cyl, idp->head, idp->sec, idp->secshift); 1126 break; 1127 case BIO_READ: 1128 case BIO_WRITE: 1129 bp->bio_pblkno += nsect; 1130 bp->bio_resid -= fd->fd_iosize; 1131 bp->bio_completed += fd->fd_iosize; 1132 fd->fd_ioptr += fd->fd_iosize; 1133 if (override_error) { 1134 if ((debugflags & 4)) 1135 printf("FDOPT_NOERROR: returning bad data\n"); 1136 } else { 1137 /* Since we managed to get something done, 1138 * reset the retry */ 1139 fdc->retry = 0; 1140 if (bp->bio_resid > 0) 1141 return (0); 1142 } 1143 break; 1144 case BIO_FMT: 1145 break; 1146 } 1147 return (fdc_biodone(fdc, 0)); 1148 } 1149 1150 static void 1151 fdc_thread(void *arg) 1152 { 1153 struct fdc_data *fdc; 1154 1155 fdc = arg; 1156 int i; 1157 1158 mtx_lock(&fdc->fdc_mtx); 1159 fdc->flags |= FDC_KTHREAD_ALIVE; 1160 while ((fdc->flags & FDC_KTHREAD_EXIT) == 0) { 1161 mtx_unlock(&fdc->fdc_mtx); 1162 i = fdc_worker(fdc); 1163 if (i && debugflags & 0x20) { 1164 if (fdc->bp != NULL) 1165 g_print_bio("", fdc->bp, ""); 1166 printf("Retry line %d\n", retry_line); 1167 } 1168 fdc->retry += i; 1169 mtx_lock(&fdc->fdc_mtx); 1170 } 1171 fdc->flags &= ~(FDC_KTHREAD_EXIT | FDC_KTHREAD_ALIVE); 1172 mtx_unlock(&fdc->fdc_mtx); 1173 1174 kproc_exit(0); 1175 } 1176 1177 /* 1178 * Enqueue a request. 1179 */ 1180 static void 1181 fd_enqueue(struct fd_data *fd, struct bio *bp) 1182 { 1183 struct fdc_data *fdc; 1184 int call; 1185 1186 call = 0; 1187 fdc = fd->fdc; 1188 mtx_lock(&fdc->fdc_mtx); 1189 /* If we go from idle, cancel motor turnoff */ 1190 if (fd->fd_iocount++ == 0) 1191 callout_stop(&fd->toffhandle); 1192 if (fd->flags & FD_MOTOR) { 1193 /* The motor is on, send it directly to the controller */ 1194 bioq_disksort(&fdc->head, bp); 1195 wakeup(&fdc->head); 1196 } else { 1197 /* Queue it on the drive until the motor has started */ 1198 bioq_insert_tail(&fd->fd_bq, bp); 1199 if (!(fd->flags & FD_MOTORWAIT)) 1200 fd_motor(fd, 1); 1201 } 1202 mtx_unlock(&fdc->fdc_mtx); 1203 } 1204 1205 /* 1206 * Try to find out if we have a disk in the drive. 1207 */ 1208 static int 1209 fd_probe_disk(struct fd_data *fd, int *recal) 1210 { 1211 struct fdc_data *fdc; 1212 int st0, st3, cyl; 1213 int oopts, ret; 1214 1215 fdc = fd->fdc; 1216 oopts = fd->options; 1217 fd->options |= FDOPT_NOERRLOG | FDOPT_NORETRY; 1218 ret = 1; 1219 1220 /* 1221 * First recal, then seek to cyl#1, this clears the old condition on 1222 * the disk change line so we can examine it for current status. 1223 */ 1224 if (debugflags & 0x40) 1225 printf("New disk in probe\n"); 1226 mtx_lock(&fdc->fdc_mtx); 1227 fd->flags |= FD_NEWDISK; 1228 mtx_unlock(&fdc->fdc_mtx); 1229 if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fd->fdsu, 0)) 1230 goto done; 1231 tsleep(fdc, PRIBIO, "fdrecal", hz); 1232 if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 1233 goto done; /* XXX */ 1234 if ((st0 & 0xc0) || cyl != 0) 1235 goto done; 1236 1237 /* Seek to track 1 */ 1238 if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fd->fdsu, 1, 0)) 1239 goto done; 1240 tsleep(fdc, PRIBIO, "fdseek", hz); 1241 if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 1242 goto done; /* XXX */ 1243 *recal |= (1 << fd->fdsu); 1244 if (fdin_rd(fdc) & FDI_DCHG) { 1245 if (debugflags & 0x40) 1246 printf("Empty in probe\n"); 1247 mtx_lock(&fdc->fdc_mtx); 1248 fd->flags |= FD_EMPTY; 1249 mtx_unlock(&fdc->fdc_mtx); 1250 } else { 1251 if (fdc_sense_drive(fdc, &st3) != 0) 1252 goto done; 1253 if (debugflags & 0x40) 1254 printf("Got disk in probe\n"); 1255 mtx_lock(&fdc->fdc_mtx); 1256 fd->flags &= ~FD_EMPTY; 1257 if (st3 & NE7_ST3_WP) 1258 fd->flags |= FD_WP; 1259 else 1260 fd->flags &= ~FD_WP; 1261 mtx_unlock(&fdc->fdc_mtx); 1262 } 1263 ret = 0; 1264 1265 done: 1266 fd->options = oopts; 1267 return (ret); 1268 } 1269 1270 static int 1271 fdmisccmd(struct fd_data *fd, u_int cmd, void *data) 1272 { 1273 struct bio *bp; 1274 struct fd_formb *finfo; 1275 struct fdc_readid *idfield; 1276 int error; 1277 1278 bp = malloc(sizeof(struct bio), M_TEMP, M_WAITOK | M_ZERO); 1279 1280 /* 1281 * Set up a bio request for fdstrategy(). bio_offset is faked 1282 * so that fdstrategy() will seek to the requested 1283 * cylinder, and use the desired head. 1284 */ 1285 bp->bio_cmd = cmd; 1286 if (cmd == BIO_FMT) { 1287 finfo = (struct fd_formb *)data; 1288 bp->bio_pblkno = 1289 (finfo->cyl * fd->ft->heads + finfo->head) * 1290 fd->ft->sectrac; 1291 bp->bio_length = sizeof *finfo; 1292 } else if (cmd == BIO_RDID) { 1293 idfield = (struct fdc_readid *)data; 1294 bp->bio_pblkno = 1295 (idfield->cyl * fd->ft->heads + idfield->head) * 1296 fd->ft->sectrac; 1297 bp->bio_length = sizeof(struct fdc_readid); 1298 } else if (cmd == BIO_PROBE) { 1299 /* nothing */ 1300 } else 1301 panic("wrong cmd in fdmisccmd()"); 1302 bp->bio_offset = bp->bio_pblkno * fd->sectorsize; 1303 bp->bio_data = data; 1304 bp->bio_driver1 = fd; 1305 bp->bio_flags = 0; 1306 1307 fd_enqueue(fd, bp); 1308 1309 do { 1310 tsleep(bp, PRIBIO, "fdwait", hz); 1311 } while (!(bp->bio_flags & BIO_DONE)); 1312 error = bp->bio_error; 1313 1314 free(bp, M_TEMP); 1315 return (error); 1316 } 1317 1318 /* 1319 * Try figuring out the density of the media present in our device. 1320 */ 1321 static int 1322 fdautoselect(struct fd_data *fd) 1323 { 1324 struct fd_type *fdtp; 1325 struct fdc_readid id; 1326 int oopts, rv; 1327 1328 if (!(fd->ft->flags & FL_AUTO)) 1329 return (0); 1330 1331 fdtp = fd_native_types[fd->type]; 1332 fdsettype(fd, fdtp); 1333 if (!(fd->ft->flags & FL_AUTO)) 1334 return (0); 1335 1336 /* 1337 * Try reading sector ID fields, first at cylinder 0, head 0, 1338 * then at cylinder 2, head N. We don't probe cylinder 1, 1339 * since for 5.25in DD media in a HD drive, there are no data 1340 * to read (2 step pulses per media cylinder required). For 1341 * two-sided media, the second probe always goes to head 1, so 1342 * we can tell them apart from single-sided media. As a 1343 * side-effect this means that single-sided media should be 1344 * mentioned in the search list after two-sided media of an 1345 * otherwise identical density. Media with a different number 1346 * of sectors per track but otherwise identical parameters 1347 * cannot be distinguished at all. 1348 * 1349 * If we successfully read an ID field on both cylinders where 1350 * the recorded values match our expectation, we are done. 1351 * Otherwise, we try the next density entry from the table. 1352 * 1353 * Stepping to cylinder 2 has the side-effect of clearing the 1354 * unit attention bit. 1355 */ 1356 oopts = fd->options; 1357 fd->options |= FDOPT_NOERRLOG | FDOPT_NORETRY; 1358 for (; fdtp->heads; fdtp++) { 1359 fdsettype(fd, fdtp); 1360 1361 id.cyl = id.head = 0; 1362 rv = fdmisccmd(fd, BIO_RDID, &id); 1363 if (rv != 0) 1364 continue; 1365 if (id.cyl != 0 || id.head != 0 || id.secshift != fdtp->secsize) 1366 continue; 1367 id.cyl = 2; 1368 id.head = fd->ft->heads - 1; 1369 rv = fdmisccmd(fd, BIO_RDID, &id); 1370 if (id.cyl != 2 || id.head != fdtp->heads - 1 || 1371 id.secshift != fdtp->secsize) 1372 continue; 1373 if (rv == 0) 1374 break; 1375 } 1376 1377 fd->options = oopts; 1378 if (fdtp->heads == 0) { 1379 if (debugflags & 0x40) 1380 device_printf(fd->dev, "autoselection failed\n"); 1381 fdsettype(fd, fd_native_types[fd->type]); 1382 return (-1); 1383 } else { 1384 if (debugflags & 0x40) { 1385 device_printf(fd->dev, 1386 "autoselected %d KB medium\n", 1387 fd->ft->size / 2); 1388 fdprinttype(fd->ft); 1389 } 1390 return (0); 1391 } 1392 } 1393 1394 /* 1395 * GEOM class implementation 1396 */ 1397 1398 static g_access_t fd_access; 1399 static g_start_t fd_start; 1400 static g_ioctl_t fd_ioctl; 1401 1402 struct g_class g_fd_class = { 1403 .name = "FD", 1404 .version = G_VERSION, 1405 .start = fd_start, 1406 .access = fd_access, 1407 .ioctl = fd_ioctl, 1408 }; 1409 1410 static int 1411 fd_access(struct g_provider *pp, int r, int w, int e) 1412 { 1413 struct fd_data *fd; 1414 struct fdc_data *fdc; 1415 int ar, aw, ae; 1416 int busy; 1417 1418 fd = pp->geom->softc; 1419 fdc = fd->fdc; 1420 1421 /* 1422 * If our provider is withering, we can only get negative requests 1423 * and we don't want to even see them 1424 */ 1425 if (pp->flags & G_PF_WITHER) 1426 return (0); 1427 1428 ar = r + pp->acr; 1429 aw = w + pp->acw; 1430 ae = e + pp->ace; 1431 1432 if (ar == 0 && aw == 0 && ae == 0) { 1433 fd->options &= ~(FDOPT_NORETRY | FDOPT_NOERRLOG | FDOPT_NOERROR); 1434 device_unbusy(fd->dev); 1435 return (0); 1436 } 1437 1438 busy = 0; 1439 if (pp->acr == 0 && pp->acw == 0 && pp->ace == 0) { 1440 if (fdmisccmd(fd, BIO_PROBE, NULL)) 1441 return (ENXIO); 1442 if (fd->flags & FD_EMPTY) 1443 return (ENXIO); 1444 if (fd->flags & FD_NEWDISK) { 1445 if (fdautoselect(fd) != 0 && 1446 (device_get_flags(fd->dev) & FD_NO_CHLINE)) { 1447 mtx_lock(&fdc->fdc_mtx); 1448 fd->flags |= FD_EMPTY; 1449 mtx_unlock(&fdc->fdc_mtx); 1450 return (ENXIO); 1451 } 1452 mtx_lock(&fdc->fdc_mtx); 1453 fd->flags &= ~FD_NEWDISK; 1454 mtx_unlock(&fdc->fdc_mtx); 1455 } 1456 device_busy(fd->dev); 1457 busy = 1; 1458 } 1459 1460 if (w > 0 && (fd->flags & FD_WP)) { 1461 if (busy) 1462 device_unbusy(fd->dev); 1463 return (EROFS); 1464 } 1465 1466 pp->sectorsize = fd->sectorsize; 1467 pp->stripesize = fd->ft->heads * fd->ft->sectrac * fd->sectorsize; 1468 pp->mediasize = pp->stripesize * fd->ft->tracks; 1469 return (0); 1470 } 1471 1472 static void 1473 fd_start(struct bio *bp) 1474 { 1475 struct fdc_data * fdc; 1476 struct fd_data * fd; 1477 1478 fd = bp->bio_to->geom->softc; 1479 fdc = fd->fdc; 1480 bp->bio_driver1 = fd; 1481 if (bp->bio_cmd == BIO_GETATTR) { 1482 if (g_handleattr_int(bp, "GEOM::fwsectors", fd->ft->sectrac)) 1483 return; 1484 if (g_handleattr_int(bp, "GEOM::fwheads", fd->ft->heads)) 1485 return; 1486 g_io_deliver(bp, ENOIOCTL); 1487 return; 1488 } 1489 if (!(bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE)) { 1490 g_io_deliver(bp, EOPNOTSUPP); 1491 return; 1492 } 1493 bp->bio_pblkno = bp->bio_offset / fd->sectorsize; 1494 bp->bio_resid = bp->bio_length; 1495 fd_enqueue(fd, bp); 1496 return; 1497 } 1498 1499 static int 1500 fd_ioctl(struct g_provider *pp, u_long cmd, void *data, int fflag, struct thread *td) 1501 { 1502 struct fd_data *fd; 1503 struct fdc_status *fsp; 1504 struct fdc_readid *rid; 1505 int error; 1506 1507 fd = pp->geom->softc; 1508 1509 switch (cmd) { 1510 case FD_GTYPE: /* get drive type */ 1511 *(struct fd_type *)data = *fd->ft; 1512 return (0); 1513 1514 case FD_STYPE: /* set drive type */ 1515 /* 1516 * Allow setting drive type temporarily iff 1517 * currently unset. Used for fdformat so any 1518 * user can set it, and then start formatting. 1519 */ 1520 fd->fts = *(struct fd_type *)data; 1521 if (fd->fts.sectrac) { 1522 /* XXX: check for rubbish */ 1523 fdsettype(fd, &fd->fts); 1524 } else { 1525 fdsettype(fd, fd_native_types[fd->type]); 1526 } 1527 if (debugflags & 0x40) 1528 fdprinttype(fd->ft); 1529 return (0); 1530 1531 case FD_GOPTS: /* get drive options */ 1532 *(int *)data = fd->options; 1533 return (0); 1534 1535 case FD_SOPTS: /* set drive options */ 1536 fd->options = *(int *)data; 1537 return (0); 1538 1539 case FD_CLRERR: 1540 error = priv_check(td, PRIV_DRIVER); 1541 if (error) 1542 return (error); 1543 fd->fdc->fdc_errs = 0; 1544 return (0); 1545 1546 case FD_GSTAT: 1547 fsp = (struct fdc_status *)data; 1548 if ((fd->fdc->flags & FDC_STAT_VALID) == 0) 1549 return (EINVAL); 1550 memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int)); 1551 return (0); 1552 1553 case FD_GDTYPE: 1554 *(enum fd_drivetype *)data = fd->type; 1555 return (0); 1556 1557 case FD_FORM: 1558 if (!(fflag & FWRITE)) 1559 return (EPERM); 1560 if (((struct fd_formb *)data)->format_version != 1561 FD_FORMAT_VERSION) 1562 return (EINVAL); /* wrong version of formatting prog */ 1563 error = fdmisccmd(fd, BIO_FMT, data); 1564 mtx_lock(&fd->fdc->fdc_mtx); 1565 fd->flags |= FD_NEWDISK; 1566 mtx_unlock(&fd->fdc->fdc_mtx); 1567 break; 1568 1569 case FD_READID: 1570 rid = (struct fdc_readid *)data; 1571 if (rid->cyl > 85 || rid->head > 1) 1572 return (EINVAL); 1573 error = fdmisccmd(fd, BIO_RDID, data); 1574 break; 1575 1576 case FIONBIO: 1577 case FIOASYNC: 1578 /* For backwards compat with old fd*(8) tools */ 1579 error = 0; 1580 break; 1581 1582 default: 1583 if (debugflags & 0x80) 1584 printf("Unknown ioctl %lx\n", cmd); 1585 error = ENOIOCTL; 1586 break; 1587 } 1588 return (error); 1589 }; 1590 1591 1592 1593 /* 1594 * Configuration/initialization stuff, per controller. 1595 */ 1596 1597 devclass_t fdc_devclass; 1598 static devclass_t fd_devclass; 1599 1600 struct fdc_ivars { 1601 int fdunit; 1602 int fdtype; 1603 }; 1604 1605 void 1606 fdc_release_resources(struct fdc_data *fdc) 1607 { 1608 device_t dev; 1609 struct resource *last; 1610 int i; 1611 1612 dev = fdc->fdc_dev; 1613 if (fdc->fdc_intr) 1614 bus_teardown_intr(dev, fdc->res_irq, fdc->fdc_intr); 1615 fdc->fdc_intr = NULL; 1616 if (fdc->res_irq != NULL) 1617 bus_release_resource(dev, SYS_RES_IRQ, fdc->rid_irq, 1618 fdc->res_irq); 1619 fdc->res_irq = NULL; 1620 last = NULL; 1621 for (i = 0; i < FDC_MAXREG; i++) { 1622 if (fdc->resio[i] != NULL && fdc->resio[i] != last) { 1623 bus_release_resource(dev, SYS_RES_IOPORT, 1624 fdc->ridio[i], fdc->resio[i]); 1625 last = fdc->resio[i]; 1626 fdc->resio[i] = NULL; 1627 } 1628 } 1629 if (fdc->res_drq != NULL) 1630 bus_release_resource(dev, SYS_RES_DRQ, fdc->rid_drq, 1631 fdc->res_drq); 1632 fdc->res_drq = NULL; 1633 } 1634 1635 int 1636 fdc_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) 1637 { 1638 struct fdc_ivars *ivars = device_get_ivars(child); 1639 1640 switch (which) { 1641 case FDC_IVAR_FDUNIT: 1642 *result = ivars->fdunit; 1643 break; 1644 case FDC_IVAR_FDTYPE: 1645 *result = ivars->fdtype; 1646 break; 1647 default: 1648 return (ENOENT); 1649 } 1650 return (0); 1651 } 1652 1653 int 1654 fdc_write_ivar(device_t dev, device_t child, int which, uintptr_t value) 1655 { 1656 struct fdc_ivars *ivars = device_get_ivars(child); 1657 1658 switch (which) { 1659 case FDC_IVAR_FDUNIT: 1660 ivars->fdunit = value; 1661 break; 1662 case FDC_IVAR_FDTYPE: 1663 ivars->fdtype = value; 1664 break; 1665 default: 1666 return (ENOENT); 1667 } 1668 return (0); 1669 } 1670 1671 int 1672 fdc_initial_reset(device_t dev, struct fdc_data *fdc) 1673 { 1674 int ic_type, part_id; 1675 1676 /* 1677 * A status value of 0xff is very unlikely, but not theoretically 1678 * impossible, but it is far more likely to indicate an empty bus. 1679 */ 1680 if (fdsts_rd(fdc) == 0xff) 1681 return (ENXIO); 1682 1683 /* 1684 * Assert a reset to the floppy controller and check that the status 1685 * register goes to zero. 1686 */ 1687 fdout_wr(fdc, 0); 1688 fdout_wr(fdc, 0); 1689 if (fdsts_rd(fdc) != 0) 1690 return (ENXIO); 1691 1692 /* 1693 * Clear the reset and see it come ready. 1694 */ 1695 fdout_wr(fdc, FDO_FRST); 1696 DELAY(100); 1697 if (fdsts_rd(fdc) != 0x80) 1698 return (ENXIO); 1699 1700 /* Then, see if it can handle a command. */ 1701 if (fdc_cmd(fdc, 3, NE7CMD_SPECIFY, NE7_SPEC_1(6, 240), 1702 NE7_SPEC_2(31, 0), 0)) 1703 return (ENXIO); 1704 1705 /* 1706 * Try to identify the chip. 1707 * 1708 * The i8272 datasheet documents that unknown commands 1709 * will return ST0 as 0x80. The i8272 is supposedly identical 1710 * to the NEC765. 1711 * The i82077SL datasheet says 0x90 for the VERSION command, 1712 * and several "superio" chips emulate this. 1713 */ 1714 if (fdc_cmd(fdc, 1, NE7CMD_VERSION, 1, &ic_type)) 1715 return (ENXIO); 1716 if (fdc_cmd(fdc, 1, 0x18, 1, &part_id)) 1717 return (ENXIO); 1718 if (bootverbose) 1719 device_printf(dev, 1720 "ic_type %02x part_id %02x\n", ic_type, part_id); 1721 switch (ic_type & 0xff) { 1722 case 0x80: 1723 device_set_desc(dev, "NEC 765 or clone"); 1724 fdc->fdct = FDC_NE765; 1725 break; 1726 case 0x81: 1727 case 0x90: 1728 device_set_desc(dev, 1729 "Enhanced floppy controller"); 1730 fdc->fdct = FDC_ENHANCED; 1731 break; 1732 default: 1733 device_set_desc(dev, "Generic floppy controller"); 1734 fdc->fdct = FDC_UNKNOWN; 1735 break; 1736 } 1737 return (0); 1738 } 1739 1740 int 1741 fdc_detach(device_t dev) 1742 { 1743 struct fdc_data *fdc; 1744 int error; 1745 1746 fdc = device_get_softc(dev); 1747 1748 /* have our children detached first */ 1749 if ((error = bus_generic_detach(dev))) 1750 return (error); 1751 1752 if (fdc->fdc_intr) 1753 bus_teardown_intr(dev, fdc->res_irq, fdc->fdc_intr); 1754 fdc->fdc_intr = NULL; 1755 1756 /* kill worker thread */ 1757 mtx_lock(&fdc->fdc_mtx); 1758 fdc->flags |= FDC_KTHREAD_EXIT; 1759 wakeup(&fdc->head); 1760 while ((fdc->flags & FDC_KTHREAD_ALIVE) != 0) 1761 msleep(fdc->fdc_thread, &fdc->fdc_mtx, PRIBIO, "fdcdet", 0); 1762 mtx_unlock(&fdc->fdc_mtx); 1763 1764 /* reset controller, turn motor off */ 1765 fdout_wr(fdc, 0); 1766 1767 if (!(fdc->flags & FDC_NODMA)) 1768 isa_dma_release(fdc->dmachan); 1769 fdc_release_resources(fdc); 1770 mtx_destroy(&fdc->fdc_mtx); 1771 return (0); 1772 } 1773 1774 /* 1775 * Add a child device to the fdc controller. It will then be probed etc. 1776 */ 1777 device_t 1778 fdc_add_child(device_t dev, const char *name, int unit) 1779 { 1780 struct fdc_ivars *ivar; 1781 device_t child; 1782 1783 ivar = malloc(sizeof *ivar, M_DEVBUF /* XXX */, M_NOWAIT | M_ZERO); 1784 if (ivar == NULL) 1785 return (NULL); 1786 child = device_add_child(dev, name, unit); 1787 if (child == NULL) { 1788 free(ivar, M_DEVBUF); 1789 return (NULL); 1790 } 1791 device_set_ivars(child, ivar); 1792 ivar->fdunit = unit; 1793 ivar->fdtype = FDT_NONE; 1794 if (resource_disabled(name, unit)) 1795 device_disable(child); 1796 return (child); 1797 } 1798 1799 int 1800 fdc_attach(device_t dev) 1801 { 1802 struct fdc_data *fdc; 1803 int error; 1804 1805 fdc = device_get_softc(dev); 1806 fdc->fdc_dev = dev; 1807 error = fdc_initial_reset(dev, fdc); 1808 if (error) { 1809 device_printf(dev, "does not respond\n"); 1810 return (error); 1811 } 1812 error = bus_setup_intr(dev, fdc->res_irq, 1813 INTR_TYPE_BIO | INTR_ENTROPY | 1814 ((fdc->flags & FDC_NOFAST) ? INTR_MPSAFE : 0), 1815 ((fdc->flags & FDC_NOFAST) ? NULL : fdc_intr_fast), 1816 ((fdc->flags & FDC_NOFAST) ? fdc_intr : NULL), 1817 fdc, &fdc->fdc_intr); 1818 if (error) { 1819 device_printf(dev, "cannot setup interrupt\n"); 1820 return (error); 1821 } 1822 if (!(fdc->flags & FDC_NODMA)) { 1823 error = isa_dma_acquire(fdc->dmachan); 1824 if (!error) { 1825 error = isa_dma_init(fdc->dmachan, 1826 MAX_BYTES_PER_CYL, M_WAITOK); 1827 if (error) 1828 isa_dma_release(fdc->dmachan); 1829 } 1830 if (error) 1831 return (error); 1832 } 1833 fdc->fdcu = device_get_unit(dev); 1834 fdc->flags |= FDC_NEEDS_RESET; 1835 1836 mtx_init(&fdc->fdc_mtx, "fdc lock", NULL, MTX_DEF); 1837 1838 /* reset controller, turn motor off, clear fdout mirror reg */ 1839 fdout_wr(fdc, fdc->fdout = 0); 1840 bioq_init(&fdc->head); 1841 1842 settle = hz / 8; 1843 1844 return (0); 1845 } 1846 1847 void 1848 fdc_start_worker(device_t dev) 1849 { 1850 struct fdc_data *fdc; 1851 1852 fdc = device_get_softc(dev); 1853 kproc_create(fdc_thread, fdc, &fdc->fdc_thread, 0, 0, 1854 "fdc%d", device_get_unit(dev)); 1855 } 1856 1857 int 1858 fdc_hints_probe(device_t dev) 1859 { 1860 const char *name, *dname; 1861 int i, error, dunit; 1862 1863 /* 1864 * Probe and attach any children. We should probably detect 1865 * devices from the BIOS unless overridden. 1866 */ 1867 name = device_get_nameunit(dev); 1868 i = 0; 1869 while ((resource_find_match(&i, &dname, &dunit, "at", name)) == 0) { 1870 resource_int_value(dname, dunit, "drive", &dunit); 1871 fdc_add_child(dev, dname, dunit); 1872 } 1873 1874 if ((error = bus_generic_attach(dev)) != 0) 1875 return (error); 1876 return (0); 1877 } 1878 1879 int 1880 fdc_print_child(device_t me, device_t child) 1881 { 1882 int retval = 0, flags; 1883 1884 retval += bus_print_child_header(me, child); 1885 retval += printf(" on %s drive %d", device_get_nameunit(me), 1886 fdc_get_fdunit(child)); 1887 if ((flags = device_get_flags(me)) != 0) 1888 retval += printf(" flags %#x", flags); 1889 retval += printf("\n"); 1890 1891 return (retval); 1892 } 1893 1894 /* 1895 * Configuration/initialization, per drive. 1896 */ 1897 static int 1898 fd_probe(device_t dev) 1899 { 1900 int unit; 1901 int i; 1902 u_int st0, st3; 1903 struct fd_data *fd; 1904 struct fdc_data *fdc; 1905 int fdsu; 1906 int flags, type; 1907 1908 fdsu = fdc_get_fdunit(dev); 1909 fd = device_get_softc(dev); 1910 fdc = device_get_softc(device_get_parent(dev)); 1911 flags = device_get_flags(dev); 1912 1913 fd->dev = dev; 1914 fd->fdc = fdc; 1915 fd->fdsu = fdsu; 1916 unit = device_get_unit(dev); 1917 1918 /* Auto-probe if fdinfo is present, but always allow override. */ 1919 type = flags & FD_TYPEMASK; 1920 if (type == FDT_NONE && (type = fdc_get_fdtype(dev)) != FDT_NONE) { 1921 fd->type = type; 1922 goto done; 1923 } else { 1924 /* make sure fdautoselect() will be called */ 1925 fd->flags = FD_EMPTY; 1926 fd->type = type; 1927 } 1928 1929 #if defined(__i386__) || defined(__amd64__) 1930 if (fd->type == FDT_NONE && (unit == 0 || unit == 1)) { 1931 /* Look up what the BIOS thinks we have. */ 1932 if (unit == 0) 1933 fd->type = (rtcin(RTC_FDISKETTE) & 0xf0) >> 4; 1934 else 1935 fd->type = rtcin(RTC_FDISKETTE) & 0x0f; 1936 if (fd->type == FDT_288M_1) 1937 fd->type = FDT_288M; 1938 } 1939 #endif /* __i386__ || __amd64__ */ 1940 /* is there a unit? */ 1941 if (fd->type == FDT_NONE) 1942 return (ENXIO); 1943 1944 mtx_lock(&fdc->fdc_mtx); 1945 1946 /* select it */ 1947 fd_select(fd); 1948 fd_motor(fd, 1); 1949 fdc->fd = fd; 1950 fdc_reset(fdc); /* XXX reset, then unreset, etc. */ 1951 DELAY(1000000); /* 1 sec */ 1952 1953 if ((flags & FD_NO_PROBE) == 0) { 1954 /* If we're at track 0 first seek inwards. */ 1955 if ((fdc_sense_drive(fdc, &st3) == 0) && 1956 (st3 & NE7_ST3_T0)) { 1957 /* Seek some steps... */ 1958 if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fdsu, 10, 0) == 0) { 1959 /* ...wait a moment... */ 1960 DELAY(300000); 1961 /* make ctrlr happy: */ 1962 fdc_sense_int(fdc, NULL, NULL); 1963 } 1964 } 1965 1966 for (i = 0; i < 2; i++) { 1967 /* 1968 * we must recalibrate twice, just in case the 1969 * heads have been beyond cylinder 76, since 1970 * most FDCs still barf when attempting to 1971 * recalibrate more than 77 steps 1972 */ 1973 /* go back to 0: */ 1974 if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fdsu, 0) == 0) { 1975 /* a second being enough for full stroke seek*/ 1976 DELAY(i == 0 ? 1000000 : 300000); 1977 1978 /* anything responding? */ 1979 if (fdc_sense_int(fdc, &st0, NULL) == 0 && 1980 (st0 & NE7_ST0_EC) == 0) 1981 break; /* already probed successfully */ 1982 } 1983 } 1984 } 1985 1986 fd_motor(fd, 0); 1987 fdc->fd = NULL; 1988 mtx_unlock(&fdc->fdc_mtx); 1989 1990 if ((flags & FD_NO_PROBE) == 0 && 1991 (st0 & NE7_ST0_EC) != 0) /* no track 0 -> no drive present */ 1992 return (ENXIO); 1993 1994 done: 1995 1996 switch (fd->type) { 1997 case FDT_12M: 1998 device_set_desc(dev, "1200-KB 5.25\" drive"); 1999 break; 2000 case FDT_144M: 2001 device_set_desc(dev, "1440-KB 3.5\" drive"); 2002 break; 2003 case FDT_288M: 2004 device_set_desc(dev, "2880-KB 3.5\" drive (in 1440-KB mode)"); 2005 break; 2006 case FDT_360K: 2007 device_set_desc(dev, "360-KB 5.25\" drive"); 2008 break; 2009 case FDT_720K: 2010 device_set_desc(dev, "720-KB 3.5\" drive"); 2011 break; 2012 default: 2013 return (ENXIO); 2014 } 2015 fd->track = FD_NO_TRACK; 2016 fd->fdc = fdc; 2017 fd->fdsu = fdsu; 2018 fd->options = 0; 2019 callout_init_mtx(&fd->toffhandle, &fd->fdc->fdc_mtx, 0); 2020 2021 /* initialize densities for subdevices */ 2022 fdsettype(fd, fd_native_types[fd->type]); 2023 return (0); 2024 } 2025 2026 /* 2027 * We have to do this in a geom event because GEOM is not running 2028 * when fd_attach() is. 2029 * XXX: move fd_attach after geom like ata/scsi disks 2030 */ 2031 static void 2032 fd_attach2(void *arg, int flag) 2033 { 2034 struct fd_data *fd; 2035 2036 fd = arg; 2037 2038 fd->fd_geom = g_new_geomf(&g_fd_class, 2039 "fd%d", device_get_unit(fd->dev)); 2040 fd->fd_provider = g_new_providerf(fd->fd_geom, "%s", fd->fd_geom->name); 2041 fd->fd_geom->softc = fd; 2042 g_error_provider(fd->fd_provider, 0); 2043 } 2044 2045 static int 2046 fd_attach(device_t dev) 2047 { 2048 struct fd_data *fd; 2049 2050 fd = device_get_softc(dev); 2051 g_post_event(fd_attach2, fd, M_WAITOK, NULL); 2052 fd->flags |= FD_EMPTY; 2053 bioq_init(&fd->fd_bq); 2054 2055 return (0); 2056 } 2057 2058 static void 2059 fd_detach_geom(void *arg, int flag) 2060 { 2061 struct fd_data *fd = arg; 2062 2063 g_topology_assert(); 2064 g_wither_geom(fd->fd_geom, ENXIO); 2065 } 2066 2067 static int 2068 fd_detach(device_t dev) 2069 { 2070 struct fd_data *fd; 2071 2072 fd = device_get_softc(dev); 2073 g_waitfor_event(fd_detach_geom, fd, M_WAITOK, NULL); 2074 while (device_get_state(dev) == DS_BUSY) 2075 tsleep(fd, PZERO, "fdd", hz/10); 2076 callout_drain(&fd->toffhandle); 2077 2078 return (0); 2079 } 2080 2081 static device_method_t fd_methods[] = { 2082 /* Device interface */ 2083 DEVMETHOD(device_probe, fd_probe), 2084 DEVMETHOD(device_attach, fd_attach), 2085 DEVMETHOD(device_detach, fd_detach), 2086 DEVMETHOD(device_shutdown, bus_generic_shutdown), 2087 DEVMETHOD(device_suspend, bus_generic_suspend), /* XXX */ 2088 DEVMETHOD(device_resume, bus_generic_resume), /* XXX */ 2089 { 0, 0 } 2090 }; 2091 2092 static driver_t fd_driver = { 2093 "fd", 2094 fd_methods, 2095 sizeof(struct fd_data) 2096 }; 2097 2098 static int 2099 fdc_modevent(module_t mod, int type, void *data) 2100 { 2101 2102 return (g_modevent(NULL, type, &g_fd_class)); 2103 } 2104 2105 DRIVER_MODULE(fd, fdc, fd_driver, fd_devclass, fdc_modevent, 0); 2106