xref: /freebsd/sys/dev/fdc/fdc.c (revision 64746d0689e2867705cd7dab948cebfbc5e8d0ee)
1 /*
2  * Copyright (c) 1990 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Don Ahn.
7  *
8  * Libretto PCMCIA floppy support by David Horwitt (dhorwitt@ucsd.edu)
9  * aided by the Linux floppy driver modifications from David Bateman
10  * (dbateman@eng.uts.edu.au).
11  *
12  * Copyright (c) 1993, 1994 by
13  *  jc@irbs.UUCP (John Capo)
14  *  vak@zebub.msk.su (Serge Vakulenko)
15  *  ache@astral.msk.su (Andrew A. Chernov)
16  *
17  * Copyright (c) 1993, 1994, 1995 by
18  *  joerg_wunsch@uriah.sax.de (Joerg Wunsch)
19  *  dufault@hda.com (Peter Dufault)
20  *
21  * Copyright (c) 2001 Joerg Wunsch,
22  *  joerg_wunsch@uriah.heep.sax.de (Joerg Wunsch)
23  *
24  * Redistribution and use in source and binary forms, with or without
25  * modification, are permitted provided that the following conditions
26  * are met:
27  * 1. Redistributions of source code must retain the above copyright
28  *    notice, this list of conditions and the following disclaimer.
29  * 2. Redistributions in binary form must reproduce the above copyright
30  *    notice, this list of conditions and the following disclaimer in the
31  *    documentation and/or other materials provided with the distribution.
32  * 3. All advertising materials mentioning features or use of this software
33  *    must display the following acknowledgement:
34  *	This product includes software developed by the University of
35  *	California, Berkeley and its contributors.
36  * 4. Neither the name of the University nor the names of its contributors
37  *    may be used to endorse or promote products derived from this software
38  *    without specific prior written permission.
39  *
40  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  *	from:	@(#)fd.c	7.4 (Berkeley) 5/25/91
53  */
54 
55 #include <sys/cdefs.h>
56 __FBSDID("$FreeBSD$");
57 
58 #include "opt_fdc.h"
59 #include "card.h"
60 
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/bio.h>
64 #include <sys/bus.h>
65 #include <sys/conf.h>
66 #include <sys/devicestat.h>
67 #include <sys/disk.h>
68 #include <sys/fcntl.h>
69 #include <sys/fdcio.h>
70 #include <sys/filio.h>
71 #include <sys/kernel.h>
72 #include <sys/lock.h>
73 #include <sys/malloc.h>
74 #include <sys/module.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/syslog.h>
78 
79 #include <machine/bus.h>
80 #include <sys/rman.h>
81 
82 #include <machine/clock.h>
83 #include <machine/resource.h>
84 #include <machine/stdarg.h>
85 
86 #include <isa/isavar.h>
87 #include <isa/isareg.h>
88 #include <isa/fdreg.h>
89 #include <isa/rtc.h>
90 
91 enum fdc_type
92 {
93 	FDC_NE765, FDC_ENHANCED, FDC_UNKNOWN = -1
94 };
95 
96 enum fdc_states {
97 	DEVIDLE,
98 	FINDWORK,
99 	DOSEEK,
100 	SEEKCOMPLETE ,
101 	IOCOMPLETE,
102 	RECALCOMPLETE,
103 	STARTRECAL,
104 	RESETCTLR,
105 	SEEKWAIT,
106 	RECALWAIT,
107 	MOTORWAIT,
108 	IOTIMEDOUT,
109 	RESETCOMPLETE,
110 	PIOREAD
111 };
112 
113 #ifdef	FDC_DEBUG
114 static char const * const fdstates[] = {
115 	"DEVIDLE",
116 	"FINDWORK",
117 	"DOSEEK",
118 	"SEEKCOMPLETE",
119 	"IOCOMPLETE",
120 	"RECALCOMPLETE",
121 	"STARTRECAL",
122 	"RESETCTLR",
123 	"SEEKWAIT",
124 	"RECALWAIT",
125 	"MOTORWAIT",
126 	"IOTIMEDOUT",
127 	"RESETCOMPLETE",
128 	"PIOREAD"
129 };
130 #endif
131 
132 /*
133  * Per controller structure (softc).
134  */
135 struct fdc_data
136 {
137 	int	fdcu;		/* our unit number */
138 	int	dmachan;
139 	int	flags;
140 #define FDC_ATTACHED	0x01
141 #define FDC_STAT_VALID	0x08
142 #define FDC_HAS_FIFO	0x10
143 #define FDC_NEEDS_RESET	0x20
144 #define FDC_NODMA	0x40
145 #define FDC_ISPNP	0x80
146 #define FDC_ISPCMCIA	0x100
147 	struct	fd_data *fd;
148 	int	fdu;		/* the active drive	*/
149 	enum	fdc_states state;
150 	int	retry;
151 	int	fdout;		/* mirror of the w/o digital output reg */
152 	u_int	status[7];	/* copy of the registers */
153 	enum	fdc_type fdct;	/* chip version of FDC */
154 	int	fdc_errs;	/* number of logged errors */
155 	int	dma_overruns;	/* number of DMA overruns */
156 	struct	bio_queue_head head;
157 	struct	bio *bp;	/* active buffer */
158 	struct	resource *res_ioport, *res_ctl, *res_irq, *res_drq;
159 	int	rid_ioport, rid_ctl, rid_irq, rid_drq;
160 	int	port_off;
161 	bus_space_tag_t portt;
162 	bus_space_handle_t porth;
163 	bus_space_tag_t ctlt;
164 	bus_space_handle_t ctlh;
165 	void	*fdc_intr;
166 	struct	device *fdc_dev;
167 	void	(*fdctl_wr)(struct fdc_data *fdc, u_int8_t v);
168 };
169 
170 #define FDBIO_FORMAT	BIO_CMD2
171 
172 typedef int	fdu_t;
173 typedef int	fdcu_t;
174 typedef int	fdsu_t;
175 typedef	struct fd_data *fd_p;
176 typedef struct fdc_data *fdc_p;
177 typedef enum fdc_type fdc_t;
178 
179 #define FDUNIT(s)	(((s) >> 6) & 3)
180 #define FDNUMTOUNIT(n)	(((n) & 3) << 6)
181 #define FDTYPE(s)	((s) & 0x3f)
182 
183 /*
184  * fdc maintains a set (1!) of ivars per child of each controller.
185  */
186 enum fdc_device_ivars {
187 	FDC_IVAR_FDUNIT,
188 };
189 
190 /*
191  * Simple access macros for the ivars.
192  */
193 #define FDC_ACCESSOR(A, B, T)						\
194 static __inline T fdc_get_ ## A(device_t dev)				\
195 {									\
196 	uintptr_t v;							\
197 	BUS_READ_IVAR(device_get_parent(dev), dev, FDC_IVAR_ ## B, &v);	\
198 	return (T) v;							\
199 }
200 FDC_ACCESSOR(fdunit,	FDUNIT,	int)
201 
202 /* configuration flags for fdc */
203 #define FDC_NO_FIFO	(1 << 2)	/* do not enable FIFO  */
204 
205 /* error returns for fd_cmd() */
206 #define FD_FAILED -1
207 #define FD_NOT_VALID -2
208 #define FDC_ERRMAX	100	/* do not log more */
209 /*
210  * Stop retrying after this many DMA overruns.  Since each retry takes
211  * one revolution, with 300 rpm., 25 retries take approximately 5
212  * seconds which the read attempt will block in case the DMA overrun
213  * is persistent.
214  */
215 #define FDC_DMAOV_MAX	25
216 
217 /*
218  * Timeout value for the PIO loops to wait until the FDC main status
219  * register matches our expectations (request for master, direction
220  * bit).  This is supposed to be a number of microseconds, although
221  * timing might actually not be very accurate.
222  *
223  * Timeouts of 100 msec are believed to be required for some broken
224  * (old) hardware.
225  */
226 #define	FDSTS_TIMEOUT	100000
227 
228 /*
229  * Number of subdevices that can be used for different density types.
230  * By now, the lower 6 bit of the minor number are reserved for this,
231  * allowing for up to 64 subdevices, but we only use 16 out of this.
232  * Density #0 is used for automatic format detection, the other
233  * densities are available as programmable densities (for assignment
234  * by fdcontrol(8)).
235  * The upper 2 bits of the minor number are reserved for the subunit
236  * (drive #) per controller.
237  */
238 #define NUMDENS		16
239 
240 #define FDBIO_RDSECTID	BIO_CMD1
241 
242 /*
243  * List of native drive densities.  Order must match enum fd_drivetype
244  * in <sys/fdcio.h>.  Upon attaching the drive, each of the
245  * programmable subdevices is initialized with the native density
246  * definition.
247  */
248 static struct fd_type fd_native_types[] =
249 {
250 { 0 },				/* FDT_NONE */
251 {  9,2,0xFF,0x2A,40, 720,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* FDT_360K */
252 { 15,2,0xFF,0x1B,80,2400,FDC_500KBPS,2,0x54,1,0,FL_MFM }, /* FDT_12M  */
253 {  9,2,0xFF,0x20,80,1440,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* FDT_720K */
254 { 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* FDT_144M */
255 #if 0				/* we currently don't handle 2.88 MB */
256 { 36,2,0xFF,0x1B,80,5760,FDC_1MBPS,  2,0x4C,1,1,FL_MFM|FL_PERPND } /*FDT_288M*/
257 #else
258 { 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* FDT_144M */
259 #endif
260 };
261 
262 /*
263  * 360 KB 5.25" and 720 KB 3.5" drives don't have automatic density
264  * selection, they just start out with their native density (or lose).
265  * So 1.2 MB 5.25", 1.44 MB 3.5", and 2.88 MB 3.5" drives have their
266  * respective lists of densities to search for.
267  */
268 static struct fd_type fd_searchlist_12m[] = {
269 { 15,2,0xFF,0x1B,80,2400,FDC_500KBPS,2,0x54,1,0,FL_MFM }, /* 1.2M */
270 {  9,2,0xFF,0x23,40, 720,FDC_300KBPS,2,0x50,1,0,FL_MFM|FL_2STEP }, /* 360K */
271 {  9,2,0xFF,0x20,80,1440,FDC_300KBPS,2,0x50,1,0,FL_MFM }, /* 720K */
272 };
273 
274 static struct fd_type fd_searchlist_144m[] = {
275 { 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* 1.44M */
276 {  9,2,0xFF,0x20,80,1440,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* 720K */
277 };
278 
279 /* We search for 1.44M first since this is the most common case. */
280 static struct fd_type fd_searchlist_288m[] = {
281 { 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* 1.44M */
282 #if 0
283 { 36,2,0xFF,0x1B,80,5760,FDC_1MBPS,  2,0x4C,1,1,FL_MFM|FL_PERPND } /* 2.88M */
284 #endif
285 {  9,2,0xFF,0x20,80,1440,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* 720K */
286 };
287 
288 #define MAX_SEC_SIZE	(128 << 3)
289 #define MAX_CYLINDER	85	/* some people really stress their drives
290 				 * up to cyl 82 */
291 #define MAX_HEAD	1
292 
293 static devclass_t fdc_devclass;
294 
295 /*
296  * Per drive structure (softc).
297  */
298 struct fd_data {
299 	struct	fdc_data *fdc;	/* pointer to controller structure */
300 	int	fdsu;		/* this units number on this controller */
301 	enum	fd_drivetype type; /* drive type */
302 	struct	fd_type *ft;	/* pointer to current type descriptor */
303 	struct	fd_type fts[NUMDENS]; /* type descriptors */
304 	int	flags;
305 #define	FD_OPEN		0x01	/* it's open		*/
306 #define	FD_NONBLOCK	0x02	/* O_NONBLOCK set	*/
307 #define	FD_ACTIVE	0x04	/* it's active		*/
308 #define	FD_MOTOR	0x08	/* motor should be on	*/
309 #define	FD_MOTOR_WAIT	0x10	/* motor coming up	*/
310 #define	FD_UA		0x20	/* force unit attention */
311 	int	skip;
312 	int	hddrv;
313 #define FD_NO_TRACK -2
314 	int	track;		/* where we think the head is */
315 	int	options;	/* user configurable options, see fdcio.h */
316 	struct	callout_handle toffhandle;
317 	struct	callout_handle tohandle;
318 	struct	devstat *device_stats;
319 	dev_t	masterdev;
320 #ifdef GONE_IN_5
321 	eventhandler_tag clonetag;
322 	dev_t	clonedevs[NUMDENS - 1];
323 #endif
324 	device_t dev;
325 	fdu_t	fdu;
326 };
327 
328 struct fdc_ivars {
329 	int	fdunit;
330 };
331 static devclass_t fd_devclass;
332 
333 /* configuration flags for fd */
334 #define FD_TYPEMASK	0x0f	/* drive type, matches enum
335 				 * fd_drivetype; on i386 machines, if
336 				 * given as 0, use RTC type for fd0
337 				 * and fd1 */
338 #define FD_DTYPE(flags)	((flags) & FD_TYPEMASK)
339 #define FD_NO_CHLINE	0x10	/* drive does not support changeline
340 				 * aka. unit attention */
341 #define FD_NO_PROBE	0x20	/* don't probe drive (seek test), just
342 				 * assume it is there */
343 
344 /*
345  * Throughout this file the following conventions will be used:
346  *
347  * fd is a pointer to the fd_data struct for the drive in question
348  * fdc is a pointer to the fdc_data struct for the controller
349  * fdu is the floppy drive unit number
350  * fdcu is the floppy controller unit number
351  * fdsu is the floppy drive unit number on that controller. (sub-unit)
352  */
353 
354 /*
355  * Function declarations, same (chaotic) order as they appear in the
356  * file.  Re-ordering is too late now, it would only obfuscate the
357  * diffs against old and offspring versions (like the PC98 one).
358  *
359  * Anyone adding functions here, please keep this sequence the same
360  * as below -- makes locating a particular function in the body much
361  * easier.
362  */
363 static void fdout_wr(fdc_p, u_int8_t);
364 static u_int8_t fdsts_rd(fdc_p);
365 static void fddata_wr(fdc_p, u_int8_t);
366 static u_int8_t fddata_rd(fdc_p);
367 static void fdctl_wr_isa(fdc_p, u_int8_t);
368 #if NCARD > 0
369 static void fdctl_wr_pcmcia(fdc_p, u_int8_t);
370 #endif
371 #if 0
372 static u_int8_t fdin_rd(fdc_p);
373 #endif
374 static int fdc_err(struct fdc_data *, const char *);
375 static int fd_cmd(struct fdc_data *, int, ...);
376 static int enable_fifo(fdc_p fdc);
377 static int fd_sense_drive_status(fdc_p, int *);
378 static int fd_sense_int(fdc_p, int *, int *);
379 static int fd_read_status(fdc_p);
380 static int fdc_alloc_resources(struct fdc_data *);
381 static void fdc_release_resources(struct fdc_data *);
382 static int fdc_read_ivar(device_t, device_t, int, uintptr_t *);
383 static int fdc_probe(device_t);
384 #if NCARD > 0
385 static int fdc_pccard_probe(device_t);
386 #endif
387 static int fdc_detach(device_t dev);
388 static void fdc_add_child(device_t, const char *, int);
389 static int fdc_attach(device_t);
390 static int fdc_print_child(device_t, device_t);
391 #ifdef GONE_IN_5
392 static void fd_clone (void *, char *, int, dev_t *);
393 #endif
394 static int fd_probe(device_t);
395 static int fd_attach(device_t);
396 static int fd_detach(device_t);
397 static void set_motor(struct fdc_data *, int, int);
398 #  define TURNON 1
399 #  define TURNOFF 0
400 static timeout_t fd_turnoff;
401 static timeout_t fd_motor_on;
402 static void fd_turnon(struct fd_data *);
403 static void fdc_reset(fdc_p);
404 static int fd_in(struct fdc_data *, int *);
405 static int out_fdc(struct fdc_data *, int);
406 /*
407  * The open function is named fdopen() to avoid confusion with fdopen()
408  * in fd(4).  The difference is now only meaningful for debuggers.
409  */
410 static	d_open_t	fdopen;
411 static	d_close_t	fdclose;
412 static	d_strategy_t	fdstrategy;
413 static void fdstart(struct fdc_data *);
414 static timeout_t fd_iotimeout;
415 static timeout_t fd_pseudointr;
416 static driver_intr_t fdc_intr;
417 static int fdcpio(fdc_p, long, caddr_t, u_int);
418 static int fdautoselect(dev_t);
419 static int fdstate(struct fdc_data *);
420 static int retrier(struct fdc_data *);
421 static void fdbiodone(struct bio *);
422 static int fdmisccmd(dev_t, u_int, void *);
423 static	d_ioctl_t	fdioctl;
424 
425 static int fifo_threshold = 8;	/* XXX: should be accessible via sysctl */
426 
427 #ifdef	FDC_DEBUG
428 /* CAUTION: fd_debug causes huge amounts of logging output */
429 static int volatile fd_debug = 0;
430 #define TRACE0(arg) do { if (fd_debug) printf(arg); } while (0)
431 #define TRACE1(arg1, arg2) do { if (fd_debug) printf(arg1, arg2); } while (0)
432 #else /* FDC_DEBUG */
433 #define TRACE0(arg) do { } while (0)
434 #define TRACE1(arg1, arg2) do { } while (0)
435 #endif /* FDC_DEBUG */
436 
437 /*
438  * Bus space handling (access to low-level IO).
439  */
440 static void
441 fdout_wr(fdc_p fdc, u_int8_t v)
442 {
443 	bus_space_write_1(fdc->portt, fdc->porth, FDOUT+fdc->port_off, v);
444 }
445 
446 static u_int8_t
447 fdsts_rd(fdc_p fdc)
448 {
449 	return bus_space_read_1(fdc->portt, fdc->porth, FDSTS+fdc->port_off);
450 }
451 
452 static void
453 fddata_wr(fdc_p fdc, u_int8_t v)
454 {
455 	bus_space_write_1(fdc->portt, fdc->porth, FDDATA+fdc->port_off, v);
456 }
457 
458 static u_int8_t
459 fddata_rd(fdc_p fdc)
460 {
461 	return bus_space_read_1(fdc->portt, fdc->porth, FDDATA+fdc->port_off);
462 }
463 
464 static void
465 fdctl_wr_isa(fdc_p fdc, u_int8_t v)
466 {
467 	bus_space_write_1(fdc->ctlt, fdc->ctlh, 0, v);
468 }
469 
470 #if NCARD > 0
471 static void
472 fdctl_wr_pcmcia(fdc_p fdc, u_int8_t v)
473 {
474 	bus_space_write_1(fdc->portt, fdc->porth, FDCTL+fdc->port_off, v);
475 }
476 #endif
477 
478 static u_int8_t
479 fdin_rd(fdc_p fdc)
480 {
481 	return bus_space_read_1(fdc->portt, fdc->porth, FDIN);
482 }
483 
484 #define CDEV_MAJOR 9
485 static struct cdevsw fd_cdevsw = {
486 	.d_open =	fdopen,
487 	.d_close =	fdclose,
488 	.d_read =	physread,
489 	.d_write =	physwrite,
490 	.d_ioctl =	fdioctl,
491 	.d_strategy =	fdstrategy,
492 	.d_name =	"fd",
493 	.d_maj =	CDEV_MAJOR,
494 	.d_flags =	D_DISK,
495 };
496 
497 /*
498  * Auxiliary functions.  Well, some only.  Others are scattered
499  * throughout the entire file.
500  */
501 static int
502 fdc_err(struct fdc_data *fdc, const char *s)
503 {
504 	fdc->fdc_errs++;
505 	if (s) {
506 		if (fdc->fdc_errs < FDC_ERRMAX)
507 			device_printf(fdc->fdc_dev, "%s", s);
508 		else if (fdc->fdc_errs == FDC_ERRMAX)
509 			device_printf(fdc->fdc_dev, "too many errors, not "
510 						    "logging any more\n");
511 	}
512 
513 	return FD_FAILED;
514 }
515 
516 /*
517  * fd_cmd: Send a command to the chip.  Takes a varargs with this structure:
518  * Unit number,
519  * # of output bytes, output bytes as ints ...,
520  * # of input bytes, input bytes as ints ...
521  */
522 static int
523 fd_cmd(struct fdc_data *fdc, int n_out, ...)
524 {
525 	u_char cmd;
526 	int n_in;
527 	int n;
528 	va_list ap;
529 
530 	va_start(ap, n_out);
531 	cmd = (u_char)(va_arg(ap, int));
532 	va_end(ap);
533 	va_start(ap, n_out);
534 	for (n = 0; n < n_out; n++)
535 	{
536 		if (out_fdc(fdc, va_arg(ap, int)) < 0)
537 		{
538 			char msg[50];
539 			snprintf(msg, sizeof(msg),
540 				"cmd %x failed at out byte %d of %d\n",
541 				cmd, n + 1, n_out);
542 			return fdc_err(fdc, msg);
543 		}
544 	}
545 	n_in = va_arg(ap, int);
546 	for (n = 0; n < n_in; n++)
547 	{
548 		int *ptr = va_arg(ap, int *);
549 		if (fd_in(fdc, ptr) < 0)
550 		{
551 			char msg[50];
552 			snprintf(msg, sizeof(msg),
553 				"cmd %02x failed at in byte %d of %d\n",
554 				cmd, n + 1, n_in);
555 			return fdc_err(fdc, msg);
556 		}
557 	}
558 
559 	return 0;
560 }
561 
562 static int
563 enable_fifo(fdc_p fdc)
564 {
565 	int i, j;
566 
567 	if ((fdc->flags & FDC_HAS_FIFO) == 0) {
568 
569 		/*
570 		 * Cannot use fd_cmd the normal way here, since
571 		 * this might be an invalid command. Thus we send the
572 		 * first byte, and check for an early turn of data directon.
573 		 */
574 
575 		if (out_fdc(fdc, I8207X_CONFIGURE) < 0)
576 			return fdc_err(fdc, "Enable FIFO failed\n");
577 
578 		/* If command is invalid, return */
579 		j = FDSTS_TIMEOUT;
580 		while ((i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM))
581 		       != NE7_RQM && j-- > 0) {
582 			if (i == (NE7_DIO | NE7_RQM)) {
583 				fdc_reset(fdc);
584 				return FD_FAILED;
585 			}
586 			DELAY(1);
587 		}
588 		if (j<0 ||
589 		    fd_cmd(fdc, 3,
590 			   0, (fifo_threshold - 1) & 0xf, 0, 0) < 0) {
591 			fdc_reset(fdc);
592 			return fdc_err(fdc, "Enable FIFO failed\n");
593 		}
594 		fdc->flags |= FDC_HAS_FIFO;
595 		return 0;
596 	}
597 	if (fd_cmd(fdc, 4,
598 		   I8207X_CONFIGURE, 0, (fifo_threshold - 1) & 0xf, 0, 0) < 0)
599 		return fdc_err(fdc, "Re-enable FIFO failed\n");
600 	return 0;
601 }
602 
603 static int
604 fd_sense_drive_status(fdc_p fdc, int *st3p)
605 {
606 	int st3;
607 
608 	if (fd_cmd(fdc, 2, NE7CMD_SENSED, fdc->fdu, 1, &st3))
609 	{
610 		return fdc_err(fdc, "Sense Drive Status failed\n");
611 	}
612 	if (st3p)
613 		*st3p = st3;
614 
615 	return 0;
616 }
617 
618 static int
619 fd_sense_int(fdc_p fdc, int *st0p, int *cylp)
620 {
621 	int cyl, st0, ret;
622 
623 	ret = fd_cmd(fdc, 1, NE7CMD_SENSEI, 1, &st0);
624 	if (ret) {
625 		(void)fdc_err(fdc,
626 			      "sense intr err reading stat reg 0\n");
627 		return ret;
628 	}
629 
630 	if (st0p)
631 		*st0p = st0;
632 
633 	if ((st0 & NE7_ST0_IC) == NE7_ST0_IC_IV) {
634 		/*
635 		 * There doesn't seem to have been an interrupt.
636 		 */
637 		return FD_NOT_VALID;
638 	}
639 
640 	if (fd_in(fdc, &cyl) < 0) {
641 		return fdc_err(fdc, "can't get cyl num\n");
642 	}
643 
644 	if (cylp)
645 		*cylp = cyl;
646 
647 	return 0;
648 }
649 
650 
651 static int
652 fd_read_status(fdc_p fdc)
653 {
654 	int i, ret;
655 
656 	for (i = ret = 0; i < 7; i++) {
657 		/*
658 		 * XXX types are poorly chosen.  Only bytes can be read
659 		 * from the hardware, but fdc->status[] wants u_ints and
660 		 * fd_in() gives ints.
661 		 */
662 		int status;
663 
664 		ret = fd_in(fdc, &status);
665 		fdc->status[i] = status;
666 		if (ret != 0)
667 			break;
668 	}
669 
670 	if (ret == 0)
671 		fdc->flags |= FDC_STAT_VALID;
672 	else
673 		fdc->flags &= ~FDC_STAT_VALID;
674 
675 	return ret;
676 }
677 
678 static int
679 fdc_alloc_resources(struct fdc_data *fdc)
680 {
681 	device_t dev;
682 	int ispnp, ispcmcia, nports;
683 
684 	dev = fdc->fdc_dev;
685 	ispnp = (fdc->flags & FDC_ISPNP) != 0;
686 	ispcmcia = (fdc->flags & FDC_ISPCMCIA) != 0;
687 	fdc->rid_ioport = fdc->rid_irq = fdc->rid_drq = 0;
688 	fdc->res_ioport = fdc->res_irq = fdc->res_drq = 0;
689 	fdc->rid_ctl = 1;
690 
691 	/*
692 	 * On standard ISA, we don't just use an 8 port range
693 	 * (e.g. 0x3f0-0x3f7) since that covers an IDE control
694 	 * register at 0x3f6.
695 	 *
696 	 * Isn't PC hardware wonderful.
697 	 *
698 	 * The Y-E Data PCMCIA FDC doesn't have this problem, it
699 	 * uses the register with offset 6 for pseudo-DMA, and the
700 	 * one with offset 7 as control register.
701 	 */
702 	nports = ispcmcia ? 8 : (ispnp ? 1 : 6);
703 
704 	/*
705 	 * Some ACPI BIOSen have _CRS objects for the floppy device that
706 	 * split the I/O port resource into several resources.  We detect
707 	 * this case by checking if there are more than 2 IOPORT resources.
708 	 * If so, we use the resource with the smallest start address as
709 	 * the port RID and the largest start address as the control RID.
710 	 */
711 	if (bus_get_resource_count(dev, SYS_RES_IOPORT, 2) != 0) {
712 		u_long min_start, max_start, tmp;
713 		int i;
714 
715 		/* Find the min/max start addresses and their RIDs. */
716 		max_start = 0ul;
717 		min_start = ~0ul;
718 		for (i = 0; bus_get_resource_count(dev, SYS_RES_IOPORT, i) > 0;
719 		    i++) {
720 			tmp = bus_get_resource_start(dev, SYS_RES_IOPORT, i);
721 			KASSERT(tmp != 0, ("bogus resource"));
722 			if (tmp < min_start) {
723 				min_start = tmp;
724 				fdc->rid_ioport = i;
725 			}
726 			if (tmp > max_start) {
727 				max_start = tmp;
728 				fdc->rid_ctl = i;
729 			}
730 		}
731 		if (min_start + 7 != max_start) {
732 			device_printf(dev, "I/O to control range incorrect\n");
733 			return (ENXIO);
734 		}
735 	}
736 
737 	fdc->res_ioport = bus_alloc_resource(dev, SYS_RES_IOPORT,
738 					     &fdc->rid_ioport, 0ul, ~0ul,
739 					     nports, RF_ACTIVE);
740 	if (fdc->res_ioport == 0) {
741 		device_printf(dev, "cannot reserve I/O port range (%d ports)\n",
742 			      nports);
743 		return ENXIO;
744 	}
745 	fdc->portt = rman_get_bustag(fdc->res_ioport);
746 	fdc->porth = rman_get_bushandle(fdc->res_ioport);
747 
748 	if (!ispcmcia) {
749 		/*
750 		 * Some BIOSen report the device at 0x3f2-0x3f5,0x3f7
751 		 * and some at 0x3f0-0x3f5,0x3f7. We detect the former
752 		 * by checking the size and adjust the port address
753 		 * accordingly.
754 		 */
755 		if (bus_get_resource_count(dev, SYS_RES_IOPORT, 0) == 4)
756 			fdc->port_off = -2;
757 
758 		/*
759 		 * Register the control port range as rid 1 if it
760 		 * isn't there already. Most PnP BIOSen will have
761 		 * already done this but non-PnP configurations don't.
762 		 *
763 		 * And some (!!) report 0x3f2-0x3f5 and completely
764 		 * leave out the control register!  It seems that some
765 		 * non-antique controller chips have a different
766 		 * method of programming the transfer speed which
767 		 * doesn't require the control register, but it's
768 		 * mighty bogus as the chip still responds to the
769 		 * address for the control register.
770 		 */
771 		if (bus_get_resource_count(dev, SYS_RES_IOPORT, 1) == 0) {
772 			u_long ctlstart;
773 
774 			/* Find the control port, usually 0x3f7 */
775 			ctlstart = rman_get_start(fdc->res_ioport) +
776 				fdc->port_off + 7;
777 
778 			bus_set_resource(dev, SYS_RES_IOPORT, 1, ctlstart, 1);
779 		}
780 
781 		/*
782 		 * Now (finally!) allocate the control port.
783 		 */
784 		fdc->res_ctl = bus_alloc_resource(dev, SYS_RES_IOPORT,
785 						  &fdc->rid_ctl,
786 						  0ul, ~0ul, 1, RF_ACTIVE);
787 		if (fdc->res_ctl == 0) {
788 			device_printf(dev,
789 		"cannot reserve control I/O port range (control port)\n");
790 			return ENXIO;
791 		}
792 		fdc->ctlt = rman_get_bustag(fdc->res_ctl);
793 		fdc->ctlh = rman_get_bushandle(fdc->res_ctl);
794 	}
795 
796 	fdc->res_irq = bus_alloc_resource(dev, SYS_RES_IRQ,
797 					  &fdc->rid_irq, 0ul, ~0ul, 1,
798 					  RF_ACTIVE);
799 	if (fdc->res_irq == 0) {
800 		device_printf(dev, "cannot reserve interrupt line\n");
801 		return ENXIO;
802 	}
803 
804 	if ((fdc->flags & FDC_NODMA) == 0) {
805 		fdc->res_drq = bus_alloc_resource(dev, SYS_RES_DRQ,
806 						  &fdc->rid_drq, 0ul, ~0ul, 1,
807 						  RF_ACTIVE);
808 		if (fdc->res_drq == 0) {
809 			device_printf(dev, "cannot reserve DMA request line\n");
810 			return ENXIO;
811 		}
812 		fdc->dmachan = fdc->res_drq->r_start;
813 	}
814 
815 	return 0;
816 }
817 
818 static void
819 fdc_release_resources(struct fdc_data *fdc)
820 {
821 	device_t dev;
822 
823 	dev = fdc->fdc_dev;
824 	if (fdc->res_irq != 0) {
825 		bus_deactivate_resource(dev, SYS_RES_IRQ, fdc->rid_irq,
826 					fdc->res_irq);
827 		bus_release_resource(dev, SYS_RES_IRQ, fdc->rid_irq,
828 				     fdc->res_irq);
829 	}
830 	if (fdc->res_ctl != 0) {
831 		bus_deactivate_resource(dev, SYS_RES_IOPORT, fdc->rid_ctl,
832 					fdc->res_ctl);
833 		bus_release_resource(dev, SYS_RES_IOPORT, fdc->rid_ctl,
834 				     fdc->res_ctl);
835 	}
836 	if (fdc->res_ioport != 0) {
837 		bus_deactivate_resource(dev, SYS_RES_IOPORT, fdc->rid_ioport,
838 					fdc->res_ioport);
839 		bus_release_resource(dev, SYS_RES_IOPORT, fdc->rid_ioport,
840 				     fdc->res_ioport);
841 	}
842 	if (fdc->res_drq != 0) {
843 		bus_deactivate_resource(dev, SYS_RES_DRQ, fdc->rid_drq,
844 					fdc->res_drq);
845 		bus_release_resource(dev, SYS_RES_DRQ, fdc->rid_drq,
846 				     fdc->res_drq);
847 	}
848 }
849 
850 /*
851  * Configuration/initialization stuff, per controller.
852  */
853 
854 static struct isa_pnp_id fdc_ids[] = {
855 	{0x0007d041, "PC standard floppy disk controller"}, /* PNP0700 */
856 	{0x0107d041, "Standard floppy controller supporting MS Device Bay Spec"}, /* PNP0701 */
857 	{0}
858 };
859 
860 static int
861 fdc_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
862 {
863 	struct fdc_ivars *ivars = device_get_ivars(child);
864 
865 	switch (which) {
866 	case FDC_IVAR_FDUNIT:
867 		*result = ivars->fdunit;
868 		break;
869 	default:
870 		return ENOENT;
871 	}
872 	return 0;
873 }
874 
875 static int
876 fdc_probe(device_t dev)
877 {
878 	int	error, ic_type;
879 	struct	fdc_data *fdc;
880 
881 	fdc = device_get_softc(dev);
882 	bzero(fdc, sizeof *fdc);
883 	fdc->fdc_dev = dev;
884 	fdc->fdctl_wr = fdctl_wr_isa;
885 
886 	/* Check pnp ids */
887 	error = ISA_PNP_PROBE(device_get_parent(dev), dev, fdc_ids);
888 	if (error == ENXIO)
889 		return ENXIO;
890 	if (error == 0)
891 		fdc->flags |= FDC_ISPNP;
892 
893 	/* Attempt to allocate our resources for the duration of the probe */
894 	error = fdc_alloc_resources(fdc);
895 	if (error)
896 		goto out;
897 
898 	/* First - lets reset the floppy controller */
899 	fdout_wr(fdc, 0);
900 	DELAY(100);
901 	fdout_wr(fdc, FDO_FRST);
902 
903 	/* see if it can handle a command */
904 	if (fd_cmd(fdc, 3, NE7CMD_SPECIFY, NE7_SPEC_1(3, 240),
905 		   NE7_SPEC_2(2, 0), 0)) {
906 		error = ENXIO;
907 		goto out;
908 	}
909 
910 	if (fd_cmd(fdc, 1, NE7CMD_VERSION, 1, &ic_type) == 0) {
911 		ic_type = (u_char)ic_type;
912 		switch (ic_type) {
913 		case 0x80:
914 			device_set_desc(dev, "NEC 765 or clone");
915 			fdc->fdct = FDC_NE765;
916 			break;
917 		case 0x81:	/* not mentioned in any hardware doc */
918 		case 0x90:
919 			device_set_desc(dev,
920 		"Enhanced floppy controller (i82077, NE72065 or clone)");
921 			fdc->fdct = FDC_ENHANCED;
922 			break;
923 		default:
924 			device_set_desc(dev, "Generic floppy controller");
925 			fdc->fdct = FDC_UNKNOWN;
926 			break;
927 		}
928 	}
929 
930 out:
931 	fdc_release_resources(fdc);
932 	return (error);
933 }
934 
935 #if NCARD > 0
936 
937 static int
938 fdc_pccard_probe(device_t dev)
939 {
940 	int	error;
941 	struct	fdc_data *fdc;
942 
943 	fdc = device_get_softc(dev);
944 	bzero(fdc, sizeof *fdc);
945 	fdc->fdc_dev = dev;
946 	fdc->fdctl_wr = fdctl_wr_pcmcia;
947 
948 	fdc->flags |= FDC_ISPCMCIA | FDC_NODMA;
949 
950 	/* Attempt to allocate our resources for the duration of the probe */
951 	error = fdc_alloc_resources(fdc);
952 	if (error)
953 		goto out;
954 
955 	/* First - lets reset the floppy controller */
956 	fdout_wr(fdc, 0);
957 	DELAY(100);
958 	fdout_wr(fdc, FDO_FRST);
959 
960 	/* see if it can handle a command */
961 	if (fd_cmd(fdc, 3, NE7CMD_SPECIFY, NE7_SPEC_1(3, 240),
962 		   NE7_SPEC_2(2, 0), 0)) {
963 		error = ENXIO;
964 		goto out;
965 	}
966 
967 	device_set_desc(dev, "Y-E Data PCMCIA floppy");
968 	fdc->fdct = FDC_NE765;
969 
970 out:
971 	fdc_release_resources(fdc);
972 	return (error);
973 }
974 
975 #endif /* NCARD > 0 */
976 
977 static int
978 fdc_detach(device_t dev)
979 {
980 	struct	fdc_data *fdc;
981 	int	error;
982 
983 	fdc = device_get_softc(dev);
984 
985 	/* have our children detached first */
986 	if ((error = bus_generic_detach(dev)))
987 		return (error);
988 
989 	/* reset controller, turn motor off */
990 	fdout_wr(fdc, 0);
991 
992 	if ((fdc->flags & FDC_NODMA) == 0)
993 		isa_dma_release(fdc->dmachan);
994 
995 	if ((fdc->flags & FDC_ATTACHED) == 0) {
996 		device_printf(dev, "already unloaded\n");
997 		return (0);
998 	}
999 	fdc->flags &= ~FDC_ATTACHED;
1000 
1001 	BUS_TEARDOWN_INTR(device_get_parent(dev), dev, fdc->res_irq,
1002 			  fdc->fdc_intr);
1003 	fdc_release_resources(fdc);
1004 	device_printf(dev, "unload\n");
1005 	return (0);
1006 }
1007 
1008 /*
1009  * Add a child device to the fdc controller.  It will then be probed etc.
1010  */
1011 static void
1012 fdc_add_child(device_t dev, const char *name, int unit)
1013 {
1014 	int	flags;
1015 	struct fdc_ivars *ivar;
1016 	device_t child;
1017 
1018 	ivar = malloc(sizeof *ivar, M_DEVBUF /* XXX */, M_NOWAIT | M_ZERO);
1019 	if (ivar == NULL)
1020 		return;
1021 	if (resource_int_value(name, unit, "drive", &ivar->fdunit) != 0)
1022 		ivar->fdunit = 0;
1023 	child = device_add_child(dev, name, unit);
1024 	if (child == NULL) {
1025 		free(ivar, M_DEVBUF);
1026 		return;
1027 	}
1028 	device_set_ivars(child, ivar);
1029 	if (resource_int_value(name, unit, "flags", &flags) == 0)
1030 		 device_set_flags(child, flags);
1031 	if (resource_disabled(name, unit))
1032 		device_disable(child);
1033 }
1034 
1035 static int
1036 fdc_attach(device_t dev)
1037 {
1038 	struct	fdc_data *fdc;
1039 	const char *name, *dname;
1040 	int	i, error, dunit;
1041 
1042 	fdc = device_get_softc(dev);
1043 	error = fdc_alloc_resources(fdc);
1044 	if (error) {
1045 		device_printf(dev, "cannot re-acquire resources\n");
1046 		return error;
1047 	}
1048 	error = BUS_SETUP_INTR(device_get_parent(dev), dev, fdc->res_irq,
1049 			       INTR_TYPE_BIO | INTR_ENTROPY, fdc_intr, fdc,
1050 			       &fdc->fdc_intr);
1051 	if (error) {
1052 		device_printf(dev, "cannot setup interrupt\n");
1053 		return error;
1054 	}
1055 	fdc->fdcu = device_get_unit(dev);
1056 	fdc->flags |= FDC_ATTACHED | FDC_NEEDS_RESET;
1057 
1058 	if ((fdc->flags & FDC_NODMA) == 0) {
1059 		/*
1060 		 * Acquire the DMA channel forever, the driver will do
1061 		 * the rest
1062 		 * XXX should integrate with rman
1063 		 */
1064 		isa_dma_acquire(fdc->dmachan);
1065 		isa_dmainit(fdc->dmachan, MAX_SEC_SIZE);
1066 	}
1067 	fdc->state = DEVIDLE;
1068 
1069 	/* reset controller, turn motor off, clear fdout mirror reg */
1070 	fdout_wr(fdc, fdc->fdout = 0);
1071 	bioq_init(&fdc->head);
1072 
1073 	/*
1074 	 * Probe and attach any children.  We should probably detect
1075 	 * devices from the BIOS unless overridden.
1076 	 */
1077 	name = device_get_nameunit(dev);
1078 	i = 0;
1079 	while ((resource_find_match(&i, &dname, &dunit, "at", name)) == 0)
1080 		fdc_add_child(dev, dname, dunit);
1081 
1082 	if ((error = bus_generic_attach(dev)) != 0)
1083 		return (error);
1084 
1085 	return (0);
1086 }
1087 
1088 static int
1089 fdc_print_child(device_t me, device_t child)
1090 {
1091 	int retval = 0, flags;
1092 
1093 	retval += bus_print_child_header(me, child);
1094 	retval += printf(" on %s drive %d", device_get_nameunit(me),
1095 	       fdc_get_fdunit(child));
1096 	if ((flags = device_get_flags(me)) != 0)
1097 		retval += printf(" flags %#x", flags);
1098 	retval += printf("\n");
1099 
1100 	return (retval);
1101 }
1102 
1103 static device_method_t fdc_methods[] = {
1104 	/* Device interface */
1105 	DEVMETHOD(device_probe,		fdc_probe),
1106 	DEVMETHOD(device_attach,	fdc_attach),
1107 	DEVMETHOD(device_detach,	fdc_detach),
1108 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1109 	DEVMETHOD(device_suspend,	bus_generic_suspend),
1110 	DEVMETHOD(device_resume,	bus_generic_resume),
1111 
1112 	/* Bus interface */
1113 	DEVMETHOD(bus_print_child,	fdc_print_child),
1114 	DEVMETHOD(bus_read_ivar,	fdc_read_ivar),
1115 	/* Our children never use any other bus interface methods. */
1116 
1117 	{ 0, 0 }
1118 };
1119 
1120 static driver_t fdc_driver = {
1121 	"fdc",
1122 	fdc_methods,
1123 	sizeof(struct fdc_data)
1124 };
1125 
1126 DRIVER_MODULE(fdc, isa, fdc_driver, fdc_devclass, 0, 0);
1127 DRIVER_MODULE(fdc, acpi, fdc_driver, fdc_devclass, 0, 0);
1128 
1129 #if NCARD > 0
1130 
1131 static device_method_t fdc_pccard_methods[] = {
1132 	/* Device interface */
1133 	DEVMETHOD(device_probe,		fdc_pccard_probe),
1134 	DEVMETHOD(device_attach,	fdc_attach),
1135 	DEVMETHOD(device_detach,	fdc_detach),
1136 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1137 	DEVMETHOD(device_suspend,	bus_generic_suspend),
1138 	DEVMETHOD(device_resume,	bus_generic_resume),
1139 
1140 	/* Bus interface */
1141 	DEVMETHOD(bus_print_child,	fdc_print_child),
1142 	DEVMETHOD(bus_read_ivar,	fdc_read_ivar),
1143 	/* Our children never use any other bus interface methods. */
1144 
1145 	{ 0, 0 }
1146 };
1147 
1148 static driver_t fdc_pccard_driver = {
1149 	"fdc",
1150 	fdc_pccard_methods,
1151 	sizeof(struct fdc_data)
1152 };
1153 
1154 DRIVER_MODULE(fdc, pccard, fdc_pccard_driver, fdc_devclass, 0, 0);
1155 
1156 #endif /* NCARD > 0 */
1157 
1158 #ifdef GONE_IN_5
1159 /*
1160  * Create a clone device upon request by devfs.
1161  */
1162 static void
1163 fd_clone(void *arg, char *name, int namelen, dev_t *dev)
1164 {
1165 	struct	fd_data *fd;
1166 	int i, u;
1167 	char *n;
1168 	size_t l;
1169 
1170 	fd = (struct fd_data *)arg;
1171 	if (*dev != NODEV)
1172 		return;
1173 	if (dev_stdclone(name, &n, "fd", &u) != 2)
1174 		return;
1175 	if (u != fd->fdu)
1176 		/* unit # mismatch */
1177 		return;
1178 	l = strlen(n);
1179 	if (l == 1 && *n >= 'a' && *n <= 'h') {
1180 		/*
1181 		 * Trailing letters a through h denote
1182 		 * pseudo-partitions.  We don't support true
1183 		 * (UFS-style) partitions, so we just implement them
1184 		 * as symlinks if someone asks us nicely.
1185 		 */
1186 		*dev = make_dev_alias(fd->masterdev, name);
1187 		return;
1188 	}
1189 	if (l >= 2 && l <= 5 && *n == '.') {
1190 		/*
1191 		 * Trailing numbers, preceded by a dot, denote
1192 		 * subdevices for different densities.  Historically,
1193 		 * they have been named by density (like fd0.1440),
1194 		 * but we allow arbitrary numbers between 1 and 4
1195 		 * digits, so fd0.1 through fd0.15 are possible as
1196 		 * well.
1197 		 */
1198 		for (i = 1; i < l; i++)
1199 			if (n[i] < '0' || n[i] > '9')
1200 				return;
1201 		for (i = 0; i < NUMDENS - 1; i++)
1202 			if (fd->clonedevs[i] == NODEV) {
1203 				*dev = make_dev(&fd_cdevsw,
1204 						FDNUMTOUNIT(u) + i + 1,
1205 						UID_ROOT, GID_OPERATOR, 0640,
1206 						name);
1207 				fd->clonedevs[i] = *dev;
1208 				fd->clonedevs[i]->si_drv1 = fd;
1209 				return;
1210 			}
1211 	}
1212 }
1213 #endif
1214 
1215 /*
1216  * Configuration/initialization, per drive.
1217  */
1218 static int
1219 fd_probe(device_t dev)
1220 {
1221 	int	i;
1222 	u_int	st0, st3;
1223 	struct	fd_data *fd;
1224 	struct	fdc_data *fdc;
1225 	fdsu_t	fdsu;
1226 	int	flags;
1227 
1228 	fdsu = *(int *)device_get_ivars(dev); /* xxx cheat a bit... */
1229 	fd = device_get_softc(dev);
1230 	fdc = device_get_softc(device_get_parent(dev));
1231 	flags = device_get_flags(dev);
1232 
1233 	bzero(fd, sizeof *fd);
1234 	fd->dev = dev;
1235 	fd->fdc = fdc;
1236 	fd->fdsu = fdsu;
1237 	fd->fdu = device_get_unit(dev);
1238 	fd->flags = FD_UA;	/* make sure fdautoselect() will be called */
1239 
1240 	fd->type = FD_DTYPE(flags);
1241 /*
1242  * XXX I think using __i386__ is wrong here since we actually want to probe
1243  * for the machine type, not the CPU type (so non-PC arch's like the PC98 will
1244  * fail the probe).  However, for whatever reason, testing for _MACHINE_ARCH
1245  * == i386 breaks the test on FreeBSD/Alpha.
1246  */
1247 #if defined(__i386__) || defined(__amd64__)
1248 	if (fd->type == FDT_NONE && (fd->fdu == 0 || fd->fdu == 1)) {
1249 		/* Look up what the BIOS thinks we have. */
1250 		if (fd->fdu == 0) {
1251 			if ((fdc->flags & FDC_ISPCMCIA))
1252 				/*
1253 				 * Somewhat special.  No need to force the
1254 				 * user to set device flags, since the Y-E
1255 				 * Data PCMCIA floppy is always a 1.44 MB
1256 				 * device.
1257 				 */
1258 				fd->type = FDT_144M;
1259 			else
1260 				fd->type = (rtcin(RTC_FDISKETTE) & 0xf0) >> 4;
1261 		} else {
1262 			fd->type = rtcin(RTC_FDISKETTE) & 0x0f;
1263 		}
1264 		if (fd->type == FDT_288M_1)
1265 			fd->type = FDT_288M;
1266 	}
1267 #endif /* __i386__ || __amd64__ */
1268 	/* is there a unit? */
1269 	if (fd->type == FDT_NONE)
1270 		return (ENXIO);
1271 
1272 	/* select it */
1273 	set_motor(fdc, fdsu, TURNON);
1274 	fdc_reset(fdc);		/* XXX reset, then unreset, etc. */
1275 	DELAY(1000000);	/* 1 sec */
1276 
1277 	/* XXX This doesn't work before the first set_motor() */
1278 	if ((fdc->flags & FDC_HAS_FIFO) == 0  &&
1279 	    fdc->fdct == FDC_ENHANCED &&
1280 	    (device_get_flags(fdc->fdc_dev) & FDC_NO_FIFO) == 0 &&
1281 	    enable_fifo(fdc) == 0) {
1282 		device_printf(device_get_parent(dev),
1283 		    "FIFO enabled, %d bytes threshold\n", fifo_threshold);
1284 	}
1285 
1286 	if ((flags & FD_NO_PROBE) == 0) {
1287 		/* If we're at track 0 first seek inwards. */
1288 		if ((fd_sense_drive_status(fdc, &st3) == 0) &&
1289 		    (st3 & NE7_ST3_T0)) {
1290 			/* Seek some steps... */
1291 			if (fd_cmd(fdc, 3, NE7CMD_SEEK, fdsu, 10, 0) == 0) {
1292 				/* ...wait a moment... */
1293 				DELAY(300000);
1294 				/* make ctrlr happy: */
1295 				fd_sense_int(fdc, 0, 0);
1296 			}
1297 		}
1298 
1299 		for (i = 0; i < 2; i++) {
1300 			/*
1301 			 * we must recalibrate twice, just in case the
1302 			 * heads have been beyond cylinder 76, since
1303 			 * most FDCs still barf when attempting to
1304 			 * recalibrate more than 77 steps
1305 			 */
1306 			/* go back to 0: */
1307 			if (fd_cmd(fdc, 2, NE7CMD_RECAL, fdsu, 0) == 0) {
1308 				/* a second being enough for full stroke seek*/
1309 				DELAY(i == 0 ? 1000000 : 300000);
1310 
1311 				/* anything responding? */
1312 				if (fd_sense_int(fdc, &st0, 0) == 0 &&
1313 				    (st0 & NE7_ST0_EC) == 0)
1314 					break; /* already probed succesfully */
1315 			}
1316 		}
1317 	}
1318 
1319 	set_motor(fdc, fdsu, TURNOFF);
1320 
1321 	if ((flags & FD_NO_PROBE) == 0 &&
1322 	    (st0 & NE7_ST0_EC) != 0) /* no track 0 -> no drive present */
1323 		return (ENXIO);
1324 
1325 	switch (fd->type) {
1326 	case FDT_12M:
1327 		device_set_desc(dev, "1200-KB 5.25\" drive");
1328 		fd->type = FDT_12M;
1329 		break;
1330 	case FDT_144M:
1331 		device_set_desc(dev, "1440-KB 3.5\" drive");
1332 		fd->type = FDT_144M;
1333 		break;
1334 	case FDT_288M:
1335 		device_set_desc(dev, "2880-KB 3.5\" drive (in 1440-KB mode)");
1336 		fd->type = FDT_288M;
1337 		break;
1338 	case FDT_360K:
1339 		device_set_desc(dev, "360-KB 5.25\" drive");
1340 		fd->type = FDT_360K;
1341 		break;
1342 	case FDT_720K:
1343 		device_set_desc(dev, "720-KB 3.5\" drive");
1344 		fd->type = FDT_720K;
1345 		break;
1346 	default:
1347 		return (ENXIO);
1348 	}
1349 	fd->track = FD_NO_TRACK;
1350 	fd->fdc = fdc;
1351 	fd->fdsu = fdsu;
1352 	fd->options = 0;
1353 	callout_handle_init(&fd->toffhandle);
1354 	callout_handle_init(&fd->tohandle);
1355 
1356 	/* initialize densities for subdevices */
1357 	for (i = 0; i < NUMDENS; i++)
1358 		memcpy(fd->fts + i, fd_native_types + fd->type,
1359 		       sizeof(struct fd_type));
1360 	return (0);
1361 }
1362 
1363 static int
1364 fd_attach(device_t dev)
1365 {
1366 	struct	fd_data *fd;
1367 
1368 	fd = device_get_softc(dev);
1369 #ifdef GONE_IN_5
1370 	fd->clonetag = EVENTHANDLER_REGISTER(dev_clone, fd_clone, fd, 1000);
1371 #endif
1372 	fd->masterdev = make_dev(&fd_cdevsw, fd->fdu << 6,
1373 				 UID_ROOT, GID_OPERATOR, 0640, "fd%d", fd->fdu);
1374 	fd->masterdev->si_drv1 = fd;
1375 #ifdef GONE_IN_5
1376 	{
1377 	int i;
1378 	for (i = 0; i < NUMDENS - 1; i++)
1379 		fd->clonedevs[i] = NODEV;
1380 	}
1381 #endif
1382 	fd->device_stats = devstat_new_entry(device_get_name(dev),
1383 			  device_get_unit(dev), 0, DEVSTAT_NO_ORDERED_TAGS,
1384 			  DEVSTAT_TYPE_FLOPPY | DEVSTAT_TYPE_IF_OTHER,
1385 			  DEVSTAT_PRIORITY_FD);
1386 	return (0);
1387 }
1388 
1389 static int
1390 fd_detach(device_t dev)
1391 {
1392 	struct	fd_data *fd;
1393 
1394 	fd = device_get_softc(dev);
1395 	untimeout(fd_turnoff, fd, fd->toffhandle);
1396 	devstat_remove_entry(fd->device_stats);
1397 	destroy_dev(fd->masterdev);
1398 #ifdef GONE_IN_5
1399 	{
1400 	int i;
1401 	for (i = 0; i < NUMDENS - 1; i++)
1402 		if (fd->clonedevs[i] != NODEV)
1403 			destroy_dev(fd->clonedevs[i]);
1404 	EVENTHANDLER_DEREGISTER(dev_clone, fd->clonetag);
1405 	}
1406 #endif
1407 
1408 	return (0);
1409 }
1410 
1411 static device_method_t fd_methods[] = {
1412 	/* Device interface */
1413 	DEVMETHOD(device_probe,		fd_probe),
1414 	DEVMETHOD(device_attach,	fd_attach),
1415 	DEVMETHOD(device_detach,	fd_detach),
1416 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1417 	DEVMETHOD(device_suspend,	bus_generic_suspend), /* XXX */
1418 	DEVMETHOD(device_resume,	bus_generic_resume), /* XXX */
1419 
1420 	{ 0, 0 }
1421 };
1422 
1423 static driver_t fd_driver = {
1424 	"fd",
1425 	fd_methods,
1426 	sizeof(struct fd_data)
1427 };
1428 
1429 DRIVER_MODULE(fd, fdc, fd_driver, fd_devclass, 0, 0);
1430 
1431 /*
1432  * More auxiliary functions.
1433  */
1434 /*
1435  * Motor control stuff.
1436  * Remember to not deselect the drive we're working on.
1437  */
1438 static void
1439 set_motor(struct fdc_data *fdc, int fdsu, int turnon)
1440 {
1441 	int fdout;
1442 
1443 	fdout = fdc->fdout;
1444 	if (turnon) {
1445 		fdout &= ~FDO_FDSEL;
1446 		fdout |= (FDO_MOEN0 << fdsu) | FDO_FDMAEN | FDO_FRST | fdsu;
1447 	} else
1448 		fdout &= ~(FDO_MOEN0 << fdsu);
1449 	fdc->fdout = fdout;
1450 	fdout_wr(fdc, fdout);
1451 	TRACE1("[0x%x->FDOUT]", fdout);
1452 }
1453 
1454 static void
1455 fd_turnoff(void *xfd)
1456 {
1457 	int	s;
1458 	fd_p fd = xfd;
1459 
1460 	TRACE1("[fd%d: turnoff]", fd->fdu);
1461 
1462 	s = splbio();
1463 	/*
1464 	 * Don't turn off the motor yet if the drive is active.
1465 	 *
1466 	 * If we got here, this could only mean we missed an interrupt.
1467 	 * This can e. g. happen on the Y-E Date PCMCIA floppy controller
1468 	 * after a controller reset.  Just schedule a pseudo-interrupt
1469 	 * so the state machine gets re-entered.
1470 	 */
1471 	if (fd->fdc->state != DEVIDLE && fd->fdc->fdu == fd->fdu) {
1472 		fdc_intr(fd->fdc);
1473 		splx(s);
1474 		return;
1475 	}
1476 
1477 	fd->flags &= ~FD_MOTOR;
1478 	set_motor(fd->fdc, fd->fdsu, TURNOFF);
1479 	splx(s);
1480 }
1481 
1482 static void
1483 fd_motor_on(void *xfd)
1484 {
1485 	int	s;
1486 	fd_p fd = xfd;
1487 
1488 	s = splbio();
1489 	fd->flags &= ~FD_MOTOR_WAIT;
1490 	if((fd->fdc->fd == fd) && (fd->fdc->state == MOTORWAIT))
1491 	{
1492 		fdc_intr(fd->fdc);
1493 	}
1494 	splx(s);
1495 }
1496 
1497 static void
1498 fd_turnon(fd_p fd)
1499 {
1500 	if(!(fd->flags & FD_MOTOR))
1501 	{
1502 		fd->flags |= (FD_MOTOR + FD_MOTOR_WAIT);
1503 		set_motor(fd->fdc, fd->fdsu, TURNON);
1504 		timeout(fd_motor_on, fd, hz); /* in 1 sec its ok */
1505 	}
1506 }
1507 
1508 static void
1509 fdc_reset(fdc_p fdc)
1510 {
1511 	/* Try a reset, keep motor on */
1512 	fdout_wr(fdc, fdc->fdout & ~(FDO_FRST|FDO_FDMAEN));
1513 	TRACE1("[0x%x->FDOUT]", fdc->fdout & ~(FDO_FRST|FDO_FDMAEN));
1514 	DELAY(100);
1515 	/* enable FDC, but defer interrupts a moment */
1516 	fdout_wr(fdc, fdc->fdout & ~FDO_FDMAEN);
1517 	TRACE1("[0x%x->FDOUT]", fdc->fdout & ~FDO_FDMAEN);
1518 	DELAY(100);
1519 	fdout_wr(fdc, fdc->fdout);
1520 	TRACE1("[0x%x->FDOUT]", fdc->fdout);
1521 
1522 	/* XXX after a reset, silently believe the FDC will accept commands */
1523 	(void)fd_cmd(fdc, 3, NE7CMD_SPECIFY,
1524 		     NE7_SPEC_1(3, 240), NE7_SPEC_2(2, 0),
1525 		     0);
1526 	if (fdc->flags & FDC_HAS_FIFO)
1527 		(void) enable_fifo(fdc);
1528 }
1529 
1530 /*
1531  * FDC IO functions, take care of the main status register, timeout
1532  * in case the desired status bits are never set.
1533  *
1534  * These PIO loops initially start out with short delays between
1535  * each iteration in the expectation that the required condition
1536  * is usually met quickly, so it can be handled immediately.  After
1537  * about 1 ms, stepping is increased to achieve a better timing
1538  * accuracy in the calls to DELAY().
1539  */
1540 static int
1541 fd_in(struct fdc_data *fdc, int *ptr)
1542 {
1543 	int i, j, step;
1544 
1545 	for (j = 0, step = 1;
1546 	    (i = fdsts_rd(fdc) & (NE7_DIO|NE7_RQM)) != (NE7_DIO|NE7_RQM) &&
1547 	    j < FDSTS_TIMEOUT;
1548 	    j += step) {
1549 		if (i == NE7_RQM)
1550 			return (fdc_err(fdc, "ready for output in input\n"));
1551 		if (j == 1000)
1552 			step = 1000;
1553 		DELAY(step);
1554 	}
1555 	if (j >= FDSTS_TIMEOUT)
1556 		return (fdc_err(fdc, bootverbose? "input ready timeout\n": 0));
1557 #ifdef	FDC_DEBUG
1558 	i = fddata_rd(fdc);
1559 	TRACE1("[FDDATA->0x%x]", (unsigned char)i);
1560 	*ptr = i;
1561 	return (0);
1562 #else	/* !FDC_DEBUG */
1563 	i = fddata_rd(fdc);
1564 	if (ptr)
1565 		*ptr = i;
1566 	return (0);
1567 #endif	/* FDC_DEBUG */
1568 }
1569 
1570 static int
1571 out_fdc(struct fdc_data *fdc, int x)
1572 {
1573 	int i, j, step;
1574 
1575 	for (j = 0, step = 1;
1576 	    (i = fdsts_rd(fdc) & (NE7_DIO|NE7_RQM)) != NE7_RQM &&
1577 	    j < FDSTS_TIMEOUT;
1578 	    j += step) {
1579 		if (i == (NE7_DIO|NE7_RQM))
1580 			return (fdc_err(fdc, "ready for input in output\n"));
1581 		if (j == 1000)
1582 			step = 1000;
1583 		DELAY(step);
1584 	}
1585 	if (j >= FDSTS_TIMEOUT)
1586 		return (fdc_err(fdc, bootverbose? "output ready timeout\n": 0));
1587 
1588 	/* Send the command and return */
1589 	fddata_wr(fdc, x);
1590 	TRACE1("[0x%x->FDDATA]", x);
1591 	return (0);
1592 }
1593 
1594 /*
1595  * Block device driver interface functions (interspersed with even more
1596  * auxiliary functions).
1597  */
1598 static int
1599 fdopen(dev_t dev, int flags, int mode, struct thread *td)
1600 {
1601 	int type = FDTYPE(minor(dev));
1602 	fd_p	fd;
1603 	fdc_p	fdc;
1604  	int rv, unitattn, dflags;
1605 
1606 	fd = dev->si_drv1;
1607 	if (fd == NULL)
1608 		return (ENXIO);
1609 	fdc = fd->fdc;
1610 	if ((fdc == NULL) || (fd->type == FDT_NONE))
1611 		return (ENXIO);
1612 	if (type > NUMDENS)
1613 		return (ENXIO);
1614 	dflags = device_get_flags(fd->dev);
1615 	/*
1616 	 * This is a bit bogus.  It's still possible that e. g. a
1617 	 * descriptor gets inherited to a child, but then it's at
1618 	 * least for the same subdevice.  By checking FD_OPEN here, we
1619 	 * can ensure that a device isn't attempted to be opened with
1620 	 * different densities at the same time where the second open
1621 	 * could clobber the settings from the first one.
1622 	 */
1623 	if (fd->flags & FD_OPEN)
1624 		return (EBUSY);
1625 
1626 	if (type == 0) {
1627 		if (flags & FNONBLOCK) {
1628 			/*
1629 			 * Unfortunately, physio(9) discards its ioflag
1630 			 * argument, thus preventing us from seeing the
1631 			 * IO_NDELAY bit.  So we need to keep track
1632 			 * ourselves.
1633 			 */
1634 			fd->flags |= FD_NONBLOCK;
1635 			fd->ft = 0;
1636 		} else {
1637 			/*
1638 			 * Figure out a unit attention condition.
1639 			 *
1640 			 * If UA has been forced, proceed.
1641 			 *
1642 			 * If the drive has no changeline support,
1643 			 * or if the drive parameters have been lost
1644 			 * due to previous non-blocking access,
1645 			 * assume a forced UA condition.
1646 			 *
1647 			 * If motor is off, turn it on for a moment
1648 			 * and select our drive, in order to read the
1649 			 * UA hardware signal.
1650 			 *
1651 			 * If motor is on, and our drive is currently
1652 			 * selected, just read the hardware bit.
1653 			 *
1654 			 * If motor is on, but active for another
1655 			 * drive on that controller, we are lost.  We
1656 			 * cannot risk to deselect the other drive, so
1657 			 * we just assume a forced UA condition to be
1658 			 * on the safe side.
1659 			 */
1660 			unitattn = 0;
1661 			if ((dflags & FD_NO_CHLINE) != 0 ||
1662 			    (fd->flags & FD_UA) != 0 ||
1663 			    fd->ft == 0) {
1664 				unitattn = 1;
1665 				fd->flags &= ~FD_UA;
1666 			} else if (fdc->fdout & (FDO_MOEN0 | FDO_MOEN1 |
1667 						 FDO_MOEN2 | FDO_MOEN3)) {
1668 				if ((fdc->fdout & FDO_FDSEL) == fd->fdsu)
1669 					unitattn = fdin_rd(fdc) & FDI_DCHG;
1670 				else
1671 					unitattn = 1;
1672 			} else {
1673 				set_motor(fdc, fd->fdsu, TURNON);
1674 				unitattn = fdin_rd(fdc) & FDI_DCHG;
1675 				set_motor(fdc, fd->fdsu, TURNOFF);
1676 			}
1677 			if (unitattn && (rv = fdautoselect(dev)) != 0)
1678 				return (rv);
1679 		}
1680 	} else {
1681 		fd->ft = fd->fts + type;
1682 	}
1683 	fd->flags |= FD_OPEN;
1684 	/*
1685 	 * Clearing the DMA overrun counter at open time is a bit messy.
1686 	 * Since we're only managing one counter per controller, opening
1687 	 * the second drive could mess it up.  Anyway, if the DMA overrun
1688 	 * condition is really persistent, it will eventually time out
1689 	 * still.  OTOH, clearing it here will ensure we'll at least start
1690 	 * trying again after a previous (maybe even long ago) failure.
1691 	 * Also, this is merely a stop-gap measure only that should not
1692 	 * happen during normal operation, so we can tolerate it to be a
1693 	 * bit sloppy about this.
1694 	 */
1695 	fdc->dma_overruns = 0;
1696 
1697 	return 0;
1698 }
1699 
1700 static int
1701 fdclose(dev_t dev, int flags, int mode, struct thread *td)
1702 {
1703 	struct fd_data *fd;
1704 
1705 	fd = dev->si_drv1;
1706 	fd->flags &= ~(FD_OPEN | FD_NONBLOCK);
1707 	fd->options &= ~(FDOPT_NORETRY | FDOPT_NOERRLOG | FDOPT_NOERROR);
1708 
1709 	return (0);
1710 }
1711 
1712 static void
1713 fdstrategy(struct bio *bp)
1714 {
1715 	long blknum, nblocks;
1716  	int	s;
1717  	fdu_t	fdu;
1718  	fdc_p	fdc;
1719  	fd_p	fd;
1720 	size_t	fdblk;
1721 
1722  	fdu = FDUNIT(minor(bp->bio_dev));
1723 	fd = bp->bio_dev->si_drv1;
1724 	if (fd == NULL)
1725 		panic("fdstrategy: buf for nonexistent device (%#lx, %#lx)",
1726 		      (u_long)major(bp->bio_dev), (u_long)minor(bp->bio_dev));
1727 	fdc = fd->fdc;
1728 	bp->bio_resid = bp->bio_bcount;
1729 	if (fd->type == FDT_NONE || fd->ft == 0) {
1730 		if (fd->type != FDT_NONE && (fd->flags & FD_NONBLOCK))
1731 			bp->bio_error = EAGAIN;
1732 		else
1733 			bp->bio_error = ENXIO;
1734 		bp->bio_flags |= BIO_ERROR;
1735 		goto bad;
1736 	}
1737 	fdblk = 128 << (fd->ft->secsize);
1738 	if (bp->bio_cmd != FDBIO_FORMAT && bp->bio_cmd != FDBIO_RDSECTID) {
1739 		if (fd->flags & FD_NONBLOCK) {
1740 			bp->bio_error = EAGAIN;
1741 			bp->bio_flags |= BIO_ERROR;
1742 			goto bad;
1743 		}
1744 		if (bp->bio_offset < 0) {
1745 			printf(
1746 		"fd%d: fdstrat: bad request offset = %ju, bcount = %ld\n",
1747 			       fdu, (intmax_t)bp->bio_offset, bp->bio_bcount);
1748 			bp->bio_error = EINVAL;
1749 			bp->bio_flags |= BIO_ERROR;
1750 			goto bad;
1751 		}
1752 		if ((bp->bio_bcount % fdblk) != 0) {
1753 			bp->bio_error = EINVAL;
1754 			bp->bio_flags |= BIO_ERROR;
1755 			goto bad;
1756 		}
1757 	}
1758 
1759 	/*
1760 	 * Set up block calculations.
1761 	 */
1762 	if (bp->bio_offset >= ((off_t)128 << fd->ft->secsize) * fd->ft->size) {
1763 		bp->bio_error = EINVAL;
1764 		bp->bio_flags |= BIO_ERROR;
1765 		goto bad;
1766 	}
1767 	blknum = bp->bio_offset / fdblk;
1768  	nblocks = fd->ft->size;
1769 	if (blknum + bp->bio_bcount / fdblk > nblocks) {
1770 		if (blknum >= nblocks) {
1771 			if (bp->bio_cmd != BIO_READ) {
1772 				bp->bio_error = ENOSPC;
1773 				bp->bio_flags |= BIO_ERROR;
1774 			}
1775 			goto bad;	/* not always bad, but EOF */
1776 		}
1777 		bp->bio_bcount = (nblocks - blknum) * fdblk;
1778 	}
1779  	bp->bio_pblkno = blknum;
1780 	s = splbio();
1781 	bioq_disksort(&fdc->head, bp);
1782 	untimeout(fd_turnoff, fd, fd->toffhandle); /* a good idea */
1783 	devstat_start_transaction_bio(fd->device_stats, bp);
1784 	device_busy(fd->dev);
1785 	fdstart(fdc);
1786 	splx(s);
1787 	return;
1788 
1789 bad:
1790 	biodone(bp);
1791 }
1792 
1793 /*
1794  * fdstart
1795  *
1796  * We have just queued something.  If the controller is not busy
1797  * then simulate the case where it has just finished a command
1798  * So that it (the interrupt routine) looks on the queue for more
1799  * work to do and picks up what we just added.
1800  *
1801  * If the controller is already busy, we need do nothing, as it
1802  * will pick up our work when the present work completes.
1803  */
1804 static void
1805 fdstart(struct fdc_data *fdc)
1806 {
1807 	int s;
1808 
1809 	s = splbio();
1810 	if(fdc->state == DEVIDLE)
1811 	{
1812 		fdc_intr(fdc);
1813 	}
1814 	splx(s);
1815 }
1816 
1817 static void
1818 fd_iotimeout(void *xfdc)
1819 {
1820  	fdc_p fdc;
1821 	int s;
1822 
1823 	fdc = xfdc;
1824 	TRACE1("fd%d[fd_iotimeout()]", fdc->fdu);
1825 
1826 	/*
1827 	 * Due to IBM's brain-dead design, the FDC has a faked ready
1828 	 * signal, hardwired to ready == true. Thus, any command
1829 	 * issued if there's no diskette in the drive will _never_
1830 	 * complete, and must be aborted by resetting the FDC.
1831 	 * Many thanks, Big Blue!
1832 	 * The FDC must not be reset directly, since that would
1833 	 * interfere with the state machine.  Instead, pretend that
1834 	 * the command completed but was invalid.  The state machine
1835 	 * will reset the FDC and retry once.
1836 	 */
1837 	s = splbio();
1838 	fdc->status[0] = NE7_ST0_IC_IV;
1839 	fdc->flags &= ~FDC_STAT_VALID;
1840 	fdc->state = IOTIMEDOUT;
1841 	fdc_intr(fdc);
1842 	splx(s);
1843 }
1844 
1845 /* Just ensure it has the right spl. */
1846 static void
1847 fd_pseudointr(void *xfdc)
1848 {
1849 	int	s;
1850 
1851 	s = splbio();
1852 	fdc_intr(xfdc);
1853 	splx(s);
1854 }
1855 
1856 /*
1857  * fdc_intr
1858  *
1859  * Keep calling the state machine until it returns a 0.
1860  * Always called at splbio.
1861  */
1862 static void
1863 fdc_intr(void *xfdc)
1864 {
1865 	fdc_p fdc = xfdc;
1866 	while(fdstate(fdc))
1867 		;
1868 }
1869 
1870 /*
1871  * Magic pseudo-DMA initialization for YE FDC. Sets count and
1872  * direction.
1873  */
1874 #define SET_BCDR(fdc,wr,cnt,port) \
1875 	bus_space_write_1(fdc->portt, fdc->porth, fdc->port_off + port,	 \
1876 	    ((cnt)-1) & 0xff);						 \
1877 	bus_space_write_1(fdc->portt, fdc->porth, fdc->port_off + port + 1, \
1878 	    ((wr ? 0x80 : 0) | ((((cnt)-1) >> 8) & 0x7f)));
1879 
1880 /*
1881  * fdcpio(): perform programmed IO read/write for YE PCMCIA floppy.
1882  */
1883 static int
1884 fdcpio(fdc_p fdc, long flags, caddr_t addr, u_int count)
1885 {
1886 	u_char *cptr = (u_char *)addr;
1887 
1888 	if (flags == BIO_READ) {
1889 		if (fdc->state != PIOREAD) {
1890 			fdc->state = PIOREAD;
1891 			return(0);
1892 		}
1893 		SET_BCDR(fdc, 0, count, 0);
1894 		bus_space_read_multi_1(fdc->portt, fdc->porth, fdc->port_off +
1895 		    FDC_YE_DATAPORT, cptr, count);
1896 	} else {
1897 		bus_space_write_multi_1(fdc->portt, fdc->porth, fdc->port_off +
1898 		    FDC_YE_DATAPORT, cptr, count);
1899 		SET_BCDR(fdc, 0, count, 0);
1900 	}
1901 	return(1);
1902 }
1903 
1904 /*
1905  * Try figuring out the density of the media present in our device.
1906  */
1907 static int
1908 fdautoselect(dev_t dev)
1909 {
1910 	fdu_t fdu;
1911  	fd_p fd;
1912 	struct fd_type *fdtp;
1913 	struct fdc_readid id;
1914 	int i, n, oopts, rv;
1915 
1916  	fdu = FDUNIT(minor(dev));
1917 	fd = dev->si_drv1;
1918 
1919 	switch (fd->type) {
1920 	default:
1921 		return (ENXIO);
1922 
1923 	case FDT_360K:
1924 	case FDT_720K:
1925 		/* no autoselection on those drives */
1926 		fd->ft = fd_native_types + fd->type;
1927 		return (0);
1928 
1929 	case FDT_12M:
1930 		fdtp = fd_searchlist_12m;
1931 		n = sizeof fd_searchlist_12m / sizeof(struct fd_type);
1932 		break;
1933 
1934 	case FDT_144M:
1935 		fdtp = fd_searchlist_144m;
1936 		n = sizeof fd_searchlist_144m / sizeof(struct fd_type);
1937 		break;
1938 
1939 	case FDT_288M:
1940 		fdtp = fd_searchlist_288m;
1941 		n = sizeof fd_searchlist_288m / sizeof(struct fd_type);
1942 		break;
1943 	}
1944 
1945 	/*
1946 	 * Try reading sector ID fields, first at cylinder 0, head 0,
1947 	 * then at cylinder 2, head N.  We don't probe cylinder 1,
1948 	 * since for 5.25in DD media in a HD drive, there are no data
1949 	 * to read (2 step pulses per media cylinder required).  For
1950 	 * two-sided media, the second probe always goes to head 1, so
1951 	 * we can tell them apart from single-sided media.  As a
1952 	 * side-effect this means that single-sided media should be
1953 	 * mentioned in the search list after two-sided media of an
1954 	 * otherwise identical density.  Media with a different number
1955 	 * of sectors per track but otherwise identical parameters
1956 	 * cannot be distinguished at all.
1957 	 *
1958 	 * If we successfully read an ID field on both cylinders where
1959 	 * the recorded values match our expectation, we are done.
1960 	 * Otherwise, we try the next density entry from the table.
1961 	 *
1962 	 * Stepping to cylinder 2 has the side-effect of clearing the
1963 	 * unit attention bit.
1964 	 */
1965 	oopts = fd->options;
1966 	fd->options |= FDOPT_NOERRLOG | FDOPT_NORETRY;
1967 	for (i = 0; i < n; i++, fdtp++) {
1968 		fd->ft = fdtp;
1969 
1970 		id.cyl = id.head = 0;
1971 		rv = fdmisccmd(dev, FDBIO_RDSECTID, &id);
1972 		if (rv != 0)
1973 			continue;
1974 		if (id.cyl != 0 || id.head != 0 ||
1975 		    id.secshift != fdtp->secsize)
1976 			continue;
1977 		id.cyl = 2;
1978 		id.head = fd->ft->heads - 1;
1979 		rv = fdmisccmd(dev, FDBIO_RDSECTID, &id);
1980 		if (id.cyl != 2 || id.head != fdtp->heads - 1 ||
1981 		    id.secshift != fdtp->secsize)
1982 			continue;
1983 		if (rv == 0)
1984 			break;
1985 	}
1986 
1987 	fd->options = oopts;
1988 	if (i == n) {
1989 		if (bootverbose)
1990 			device_printf(fd->dev, "autoselection failed\n");
1991 		fd->ft = 0;
1992 		return (EIO);
1993 	} else {
1994 		if (bootverbose)
1995 			device_printf(fd->dev, "autoselected %d KB medium\n",
1996 				      fd->ft->size / 2);
1997 		return (0);
1998 	}
1999 }
2000 
2001 
2002 /*
2003  * The controller state machine.
2004  *
2005  * If it returns a non zero value, it should be called again immediately.
2006  */
2007 static int
2008 fdstate(fdc_p fdc)
2009 {
2010 	struct fdc_readid *idp;
2011 	int read, format, rdsectid, cylinder, head, i, sec = 0, sectrac;
2012 	int st0, cyl, st3, idf, ne7cmd, mfm, steptrac;
2013 	unsigned long blknum;
2014 	fdu_t fdu = fdc->fdu;
2015 	fd_p fd;
2016 	register struct bio *bp;
2017 	struct fd_formb *finfo = NULL;
2018 	size_t fdblk;
2019 
2020 	bp = fdc->bp;
2021 	if (bp == NULL) {
2022 		bp = bioq_first(&fdc->head);
2023 		if (bp != NULL) {
2024 			bioq_remove(&fdc->head, bp);
2025 			fdc->bp = bp;
2026 		}
2027 	}
2028 	if (bp == NULL) {
2029 		/*
2030 		 * Nothing left for this controller to do,
2031 		 * force into the IDLE state.
2032 		 */
2033 		fdc->state = DEVIDLE;
2034 		if (fdc->fd) {
2035 			device_printf(fdc->fdc_dev,
2036 			    "unexpected valid fd pointer\n");
2037 			fdc->fd = (fd_p) 0;
2038 			fdc->fdu = -1;
2039 		}
2040 		TRACE1("[fdc%d IDLE]", fdc->fdcu);
2041  		return (0);
2042 	}
2043 	fdu = FDUNIT(minor(bp->bio_dev));
2044 	fd = bp->bio_dev->si_drv1;
2045 	fdblk = 128 << fd->ft->secsize;
2046 	if (fdc->fd && (fd != fdc->fd))
2047 		device_printf(fd->dev, "confused fd pointers\n");
2048 	read = bp->bio_cmd == BIO_READ;
2049 	mfm = (fd->ft->flags & FL_MFM)? NE7CMD_MFM: 0;
2050 	steptrac = (fd->ft->flags & FL_2STEP)? 2: 1;
2051 	if (read)
2052 		idf = ISADMA_READ;
2053 	else
2054 		idf = ISADMA_WRITE;
2055 	format = bp->bio_cmd == FDBIO_FORMAT;
2056 	rdsectid = bp->bio_cmd == FDBIO_RDSECTID;
2057 	if (format)
2058 		finfo = (struct fd_formb *)bp->bio_data;
2059 	TRACE1("fd%d", fdu);
2060 	TRACE1("[%s]", fdstates[fdc->state]);
2061 	TRACE1("(0x%x)", fd->flags);
2062 	untimeout(fd_turnoff, fd, fd->toffhandle);
2063 	fd->toffhandle = timeout(fd_turnoff, fd, 4 * hz);
2064 	switch (fdc->state)
2065 	{
2066 	case DEVIDLE:
2067 	case FINDWORK:	/* we have found new work */
2068 		fdc->retry = 0;
2069 		fd->skip = 0;
2070 		fdc->fd = fd;
2071 		fdc->fdu = fdu;
2072 		fdc->fdctl_wr(fdc, fd->ft->trans);
2073 		TRACE1("[0x%x->FDCTL]", fd->ft->trans);
2074 		/*
2075 		 * If the next drive has a motor startup pending, then
2076 		 * it will start up in its own good time.
2077 		 */
2078 		if(fd->flags & FD_MOTOR_WAIT) {
2079 			fdc->state = MOTORWAIT;
2080 			return (0); /* will return later */
2081 		}
2082 		/*
2083 		 * Maybe if it's not starting, it SHOULD be starting.
2084 		 */
2085 		if (!(fd->flags & FD_MOTOR))
2086 		{
2087 			fdc->state = MOTORWAIT;
2088 			fd_turnon(fd);
2089 			return (0); /* will return later */
2090 		}
2091 		else	/* at least make sure we are selected */
2092 		{
2093 			set_motor(fdc, fd->fdsu, TURNON);
2094 		}
2095 		if (fdc->flags & FDC_NEEDS_RESET) {
2096 			fdc->state = RESETCTLR;
2097 			fdc->flags &= ~FDC_NEEDS_RESET;
2098 		} else
2099 			fdc->state = DOSEEK;
2100 		return (1);	/* will return immediately */
2101 
2102 	case DOSEEK:
2103 		blknum = bp->bio_pblkno + fd->skip / fdblk;
2104 		cylinder = blknum / (fd->ft->sectrac * fd->ft->heads);
2105 		if (cylinder == fd->track)
2106 		{
2107 			fdc->state = SEEKCOMPLETE;
2108 			return (1); /* will return immediately */
2109 		}
2110 		if (fd_cmd(fdc, 3, NE7CMD_SEEK,
2111 			   fd->fdsu, cylinder * steptrac, 0))
2112 		{
2113 			/*
2114 			 * Seek command not accepted, looks like
2115 			 * the FDC went off to the Saints...
2116 			 */
2117 			fdc->retry = 6;	/* try a reset */
2118 			return(retrier(fdc));
2119 		}
2120 		fd->track = FD_NO_TRACK;
2121 		fdc->state = SEEKWAIT;
2122 		return(0);	/* will return later */
2123 
2124 	case SEEKWAIT:
2125 		/* allow heads to settle */
2126 		timeout(fd_pseudointr, fdc, hz / 16);
2127 		fdc->state = SEEKCOMPLETE;
2128 		return(0);	/* will return later */
2129 
2130 	case SEEKCOMPLETE : /* seek done, start DMA */
2131 		blknum = bp->bio_pblkno + fd->skip / fdblk;
2132 		cylinder = blknum / (fd->ft->sectrac * fd->ft->heads);
2133 
2134 		/* Make sure seek really happened. */
2135 		if(fd->track == FD_NO_TRACK) {
2136 			int descyl = cylinder * steptrac;
2137 			do {
2138 				/*
2139 				 * This might be a "ready changed" interrupt,
2140 				 * which cannot really happen since the
2141 				 * RDY pin is hardwired to + 5 volts.  This
2142 				 * generally indicates a "bouncing" intr
2143 				 * line, so do one of the following:
2144 				 *
2145 				 * When running on an enhanced FDC that is
2146 				 * known to not go stuck after responding
2147 				 * with INVALID, fetch all interrupt states
2148 				 * until seeing either an INVALID or a
2149 				 * real interrupt condition.
2150 				 *
2151 				 * When running on a dumb old NE765, give
2152 				 * up immediately.  The controller will
2153 				 * provide up to four dummy RC interrupt
2154 				 * conditions right after reset (for the
2155 				 * corresponding four drives), so this is
2156 				 * our only chance to get notice that it
2157 				 * was not the FDC that caused the interrupt.
2158 				 */
2159 				if (fd_sense_int(fdc, &st0, &cyl)
2160 				    == FD_NOT_VALID)
2161 					return (0); /* will return later */
2162 				if(fdc->fdct == FDC_NE765
2163 				   && (st0 & NE7_ST0_IC) == NE7_ST0_IC_RC)
2164 					return (0); /* hope for a real intr */
2165 			} while ((st0 & NE7_ST0_IC) == NE7_ST0_IC_RC);
2166 
2167 			if (0 == descyl) {
2168 				int failed = 0;
2169 				/*
2170 				 * seek to cyl 0 requested; make sure we are
2171 				 * really there
2172 				 */
2173 				if (fd_sense_drive_status(fdc, &st3))
2174 					failed = 1;
2175 				if ((st3 & NE7_ST3_T0) == 0) {
2176 					printf(
2177 		"fd%d: Seek to cyl 0, but not really there (ST3 = %b)\n",
2178 					       fdu, st3, NE7_ST3BITS);
2179 					failed = 1;
2180 				}
2181 
2182 				if (failed) {
2183 					if(fdc->retry < 3)
2184 						fdc->retry = 3;
2185 					return (retrier(fdc));
2186 				}
2187 			}
2188 
2189 			if (cyl != descyl) {
2190 				printf(
2191 		"fd%d: Seek to cyl %d failed; am at cyl %d (ST0 = 0x%x)\n",
2192 				       fdu, descyl, cyl, st0);
2193 				if (fdc->retry < 3)
2194 					fdc->retry = 3;
2195 				return (retrier(fdc));
2196 			}
2197 		}
2198 
2199 		fd->track = cylinder;
2200 		if (format)
2201 			fd->skip = (char *)&(finfo->fd_formb_cylno(0))
2202 			    - (char *)finfo;
2203 		if (!rdsectid && !(fdc->flags & FDC_NODMA))
2204 			isa_dmastart(idf, bp->bio_data+fd->skip,
2205 				format ? bp->bio_bcount : fdblk, fdc->dmachan);
2206 		blknum = bp->bio_pblkno + fd->skip / fdblk;
2207 		sectrac = fd->ft->sectrac;
2208 		sec = blknum %  (sectrac * fd->ft->heads);
2209 		head = sec / sectrac;
2210 		sec = sec % sectrac + 1;
2211 		if (head != 0 && fd->ft->offset_side2 != 0)
2212 			sec += fd->ft->offset_side2;
2213 		fd->hddrv = ((head&1)<<2)+fdu;
2214 
2215 		if(format || !(read || rdsectid))
2216 		{
2217 			/* make sure the drive is writable */
2218 			if(fd_sense_drive_status(fdc, &st3) != 0)
2219 			{
2220 				/* stuck controller? */
2221 				if (!(fdc->flags & FDC_NODMA))
2222 					isa_dmadone(idf,
2223 						    bp->bio_data + fd->skip,
2224 						    format ? bp->bio_bcount : fdblk,
2225 						    fdc->dmachan);
2226 				fdc->retry = 6;	/* reset the beast */
2227 				return (retrier(fdc));
2228 			}
2229 			if(st3 & NE7_ST3_WP)
2230 			{
2231 				/*
2232 				 * XXX YES! this is ugly.
2233 				 * in order to force the current operation
2234 				 * to fail, we will have to fake an FDC
2235 				 * error - all error handling is done
2236 				 * by the retrier()
2237 				 */
2238 				fdc->status[0] = NE7_ST0_IC_AT;
2239 				fdc->status[1] = NE7_ST1_NW;
2240 				fdc->status[2] = 0;
2241 				fdc->status[3] = fd->track;
2242 				fdc->status[4] = head;
2243 				fdc->status[5] = sec;
2244 				fdc->retry = 8;	/* break out immediately */
2245 				fdc->state = IOTIMEDOUT; /* not really... */
2246 				return (1); /* will return immediately */
2247 			}
2248 		}
2249 
2250 		if (format) {
2251 			ne7cmd = NE7CMD_FORMAT | mfm;
2252 			if (fdc->flags & FDC_NODMA) {
2253 				/*
2254 				 * This seems to be necessary for
2255 				 * whatever obscure reason; if we omit
2256 				 * it, we end up filling the sector ID
2257 				 * fields of the newly formatted track
2258 				 * entirely with garbage, causing
2259 				 * `wrong cylinder' errors all over
2260 				 * the place when trying to read them
2261 				 * back.
2262 				 *
2263 				 * Umpf.
2264 				 */
2265 				SET_BCDR(fdc, 1, bp->bio_bcount, 0);
2266 
2267 				(void)fdcpio(fdc,bp->bio_cmd,
2268 					bp->bio_data+fd->skip,
2269 					bp->bio_bcount);
2270 
2271 			}
2272 			/* formatting */
2273 			if(fd_cmd(fdc, 6,  ne7cmd, head << 2 | fdu,
2274 				  finfo->fd_formb_secshift,
2275 				  finfo->fd_formb_nsecs,
2276 				  finfo->fd_formb_gaplen,
2277 				  finfo->fd_formb_fillbyte, 0)) {
2278 				/* controller fell over */
2279 				if (!(fdc->flags & FDC_NODMA))
2280 					isa_dmadone(idf,
2281 						    bp->bio_data + fd->skip,
2282 						    format ? bp->bio_bcount : fdblk,
2283 						    fdc->dmachan);
2284 				fdc->retry = 6;
2285 				return (retrier(fdc));
2286 			}
2287 		} else if (rdsectid) {
2288 			ne7cmd = NE7CMD_READID | mfm;
2289 			if (fd_cmd(fdc, 2, ne7cmd, head << 2 | fdu, 0)) {
2290 				/* controller jamming */
2291 				fdc->retry = 6;
2292 				return (retrier(fdc));
2293 			}
2294 		} else {
2295 			/* read or write operation */
2296 			ne7cmd = (read ? NE7CMD_READ | NE7CMD_SK : NE7CMD_WRITE) | mfm;
2297 			if (fdc->flags & FDC_NODMA) {
2298 				/*
2299 				 * This seems to be necessary even when
2300 				 * reading data.
2301 				 */
2302 				SET_BCDR(fdc, 1, fdblk, 0);
2303 
2304 				/*
2305 				 * Perform the write pseudo-DMA before
2306 				 * the WRITE command is sent.
2307 				 */
2308 				if (!read)
2309 					(void)fdcpio(fdc,bp->bio_cmd,
2310 					    bp->bio_data+fd->skip,
2311 					    fdblk);
2312 			}
2313 			if (fd_cmd(fdc, 9,
2314 				   ne7cmd,
2315 				   head << 2 | fdu,  /* head & unit */
2316 				   fd->track,        /* track */
2317 				   head,
2318 				   sec,              /* sector + 1 */
2319 				   fd->ft->secsize,  /* sector size */
2320 				   sectrac,          /* sectors/track */
2321 				   fd->ft->gap,      /* gap size */
2322 				   fd->ft->datalen,  /* data length */
2323 				   0)) {
2324 				/* the beast is sleeping again */
2325 				if (!(fdc->flags & FDC_NODMA))
2326 					isa_dmadone(idf,
2327 						    bp->bio_data + fd->skip,
2328 						    format ? bp->bio_bcount : fdblk,
2329 						    fdc->dmachan);
2330 				fdc->retry = 6;
2331 				return (retrier(fdc));
2332 			}
2333 		}
2334 		if (!rdsectid && (fdc->flags & FDC_NODMA))
2335 			/*
2336 			 * If this is a read, then simply await interrupt
2337 			 * before performing PIO.
2338 			 */
2339 			if (read && !fdcpio(fdc,bp->bio_cmd,
2340 			    bp->bio_data+fd->skip,fdblk)) {
2341 				fd->tohandle = timeout(fd_iotimeout, fdc, hz);
2342 				return(0);      /* will return later */
2343 			}
2344 
2345 		/*
2346 		 * Write (or format) operation will fall through and
2347 		 * await completion interrupt.
2348 		 */
2349 		fdc->state = IOCOMPLETE;
2350 		fd->tohandle = timeout(fd_iotimeout, fdc, hz);
2351 		return (0);	/* will return later */
2352 
2353 	case PIOREAD:
2354 		/*
2355 		 * Actually perform the PIO read.  The IOCOMPLETE case
2356 		 * removes the timeout for us.
2357 		 */
2358 		(void)fdcpio(fdc,bp->bio_cmd,bp->bio_data+fd->skip,fdblk);
2359 		fdc->state = IOCOMPLETE;
2360 		/* FALLTHROUGH */
2361 	case IOCOMPLETE: /* IO done, post-analyze */
2362 		untimeout(fd_iotimeout, fdc, fd->tohandle);
2363 
2364 		if (fd_read_status(fdc)) {
2365 			if (!rdsectid && !(fdc->flags & FDC_NODMA))
2366 				isa_dmadone(idf, bp->bio_data + fd->skip,
2367 					    format ? bp->bio_bcount : fdblk,
2368 					    fdc->dmachan);
2369 			if (fdc->retry < 6)
2370 				fdc->retry = 6;	/* force a reset */
2371 			return (retrier(fdc));
2372   		}
2373 
2374 		fdc->state = IOTIMEDOUT;
2375 
2376 		/* FALLTHROUGH */
2377 	case IOTIMEDOUT:
2378 		if (!rdsectid && !(fdc->flags & FDC_NODMA))
2379 			isa_dmadone(idf, bp->bio_data + fd->skip,
2380 				format ? bp->bio_bcount : fdblk, fdc->dmachan);
2381 		if (fdc->status[0] & NE7_ST0_IC) {
2382                         if ((fdc->status[0] & NE7_ST0_IC) == NE7_ST0_IC_AT
2383 			    && fdc->status[1] & NE7_ST1_OR) {
2384                                 /*
2385 				 * DMA overrun. Someone hogged the bus and
2386 				 * didn't release it in time for the next
2387 				 * FDC transfer.
2388 				 *
2389 				 * We normally restart this without bumping
2390 				 * the retry counter.  However, in case
2391 				 * something is seriously messed up (like
2392 				 * broken hardware), we rather limit the
2393 				 * number of retries so the IO operation
2394 				 * doesn't block indefinately.
2395 				 */
2396 				if (fdc->dma_overruns++ < FDC_DMAOV_MAX) {
2397 					fdc->state = SEEKCOMPLETE;
2398 					return (1);/* will return immediately */
2399 				} /* else fall through */
2400                         }
2401 			if((fdc->status[0] & NE7_ST0_IC) == NE7_ST0_IC_IV
2402 				&& fdc->retry < 6)
2403 				fdc->retry = 6;	/* force a reset */
2404 			else if((fdc->status[0] & NE7_ST0_IC) == NE7_ST0_IC_AT
2405 				&& fdc->status[2] & NE7_ST2_WC
2406 				&& fdc->retry < 3)
2407 				fdc->retry = 3;	/* force recalibrate */
2408 			return (retrier(fdc));
2409 		}
2410 		/* All OK */
2411 		if (rdsectid) {
2412 			/* copy out ID field contents */
2413 			idp = (struct fdc_readid *)bp->bio_data;
2414 			idp->cyl = fdc->status[3];
2415 			idp->head = fdc->status[4];
2416 			idp->sec = fdc->status[5];
2417 			idp->secshift = fdc->status[6];
2418 		}
2419 		/* Operation successful, retry DMA overruns again next time. */
2420 		fdc->dma_overruns = 0;
2421 		fd->skip += fdblk;
2422 		if (!rdsectid && !format && fd->skip < bp->bio_bcount) {
2423 			/* set up next transfer */
2424 			fdc->state = DOSEEK;
2425 		} else {
2426 			/* ALL DONE */
2427 			fd->skip = 0;
2428 			bp->bio_resid = 0;
2429 			fdc->bp = NULL;
2430 			device_unbusy(fd->dev);
2431 			biofinish(bp, fd->device_stats, 0);
2432 			fdc->fd = (fd_p) 0;
2433 			fdc->fdu = -1;
2434 			fdc->state = FINDWORK;
2435 		}
2436 		return (1);	/* will return immediately */
2437 
2438 	case RESETCTLR:
2439 		fdc_reset(fdc);
2440 		fdc->retry++;
2441 		fdc->state = RESETCOMPLETE;
2442 		return (0);	/* will return later */
2443 
2444 	case RESETCOMPLETE:
2445 		/*
2446 		 * Discard all the results from the reset so that they
2447 		 * can't cause an unexpected interrupt later.
2448 		 */
2449 		for (i = 0; i < 4; i++)
2450 			(void)fd_sense_int(fdc, &st0, &cyl);
2451 		fdc->state = STARTRECAL;
2452 		/* FALLTHROUGH */
2453 	case STARTRECAL:
2454 		if(fd_cmd(fdc, 2, NE7CMD_RECAL, fdu, 0)) {
2455 			/* arrgl */
2456 			fdc->retry = 6;
2457 			return (retrier(fdc));
2458 		}
2459 		fdc->state = RECALWAIT;
2460 		return (0);	/* will return later */
2461 
2462 	case RECALWAIT:
2463 		/* allow heads to settle */
2464 		timeout(fd_pseudointr, fdc, hz / 8);
2465 		fdc->state = RECALCOMPLETE;
2466 		return (0);	/* will return later */
2467 
2468 	case RECALCOMPLETE:
2469 		do {
2470 			/*
2471 			 * See SEEKCOMPLETE for a comment on this:
2472 			 */
2473 			if (fd_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID)
2474 				return (0); /* will return later */
2475 			if(fdc->fdct == FDC_NE765
2476 			   && (st0 & NE7_ST0_IC) == NE7_ST0_IC_RC)
2477 				return (0); /* hope for a real intr */
2478 		} while ((st0 & NE7_ST0_IC) == NE7_ST0_IC_RC);
2479 		if ((st0 & NE7_ST0_IC) != NE7_ST0_IC_NT || cyl != 0)
2480 		{
2481 			if(fdc->retry > 3)
2482 				/*
2483 				 * A recalibrate from beyond cylinder 77
2484 				 * will "fail" due to the FDC limitations;
2485 				 * since people used to complain much about
2486 				 * the failure message, try not logging
2487 				 * this one if it seems to be the first
2488 				 * time in a line.
2489 				 */
2490 				printf("fd%d: recal failed ST0 %b cyl %d\n",
2491 				       fdu, st0, NE7_ST0BITS, cyl);
2492 			if(fdc->retry < 3) fdc->retry = 3;
2493 			return (retrier(fdc));
2494 		}
2495 		fd->track = 0;
2496 		/* Seek (probably) necessary */
2497 		fdc->state = DOSEEK;
2498 		return (1);	/* will return immediately */
2499 
2500 	case MOTORWAIT:
2501 		if(fd->flags & FD_MOTOR_WAIT)
2502 		{
2503 			return (0); /* time's not up yet */
2504 		}
2505 		if (fdc->flags & FDC_NEEDS_RESET) {
2506 			fdc->state = RESETCTLR;
2507 			fdc->flags &= ~FDC_NEEDS_RESET;
2508 		} else
2509 			fdc->state = DOSEEK;
2510 		return (1);	/* will return immediately */
2511 
2512 	default:
2513 		device_printf(fdc->fdc_dev, "unexpected FD int->");
2514 		if (fd_read_status(fdc) == 0)
2515 			printf("FDC status :%x %x %x %x %x %x %x   ",
2516 			       fdc->status[0],
2517 			       fdc->status[1],
2518 			       fdc->status[2],
2519 			       fdc->status[3],
2520 			       fdc->status[4],
2521 			       fdc->status[5],
2522 			       fdc->status[6] );
2523 		else
2524 			printf("No status available   ");
2525 		if (fd_sense_int(fdc, &st0, &cyl) != 0)
2526 		{
2527 			printf("[controller is dead now]\n");
2528 			return (0); /* will return later */
2529 		}
2530 		printf("ST0 = %x, PCN = %x\n", st0, cyl);
2531 		return (0);	/* will return later */
2532 	}
2533 	/* noone should ever get here */
2534 }
2535 
2536 static int
2537 retrier(struct fdc_data *fdc)
2538 {
2539 	struct bio *bp;
2540 	struct fd_data *fd;
2541 	int fdu;
2542 
2543 	bp = fdc->bp;
2544 
2545 	/* XXX shouldn't this be cached somewhere?  */
2546 	fdu = FDUNIT(minor(bp->bio_dev));
2547 	fd = bp->bio_dev->si_drv1;
2548 	if (fd->options & FDOPT_NORETRY)
2549 		goto fail;
2550 
2551 	switch (fdc->retry) {
2552 	case 0: case 1: case 2:
2553 		fdc->state = SEEKCOMPLETE;
2554 		break;
2555 	case 3: case 4: case 5:
2556 		fdc->state = STARTRECAL;
2557 		break;
2558 	case 6:
2559 		fdc->state = RESETCTLR;
2560 		break;
2561 	case 7:
2562 		break;
2563 	default:
2564 	fail:
2565 		if ((fd->options & FDOPT_NOERRLOG) == 0) {
2566 			disk_err(bp, "hard error",
2567 			    fdc->fd->skip / DEV_BSIZE, 0);
2568 			if (fdc->flags & FDC_STAT_VALID) {
2569 				printf(
2570 				" (ST0 %b ST1 %b ST2 %b cyl %u hd %u sec %u)\n",
2571 				       fdc->status[0], NE7_ST0BITS,
2572 				       fdc->status[1], NE7_ST1BITS,
2573 				       fdc->status[2], NE7_ST2BITS,
2574 				       fdc->status[3], fdc->status[4],
2575 				       fdc->status[5]);
2576 			}
2577 			else
2578 				printf(" (No status)\n");
2579 		}
2580 		if ((fd->options & FDOPT_NOERROR) == 0) {
2581 			bp->bio_flags |= BIO_ERROR;
2582 			bp->bio_error = EIO;
2583 			bp->bio_resid = bp->bio_bcount - fdc->fd->skip;
2584 		} else
2585 			bp->bio_resid = 0;
2586 		fdc->bp = NULL;
2587 		fdc->fd->skip = 0;
2588 		device_unbusy(fd->dev);
2589 		biofinish(bp, fdc->fd->device_stats, 0);
2590 		fdc->state = FINDWORK;
2591 		fdc->flags |= FDC_NEEDS_RESET;
2592 		fdc->fd = (fd_p) 0;
2593 		fdc->fdu = -1;
2594 		return (1);
2595 	}
2596 	fdc->retry++;
2597 	return (1);
2598 }
2599 
2600 static void
2601 fdbiodone(struct bio *bp)
2602 {
2603 	wakeup(bp);
2604 }
2605 
2606 static int
2607 fdmisccmd(dev_t dev, u_int cmd, void *data)
2608 {
2609  	fdu_t fdu;
2610  	fd_p fd;
2611 	struct bio *bp;
2612 	struct fd_formb *finfo;
2613 	struct fdc_readid *idfield;
2614 	size_t fdblk;
2615 	int error;
2616 
2617  	fdu = FDUNIT(minor(dev));
2618 	fd = dev->si_drv1;
2619 	fdblk = 128 << fd->ft->secsize;
2620 	finfo = (struct fd_formb *)data;
2621 	idfield = (struct fdc_readid *)data;
2622 
2623 	bp = malloc(sizeof(struct bio), M_TEMP, M_WAITOK | M_ZERO);
2624 
2625 	/*
2626 	 * Set up a bio request for fdstrategy().  bio_offset is faked
2627 	 * so that fdstrategy() will seek to the the requested
2628 	 * cylinder, and use the desired head.
2629 	 */
2630 	bp->bio_cmd = cmd;
2631 	if (cmd == FDBIO_FORMAT) {
2632 		bp->bio_offset =
2633 		    (finfo->cyl * (fd->ft->sectrac * fd->ft->heads) +
2634 		     finfo->head * fd->ft->sectrac) * fdblk;
2635 		bp->bio_bcount = sizeof(struct fd_idfield_data) *
2636 		    finfo->fd_formb_nsecs;
2637 	} else if (cmd == FDBIO_RDSECTID) {
2638 		bp->bio_offset =
2639 		    (idfield->cyl * (fd->ft->sectrac * fd->ft->heads) +
2640 		     idfield->head * fd->ft->sectrac) * fdblk;
2641 		bp->bio_bcount = sizeof(struct fdc_readid);
2642 	} else
2643 		panic("wrong cmd in fdmisccmd()");
2644 	bp->bio_data = data;
2645 	bp->bio_dev = dev;
2646 	bp->bio_done = fdbiodone;
2647 	bp->bio_flags = 0;
2648 
2649 	/* Now run the command. */
2650 	fdstrategy(bp);
2651 	error = biowait(bp, "fdcmd");
2652 
2653 	free(bp, M_TEMP);
2654 	return (error);
2655 }
2656 
2657 static int
2658 fdioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
2659 {
2660  	fdu_t fdu;
2661  	fd_p fd;
2662 	struct fdc_status *fsp;
2663 	struct fdc_readid *rid;
2664 	int error, type;
2665 
2666  	fdu = FDUNIT(minor(dev));
2667 	type = FDTYPE(minor(dev));
2668  	fd = dev->si_drv1;
2669 
2670 	/*
2671 	 * First, handle everything that could be done with
2672 	 * FD_NONBLOCK still being set.
2673 	 */
2674 	switch (cmd) {
2675 
2676 	case DIOCGMEDIASIZE:
2677 		if (fd->ft == 0)
2678 			return ((fd->flags & FD_NONBLOCK) ? EAGAIN : ENXIO);
2679 		*(off_t *)addr = (128 << (fd->ft->secsize)) * fd->ft->size;
2680 		return (0);
2681 
2682 	case DIOCGSECTORSIZE:
2683 		if (fd->ft == 0)
2684 			return ((fd->flags & FD_NONBLOCK) ? EAGAIN : ENXIO);
2685 		*(u_int *)addr = 128 << (fd->ft->secsize);
2686 		return (0);
2687 
2688 	case FIONBIO:
2689 		if (*(int *)addr != 0)
2690 			fd->flags |= FD_NONBLOCK;
2691 		else {
2692 			if (fd->ft == 0) {
2693 				/*
2694 				 * No drive type has been selected yet,
2695 				 * cannot turn FNONBLOCK off.
2696 				 */
2697 				return (EINVAL);
2698 			}
2699 			fd->flags &= ~FD_NONBLOCK;
2700 		}
2701 		return (0);
2702 
2703 	case FIOASYNC:
2704 		/* keep the generic fcntl() code happy */
2705 		return (0);
2706 
2707 	case FD_GTYPE:                  /* get drive type */
2708 		if (fd->ft == 0)
2709 			/* no type known yet, return the native type */
2710 			*(struct fd_type *)addr = fd_native_types[fd->type];
2711 		else
2712 			*(struct fd_type *)addr = *fd->ft;
2713 		return (0);
2714 
2715 	case FD_STYPE:                  /* set drive type */
2716 		if (type == 0) {
2717 			/*
2718 			 * Allow setting drive type temporarily iff
2719 			 * currently unset.  Used for fdformat so any
2720 			 * user can set it, and then start formatting.
2721 			 */
2722 			if (fd->ft)
2723 				return (EINVAL); /* already set */
2724 			fd->ft = fd->fts;
2725 			*fd->ft = *(struct fd_type *)addr;
2726 			fd->flags |= FD_UA;
2727 		} else {
2728 			/*
2729 			 * Set density definition permanently.  Only
2730 			 * allow for superuser.
2731 			 */
2732 			if (suser(td) != 0)
2733 				return (EPERM);
2734 			fd->fts[type] = *(struct fd_type *)addr;
2735 		}
2736 		return (0);
2737 
2738 	case FD_GOPTS:			/* get drive options */
2739 		*(int *)addr = fd->options + (type == 0? FDOPT_AUTOSEL: 0);
2740 		return (0);
2741 
2742 	case FD_SOPTS:			/* set drive options */
2743 		fd->options = *(int *)addr & ~FDOPT_AUTOSEL;
2744 		return (0);
2745 
2746 #ifdef FDC_DEBUG
2747 	case FD_DEBUG:
2748 		if ((fd_debug != 0) != (*(int *)addr != 0)) {
2749 			fd_debug = (*(int *)addr != 0);
2750 			printf("fd%d: debugging turned %s\n",
2751 			    fd->fdu, fd_debug ? "on" : "off");
2752 		}
2753 		return (0);
2754 #endif
2755 
2756 	case FD_CLRERR:
2757 		if (suser(td) != 0)
2758 			return (EPERM);
2759 		fd->fdc->fdc_errs = 0;
2760 		return (0);
2761 
2762 	case FD_GSTAT:
2763 		fsp = (struct fdc_status *)addr;
2764 		if ((fd->fdc->flags & FDC_STAT_VALID) == 0)
2765 			return (EINVAL);
2766 		memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int));
2767 		return (0);
2768 
2769 	case FD_GDTYPE:
2770 		*(enum fd_drivetype *)addr = fd->type;
2771 		return (0);
2772 	}
2773 
2774 	/*
2775 	 * Now handle everything else.  Make sure we have a valid
2776 	 * drive type.
2777 	 */
2778 	if (fd->flags & FD_NONBLOCK)
2779 		return (EAGAIN);
2780 	if (fd->ft == 0)
2781 		return (ENXIO);
2782 	error = 0;
2783 
2784 	switch (cmd) {
2785 
2786 	case FD_FORM:
2787 		if ((flag & FWRITE) == 0)
2788 			return (EBADF);	/* must be opened for writing */
2789 		if (((struct fd_formb *)addr)->format_version !=
2790 		    FD_FORMAT_VERSION)
2791 			return (EINVAL); /* wrong version of formatting prog */
2792 		error = fdmisccmd(dev, FDBIO_FORMAT, addr);
2793 		break;
2794 
2795 	case FD_GTYPE:                  /* get drive type */
2796 		*(struct fd_type *)addr = *fd->ft;
2797 		break;
2798 
2799 	case FD_STYPE:                  /* set drive type */
2800 		/* this is considered harmful; only allow for superuser */
2801 		if (suser(td) != 0)
2802 			return (EPERM);
2803 		*fd->ft = *(struct fd_type *)addr;
2804 		break;
2805 
2806 	case FD_GOPTS:			/* get drive options */
2807 		*(int *)addr = fd->options;
2808 		break;
2809 
2810 	case FD_SOPTS:			/* set drive options */
2811 		fd->options = *(int *)addr;
2812 		break;
2813 
2814 #ifdef FDC_DEBUG
2815 	case FD_DEBUG:
2816 		if ((fd_debug != 0) != (*(int *)addr != 0)) {
2817 			fd_debug = (*(int *)addr != 0);
2818 			printf("fd%d: debugging turned %s\n",
2819 			    fd->fdu, fd_debug ? "on" : "off");
2820 		}
2821 		break;
2822 #endif
2823 
2824 	case FD_CLRERR:
2825 		if (suser(td) != 0)
2826 			return (EPERM);
2827 		fd->fdc->fdc_errs = 0;
2828 		break;
2829 
2830 	case FD_GSTAT:
2831 		fsp = (struct fdc_status *)addr;
2832 		if ((fd->fdc->flags & FDC_STAT_VALID) == 0)
2833 			return (EINVAL);
2834 		memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int));
2835 		break;
2836 
2837 	case FD_READID:
2838 		rid = (struct fdc_readid *)addr;
2839 		if (rid->cyl > MAX_CYLINDER || rid->head > MAX_HEAD)
2840 			return (EINVAL);
2841 		error = fdmisccmd(dev, FDBIO_RDSECTID, addr);
2842 		break;
2843 
2844 	default:
2845 		error = ENOTTY;
2846 		break;
2847 	}
2848 	return (error);
2849 }
2850