xref: /freebsd/sys/dev/fdc/fdc.c (revision 752d4735055e56b20acb7f739abb58ecf029cae8)
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Don Ahn.
7  *
8  * Libretto PCMCIA floppy support by David Horwitt (dhorwitt@ucsd.edu)
9  * aided by the Linux floppy driver modifications from David Bateman
10  * (dbateman@eng.uts.edu.au).
11  *
12  * Copyright (c) 1993, 1994 by
13  *  jc@irbs.UUCP (John Capo)
14  *  vak@zebub.msk.su (Serge Vakulenko)
15  *  ache@astral.msk.su (Andrew A. Chernov)
16  *
17  * Copyright (c) 1993, 1994, 1995 by
18  *  joerg_wunsch@uriah.sax.de (Joerg Wunsch)
19  *  dufault@hda.com (Peter Dufault)
20  *
21  * Copyright (c) 2001 Joerg Wunsch,
22  *  joerg_wunsch@uriah.heep.sax.de (Joerg Wunsch)
23  *
24  * Redistribution and use in source and binary forms, with or without
25  * modification, are permitted provided that the following conditions
26  * are met:
27  * 1. Redistributions of source code must retain the above copyright
28  *    notice, this list of conditions and the following disclaimer.
29  * 2. Redistributions in binary form must reproduce the above copyright
30  *    notice, this list of conditions and the following disclaimer in the
31  *    documentation and/or other materials provided with the distribution.
32  * 4. Neither the name of the University nor the names of its contributors
33  *    may be used to endorse or promote products derived from this software
34  *    without specific prior written permission.
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
37  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
40  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46  * SUCH DAMAGE.
47  *
48  *	from:	@(#)fd.c	7.4 (Berkeley) 5/25/91
49  */
50 
51 #include <sys/cdefs.h>
52 __FBSDID("$FreeBSD$");
53 
54 #include "opt_fdc.h"
55 
56 #include <sys/param.h>
57 #include <sys/bio.h>
58 #include <sys/bus.h>
59 #include <sys/devicestat.h>
60 #include <sys/disk.h>
61 #include <sys/fcntl.h>
62 #include <sys/fdcio.h>
63 #include <sys/filio.h>
64 #include <sys/kernel.h>
65 #include <sys/lock.h>
66 #include <sys/malloc.h>
67 #include <sys/module.h>
68 #include <sys/mutex.h>
69 #include <sys/proc.h>
70 #include <sys/rman.h>
71 #include <sys/systm.h>
72 
73 #include <machine/clock.h>
74 #include <machine/stdarg.h>
75 
76 #include <isa/isavar.h>
77 #include <isa/isareg.h>
78 #include <dev/fdc/fdcreg.h>
79 #include <dev/fdc/fdcvar.h>
80 #include <isa/rtc.h>
81 
82 #define FDBIO_FORMAT	BIO_CMD2
83 
84 /* configuration flags for fdc */
85 #define FDC_NO_FIFO	(1 << 2)	/* do not enable FIFO  */
86 
87 /*
88  * Stop retrying after this many DMA overruns.  Since each retry takes
89  * one revolution, with 300 rpm., 25 retries take approximately 5
90  * seconds which the read attempt will block in case the DMA overrun
91  * is persistent.
92  */
93 #define FDC_DMAOV_MAX	25
94 
95 /*
96  * Timeout value for the PIO loops to wait until the FDC main status
97  * register matches our expectations (request for master, direction
98  * bit).  This is supposed to be a number of microseconds, although
99  * timing might actually not be very accurate.
100  *
101  * Timeouts of 100 msec are believed to be required for some broken
102  * (old) hardware.
103  */
104 #define	FDSTS_TIMEOUT	100000
105 
106 /*
107  * Number of subdevices that can be used for different density types.
108  */
109 #define NUMDENS		16
110 
111 #define FDBIO_RDSECTID	BIO_CMD1
112 
113 /*
114  * List of native drive densities.  Order must match enum fd_drivetype
115  * in <sys/fdcio.h>.  Upon attaching the drive, each of the
116  * programmable subdevices is initialized with the native density
117  * definition.
118  */
119 static struct fd_type fd_native_types[] =
120 {
121 { 0 },				/* FDT_NONE */
122 {  9,2,0xFF,0x2A,40, 720,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* FDT_360K */
123 { 15,2,0xFF,0x1B,80,2400,FDC_500KBPS,2,0x54,1,0,FL_MFM }, /* FDT_12M  */
124 {  9,2,0xFF,0x20,80,1440,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* FDT_720K */
125 { 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* FDT_144M */
126 #if 0				/* we currently don't handle 2.88 MB */
127 { 36,2,0xFF,0x1B,80,5760,FDC_1MBPS,  2,0x4C,1,1,FL_MFM|FL_PERPND } /*FDT_288M*/
128 #else
129 { 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* FDT_144M */
130 #endif
131 };
132 
133 /*
134  * 360 KB 5.25" and 720 KB 3.5" drives don't have automatic density
135  * selection, they just start out with their native density (or lose).
136  * So 1.2 MB 5.25", 1.44 MB 3.5", and 2.88 MB 3.5" drives have their
137  * respective lists of densities to search for.
138  */
139 static struct fd_type fd_searchlist_12m[] = {
140 { 15,2,0xFF,0x1B,80,2400,FDC_500KBPS,2,0x54,1,0,FL_MFM }, /* 1.2M */
141 {  9,2,0xFF,0x23,40, 720,FDC_300KBPS,2,0x50,1,0,FL_MFM|FL_2STEP }, /* 360K */
142 {  9,2,0xFF,0x20,80,1440,FDC_300KBPS,2,0x50,1,0,FL_MFM }, /* 720K */
143 };
144 
145 static struct fd_type fd_searchlist_144m[] = {
146 { 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* 1.44M */
147 {  9,2,0xFF,0x20,80,1440,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* 720K */
148 };
149 
150 /* We search for 1.44M first since this is the most common case. */
151 static struct fd_type fd_searchlist_288m[] = {
152 { 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* 1.44M */
153 #if 0
154 { 36,2,0xFF,0x1B,80,5760,FDC_1MBPS,  2,0x4C,1,1,FL_MFM|FL_PERPND } /* 2.88M */
155 #endif
156 {  9,2,0xFF,0x20,80,1440,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* 720K */
157 };
158 
159 #define MAX_SEC_SIZE	(128 << 3)
160 #define MAX_CYLINDER	85	/* some people really stress their drives
161 				 * up to cyl 82 */
162 #define MAX_HEAD	1
163 
164 devclass_t fdc_devclass;
165 
166 /*
167  * Per drive structure (softc).
168  */
169 struct fd_data {
170 	struct	fdc_data *fdc;	/* pointer to controller structure */
171 	int	fdsu;		/* this units number on this controller */
172 	enum	fd_drivetype type; /* drive type */
173 	struct	fd_type *ft;	/* pointer to current type descriptor */
174 	struct	fd_type fts[NUMDENS]; /* type descriptors */
175 	int	flags;
176 #define	FD_OPEN		0x01	/* it's open		*/
177 #define	FD_NONBLOCK	0x02	/* O_NONBLOCK set	*/
178 #define	FD_ACTIVE	0x04	/* it's active		*/
179 #define	FD_MOTOR	0x08	/* motor should be on	*/
180 #define	FD_MOTOR_WAIT	0x10	/* motor coming up	*/
181 #define	FD_UA		0x20	/* force unit attention */
182 	int	skip;
183 	int	hddrv;
184 #define FD_NO_TRACK -2
185 	int	track;		/* where we think the head is */
186 	int	options;	/* user configurable options, see fdcio.h */
187 	struct	callout_handle toffhandle;
188 	struct	callout_handle tohandle;
189 	struct	devstat *device_stats;
190 	struct cdev *masterdev;
191 	device_t dev;
192 	fdu_t	fdu;
193 };
194 
195 struct fdc_ivars {
196 	int	fdunit;
197 	int	fdtype;
198 };
199 
200 static devclass_t fd_devclass;
201 
202 /* configuration flags for fd */
203 #define FD_TYPEMASK	0x0f	/* drive type, matches enum
204 				 * fd_drivetype; on i386 machines, if
205 				 * given as 0, use RTC type for fd0
206 				 * and fd1 */
207 #define FD_DTYPE(flags)	((flags) & FD_TYPEMASK)
208 #define FD_NO_CHLINE	0x10	/* drive does not support changeline
209 				 * aka. unit attention */
210 #define FD_NO_PROBE	0x20	/* don't probe drive (seek test), just
211 				 * assume it is there */
212 
213 /*
214  * Throughout this file the following conventions will be used:
215  *
216  * fd is a pointer to the fd_data struct for the drive in question
217  * fdc is a pointer to the fdc_data struct for the controller
218  * fdu is the floppy drive unit number
219  * fdcu is the floppy controller unit number
220  * fdsu is the floppy drive unit number on that controller. (sub-unit)
221  */
222 
223 /*
224  * Function declarations, same (chaotic) order as they appear in the
225  * file.  Re-ordering is too late now, it would only obfuscate the
226  * diffs against old and offspring versions (like the PC98 one).
227  *
228  * Anyone adding functions here, please keep this sequence the same
229  * as below -- makes locating a particular function in the body much
230  * easier.
231  */
232 static u_int8_t fdsts_rd(fdc_p);
233 static void fddata_wr(fdc_p, u_int8_t);
234 static u_int8_t fddata_rd(fdc_p);
235 #if 0
236 static u_int8_t fdin_rd(fdc_p);
237 #endif
238 static int fdc_err(struct fdc_data *, const char *);
239 static int enable_fifo(fdc_p fdc);
240 static int fd_sense_drive_status(fdc_p, int *);
241 static int fd_sense_int(fdc_p, int *, int *);
242 static int fd_read_status(fdc_p);
243 static void fdc_add_child(device_t, const char *, int);
244 static int fd_probe(device_t);
245 static int fd_attach(device_t);
246 static int fd_detach(device_t);
247 static void set_motor(struct fdc_data *, int, int);
248 #  define TURNON 1
249 #  define TURNOFF 0
250 static timeout_t fd_turnoff;
251 static timeout_t fd_motor_on;
252 static void fd_turnon(struct fd_data *);
253 static void fdc_reset(fdc_p);
254 static int fd_in(struct fdc_data *, int *);
255 static int out_fdc(struct fdc_data *, int);
256 /*
257  * The open function is named fdopen() to avoid confusion with fdopen()
258  * in fd(4).  The difference is now only meaningful for debuggers.
259  */
260 static	d_open_t	fdopen;
261 static	d_close_t	fdclose;
262 static	d_strategy_t	fdstrategy;
263 static void fdstart(struct fdc_data *);
264 static timeout_t fd_iotimeout;
265 static timeout_t fd_pseudointr;
266 static driver_intr_t fdc_intr;
267 static int fdcpio(fdc_p, long, caddr_t, u_int);
268 static int fdautoselect(struct cdev *);
269 static int fdstate(struct fdc_data *);
270 static int retrier(struct fdc_data *);
271 static void fdbiodone(struct bio *);
272 static int fdmisccmd(struct cdev *, u_int, void *);
273 static	d_ioctl_t	fdioctl;
274 
275 static int fifo_threshold = 8;	/* XXX: should be accessible via sysctl */
276 
277 #ifdef	FDC_DEBUG
278 /* CAUTION: fd_debug causes huge amounts of logging output */
279 static int volatile fd_debug = 0;
280 #define TRACE0(arg) do { if (fd_debug) printf(arg); } while (0)
281 #define TRACE1(arg1, arg2) do { if (fd_debug) printf(arg1, arg2); } while (0)
282 #else /* FDC_DEBUG */
283 #define TRACE0(arg) do { } while (0)
284 #define TRACE1(arg1, arg2) do { } while (0)
285 #endif /* FDC_DEBUG */
286 
287 /*
288  * Bus space handling (access to low-level IO).
289  */
290 void
291 fdout_wr(fdc_p fdc, u_int8_t v)
292 {
293 	bus_space_write_1(fdc->portt, fdc->porth, FDOUT+fdc->port_off, v);
294 }
295 
296 static u_int8_t
297 fdsts_rd(fdc_p fdc)
298 {
299 	return bus_space_read_1(fdc->portt, fdc->porth, FDSTS+fdc->port_off);
300 }
301 
302 static void
303 fddata_wr(fdc_p fdc, u_int8_t v)
304 {
305 	bus_space_write_1(fdc->portt, fdc->porth, FDDATA+fdc->port_off, v);
306 }
307 
308 static u_int8_t
309 fddata_rd(fdc_p fdc)
310 {
311 	return bus_space_read_1(fdc->portt, fdc->porth, FDDATA+fdc->port_off);
312 }
313 
314 static u_int8_t
315 fdin_rd(fdc_p fdc)
316 {
317 	return bus_space_read_1(fdc->portt, fdc->porth, FDIN);
318 }
319 
320 static struct cdevsw fd_cdevsw = {
321 	.d_version =	D_VERSION,
322 	.d_open =	fdopen,
323 	.d_close =	fdclose,
324 	.d_read =	physread,
325 	.d_write =	physwrite,
326 	.d_ioctl =	fdioctl,
327 	.d_strategy =	fdstrategy,
328 	.d_name =	"fd",
329 	.d_flags =	D_DISK | D_NEEDGIANT,
330 };
331 
332 /*
333  * Auxiliary functions.  Well, some only.  Others are scattered
334  * throughout the entire file.
335  */
336 static int
337 fdc_err(struct fdc_data *fdc, const char *s)
338 {
339 	fdc->fdc_errs++;
340 	if (s) {
341 		if (fdc->fdc_errs < FDC_ERRMAX)
342 			device_printf(fdc->fdc_dev, "%s", s);
343 		else if (fdc->fdc_errs == FDC_ERRMAX)
344 			device_printf(fdc->fdc_dev, "too many errors, not "
345 						    "logging any more\n");
346 	}
347 
348 	return FD_FAILED;
349 }
350 
351 /*
352  * fd_cmd: Send a command to the chip.  Takes a varargs with this structure:
353  * Unit number,
354  * # of output bytes, output bytes as ints ...,
355  * # of input bytes, input bytes as ints ...
356  */
357 int
358 fd_cmd(struct fdc_data *fdc, int n_out, ...)
359 {
360 	u_char cmd;
361 	int n_in;
362 	int n;
363 	va_list ap;
364 
365 	va_start(ap, n_out);
366 	cmd = (u_char)(va_arg(ap, int));
367 	va_end(ap);
368 	va_start(ap, n_out);
369 	for (n = 0; n < n_out; n++)
370 	{
371 		if (out_fdc(fdc, va_arg(ap, int)) < 0)
372 		{
373 			char msg[50];
374 			snprintf(msg, sizeof(msg),
375 				"cmd %x failed at out byte %d of %d\n",
376 				cmd, n + 1, n_out);
377 			return fdc_err(fdc, msg);
378 		}
379 	}
380 	n_in = va_arg(ap, int);
381 	for (n = 0; n < n_in; n++)
382 	{
383 		int *ptr = va_arg(ap, int *);
384 		if (fd_in(fdc, ptr) < 0)
385 		{
386 			char msg[50];
387 			snprintf(msg, sizeof(msg),
388 				"cmd %02x failed at in byte %d of %d\n",
389 				cmd, n + 1, n_in);
390 			return fdc_err(fdc, msg);
391 		}
392 	}
393 
394 	return 0;
395 }
396 
397 static int
398 enable_fifo(fdc_p fdc)
399 {
400 	int i, j;
401 
402 	if ((fdc->flags & FDC_HAS_FIFO) == 0) {
403 
404 		/*
405 		 * Cannot use fd_cmd the normal way here, since
406 		 * this might be an invalid command. Thus we send the
407 		 * first byte, and check for an early turn of data directon.
408 		 */
409 
410 		if (out_fdc(fdc, I8207X_CONFIGURE) < 0)
411 			return fdc_err(fdc, "Enable FIFO failed\n");
412 
413 		/* If command is invalid, return */
414 		j = FDSTS_TIMEOUT;
415 		while ((i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM))
416 		       != NE7_RQM && j-- > 0) {
417 			if (i == (NE7_DIO | NE7_RQM)) {
418 				fdc_reset(fdc);
419 				return FD_FAILED;
420 			}
421 			DELAY(1);
422 		}
423 		if (j<0 ||
424 		    fd_cmd(fdc, 3,
425 			   0, (fifo_threshold - 1) & 0xf, 0, 0) < 0) {
426 			fdc_reset(fdc);
427 			return fdc_err(fdc, "Enable FIFO failed\n");
428 		}
429 		fdc->flags |= FDC_HAS_FIFO;
430 		return 0;
431 	}
432 	if (fd_cmd(fdc, 4,
433 		   I8207X_CONFIGURE, 0, (fifo_threshold - 1) & 0xf, 0, 0) < 0)
434 		return fdc_err(fdc, "Re-enable FIFO failed\n");
435 	return 0;
436 }
437 
438 static int
439 fd_sense_drive_status(fdc_p fdc, int *st3p)
440 {
441 	int st3;
442 
443 	if (fd_cmd(fdc, 2, NE7CMD_SENSED, fdc->fdu, 1, &st3))
444 	{
445 		return fdc_err(fdc, "Sense Drive Status failed\n");
446 	}
447 	if (st3p)
448 		*st3p = st3;
449 
450 	return 0;
451 }
452 
453 static int
454 fd_sense_int(fdc_p fdc, int *st0p, int *cylp)
455 {
456 	int cyl, st0, ret;
457 
458 	ret = fd_cmd(fdc, 1, NE7CMD_SENSEI, 1, &st0);
459 	if (ret) {
460 		(void)fdc_err(fdc,
461 			      "sense intr err reading stat reg 0\n");
462 		return ret;
463 	}
464 
465 	if (st0p)
466 		*st0p = st0;
467 
468 	if ((st0 & NE7_ST0_IC) == NE7_ST0_IC_IV) {
469 		/*
470 		 * There doesn't seem to have been an interrupt.
471 		 */
472 		return FD_NOT_VALID;
473 	}
474 
475 	if (fd_in(fdc, &cyl) < 0) {
476 		return fdc_err(fdc, "can't get cyl num\n");
477 	}
478 
479 	if (cylp)
480 		*cylp = cyl;
481 
482 	return 0;
483 }
484 
485 
486 static int
487 fd_read_status(fdc_p fdc)
488 {
489 	int i, ret;
490 
491 	for (i = ret = 0; i < 7; i++) {
492 		/*
493 		 * XXX types are poorly chosen.  Only bytes can be read
494 		 * from the hardware, but fdc->status[] wants u_ints and
495 		 * fd_in() gives ints.
496 		 */
497 		int status;
498 
499 		ret = fd_in(fdc, &status);
500 		fdc->status[i] = status;
501 		if (ret != 0)
502 			break;
503 	}
504 
505 	if (ret == 0)
506 		fdc->flags |= FDC_STAT_VALID;
507 	else
508 		fdc->flags &= ~FDC_STAT_VALID;
509 
510 	return ret;
511 }
512 
513 int
514 fdc_alloc_resources(struct fdc_data *fdc)
515 {
516 	device_t dev;
517 	int ispnp, ispcmcia, nports;
518 
519 	dev = fdc->fdc_dev;
520 	ispnp = (fdc->flags & FDC_ISPNP) != 0;
521 	ispcmcia = (fdc->flags & FDC_ISPCMCIA) != 0;
522 	fdc->rid_ioport = fdc->rid_irq = fdc->rid_drq = 0;
523 	fdc->res_ioport = fdc->res_irq = fdc->res_drq = 0;
524 	fdc->rid_ctl = 1;
525 
526 	/*
527 	 * On standard ISA, we don't just use an 8 port range
528 	 * (e.g. 0x3f0-0x3f7) since that covers an IDE control
529 	 * register at 0x3f6.
530 	 *
531 	 * Isn't PC hardware wonderful.
532 	 *
533 	 * The Y-E Data PCMCIA FDC doesn't have this problem, it
534 	 * uses the register with offset 6 for pseudo-DMA, and the
535 	 * one with offset 7 as control register.
536 	 */
537 	nports = ispcmcia ? 8 : (ispnp ? 1 : 6);
538 
539 	/*
540 	 * Some ACPI BIOSen have _CRS objects for the floppy device that
541 	 * split the I/O port resource into several resources.  We detect
542 	 * this case by checking if there are more than 2 IOPORT resources.
543 	 * If so, we use the resource with the smallest start address as
544 	 * the port RID and the largest start address as the control RID.
545 	 */
546 	if (bus_get_resource_count(dev, SYS_RES_IOPORT, 2) != 0) {
547 		u_long min_start, max_start, tmp;
548 		int i;
549 
550 		/* Find the min/max start addresses and their RIDs. */
551 		max_start = 0ul;
552 		min_start = ~0ul;
553 		for (i = 0; bus_get_resource_count(dev, SYS_RES_IOPORT, i) > 0;
554 		    i++) {
555 			tmp = bus_get_resource_start(dev, SYS_RES_IOPORT, i);
556 			KASSERT(tmp != 0, ("bogus resource"));
557 			if (tmp < min_start) {
558 				min_start = tmp;
559 				fdc->rid_ioport = i;
560 			}
561 			if (tmp > max_start) {
562 				max_start = tmp;
563 				fdc->rid_ctl = i;
564 			}
565 		}
566 		if (min_start + 7 != max_start) {
567 			device_printf(dev, "I/O to control range incorrect\n");
568 			return (ENXIO);
569 		}
570 	}
571 
572 	fdc->res_ioport = bus_alloc_resource(dev, SYS_RES_IOPORT,
573 					     &fdc->rid_ioport, 0ul, ~0ul,
574 					     nports, RF_ACTIVE);
575 	if (fdc->res_ioport == 0) {
576 		device_printf(dev, "cannot reserve I/O port range (%d ports)\n",
577 			      nports);
578 		return ENXIO;
579 	}
580 	fdc->portt = rman_get_bustag(fdc->res_ioport);
581 	fdc->porth = rman_get_bushandle(fdc->res_ioport);
582 
583 	if (!ispcmcia) {
584 		/*
585 		 * Some BIOSen report the device at 0x3f2-0x3f5,0x3f7
586 		 * and some at 0x3f0-0x3f5,0x3f7. We detect the former
587 		 * by checking the size and adjust the port address
588 		 * accordingly.
589 		 */
590 		if (bus_get_resource_count(dev, SYS_RES_IOPORT, 0) == 4)
591 			fdc->port_off = -2;
592 
593 		/*
594 		 * Register the control port range as rid 1 if it
595 		 * isn't there already. Most PnP BIOSen will have
596 		 * already done this but non-PnP configurations don't.
597 		 *
598 		 * And some (!!) report 0x3f2-0x3f5 and completely
599 		 * leave out the control register!  It seems that some
600 		 * non-antique controller chips have a different
601 		 * method of programming the transfer speed which
602 		 * doesn't require the control register, but it's
603 		 * mighty bogus as the chip still responds to the
604 		 * address for the control register.
605 		 */
606 		if (bus_get_resource_count(dev, SYS_RES_IOPORT, 1) == 0) {
607 			u_long ctlstart;
608 
609 			/* Find the control port, usually 0x3f7 */
610 			ctlstart = rman_get_start(fdc->res_ioport) +
611 				fdc->port_off + 7;
612 
613 			bus_set_resource(dev, SYS_RES_IOPORT, 1, ctlstart, 1);
614 		}
615 
616 		/*
617 		 * Now (finally!) allocate the control port.
618 		 */
619 		fdc->res_ctl = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
620 						      &fdc->rid_ctl, RF_ACTIVE);
621 		if (fdc->res_ctl == 0) {
622 			device_printf(dev,
623 		"cannot reserve control I/O port range (control port)\n");
624 			return ENXIO;
625 		}
626 		fdc->ctlt = rman_get_bustag(fdc->res_ctl);
627 		fdc->ctlh = rman_get_bushandle(fdc->res_ctl);
628 	}
629 
630 	fdc->res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &fdc->rid_irq,
631 					      RF_ACTIVE | RF_SHAREABLE);
632 	if (fdc->res_irq == 0) {
633 		device_printf(dev, "cannot reserve interrupt line\n");
634 		return ENXIO;
635 	}
636 
637 	if ((fdc->flags & FDC_NODMA) == 0) {
638 		fdc->res_drq = bus_alloc_resource_any(dev, SYS_RES_DRQ,
639 		    &fdc->rid_drq, RF_ACTIVE | RF_SHAREABLE);
640 		if (fdc->res_drq == 0) {
641 			device_printf(dev, "cannot reserve DMA request line\n");
642 			fdc->flags |= FDC_NODMA;
643 		} else
644 			fdc->dmachan = rman_get_start(fdc->res_drq);
645 	}
646 
647 	return 0;
648 }
649 
650 void
651 fdc_release_resources(struct fdc_data *fdc)
652 {
653 	device_t dev;
654 
655 	dev = fdc->fdc_dev;
656 	if (fdc->res_irq != 0) {
657 		bus_deactivate_resource(dev, SYS_RES_IRQ, fdc->rid_irq,
658 					fdc->res_irq);
659 		bus_release_resource(dev, SYS_RES_IRQ, fdc->rid_irq,
660 				     fdc->res_irq);
661 	}
662 	if (fdc->res_ctl != 0) {
663 		bus_deactivate_resource(dev, SYS_RES_IOPORT, fdc->rid_ctl,
664 					fdc->res_ctl);
665 		bus_release_resource(dev, SYS_RES_IOPORT, fdc->rid_ctl,
666 				     fdc->res_ctl);
667 	}
668 	if (fdc->res_ioport != 0) {
669 		bus_deactivate_resource(dev, SYS_RES_IOPORT, fdc->rid_ioport,
670 					fdc->res_ioport);
671 		bus_release_resource(dev, SYS_RES_IOPORT, fdc->rid_ioport,
672 				     fdc->res_ioport);
673 	}
674 	if (fdc->res_drq != 0) {
675 		bus_deactivate_resource(dev, SYS_RES_DRQ, fdc->rid_drq,
676 					fdc->res_drq);
677 		bus_release_resource(dev, SYS_RES_DRQ, fdc->rid_drq,
678 				     fdc->res_drq);
679 	}
680 }
681 
682 /*
683  * Configuration/initialization stuff, per controller.
684  */
685 
686 int
687 fdc_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
688 {
689 	struct fdc_ivars *ivars = device_get_ivars(child);
690 
691 	switch (which) {
692 	case FDC_IVAR_FDUNIT:
693 		*result = ivars->fdunit;
694 		break;
695 	case FDC_IVAR_FDTYPE:
696 		*result = ivars->fdtype;
697 		break;
698 	default:
699 		return (ENOENT);
700 	}
701 	return (0);
702 }
703 
704 int
705 fdc_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
706 {
707 	struct fdc_ivars *ivars = device_get_ivars(child);
708 
709 	switch (which) {
710 	case FDC_IVAR_FDUNIT:
711 		ivars->fdunit = value;
712 		break;
713 	case FDC_IVAR_FDTYPE:
714 		ivars->fdtype = value;
715 		break;
716 	default:
717 		return (ENOENT);
718 	}
719 	return (0);
720 }
721 
722 int
723 fdc_initial_reset(struct fdc_data *fdc)
724 {
725 	/* First, reset the floppy controller. */
726 	fdout_wr(fdc, 0);
727 	DELAY(100);
728 	fdout_wr(fdc, FDO_FRST);
729 
730 	/* Then, see if it can handle a command. */
731 	if (fd_cmd(fdc, 3, NE7CMD_SPECIFY, NE7_SPEC_1(3, 240),
732 	    NE7_SPEC_2(2, 0), 0))
733 		return (ENXIO);
734 	return (0);
735 }
736 
737 int
738 fdc_detach(device_t dev)
739 {
740 	struct	fdc_data *fdc;
741 	int	error;
742 
743 	fdc = device_get_softc(dev);
744 
745 	/* have our children detached first */
746 	if ((error = bus_generic_detach(dev)))
747 		return (error);
748 
749 	/* reset controller, turn motor off */
750 	fdout_wr(fdc, 0);
751 
752 	if ((fdc->flags & FDC_ATTACHED) == 0) {
753 		device_printf(dev, "already unloaded\n");
754 		return (0);
755 	}
756 	fdc->flags &= ~FDC_ATTACHED;
757 
758 	BUS_TEARDOWN_INTR(device_get_parent(dev), dev, fdc->res_irq,
759 			  fdc->fdc_intr);
760 	fdc_release_resources(fdc);
761 	return (0);
762 }
763 
764 /*
765  * Add a child device to the fdc controller.  It will then be probed etc.
766  */
767 static void
768 fdc_add_child(device_t dev, const char *name, int unit)
769 {
770 	int	fdu, flags;
771 	struct fdc_ivars *ivar;
772 	device_t child;
773 
774 	ivar = malloc(sizeof *ivar, M_DEVBUF /* XXX */, M_NOWAIT | M_ZERO);
775 	if (ivar == NULL)
776 		return;
777 	child = device_add_child(dev, name, unit);
778 	if (child == NULL) {
779 		free(ivar, M_DEVBUF);
780 		return;
781 	}
782 	device_set_ivars(child, ivar);
783 	if (resource_int_value(name, unit, "drive", &fdu) != 0)
784 		fdu = 0;
785 	fdc_set_fdunit(child, fdu);
786 	fdc_set_fdtype(child, FDT_NONE);
787 	if (resource_int_value(name, unit, "flags", &flags) == 0)
788 		device_set_flags(child, flags);
789 	if (resource_disabled(name, unit))
790 		device_disable(child);
791 }
792 
793 int
794 fdc_attach(device_t dev)
795 {
796 	struct	fdc_data *fdc;
797 	const char *name, *dname;
798 	int	i, error, dunit;
799 
800 	fdc = device_get_softc(dev);
801 	error = fdc_alloc_resources(fdc);
802 	if (error) {
803 		device_printf(dev, "cannot re-acquire resources\n");
804 		return error;
805 	}
806 	error = BUS_SETUP_INTR(device_get_parent(dev), dev, fdc->res_irq,
807 			       INTR_TYPE_BIO | INTR_ENTROPY, fdc_intr, fdc,
808 			       &fdc->fdc_intr);
809 	if (error) {
810 		device_printf(dev, "cannot setup interrupt\n");
811 		return error;
812 	}
813 	fdc->fdcu = device_get_unit(dev);
814 	fdc->flags |= FDC_ATTACHED | FDC_NEEDS_RESET;
815 
816 	fdc->state = DEVIDLE;
817 
818 	/* reset controller, turn motor off, clear fdout mirror reg */
819 	fdout_wr(fdc, fdc->fdout = 0);
820 	bioq_init(&fdc->head);
821 
822 	/*
823 	 * Probe and attach any children.  We should probably detect
824 	 * devices from the BIOS unless overridden.
825 	 */
826 	name = device_get_nameunit(dev);
827 	i = 0;
828 	while ((resource_find_match(&i, &dname, &dunit, "at", name)) == 0)
829 		fdc_add_child(dev, dname, dunit);
830 
831 	if ((error = bus_generic_attach(dev)) != 0)
832 		return (error);
833 
834 	return (0);
835 }
836 
837 int
838 fdc_print_child(device_t me, device_t child)
839 {
840 	int retval = 0, flags;
841 
842 	retval += bus_print_child_header(me, child);
843 	retval += printf(" on %s drive %d", device_get_nameunit(me),
844 	       fdc_get_fdunit(child));
845 	if ((flags = device_get_flags(me)) != 0)
846 		retval += printf(" flags %#x", flags);
847 	retval += printf("\n");
848 
849 	return (retval);
850 }
851 
852 /*
853  * Configuration/initialization, per drive.
854  */
855 static int
856 fd_probe(device_t dev)
857 {
858 	int	i;
859 	u_int	st0, st3;
860 	struct	fd_data *fd;
861 	struct	fdc_data *fdc;
862 	fdsu_t	fdsu;
863 	int	flags, type;
864 
865 	fdsu = fdc_get_fdunit(dev);
866 	fd = device_get_softc(dev);
867 	fdc = device_get_softc(device_get_parent(dev));
868 	flags = device_get_flags(dev);
869 
870 	fd->dev = dev;
871 	fd->fdc = fdc;
872 	fd->fdsu = fdsu;
873 	fd->fdu = device_get_unit(dev);
874 
875 	type = FD_DTYPE(flags);
876 
877 	/* Auto-probe if fdinfo is present, but always allow override. */
878 	if (type == FDT_NONE && (type = fdc_get_fdtype(dev)) != FDT_NONE) {
879 		fd->type = type;
880 		goto done;
881 	} else {
882 		/* make sure fdautoselect() will be called */
883 		fd->flags = FD_UA;
884 		fd->type = type;
885 	}
886 
887 /*
888  * XXX I think using __i386__ is wrong here since we actually want to probe
889  * for the machine type, not the CPU type (so non-PC arch's like the PC98 will
890  * fail the probe).  However, for whatever reason, testing for _MACHINE_ARCH
891  * == i386 breaks the test on FreeBSD/Alpha.
892  */
893 #if defined(__i386__) || defined(__amd64__)
894 	if (fd->type == FDT_NONE && (fd->fdu == 0 || fd->fdu == 1)) {
895 		/* Look up what the BIOS thinks we have. */
896 		if (fd->fdu == 0) {
897 			if ((fdc->flags & FDC_ISPCMCIA))
898 				/*
899 				 * Somewhat special.  No need to force the
900 				 * user to set device flags, since the Y-E
901 				 * Data PCMCIA floppy is always a 1.44 MB
902 				 * device.
903 				 */
904 				fd->type = FDT_144M;
905 			else
906 				fd->type = (rtcin(RTC_FDISKETTE) & 0xf0) >> 4;
907 		} else {
908 			fd->type = rtcin(RTC_FDISKETTE) & 0x0f;
909 		}
910 		if (fd->type == FDT_288M_1)
911 			fd->type = FDT_288M;
912 	}
913 #endif /* __i386__ || __amd64__ */
914 	/* is there a unit? */
915 	if (fd->type == FDT_NONE)
916 		return (ENXIO);
917 
918 	/* select it */
919 	set_motor(fdc, fdsu, TURNON);
920 	fdc_reset(fdc);		/* XXX reset, then unreset, etc. */
921 	DELAY(1000000);	/* 1 sec */
922 
923 	if ((flags & FD_NO_PROBE) == 0) {
924 		/* If we're at track 0 first seek inwards. */
925 		if ((fd_sense_drive_status(fdc, &st3) == 0) &&
926 		    (st3 & NE7_ST3_T0)) {
927 			/* Seek some steps... */
928 			if (fd_cmd(fdc, 3, NE7CMD_SEEK, fdsu, 10, 0) == 0) {
929 				/* ...wait a moment... */
930 				DELAY(300000);
931 				/* make ctrlr happy: */
932 				fd_sense_int(fdc, 0, 0);
933 			}
934 		}
935 
936 		for (i = 0; i < 2; i++) {
937 			/*
938 			 * we must recalibrate twice, just in case the
939 			 * heads have been beyond cylinder 76, since
940 			 * most FDCs still barf when attempting to
941 			 * recalibrate more than 77 steps
942 			 */
943 			/* go back to 0: */
944 			if (fd_cmd(fdc, 2, NE7CMD_RECAL, fdsu, 0) == 0) {
945 				/* a second being enough for full stroke seek*/
946 				DELAY(i == 0 ? 1000000 : 300000);
947 
948 				/* anything responding? */
949 				if (fd_sense_int(fdc, &st0, 0) == 0 &&
950 				    (st0 & NE7_ST0_EC) == 0)
951 					break; /* already probed succesfully */
952 			}
953 		}
954 	}
955 
956 	set_motor(fdc, fdsu, TURNOFF);
957 
958 	if ((flags & FD_NO_PROBE) == 0 &&
959 	    (st0 & NE7_ST0_EC) != 0) /* no track 0 -> no drive present */
960 		return (ENXIO);
961 
962 done:
963 	/* This doesn't work before the first reset.  Or set_motor?? */
964 	if ((fdc->flags & FDC_HAS_FIFO) == 0 &&
965 	    fdc->fdct == FDC_ENHANCED &&
966 	    (device_get_flags(fdc->fdc_dev) & FDC_NO_FIFO) == 0 &&
967 	    enable_fifo(fdc) == 0) {
968 		device_printf(device_get_parent(dev),
969 		    "FIFO enabled, %d bytes threshold\n", fifo_threshold);
970 	}
971 
972 	switch (fd->type) {
973 	case FDT_12M:
974 		device_set_desc(dev, "1200-KB 5.25\" drive");
975 		break;
976 	case FDT_144M:
977 		device_set_desc(dev, "1440-KB 3.5\" drive");
978 		break;
979 	case FDT_288M:
980 		device_set_desc(dev, "2880-KB 3.5\" drive (in 1440-KB mode)");
981 		break;
982 	case FDT_360K:
983 		device_set_desc(dev, "360-KB 5.25\" drive");
984 		break;
985 	case FDT_720K:
986 		device_set_desc(dev, "720-KB 3.5\" drive");
987 		break;
988 	default:
989 		return (ENXIO);
990 	}
991 	fd->track = FD_NO_TRACK;
992 	fd->fdc = fdc;
993 	fd->fdsu = fdsu;
994 	fd->options = 0;
995 	callout_handle_init(&fd->toffhandle);
996 	callout_handle_init(&fd->tohandle);
997 
998 	/* initialize densities for subdevices */
999 	for (i = 0; i < NUMDENS; i++)
1000 		memcpy(fd->fts + i, fd_native_types + fd->type,
1001 		       sizeof(struct fd_type));
1002 	return (0);
1003 }
1004 
1005 static int
1006 fd_attach(device_t dev)
1007 {
1008 	struct	fd_data *fd;
1009 
1010 	fd = device_get_softc(dev);
1011 	fd->masterdev = make_dev(&fd_cdevsw, fd->fdu,
1012 				 UID_ROOT, GID_OPERATOR, 0640, "fd%d", fd->fdu);
1013 	fd->masterdev->si_drv1 = fd;
1014 	fd->device_stats = devstat_new_entry(device_get_name(dev),
1015 			  device_get_unit(dev), 0, DEVSTAT_NO_ORDERED_TAGS,
1016 			  DEVSTAT_TYPE_FLOPPY | DEVSTAT_TYPE_IF_OTHER,
1017 			  DEVSTAT_PRIORITY_FD);
1018 	return (0);
1019 }
1020 
1021 static int
1022 fd_detach(device_t dev)
1023 {
1024 	struct	fd_data *fd;
1025 
1026 	fd = device_get_softc(dev);
1027 	untimeout(fd_turnoff, fd, fd->toffhandle);
1028 	devstat_remove_entry(fd->device_stats);
1029 	destroy_dev(fd->masterdev);
1030 
1031 	return (0);
1032 }
1033 
1034 static device_method_t fd_methods[] = {
1035 	/* Device interface */
1036 	DEVMETHOD(device_probe,		fd_probe),
1037 	DEVMETHOD(device_attach,	fd_attach),
1038 	DEVMETHOD(device_detach,	fd_detach),
1039 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1040 	DEVMETHOD(device_suspend,	bus_generic_suspend), /* XXX */
1041 	DEVMETHOD(device_resume,	bus_generic_resume), /* XXX */
1042 
1043 	{ 0, 0 }
1044 };
1045 
1046 static driver_t fd_driver = {
1047 	"fd",
1048 	fd_methods,
1049 	sizeof(struct fd_data)
1050 };
1051 
1052 DRIVER_MODULE(fd, fdc, fd_driver, fd_devclass, 0, 0);
1053 
1054 /*
1055  * More auxiliary functions.
1056  */
1057 /*
1058  * Motor control stuff.
1059  * Remember to not deselect the drive we're working on.
1060  */
1061 static void
1062 set_motor(struct fdc_data *fdc, int fdsu, int turnon)
1063 {
1064 	int fdout;
1065 
1066 	fdout = fdc->fdout;
1067 	if (turnon) {
1068 		fdout &= ~FDO_FDSEL;
1069 		fdout |= (FDO_MOEN0 << fdsu) | FDO_FDMAEN | FDO_FRST | fdsu;
1070 	} else
1071 		fdout &= ~(FDO_MOEN0 << fdsu);
1072 	fdc->fdout = fdout;
1073 	fdout_wr(fdc, fdout);
1074 	TRACE1("[0x%x->FDOUT]", fdout);
1075 }
1076 
1077 static void
1078 fd_turnoff(void *xfd)
1079 {
1080 	int	s;
1081 	fd_p fd = xfd;
1082 
1083 	TRACE1("[fd%d: turnoff]", fd->fdu);
1084 
1085 	s = splbio();
1086 	/*
1087 	 * Don't turn off the motor yet if the drive is active.
1088 	 *
1089 	 * If we got here, this could only mean we missed an interrupt.
1090 	 * This can e. g. happen on the Y-E Date PCMCIA floppy controller
1091 	 * after a controller reset.  Just schedule a pseudo-interrupt
1092 	 * so the state machine gets re-entered.
1093 	 */
1094 	if (fd->fdc->state != DEVIDLE && fd->fdc->fdu == fd->fdu) {
1095 		fdc_intr(fd->fdc);
1096 		splx(s);
1097 		return;
1098 	}
1099 
1100 	fd->flags &= ~FD_MOTOR;
1101 	set_motor(fd->fdc, fd->fdsu, TURNOFF);
1102 	splx(s);
1103 }
1104 
1105 static void
1106 fd_motor_on(void *xfd)
1107 {
1108 	int	s;
1109 	fd_p fd = xfd;
1110 
1111 	s = splbio();
1112 	fd->flags &= ~FD_MOTOR_WAIT;
1113 	if((fd->fdc->fd == fd) && (fd->fdc->state == MOTORWAIT))
1114 	{
1115 		fdc_intr(fd->fdc);
1116 	}
1117 	splx(s);
1118 }
1119 
1120 static void
1121 fd_turnon(fd_p fd)
1122 {
1123 	if(!(fd->flags & FD_MOTOR))
1124 	{
1125 		fd->flags |= (FD_MOTOR + FD_MOTOR_WAIT);
1126 		set_motor(fd->fdc, fd->fdsu, TURNON);
1127 		timeout(fd_motor_on, fd, hz); /* in 1 sec its ok */
1128 	}
1129 }
1130 
1131 static void
1132 fdc_reset(fdc_p fdc)
1133 {
1134 	/* Try a reset, keep motor on */
1135 	fdout_wr(fdc, fdc->fdout & ~(FDO_FRST|FDO_FDMAEN));
1136 	TRACE1("[0x%x->FDOUT]", fdc->fdout & ~(FDO_FRST|FDO_FDMAEN));
1137 	DELAY(100);
1138 	/* enable FDC, but defer interrupts a moment */
1139 	fdout_wr(fdc, fdc->fdout & ~FDO_FDMAEN);
1140 	TRACE1("[0x%x->FDOUT]", fdc->fdout & ~FDO_FDMAEN);
1141 	DELAY(100);
1142 	fdout_wr(fdc, fdc->fdout);
1143 	TRACE1("[0x%x->FDOUT]", fdc->fdout);
1144 
1145 	/* XXX after a reset, silently believe the FDC will accept commands */
1146 	(void)fd_cmd(fdc, 3, NE7CMD_SPECIFY,
1147 		     NE7_SPEC_1(3, 240), NE7_SPEC_2(2, 0),
1148 		     0);
1149 	if (fdc->flags & FDC_HAS_FIFO)
1150 		(void) enable_fifo(fdc);
1151 }
1152 
1153 /*
1154  * FDC IO functions, take care of the main status register, timeout
1155  * in case the desired status bits are never set.
1156  *
1157  * These PIO loops initially start out with short delays between
1158  * each iteration in the expectation that the required condition
1159  * is usually met quickly, so it can be handled immediately.  After
1160  * about 1 ms, stepping is increased to achieve a better timing
1161  * accuracy in the calls to DELAY().
1162  */
1163 static int
1164 fd_in(struct fdc_data *fdc, int *ptr)
1165 {
1166 	int i, j, step;
1167 
1168 	for (j = 0, step = 1;
1169 	    (i = fdsts_rd(fdc) & (NE7_DIO|NE7_RQM)) != (NE7_DIO|NE7_RQM) &&
1170 	    j < FDSTS_TIMEOUT;
1171 	    j += step) {
1172 		if (i == NE7_RQM)
1173 			return (fdc_err(fdc, "ready for output in input\n"));
1174 		if (j == 1000)
1175 			step = 1000;
1176 		DELAY(step);
1177 	}
1178 	if (j >= FDSTS_TIMEOUT)
1179 		return (fdc_err(fdc, bootverbose? "input ready timeout\n": 0));
1180 #ifdef	FDC_DEBUG
1181 	i = fddata_rd(fdc);
1182 	TRACE1("[FDDATA->0x%x]", (unsigned char)i);
1183 	*ptr = i;
1184 	return (0);
1185 #else	/* !FDC_DEBUG */
1186 	i = fddata_rd(fdc);
1187 	if (ptr)
1188 		*ptr = i;
1189 	return (0);
1190 #endif	/* FDC_DEBUG */
1191 }
1192 
1193 static int
1194 out_fdc(struct fdc_data *fdc, int x)
1195 {
1196 	int i, j, step;
1197 
1198 	for (j = 0, step = 1;
1199 	    (i = fdsts_rd(fdc) & (NE7_DIO|NE7_RQM)) != NE7_RQM &&
1200 	    j < FDSTS_TIMEOUT;
1201 	    j += step) {
1202 		if (i == (NE7_DIO|NE7_RQM))
1203 			return (fdc_err(fdc, "ready for input in output\n"));
1204 		if (j == 1000)
1205 			step = 1000;
1206 		DELAY(step);
1207 	}
1208 	if (j >= FDSTS_TIMEOUT)
1209 		return (fdc_err(fdc, bootverbose? "output ready timeout\n": 0));
1210 
1211 	/* Send the command and return */
1212 	fddata_wr(fdc, x);
1213 	TRACE1("[0x%x->FDDATA]", x);
1214 	return (0);
1215 }
1216 
1217 /*
1218  * Block device driver interface functions (interspersed with even more
1219  * auxiliary functions).
1220  */
1221 static int
1222 fdopen(struct cdev *dev, int flags, int mode, struct thread *td)
1223 {
1224 	fd_p	fd;
1225 	fdc_p	fdc;
1226  	int rv, unitattn, dflags;
1227 
1228 	fd = dev->si_drv1;
1229 	if (fd == NULL)
1230 		return (ENXIO);
1231 	fdc = fd->fdc;
1232 	if ((fdc == NULL) || (fd->type == FDT_NONE))
1233 		return (ENXIO);
1234 	dflags = device_get_flags(fd->dev);
1235 	/*
1236 	 * This is a bit bogus.  It's still possible that e. g. a
1237 	 * descriptor gets inherited to a child, but then it's at
1238 	 * least for the same subdevice.  By checking FD_OPEN here, we
1239 	 * can ensure that a device isn't attempted to be opened with
1240 	 * different densities at the same time where the second open
1241 	 * could clobber the settings from the first one.
1242 	 */
1243 	if (fd->flags & FD_OPEN)
1244 		return (EBUSY);
1245 
1246 	if (flags & FNONBLOCK) {
1247 		/*
1248 		 * Unfortunately, physio(9) discards its ioflag
1249 		 * argument, thus preventing us from seeing the
1250 		 * IO_NDELAY bit.  So we need to keep track
1251 		 * ourselves.
1252 		 */
1253 		fd->flags |= FD_NONBLOCK;
1254 		fd->ft = 0;
1255 	} else {
1256 		/*
1257 		 * Figure out a unit attention condition.
1258 		 *
1259 		 * If UA has been forced, proceed.
1260 		 *
1261 		 * If the drive has no changeline support,
1262 		 * or if the drive parameters have been lost
1263 		 * due to previous non-blocking access,
1264 		 * assume a forced UA condition.
1265 		 *
1266 		 * If motor is off, turn it on for a moment
1267 		 * and select our drive, in order to read the
1268 		 * UA hardware signal.
1269 		 *
1270 		 * If motor is on, and our drive is currently
1271 		 * selected, just read the hardware bit.
1272 		 *
1273 		 * If motor is on, but active for another
1274 		 * drive on that controller, we are lost.  We
1275 		 * cannot risk to deselect the other drive, so
1276 		 * we just assume a forced UA condition to be
1277 		 * on the safe side.
1278 		 */
1279 		unitattn = 0;
1280 		if ((dflags & FD_NO_CHLINE) != 0 ||
1281 		    (fd->flags & FD_UA) != 0 ||
1282 		    fd->ft == 0) {
1283 			unitattn = 1;
1284 			fd->flags &= ~FD_UA;
1285 		} else if (fdc->fdout & (FDO_MOEN0 | FDO_MOEN1 |
1286 					 FDO_MOEN2 | FDO_MOEN3)) {
1287 			if ((fdc->fdout & FDO_FDSEL) == fd->fdsu)
1288 				unitattn = fdin_rd(fdc) & FDI_DCHG;
1289 			else
1290 				unitattn = 1;
1291 		} else {
1292 			set_motor(fdc, fd->fdsu, TURNON);
1293 			unitattn = fdin_rd(fdc) & FDI_DCHG;
1294 			set_motor(fdc, fd->fdsu, TURNOFF);
1295 		}
1296 		if (unitattn && (rv = fdautoselect(dev)) != 0)
1297 			return (rv);
1298 	}
1299 	fd->flags |= FD_OPEN;
1300 
1301 	if ((fdc->flags & FDC_NODMA) == 0) {
1302 		if (fdc->dmacnt++ == 0) {
1303 			isa_dma_acquire(fdc->dmachan);
1304 			isa_dmainit(fdc->dmachan, MAX_SEC_SIZE);
1305 		}
1306 	}
1307 
1308 	/*
1309 	 * Clearing the DMA overrun counter at open time is a bit messy.
1310 	 * Since we're only managing one counter per controller, opening
1311 	 * the second drive could mess it up.  Anyway, if the DMA overrun
1312 	 * condition is really persistent, it will eventually time out
1313 	 * still.  OTOH, clearing it here will ensure we'll at least start
1314 	 * trying again after a previous (maybe even long ago) failure.
1315 	 * Also, this is merely a stop-gap measure only that should not
1316 	 * happen during normal operation, so we can tolerate it to be a
1317 	 * bit sloppy about this.
1318 	 */
1319 	fdc->dma_overruns = 0;
1320 
1321 	return 0;
1322 }
1323 
1324 static int
1325 fdclose(struct cdev *dev, int flags, int mode, struct thread *td)
1326 {
1327 	struct fd_data *fd;
1328  	fdc_p	fdc;
1329 
1330 	fd = dev->si_drv1;
1331 	fdc = fd->fdc;
1332 	fd->flags &= ~(FD_OPEN | FD_NONBLOCK);
1333 	fd->options &= ~(FDOPT_NORETRY | FDOPT_NOERRLOG | FDOPT_NOERROR);
1334 
1335 	if ((fdc->flags & FDC_NODMA) == 0)
1336 		if (--fdc->dmacnt == 0)
1337 			isa_dma_release(fdc->dmachan);
1338 
1339 	return (0);
1340 }
1341 
1342 static void
1343 fdstrategy(struct bio *bp)
1344 {
1345 	long blknum, nblocks;
1346  	int	s;
1347  	fdu_t	fdu;
1348  	fdc_p	fdc;
1349  	fd_p	fd;
1350 	size_t	fdblk;
1351 
1352 	fd = bp->bio_dev->si_drv1;
1353  	fdu = fd->fdu;
1354 	fdc = fd->fdc;
1355 	bp->bio_resid = bp->bio_bcount;
1356 	if (fd->type == FDT_NONE || fd->ft == 0) {
1357 		if (fd->type != FDT_NONE && (fd->flags & FD_NONBLOCK))
1358 			bp->bio_error = EAGAIN;
1359 		else
1360 			bp->bio_error = ENXIO;
1361 		bp->bio_flags |= BIO_ERROR;
1362 		goto bad;
1363 	}
1364 	fdblk = 128 << (fd->ft->secsize);
1365 	if (bp->bio_cmd != FDBIO_FORMAT && bp->bio_cmd != FDBIO_RDSECTID) {
1366 		if (fd->flags & FD_NONBLOCK) {
1367 			bp->bio_error = EAGAIN;
1368 			bp->bio_flags |= BIO_ERROR;
1369 			goto bad;
1370 		}
1371 		if (bp->bio_offset < 0) {
1372 			printf(
1373 		"fd%d: fdstrat: bad request offset = %ju, bcount = %ld\n",
1374 			       fdu, (intmax_t)bp->bio_offset, bp->bio_bcount);
1375 			bp->bio_error = EINVAL;
1376 			bp->bio_flags |= BIO_ERROR;
1377 			goto bad;
1378 		}
1379 		if ((bp->bio_bcount % fdblk) != 0) {
1380 			bp->bio_error = EINVAL;
1381 			bp->bio_flags |= BIO_ERROR;
1382 			goto bad;
1383 		}
1384 	}
1385 
1386 	/*
1387 	 * Set up block calculations.
1388 	 */
1389 	if (bp->bio_offset >= ((off_t)128 << fd->ft->secsize) * fd->ft->size) {
1390 		bp->bio_error = EINVAL;
1391 		bp->bio_flags |= BIO_ERROR;
1392 		goto bad;
1393 	}
1394 	blknum = bp->bio_offset / fdblk;
1395  	nblocks = fd->ft->size;
1396 	if (blknum + bp->bio_bcount / fdblk > nblocks) {
1397 		if (blknum >= nblocks) {
1398 			if (bp->bio_cmd != BIO_READ) {
1399 				bp->bio_error = ENOSPC;
1400 				bp->bio_flags |= BIO_ERROR;
1401 			}
1402 			goto bad;	/* not always bad, but EOF */
1403 		}
1404 		bp->bio_bcount = (nblocks - blknum) * fdblk;
1405 	}
1406  	bp->bio_pblkno = blknum;
1407 	s = splbio();
1408 	bioq_disksort(&fdc->head, bp);
1409 	untimeout(fd_turnoff, fd, fd->toffhandle); /* a good idea */
1410 	devstat_start_transaction_bio(fd->device_stats, bp);
1411 	device_busy(fd->dev);
1412 	fdstart(fdc);
1413 	splx(s);
1414 	return;
1415 
1416 bad:
1417 	biodone(bp);
1418 }
1419 
1420 /*
1421  * fdstart
1422  *
1423  * We have just queued something.  If the controller is not busy
1424  * then simulate the case where it has just finished a command
1425  * So that it (the interrupt routine) looks on the queue for more
1426  * work to do and picks up what we just added.
1427  *
1428  * If the controller is already busy, we need do nothing, as it
1429  * will pick up our work when the present work completes.
1430  */
1431 static void
1432 fdstart(struct fdc_data *fdc)
1433 {
1434 	int s;
1435 
1436 	s = splbio();
1437 	if(fdc->state == DEVIDLE)
1438 	{
1439 		fdc_intr(fdc);
1440 	}
1441 	splx(s);
1442 }
1443 
1444 static void
1445 fd_iotimeout(void *xfdc)
1446 {
1447  	fdc_p fdc;
1448 	int s;
1449 
1450 	fdc = xfdc;
1451 	TRACE1("fd%d[fd_iotimeout()]", fdc->fdu);
1452 
1453 	/*
1454 	 * Due to IBM's brain-dead design, the FDC has a faked ready
1455 	 * signal, hardwired to ready == true. Thus, any command
1456 	 * issued if there's no diskette in the drive will _never_
1457 	 * complete, and must be aborted by resetting the FDC.
1458 	 * Many thanks, Big Blue!
1459 	 * The FDC must not be reset directly, since that would
1460 	 * interfere with the state machine.  Instead, pretend that
1461 	 * the command completed but was invalid.  The state machine
1462 	 * will reset the FDC and retry once.
1463 	 */
1464 	s = splbio();
1465 	fdc->status[0] = NE7_ST0_IC_IV;
1466 	fdc->flags &= ~FDC_STAT_VALID;
1467 	fdc->state = IOTIMEDOUT;
1468 	fdc_intr(fdc);
1469 	splx(s);
1470 }
1471 
1472 /* Just ensure it has the right spl. */
1473 static void
1474 fd_pseudointr(void *xfdc)
1475 {
1476 	int	s;
1477 
1478 	s = splbio();
1479 	fdc_intr(xfdc);
1480 	splx(s);
1481 }
1482 
1483 /*
1484  * fdc_intr
1485  *
1486  * Keep calling the state machine until it returns a 0.
1487  * Always called at splbio.
1488  */
1489 static void
1490 fdc_intr(void *xfdc)
1491 {
1492 	fdc_p fdc = xfdc;
1493 	while(fdstate(fdc))
1494 		;
1495 }
1496 
1497 /*
1498  * Magic pseudo-DMA initialization for YE FDC. Sets count and
1499  * direction.
1500  */
1501 #define SET_BCDR(fdc,wr,cnt,port) \
1502 	bus_space_write_1(fdc->portt, fdc->porth, fdc->port_off + port,	 \
1503 	    ((cnt)-1) & 0xff);						 \
1504 	bus_space_write_1(fdc->portt, fdc->porth, fdc->port_off + port + 1, \
1505 	    ((wr ? 0x80 : 0) | ((((cnt)-1) >> 8) & 0x7f)));
1506 
1507 /*
1508  * fdcpio(): perform programmed IO read/write for YE PCMCIA floppy.
1509  */
1510 static int
1511 fdcpio(fdc_p fdc, long flags, caddr_t addr, u_int count)
1512 {
1513 	u_char *cptr = (u_char *)addr;
1514 
1515 	if (flags == BIO_READ) {
1516 		if (fdc->state != PIOREAD) {
1517 			fdc->state = PIOREAD;
1518 			return(0);
1519 		}
1520 		SET_BCDR(fdc, 0, count, 0);
1521 		bus_space_read_multi_1(fdc->portt, fdc->porth, fdc->port_off +
1522 		    FDC_YE_DATAPORT, cptr, count);
1523 	} else {
1524 		bus_space_write_multi_1(fdc->portt, fdc->porth, fdc->port_off +
1525 		    FDC_YE_DATAPORT, cptr, count);
1526 		SET_BCDR(fdc, 0, count, 0);
1527 	}
1528 	return(1);
1529 }
1530 
1531 /*
1532  * Try figuring out the density of the media present in our device.
1533  */
1534 static int
1535 fdautoselect(struct cdev *dev)
1536 {
1537  	fd_p fd;
1538 	struct fd_type *fdtp;
1539 	struct fdc_readid id;
1540 	int i, n, oopts, rv;
1541 
1542 	fd = dev->si_drv1;
1543 
1544 	switch (fd->type) {
1545 	default:
1546 		return (ENXIO);
1547 
1548 	case FDT_360K:
1549 	case FDT_720K:
1550 		/* no autoselection on those drives */
1551 		fd->ft = fd_native_types + fd->type;
1552 		return (0);
1553 
1554 	case FDT_12M:
1555 		fdtp = fd_searchlist_12m;
1556 		n = sizeof fd_searchlist_12m / sizeof(struct fd_type);
1557 		break;
1558 
1559 	case FDT_144M:
1560 		fdtp = fd_searchlist_144m;
1561 		n = sizeof fd_searchlist_144m / sizeof(struct fd_type);
1562 		break;
1563 
1564 	case FDT_288M:
1565 		fdtp = fd_searchlist_288m;
1566 		n = sizeof fd_searchlist_288m / sizeof(struct fd_type);
1567 		break;
1568 	}
1569 
1570 	/*
1571 	 * Try reading sector ID fields, first at cylinder 0, head 0,
1572 	 * then at cylinder 2, head N.  We don't probe cylinder 1,
1573 	 * since for 5.25in DD media in a HD drive, there are no data
1574 	 * to read (2 step pulses per media cylinder required).  For
1575 	 * two-sided media, the second probe always goes to head 1, so
1576 	 * we can tell them apart from single-sided media.  As a
1577 	 * side-effect this means that single-sided media should be
1578 	 * mentioned in the search list after two-sided media of an
1579 	 * otherwise identical density.  Media with a different number
1580 	 * of sectors per track but otherwise identical parameters
1581 	 * cannot be distinguished at all.
1582 	 *
1583 	 * If we successfully read an ID field on both cylinders where
1584 	 * the recorded values match our expectation, we are done.
1585 	 * Otherwise, we try the next density entry from the table.
1586 	 *
1587 	 * Stepping to cylinder 2 has the side-effect of clearing the
1588 	 * unit attention bit.
1589 	 */
1590 	oopts = fd->options;
1591 	fd->options |= FDOPT_NOERRLOG | FDOPT_NORETRY;
1592 	for (i = 0; i < n; i++, fdtp++) {
1593 		fd->ft = fdtp;
1594 
1595 		id.cyl = id.head = 0;
1596 		rv = fdmisccmd(dev, FDBIO_RDSECTID, &id);
1597 		if (rv != 0)
1598 			continue;
1599 		if (id.cyl != 0 || id.head != 0 ||
1600 		    id.secshift != fdtp->secsize)
1601 			continue;
1602 		id.cyl = 2;
1603 		id.head = fd->ft->heads - 1;
1604 		rv = fdmisccmd(dev, FDBIO_RDSECTID, &id);
1605 		if (id.cyl != 2 || id.head != fdtp->heads - 1 ||
1606 		    id.secshift != fdtp->secsize)
1607 			continue;
1608 		if (rv == 0)
1609 			break;
1610 	}
1611 
1612 	fd->options = oopts;
1613 	if (i == n) {
1614 		if (bootverbose)
1615 			device_printf(fd->dev, "autoselection failed\n");
1616 		fd->ft = 0;
1617 		return (EIO);
1618 	} else {
1619 		if (bootverbose)
1620 			device_printf(fd->dev, "autoselected %d KB medium\n",
1621 				      fd->ft->size / 2);
1622 		return (0);
1623 	}
1624 }
1625 
1626 
1627 /*
1628  * The controller state machine.
1629  *
1630  * If it returns a non zero value, it should be called again immediately.
1631  */
1632 static int
1633 fdstate(fdc_p fdc)
1634 {
1635 	struct fdc_readid *idp;
1636 	int read, format, rdsectid, cylinder, head, i, sec = 0, sectrac;
1637 	int st0, cyl, st3, idf, ne7cmd, mfm, steptrac;
1638 	unsigned long blknum;
1639 	fdu_t fdu = fdc->fdu;
1640 	fd_p fd;
1641 	register struct bio *bp;
1642 	struct fd_formb *finfo = NULL;
1643 	size_t fdblk;
1644 
1645 	bp = fdc->bp;
1646 	if (bp == NULL) {
1647 		bp = bioq_first(&fdc->head);
1648 		if (bp != NULL) {
1649 			bioq_remove(&fdc->head, bp);
1650 			fdc->bp = bp;
1651 		}
1652 	}
1653 	if (bp == NULL) {
1654 		/*
1655 		 * Nothing left for this controller to do,
1656 		 * force into the IDLE state.
1657 		 */
1658 		fdc->state = DEVIDLE;
1659 		if (fdc->fd) {
1660 			device_printf(fdc->fdc_dev,
1661 			    "unexpected valid fd pointer\n");
1662 			fdc->fd = (fd_p) 0;
1663 			fdc->fdu = -1;
1664 		}
1665 		TRACE1("[fdc%d IDLE]", fdc->fdcu);
1666  		return (0);
1667 	}
1668 	fd = bp->bio_dev->si_drv1;
1669 	fdu = fd->fdu;
1670 	fdblk = 128 << fd->ft->secsize;
1671 	if (fdc->fd && (fd != fdc->fd))
1672 		device_printf(fd->dev, "confused fd pointers\n");
1673 	read = bp->bio_cmd == BIO_READ;
1674 	mfm = (fd->ft->flags & FL_MFM)? NE7CMD_MFM: 0;
1675 	steptrac = (fd->ft->flags & FL_2STEP)? 2: 1;
1676 	if (read)
1677 		idf = ISADMA_READ;
1678 	else
1679 		idf = ISADMA_WRITE;
1680 	format = bp->bio_cmd == FDBIO_FORMAT;
1681 	rdsectid = bp->bio_cmd == FDBIO_RDSECTID;
1682 	if (format)
1683 		finfo = (struct fd_formb *)bp->bio_data;
1684 	TRACE1("fd%d", fdu);
1685 	TRACE1("[%s]", fdstates[fdc->state]);
1686 	TRACE1("(0x%x)", fd->flags);
1687 	untimeout(fd_turnoff, fd, fd->toffhandle);
1688 	fd->toffhandle = timeout(fd_turnoff, fd, 4 * hz);
1689 	switch (fdc->state)
1690 	{
1691 	case DEVIDLE:
1692 	case FINDWORK:	/* we have found new work */
1693 		fdc->retry = 0;
1694 		fd->skip = 0;
1695 		fdc->fd = fd;
1696 		fdc->fdu = fdu;
1697 		fdc->fdctl_wr(fdc, fd->ft->trans);
1698 		TRACE1("[0x%x->FDCTL]", fd->ft->trans);
1699 		/*
1700 		 * If the next drive has a motor startup pending, then
1701 		 * it will start up in its own good time.
1702 		 */
1703 		if(fd->flags & FD_MOTOR_WAIT) {
1704 			fdc->state = MOTORWAIT;
1705 			return (0); /* will return later */
1706 		}
1707 		/*
1708 		 * Maybe if it's not starting, it SHOULD be starting.
1709 		 */
1710 		if (!(fd->flags & FD_MOTOR))
1711 		{
1712 			fdc->state = MOTORWAIT;
1713 			fd_turnon(fd);
1714 			return (0); /* will return later */
1715 		}
1716 		else	/* at least make sure we are selected */
1717 		{
1718 			set_motor(fdc, fd->fdsu, TURNON);
1719 		}
1720 		if (fdc->flags & FDC_NEEDS_RESET) {
1721 			fdc->state = RESETCTLR;
1722 			fdc->flags &= ~FDC_NEEDS_RESET;
1723 		} else
1724 			fdc->state = DOSEEK;
1725 		return (1);	/* will return immediately */
1726 
1727 	case DOSEEK:
1728 		blknum = bp->bio_pblkno + fd->skip / fdblk;
1729 		cylinder = blknum / (fd->ft->sectrac * fd->ft->heads);
1730 		if (cylinder == fd->track)
1731 		{
1732 			fdc->state = SEEKCOMPLETE;
1733 			return (1); /* will return immediately */
1734 		}
1735 		if (fd_cmd(fdc, 3, NE7CMD_SEEK,
1736 			   fd->fdsu, cylinder * steptrac, 0))
1737 		{
1738 			/*
1739 			 * Seek command not accepted, looks like
1740 			 * the FDC went off to the Saints...
1741 			 */
1742 			fdc->retry = 6;	/* try a reset */
1743 			return(retrier(fdc));
1744 		}
1745 		fd->track = FD_NO_TRACK;
1746 		fdc->state = SEEKWAIT;
1747 		return(0);	/* will return later */
1748 
1749 	case SEEKWAIT:
1750 		/* allow heads to settle */
1751 		timeout(fd_pseudointr, fdc, hz / 16);
1752 		fdc->state = SEEKCOMPLETE;
1753 		return(0);	/* will return later */
1754 
1755 	case SEEKCOMPLETE : /* seek done, start DMA */
1756 		blknum = bp->bio_pblkno + fd->skip / fdblk;
1757 		cylinder = blknum / (fd->ft->sectrac * fd->ft->heads);
1758 
1759 		/* Make sure seek really happened. */
1760 		if(fd->track == FD_NO_TRACK) {
1761 			int descyl = cylinder * steptrac;
1762 			do {
1763 				/*
1764 				 * This might be a "ready changed" interrupt,
1765 				 * which cannot really happen since the
1766 				 * RDY pin is hardwired to + 5 volts.  This
1767 				 * generally indicates a "bouncing" intr
1768 				 * line, so do one of the following:
1769 				 *
1770 				 * When running on an enhanced FDC that is
1771 				 * known to not go stuck after responding
1772 				 * with INVALID, fetch all interrupt states
1773 				 * until seeing either an INVALID or a
1774 				 * real interrupt condition.
1775 				 *
1776 				 * When running on a dumb old NE765, give
1777 				 * up immediately.  The controller will
1778 				 * provide up to four dummy RC interrupt
1779 				 * conditions right after reset (for the
1780 				 * corresponding four drives), so this is
1781 				 * our only chance to get notice that it
1782 				 * was not the FDC that caused the interrupt.
1783 				 */
1784 				if (fd_sense_int(fdc, &st0, &cyl)
1785 				    == FD_NOT_VALID)
1786 					return (0); /* will return later */
1787 				if(fdc->fdct == FDC_NE765
1788 				   && (st0 & NE7_ST0_IC) == NE7_ST0_IC_RC)
1789 					return (0); /* hope for a real intr */
1790 			} while ((st0 & NE7_ST0_IC) == NE7_ST0_IC_RC);
1791 
1792 			if (0 == descyl) {
1793 				int failed = 0;
1794 				/*
1795 				 * seek to cyl 0 requested; make sure we are
1796 				 * really there
1797 				 */
1798 				if (fd_sense_drive_status(fdc, &st3))
1799 					failed = 1;
1800 				if ((st3 & NE7_ST3_T0) == 0) {
1801 					printf(
1802 		"fd%d: Seek to cyl 0, but not really there (ST3 = %b)\n",
1803 					       fdu, st3, NE7_ST3BITS);
1804 					failed = 1;
1805 				}
1806 
1807 				if (failed) {
1808 					if(fdc->retry < 3)
1809 						fdc->retry = 3;
1810 					return (retrier(fdc));
1811 				}
1812 			}
1813 
1814 			if (cyl != descyl) {
1815 				printf(
1816 		"fd%d: Seek to cyl %d failed; am at cyl %d (ST0 = 0x%x)\n",
1817 				       fdu, descyl, cyl, st0);
1818 				if (fdc->retry < 3)
1819 					fdc->retry = 3;
1820 				return (retrier(fdc));
1821 			}
1822 		}
1823 
1824 		fd->track = cylinder;
1825 		if (format)
1826 			fd->skip = (char *)&(finfo->fd_formb_cylno(0))
1827 			    - (char *)finfo;
1828 		if (!rdsectid && !(fdc->flags & FDC_NODMA))
1829 			isa_dmastart(idf, bp->bio_data+fd->skip,
1830 				format ? bp->bio_bcount : fdblk, fdc->dmachan);
1831 		blknum = bp->bio_pblkno + fd->skip / fdblk;
1832 		sectrac = fd->ft->sectrac;
1833 		sec = blknum %  (sectrac * fd->ft->heads);
1834 		head = sec / sectrac;
1835 		sec = sec % sectrac + 1;
1836 		if (head != 0 && fd->ft->offset_side2 != 0)
1837 			sec += fd->ft->offset_side2;
1838 		fd->hddrv = ((head&1)<<2)+fdu;
1839 
1840 		if(format || !(read || rdsectid))
1841 		{
1842 			/* make sure the drive is writable */
1843 			if(fd_sense_drive_status(fdc, &st3) != 0)
1844 			{
1845 				/* stuck controller? */
1846 				if (!(fdc->flags & FDC_NODMA))
1847 					isa_dmadone(idf,
1848 						    bp->bio_data + fd->skip,
1849 						    format ? bp->bio_bcount : fdblk,
1850 						    fdc->dmachan);
1851 				fdc->retry = 6;	/* reset the beast */
1852 				return (retrier(fdc));
1853 			}
1854 			if(st3 & NE7_ST3_WP)
1855 			{
1856 				/*
1857 				 * XXX YES! this is ugly.
1858 				 * in order to force the current operation
1859 				 * to fail, we will have to fake an FDC
1860 				 * error - all error handling is done
1861 				 * by the retrier()
1862 				 */
1863 				fdc->status[0] = NE7_ST0_IC_AT;
1864 				fdc->status[1] = NE7_ST1_NW;
1865 				fdc->status[2] = 0;
1866 				fdc->status[3] = fd->track;
1867 				fdc->status[4] = head;
1868 				fdc->status[5] = sec;
1869 				fdc->retry = 8;	/* break out immediately */
1870 				fdc->state = IOTIMEDOUT; /* not really... */
1871 				return (1); /* will return immediately */
1872 			}
1873 		}
1874 
1875 		if (format) {
1876 			ne7cmd = NE7CMD_FORMAT | mfm;
1877 			if (fdc->flags & FDC_NODMA) {
1878 				/*
1879 				 * This seems to be necessary for
1880 				 * whatever obscure reason; if we omit
1881 				 * it, we end up filling the sector ID
1882 				 * fields of the newly formatted track
1883 				 * entirely with garbage, causing
1884 				 * `wrong cylinder' errors all over
1885 				 * the place when trying to read them
1886 				 * back.
1887 				 *
1888 				 * Umpf.
1889 				 */
1890 				SET_BCDR(fdc, 1, bp->bio_bcount, 0);
1891 
1892 				(void)fdcpio(fdc,bp->bio_cmd,
1893 					bp->bio_data+fd->skip,
1894 					bp->bio_bcount);
1895 
1896 			}
1897 			/* formatting */
1898 			if(fd_cmd(fdc, 6,  ne7cmd, head << 2 | fdu,
1899 				  finfo->fd_formb_secshift,
1900 				  finfo->fd_formb_nsecs,
1901 				  finfo->fd_formb_gaplen,
1902 				  finfo->fd_formb_fillbyte, 0)) {
1903 				/* controller fell over */
1904 				if (!(fdc->flags & FDC_NODMA))
1905 					isa_dmadone(idf,
1906 						    bp->bio_data + fd->skip,
1907 						    format ? bp->bio_bcount : fdblk,
1908 						    fdc->dmachan);
1909 				fdc->retry = 6;
1910 				return (retrier(fdc));
1911 			}
1912 		} else if (rdsectid) {
1913 			ne7cmd = NE7CMD_READID | mfm;
1914 			if (fd_cmd(fdc, 2, ne7cmd, head << 2 | fdu, 0)) {
1915 				/* controller jamming */
1916 				fdc->retry = 6;
1917 				return (retrier(fdc));
1918 			}
1919 		} else {
1920 			/* read or write operation */
1921 			ne7cmd = (read ? NE7CMD_READ | NE7CMD_SK : NE7CMD_WRITE) | mfm;
1922 			if (fdc->flags & FDC_NODMA) {
1923 				/*
1924 				 * This seems to be necessary even when
1925 				 * reading data.
1926 				 */
1927 				SET_BCDR(fdc, 1, fdblk, 0);
1928 
1929 				/*
1930 				 * Perform the write pseudo-DMA before
1931 				 * the WRITE command is sent.
1932 				 */
1933 				if (!read)
1934 					(void)fdcpio(fdc,bp->bio_cmd,
1935 					    bp->bio_data+fd->skip,
1936 					    fdblk);
1937 			}
1938 			if (fd_cmd(fdc, 9,
1939 				   ne7cmd,
1940 				   head << 2 | fdu,  /* head & unit */
1941 				   fd->track,        /* track */
1942 				   head,
1943 				   sec,              /* sector + 1 */
1944 				   fd->ft->secsize,  /* sector size */
1945 				   sectrac,          /* sectors/track */
1946 				   fd->ft->gap,      /* gap size */
1947 				   fd->ft->datalen,  /* data length */
1948 				   0)) {
1949 				/* the beast is sleeping again */
1950 				if (!(fdc->flags & FDC_NODMA))
1951 					isa_dmadone(idf,
1952 						    bp->bio_data + fd->skip,
1953 						    format ? bp->bio_bcount : fdblk,
1954 						    fdc->dmachan);
1955 				fdc->retry = 6;
1956 				return (retrier(fdc));
1957 			}
1958 		}
1959 		if (!rdsectid && (fdc->flags & FDC_NODMA))
1960 			/*
1961 			 * If this is a read, then simply await interrupt
1962 			 * before performing PIO.
1963 			 */
1964 			if (read && !fdcpio(fdc,bp->bio_cmd,
1965 			    bp->bio_data+fd->skip,fdblk)) {
1966 				fd->tohandle = timeout(fd_iotimeout, fdc, hz);
1967 				return(0);      /* will return later */
1968 			}
1969 
1970 		/*
1971 		 * Write (or format) operation will fall through and
1972 		 * await completion interrupt.
1973 		 */
1974 		fdc->state = IOCOMPLETE;
1975 		fd->tohandle = timeout(fd_iotimeout, fdc, hz);
1976 		return (0);	/* will return later */
1977 
1978 	case PIOREAD:
1979 		/*
1980 		 * Actually perform the PIO read.  The IOCOMPLETE case
1981 		 * removes the timeout for us.
1982 		 */
1983 		(void)fdcpio(fdc,bp->bio_cmd,bp->bio_data+fd->skip,fdblk);
1984 		fdc->state = IOCOMPLETE;
1985 		/* FALLTHROUGH */
1986 	case IOCOMPLETE: /* IO done, post-analyze */
1987 		untimeout(fd_iotimeout, fdc, fd->tohandle);
1988 
1989 		if (fd_read_status(fdc)) {
1990 			if (!rdsectid && !(fdc->flags & FDC_NODMA))
1991 				isa_dmadone(idf, bp->bio_data + fd->skip,
1992 					    format ? bp->bio_bcount : fdblk,
1993 					    fdc->dmachan);
1994 			if (fdc->retry < 6)
1995 				fdc->retry = 6;	/* force a reset */
1996 			return (retrier(fdc));
1997   		}
1998 
1999 		fdc->state = IOTIMEDOUT;
2000 
2001 		/* FALLTHROUGH */
2002 	case IOTIMEDOUT:
2003 		if (!rdsectid && !(fdc->flags & FDC_NODMA))
2004 			isa_dmadone(idf, bp->bio_data + fd->skip,
2005 				format ? bp->bio_bcount : fdblk, fdc->dmachan);
2006 		if (fdc->status[0] & NE7_ST0_IC) {
2007                         if ((fdc->status[0] & NE7_ST0_IC) == NE7_ST0_IC_AT
2008 			    && fdc->status[1] & NE7_ST1_OR) {
2009                                 /*
2010 				 * DMA overrun. Someone hogged the bus and
2011 				 * didn't release it in time for the next
2012 				 * FDC transfer.
2013 				 *
2014 				 * We normally restart this without bumping
2015 				 * the retry counter.  However, in case
2016 				 * something is seriously messed up (like
2017 				 * broken hardware), we rather limit the
2018 				 * number of retries so the IO operation
2019 				 * doesn't block indefinately.
2020 				 */
2021 				if (fdc->dma_overruns++ < FDC_DMAOV_MAX) {
2022 					fdc->state = SEEKCOMPLETE;
2023 					return (1);/* will return immediately */
2024 				} /* else fall through */
2025                         }
2026 			if((fdc->status[0] & NE7_ST0_IC) == NE7_ST0_IC_IV
2027 				&& fdc->retry < 6)
2028 				fdc->retry = 6;	/* force a reset */
2029 			else if((fdc->status[0] & NE7_ST0_IC) == NE7_ST0_IC_AT
2030 				&& fdc->status[2] & NE7_ST2_WC
2031 				&& fdc->retry < 3)
2032 				fdc->retry = 3;	/* force recalibrate */
2033 			return (retrier(fdc));
2034 		}
2035 		/* All OK */
2036 		if (rdsectid) {
2037 			/* copy out ID field contents */
2038 			idp = (struct fdc_readid *)bp->bio_data;
2039 			idp->cyl = fdc->status[3];
2040 			idp->head = fdc->status[4];
2041 			idp->sec = fdc->status[5];
2042 			idp->secshift = fdc->status[6];
2043 		}
2044 		/* Operation successful, retry DMA overruns again next time. */
2045 		fdc->dma_overruns = 0;
2046 		fd->skip += fdblk;
2047 		if (!rdsectid && !format && fd->skip < bp->bio_bcount) {
2048 			/* set up next transfer */
2049 			fdc->state = DOSEEK;
2050 		} else {
2051 			/* ALL DONE */
2052 			fd->skip = 0;
2053 			bp->bio_resid = 0;
2054 			fdc->bp = NULL;
2055 			device_unbusy(fd->dev);
2056 			biofinish(bp, fd->device_stats, 0);
2057 			fdc->fd = (fd_p) 0;
2058 			fdc->fdu = -1;
2059 			fdc->state = FINDWORK;
2060 		}
2061 		return (1);	/* will return immediately */
2062 
2063 	case RESETCTLR:
2064 		fdc_reset(fdc);
2065 		fdc->retry++;
2066 		fdc->state = RESETCOMPLETE;
2067 		return (0);	/* will return later */
2068 
2069 	case RESETCOMPLETE:
2070 		/*
2071 		 * Discard all the results from the reset so that they
2072 		 * can't cause an unexpected interrupt later.
2073 		 */
2074 		for (i = 0; i < 4; i++)
2075 			(void)fd_sense_int(fdc, &st0, &cyl);
2076 		fdc->state = STARTRECAL;
2077 		/* FALLTHROUGH */
2078 	case STARTRECAL:
2079 		if(fd_cmd(fdc, 2, NE7CMD_RECAL, fdu, 0)) {
2080 			/* arrgl */
2081 			fdc->retry = 6;
2082 			return (retrier(fdc));
2083 		}
2084 		fdc->state = RECALWAIT;
2085 		return (0);	/* will return later */
2086 
2087 	case RECALWAIT:
2088 		/* allow heads to settle */
2089 		timeout(fd_pseudointr, fdc, hz / 8);
2090 		fdc->state = RECALCOMPLETE;
2091 		return (0);	/* will return later */
2092 
2093 	case RECALCOMPLETE:
2094 		do {
2095 			/*
2096 			 * See SEEKCOMPLETE for a comment on this:
2097 			 */
2098 			if (fd_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID)
2099 				return (0); /* will return later */
2100 			if(fdc->fdct == FDC_NE765
2101 			   && (st0 & NE7_ST0_IC) == NE7_ST0_IC_RC)
2102 				return (0); /* hope for a real intr */
2103 		} while ((st0 & NE7_ST0_IC) == NE7_ST0_IC_RC);
2104 		if ((st0 & NE7_ST0_IC) != NE7_ST0_IC_NT || cyl != 0)
2105 		{
2106 			if(fdc->retry > 3)
2107 				/*
2108 				 * A recalibrate from beyond cylinder 77
2109 				 * will "fail" due to the FDC limitations;
2110 				 * since people used to complain much about
2111 				 * the failure message, try not logging
2112 				 * this one if it seems to be the first
2113 				 * time in a line.
2114 				 */
2115 				printf("fd%d: recal failed ST0 %b cyl %d\n",
2116 				       fdu, st0, NE7_ST0BITS, cyl);
2117 			if(fdc->retry < 3) fdc->retry = 3;
2118 			return (retrier(fdc));
2119 		}
2120 		fd->track = 0;
2121 		/* Seek (probably) necessary */
2122 		fdc->state = DOSEEK;
2123 		return (1);	/* will return immediately */
2124 
2125 	case MOTORWAIT:
2126 		if(fd->flags & FD_MOTOR_WAIT)
2127 		{
2128 			return (0); /* time's not up yet */
2129 		}
2130 		if (fdc->flags & FDC_NEEDS_RESET) {
2131 			fdc->state = RESETCTLR;
2132 			fdc->flags &= ~FDC_NEEDS_RESET;
2133 		} else
2134 			fdc->state = DOSEEK;
2135 		return (1);	/* will return immediately */
2136 
2137 	default:
2138 		device_printf(fdc->fdc_dev, "unexpected FD int->");
2139 		if (fd_read_status(fdc) == 0)
2140 			printf("FDC status :%x %x %x %x %x %x %x   ",
2141 			       fdc->status[0],
2142 			       fdc->status[1],
2143 			       fdc->status[2],
2144 			       fdc->status[3],
2145 			       fdc->status[4],
2146 			       fdc->status[5],
2147 			       fdc->status[6] );
2148 		else
2149 			printf("No status available   ");
2150 		if (fd_sense_int(fdc, &st0, &cyl) != 0)
2151 		{
2152 			printf("[controller is dead now]\n");
2153 			return (0); /* will return later */
2154 		}
2155 		printf("ST0 = %x, PCN = %x\n", st0, cyl);
2156 		return (0);	/* will return later */
2157 	}
2158 	/* noone should ever get here */
2159 }
2160 
2161 static int
2162 retrier(struct fdc_data *fdc)
2163 {
2164 	struct bio *bp;
2165 	struct fd_data *fd;
2166 	int fdu;
2167 
2168 	bp = fdc->bp;
2169 
2170 	/* XXX shouldn't this be cached somewhere?  */
2171 	fd = bp->bio_dev->si_drv1;
2172 	fdu = fd->fdu;
2173 	if (fd->options & FDOPT_NORETRY)
2174 		goto fail;
2175 
2176 	switch (fdc->retry) {
2177 	case 0: case 1: case 2:
2178 		fdc->state = SEEKCOMPLETE;
2179 		break;
2180 	case 3: case 4: case 5:
2181 		fdc->state = STARTRECAL;
2182 		break;
2183 	case 6:
2184 		fdc->state = RESETCTLR;
2185 		break;
2186 	case 7:
2187 		break;
2188 	default:
2189 	fail:
2190 		if ((fd->options & FDOPT_NOERRLOG) == 0) {
2191 			disk_err(bp, "hard error",
2192 			    fdc->fd->skip / DEV_BSIZE, 0);
2193 			if (fdc->flags & FDC_STAT_VALID) {
2194 				printf(
2195 				" (ST0 %b ST1 %b ST2 %b cyl %u hd %u sec %u)\n",
2196 				       fdc->status[0], NE7_ST0BITS,
2197 				       fdc->status[1], NE7_ST1BITS,
2198 				       fdc->status[2], NE7_ST2BITS,
2199 				       fdc->status[3], fdc->status[4],
2200 				       fdc->status[5]);
2201 			}
2202 			else
2203 				printf(" (No status)\n");
2204 		}
2205 		if ((fd->options & FDOPT_NOERROR) == 0) {
2206 			bp->bio_flags |= BIO_ERROR;
2207 			bp->bio_error = EIO;
2208 			bp->bio_resid = bp->bio_bcount - fdc->fd->skip;
2209 		} else
2210 			bp->bio_resid = 0;
2211 		fdc->bp = NULL;
2212 		fdc->fd->skip = 0;
2213 		device_unbusy(fd->dev);
2214 		biofinish(bp, fdc->fd->device_stats, 0);
2215 		fdc->state = FINDWORK;
2216 		fdc->flags |= FDC_NEEDS_RESET;
2217 		fdc->fd = (fd_p) 0;
2218 		fdc->fdu = -1;
2219 		return (1);
2220 	}
2221 	fdc->retry++;
2222 	return (1);
2223 }
2224 
2225 static void
2226 fdbiodone(struct bio *bp)
2227 {
2228 	wakeup(bp);
2229 }
2230 
2231 static int
2232 fdmisccmd(struct cdev *dev, u_int cmd, void *data)
2233 {
2234  	fdu_t fdu;
2235  	fd_p fd;
2236 	struct bio *bp;
2237 	struct fd_formb *finfo;
2238 	struct fdc_readid *idfield;
2239 	size_t fdblk;
2240 	int error;
2241 
2242 	fd = dev->si_drv1;
2243  	fdu = fd->fdu;
2244 	fdblk = 128 << fd->ft->secsize;
2245 	finfo = (struct fd_formb *)data;
2246 	idfield = (struct fdc_readid *)data;
2247 
2248 	bp = malloc(sizeof(struct bio), M_TEMP, M_WAITOK | M_ZERO);
2249 
2250 	/*
2251 	 * Set up a bio request for fdstrategy().  bio_offset is faked
2252 	 * so that fdstrategy() will seek to the the requested
2253 	 * cylinder, and use the desired head.
2254 	 */
2255 	bp->bio_cmd = cmd;
2256 	if (cmd == FDBIO_FORMAT) {
2257 		bp->bio_offset =
2258 		    (finfo->cyl * (fd->ft->sectrac * fd->ft->heads) +
2259 		     finfo->head * fd->ft->sectrac) * fdblk;
2260 		bp->bio_bcount = sizeof(struct fd_idfield_data) *
2261 		    finfo->fd_formb_nsecs;
2262 	} else if (cmd == FDBIO_RDSECTID) {
2263 		bp->bio_offset =
2264 		    (idfield->cyl * (fd->ft->sectrac * fd->ft->heads) +
2265 		     idfield->head * fd->ft->sectrac) * fdblk;
2266 		bp->bio_bcount = sizeof(struct fdc_readid);
2267 	} else
2268 		panic("wrong cmd in fdmisccmd()");
2269 	bp->bio_data = data;
2270 	bp->bio_dev = dev;
2271 	bp->bio_done = fdbiodone;
2272 	bp->bio_flags = 0;
2273 
2274 	/* Now run the command. */
2275 	fdstrategy(bp);
2276 	error = biowait(bp, "fdcmd");
2277 
2278 	free(bp, M_TEMP);
2279 	return (error);
2280 }
2281 
2282 static int
2283 fdioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
2284 {
2285  	fdu_t fdu;
2286  	fd_p fd;
2287 	struct fdc_status *fsp;
2288 	struct fdc_readid *rid;
2289 	int error;
2290 
2291  	fd = dev->si_drv1;
2292  	fdu = fd->fdu;
2293 
2294 	/*
2295 	 * First, handle everything that could be done with
2296 	 * FD_NONBLOCK still being set.
2297 	 */
2298 	switch (cmd) {
2299 
2300 	case DIOCGMEDIASIZE:
2301 		if (fd->ft == 0)
2302 			return ((fd->flags & FD_NONBLOCK) ? EAGAIN : ENXIO);
2303 		*(off_t *)addr = (128 << (fd->ft->secsize)) * fd->ft->size;
2304 		return (0);
2305 
2306 	case DIOCGSECTORSIZE:
2307 		if (fd->ft == 0)
2308 			return ((fd->flags & FD_NONBLOCK) ? EAGAIN : ENXIO);
2309 		*(u_int *)addr = 128 << (fd->ft->secsize);
2310 		return (0);
2311 
2312 	case FIONBIO:
2313 		if (*(int *)addr != 0)
2314 			fd->flags |= FD_NONBLOCK;
2315 		else {
2316 			if (fd->ft == 0) {
2317 				/*
2318 				 * No drive type has been selected yet,
2319 				 * cannot turn FNONBLOCK off.
2320 				 */
2321 				return (EINVAL);
2322 			}
2323 			fd->flags &= ~FD_NONBLOCK;
2324 		}
2325 		return (0);
2326 
2327 	case FIOASYNC:
2328 		/* keep the generic fcntl() code happy */
2329 		return (0);
2330 
2331 	case FD_GTYPE:                  /* get drive type */
2332 		if (fd->ft == 0)
2333 			/* no type known yet, return the native type */
2334 			*(struct fd_type *)addr = fd_native_types[fd->type];
2335 		else
2336 			*(struct fd_type *)addr = *fd->ft;
2337 		return (0);
2338 
2339 	case FD_STYPE:                  /* set drive type */
2340 		/*
2341 		 * Allow setting drive type temporarily iff
2342 		 * currently unset.  Used for fdformat so any
2343 		 * user can set it, and then start formatting.
2344 		 */
2345 		if (fd->ft)
2346 			return (EINVAL); /* already set */
2347 		fd->fts[0] = *(struct fd_type *)addr;
2348 		fd->ft = &fd->fts[0];
2349 		fd->flags |= FD_UA;
2350 		return (0);
2351 
2352 	case FD_GOPTS:			/* get drive options */
2353 		*(int *)addr = fd->options + FDOPT_AUTOSEL;
2354 		return (0);
2355 
2356 	case FD_SOPTS:			/* set drive options */
2357 		fd->options = *(int *)addr & ~FDOPT_AUTOSEL;
2358 		return (0);
2359 
2360 #ifdef FDC_DEBUG
2361 	case FD_DEBUG:
2362 		if ((fd_debug != 0) != (*(int *)addr != 0)) {
2363 			fd_debug = (*(int *)addr != 0);
2364 			printf("fd%d: debugging turned %s\n",
2365 			    fd->fdu, fd_debug ? "on" : "off");
2366 		}
2367 		return (0);
2368 #endif
2369 
2370 	case FD_CLRERR:
2371 		if (suser(td) != 0)
2372 			return (EPERM);
2373 		fd->fdc->fdc_errs = 0;
2374 		return (0);
2375 
2376 	case FD_GSTAT:
2377 		fsp = (struct fdc_status *)addr;
2378 		if ((fd->fdc->flags & FDC_STAT_VALID) == 0)
2379 			return (EINVAL);
2380 		memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int));
2381 		return (0);
2382 
2383 	case FD_GDTYPE:
2384 		*(enum fd_drivetype *)addr = fd->type;
2385 		return (0);
2386 	}
2387 
2388 	/*
2389 	 * Now handle everything else.  Make sure we have a valid
2390 	 * drive type.
2391 	 */
2392 	if (fd->flags & FD_NONBLOCK)
2393 		return (EAGAIN);
2394 	if (fd->ft == 0)
2395 		return (ENXIO);
2396 	error = 0;
2397 
2398 	switch (cmd) {
2399 
2400 	case FD_FORM:
2401 		if ((flag & FWRITE) == 0)
2402 			return (EBADF);	/* must be opened for writing */
2403 		if (((struct fd_formb *)addr)->format_version !=
2404 		    FD_FORMAT_VERSION)
2405 			return (EINVAL); /* wrong version of formatting prog */
2406 		error = fdmisccmd(dev, FDBIO_FORMAT, addr);
2407 		break;
2408 
2409 	case FD_GTYPE:                  /* get drive type */
2410 		*(struct fd_type *)addr = *fd->ft;
2411 		break;
2412 
2413 	case FD_STYPE:                  /* set drive type */
2414 		/* this is considered harmful; only allow for superuser */
2415 		if (suser(td) != 0)
2416 			return (EPERM);
2417 		*fd->ft = *(struct fd_type *)addr;
2418 		break;
2419 
2420 	case FD_GOPTS:			/* get drive options */
2421 		*(int *)addr = fd->options;
2422 		break;
2423 
2424 	case FD_SOPTS:			/* set drive options */
2425 		fd->options = *(int *)addr;
2426 		break;
2427 
2428 #ifdef FDC_DEBUG
2429 	case FD_DEBUG:
2430 		if ((fd_debug != 0) != (*(int *)addr != 0)) {
2431 			fd_debug = (*(int *)addr != 0);
2432 			printf("fd%d: debugging turned %s\n",
2433 			    fd->fdu, fd_debug ? "on" : "off");
2434 		}
2435 		break;
2436 #endif
2437 
2438 	case FD_CLRERR:
2439 		if (suser(td) != 0)
2440 			return (EPERM);
2441 		fd->fdc->fdc_errs = 0;
2442 		break;
2443 
2444 	case FD_GSTAT:
2445 		fsp = (struct fdc_status *)addr;
2446 		if ((fd->fdc->flags & FDC_STAT_VALID) == 0)
2447 			return (EINVAL);
2448 		memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int));
2449 		break;
2450 
2451 	case FD_READID:
2452 		rid = (struct fdc_readid *)addr;
2453 		if (rid->cyl > MAX_CYLINDER || rid->head > MAX_HEAD)
2454 			return (EINVAL);
2455 		error = fdmisccmd(dev, FDBIO_RDSECTID, addr);
2456 		break;
2457 
2458 	default:
2459 		error = ENOTTY;
2460 		break;
2461 	}
2462 	return (error);
2463 }
2464