1 /*- 2 * Copyright (c) 2004 Poul-Henning Kamp 3 * Copyright (c) 1990 The Regents of the University of California. 4 * All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * Don Ahn. 8 * 9 * Libretto PCMCIA floppy support by David Horwitt (dhorwitt@ucsd.edu) 10 * aided by the Linux floppy driver modifications from David Bateman 11 * (dbateman@eng.uts.edu.au). 12 * 13 * Copyright (c) 1993, 1994 by 14 * jc@irbs.UUCP (John Capo) 15 * vak@zebub.msk.su (Serge Vakulenko) 16 * ache@astral.msk.su (Andrew A. Chernov) 17 * 18 * Copyright (c) 1993, 1994, 1995 by 19 * joerg_wunsch@uriah.sax.de (Joerg Wunsch) 20 * dufault@hda.com (Peter Dufault) 21 * 22 * Copyright (c) 2001 Joerg Wunsch, 23 * joerg_wunsch@uriah.heep.sax.de (Joerg Wunsch) 24 * 25 * Redistribution and use in source and binary forms, with or without 26 * modification, are permitted provided that the following conditions 27 * are met: 28 * 1. Redistributions of source code must retain the above copyright 29 * notice, this list of conditions and the following disclaimer. 30 * 2. Redistributions in binary form must reproduce the above copyright 31 * notice, this list of conditions and the following disclaimer in the 32 * documentation and/or other materials provided with the distribution. 33 * 4. Neither the name of the University nor the names of its contributors 34 * may be used to endorse or promote products derived from this software 35 * without specific prior written permission. 36 * 37 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 38 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 40 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 41 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 42 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 43 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 45 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 46 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 47 * SUCH DAMAGE. 48 * 49 * from: @(#)fd.c 7.4 (Berkeley) 5/25/91 50 * 51 */ 52 53 #include <sys/cdefs.h> 54 __FBSDID("$FreeBSD$"); 55 56 #include "opt_fdc.h" 57 58 #include <sys/param.h> 59 #include <sys/bio.h> 60 #include <sys/bus.h> 61 #include <sys/devicestat.h> 62 #include <sys/disk.h> 63 #include <sys/fcntl.h> 64 #include <sys/fdcio.h> 65 #include <sys/filio.h> 66 #include <sys/kernel.h> 67 #include <sys/kthread.h> 68 #include <sys/lock.h> 69 #include <sys/malloc.h> 70 #include <sys/module.h> 71 #include <sys/mutex.h> 72 #include <sys/proc.h> 73 #include <sys/rman.h> 74 #include <sys/sysctl.h> 75 #include <sys/systm.h> 76 77 #include <geom/geom.h> 78 79 #include <machine/bus.h> 80 #include <machine/clock.h> 81 #include <machine/stdarg.h> 82 83 #include <isa/isavar.h> 84 #include <isa/isareg.h> 85 #include <dev/fdc/fdcvar.h> 86 #include <isa/rtc.h> 87 88 #include <dev/ic/nec765.h> 89 90 /* 91 * Runtime configuration hints/flags 92 */ 93 94 /* configuration flags for fd */ 95 #define FD_TYPEMASK 0x0f /* drive type, matches enum 96 * fd_drivetype; on i386 machines, if 97 * given as 0, use RTC type for fd0 98 * and fd1 */ 99 #define FD_NO_PROBE 0x20 /* don't probe drive (seek test), just 100 * assume it is there */ 101 102 /* 103 * Things that could conceiveably considered parameters or tweakables 104 */ 105 106 /* 107 * Maximal number of bytes in a cylinder. 108 * This is used for ISADMA bouncebuffer allocation and sets the max 109 * xfersize we support. 110 * 111 * 2.88M format has 2 x 36 x 512, allow for hacked up density. 112 */ 113 #define MAX_BYTES_PER_CYL (2 * 40 * 512) 114 115 /* 116 * Timeout value for the PIO loops to wait until the FDC main status 117 * register matches our expectations (request for master, direction 118 * bit). This is supposed to be a number of microseconds, although 119 * timing might actually not be very accurate. 120 * 121 * Timeouts of 100 msec are believed to be required for some broken 122 * (old) hardware. 123 */ 124 #define FDSTS_TIMEOUT 100000 125 126 /* 127 * After this many errors, stop whining. Close will reset this count. 128 */ 129 #define FDC_ERRMAX 100 130 131 /* 132 * AutoDensity search lists for each drive type. 133 */ 134 135 static struct fd_type fd_searchlist_360k[] = { 136 { FDF_5_360 }, 137 { 0 } 138 }; 139 140 static struct fd_type fd_searchlist_12m[] = { 141 { FDF_5_1200 | FL_AUTO }, 142 { FDF_5_360 | FL_2STEP | FL_AUTO}, 143 { 0 } 144 }; 145 146 static struct fd_type fd_searchlist_720k[] = { 147 { FDF_3_720 }, 148 { 0 } 149 }; 150 151 static struct fd_type fd_searchlist_144m[] = { 152 { FDF_3_1440 | FL_AUTO}, 153 { FDF_3_720 | FL_AUTO}, 154 { 0 } 155 }; 156 157 static struct fd_type fd_searchlist_288m[] = { 158 { FDF_3_1440 | FL_AUTO }, 159 #if 0 160 { FDF_3_2880 | FL_AUTO }, /* XXX: probably doesn't work */ 161 #endif 162 { FDF_3_720 | FL_AUTO}, 163 { 0 } 164 }; 165 166 /* 167 * Order must match enum fd_drivetype in <sys/fdcio.h>. 168 */ 169 static struct fd_type *fd_native_types[] = { 170 NULL, /* FDT_NONE */ 171 fd_searchlist_360k, /* FDT_360K */ 172 fd_searchlist_12m, /* FDT_12M */ 173 fd_searchlist_720k, /* FDT_720K */ 174 fd_searchlist_144m, /* FDT_144M */ 175 fd_searchlist_288m, /* FDT_288M_1 (mapped to FDT_288M) */ 176 fd_searchlist_288m, /* FDT_288M */ 177 }; 178 179 /* 180 * Internals start here 181 */ 182 183 /* registers */ 184 #define FDOUT 2 /* Digital Output Register (W) */ 185 #define FDO_FDSEL 0x03 /* floppy device select */ 186 #define FDO_FRST 0x04 /* floppy controller reset */ 187 #define FDO_FDMAEN 0x08 /* enable floppy DMA and Interrupt */ 188 #define FDO_MOEN0 0x10 /* motor enable drive 0 */ 189 #define FDO_MOEN1 0x20 /* motor enable drive 1 */ 190 #define FDO_MOEN2 0x40 /* motor enable drive 2 */ 191 #define FDO_MOEN3 0x80 /* motor enable drive 3 */ 192 193 #define FDSTS 4 /* NEC 765 Main Status Register (R) */ 194 #define FDDATA 5 /* NEC 765 Data Register (R/W) */ 195 #define FDCTL 7 /* Control Register (W) */ 196 197 /* 198 * The YE-DATA PC Card floppies use PIO to read in the data rather 199 * than DMA due to the wild variability of DMA for the PC Card 200 * devices. DMA was deleted from the PC Card specification in version 201 * 7.2 of the standard, but that post-dates the YE-DATA devices by many 202 * years. 203 * 204 * In addition, if we cannot setup the DMA resources for the ISA 205 * attachment, we'll use this same offset for data transfer. However, 206 * that almost certainly won't work. 207 * 208 * For this mode, offset 0 and 1 must be used to setup the transfer 209 * for this floppy. This is OK for PC Card YE Data devices, but for 210 * ISA this is likely wrong. These registers are only available on 211 * those systems that map them to the floppy drive. Newer systems do 212 * not do this, and we should likely prohibit access to them (or 213 * disallow NODMA to be set). 214 */ 215 #define FDBCDR 0 /* And 1 */ 216 #define FD_YE_DATAPORT 6 /* Drive Data port */ 217 218 #define FDI_DCHG 0x80 /* diskette has been changed */ 219 /* requires drive and motor being selected */ 220 /* is cleared by any step pulse to drive */ 221 222 /* 223 * We have three private BIO commands. 224 */ 225 #define BIO_PROBE BIO_CMD0 226 #define BIO_RDID BIO_CMD1 227 #define BIO_FMT BIO_CMD2 228 229 /* 230 * Per drive structure (softc). 231 */ 232 struct fd_data { 233 u_char *fd_ioptr; /* IO pointer */ 234 u_int fd_iosize; /* Size of IO chunks */ 235 u_int fd_iocount; /* Outstanding requests */ 236 struct fdc_data *fdc; /* pointer to controller structure */ 237 int fdsu; /* this units number on this controller */ 238 enum fd_drivetype type; /* drive type */ 239 struct fd_type *ft; /* pointer to current type descriptor */ 240 struct fd_type fts; /* type descriptors */ 241 int sectorsize; 242 int flags; 243 #define FD_WP (1<<0) /* Write protected */ 244 #define FD_MOTOR (1<<1) /* motor should be on */ 245 #define FD_MOTORWAIT (1<<2) /* motor should be on */ 246 #define FD_EMPTY (1<<3) /* no media */ 247 #define FD_NEWDISK (1<<4) /* media changed */ 248 #define FD_ISADMA (1<<5) /* isa dma started */ 249 int track; /* where we think the head is */ 250 #define FD_NO_TRACK -2 251 int options; /* FDOPT_* */ 252 struct callout toffhandle; 253 struct callout tohandle; 254 struct g_geom *fd_geom; 255 struct g_provider *fd_provider; 256 device_t dev; 257 struct bio_queue_head fd_bq; 258 }; 259 260 #define FD_NOT_VALID -2 261 262 static driver_intr_t fdc_intr; 263 static void fdc_reset(struct fdc_data *); 264 265 SYSCTL_NODE(_debug, OID_AUTO, fdc, CTLFLAG_RW, 0, "fdc driver"); 266 267 static int fifo_threshold = 8; 268 SYSCTL_INT(_debug_fdc, OID_AUTO, fifo, CTLFLAG_RW, &fifo_threshold, 0, 269 "FIFO threshold setting"); 270 271 static int debugflags = 0; 272 SYSCTL_INT(_debug_fdc, OID_AUTO, debugflags, CTLFLAG_RW, &debugflags, 0, 273 "Debug flags"); 274 275 static int retries = 10; 276 SYSCTL_INT(_debug_fdc, OID_AUTO, retries, CTLFLAG_RW, &retries, 0, 277 "Number of retries to attempt"); 278 279 static int spec1 = 0xaf; 280 SYSCTL_INT(_debug_fdc, OID_AUTO, spec1, CTLFLAG_RW, &spec1, 0, 281 "Specification byte one (step-rate + head unload)"); 282 283 static int spec2 = 0x10; 284 SYSCTL_INT(_debug_fdc, OID_AUTO, spec2, CTLFLAG_RW, &spec2, 0, 285 "Specification byte two (head load time + no-dma)"); 286 287 static int settle; 288 SYSCTL_INT(_debug_fdc, OID_AUTO, settle, CTLFLAG_RW, &settle, 0, 289 "Head settling time in sec/hz"); 290 291 static void 292 fdprinttype(struct fd_type *ft) 293 { 294 295 printf("(%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,0x%x)", 296 ft->sectrac, ft->secsize, ft->datalen, ft->gap, ft->tracks, 297 ft->size, ft->trans, ft->heads, ft->f_gap, ft->f_inter, 298 ft->offset_side2, ft->flags); 299 } 300 301 static void 302 fdsettype(struct fd_data *fd, struct fd_type *ft) 303 { 304 fd->ft = ft; 305 ft->size = ft->sectrac * ft->heads * ft->tracks; 306 fd->sectorsize = 128 << fd->ft->secsize; 307 } 308 309 /* 310 * Bus space handling (access to low-level IO). 311 */ 312 __inline static void 313 fdregwr(struct fdc_data *fdc, int reg, uint8_t v) 314 { 315 316 bus_space_write_1(fdc->iot, fdc->ioh[reg], fdc->ioff[reg], v); 317 } 318 319 __inline static uint8_t 320 fdregrd(struct fdc_data *fdc, int reg) 321 { 322 323 return bus_space_read_1(fdc->iot, fdc->ioh[reg], fdc->ioff[reg]); 324 } 325 326 static void 327 fdctl_wr(struct fdc_data *fdc, u_int8_t v) 328 { 329 330 fdregwr(fdc, FDCTL, v); 331 } 332 333 static void 334 fdout_wr(struct fdc_data *fdc, u_int8_t v) 335 { 336 337 fdregwr(fdc, FDOUT, v); 338 } 339 340 static u_int8_t 341 fdsts_rd(struct fdc_data *fdc) 342 { 343 344 return fdregrd(fdc, FDSTS); 345 } 346 347 static void 348 fddata_wr(struct fdc_data *fdc, u_int8_t v) 349 { 350 351 fdregwr(fdc, FDDATA, v); 352 } 353 354 static u_int8_t 355 fddata_rd(struct fdc_data *fdc) 356 { 357 358 return fdregrd(fdc, FDDATA); 359 } 360 361 static u_int8_t 362 fdin_rd(struct fdc_data *fdc) 363 { 364 365 return fdregrd(fdc, FDCTL); 366 } 367 368 /* 369 * Magic pseudo-DMA initialization for YE FDC. Sets count and 370 * direction. 371 */ 372 static void 373 fdbcdr_wr(struct fdc_data *fdc, int iswrite, uint16_t count) 374 { 375 fdregwr(fdc, FDBCDR, (count - 1) & 0xff); 376 fdregwr(fdc, FDBCDR + 1, 377 (iswrite ? 0x80 : 0) | (((count - 1) >> 8) & 0x7f)); 378 } 379 380 static int 381 fdc_err(struct fdc_data *fdc, const char *s) 382 { 383 fdc->fdc_errs++; 384 if (s) { 385 if (fdc->fdc_errs < FDC_ERRMAX) 386 device_printf(fdc->fdc_dev, "%s", s); 387 else if (fdc->fdc_errs == FDC_ERRMAX) 388 device_printf(fdc->fdc_dev, "too many errors, not " 389 "logging any more\n"); 390 } 391 392 return (1); 393 } 394 395 /* 396 * FDC IO functions, take care of the main status register, timeout 397 * in case the desired status bits are never set. 398 * 399 * These PIO loops initially start out with short delays between 400 * each iteration in the expectation that the required condition 401 * is usually met quickly, so it can be handled immediately. 402 */ 403 static int 404 fdc_in(struct fdc_data *fdc, int *ptr) 405 { 406 int i, j, step; 407 408 step = 1; 409 for (j = 0; j < FDSTS_TIMEOUT; j += step) { 410 i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM); 411 if (i == (NE7_DIO|NE7_RQM)) { 412 i = fddata_rd(fdc); 413 if (ptr) 414 *ptr = i; 415 return (0); 416 } 417 if (i == NE7_RQM) 418 return (fdc_err(fdc, "ready for output in input\n")); 419 step += step; 420 DELAY(step); 421 } 422 return (fdc_err(fdc, bootverbose? "input ready timeout\n": 0)); 423 } 424 425 static int 426 fdc_out(struct fdc_data *fdc, int x) 427 { 428 int i, j, step; 429 430 step = 1; 431 for (j = 0; j < FDSTS_TIMEOUT; j += step) { 432 i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM); 433 if (i == NE7_RQM) { 434 fddata_wr(fdc, x); 435 return (0); 436 } 437 if (i == (NE7_DIO|NE7_RQM)) 438 return (fdc_err(fdc, "ready for input in output\n")); 439 step += step; 440 DELAY(step); 441 } 442 return (fdc_err(fdc, bootverbose? "output ready timeout\n": 0)); 443 } 444 445 /* 446 * fdc_cmd: Send a command to the chip. 447 * Takes a varargs with this structure: 448 * # of output bytes 449 * output bytes as int [...] 450 * # of input bytes 451 * input bytes as int* [...] 452 */ 453 static int 454 fdc_cmd(struct fdc_data *fdc, int n_out, ...) 455 { 456 u_char cmd = 0; 457 int n_in; 458 int n, i; 459 va_list ap; 460 461 va_start(ap, n_out); 462 for (n = 0; n < n_out; n++) { 463 i = va_arg(ap, int); 464 if (n == 0) 465 cmd = i; 466 if (fdc_out(fdc, i) < 0) { 467 char msg[50]; 468 snprintf(msg, sizeof(msg), 469 "cmd %x failed at out byte %d of %d\n", 470 cmd, n + 1, n_out); 471 fdc->flags |= FDC_NEEDS_RESET; 472 return fdc_err(fdc, msg); 473 } 474 } 475 n_in = va_arg(ap, int); 476 for (n = 0; n < n_in; n++) { 477 int *ptr = va_arg(ap, int *); 478 if (fdc_in(fdc, ptr) < 0) { 479 char msg[50]; 480 snprintf(msg, sizeof(msg), 481 "cmd %02x failed at in byte %d of %d\n", 482 cmd, n + 1, n_in); 483 fdc->flags |= FDC_NEEDS_RESET; 484 return fdc_err(fdc, msg); 485 } 486 } 487 return (0); 488 } 489 490 static void 491 fdc_reset(struct fdc_data *fdc) 492 { 493 int i, r[10]; 494 495 /* Try a reset, keep motor on */ 496 fdout_wr(fdc, fdc->fdout & ~(FDO_FRST|FDO_FDMAEN)); 497 DELAY(100); 498 /* enable FDC, but defer interrupts a moment */ 499 fdout_wr(fdc, fdc->fdout & ~FDO_FDMAEN); 500 DELAY(100); 501 fdout_wr(fdc, fdc->fdout); 502 503 /* XXX after a reset, silently believe the FDC will accept commands */ 504 if (fdc_cmd(fdc, 3, NE7CMD_SPECIFY, spec1, spec2, 0)) 505 device_printf(fdc->fdc_dev, " SPECIFY failed in reset\n"); 506 507 if (fdc->fdct == FDC_ENHANCED) { 508 if (fdc_cmd(fdc, 4, 509 I8207X_CONFIGURE, 510 0, 511 0x40 | /* Enable Implied Seek */ 512 0x10 | /* Polling disabled */ 513 (fifo_threshold - 1), /* Fifo threshold */ 514 0x00, /* Precomp track */ 515 0)) 516 device_printf(fdc->fdc_dev, 517 " CONFIGURE failed in reset\n"); 518 if (debugflags & 1) { 519 if (fdc_cmd(fdc, 1, 520 0x0e, /* DUMPREG */ 521 10, &r[0], &r[1], &r[2], &r[3], &r[4], 522 &r[5], &r[6], &r[7], &r[8], &r[9])) 523 device_printf(fdc->fdc_dev, 524 " DUMPREG failed in reset\n"); 525 for (i = 0; i < 10; i++) 526 printf(" %02x", r[i]); 527 printf("\n"); 528 } 529 } 530 } 531 532 static int 533 fdc_sense_drive(struct fdc_data *fdc, int *st3p) 534 { 535 int st3; 536 537 if (fdc_cmd(fdc, 2, NE7CMD_SENSED, fdc->fd->fdsu, 1, &st3)) 538 return (fdc_err(fdc, "Sense Drive Status failed\n")); 539 if (st3p) 540 *st3p = st3; 541 return (0); 542 } 543 544 static int 545 fdc_sense_int(struct fdc_data *fdc, int *st0p, int *cylp) 546 { 547 int cyl, st0, ret; 548 549 ret = fdc_cmd(fdc, 1, NE7CMD_SENSEI, 1, &st0); 550 if (ret) { 551 (void)fdc_err(fdc, "sense intr err reading stat reg 0\n"); 552 return (ret); 553 } 554 555 if (st0p) 556 *st0p = st0; 557 558 if ((st0 & NE7_ST0_IC) == NE7_ST0_IC_IV) { 559 /* 560 * There doesn't seem to have been an interrupt. 561 */ 562 return (FD_NOT_VALID); 563 } 564 565 if (fdc_in(fdc, &cyl) < 0) 566 return fdc_err(fdc, "can't get cyl num\n"); 567 568 if (cylp) 569 *cylp = cyl; 570 571 return (0); 572 } 573 574 static int 575 fdc_read_status(struct fdc_data *fdc) 576 { 577 int i, ret, status; 578 579 for (i = ret = 0; i < 7; i++) { 580 ret = fdc_in(fdc, &status); 581 fdc->status[i] = status; 582 if (ret != 0) 583 break; 584 } 585 586 if (ret == 0) 587 fdc->flags |= FDC_STAT_VALID; 588 else 589 fdc->flags &= ~FDC_STAT_VALID; 590 591 return ret; 592 } 593 594 /* 595 * Select this drive 596 */ 597 static void 598 fd_select(struct fd_data *fd) 599 { 600 struct fdc_data *fdc; 601 602 /* XXX: lock controller */ 603 fdc = fd->fdc; 604 fdc->fdout &= ~FDO_FDSEL; 605 fdc->fdout |= FDO_FDMAEN | FDO_FRST | fd->fdsu; 606 fdout_wr(fdc, fdc->fdout); 607 } 608 609 static void 610 fd_turnon(void *arg) 611 { 612 struct fd_data *fd; 613 struct bio *bp; 614 int once; 615 616 fd = arg; 617 mtx_lock(&fd->fdc->fdc_mtx); 618 fd->flags &= ~FD_MOTORWAIT; 619 fd->flags |= FD_MOTOR; 620 once = 0; 621 for (;;) { 622 bp = bioq_takefirst(&fd->fd_bq); 623 if (bp == NULL) 624 break; 625 bioq_disksort(&fd->fdc->head, bp); 626 once = 1; 627 } 628 mtx_unlock(&fd->fdc->fdc_mtx); 629 if (once) 630 wakeup(&fd->fdc->head); 631 } 632 633 static void 634 fd_motor(struct fd_data *fd, int turnon) 635 { 636 struct fdc_data *fdc; 637 638 fdc = fd->fdc; 639 /* 640 mtx_assert(&fdc->fdc_mtx, MA_OWNED); 641 */ 642 if (turnon) { 643 fd->flags |= FD_MOTORWAIT; 644 fdc->fdout |= (FDO_MOEN0 << fd->fdsu); 645 callout_reset(&fd->toffhandle, hz, fd_turnon, fd); 646 } else { 647 callout_drain(&fd->toffhandle); 648 fd->flags &= ~(FD_MOTOR|FD_MOTORWAIT); 649 fdc->fdout &= ~(FDO_MOEN0 << fd->fdsu); 650 } 651 fdout_wr(fdc, fdc->fdout); 652 } 653 654 static void 655 fd_turnoff(void *xfd) 656 { 657 struct fd_data *fd = xfd; 658 659 mtx_lock(&fd->fdc->fdc_mtx); 660 fd_motor(fd, 0); 661 mtx_unlock(&fd->fdc->fdc_mtx); 662 } 663 664 /* 665 * fdc_intr - wake up the worker thread. 666 */ 667 668 static void 669 fdc_intr(void *arg) 670 { 671 672 wakeup(arg); 673 } 674 675 /* 676 * fdc_pio(): perform programmed IO read/write for YE PCMCIA floppy. 677 */ 678 static void 679 fdc_pio(struct fdc_data *fdc) 680 { 681 u_char *cptr; 682 struct bio *bp; 683 u_int count; 684 685 bp = fdc->bp; 686 cptr = fdc->fd->fd_ioptr; 687 count = fdc->fd->fd_iosize; 688 689 if (bp->bio_cmd == BIO_READ) { 690 fdbcdr_wr(fdc, 0, count); 691 bus_space_read_multi_1(fdc->iot, fdc->ioh[FD_YE_DATAPORT], 692 fdc->ioff[FD_YE_DATAPORT], cptr, count); 693 } else { 694 bus_space_write_multi_1(fdc->iot, fdc->ioh[FD_YE_DATAPORT], 695 fdc->ioff[FD_YE_DATAPORT], cptr, count); 696 fdbcdr_wr(fdc, 0, count); /* needed? */ 697 } 698 } 699 700 static int 701 fdc_biodone(struct fdc_data *fdc, int error) 702 { 703 struct fd_data *fd; 704 struct bio *bp; 705 706 fd = fdc->fd; 707 bp = fdc->bp; 708 709 mtx_lock(&fdc->fdc_mtx); 710 if (--fd->fd_iocount == 0) 711 callout_reset(&fd->toffhandle, 4 * hz, fd_turnoff, fd); 712 fdc->bp = NULL; 713 fdc->fd = NULL; 714 mtx_unlock(&fdc->fdc_mtx); 715 if (bp->bio_to != NULL) { 716 if ((debugflags & 2) && fd->fdc->retry > 0) 717 printf("retries: %d\n", fd->fdc->retry); 718 g_io_deliver(bp, error); 719 return (0); 720 } 721 bp->bio_error = error; 722 bp->bio_flags |= BIO_DONE; 723 wakeup(bp); 724 return (0); 725 } 726 727 static int retry_line; 728 729 static int 730 fdc_worker(struct fdc_data *fdc) 731 { 732 struct fd_data *fd; 733 struct bio *bp; 734 int i, nsect; 735 int st0, st3, cyl, mfm, steptrac, cylinder, descyl, sec; 736 int head; 737 static int need_recal; 738 struct fdc_readid *idp; 739 struct fd_formb *finfo; 740 741 /* Have we exhausted our retries ? */ 742 bp = fdc->bp; 743 fd = fdc->fd; 744 if (bp != NULL && 745 (fdc->retry >= retries || (fd->flags & FDOPT_NORETRY))) { 746 if ((debugflags & 4)) 747 printf("Too many retries (EIO)\n"); 748 return (fdc_biodone(fdc, EIO)); 749 } 750 751 /* Disable ISADMA if we bailed while it was active */ 752 if (fd != NULL && (fd->flags & FD_ISADMA)) { 753 mtx_lock(&Giant); 754 isa_dmadone( 755 bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE, 756 fd->fd_ioptr, fd->fd_iosize, fdc->dmachan); 757 mtx_unlock(&Giant); 758 mtx_lock(&fdc->fdc_mtx); 759 fd->flags &= ~FD_ISADMA; 760 mtx_unlock(&fdc->fdc_mtx); 761 } 762 763 /* Unwedge the controller ? */ 764 if (fdc->flags & FDC_NEEDS_RESET) { 765 fdc->flags &= ~FDC_NEEDS_RESET; 766 fdc_reset(fdc); 767 msleep(fdc, NULL, PRIBIO, "fdcrst", hz); 768 /* Discard results */ 769 for (i = 0; i < 4; i++) 770 fdc_sense_int(fdc, &st0, &cyl); 771 /* All drives must recal */ 772 need_recal = 0xf; 773 } 774 775 /* Pick up a request, if need be wait for it */ 776 if (fdc->bp == NULL) { 777 mtx_lock(&fdc->fdc_mtx); 778 do { 779 fdc->bp = bioq_takefirst(&fdc->head); 780 if (fdc->bp == NULL) 781 msleep(&fdc->head, &fdc->fdc_mtx, 782 PRIBIO, "-", hz); 783 } while (fdc->bp == NULL && 784 (fdc->flags & FDC_KTHREAD_EXIT) == 0); 785 mtx_unlock(&fdc->fdc_mtx); 786 787 if (fdc->bp == NULL) 788 /* 789 * Nothing to do, worker thread has been 790 * requested to stop. 791 */ 792 return (0); 793 794 bp = fdc->bp; 795 fd = fdc->fd = bp->bio_driver1; 796 fdc->retry = 0; 797 fd->fd_ioptr = bp->bio_data; 798 if (bp->bio_cmd & BIO_FMT) { 799 i = offsetof(struct fd_formb, fd_formb_cylno(0)); 800 fd->fd_ioptr += i; 801 fd->fd_iosize = bp->bio_length - i; 802 } 803 } 804 805 /* Select drive, setup params */ 806 fd_select(fd); 807 fdctl_wr(fdc, fd->ft->trans); 808 809 if (bp->bio_cmd & BIO_PROBE) { 810 811 if (!(fdin_rd(fdc) & FDI_DCHG) && !(fd->flags & FD_EMPTY)) 812 return (fdc_biodone(fdc, 0)); 813 814 /* 815 * Try to find out if we have a disk in the drive 816 * 817 * First recal, then seek to cyl#1, this clears the 818 * old condition on the disk change line so we can 819 * examine it for current status 820 */ 821 if (debugflags & 0x40) 822 printf("New disk in probe\n"); 823 mtx_lock(&fdc->fdc_mtx); 824 fd->flags |= FD_NEWDISK; 825 mtx_unlock(&fdc->fdc_mtx); 826 retry_line = __LINE__; 827 if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fd->fdsu, 0)) 828 return (1); 829 msleep(fdc, NULL, PRIBIO, "fdrecal", hz); 830 retry_line = __LINE__; 831 if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 832 return (1); /* XXX */ 833 retry_line = __LINE__; 834 if ((st0 & 0xc0) || cyl != 0) 835 return (1); 836 837 /* Seek to track 1 */ 838 retry_line = __LINE__; 839 if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fd->fdsu, 1, 0)) 840 return (1); 841 msleep(fdc, NULL, PRIBIO, "fdseek", hz); 842 retry_line = __LINE__; 843 if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 844 return (1); /* XXX */ 845 need_recal |= (1 << fd->fdsu); 846 if (fdin_rd(fdc) & FDI_DCHG) { 847 if (debugflags & 0x40) 848 printf("Empty in probe\n"); 849 mtx_lock(&fdc->fdc_mtx); 850 fd->flags |= FD_EMPTY; 851 mtx_unlock(&fdc->fdc_mtx); 852 } else { 853 if (debugflags & 0x40) 854 printf("Got disk in probe\n"); 855 mtx_lock(&fdc->fdc_mtx); 856 fd->flags &= ~FD_EMPTY; 857 mtx_unlock(&fdc->fdc_mtx); 858 retry_line = __LINE__; 859 if(fdc_sense_drive(fdc, &st3) != 0) 860 return (1); 861 mtx_lock(&fdc->fdc_mtx); 862 if(st3 & NE7_ST3_WP) 863 fd->flags |= FD_WP; 864 else 865 fd->flags &= ~FD_WP; 866 mtx_unlock(&fdc->fdc_mtx); 867 } 868 return (fdc_biodone(fdc, 0)); 869 } 870 871 /* 872 * If we are dead just flush the requests 873 */ 874 if (fd->flags & FD_EMPTY) 875 return (fdc_biodone(fdc, ENXIO)); 876 877 /* Check if we lost our media */ 878 if (fdin_rd(fdc) & FDI_DCHG) { 879 if (debugflags & 0x40) 880 printf("Lost disk\n"); 881 mtx_lock(&fdc->fdc_mtx); 882 fd->flags |= FD_EMPTY; 883 fd->flags |= FD_NEWDISK; 884 mtx_unlock(&fdc->fdc_mtx); 885 g_topology_lock(); 886 g_orphan_provider(fd->fd_provider, EXDEV); 887 fd->fd_provider->flags |= G_PF_WITHER; 888 fd->fd_provider = 889 g_new_providerf(fd->fd_geom, fd->fd_geom->name); 890 g_error_provider(fd->fd_provider, 0); 891 g_topology_unlock(); 892 return (fdc_biodone(fdc, ENXIO)); 893 } 894 895 /* Check if the floppy is write-protected */ 896 if(bp->bio_cmd & (BIO_FMT | BIO_WRITE)) { 897 retry_line = __LINE__; 898 if(fdc_sense_drive(fdc, &st3) != 0) 899 return (1); 900 if(st3 & NE7_ST3_WP) 901 return (fdc_biodone(fdc, EROFS)); 902 } 903 904 mfm = (fd->ft->flags & FL_MFM)? NE7CMD_MFM: 0; 905 steptrac = (fd->ft->flags & FL_2STEP)? 2: 1; 906 i = fd->ft->sectrac * fd->ft->heads; 907 cylinder = bp->bio_pblkno / i; 908 descyl = cylinder * steptrac; 909 sec = bp->bio_pblkno % i; 910 nsect = i - sec; 911 head = sec / fd->ft->sectrac; 912 sec = sec % fd->ft->sectrac + 1; 913 914 /* If everything is going swimmingly, use multisector xfer */ 915 if (fdc->retry == 0 && bp->bio_cmd & (BIO_READ|BIO_WRITE)) { 916 fd->fd_iosize = imin(nsect * fd->sectorsize, bp->bio_resid); 917 nsect = fd->fd_iosize / fd->sectorsize; 918 } else if (bp->bio_cmd & (BIO_READ|BIO_WRITE)) { 919 fd->fd_iosize = fd->sectorsize; 920 nsect = 1; 921 } 922 923 /* Do RECAL if we need to or are going to track zero anyway */ 924 if ((need_recal & (1 << fd->fdsu)) || 925 (cylinder == 0 && fd->track != 0) || 926 fdc->retry > 2) { 927 retry_line = __LINE__; 928 if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fd->fdsu, 0)) 929 return (1); 930 msleep(fdc, NULL, PRIBIO, "fdrecal", hz); 931 retry_line = __LINE__; 932 if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 933 return (1); /* XXX */ 934 retry_line = __LINE__; 935 if ((st0 & 0xc0) || cyl != 0) 936 return (1); 937 need_recal &= ~(1 << fd->fdsu); 938 fd->track = 0; 939 /* let the heads settle */ 940 if (settle) 941 msleep(fdc->fd, NULL, PRIBIO, "fdhdstl", settle); 942 } 943 944 /* 945 * SEEK to where we want to be 946 * 947 * Enhanced controllers do implied seeks for read&write as long as 948 * we do not need multiple steps per track. 949 */ 950 if (cylinder != fd->track && ( 951 fdc->fdct != FDC_ENHANCED || 952 descyl != cylinder || 953 (bp->bio_cmd & (BIO_RDID|BIO_FMT)))) { 954 retry_line = __LINE__; 955 if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fd->fdsu, descyl, 0)) 956 return (1); 957 msleep(fdc, NULL, PRIBIO, "fdseek", hz); 958 retry_line = __LINE__; 959 if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 960 return (1); /* XXX */ 961 retry_line = __LINE__; 962 if ((st0 & 0xc0) || cyl != descyl) { 963 need_recal |= (1 << fd->fdsu); 964 return (1); 965 } 966 /* let the heads settle */ 967 if (settle) 968 msleep(fdc->fd, NULL, PRIBIO, "fdhdstl", settle); 969 } 970 fd->track = cylinder; 971 972 if (debugflags & 8) 973 printf("op %x bn %ju siz %u ptr %p retry %d\n", 974 bp->bio_cmd, bp->bio_pblkno, fd->fd_iosize, 975 fd->fd_ioptr, fdc->retry); 976 977 /* Setup ISADMA if we need it and have it */ 978 if ((bp->bio_cmd & (BIO_READ|BIO_WRITE|BIO_FMT)) 979 && !(fdc->flags & FDC_NODMA)) { 980 mtx_lock(&Giant); 981 isa_dmastart( 982 bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE, 983 fd->fd_ioptr, fd->fd_iosize, fdc->dmachan); 984 mtx_unlock(&Giant); 985 mtx_lock(&fdc->fdc_mtx); 986 fd->flags |= FD_ISADMA; 987 mtx_unlock(&fdc->fdc_mtx); 988 } 989 990 /* Do PIO if we have to */ 991 if (fdc->flags & FDC_NODMA) { 992 if (bp->bio_cmd & (BIO_READ|BIO_WRITE|BIO_FMT)) 993 fdbcdr_wr(fdc, 1, fd->fd_iosize); 994 if (bp->bio_cmd & (BIO_WRITE|BIO_FMT)) 995 fdc_pio(fdc); 996 } 997 998 switch(bp->bio_cmd) { 999 case BIO_FMT: 1000 /* formatting */ 1001 finfo = (struct fd_formb *)bp->bio_data; 1002 retry_line = __LINE__; 1003 if (fdc_cmd(fdc, 6, 1004 NE7CMD_FORMAT | mfm, 1005 head << 2 | fd->fdsu, 1006 finfo->fd_formb_secshift, 1007 finfo->fd_formb_nsecs, 1008 finfo->fd_formb_gaplen, 1009 finfo->fd_formb_fillbyte, 0)) 1010 return (1); 1011 break; 1012 case BIO_RDID: 1013 retry_line = __LINE__; 1014 if (fdc_cmd(fdc, 2, 1015 NE7CMD_READID | mfm, 1016 head << 2 | fd->fdsu, 0)) 1017 return (1); 1018 break; 1019 case BIO_READ: 1020 retry_line = __LINE__; 1021 if (fdc_cmd(fdc, 9, 1022 NE7CMD_READ | NE7CMD_SK | mfm | NE7CMD_MT, 1023 head << 2 | fd->fdsu, /* head & unit */ 1024 fd->track, /* track */ 1025 head, /* head */ 1026 sec, /* sector + 1 */ 1027 fd->ft->secsize, /* sector size */ 1028 fd->ft->sectrac, /* sectors/track */ 1029 fd->ft->gap, /* gap size */ 1030 fd->ft->datalen, /* data length */ 1031 0)) 1032 return (1); 1033 break; 1034 case BIO_WRITE: 1035 retry_line = __LINE__; 1036 if (fdc_cmd(fdc, 9, 1037 NE7CMD_WRITE | mfm | NE7CMD_MT, 1038 head << 2 | fd->fdsu, /* head & unit */ 1039 fd->track, /* track */ 1040 head, /* head */ 1041 sec, /* sector + 1 */ 1042 fd->ft->secsize, /* sector size */ 1043 fd->ft->sectrac, /* sectors/track */ 1044 fd->ft->gap, /* gap size */ 1045 fd->ft->datalen, /* data length */ 1046 0)) 1047 return (1); 1048 break; 1049 default: 1050 KASSERT(0 == 1, ("Wrong bio_cmd %x\n", bp->bio_cmd)); 1051 } 1052 1053 /* Wait for interrupt */ 1054 i = msleep(fdc, NULL, PRIBIO, "fddata", hz); 1055 1056 /* PIO if the read looks good */ 1057 if (i == 0 && (fdc->flags & FDC_NODMA) && (bp->bio_cmd & BIO_READ)) 1058 fdc_pio(fdc); 1059 1060 /* Finish DMA */ 1061 if (fd->flags & FD_ISADMA) { 1062 mtx_lock(&Giant); 1063 isa_dmadone( 1064 bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE, 1065 fd->fd_ioptr, fd->fd_iosize, fdc->dmachan); 1066 mtx_unlock(&Giant); 1067 mtx_lock(&fdc->fdc_mtx); 1068 fd->flags &= ~FD_ISADMA; 1069 mtx_unlock(&fdc->fdc_mtx); 1070 } 1071 1072 if (i != 0) { 1073 /* 1074 * Timeout. 1075 * 1076 * Due to IBM's brain-dead design, the FDC has a faked ready 1077 * signal, hardwired to ready == true. Thus, any command 1078 * issued if there's no diskette in the drive will _never_ 1079 * complete, and must be aborted by resetting the FDC. 1080 * Many thanks, Big Blue! 1081 */ 1082 retry_line = __LINE__; 1083 fdc->flags |= FDC_NEEDS_RESET; 1084 return (1); 1085 } 1086 1087 retry_line = __LINE__; 1088 if (fdc_read_status(fdc)) 1089 return (1); 1090 1091 if (debugflags & 0x10) 1092 printf(" -> %x %x %x %x\n", 1093 fdc->status[0], fdc->status[1], 1094 fdc->status[2], fdc->status[3]); 1095 1096 st0 = fdc->status[0] & NE7_ST0_IC; 1097 if (st0 != 0) { 1098 retry_line = __LINE__; 1099 if (st0 == NE7_ST0_IC_AT && fdc->status[1] & NE7_ST1_OR) { 1100 /* 1101 * DMA overrun. Someone hogged the bus and 1102 * didn't release it in time for the next 1103 * FDC transfer. 1104 */ 1105 return (1); 1106 } 1107 retry_line = __LINE__; 1108 if(st0 == NE7_ST0_IC_IV) { 1109 fdc->flags |= FDC_NEEDS_RESET; 1110 return (1); 1111 } 1112 retry_line = __LINE__; 1113 if(st0 == NE7_ST0_IC_AT && fdc->status[2] & NE7_ST2_WC) { 1114 need_recal |= (1 << fd->fdsu); 1115 return (1); 1116 } 1117 if (debugflags & 0x20) { 1118 printf("status %02x %02x %02x %02x %02x %02x\n", 1119 fdc->status[0], fdc->status[1], fdc->status[2], 1120 fdc->status[3], fdc->status[4], fdc->status[5]); 1121 } 1122 retry_line = __LINE__; 1123 return (1); 1124 } 1125 /* All OK */ 1126 switch(bp->bio_cmd) { 1127 case BIO_RDID: 1128 /* copy out ID field contents */ 1129 idp = (struct fdc_readid *)bp->bio_data; 1130 idp->cyl = fdc->status[3]; 1131 idp->head = fdc->status[4]; 1132 idp->sec = fdc->status[5]; 1133 idp->secshift = fdc->status[6]; 1134 if (debugflags & 0x40) 1135 printf("c %d h %d s %d z %d\n", 1136 idp->cyl, idp->head, idp->sec, idp->secshift); 1137 break; 1138 case BIO_READ: 1139 case BIO_WRITE: 1140 bp->bio_pblkno += nsect; 1141 bp->bio_resid -= fd->fd_iosize; 1142 bp->bio_completed += fd->fd_iosize; 1143 fd->fd_ioptr += fd->fd_iosize; 1144 /* Since we managed to get something done, reset the retry */ 1145 fdc->retry = 0; 1146 if (bp->bio_resid > 0) 1147 return (0); 1148 break; 1149 case BIO_FMT: 1150 break; 1151 } 1152 return (fdc_biodone(fdc, 0)); 1153 } 1154 1155 static void 1156 fdc_thread(void *arg) 1157 { 1158 struct fdc_data *fdc; 1159 1160 fdc = arg; 1161 int i; 1162 1163 mtx_lock(&fdc->fdc_mtx); 1164 fdc->flags |= FDC_KTHREAD_ALIVE; 1165 while ((fdc->flags & FDC_KTHREAD_EXIT) == 0) { 1166 mtx_unlock(&fdc->fdc_mtx); 1167 i = fdc_worker(fdc); 1168 if (i && debugflags & 0x20) { 1169 if (fdc->bp != NULL) { 1170 g_print_bio(fdc->bp); 1171 printf("\n"); 1172 } 1173 printf("Retry line %d\n", retry_line); 1174 } 1175 fdc->retry += i; 1176 mtx_lock(&fdc->fdc_mtx); 1177 } 1178 fdc->flags &= ~(FDC_KTHREAD_EXIT | FDC_KTHREAD_ALIVE); 1179 wakeup(&fdc->fdc_thread); 1180 mtx_unlock(&fdc->fdc_mtx); 1181 1182 kthread_exit(0); 1183 } 1184 1185 /* 1186 * Enqueue a request. 1187 */ 1188 static void 1189 fd_enqueue(struct fd_data *fd, struct bio *bp) 1190 { 1191 struct fdc_data *fdc; 1192 int call; 1193 1194 call = 0; 1195 fdc = fd->fdc; 1196 mtx_lock(&fdc->fdc_mtx); 1197 /* If we go from idle, cancel motor turnoff */ 1198 if (fd->fd_iocount++ == 0) 1199 callout_drain(&fd->toffhandle); 1200 if (fd->flags & FD_MOTOR) { 1201 /* The motor is on, send it directly to the controller */ 1202 bioq_disksort(&fdc->head, bp); 1203 wakeup(&fdc->head); 1204 } else { 1205 /* Queue it on the drive until the motor has started */ 1206 bioq_insert_tail(&fd->fd_bq, bp); 1207 if (!(fd->flags & FD_MOTORWAIT)) 1208 fd_motor(fd, 1); 1209 } 1210 mtx_unlock(&fdc->fdc_mtx); 1211 } 1212 1213 static int 1214 fdmisccmd(struct fd_data *fd, u_int cmd, void *data) 1215 { 1216 struct bio *bp; 1217 struct fd_formb *finfo; 1218 struct fdc_readid *idfield; 1219 int error; 1220 1221 bp = malloc(sizeof(struct bio), M_TEMP, M_WAITOK | M_ZERO); 1222 1223 /* 1224 * Set up a bio request for fdstrategy(). bio_offset is faked 1225 * so that fdstrategy() will seek to the the requested 1226 * cylinder, and use the desired head. 1227 */ 1228 bp->bio_cmd = cmd; 1229 if (cmd == BIO_FMT) { 1230 finfo = (struct fd_formb *)data; 1231 bp->bio_pblkno = 1232 (finfo->cyl * fd->ft->heads + finfo->head) * 1233 fd->ft->sectrac; 1234 bp->bio_length = sizeof *finfo; 1235 } else if (cmd == BIO_RDID) { 1236 idfield = (struct fdc_readid *)data; 1237 bp->bio_pblkno = 1238 (idfield->cyl * fd->ft->heads + idfield->head) * 1239 fd->ft->sectrac; 1240 bp->bio_length = sizeof(struct fdc_readid); 1241 } else if (cmd == BIO_PROBE) { 1242 /* nothing */ 1243 } else 1244 panic("wrong cmd in fdmisccmd()"); 1245 bp->bio_offset = bp->bio_pblkno * fd->sectorsize; 1246 bp->bio_data = data; 1247 bp->bio_driver1 = fd; 1248 bp->bio_flags = 0; 1249 1250 fd_enqueue(fd, bp); 1251 1252 do { 1253 msleep(bp, NULL, PRIBIO, "fdwait", hz); 1254 } while (!(bp->bio_flags & BIO_DONE)); 1255 error = bp->bio_error; 1256 1257 free(bp, M_TEMP); 1258 return (error); 1259 } 1260 1261 /* 1262 * Try figuring out the density of the media present in our device. 1263 */ 1264 static int 1265 fdautoselect(struct fd_data *fd) 1266 { 1267 struct fd_type *fdtp; 1268 struct fdc_readid id; 1269 int oopts, rv; 1270 1271 if (!(fd->ft->flags & FL_AUTO)) 1272 return (0); 1273 1274 fdtp = fd_native_types[fd->type]; 1275 fdsettype(fd, fdtp); 1276 if (!(fd->ft->flags & FL_AUTO)) 1277 return (0); 1278 1279 /* 1280 * Try reading sector ID fields, first at cylinder 0, head 0, 1281 * then at cylinder 2, head N. We don't probe cylinder 1, 1282 * since for 5.25in DD media in a HD drive, there are no data 1283 * to read (2 step pulses per media cylinder required). For 1284 * two-sided media, the second probe always goes to head 1, so 1285 * we can tell them apart from single-sided media. As a 1286 * side-effect this means that single-sided media should be 1287 * mentioned in the search list after two-sided media of an 1288 * otherwise identical density. Media with a different number 1289 * of sectors per track but otherwise identical parameters 1290 * cannot be distinguished at all. 1291 * 1292 * If we successfully read an ID field on both cylinders where 1293 * the recorded values match our expectation, we are done. 1294 * Otherwise, we try the next density entry from the table. 1295 * 1296 * Stepping to cylinder 2 has the side-effect of clearing the 1297 * unit attention bit. 1298 */ 1299 oopts = fd->options; 1300 fd->options |= FDOPT_NOERRLOG | FDOPT_NORETRY; 1301 for (; fdtp->heads; fdtp++) { 1302 fdsettype(fd, fdtp); 1303 1304 id.cyl = id.head = 0; 1305 rv = fdmisccmd(fd, BIO_RDID, &id); 1306 if (rv != 0) 1307 continue; 1308 if (id.cyl != 0 || id.head != 0 || id.secshift != fdtp->secsize) 1309 continue; 1310 id.cyl = 2; 1311 id.head = fd->ft->heads - 1; 1312 rv = fdmisccmd(fd, BIO_RDID, &id); 1313 if (id.cyl != 2 || id.head != fdtp->heads - 1 || 1314 id.secshift != fdtp->secsize) 1315 continue; 1316 if (rv == 0) 1317 break; 1318 } 1319 1320 fd->options = oopts; 1321 if (fdtp->heads == 0) { 1322 if (debugflags & 0x40) 1323 device_printf(fd->dev, "autoselection failed\n"); 1324 fdsettype(fd, fd_native_types[fd->type]); 1325 return (0); 1326 } else { 1327 if (debugflags & 0x40) { 1328 device_printf(fd->dev, 1329 "autoselected %d KB medium\n", fd->ft->size / 2); 1330 fdprinttype(fd->ft); 1331 } 1332 return (0); 1333 } 1334 } 1335 1336 /* 1337 * GEOM class implementation 1338 */ 1339 1340 static g_access_t fd_access; 1341 static g_start_t fd_start; 1342 static g_ioctl_t fd_ioctl; 1343 1344 struct g_class g_fd_class = { 1345 .name = "FD", 1346 .version = G_VERSION, 1347 .start = fd_start, 1348 .access = fd_access, 1349 .ioctl = fd_ioctl, 1350 }; 1351 1352 static int 1353 fd_access(struct g_provider *pp, int r, int w, int e) 1354 { 1355 struct fd_data *fd; 1356 struct fdc_data *fdc; 1357 int ar, aw, ae; 1358 1359 fd = pp->geom->softc; 1360 fdc = fd->fdc; 1361 1362 /* 1363 * If our provider is withering, we can only get negative requests 1364 * and we don't want to even see them 1365 */ 1366 if (pp->flags & G_PF_WITHER) 1367 return (0); 1368 1369 ar = r + pp->acr; 1370 aw = w + pp->acw; 1371 ae = e + pp->ace; 1372 1373 if (ar == 0 && aw == 0 && ae == 0) { 1374 device_unbusy(fd->dev); 1375 return (0); 1376 } 1377 1378 if (pp->acr == 0 && pp->acw == 0 && pp->ace == 0) { 1379 if (fdmisccmd(fd, BIO_PROBE, NULL)) 1380 return (ENXIO); 1381 if (fd->flags & FD_EMPTY) 1382 return (ENXIO); 1383 if (fd->flags & FD_NEWDISK) { 1384 fdautoselect(fd); 1385 mtx_lock(&fdc->fdc_mtx); 1386 fd->flags &= ~FD_NEWDISK; 1387 mtx_unlock(&fdc->fdc_mtx); 1388 } 1389 device_busy(fd->dev); 1390 } 1391 1392 if (w > 0 && (fd->flags & FD_WP)) 1393 return (EROFS); 1394 1395 pp->sectorsize = fd->sectorsize; 1396 pp->stripesize = fd->ft->heads * fd->ft->sectrac * fd->sectorsize; 1397 pp->mediasize = pp->stripesize * fd->ft->tracks; 1398 return (0); 1399 } 1400 1401 static void 1402 fd_start(struct bio *bp) 1403 { 1404 struct fdc_data * fdc; 1405 struct fd_data * fd; 1406 1407 fd = bp->bio_to->geom->softc; 1408 fdc = fd->fdc; 1409 bp->bio_driver1 = fd; 1410 if (bp->bio_cmd & BIO_GETATTR) { 1411 if (g_handleattr_int(bp, "GEOM::fwsectors", fd->ft->sectrac)) 1412 return; 1413 if (g_handleattr_int(bp, "GEOM::fwheads", fd->ft->heads)) 1414 return; 1415 g_io_deliver(bp, ENOIOCTL); 1416 return; 1417 } 1418 if (!(bp->bio_cmd & (BIO_READ|BIO_WRITE))) { 1419 g_io_deliver(bp, EOPNOTSUPP); 1420 return; 1421 } 1422 bp->bio_pblkno = bp->bio_offset / fd->sectorsize; 1423 bp->bio_resid = bp->bio_length; 1424 fd_enqueue(fd, bp); 1425 return; 1426 } 1427 1428 static int 1429 fd_ioctl(struct g_provider *pp, u_long cmd, void *data, int fflag, struct thread *td) 1430 { 1431 struct fd_data *fd; 1432 struct fdc_status *fsp; 1433 struct fdc_readid *rid; 1434 int error; 1435 1436 fd = pp->geom->softc; 1437 1438 switch (cmd) { 1439 case FD_GTYPE: /* get drive type */ 1440 *(struct fd_type *)data = *fd->ft; 1441 return (0); 1442 1443 case FD_STYPE: /* set drive type */ 1444 if (!fflag & FWRITE) 1445 return (EPERM); 1446 /* 1447 * Allow setting drive type temporarily iff 1448 * currently unset. Used for fdformat so any 1449 * user can set it, and then start formatting. 1450 */ 1451 fd->fts = *(struct fd_type *)data; 1452 if (fd->fts.sectrac) { 1453 /* XXX: check for rubbish */ 1454 fdsettype(fd, &fd->fts); 1455 } else { 1456 fdsettype(fd, fd_native_types[fd->type]); 1457 } 1458 if (debugflags & 0x40) 1459 fdprinttype(fd->ft); 1460 return (0); 1461 1462 case FD_GOPTS: /* get drive options */ 1463 *(int *)data = fd->options; 1464 return (0); 1465 1466 case FD_SOPTS: /* set drive options */ 1467 if (!fflag & FWRITE) 1468 return (EPERM); 1469 fd->options = *(int *)data; 1470 return (0); 1471 1472 case FD_CLRERR: 1473 if (suser(td) != 0) 1474 return (EPERM); 1475 fd->fdc->fdc_errs = 0; 1476 return (0); 1477 1478 case FD_GSTAT: 1479 fsp = (struct fdc_status *)data; 1480 if ((fd->fdc->flags & FDC_STAT_VALID) == 0) 1481 return (EINVAL); 1482 memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int)); 1483 return (0); 1484 1485 case FD_GDTYPE: 1486 *(enum fd_drivetype *)data = fd->type; 1487 return (0); 1488 1489 case FD_FORM: 1490 if (!fflag & FWRITE) 1491 return (EPERM); 1492 if (((struct fd_formb *)data)->format_version != 1493 FD_FORMAT_VERSION) 1494 return (EINVAL); /* wrong version of formatting prog */ 1495 error = fdmisccmd(fd, BIO_FMT, data); 1496 mtx_lock(&fd->fdc->fdc_mtx); 1497 fd->flags |= FD_NEWDISK; 1498 mtx_unlock(&fd->fdc->fdc_mtx); 1499 break; 1500 1501 case FD_READID: 1502 rid = (struct fdc_readid *)data; 1503 if (rid->cyl > 85 || rid->head > 1) 1504 return (EINVAL); 1505 error = fdmisccmd(fd, BIO_RDID, data); 1506 break; 1507 1508 case FIONBIO: 1509 case FIOASYNC: 1510 /* For backwards compat with old fd*(8) tools */ 1511 error = 0; 1512 break; 1513 1514 default: 1515 if (debugflags & 0x80) 1516 printf("Unknown ioctl %lx\n", cmd); 1517 error = ENOIOCTL; 1518 break; 1519 } 1520 return (error); 1521 }; 1522 1523 1524 1525 /* 1526 * Configuration/initialization stuff, per controller. 1527 */ 1528 1529 devclass_t fdc_devclass; 1530 static devclass_t fd_devclass; 1531 1532 struct fdc_ivars { 1533 int fdunit; 1534 int fdtype; 1535 }; 1536 1537 void 1538 fdc_release_resources(struct fdc_data *fdc) 1539 { 1540 device_t dev; 1541 struct resource *last; 1542 int i; 1543 1544 dev = fdc->fdc_dev; 1545 if (fdc->fdc_intr) 1546 bus_teardown_intr(dev, fdc->res_irq, fdc->fdc_intr); 1547 fdc->fdc_intr = NULL; 1548 if (fdc->res_irq != NULL) 1549 bus_release_resource(dev, SYS_RES_IRQ, fdc->rid_irq, 1550 fdc->res_irq); 1551 fdc->res_irq = NULL; 1552 last = NULL; 1553 for (i = 0; i < FDC_MAXREG; i++) { 1554 if (fdc->resio[i] != NULL && fdc->resio[i] != last) { 1555 bus_release_resource(dev, SYS_RES_IOPORT, 1556 fdc->ridio[i], fdc->resio[i]); 1557 last = fdc->resio[i]; 1558 fdc->resio[i] = NULL; 1559 } 1560 } 1561 if (fdc->res_drq != NULL) 1562 bus_release_resource(dev, SYS_RES_DRQ, fdc->rid_drq, 1563 fdc->res_drq); 1564 fdc->res_drq = NULL; 1565 } 1566 1567 int 1568 fdc_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) 1569 { 1570 struct fdc_ivars *ivars = device_get_ivars(child); 1571 1572 switch (which) { 1573 case FDC_IVAR_FDUNIT: 1574 *result = ivars->fdunit; 1575 break; 1576 case FDC_IVAR_FDTYPE: 1577 *result = ivars->fdtype; 1578 break; 1579 default: 1580 return (ENOENT); 1581 } 1582 return (0); 1583 } 1584 1585 int 1586 fdc_write_ivar(device_t dev, device_t child, int which, uintptr_t value) 1587 { 1588 struct fdc_ivars *ivars = device_get_ivars(child); 1589 1590 switch (which) { 1591 case FDC_IVAR_FDUNIT: 1592 ivars->fdunit = value; 1593 break; 1594 case FDC_IVAR_FDTYPE: 1595 ivars->fdtype = value; 1596 break; 1597 default: 1598 return (ENOENT); 1599 } 1600 return (0); 1601 } 1602 1603 int 1604 fdc_initial_reset(device_t dev, struct fdc_data *fdc) 1605 { 1606 int ic_type, part_id; 1607 1608 /* 1609 * A status value of 0xff is very unlikely, but not theoretically 1610 * impossible, but it is far more likely to indicate an empty bus. 1611 */ 1612 if (fdsts_rd(fdc) == 0xff) 1613 return (ENXIO); 1614 1615 /* 1616 * Assert a reset to the floppy controller and check that the status 1617 * register goes to zero. 1618 */ 1619 fdout_wr(fdc, 0); 1620 fdout_wr(fdc, 0); 1621 if (fdsts_rd(fdc) != 0) 1622 return (ENXIO); 1623 1624 /* 1625 * Clear the reset and see it come ready. 1626 */ 1627 fdout_wr(fdc, FDO_FRST); 1628 DELAY(100); 1629 if (fdsts_rd(fdc) != 0x80) 1630 return (ENXIO); 1631 1632 /* Then, see if it can handle a command. */ 1633 if (fdc_cmd(fdc, 3, NE7CMD_SPECIFY, 0xaf, 0x1e, 0)) 1634 return (ENXIO); 1635 1636 /* 1637 * Try to identify the chip. 1638 * 1639 * The i8272 datasheet documents that unknown commands 1640 * will return ST0 as 0x80. The i8272 is supposedly identical 1641 * to the NEC765. 1642 * The i82077SL datasheet says 0x90 for the VERSION command, 1643 * and several "superio" chips emulate this. 1644 */ 1645 if (fdc_cmd(fdc, 1, NE7CMD_VERSION, 1, &ic_type)) 1646 return (ENXIO); 1647 if (fdc_cmd(fdc, 1, 0x18, 1, &part_id)) 1648 return (ENXIO); 1649 if (bootverbose) 1650 device_printf(dev, 1651 "ic_type %02x part_id %02x\n", ic_type, part_id); 1652 switch (ic_type & 0xff) { 1653 case 0x80: 1654 device_set_desc(dev, "NEC 765 or clone"); 1655 fdc->fdct = FDC_NE765; 1656 break; 1657 case 0x81: 1658 case 0x90: 1659 device_set_desc(dev, 1660 "Enhanced floppy controller"); 1661 fdc->fdct = FDC_ENHANCED; 1662 break; 1663 default: 1664 device_set_desc(dev, "Generic floppy controller"); 1665 fdc->fdct = FDC_UNKNOWN; 1666 break; 1667 } 1668 return (0); 1669 } 1670 1671 int 1672 fdc_detach(device_t dev) 1673 { 1674 struct fdc_data *fdc; 1675 int error; 1676 1677 fdc = device_get_softc(dev); 1678 1679 /* have our children detached first */ 1680 if ((error = bus_generic_detach(dev))) 1681 return (error); 1682 1683 /* kill worker thread */ 1684 fdc->flags |= FDC_KTHREAD_EXIT; 1685 mtx_lock(&fdc->fdc_mtx); 1686 wakeup(&fdc->head); 1687 while ((fdc->flags & FDC_KTHREAD_ALIVE) != 0) 1688 msleep(&fdc->fdc_thread, &fdc->fdc_mtx, PRIBIO, "fdcdet", 0); 1689 mtx_unlock(&fdc->fdc_mtx); 1690 1691 /* reset controller, turn motor off */ 1692 fdout_wr(fdc, 0); 1693 1694 if (!(fdc->flags & FDC_NODMA)) 1695 isa_dma_release(fdc->dmachan); 1696 fdc_release_resources(fdc); 1697 mtx_destroy(&fdc->fdc_mtx); 1698 return (0); 1699 } 1700 1701 /* 1702 * Add a child device to the fdc controller. It will then be probed etc. 1703 */ 1704 device_t 1705 fdc_add_child(device_t dev, const char *name, int unit) 1706 { 1707 struct fdc_ivars *ivar; 1708 device_t child; 1709 1710 ivar = malloc(sizeof *ivar, M_DEVBUF /* XXX */, M_NOWAIT | M_ZERO); 1711 if (ivar == NULL) 1712 return (NULL); 1713 child = device_add_child(dev, name, unit); 1714 if (child == NULL) { 1715 free(ivar, M_DEVBUF); 1716 return (NULL); 1717 } 1718 device_set_ivars(child, ivar); 1719 ivar->fdunit = unit; 1720 ivar->fdtype = FDT_NONE; 1721 if (resource_disabled(name, unit)) 1722 device_disable(child); 1723 return (child); 1724 } 1725 1726 int 1727 fdc_attach(device_t dev) 1728 { 1729 struct fdc_data *fdc; 1730 int error; 1731 1732 fdc = device_get_softc(dev); 1733 fdc->fdc_dev = dev; 1734 error = fdc_initial_reset(dev, fdc); 1735 if (error) { 1736 device_printf(dev, "does not respond\n"); 1737 return (error); 1738 } 1739 error = bus_setup_intr(dev, fdc->res_irq, 1740 INTR_TYPE_BIO | INTR_ENTROPY | INTR_MPSAFE | 1741 ((fdc->flags & FDC_NOFAST) ? 0 : INTR_FAST), 1742 fdc_intr, fdc, &fdc->fdc_intr); 1743 if (error) { 1744 device_printf(dev, "cannot setup interrupt\n"); 1745 return (error); 1746 } 1747 if (!(fdc->flags & FDC_NODMA)) { 1748 error = isa_dma_acquire(fdc->dmachan); 1749 if (!error) { 1750 error = isa_dma_init(fdc->dmachan, 1751 MAX_BYTES_PER_CYL, M_WAITOK); 1752 if (error) 1753 isa_dma_release(fdc->dmachan); 1754 } 1755 if (error) 1756 return (error); 1757 } 1758 fdc->fdcu = device_get_unit(dev); 1759 fdc->flags |= FDC_NEEDS_RESET; 1760 1761 mtx_init(&fdc->fdc_mtx, "fdc lock", NULL, MTX_DEF); 1762 1763 /* reset controller, turn motor off, clear fdout mirror reg */ 1764 fdout_wr(fdc, fdc->fdout = 0); 1765 bioq_init(&fdc->head); 1766 1767 kthread_create(fdc_thread, fdc, &fdc->fdc_thread, 0, 0, 1768 "fdc%d", device_get_unit(dev)); 1769 1770 settle = hz / 8; 1771 1772 return (0); 1773 } 1774 1775 int 1776 fdc_hints_probe(device_t dev) 1777 { 1778 const char *name, *dname; 1779 int i, error, dunit; 1780 1781 /* 1782 * Probe and attach any children. We should probably detect 1783 * devices from the BIOS unless overridden. 1784 */ 1785 name = device_get_nameunit(dev); 1786 i = 0; 1787 while ((resource_find_match(&i, &dname, &dunit, "at", name)) == 0) { 1788 resource_int_value(dname, dunit, "drive", &dunit); 1789 fdc_add_child(dev, dname, dunit); 1790 } 1791 1792 if ((error = bus_generic_attach(dev)) != 0) 1793 return (error); 1794 return (0); 1795 } 1796 1797 int 1798 fdc_print_child(device_t me, device_t child) 1799 { 1800 int retval = 0, flags; 1801 1802 retval += bus_print_child_header(me, child); 1803 retval += printf(" on %s drive %d", device_get_nameunit(me), 1804 fdc_get_fdunit(child)); 1805 if ((flags = device_get_flags(me)) != 0) 1806 retval += printf(" flags %#x", flags); 1807 retval += printf("\n"); 1808 1809 return (retval); 1810 } 1811 1812 /* 1813 * Configuration/initialization, per drive. 1814 */ 1815 static int 1816 fd_probe(device_t dev) 1817 { 1818 int i, unit; 1819 u_int st0, st3; 1820 struct fd_data *fd; 1821 struct fdc_data *fdc; 1822 int fdsu; 1823 int flags, type; 1824 1825 fdsu = fdc_get_fdunit(dev); 1826 fd = device_get_softc(dev); 1827 fdc = device_get_softc(device_get_parent(dev)); 1828 flags = device_get_flags(dev); 1829 1830 fd->dev = dev; 1831 fd->fdc = fdc; 1832 fd->fdsu = fdsu; 1833 unit = device_get_unit(dev); 1834 1835 /* Auto-probe if fdinfo is present, but always allow override. */ 1836 type = flags & FD_TYPEMASK; 1837 if (type == FDT_NONE && (type = fdc_get_fdtype(dev)) != FDT_NONE) { 1838 fd->type = type; 1839 goto done; 1840 } else { 1841 /* make sure fdautoselect() will be called */ 1842 fd->flags = FD_EMPTY; 1843 fd->type = type; 1844 } 1845 1846 #if (defined(__i386__) && !defined(PC98)) || defined(__amd64__) 1847 if (fd->type == FDT_NONE && (unit == 0 || unit == 1)) { 1848 /* Look up what the BIOS thinks we have. */ 1849 if (unit == 0) 1850 fd->type = (rtcin(RTC_FDISKETTE) & 0xf0) >> 4; 1851 else 1852 fd->type = rtcin(RTC_FDISKETTE) & 0x0f; 1853 if (fd->type == FDT_288M_1) 1854 fd->type = FDT_288M; 1855 } 1856 #endif /* __i386__ || __amd64__ */ 1857 /* is there a unit? */ 1858 if (fd->type == FDT_NONE) 1859 return (ENXIO); 1860 1861 /* 1862 mtx_lock(&fdc->fdc_mtx); 1863 */ 1864 /* select it */ 1865 fd_select(fd); 1866 fd_motor(fd, 1); 1867 fdc->fd = fd; 1868 fdc_reset(fdc); /* XXX reset, then unreset, etc. */ 1869 DELAY(1000000); /* 1 sec */ 1870 1871 if ((flags & FD_NO_PROBE) == 0) { 1872 /* If we're at track 0 first seek inwards. */ 1873 if ((fdc_sense_drive(fdc, &st3) == 0) && 1874 (st3 & NE7_ST3_T0)) { 1875 /* Seek some steps... */ 1876 if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fdsu, 10, 0) == 0) { 1877 /* ...wait a moment... */ 1878 DELAY(300000); 1879 /* make ctrlr happy: */ 1880 fdc_sense_int(fdc, 0, 0); 1881 } 1882 } 1883 1884 for (i = 0; i < 2; i++) { 1885 /* 1886 * we must recalibrate twice, just in case the 1887 * heads have been beyond cylinder 76, since 1888 * most FDCs still barf when attempting to 1889 * recalibrate more than 77 steps 1890 */ 1891 /* go back to 0: */ 1892 if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fdsu, 0) == 0) { 1893 /* a second being enough for full stroke seek*/ 1894 DELAY(i == 0 ? 1000000 : 300000); 1895 1896 /* anything responding? */ 1897 if (fdc_sense_int(fdc, &st0, 0) == 0 && 1898 (st0 & NE7_ST0_EC) == 0) 1899 break; /* already probed succesfully */ 1900 } 1901 } 1902 } 1903 1904 fd_motor(fd, 0); 1905 fdc->fd = NULL; 1906 /* 1907 mtx_unlock(&fdc->fdc_mtx); 1908 */ 1909 1910 if ((flags & FD_NO_PROBE) == 0 && 1911 (st0 & NE7_ST0_EC) != 0) /* no track 0 -> no drive present */ 1912 return (ENXIO); 1913 1914 done: 1915 1916 switch (fd->type) { 1917 case FDT_12M: 1918 device_set_desc(dev, "1200-KB 5.25\" drive"); 1919 break; 1920 case FDT_144M: 1921 device_set_desc(dev, "1440-KB 3.5\" drive"); 1922 break; 1923 case FDT_288M: 1924 device_set_desc(dev, "2880-KB 3.5\" drive (in 1440-KB mode)"); 1925 break; 1926 case FDT_360K: 1927 device_set_desc(dev, "360-KB 5.25\" drive"); 1928 break; 1929 case FDT_720K: 1930 device_set_desc(dev, "720-KB 3.5\" drive"); 1931 break; 1932 default: 1933 return (ENXIO); 1934 } 1935 fd->track = FD_NO_TRACK; 1936 fd->fdc = fdc; 1937 fd->fdsu = fdsu; 1938 fd->options = 0; 1939 callout_init(&fd->toffhandle, 1); 1940 callout_init(&fd->tohandle, 1); 1941 1942 /* initialize densities for subdevices */ 1943 fdsettype(fd, fd_native_types[fd->type]); 1944 return (0); 1945 } 1946 1947 /* 1948 * We have to do this in a geom event because GEOM is not running 1949 * when fd_attach() is. 1950 * XXX: move fd_attach after geom like ata/scsi disks 1951 */ 1952 static void 1953 fd_attach2(void *arg, int flag) 1954 { 1955 struct fd_data *fd; 1956 1957 fd = arg; 1958 1959 fd->fd_geom = g_new_geomf(&g_fd_class, 1960 "fd%d", device_get_unit(fd->dev)); 1961 fd->fd_provider = g_new_providerf(fd->fd_geom, fd->fd_geom->name); 1962 fd->fd_geom->softc = fd; 1963 g_error_provider(fd->fd_provider, 0); 1964 } 1965 1966 static int 1967 fd_attach(device_t dev) 1968 { 1969 struct fd_data *fd; 1970 1971 fd = device_get_softc(dev); 1972 g_post_event(fd_attach2, fd, M_WAITOK, NULL); 1973 fd->flags |= FD_EMPTY; 1974 bioq_init(&fd->fd_bq); 1975 1976 return (0); 1977 } 1978 1979 static int 1980 fd_detach(device_t dev) 1981 { 1982 struct fd_data *fd; 1983 1984 fd = device_get_softc(dev); 1985 g_topology_lock(); 1986 g_wither_geom(fd->fd_geom, ENXIO); 1987 g_topology_unlock(); 1988 while (device_get_state(dev) == DS_BUSY) 1989 tsleep(fd, PZERO, "fdd", hz/10); 1990 callout_drain(&fd->toffhandle); 1991 1992 return (0); 1993 } 1994 1995 static device_method_t fd_methods[] = { 1996 /* Device interface */ 1997 DEVMETHOD(device_probe, fd_probe), 1998 DEVMETHOD(device_attach, fd_attach), 1999 DEVMETHOD(device_detach, fd_detach), 2000 DEVMETHOD(device_shutdown, bus_generic_shutdown), 2001 DEVMETHOD(device_suspend, bus_generic_suspend), /* XXX */ 2002 DEVMETHOD(device_resume, bus_generic_resume), /* XXX */ 2003 { 0, 0 } 2004 }; 2005 2006 static driver_t fd_driver = { 2007 "fd", 2008 fd_methods, 2009 sizeof(struct fd_data) 2010 }; 2011 2012 static int 2013 fdc_modevent(module_t mod, int type, void *data) 2014 { 2015 2016 g_modevent(NULL, type, &g_fd_class); 2017 return (0); 2018 } 2019 2020 DRIVER_MODULE(fd, fdc, fd_driver, fd_devclass, fdc_modevent, 0); 2021