1 /* 2 * Copyright (c) 1990 The Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Don Ahn. 7 * 8 * Libretto PCMCIA floppy support by David Horwitt (dhorwitt@ucsd.edu) 9 * aided by the Linux floppy driver modifications from David Bateman 10 * (dbateman@eng.uts.edu.au). 11 * 12 * Copyright (c) 1993, 1994 by 13 * jc@irbs.UUCP (John Capo) 14 * vak@zebub.msk.su (Serge Vakulenko) 15 * ache@astral.msk.su (Andrew A. Chernov) 16 * 17 * Copyright (c) 1993, 1994, 1995 by 18 * joerg_wunsch@uriah.sax.de (Joerg Wunsch) 19 * dufault@hda.com (Peter Dufault) 20 * 21 * Copyright (c) 2001 Joerg Wunsch, 22 * joerg_wunsch@uriah.heep.sax.de (Joerg Wunsch) 23 * 24 * Redistribution and use in source and binary forms, with or without 25 * modification, are permitted provided that the following conditions 26 * are met: 27 * 1. Redistributions of source code must retain the above copyright 28 * notice, this list of conditions and the following disclaimer. 29 * 2. Redistributions in binary form must reproduce the above copyright 30 * notice, this list of conditions and the following disclaimer in the 31 * documentation and/or other materials provided with the distribution. 32 * 3. All advertising materials mentioning features or use of this software 33 * must display the following acknowledgement: 34 * This product includes software developed by the University of 35 * California, Berkeley and its contributors. 36 * 4. Neither the name of the University nor the names of its contributors 37 * may be used to endorse or promote products derived from this software 38 * without specific prior written permission. 39 * 40 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 43 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 50 * SUCH DAMAGE. 51 * 52 * from: @(#)fd.c 7.4 (Berkeley) 5/25/91 53 */ 54 55 #include <sys/cdefs.h> 56 __FBSDID("$FreeBSD$"); 57 58 #include "opt_fdc.h" 59 #include "card.h" 60 61 #include <sys/param.h> 62 #include <sys/systm.h> 63 #include <sys/bio.h> 64 #include <sys/bus.h> 65 #include <sys/conf.h> 66 #include <sys/devicestat.h> 67 #include <sys/disk.h> 68 #include <sys/fcntl.h> 69 #include <sys/fdcio.h> 70 #include <sys/filio.h> 71 #include <sys/kernel.h> 72 #include <sys/lock.h> 73 #include <sys/malloc.h> 74 #include <sys/module.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/syslog.h> 78 79 #include <machine/bus.h> 80 #include <sys/rman.h> 81 82 #include <machine/clock.h> 83 #include <machine/resource.h> 84 #include <machine/stdarg.h> 85 86 #include <isa/isavar.h> 87 #include <isa/isareg.h> 88 #include <isa/fdreg.h> 89 #include <isa/rtc.h> 90 91 enum fdc_type 92 { 93 FDC_NE765, FDC_ENHANCED, FDC_UNKNOWN = -1 94 }; 95 96 enum fdc_states { 97 DEVIDLE, 98 FINDWORK, 99 DOSEEK, 100 SEEKCOMPLETE , 101 IOCOMPLETE, 102 RECALCOMPLETE, 103 STARTRECAL, 104 RESETCTLR, 105 SEEKWAIT, 106 RECALWAIT, 107 MOTORWAIT, 108 IOTIMEDOUT, 109 RESETCOMPLETE, 110 PIOREAD 111 }; 112 113 #ifdef FDC_DEBUG 114 static char const * const fdstates[] = { 115 "DEVIDLE", 116 "FINDWORK", 117 "DOSEEK", 118 "SEEKCOMPLETE", 119 "IOCOMPLETE", 120 "RECALCOMPLETE", 121 "STARTRECAL", 122 "RESETCTLR", 123 "SEEKWAIT", 124 "RECALWAIT", 125 "MOTORWAIT", 126 "IOTIMEDOUT", 127 "RESETCOMPLETE", 128 "PIOREAD" 129 }; 130 #endif 131 132 /* 133 * Per controller structure (softc). 134 */ 135 struct fdc_data 136 { 137 int fdcu; /* our unit number */ 138 int dmachan; 139 int flags; 140 #define FDC_ATTACHED 0x01 141 #define FDC_STAT_VALID 0x08 142 #define FDC_HAS_FIFO 0x10 143 #define FDC_NEEDS_RESET 0x20 144 #define FDC_NODMA 0x40 145 #define FDC_ISPNP 0x80 146 #define FDC_ISPCMCIA 0x100 147 struct fd_data *fd; 148 int fdu; /* the active drive */ 149 enum fdc_states state; 150 int retry; 151 int fdout; /* mirror of the w/o digital output reg */ 152 u_int status[7]; /* copy of the registers */ 153 enum fdc_type fdct; /* chip version of FDC */ 154 int fdc_errs; /* number of logged errors */ 155 int dma_overruns; /* number of DMA overruns */ 156 struct bio_queue_head head; 157 struct bio *bp; /* active buffer */ 158 struct resource *res_ioport, *res_ctl, *res_irq, *res_drq; 159 int rid_ioport, rid_ctl, rid_irq, rid_drq; 160 int port_off; 161 bus_space_tag_t portt; 162 bus_space_handle_t porth; 163 bus_space_tag_t ctlt; 164 bus_space_handle_t ctlh; 165 void *fdc_intr; 166 struct device *fdc_dev; 167 void (*fdctl_wr)(struct fdc_data *fdc, u_int8_t v); 168 }; 169 170 #define FDBIO_FORMAT BIO_CMD2 171 172 typedef int fdu_t; 173 typedef int fdcu_t; 174 typedef int fdsu_t; 175 typedef struct fd_data *fd_p; 176 typedef struct fdc_data *fdc_p; 177 typedef enum fdc_type fdc_t; 178 179 #define FDUNIT(s) (((s) >> 6) & 3) 180 #define FDNUMTOUNIT(n) (((n) & 3) << 6) 181 #define FDTYPE(s) ((s) & 0x3f) 182 183 /* 184 * fdc maintains a set (1!) of ivars per child of each controller. 185 */ 186 enum fdc_device_ivars { 187 FDC_IVAR_FDUNIT, 188 }; 189 190 /* 191 * Simple access macros for the ivars. 192 */ 193 #define FDC_ACCESSOR(A, B, T) \ 194 static __inline T fdc_get_ ## A(device_t dev) \ 195 { \ 196 uintptr_t v; \ 197 BUS_READ_IVAR(device_get_parent(dev), dev, FDC_IVAR_ ## B, &v); \ 198 return (T) v; \ 199 } 200 FDC_ACCESSOR(fdunit, FDUNIT, int) 201 202 /* configuration flags for fdc */ 203 #define FDC_NO_FIFO (1 << 2) /* do not enable FIFO */ 204 205 /* error returns for fd_cmd() */ 206 #define FD_FAILED -1 207 #define FD_NOT_VALID -2 208 #define FDC_ERRMAX 100 /* do not log more */ 209 /* 210 * Stop retrying after this many DMA overruns. Since each retry takes 211 * one revolution, with 300 rpm., 25 retries take approximately 5 212 * seconds which the read attempt will block in case the DMA overrun 213 * is persistent. 214 */ 215 #define FDC_DMAOV_MAX 25 216 217 /* 218 * Timeout value for the PIO loops to wait until the FDC main status 219 * register matches our expectations (request for master, direction 220 * bit). This is supposed to be a number of microseconds, although 221 * timing might actually not be very accurate. 222 * 223 * Timeouts of 100 msec are believed to be required for some broken 224 * (old) hardware. 225 */ 226 #define FDSTS_TIMEOUT 100000 227 228 /* 229 * Number of subdevices that can be used for different density types. 230 * By now, the lower 6 bit of the minor number are reserved for this, 231 * allowing for up to 64 subdevices, but we only use 16 out of this. 232 * Density #0 is used for automatic format detection, the other 233 * densities are available as programmable densities (for assignment 234 * by fdcontrol(8)). 235 * The upper 2 bits of the minor number are reserved for the subunit 236 * (drive #) per controller. 237 */ 238 #define NUMDENS 16 239 240 #define FDBIO_RDSECTID BIO_CMD1 241 242 /* 243 * List of native drive densities. Order must match enum fd_drivetype 244 * in <sys/fdcio.h>. Upon attaching the drive, each of the 245 * programmable subdevices is initialized with the native density 246 * definition. 247 */ 248 static struct fd_type fd_native_types[] = 249 { 250 { 0 }, /* FDT_NONE */ 251 { 9,2,0xFF,0x2A,40, 720,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* FDT_360K */ 252 { 15,2,0xFF,0x1B,80,2400,FDC_500KBPS,2,0x54,1,0,FL_MFM }, /* FDT_12M */ 253 { 9,2,0xFF,0x20,80,1440,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* FDT_720K */ 254 { 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* FDT_144M */ 255 #if 0 /* we currently don't handle 2.88 MB */ 256 { 36,2,0xFF,0x1B,80,5760,FDC_1MBPS, 2,0x4C,1,1,FL_MFM|FL_PERPND } /*FDT_288M*/ 257 #else 258 { 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* FDT_144M */ 259 #endif 260 }; 261 262 /* 263 * 360 KB 5.25" and 720 KB 3.5" drives don't have automatic density 264 * selection, they just start out with their native density (or lose). 265 * So 1.2 MB 5.25", 1.44 MB 3.5", and 2.88 MB 3.5" drives have their 266 * respective lists of densities to search for. 267 */ 268 static struct fd_type fd_searchlist_12m[] = { 269 { 15,2,0xFF,0x1B,80,2400,FDC_500KBPS,2,0x54,1,0,FL_MFM }, /* 1.2M */ 270 { 9,2,0xFF,0x23,40, 720,FDC_300KBPS,2,0x50,1,0,FL_MFM|FL_2STEP }, /* 360K */ 271 { 9,2,0xFF,0x20,80,1440,FDC_300KBPS,2,0x50,1,0,FL_MFM }, /* 720K */ 272 }; 273 274 static struct fd_type fd_searchlist_144m[] = { 275 { 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* 1.44M */ 276 { 9,2,0xFF,0x20,80,1440,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* 720K */ 277 }; 278 279 /* We search for 1.44M first since this is the most common case. */ 280 static struct fd_type fd_searchlist_288m[] = { 281 { 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* 1.44M */ 282 #if 0 283 { 36,2,0xFF,0x1B,80,5760,FDC_1MBPS, 2,0x4C,1,1,FL_MFM|FL_PERPND } /* 2.88M */ 284 #endif 285 { 9,2,0xFF,0x20,80,1440,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* 720K */ 286 }; 287 288 #define MAX_SEC_SIZE (128 << 3) 289 #define MAX_CYLINDER 85 /* some people really stress their drives 290 * up to cyl 82 */ 291 #define MAX_HEAD 1 292 293 static devclass_t fdc_devclass; 294 295 /* 296 * Per drive structure (softc). 297 */ 298 struct fd_data { 299 struct fdc_data *fdc; /* pointer to controller structure */ 300 int fdsu; /* this units number on this controller */ 301 enum fd_drivetype type; /* drive type */ 302 struct fd_type *ft; /* pointer to current type descriptor */ 303 struct fd_type fts[NUMDENS]; /* type descriptors */ 304 int flags; 305 #define FD_OPEN 0x01 /* it's open */ 306 #define FD_NONBLOCK 0x02 /* O_NONBLOCK set */ 307 #define FD_ACTIVE 0x04 /* it's active */ 308 #define FD_MOTOR 0x08 /* motor should be on */ 309 #define FD_MOTOR_WAIT 0x10 /* motor coming up */ 310 #define FD_UA 0x20 /* force unit attention */ 311 int skip; 312 int hddrv; 313 #define FD_NO_TRACK -2 314 int track; /* where we think the head is */ 315 int options; /* user configurable options, see fdcio.h */ 316 struct callout_handle toffhandle; 317 struct callout_handle tohandle; 318 struct devstat *device_stats; 319 dev_t masterdev; 320 #ifdef GONE_IN_5 321 eventhandler_tag clonetag; 322 dev_t clonedevs[NUMDENS - 1]; 323 #endif 324 device_t dev; 325 fdu_t fdu; 326 }; 327 328 struct fdc_ivars { 329 int fdunit; 330 }; 331 static devclass_t fd_devclass; 332 333 /* configuration flags for fd */ 334 #define FD_TYPEMASK 0x0f /* drive type, matches enum 335 * fd_drivetype; on i386 machines, if 336 * given as 0, use RTC type for fd0 337 * and fd1 */ 338 #define FD_DTYPE(flags) ((flags) & FD_TYPEMASK) 339 #define FD_NO_CHLINE 0x10 /* drive does not support changeline 340 * aka. unit attention */ 341 #define FD_NO_PROBE 0x20 /* don't probe drive (seek test), just 342 * assume it is there */ 343 344 /* 345 * Throughout this file the following conventions will be used: 346 * 347 * fd is a pointer to the fd_data struct for the drive in question 348 * fdc is a pointer to the fdc_data struct for the controller 349 * fdu is the floppy drive unit number 350 * fdcu is the floppy controller unit number 351 * fdsu is the floppy drive unit number on that controller. (sub-unit) 352 */ 353 354 /* 355 * Function declarations, same (chaotic) order as they appear in the 356 * file. Re-ordering is too late now, it would only obfuscate the 357 * diffs against old and offspring versions (like the PC98 one). 358 * 359 * Anyone adding functions here, please keep this sequence the same 360 * as below -- makes locating a particular function in the body much 361 * easier. 362 */ 363 static void fdout_wr(fdc_p, u_int8_t); 364 static u_int8_t fdsts_rd(fdc_p); 365 static void fddata_wr(fdc_p, u_int8_t); 366 static u_int8_t fddata_rd(fdc_p); 367 static void fdctl_wr_isa(fdc_p, u_int8_t); 368 #if NCARD > 0 369 static void fdctl_wr_pcmcia(fdc_p, u_int8_t); 370 #endif 371 #if 0 372 static u_int8_t fdin_rd(fdc_p); 373 #endif 374 static int fdc_err(struct fdc_data *, const char *); 375 static int fd_cmd(struct fdc_data *, int, ...); 376 static int enable_fifo(fdc_p fdc); 377 static int fd_sense_drive_status(fdc_p, int *); 378 static int fd_sense_int(fdc_p, int *, int *); 379 static int fd_read_status(fdc_p); 380 static int fdc_alloc_resources(struct fdc_data *); 381 static void fdc_release_resources(struct fdc_data *); 382 static int fdc_read_ivar(device_t, device_t, int, uintptr_t *); 383 static int fdc_probe(device_t); 384 #if NCARD > 0 385 static int fdc_pccard_probe(device_t); 386 #endif 387 static int fdc_detach(device_t dev); 388 static void fdc_add_child(device_t, const char *, int); 389 static int fdc_attach(device_t); 390 static int fdc_print_child(device_t, device_t); 391 #ifdef GONE_IN_5 392 static void fd_clone (void *, char *, int, dev_t *); 393 #endif 394 static int fd_probe(device_t); 395 static int fd_attach(device_t); 396 static int fd_detach(device_t); 397 static void set_motor(struct fdc_data *, int, int); 398 # define TURNON 1 399 # define TURNOFF 0 400 static timeout_t fd_turnoff; 401 static timeout_t fd_motor_on; 402 static void fd_turnon(struct fd_data *); 403 static void fdc_reset(fdc_p); 404 static int fd_in(struct fdc_data *, int *); 405 static int out_fdc(struct fdc_data *, int); 406 /* 407 * The open function is named fdopen() to avoid confusion with fdopen() 408 * in fd(4). The difference is now only meaningful for debuggers. 409 */ 410 static d_open_t fdopen; 411 static d_close_t fdclose; 412 static d_strategy_t fdstrategy; 413 static void fdstart(struct fdc_data *); 414 static timeout_t fd_iotimeout; 415 static timeout_t fd_pseudointr; 416 static driver_intr_t fdc_intr; 417 static int fdcpio(fdc_p, long, caddr_t, u_int); 418 static int fdautoselect(dev_t); 419 static int fdstate(struct fdc_data *); 420 static int retrier(struct fdc_data *); 421 static void fdbiodone(struct bio *); 422 static int fdmisccmd(dev_t, u_int, void *); 423 static d_ioctl_t fdioctl; 424 425 static int fifo_threshold = 8; /* XXX: should be accessible via sysctl */ 426 427 #ifdef FDC_DEBUG 428 /* CAUTION: fd_debug causes huge amounts of logging output */ 429 static int volatile fd_debug = 0; 430 #define TRACE0(arg) do { if (fd_debug) printf(arg); } while (0) 431 #define TRACE1(arg1, arg2) do { if (fd_debug) printf(arg1, arg2); } while (0) 432 #else /* FDC_DEBUG */ 433 #define TRACE0(arg) do { } while (0) 434 #define TRACE1(arg1, arg2) do { } while (0) 435 #endif /* FDC_DEBUG */ 436 437 /* 438 * Bus space handling (access to low-level IO). 439 */ 440 static void 441 fdout_wr(fdc_p fdc, u_int8_t v) 442 { 443 bus_space_write_1(fdc->portt, fdc->porth, FDOUT+fdc->port_off, v); 444 } 445 446 static u_int8_t 447 fdsts_rd(fdc_p fdc) 448 { 449 return bus_space_read_1(fdc->portt, fdc->porth, FDSTS+fdc->port_off); 450 } 451 452 static void 453 fddata_wr(fdc_p fdc, u_int8_t v) 454 { 455 bus_space_write_1(fdc->portt, fdc->porth, FDDATA+fdc->port_off, v); 456 } 457 458 static u_int8_t 459 fddata_rd(fdc_p fdc) 460 { 461 return bus_space_read_1(fdc->portt, fdc->porth, FDDATA+fdc->port_off); 462 } 463 464 static void 465 fdctl_wr_isa(fdc_p fdc, u_int8_t v) 466 { 467 bus_space_write_1(fdc->ctlt, fdc->ctlh, 0, v); 468 } 469 470 #if NCARD > 0 471 static void 472 fdctl_wr_pcmcia(fdc_p fdc, u_int8_t v) 473 { 474 bus_space_write_1(fdc->portt, fdc->porth, FDCTL+fdc->port_off, v); 475 } 476 #endif 477 478 static u_int8_t 479 fdin_rd(fdc_p fdc) 480 { 481 return bus_space_read_1(fdc->portt, fdc->porth, FDIN); 482 } 483 484 #define CDEV_MAJOR 9 485 static struct cdevsw fd_cdevsw = { 486 .d_open = fdopen, 487 .d_close = fdclose, 488 .d_read = physread, 489 .d_write = physwrite, 490 .d_ioctl = fdioctl, 491 .d_strategy = fdstrategy, 492 .d_name = "fd", 493 .d_maj = CDEV_MAJOR, 494 .d_flags = D_DISK, 495 }; 496 497 /* 498 * Auxiliary functions. Well, some only. Others are scattered 499 * throughout the entire file. 500 */ 501 static int 502 fdc_err(struct fdc_data *fdc, const char *s) 503 { 504 fdc->fdc_errs++; 505 if (s) { 506 if (fdc->fdc_errs < FDC_ERRMAX) 507 device_printf(fdc->fdc_dev, "%s", s); 508 else if (fdc->fdc_errs == FDC_ERRMAX) 509 device_printf(fdc->fdc_dev, "too many errors, not " 510 "logging any more\n"); 511 } 512 513 return FD_FAILED; 514 } 515 516 /* 517 * fd_cmd: Send a command to the chip. Takes a varargs with this structure: 518 * Unit number, 519 * # of output bytes, output bytes as ints ..., 520 * # of input bytes, input bytes as ints ... 521 */ 522 static int 523 fd_cmd(struct fdc_data *fdc, int n_out, ...) 524 { 525 u_char cmd; 526 int n_in; 527 int n; 528 va_list ap; 529 530 va_start(ap, n_out); 531 cmd = (u_char)(va_arg(ap, int)); 532 va_end(ap); 533 va_start(ap, n_out); 534 for (n = 0; n < n_out; n++) 535 { 536 if (out_fdc(fdc, va_arg(ap, int)) < 0) 537 { 538 char msg[50]; 539 snprintf(msg, sizeof(msg), 540 "cmd %x failed at out byte %d of %d\n", 541 cmd, n + 1, n_out); 542 return fdc_err(fdc, msg); 543 } 544 } 545 n_in = va_arg(ap, int); 546 for (n = 0; n < n_in; n++) 547 { 548 int *ptr = va_arg(ap, int *); 549 if (fd_in(fdc, ptr) < 0) 550 { 551 char msg[50]; 552 snprintf(msg, sizeof(msg), 553 "cmd %02x failed at in byte %d of %d\n", 554 cmd, n + 1, n_in); 555 return fdc_err(fdc, msg); 556 } 557 } 558 559 return 0; 560 } 561 562 static int 563 enable_fifo(fdc_p fdc) 564 { 565 int i, j; 566 567 if ((fdc->flags & FDC_HAS_FIFO) == 0) { 568 569 /* 570 * Cannot use fd_cmd the normal way here, since 571 * this might be an invalid command. Thus we send the 572 * first byte, and check for an early turn of data directon. 573 */ 574 575 if (out_fdc(fdc, I8207X_CONFIGURE) < 0) 576 return fdc_err(fdc, "Enable FIFO failed\n"); 577 578 /* If command is invalid, return */ 579 j = FDSTS_TIMEOUT; 580 while ((i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM)) 581 != NE7_RQM && j-- > 0) { 582 if (i == (NE7_DIO | NE7_RQM)) { 583 fdc_reset(fdc); 584 return FD_FAILED; 585 } 586 DELAY(1); 587 } 588 if (j<0 || 589 fd_cmd(fdc, 3, 590 0, (fifo_threshold - 1) & 0xf, 0, 0) < 0) { 591 fdc_reset(fdc); 592 return fdc_err(fdc, "Enable FIFO failed\n"); 593 } 594 fdc->flags |= FDC_HAS_FIFO; 595 return 0; 596 } 597 if (fd_cmd(fdc, 4, 598 I8207X_CONFIGURE, 0, (fifo_threshold - 1) & 0xf, 0, 0) < 0) 599 return fdc_err(fdc, "Re-enable FIFO failed\n"); 600 return 0; 601 } 602 603 static int 604 fd_sense_drive_status(fdc_p fdc, int *st3p) 605 { 606 int st3; 607 608 if (fd_cmd(fdc, 2, NE7CMD_SENSED, fdc->fdu, 1, &st3)) 609 { 610 return fdc_err(fdc, "Sense Drive Status failed\n"); 611 } 612 if (st3p) 613 *st3p = st3; 614 615 return 0; 616 } 617 618 static int 619 fd_sense_int(fdc_p fdc, int *st0p, int *cylp) 620 { 621 int cyl, st0, ret; 622 623 ret = fd_cmd(fdc, 1, NE7CMD_SENSEI, 1, &st0); 624 if (ret) { 625 (void)fdc_err(fdc, 626 "sense intr err reading stat reg 0\n"); 627 return ret; 628 } 629 630 if (st0p) 631 *st0p = st0; 632 633 if ((st0 & NE7_ST0_IC) == NE7_ST0_IC_IV) { 634 /* 635 * There doesn't seem to have been an interrupt. 636 */ 637 return FD_NOT_VALID; 638 } 639 640 if (fd_in(fdc, &cyl) < 0) { 641 return fdc_err(fdc, "can't get cyl num\n"); 642 } 643 644 if (cylp) 645 *cylp = cyl; 646 647 return 0; 648 } 649 650 651 static int 652 fd_read_status(fdc_p fdc) 653 { 654 int i, ret; 655 656 for (i = ret = 0; i < 7; i++) { 657 /* 658 * XXX types are poorly chosen. Only bytes can be read 659 * from the hardware, but fdc->status[] wants u_ints and 660 * fd_in() gives ints. 661 */ 662 int status; 663 664 ret = fd_in(fdc, &status); 665 fdc->status[i] = status; 666 if (ret != 0) 667 break; 668 } 669 670 if (ret == 0) 671 fdc->flags |= FDC_STAT_VALID; 672 else 673 fdc->flags &= ~FDC_STAT_VALID; 674 675 return ret; 676 } 677 678 static int 679 fdc_alloc_resources(struct fdc_data *fdc) 680 { 681 device_t dev; 682 int ispnp, ispcmcia, nports; 683 684 dev = fdc->fdc_dev; 685 ispnp = (fdc->flags & FDC_ISPNP) != 0; 686 ispcmcia = (fdc->flags & FDC_ISPCMCIA) != 0; 687 fdc->rid_ioport = fdc->rid_irq = fdc->rid_drq = 0; 688 fdc->res_ioport = fdc->res_irq = fdc->res_drq = 0; 689 fdc->rid_ctl = 1; 690 691 /* 692 * On standard ISA, we don't just use an 8 port range 693 * (e.g. 0x3f0-0x3f7) since that covers an IDE control 694 * register at 0x3f6. 695 * 696 * Isn't PC hardware wonderful. 697 * 698 * The Y-E Data PCMCIA FDC doesn't have this problem, it 699 * uses the register with offset 6 for pseudo-DMA, and the 700 * one with offset 7 as control register. 701 */ 702 nports = ispcmcia ? 8 : (ispnp ? 1 : 6); 703 704 /* 705 * Some ACPI BIOSen have _CRS objects for the floppy device that 706 * split the I/O port resource into several resources. We detect 707 * this case by checking if there are more than 2 IOPORT resources. 708 * If so, we use the resource with the smallest start address as 709 * the port RID and the largest start address as the control RID. 710 */ 711 if (bus_get_resource_count(dev, SYS_RES_IOPORT, 2) != 0) { 712 u_long min_start, max_start, tmp; 713 int i; 714 715 /* Find the min/max start addresses and their RIDs. */ 716 max_start = 0ul; 717 min_start = ~0ul; 718 for (i = 0; bus_get_resource_count(dev, SYS_RES_IOPORT, i) > 0; 719 i++) { 720 tmp = bus_get_resource_start(dev, SYS_RES_IOPORT, i); 721 KASSERT(tmp != 0, ("bogus resource")); 722 if (tmp < min_start) { 723 min_start = tmp; 724 fdc->rid_ioport = i; 725 } 726 if (tmp > max_start) { 727 max_start = tmp; 728 fdc->rid_ctl = i; 729 } 730 } 731 if (min_start + 7 != max_start) { 732 device_printf(dev, "I/O to control range incorrect\n"); 733 return (ENXIO); 734 } 735 } 736 737 fdc->res_ioport = bus_alloc_resource(dev, SYS_RES_IOPORT, 738 &fdc->rid_ioport, 0ul, ~0ul, 739 nports, RF_ACTIVE); 740 if (fdc->res_ioport == 0) { 741 device_printf(dev, "cannot reserve I/O port range (%d ports)\n", 742 nports); 743 return ENXIO; 744 } 745 fdc->portt = rman_get_bustag(fdc->res_ioport); 746 fdc->porth = rman_get_bushandle(fdc->res_ioport); 747 748 if (!ispcmcia) { 749 /* 750 * Some BIOSen report the device at 0x3f2-0x3f5,0x3f7 751 * and some at 0x3f0-0x3f5,0x3f7. We detect the former 752 * by checking the size and adjust the port address 753 * accordingly. 754 */ 755 if (bus_get_resource_count(dev, SYS_RES_IOPORT, 0) == 4) 756 fdc->port_off = -2; 757 758 /* 759 * Register the control port range as rid 1 if it 760 * isn't there already. Most PnP BIOSen will have 761 * already done this but non-PnP configurations don't. 762 * 763 * And some (!!) report 0x3f2-0x3f5 and completely 764 * leave out the control register! It seems that some 765 * non-antique controller chips have a different 766 * method of programming the transfer speed which 767 * doesn't require the control register, but it's 768 * mighty bogus as the chip still responds to the 769 * address for the control register. 770 */ 771 if (bus_get_resource_count(dev, SYS_RES_IOPORT, 1) == 0) { 772 u_long ctlstart; 773 774 /* Find the control port, usually 0x3f7 */ 775 ctlstart = rman_get_start(fdc->res_ioport) + 776 fdc->port_off + 7; 777 778 bus_set_resource(dev, SYS_RES_IOPORT, 1, ctlstart, 1); 779 } 780 781 /* 782 * Now (finally!) allocate the control port. 783 */ 784 fdc->res_ctl = bus_alloc_resource(dev, SYS_RES_IOPORT, 785 &fdc->rid_ctl, 786 0ul, ~0ul, 1, RF_ACTIVE); 787 if (fdc->res_ctl == 0) { 788 device_printf(dev, 789 "cannot reserve control I/O port range (control port)\n"); 790 return ENXIO; 791 } 792 fdc->ctlt = rman_get_bustag(fdc->res_ctl); 793 fdc->ctlh = rman_get_bushandle(fdc->res_ctl); 794 } 795 796 fdc->res_irq = bus_alloc_resource(dev, SYS_RES_IRQ, 797 &fdc->rid_irq, 0ul, ~0ul, 1, 798 RF_ACTIVE); 799 if (fdc->res_irq == 0) { 800 device_printf(dev, "cannot reserve interrupt line\n"); 801 return ENXIO; 802 } 803 804 if ((fdc->flags & FDC_NODMA) == 0) { 805 fdc->res_drq = bus_alloc_resource(dev, SYS_RES_DRQ, 806 &fdc->rid_drq, 0ul, ~0ul, 1, 807 RF_ACTIVE); 808 if (fdc->res_drq == 0) { 809 device_printf(dev, "cannot reserve DMA request line\n"); 810 return ENXIO; 811 } 812 fdc->dmachan = fdc->res_drq->r_start; 813 } 814 815 return 0; 816 } 817 818 static void 819 fdc_release_resources(struct fdc_data *fdc) 820 { 821 device_t dev; 822 823 dev = fdc->fdc_dev; 824 if (fdc->res_irq != 0) { 825 bus_deactivate_resource(dev, SYS_RES_IRQ, fdc->rid_irq, 826 fdc->res_irq); 827 bus_release_resource(dev, SYS_RES_IRQ, fdc->rid_irq, 828 fdc->res_irq); 829 } 830 if (fdc->res_ctl != 0) { 831 bus_deactivate_resource(dev, SYS_RES_IOPORT, fdc->rid_ctl, 832 fdc->res_ctl); 833 bus_release_resource(dev, SYS_RES_IOPORT, fdc->rid_ctl, 834 fdc->res_ctl); 835 } 836 if (fdc->res_ioport != 0) { 837 bus_deactivate_resource(dev, SYS_RES_IOPORT, fdc->rid_ioport, 838 fdc->res_ioport); 839 bus_release_resource(dev, SYS_RES_IOPORT, fdc->rid_ioport, 840 fdc->res_ioport); 841 } 842 if (fdc->res_drq != 0) { 843 bus_deactivate_resource(dev, SYS_RES_DRQ, fdc->rid_drq, 844 fdc->res_drq); 845 bus_release_resource(dev, SYS_RES_DRQ, fdc->rid_drq, 846 fdc->res_drq); 847 } 848 } 849 850 /* 851 * Configuration/initialization stuff, per controller. 852 */ 853 854 static struct isa_pnp_id fdc_ids[] = { 855 {0x0007d041, "PC standard floppy disk controller"}, /* PNP0700 */ 856 {0x0107d041, "Standard floppy controller supporting MS Device Bay Spec"}, /* PNP0701 */ 857 {0} 858 }; 859 860 static int 861 fdc_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) 862 { 863 struct fdc_ivars *ivars = device_get_ivars(child); 864 865 switch (which) { 866 case FDC_IVAR_FDUNIT: 867 *result = ivars->fdunit; 868 break; 869 default: 870 return ENOENT; 871 } 872 return 0; 873 } 874 875 static int 876 fdc_probe(device_t dev) 877 { 878 int error, ic_type; 879 struct fdc_data *fdc; 880 881 fdc = device_get_softc(dev); 882 bzero(fdc, sizeof *fdc); 883 fdc->fdc_dev = dev; 884 fdc->fdctl_wr = fdctl_wr_isa; 885 886 /* Check pnp ids */ 887 error = ISA_PNP_PROBE(device_get_parent(dev), dev, fdc_ids); 888 if (error == ENXIO) 889 return ENXIO; 890 if (error == 0) 891 fdc->flags |= FDC_ISPNP; 892 893 /* Attempt to allocate our resources for the duration of the probe */ 894 error = fdc_alloc_resources(fdc); 895 if (error) 896 goto out; 897 898 /* First - lets reset the floppy controller */ 899 fdout_wr(fdc, 0); 900 DELAY(100); 901 fdout_wr(fdc, FDO_FRST); 902 903 /* see if it can handle a command */ 904 if (fd_cmd(fdc, 3, NE7CMD_SPECIFY, NE7_SPEC_1(3, 240), 905 NE7_SPEC_2(2, 0), 0)) { 906 error = ENXIO; 907 goto out; 908 } 909 910 if (fd_cmd(fdc, 1, NE7CMD_VERSION, 1, &ic_type) == 0) { 911 ic_type = (u_char)ic_type; 912 switch (ic_type) { 913 case 0x80: 914 device_set_desc(dev, "NEC 765 or clone"); 915 fdc->fdct = FDC_NE765; 916 break; 917 case 0x81: /* not mentioned in any hardware doc */ 918 case 0x90: 919 device_set_desc(dev, 920 "Enhanced floppy controller (i82077, NE72065 or clone)"); 921 fdc->fdct = FDC_ENHANCED; 922 break; 923 default: 924 device_set_desc(dev, "Generic floppy controller"); 925 fdc->fdct = FDC_UNKNOWN; 926 break; 927 } 928 } 929 930 out: 931 fdc_release_resources(fdc); 932 return (error); 933 } 934 935 #if NCARD > 0 936 937 static int 938 fdc_pccard_probe(device_t dev) 939 { 940 int error; 941 struct fdc_data *fdc; 942 943 fdc = device_get_softc(dev); 944 bzero(fdc, sizeof *fdc); 945 fdc->fdc_dev = dev; 946 fdc->fdctl_wr = fdctl_wr_pcmcia; 947 948 fdc->flags |= FDC_ISPCMCIA | FDC_NODMA; 949 950 /* Attempt to allocate our resources for the duration of the probe */ 951 error = fdc_alloc_resources(fdc); 952 if (error) 953 goto out; 954 955 /* First - lets reset the floppy controller */ 956 fdout_wr(fdc, 0); 957 DELAY(100); 958 fdout_wr(fdc, FDO_FRST); 959 960 /* see if it can handle a command */ 961 if (fd_cmd(fdc, 3, NE7CMD_SPECIFY, NE7_SPEC_1(3, 240), 962 NE7_SPEC_2(2, 0), 0)) { 963 error = ENXIO; 964 goto out; 965 } 966 967 device_set_desc(dev, "Y-E Data PCMCIA floppy"); 968 fdc->fdct = FDC_NE765; 969 970 out: 971 fdc_release_resources(fdc); 972 return (error); 973 } 974 975 #endif /* NCARD > 0 */ 976 977 static int 978 fdc_detach(device_t dev) 979 { 980 struct fdc_data *fdc; 981 int error; 982 983 fdc = device_get_softc(dev); 984 985 /* have our children detached first */ 986 if ((error = bus_generic_detach(dev))) 987 return (error); 988 989 /* reset controller, turn motor off */ 990 fdout_wr(fdc, 0); 991 992 if ((fdc->flags & FDC_NODMA) == 0) 993 isa_dma_release(fdc->dmachan); 994 995 if ((fdc->flags & FDC_ATTACHED) == 0) { 996 device_printf(dev, "already unloaded\n"); 997 return (0); 998 } 999 fdc->flags &= ~FDC_ATTACHED; 1000 1001 BUS_TEARDOWN_INTR(device_get_parent(dev), dev, fdc->res_irq, 1002 fdc->fdc_intr); 1003 fdc_release_resources(fdc); 1004 device_printf(dev, "unload\n"); 1005 return (0); 1006 } 1007 1008 /* 1009 * Add a child device to the fdc controller. It will then be probed etc. 1010 */ 1011 static void 1012 fdc_add_child(device_t dev, const char *name, int unit) 1013 { 1014 int flags; 1015 struct fdc_ivars *ivar; 1016 device_t child; 1017 1018 ivar = malloc(sizeof *ivar, M_DEVBUF /* XXX */, M_NOWAIT | M_ZERO); 1019 if (ivar == NULL) 1020 return; 1021 if (resource_int_value(name, unit, "drive", &ivar->fdunit) != 0) 1022 ivar->fdunit = 0; 1023 child = device_add_child(dev, name, unit); 1024 if (child == NULL) { 1025 free(ivar, M_DEVBUF); 1026 return; 1027 } 1028 device_set_ivars(child, ivar); 1029 if (resource_int_value(name, unit, "flags", &flags) == 0) 1030 device_set_flags(child, flags); 1031 if (resource_disabled(name, unit)) 1032 device_disable(child); 1033 } 1034 1035 static int 1036 fdc_attach(device_t dev) 1037 { 1038 struct fdc_data *fdc; 1039 const char *name, *dname; 1040 int i, error, dunit; 1041 1042 fdc = device_get_softc(dev); 1043 error = fdc_alloc_resources(fdc); 1044 if (error) { 1045 device_printf(dev, "cannot re-acquire resources\n"); 1046 return error; 1047 } 1048 error = BUS_SETUP_INTR(device_get_parent(dev), dev, fdc->res_irq, 1049 INTR_TYPE_BIO | INTR_ENTROPY, fdc_intr, fdc, 1050 &fdc->fdc_intr); 1051 if (error) { 1052 device_printf(dev, "cannot setup interrupt\n"); 1053 return error; 1054 } 1055 fdc->fdcu = device_get_unit(dev); 1056 fdc->flags |= FDC_ATTACHED | FDC_NEEDS_RESET; 1057 1058 if ((fdc->flags & FDC_NODMA) == 0) { 1059 /* 1060 * Acquire the DMA channel forever, the driver will do 1061 * the rest 1062 * XXX should integrate with rman 1063 */ 1064 isa_dma_acquire(fdc->dmachan); 1065 isa_dmainit(fdc->dmachan, MAX_SEC_SIZE); 1066 } 1067 fdc->state = DEVIDLE; 1068 1069 /* reset controller, turn motor off, clear fdout mirror reg */ 1070 fdout_wr(fdc, fdc->fdout = 0); 1071 bioq_init(&fdc->head); 1072 1073 /* 1074 * Probe and attach any children. We should probably detect 1075 * devices from the BIOS unless overridden. 1076 */ 1077 name = device_get_nameunit(dev); 1078 i = 0; 1079 while ((resource_find_match(&i, &dname, &dunit, "at", name)) == 0) 1080 fdc_add_child(dev, dname, dunit); 1081 1082 if ((error = bus_generic_attach(dev)) != 0) 1083 return (error); 1084 1085 return (0); 1086 } 1087 1088 static int 1089 fdc_print_child(device_t me, device_t child) 1090 { 1091 int retval = 0, flags; 1092 1093 retval += bus_print_child_header(me, child); 1094 retval += printf(" on %s drive %d", device_get_nameunit(me), 1095 fdc_get_fdunit(child)); 1096 if ((flags = device_get_flags(me)) != 0) 1097 retval += printf(" flags %#x", flags); 1098 retval += printf("\n"); 1099 1100 return (retval); 1101 } 1102 1103 static device_method_t fdc_methods[] = { 1104 /* Device interface */ 1105 DEVMETHOD(device_probe, fdc_probe), 1106 DEVMETHOD(device_attach, fdc_attach), 1107 DEVMETHOD(device_detach, fdc_detach), 1108 DEVMETHOD(device_shutdown, bus_generic_shutdown), 1109 DEVMETHOD(device_suspend, bus_generic_suspend), 1110 DEVMETHOD(device_resume, bus_generic_resume), 1111 1112 /* Bus interface */ 1113 DEVMETHOD(bus_print_child, fdc_print_child), 1114 DEVMETHOD(bus_read_ivar, fdc_read_ivar), 1115 /* Our children never use any other bus interface methods. */ 1116 1117 { 0, 0 } 1118 }; 1119 1120 static driver_t fdc_driver = { 1121 "fdc", 1122 fdc_methods, 1123 sizeof(struct fdc_data) 1124 }; 1125 1126 DRIVER_MODULE(fdc, isa, fdc_driver, fdc_devclass, 0, 0); 1127 DRIVER_MODULE(fdc, acpi, fdc_driver, fdc_devclass, 0, 0); 1128 1129 #if NCARD > 0 1130 1131 static device_method_t fdc_pccard_methods[] = { 1132 /* Device interface */ 1133 DEVMETHOD(device_probe, fdc_pccard_probe), 1134 DEVMETHOD(device_attach, fdc_attach), 1135 DEVMETHOD(device_detach, fdc_detach), 1136 DEVMETHOD(device_shutdown, bus_generic_shutdown), 1137 DEVMETHOD(device_suspend, bus_generic_suspend), 1138 DEVMETHOD(device_resume, bus_generic_resume), 1139 1140 /* Bus interface */ 1141 DEVMETHOD(bus_print_child, fdc_print_child), 1142 DEVMETHOD(bus_read_ivar, fdc_read_ivar), 1143 /* Our children never use any other bus interface methods. */ 1144 1145 { 0, 0 } 1146 }; 1147 1148 static driver_t fdc_pccard_driver = { 1149 "fdc", 1150 fdc_pccard_methods, 1151 sizeof(struct fdc_data) 1152 }; 1153 1154 DRIVER_MODULE(fdc, pccard, fdc_pccard_driver, fdc_devclass, 0, 0); 1155 1156 #endif /* NCARD > 0 */ 1157 1158 #ifdef GONE_IN_5 1159 /* 1160 * Create a clone device upon request by devfs. 1161 */ 1162 static void 1163 fd_clone(void *arg, char *name, int namelen, dev_t *dev) 1164 { 1165 struct fd_data *fd; 1166 int i, u; 1167 char *n; 1168 size_t l; 1169 1170 fd = (struct fd_data *)arg; 1171 if (*dev != NODEV) 1172 return; 1173 if (dev_stdclone(name, &n, "fd", &u) != 2) 1174 return; 1175 if (u != fd->fdu) 1176 /* unit # mismatch */ 1177 return; 1178 l = strlen(n); 1179 if (l == 1 && *n >= 'a' && *n <= 'h') { 1180 /* 1181 * Trailing letters a through h denote 1182 * pseudo-partitions. We don't support true 1183 * (UFS-style) partitions, so we just implement them 1184 * as symlinks if someone asks us nicely. 1185 */ 1186 *dev = make_dev_alias(fd->masterdev, name); 1187 return; 1188 } 1189 if (l >= 2 && l <= 5 && *n == '.') { 1190 /* 1191 * Trailing numbers, preceded by a dot, denote 1192 * subdevices for different densities. Historically, 1193 * they have been named by density (like fd0.1440), 1194 * but we allow arbitrary numbers between 1 and 4 1195 * digits, so fd0.1 through fd0.15 are possible as 1196 * well. 1197 */ 1198 for (i = 1; i < l; i++) 1199 if (n[i] < '0' || n[i] > '9') 1200 return; 1201 for (i = 0; i < NUMDENS - 1; i++) 1202 if (fd->clonedevs[i] == NODEV) { 1203 *dev = make_dev(&fd_cdevsw, 1204 FDNUMTOUNIT(u) + i + 1, 1205 UID_ROOT, GID_OPERATOR, 0640, 1206 name); 1207 fd->clonedevs[i] = *dev; 1208 fd->clonedevs[i]->si_drv1 = fd; 1209 return; 1210 } 1211 } 1212 } 1213 #endif 1214 1215 /* 1216 * Configuration/initialization, per drive. 1217 */ 1218 static int 1219 fd_probe(device_t dev) 1220 { 1221 int i; 1222 u_int st0, st3; 1223 struct fd_data *fd; 1224 struct fdc_data *fdc; 1225 fdsu_t fdsu; 1226 int flags; 1227 1228 fdsu = *(int *)device_get_ivars(dev); /* xxx cheat a bit... */ 1229 fd = device_get_softc(dev); 1230 fdc = device_get_softc(device_get_parent(dev)); 1231 flags = device_get_flags(dev); 1232 1233 bzero(fd, sizeof *fd); 1234 fd->dev = dev; 1235 fd->fdc = fdc; 1236 fd->fdsu = fdsu; 1237 fd->fdu = device_get_unit(dev); 1238 fd->flags = FD_UA; /* make sure fdautoselect() will be called */ 1239 1240 fd->type = FD_DTYPE(flags); 1241 /* 1242 * XXX I think using __i386__ is wrong here since we actually want to probe 1243 * for the machine type, not the CPU type (so non-PC arch's like the PC98 will 1244 * fail the probe). However, for whatever reason, testing for _MACHINE_ARCH 1245 * == i386 breaks the test on FreeBSD/Alpha. 1246 */ 1247 #if defined(__i386__) || defined(__amd64__) 1248 if (fd->type == FDT_NONE && (fd->fdu == 0 || fd->fdu == 1)) { 1249 /* Look up what the BIOS thinks we have. */ 1250 if (fd->fdu == 0) { 1251 if ((fdc->flags & FDC_ISPCMCIA)) 1252 /* 1253 * Somewhat special. No need to force the 1254 * user to set device flags, since the Y-E 1255 * Data PCMCIA floppy is always a 1.44 MB 1256 * device. 1257 */ 1258 fd->type = FDT_144M; 1259 else 1260 fd->type = (rtcin(RTC_FDISKETTE) & 0xf0) >> 4; 1261 } else { 1262 fd->type = rtcin(RTC_FDISKETTE) & 0x0f; 1263 } 1264 if (fd->type == FDT_288M_1) 1265 fd->type = FDT_288M; 1266 } 1267 #endif /* __i386__ || __amd64__ */ 1268 /* is there a unit? */ 1269 if (fd->type == FDT_NONE) 1270 return (ENXIO); 1271 1272 /* select it */ 1273 set_motor(fdc, fdsu, TURNON); 1274 fdc_reset(fdc); /* XXX reset, then unreset, etc. */ 1275 DELAY(1000000); /* 1 sec */ 1276 1277 /* XXX This doesn't work before the first set_motor() */ 1278 if ((fdc->flags & FDC_HAS_FIFO) == 0 && 1279 fdc->fdct == FDC_ENHANCED && 1280 (device_get_flags(fdc->fdc_dev) & FDC_NO_FIFO) == 0 && 1281 enable_fifo(fdc) == 0) { 1282 device_printf(device_get_parent(dev), 1283 "FIFO enabled, %d bytes threshold\n", fifo_threshold); 1284 } 1285 1286 if ((flags & FD_NO_PROBE) == 0) { 1287 /* If we're at track 0 first seek inwards. */ 1288 if ((fd_sense_drive_status(fdc, &st3) == 0) && 1289 (st3 & NE7_ST3_T0)) { 1290 /* Seek some steps... */ 1291 if (fd_cmd(fdc, 3, NE7CMD_SEEK, fdsu, 10, 0) == 0) { 1292 /* ...wait a moment... */ 1293 DELAY(300000); 1294 /* make ctrlr happy: */ 1295 fd_sense_int(fdc, 0, 0); 1296 } 1297 } 1298 1299 for (i = 0; i < 2; i++) { 1300 /* 1301 * we must recalibrate twice, just in case the 1302 * heads have been beyond cylinder 76, since 1303 * most FDCs still barf when attempting to 1304 * recalibrate more than 77 steps 1305 */ 1306 /* go back to 0: */ 1307 if (fd_cmd(fdc, 2, NE7CMD_RECAL, fdsu, 0) == 0) { 1308 /* a second being enough for full stroke seek*/ 1309 DELAY(i == 0 ? 1000000 : 300000); 1310 1311 /* anything responding? */ 1312 if (fd_sense_int(fdc, &st0, 0) == 0 && 1313 (st0 & NE7_ST0_EC) == 0) 1314 break; /* already probed succesfully */ 1315 } 1316 } 1317 } 1318 1319 set_motor(fdc, fdsu, TURNOFF); 1320 1321 if ((flags & FD_NO_PROBE) == 0 && 1322 (st0 & NE7_ST0_EC) != 0) /* no track 0 -> no drive present */ 1323 return (ENXIO); 1324 1325 switch (fd->type) { 1326 case FDT_12M: 1327 device_set_desc(dev, "1200-KB 5.25\" drive"); 1328 fd->type = FDT_12M; 1329 break; 1330 case FDT_144M: 1331 device_set_desc(dev, "1440-KB 3.5\" drive"); 1332 fd->type = FDT_144M; 1333 break; 1334 case FDT_288M: 1335 device_set_desc(dev, "2880-KB 3.5\" drive (in 1440-KB mode)"); 1336 fd->type = FDT_288M; 1337 break; 1338 case FDT_360K: 1339 device_set_desc(dev, "360-KB 5.25\" drive"); 1340 fd->type = FDT_360K; 1341 break; 1342 case FDT_720K: 1343 device_set_desc(dev, "720-KB 3.5\" drive"); 1344 fd->type = FDT_720K; 1345 break; 1346 default: 1347 return (ENXIO); 1348 } 1349 fd->track = FD_NO_TRACK; 1350 fd->fdc = fdc; 1351 fd->fdsu = fdsu; 1352 fd->options = 0; 1353 callout_handle_init(&fd->toffhandle); 1354 callout_handle_init(&fd->tohandle); 1355 1356 /* initialize densities for subdevices */ 1357 for (i = 0; i < NUMDENS; i++) 1358 memcpy(fd->fts + i, fd_native_types + fd->type, 1359 sizeof(struct fd_type)); 1360 return (0); 1361 } 1362 1363 static int 1364 fd_attach(device_t dev) 1365 { 1366 struct fd_data *fd; 1367 1368 fd = device_get_softc(dev); 1369 #ifdef GONE_IN_5 1370 fd->clonetag = EVENTHANDLER_REGISTER(dev_clone, fd_clone, fd, 1000); 1371 #endif 1372 fd->masterdev = make_dev(&fd_cdevsw, fd->fdu << 6, 1373 UID_ROOT, GID_OPERATOR, 0640, "fd%d", fd->fdu); 1374 fd->masterdev->si_drv1 = fd; 1375 #ifdef GONE_IN_5 1376 { 1377 int i; 1378 for (i = 0; i < NUMDENS - 1; i++) 1379 fd->clonedevs[i] = NODEV; 1380 } 1381 #endif 1382 fd->device_stats = devstat_new_entry(device_get_name(dev), 1383 device_get_unit(dev), 0, DEVSTAT_NO_ORDERED_TAGS, 1384 DEVSTAT_TYPE_FLOPPY | DEVSTAT_TYPE_IF_OTHER, 1385 DEVSTAT_PRIORITY_FD); 1386 return (0); 1387 } 1388 1389 static int 1390 fd_detach(device_t dev) 1391 { 1392 struct fd_data *fd; 1393 1394 fd = device_get_softc(dev); 1395 untimeout(fd_turnoff, fd, fd->toffhandle); 1396 devstat_remove_entry(fd->device_stats); 1397 destroy_dev(fd->masterdev); 1398 #ifdef GONE_IN_5 1399 { 1400 int i; 1401 for (i = 0; i < NUMDENS - 1; i++) 1402 if (fd->clonedevs[i] != NODEV) 1403 destroy_dev(fd->clonedevs[i]); 1404 EVENTHANDLER_DEREGISTER(dev_clone, fd->clonetag); 1405 } 1406 #endif 1407 1408 return (0); 1409 } 1410 1411 static device_method_t fd_methods[] = { 1412 /* Device interface */ 1413 DEVMETHOD(device_probe, fd_probe), 1414 DEVMETHOD(device_attach, fd_attach), 1415 DEVMETHOD(device_detach, fd_detach), 1416 DEVMETHOD(device_shutdown, bus_generic_shutdown), 1417 DEVMETHOD(device_suspend, bus_generic_suspend), /* XXX */ 1418 DEVMETHOD(device_resume, bus_generic_resume), /* XXX */ 1419 1420 { 0, 0 } 1421 }; 1422 1423 static driver_t fd_driver = { 1424 "fd", 1425 fd_methods, 1426 sizeof(struct fd_data) 1427 }; 1428 1429 DRIVER_MODULE(fd, fdc, fd_driver, fd_devclass, 0, 0); 1430 1431 /* 1432 * More auxiliary functions. 1433 */ 1434 /* 1435 * Motor control stuff. 1436 * Remember to not deselect the drive we're working on. 1437 */ 1438 static void 1439 set_motor(struct fdc_data *fdc, int fdsu, int turnon) 1440 { 1441 int fdout; 1442 1443 fdout = fdc->fdout; 1444 if (turnon) { 1445 fdout &= ~FDO_FDSEL; 1446 fdout |= (FDO_MOEN0 << fdsu) | FDO_FDMAEN | FDO_FRST | fdsu; 1447 } else 1448 fdout &= ~(FDO_MOEN0 << fdsu); 1449 fdc->fdout = fdout; 1450 fdout_wr(fdc, fdout); 1451 TRACE1("[0x%x->FDOUT]", fdout); 1452 } 1453 1454 static void 1455 fd_turnoff(void *xfd) 1456 { 1457 int s; 1458 fd_p fd = xfd; 1459 1460 TRACE1("[fd%d: turnoff]", fd->fdu); 1461 1462 s = splbio(); 1463 /* 1464 * Don't turn off the motor yet if the drive is active. 1465 * 1466 * If we got here, this could only mean we missed an interrupt. 1467 * This can e. g. happen on the Y-E Date PCMCIA floppy controller 1468 * after a controller reset. Just schedule a pseudo-interrupt 1469 * so the state machine gets re-entered. 1470 */ 1471 if (fd->fdc->state != DEVIDLE && fd->fdc->fdu == fd->fdu) { 1472 fdc_intr(fd->fdc); 1473 splx(s); 1474 return; 1475 } 1476 1477 fd->flags &= ~FD_MOTOR; 1478 set_motor(fd->fdc, fd->fdsu, TURNOFF); 1479 splx(s); 1480 } 1481 1482 static void 1483 fd_motor_on(void *xfd) 1484 { 1485 int s; 1486 fd_p fd = xfd; 1487 1488 s = splbio(); 1489 fd->flags &= ~FD_MOTOR_WAIT; 1490 if((fd->fdc->fd == fd) && (fd->fdc->state == MOTORWAIT)) 1491 { 1492 fdc_intr(fd->fdc); 1493 } 1494 splx(s); 1495 } 1496 1497 static void 1498 fd_turnon(fd_p fd) 1499 { 1500 if(!(fd->flags & FD_MOTOR)) 1501 { 1502 fd->flags |= (FD_MOTOR + FD_MOTOR_WAIT); 1503 set_motor(fd->fdc, fd->fdsu, TURNON); 1504 timeout(fd_motor_on, fd, hz); /* in 1 sec its ok */ 1505 } 1506 } 1507 1508 static void 1509 fdc_reset(fdc_p fdc) 1510 { 1511 /* Try a reset, keep motor on */ 1512 fdout_wr(fdc, fdc->fdout & ~(FDO_FRST|FDO_FDMAEN)); 1513 TRACE1("[0x%x->FDOUT]", fdc->fdout & ~(FDO_FRST|FDO_FDMAEN)); 1514 DELAY(100); 1515 /* enable FDC, but defer interrupts a moment */ 1516 fdout_wr(fdc, fdc->fdout & ~FDO_FDMAEN); 1517 TRACE1("[0x%x->FDOUT]", fdc->fdout & ~FDO_FDMAEN); 1518 DELAY(100); 1519 fdout_wr(fdc, fdc->fdout); 1520 TRACE1("[0x%x->FDOUT]", fdc->fdout); 1521 1522 /* XXX after a reset, silently believe the FDC will accept commands */ 1523 (void)fd_cmd(fdc, 3, NE7CMD_SPECIFY, 1524 NE7_SPEC_1(3, 240), NE7_SPEC_2(2, 0), 1525 0); 1526 if (fdc->flags & FDC_HAS_FIFO) 1527 (void) enable_fifo(fdc); 1528 } 1529 1530 /* 1531 * FDC IO functions, take care of the main status register, timeout 1532 * in case the desired status bits are never set. 1533 * 1534 * These PIO loops initially start out with short delays between 1535 * each iteration in the expectation that the required condition 1536 * is usually met quickly, so it can be handled immediately. After 1537 * about 1 ms, stepping is increased to achieve a better timing 1538 * accuracy in the calls to DELAY(). 1539 */ 1540 static int 1541 fd_in(struct fdc_data *fdc, int *ptr) 1542 { 1543 int i, j, step; 1544 1545 for (j = 0, step = 1; 1546 (i = fdsts_rd(fdc) & (NE7_DIO|NE7_RQM)) != (NE7_DIO|NE7_RQM) && 1547 j < FDSTS_TIMEOUT; 1548 j += step) { 1549 if (i == NE7_RQM) 1550 return (fdc_err(fdc, "ready for output in input\n")); 1551 if (j == 1000) 1552 step = 1000; 1553 DELAY(step); 1554 } 1555 if (j >= FDSTS_TIMEOUT) 1556 return (fdc_err(fdc, bootverbose? "input ready timeout\n": 0)); 1557 #ifdef FDC_DEBUG 1558 i = fddata_rd(fdc); 1559 TRACE1("[FDDATA->0x%x]", (unsigned char)i); 1560 *ptr = i; 1561 return (0); 1562 #else /* !FDC_DEBUG */ 1563 i = fddata_rd(fdc); 1564 if (ptr) 1565 *ptr = i; 1566 return (0); 1567 #endif /* FDC_DEBUG */ 1568 } 1569 1570 static int 1571 out_fdc(struct fdc_data *fdc, int x) 1572 { 1573 int i, j, step; 1574 1575 for (j = 0, step = 1; 1576 (i = fdsts_rd(fdc) & (NE7_DIO|NE7_RQM)) != NE7_RQM && 1577 j < FDSTS_TIMEOUT; 1578 j += step) { 1579 if (i == (NE7_DIO|NE7_RQM)) 1580 return (fdc_err(fdc, "ready for input in output\n")); 1581 if (j == 1000) 1582 step = 1000; 1583 DELAY(step); 1584 } 1585 if (j >= FDSTS_TIMEOUT) 1586 return (fdc_err(fdc, bootverbose? "output ready timeout\n": 0)); 1587 1588 /* Send the command and return */ 1589 fddata_wr(fdc, x); 1590 TRACE1("[0x%x->FDDATA]", x); 1591 return (0); 1592 } 1593 1594 /* 1595 * Block device driver interface functions (interspersed with even more 1596 * auxiliary functions). 1597 */ 1598 static int 1599 fdopen(dev_t dev, int flags, int mode, struct thread *td) 1600 { 1601 int type = FDTYPE(minor(dev)); 1602 fd_p fd; 1603 fdc_p fdc; 1604 int rv, unitattn, dflags; 1605 1606 fd = dev->si_drv1; 1607 if (fd == NULL) 1608 return (ENXIO); 1609 fdc = fd->fdc; 1610 if ((fdc == NULL) || (fd->type == FDT_NONE)) 1611 return (ENXIO); 1612 if (type > NUMDENS) 1613 return (ENXIO); 1614 dflags = device_get_flags(fd->dev); 1615 /* 1616 * This is a bit bogus. It's still possible that e. g. a 1617 * descriptor gets inherited to a child, but then it's at 1618 * least for the same subdevice. By checking FD_OPEN here, we 1619 * can ensure that a device isn't attempted to be opened with 1620 * different densities at the same time where the second open 1621 * could clobber the settings from the first one. 1622 */ 1623 if (fd->flags & FD_OPEN) 1624 return (EBUSY); 1625 1626 if (type == 0) { 1627 if (flags & FNONBLOCK) { 1628 /* 1629 * Unfortunately, physio(9) discards its ioflag 1630 * argument, thus preventing us from seeing the 1631 * IO_NDELAY bit. So we need to keep track 1632 * ourselves. 1633 */ 1634 fd->flags |= FD_NONBLOCK; 1635 fd->ft = 0; 1636 } else { 1637 /* 1638 * Figure out a unit attention condition. 1639 * 1640 * If UA has been forced, proceed. 1641 * 1642 * If the drive has no changeline support, 1643 * or if the drive parameters have been lost 1644 * due to previous non-blocking access, 1645 * assume a forced UA condition. 1646 * 1647 * If motor is off, turn it on for a moment 1648 * and select our drive, in order to read the 1649 * UA hardware signal. 1650 * 1651 * If motor is on, and our drive is currently 1652 * selected, just read the hardware bit. 1653 * 1654 * If motor is on, but active for another 1655 * drive on that controller, we are lost. We 1656 * cannot risk to deselect the other drive, so 1657 * we just assume a forced UA condition to be 1658 * on the safe side. 1659 */ 1660 unitattn = 0; 1661 if ((dflags & FD_NO_CHLINE) != 0 || 1662 (fd->flags & FD_UA) != 0 || 1663 fd->ft == 0) { 1664 unitattn = 1; 1665 fd->flags &= ~FD_UA; 1666 } else if (fdc->fdout & (FDO_MOEN0 | FDO_MOEN1 | 1667 FDO_MOEN2 | FDO_MOEN3)) { 1668 if ((fdc->fdout & FDO_FDSEL) == fd->fdsu) 1669 unitattn = fdin_rd(fdc) & FDI_DCHG; 1670 else 1671 unitattn = 1; 1672 } else { 1673 set_motor(fdc, fd->fdsu, TURNON); 1674 unitattn = fdin_rd(fdc) & FDI_DCHG; 1675 set_motor(fdc, fd->fdsu, TURNOFF); 1676 } 1677 if (unitattn && (rv = fdautoselect(dev)) != 0) 1678 return (rv); 1679 } 1680 } else { 1681 fd->ft = fd->fts + type; 1682 } 1683 fd->flags |= FD_OPEN; 1684 /* 1685 * Clearing the DMA overrun counter at open time is a bit messy. 1686 * Since we're only managing one counter per controller, opening 1687 * the second drive could mess it up. Anyway, if the DMA overrun 1688 * condition is really persistent, it will eventually time out 1689 * still. OTOH, clearing it here will ensure we'll at least start 1690 * trying again after a previous (maybe even long ago) failure. 1691 * Also, this is merely a stop-gap measure only that should not 1692 * happen during normal operation, so we can tolerate it to be a 1693 * bit sloppy about this. 1694 */ 1695 fdc->dma_overruns = 0; 1696 1697 return 0; 1698 } 1699 1700 static int 1701 fdclose(dev_t dev, int flags, int mode, struct thread *td) 1702 { 1703 struct fd_data *fd; 1704 1705 fd = dev->si_drv1; 1706 fd->flags &= ~(FD_OPEN | FD_NONBLOCK); 1707 fd->options &= ~(FDOPT_NORETRY | FDOPT_NOERRLOG | FDOPT_NOERROR); 1708 1709 return (0); 1710 } 1711 1712 static void 1713 fdstrategy(struct bio *bp) 1714 { 1715 long blknum, nblocks; 1716 int s; 1717 fdu_t fdu; 1718 fdc_p fdc; 1719 fd_p fd; 1720 size_t fdblk; 1721 1722 fdu = FDUNIT(minor(bp->bio_dev)); 1723 fd = bp->bio_dev->si_drv1; 1724 if (fd == NULL) 1725 panic("fdstrategy: buf for nonexistent device (%#lx, %#lx)", 1726 (u_long)major(bp->bio_dev), (u_long)minor(bp->bio_dev)); 1727 fdc = fd->fdc; 1728 bp->bio_resid = bp->bio_bcount; 1729 if (fd->type == FDT_NONE || fd->ft == 0) { 1730 if (fd->type != FDT_NONE && (fd->flags & FD_NONBLOCK)) 1731 bp->bio_error = EAGAIN; 1732 else 1733 bp->bio_error = ENXIO; 1734 bp->bio_flags |= BIO_ERROR; 1735 goto bad; 1736 } 1737 fdblk = 128 << (fd->ft->secsize); 1738 if (bp->bio_cmd != FDBIO_FORMAT && bp->bio_cmd != FDBIO_RDSECTID) { 1739 if (fd->flags & FD_NONBLOCK) { 1740 bp->bio_error = EAGAIN; 1741 bp->bio_flags |= BIO_ERROR; 1742 goto bad; 1743 } 1744 if (bp->bio_offset < 0) { 1745 printf( 1746 "fd%d: fdstrat: bad request offset = %ju, bcount = %ld\n", 1747 fdu, (intmax_t)bp->bio_offset, bp->bio_bcount); 1748 bp->bio_error = EINVAL; 1749 bp->bio_flags |= BIO_ERROR; 1750 goto bad; 1751 } 1752 if ((bp->bio_bcount % fdblk) != 0) { 1753 bp->bio_error = EINVAL; 1754 bp->bio_flags |= BIO_ERROR; 1755 goto bad; 1756 } 1757 } 1758 1759 /* 1760 * Set up block calculations. 1761 */ 1762 if (bp->bio_offset >= ((off_t)128 << fd->ft->secsize) * fd->ft->size) { 1763 bp->bio_error = EINVAL; 1764 bp->bio_flags |= BIO_ERROR; 1765 goto bad; 1766 } 1767 blknum = bp->bio_offset / fdblk; 1768 nblocks = fd->ft->size; 1769 if (blknum + bp->bio_bcount / fdblk > nblocks) { 1770 if (blknum >= nblocks) { 1771 if (bp->bio_cmd != BIO_READ) { 1772 bp->bio_error = ENOSPC; 1773 bp->bio_flags |= BIO_ERROR; 1774 } 1775 goto bad; /* not always bad, but EOF */ 1776 } 1777 bp->bio_bcount = (nblocks - blknum) * fdblk; 1778 } 1779 bp->bio_pblkno = blknum; 1780 s = splbio(); 1781 bioq_disksort(&fdc->head, bp); 1782 untimeout(fd_turnoff, fd, fd->toffhandle); /* a good idea */ 1783 devstat_start_transaction_bio(fd->device_stats, bp); 1784 device_busy(fd->dev); 1785 fdstart(fdc); 1786 splx(s); 1787 return; 1788 1789 bad: 1790 biodone(bp); 1791 } 1792 1793 /* 1794 * fdstart 1795 * 1796 * We have just queued something. If the controller is not busy 1797 * then simulate the case where it has just finished a command 1798 * So that it (the interrupt routine) looks on the queue for more 1799 * work to do and picks up what we just added. 1800 * 1801 * If the controller is already busy, we need do nothing, as it 1802 * will pick up our work when the present work completes. 1803 */ 1804 static void 1805 fdstart(struct fdc_data *fdc) 1806 { 1807 int s; 1808 1809 s = splbio(); 1810 if(fdc->state == DEVIDLE) 1811 { 1812 fdc_intr(fdc); 1813 } 1814 splx(s); 1815 } 1816 1817 static void 1818 fd_iotimeout(void *xfdc) 1819 { 1820 fdc_p fdc; 1821 int s; 1822 1823 fdc = xfdc; 1824 TRACE1("fd%d[fd_iotimeout()]", fdc->fdu); 1825 1826 /* 1827 * Due to IBM's brain-dead design, the FDC has a faked ready 1828 * signal, hardwired to ready == true. Thus, any command 1829 * issued if there's no diskette in the drive will _never_ 1830 * complete, and must be aborted by resetting the FDC. 1831 * Many thanks, Big Blue! 1832 * The FDC must not be reset directly, since that would 1833 * interfere with the state machine. Instead, pretend that 1834 * the command completed but was invalid. The state machine 1835 * will reset the FDC and retry once. 1836 */ 1837 s = splbio(); 1838 fdc->status[0] = NE7_ST0_IC_IV; 1839 fdc->flags &= ~FDC_STAT_VALID; 1840 fdc->state = IOTIMEDOUT; 1841 fdc_intr(fdc); 1842 splx(s); 1843 } 1844 1845 /* Just ensure it has the right spl. */ 1846 static void 1847 fd_pseudointr(void *xfdc) 1848 { 1849 int s; 1850 1851 s = splbio(); 1852 fdc_intr(xfdc); 1853 splx(s); 1854 } 1855 1856 /* 1857 * fdc_intr 1858 * 1859 * Keep calling the state machine until it returns a 0. 1860 * Always called at splbio. 1861 */ 1862 static void 1863 fdc_intr(void *xfdc) 1864 { 1865 fdc_p fdc = xfdc; 1866 while(fdstate(fdc)) 1867 ; 1868 } 1869 1870 /* 1871 * Magic pseudo-DMA initialization for YE FDC. Sets count and 1872 * direction. 1873 */ 1874 #define SET_BCDR(fdc,wr,cnt,port) \ 1875 bus_space_write_1(fdc->portt, fdc->porth, fdc->port_off + port, \ 1876 ((cnt)-1) & 0xff); \ 1877 bus_space_write_1(fdc->portt, fdc->porth, fdc->port_off + port + 1, \ 1878 ((wr ? 0x80 : 0) | ((((cnt)-1) >> 8) & 0x7f))); 1879 1880 /* 1881 * fdcpio(): perform programmed IO read/write for YE PCMCIA floppy. 1882 */ 1883 static int 1884 fdcpio(fdc_p fdc, long flags, caddr_t addr, u_int count) 1885 { 1886 u_char *cptr = (u_char *)addr; 1887 1888 if (flags == BIO_READ) { 1889 if (fdc->state != PIOREAD) { 1890 fdc->state = PIOREAD; 1891 return(0); 1892 } 1893 SET_BCDR(fdc, 0, count, 0); 1894 bus_space_read_multi_1(fdc->portt, fdc->porth, fdc->port_off + 1895 FDC_YE_DATAPORT, cptr, count); 1896 } else { 1897 bus_space_write_multi_1(fdc->portt, fdc->porth, fdc->port_off + 1898 FDC_YE_DATAPORT, cptr, count); 1899 SET_BCDR(fdc, 0, count, 0); 1900 } 1901 return(1); 1902 } 1903 1904 /* 1905 * Try figuring out the density of the media present in our device. 1906 */ 1907 static int 1908 fdautoselect(dev_t dev) 1909 { 1910 fdu_t fdu; 1911 fd_p fd; 1912 struct fd_type *fdtp; 1913 struct fdc_readid id; 1914 int i, n, oopts, rv; 1915 1916 fdu = FDUNIT(minor(dev)); 1917 fd = dev->si_drv1; 1918 1919 switch (fd->type) { 1920 default: 1921 return (ENXIO); 1922 1923 case FDT_360K: 1924 case FDT_720K: 1925 /* no autoselection on those drives */ 1926 fd->ft = fd_native_types + fd->type; 1927 return (0); 1928 1929 case FDT_12M: 1930 fdtp = fd_searchlist_12m; 1931 n = sizeof fd_searchlist_12m / sizeof(struct fd_type); 1932 break; 1933 1934 case FDT_144M: 1935 fdtp = fd_searchlist_144m; 1936 n = sizeof fd_searchlist_144m / sizeof(struct fd_type); 1937 break; 1938 1939 case FDT_288M: 1940 fdtp = fd_searchlist_288m; 1941 n = sizeof fd_searchlist_288m / sizeof(struct fd_type); 1942 break; 1943 } 1944 1945 /* 1946 * Try reading sector ID fields, first at cylinder 0, head 0, 1947 * then at cylinder 2, head N. We don't probe cylinder 1, 1948 * since for 5.25in DD media in a HD drive, there are no data 1949 * to read (2 step pulses per media cylinder required). For 1950 * two-sided media, the second probe always goes to head 1, so 1951 * we can tell them apart from single-sided media. As a 1952 * side-effect this means that single-sided media should be 1953 * mentioned in the search list after two-sided media of an 1954 * otherwise identical density. Media with a different number 1955 * of sectors per track but otherwise identical parameters 1956 * cannot be distinguished at all. 1957 * 1958 * If we successfully read an ID field on both cylinders where 1959 * the recorded values match our expectation, we are done. 1960 * Otherwise, we try the next density entry from the table. 1961 * 1962 * Stepping to cylinder 2 has the side-effect of clearing the 1963 * unit attention bit. 1964 */ 1965 oopts = fd->options; 1966 fd->options |= FDOPT_NOERRLOG | FDOPT_NORETRY; 1967 for (i = 0; i < n; i++, fdtp++) { 1968 fd->ft = fdtp; 1969 1970 id.cyl = id.head = 0; 1971 rv = fdmisccmd(dev, FDBIO_RDSECTID, &id); 1972 if (rv != 0) 1973 continue; 1974 if (id.cyl != 0 || id.head != 0 || 1975 id.secshift != fdtp->secsize) 1976 continue; 1977 id.cyl = 2; 1978 id.head = fd->ft->heads - 1; 1979 rv = fdmisccmd(dev, FDBIO_RDSECTID, &id); 1980 if (id.cyl != 2 || id.head != fdtp->heads - 1 || 1981 id.secshift != fdtp->secsize) 1982 continue; 1983 if (rv == 0) 1984 break; 1985 } 1986 1987 fd->options = oopts; 1988 if (i == n) { 1989 if (bootverbose) 1990 device_printf(fd->dev, "autoselection failed\n"); 1991 fd->ft = 0; 1992 return (EIO); 1993 } else { 1994 if (bootverbose) 1995 device_printf(fd->dev, "autoselected %d KB medium\n", 1996 fd->ft->size / 2); 1997 return (0); 1998 } 1999 } 2000 2001 2002 /* 2003 * The controller state machine. 2004 * 2005 * If it returns a non zero value, it should be called again immediately. 2006 */ 2007 static int 2008 fdstate(fdc_p fdc) 2009 { 2010 struct fdc_readid *idp; 2011 int read, format, rdsectid, cylinder, head, i, sec = 0, sectrac; 2012 int st0, cyl, st3, idf, ne7cmd, mfm, steptrac; 2013 unsigned long blknum; 2014 fdu_t fdu = fdc->fdu; 2015 fd_p fd; 2016 register struct bio *bp; 2017 struct fd_formb *finfo = NULL; 2018 size_t fdblk; 2019 2020 bp = fdc->bp; 2021 if (bp == NULL) { 2022 bp = bioq_first(&fdc->head); 2023 if (bp != NULL) { 2024 bioq_remove(&fdc->head, bp); 2025 fdc->bp = bp; 2026 } 2027 } 2028 if (bp == NULL) { 2029 /* 2030 * Nothing left for this controller to do, 2031 * force into the IDLE state. 2032 */ 2033 fdc->state = DEVIDLE; 2034 if (fdc->fd) { 2035 device_printf(fdc->fdc_dev, 2036 "unexpected valid fd pointer\n"); 2037 fdc->fd = (fd_p) 0; 2038 fdc->fdu = -1; 2039 } 2040 TRACE1("[fdc%d IDLE]", fdc->fdcu); 2041 return (0); 2042 } 2043 fdu = FDUNIT(minor(bp->bio_dev)); 2044 fd = bp->bio_dev->si_drv1; 2045 fdblk = 128 << fd->ft->secsize; 2046 if (fdc->fd && (fd != fdc->fd)) 2047 device_printf(fd->dev, "confused fd pointers\n"); 2048 read = bp->bio_cmd == BIO_READ; 2049 mfm = (fd->ft->flags & FL_MFM)? NE7CMD_MFM: 0; 2050 steptrac = (fd->ft->flags & FL_2STEP)? 2: 1; 2051 if (read) 2052 idf = ISADMA_READ; 2053 else 2054 idf = ISADMA_WRITE; 2055 format = bp->bio_cmd == FDBIO_FORMAT; 2056 rdsectid = bp->bio_cmd == FDBIO_RDSECTID; 2057 if (format) 2058 finfo = (struct fd_formb *)bp->bio_data; 2059 TRACE1("fd%d", fdu); 2060 TRACE1("[%s]", fdstates[fdc->state]); 2061 TRACE1("(0x%x)", fd->flags); 2062 untimeout(fd_turnoff, fd, fd->toffhandle); 2063 fd->toffhandle = timeout(fd_turnoff, fd, 4 * hz); 2064 switch (fdc->state) 2065 { 2066 case DEVIDLE: 2067 case FINDWORK: /* we have found new work */ 2068 fdc->retry = 0; 2069 fd->skip = 0; 2070 fdc->fd = fd; 2071 fdc->fdu = fdu; 2072 fdc->fdctl_wr(fdc, fd->ft->trans); 2073 TRACE1("[0x%x->FDCTL]", fd->ft->trans); 2074 /* 2075 * If the next drive has a motor startup pending, then 2076 * it will start up in its own good time. 2077 */ 2078 if(fd->flags & FD_MOTOR_WAIT) { 2079 fdc->state = MOTORWAIT; 2080 return (0); /* will return later */ 2081 } 2082 /* 2083 * Maybe if it's not starting, it SHOULD be starting. 2084 */ 2085 if (!(fd->flags & FD_MOTOR)) 2086 { 2087 fdc->state = MOTORWAIT; 2088 fd_turnon(fd); 2089 return (0); /* will return later */ 2090 } 2091 else /* at least make sure we are selected */ 2092 { 2093 set_motor(fdc, fd->fdsu, TURNON); 2094 } 2095 if (fdc->flags & FDC_NEEDS_RESET) { 2096 fdc->state = RESETCTLR; 2097 fdc->flags &= ~FDC_NEEDS_RESET; 2098 } else 2099 fdc->state = DOSEEK; 2100 return (1); /* will return immediately */ 2101 2102 case DOSEEK: 2103 blknum = bp->bio_pblkno + fd->skip / fdblk; 2104 cylinder = blknum / (fd->ft->sectrac * fd->ft->heads); 2105 if (cylinder == fd->track) 2106 { 2107 fdc->state = SEEKCOMPLETE; 2108 return (1); /* will return immediately */ 2109 } 2110 if (fd_cmd(fdc, 3, NE7CMD_SEEK, 2111 fd->fdsu, cylinder * steptrac, 0)) 2112 { 2113 /* 2114 * Seek command not accepted, looks like 2115 * the FDC went off to the Saints... 2116 */ 2117 fdc->retry = 6; /* try a reset */ 2118 return(retrier(fdc)); 2119 } 2120 fd->track = FD_NO_TRACK; 2121 fdc->state = SEEKWAIT; 2122 return(0); /* will return later */ 2123 2124 case SEEKWAIT: 2125 /* allow heads to settle */ 2126 timeout(fd_pseudointr, fdc, hz / 16); 2127 fdc->state = SEEKCOMPLETE; 2128 return(0); /* will return later */ 2129 2130 case SEEKCOMPLETE : /* seek done, start DMA */ 2131 blknum = bp->bio_pblkno + fd->skip / fdblk; 2132 cylinder = blknum / (fd->ft->sectrac * fd->ft->heads); 2133 2134 /* Make sure seek really happened. */ 2135 if(fd->track == FD_NO_TRACK) { 2136 int descyl = cylinder * steptrac; 2137 do { 2138 /* 2139 * This might be a "ready changed" interrupt, 2140 * which cannot really happen since the 2141 * RDY pin is hardwired to + 5 volts. This 2142 * generally indicates a "bouncing" intr 2143 * line, so do one of the following: 2144 * 2145 * When running on an enhanced FDC that is 2146 * known to not go stuck after responding 2147 * with INVALID, fetch all interrupt states 2148 * until seeing either an INVALID or a 2149 * real interrupt condition. 2150 * 2151 * When running on a dumb old NE765, give 2152 * up immediately. The controller will 2153 * provide up to four dummy RC interrupt 2154 * conditions right after reset (for the 2155 * corresponding four drives), so this is 2156 * our only chance to get notice that it 2157 * was not the FDC that caused the interrupt. 2158 */ 2159 if (fd_sense_int(fdc, &st0, &cyl) 2160 == FD_NOT_VALID) 2161 return (0); /* will return later */ 2162 if(fdc->fdct == FDC_NE765 2163 && (st0 & NE7_ST0_IC) == NE7_ST0_IC_RC) 2164 return (0); /* hope for a real intr */ 2165 } while ((st0 & NE7_ST0_IC) == NE7_ST0_IC_RC); 2166 2167 if (0 == descyl) { 2168 int failed = 0; 2169 /* 2170 * seek to cyl 0 requested; make sure we are 2171 * really there 2172 */ 2173 if (fd_sense_drive_status(fdc, &st3)) 2174 failed = 1; 2175 if ((st3 & NE7_ST3_T0) == 0) { 2176 printf( 2177 "fd%d: Seek to cyl 0, but not really there (ST3 = %b)\n", 2178 fdu, st3, NE7_ST3BITS); 2179 failed = 1; 2180 } 2181 2182 if (failed) { 2183 if(fdc->retry < 3) 2184 fdc->retry = 3; 2185 return (retrier(fdc)); 2186 } 2187 } 2188 2189 if (cyl != descyl) { 2190 printf( 2191 "fd%d: Seek to cyl %d failed; am at cyl %d (ST0 = 0x%x)\n", 2192 fdu, descyl, cyl, st0); 2193 if (fdc->retry < 3) 2194 fdc->retry = 3; 2195 return (retrier(fdc)); 2196 } 2197 } 2198 2199 fd->track = cylinder; 2200 if (format) 2201 fd->skip = (char *)&(finfo->fd_formb_cylno(0)) 2202 - (char *)finfo; 2203 if (!rdsectid && !(fdc->flags & FDC_NODMA)) 2204 isa_dmastart(idf, bp->bio_data+fd->skip, 2205 format ? bp->bio_bcount : fdblk, fdc->dmachan); 2206 blknum = bp->bio_pblkno + fd->skip / fdblk; 2207 sectrac = fd->ft->sectrac; 2208 sec = blknum % (sectrac * fd->ft->heads); 2209 head = sec / sectrac; 2210 sec = sec % sectrac + 1; 2211 if (head != 0 && fd->ft->offset_side2 != 0) 2212 sec += fd->ft->offset_side2; 2213 fd->hddrv = ((head&1)<<2)+fdu; 2214 2215 if(format || !(read || rdsectid)) 2216 { 2217 /* make sure the drive is writable */ 2218 if(fd_sense_drive_status(fdc, &st3) != 0) 2219 { 2220 /* stuck controller? */ 2221 if (!(fdc->flags & FDC_NODMA)) 2222 isa_dmadone(idf, 2223 bp->bio_data + fd->skip, 2224 format ? bp->bio_bcount : fdblk, 2225 fdc->dmachan); 2226 fdc->retry = 6; /* reset the beast */ 2227 return (retrier(fdc)); 2228 } 2229 if(st3 & NE7_ST3_WP) 2230 { 2231 /* 2232 * XXX YES! this is ugly. 2233 * in order to force the current operation 2234 * to fail, we will have to fake an FDC 2235 * error - all error handling is done 2236 * by the retrier() 2237 */ 2238 fdc->status[0] = NE7_ST0_IC_AT; 2239 fdc->status[1] = NE7_ST1_NW; 2240 fdc->status[2] = 0; 2241 fdc->status[3] = fd->track; 2242 fdc->status[4] = head; 2243 fdc->status[5] = sec; 2244 fdc->retry = 8; /* break out immediately */ 2245 fdc->state = IOTIMEDOUT; /* not really... */ 2246 return (1); /* will return immediately */ 2247 } 2248 } 2249 2250 if (format) { 2251 ne7cmd = NE7CMD_FORMAT | mfm; 2252 if (fdc->flags & FDC_NODMA) { 2253 /* 2254 * This seems to be necessary for 2255 * whatever obscure reason; if we omit 2256 * it, we end up filling the sector ID 2257 * fields of the newly formatted track 2258 * entirely with garbage, causing 2259 * `wrong cylinder' errors all over 2260 * the place when trying to read them 2261 * back. 2262 * 2263 * Umpf. 2264 */ 2265 SET_BCDR(fdc, 1, bp->bio_bcount, 0); 2266 2267 (void)fdcpio(fdc,bp->bio_cmd, 2268 bp->bio_data+fd->skip, 2269 bp->bio_bcount); 2270 2271 } 2272 /* formatting */ 2273 if(fd_cmd(fdc, 6, ne7cmd, head << 2 | fdu, 2274 finfo->fd_formb_secshift, 2275 finfo->fd_formb_nsecs, 2276 finfo->fd_formb_gaplen, 2277 finfo->fd_formb_fillbyte, 0)) { 2278 /* controller fell over */ 2279 if (!(fdc->flags & FDC_NODMA)) 2280 isa_dmadone(idf, 2281 bp->bio_data + fd->skip, 2282 format ? bp->bio_bcount : fdblk, 2283 fdc->dmachan); 2284 fdc->retry = 6; 2285 return (retrier(fdc)); 2286 } 2287 } else if (rdsectid) { 2288 ne7cmd = NE7CMD_READID | mfm; 2289 if (fd_cmd(fdc, 2, ne7cmd, head << 2 | fdu, 0)) { 2290 /* controller jamming */ 2291 fdc->retry = 6; 2292 return (retrier(fdc)); 2293 } 2294 } else { 2295 /* read or write operation */ 2296 ne7cmd = (read ? NE7CMD_READ | NE7CMD_SK : NE7CMD_WRITE) | mfm; 2297 if (fdc->flags & FDC_NODMA) { 2298 /* 2299 * This seems to be necessary even when 2300 * reading data. 2301 */ 2302 SET_BCDR(fdc, 1, fdblk, 0); 2303 2304 /* 2305 * Perform the write pseudo-DMA before 2306 * the WRITE command is sent. 2307 */ 2308 if (!read) 2309 (void)fdcpio(fdc,bp->bio_cmd, 2310 bp->bio_data+fd->skip, 2311 fdblk); 2312 } 2313 if (fd_cmd(fdc, 9, 2314 ne7cmd, 2315 head << 2 | fdu, /* head & unit */ 2316 fd->track, /* track */ 2317 head, 2318 sec, /* sector + 1 */ 2319 fd->ft->secsize, /* sector size */ 2320 sectrac, /* sectors/track */ 2321 fd->ft->gap, /* gap size */ 2322 fd->ft->datalen, /* data length */ 2323 0)) { 2324 /* the beast is sleeping again */ 2325 if (!(fdc->flags & FDC_NODMA)) 2326 isa_dmadone(idf, 2327 bp->bio_data + fd->skip, 2328 format ? bp->bio_bcount : fdblk, 2329 fdc->dmachan); 2330 fdc->retry = 6; 2331 return (retrier(fdc)); 2332 } 2333 } 2334 if (!rdsectid && (fdc->flags & FDC_NODMA)) 2335 /* 2336 * If this is a read, then simply await interrupt 2337 * before performing PIO. 2338 */ 2339 if (read && !fdcpio(fdc,bp->bio_cmd, 2340 bp->bio_data+fd->skip,fdblk)) { 2341 fd->tohandle = timeout(fd_iotimeout, fdc, hz); 2342 return(0); /* will return later */ 2343 } 2344 2345 /* 2346 * Write (or format) operation will fall through and 2347 * await completion interrupt. 2348 */ 2349 fdc->state = IOCOMPLETE; 2350 fd->tohandle = timeout(fd_iotimeout, fdc, hz); 2351 return (0); /* will return later */ 2352 2353 case PIOREAD: 2354 /* 2355 * Actually perform the PIO read. The IOCOMPLETE case 2356 * removes the timeout for us. 2357 */ 2358 (void)fdcpio(fdc,bp->bio_cmd,bp->bio_data+fd->skip,fdblk); 2359 fdc->state = IOCOMPLETE; 2360 /* FALLTHROUGH */ 2361 case IOCOMPLETE: /* IO done, post-analyze */ 2362 untimeout(fd_iotimeout, fdc, fd->tohandle); 2363 2364 if (fd_read_status(fdc)) { 2365 if (!rdsectid && !(fdc->flags & FDC_NODMA)) 2366 isa_dmadone(idf, bp->bio_data + fd->skip, 2367 format ? bp->bio_bcount : fdblk, 2368 fdc->dmachan); 2369 if (fdc->retry < 6) 2370 fdc->retry = 6; /* force a reset */ 2371 return (retrier(fdc)); 2372 } 2373 2374 fdc->state = IOTIMEDOUT; 2375 2376 /* FALLTHROUGH */ 2377 case IOTIMEDOUT: 2378 if (!rdsectid && !(fdc->flags & FDC_NODMA)) 2379 isa_dmadone(idf, bp->bio_data + fd->skip, 2380 format ? bp->bio_bcount : fdblk, fdc->dmachan); 2381 if (fdc->status[0] & NE7_ST0_IC) { 2382 if ((fdc->status[0] & NE7_ST0_IC) == NE7_ST0_IC_AT 2383 && fdc->status[1] & NE7_ST1_OR) { 2384 /* 2385 * DMA overrun. Someone hogged the bus and 2386 * didn't release it in time for the next 2387 * FDC transfer. 2388 * 2389 * We normally restart this without bumping 2390 * the retry counter. However, in case 2391 * something is seriously messed up (like 2392 * broken hardware), we rather limit the 2393 * number of retries so the IO operation 2394 * doesn't block indefinately. 2395 */ 2396 if (fdc->dma_overruns++ < FDC_DMAOV_MAX) { 2397 fdc->state = SEEKCOMPLETE; 2398 return (1);/* will return immediately */ 2399 } /* else fall through */ 2400 } 2401 if((fdc->status[0] & NE7_ST0_IC) == NE7_ST0_IC_IV 2402 && fdc->retry < 6) 2403 fdc->retry = 6; /* force a reset */ 2404 else if((fdc->status[0] & NE7_ST0_IC) == NE7_ST0_IC_AT 2405 && fdc->status[2] & NE7_ST2_WC 2406 && fdc->retry < 3) 2407 fdc->retry = 3; /* force recalibrate */ 2408 return (retrier(fdc)); 2409 } 2410 /* All OK */ 2411 if (rdsectid) { 2412 /* copy out ID field contents */ 2413 idp = (struct fdc_readid *)bp->bio_data; 2414 idp->cyl = fdc->status[3]; 2415 idp->head = fdc->status[4]; 2416 idp->sec = fdc->status[5]; 2417 idp->secshift = fdc->status[6]; 2418 } 2419 /* Operation successful, retry DMA overruns again next time. */ 2420 fdc->dma_overruns = 0; 2421 fd->skip += fdblk; 2422 if (!rdsectid && !format && fd->skip < bp->bio_bcount) { 2423 /* set up next transfer */ 2424 fdc->state = DOSEEK; 2425 } else { 2426 /* ALL DONE */ 2427 fd->skip = 0; 2428 bp->bio_resid = 0; 2429 fdc->bp = NULL; 2430 device_unbusy(fd->dev); 2431 biofinish(bp, fd->device_stats, 0); 2432 fdc->fd = (fd_p) 0; 2433 fdc->fdu = -1; 2434 fdc->state = FINDWORK; 2435 } 2436 return (1); /* will return immediately */ 2437 2438 case RESETCTLR: 2439 fdc_reset(fdc); 2440 fdc->retry++; 2441 fdc->state = RESETCOMPLETE; 2442 return (0); /* will return later */ 2443 2444 case RESETCOMPLETE: 2445 /* 2446 * Discard all the results from the reset so that they 2447 * can't cause an unexpected interrupt later. 2448 */ 2449 for (i = 0; i < 4; i++) 2450 (void)fd_sense_int(fdc, &st0, &cyl); 2451 fdc->state = STARTRECAL; 2452 /* FALLTHROUGH */ 2453 case STARTRECAL: 2454 if(fd_cmd(fdc, 2, NE7CMD_RECAL, fdu, 0)) { 2455 /* arrgl */ 2456 fdc->retry = 6; 2457 return (retrier(fdc)); 2458 } 2459 fdc->state = RECALWAIT; 2460 return (0); /* will return later */ 2461 2462 case RECALWAIT: 2463 /* allow heads to settle */ 2464 timeout(fd_pseudointr, fdc, hz / 8); 2465 fdc->state = RECALCOMPLETE; 2466 return (0); /* will return later */ 2467 2468 case RECALCOMPLETE: 2469 do { 2470 /* 2471 * See SEEKCOMPLETE for a comment on this: 2472 */ 2473 if (fd_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 2474 return (0); /* will return later */ 2475 if(fdc->fdct == FDC_NE765 2476 && (st0 & NE7_ST0_IC) == NE7_ST0_IC_RC) 2477 return (0); /* hope for a real intr */ 2478 } while ((st0 & NE7_ST0_IC) == NE7_ST0_IC_RC); 2479 if ((st0 & NE7_ST0_IC) != NE7_ST0_IC_NT || cyl != 0) 2480 { 2481 if(fdc->retry > 3) 2482 /* 2483 * A recalibrate from beyond cylinder 77 2484 * will "fail" due to the FDC limitations; 2485 * since people used to complain much about 2486 * the failure message, try not logging 2487 * this one if it seems to be the first 2488 * time in a line. 2489 */ 2490 printf("fd%d: recal failed ST0 %b cyl %d\n", 2491 fdu, st0, NE7_ST0BITS, cyl); 2492 if(fdc->retry < 3) fdc->retry = 3; 2493 return (retrier(fdc)); 2494 } 2495 fd->track = 0; 2496 /* Seek (probably) necessary */ 2497 fdc->state = DOSEEK; 2498 return (1); /* will return immediately */ 2499 2500 case MOTORWAIT: 2501 if(fd->flags & FD_MOTOR_WAIT) 2502 { 2503 return (0); /* time's not up yet */ 2504 } 2505 if (fdc->flags & FDC_NEEDS_RESET) { 2506 fdc->state = RESETCTLR; 2507 fdc->flags &= ~FDC_NEEDS_RESET; 2508 } else 2509 fdc->state = DOSEEK; 2510 return (1); /* will return immediately */ 2511 2512 default: 2513 device_printf(fdc->fdc_dev, "unexpected FD int->"); 2514 if (fd_read_status(fdc) == 0) 2515 printf("FDC status :%x %x %x %x %x %x %x ", 2516 fdc->status[0], 2517 fdc->status[1], 2518 fdc->status[2], 2519 fdc->status[3], 2520 fdc->status[4], 2521 fdc->status[5], 2522 fdc->status[6] ); 2523 else 2524 printf("No status available "); 2525 if (fd_sense_int(fdc, &st0, &cyl) != 0) 2526 { 2527 printf("[controller is dead now]\n"); 2528 return (0); /* will return later */ 2529 } 2530 printf("ST0 = %x, PCN = %x\n", st0, cyl); 2531 return (0); /* will return later */ 2532 } 2533 /* noone should ever get here */ 2534 } 2535 2536 static int 2537 retrier(struct fdc_data *fdc) 2538 { 2539 struct bio *bp; 2540 struct fd_data *fd; 2541 int fdu; 2542 2543 bp = fdc->bp; 2544 2545 /* XXX shouldn't this be cached somewhere? */ 2546 fdu = FDUNIT(minor(bp->bio_dev)); 2547 fd = bp->bio_dev->si_drv1; 2548 if (fd->options & FDOPT_NORETRY) 2549 goto fail; 2550 2551 switch (fdc->retry) { 2552 case 0: case 1: case 2: 2553 fdc->state = SEEKCOMPLETE; 2554 break; 2555 case 3: case 4: case 5: 2556 fdc->state = STARTRECAL; 2557 break; 2558 case 6: 2559 fdc->state = RESETCTLR; 2560 break; 2561 case 7: 2562 break; 2563 default: 2564 fail: 2565 if ((fd->options & FDOPT_NOERRLOG) == 0) { 2566 disk_err(bp, "hard error", 2567 fdc->fd->skip / DEV_BSIZE, 0); 2568 if (fdc->flags & FDC_STAT_VALID) { 2569 printf( 2570 " (ST0 %b ST1 %b ST2 %b cyl %u hd %u sec %u)\n", 2571 fdc->status[0], NE7_ST0BITS, 2572 fdc->status[1], NE7_ST1BITS, 2573 fdc->status[2], NE7_ST2BITS, 2574 fdc->status[3], fdc->status[4], 2575 fdc->status[5]); 2576 } 2577 else 2578 printf(" (No status)\n"); 2579 } 2580 if ((fd->options & FDOPT_NOERROR) == 0) { 2581 bp->bio_flags |= BIO_ERROR; 2582 bp->bio_error = EIO; 2583 bp->bio_resid = bp->bio_bcount - fdc->fd->skip; 2584 } else 2585 bp->bio_resid = 0; 2586 fdc->bp = NULL; 2587 fdc->fd->skip = 0; 2588 device_unbusy(fd->dev); 2589 biofinish(bp, fdc->fd->device_stats, 0); 2590 fdc->state = FINDWORK; 2591 fdc->flags |= FDC_NEEDS_RESET; 2592 fdc->fd = (fd_p) 0; 2593 fdc->fdu = -1; 2594 return (1); 2595 } 2596 fdc->retry++; 2597 return (1); 2598 } 2599 2600 static void 2601 fdbiodone(struct bio *bp) 2602 { 2603 wakeup(bp); 2604 } 2605 2606 static int 2607 fdmisccmd(dev_t dev, u_int cmd, void *data) 2608 { 2609 fdu_t fdu; 2610 fd_p fd; 2611 struct bio *bp; 2612 struct fd_formb *finfo; 2613 struct fdc_readid *idfield; 2614 size_t fdblk; 2615 int error; 2616 2617 fdu = FDUNIT(minor(dev)); 2618 fd = dev->si_drv1; 2619 fdblk = 128 << fd->ft->secsize; 2620 finfo = (struct fd_formb *)data; 2621 idfield = (struct fdc_readid *)data; 2622 2623 bp = malloc(sizeof(struct bio), M_TEMP, M_WAITOK | M_ZERO); 2624 2625 /* 2626 * Set up a bio request for fdstrategy(). bio_offset is faked 2627 * so that fdstrategy() will seek to the the requested 2628 * cylinder, and use the desired head. 2629 */ 2630 bp->bio_cmd = cmd; 2631 if (cmd == FDBIO_FORMAT) { 2632 bp->bio_offset = 2633 (finfo->cyl * (fd->ft->sectrac * fd->ft->heads) + 2634 finfo->head * fd->ft->sectrac) * fdblk; 2635 bp->bio_bcount = sizeof(struct fd_idfield_data) * 2636 finfo->fd_formb_nsecs; 2637 } else if (cmd == FDBIO_RDSECTID) { 2638 bp->bio_offset = 2639 (idfield->cyl * (fd->ft->sectrac * fd->ft->heads) + 2640 idfield->head * fd->ft->sectrac) * fdblk; 2641 bp->bio_bcount = sizeof(struct fdc_readid); 2642 } else 2643 panic("wrong cmd in fdmisccmd()"); 2644 bp->bio_data = data; 2645 bp->bio_dev = dev; 2646 bp->bio_done = fdbiodone; 2647 bp->bio_flags = 0; 2648 2649 /* Now run the command. */ 2650 fdstrategy(bp); 2651 error = biowait(bp, "fdcmd"); 2652 2653 free(bp, M_TEMP); 2654 return (error); 2655 } 2656 2657 static int 2658 fdioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 2659 { 2660 fdu_t fdu; 2661 fd_p fd; 2662 struct fdc_status *fsp; 2663 struct fdc_readid *rid; 2664 int error, type; 2665 2666 fdu = FDUNIT(minor(dev)); 2667 type = FDTYPE(minor(dev)); 2668 fd = dev->si_drv1; 2669 2670 /* 2671 * First, handle everything that could be done with 2672 * FD_NONBLOCK still being set. 2673 */ 2674 switch (cmd) { 2675 2676 case DIOCGMEDIASIZE: 2677 if (fd->ft == 0) 2678 return ((fd->flags & FD_NONBLOCK) ? EAGAIN : ENXIO); 2679 *(off_t *)addr = (128 << (fd->ft->secsize)) * fd->ft->size; 2680 return (0); 2681 2682 case DIOCGSECTORSIZE: 2683 if (fd->ft == 0) 2684 return ((fd->flags & FD_NONBLOCK) ? EAGAIN : ENXIO); 2685 *(u_int *)addr = 128 << (fd->ft->secsize); 2686 return (0); 2687 2688 case FIONBIO: 2689 if (*(int *)addr != 0) 2690 fd->flags |= FD_NONBLOCK; 2691 else { 2692 if (fd->ft == 0) { 2693 /* 2694 * No drive type has been selected yet, 2695 * cannot turn FNONBLOCK off. 2696 */ 2697 return (EINVAL); 2698 } 2699 fd->flags &= ~FD_NONBLOCK; 2700 } 2701 return (0); 2702 2703 case FIOASYNC: 2704 /* keep the generic fcntl() code happy */ 2705 return (0); 2706 2707 case FD_GTYPE: /* get drive type */ 2708 if (fd->ft == 0) 2709 /* no type known yet, return the native type */ 2710 *(struct fd_type *)addr = fd_native_types[fd->type]; 2711 else 2712 *(struct fd_type *)addr = *fd->ft; 2713 return (0); 2714 2715 case FD_STYPE: /* set drive type */ 2716 if (type == 0) { 2717 /* 2718 * Allow setting drive type temporarily iff 2719 * currently unset. Used for fdformat so any 2720 * user can set it, and then start formatting. 2721 */ 2722 if (fd->ft) 2723 return (EINVAL); /* already set */ 2724 fd->ft = fd->fts; 2725 *fd->ft = *(struct fd_type *)addr; 2726 fd->flags |= FD_UA; 2727 } else { 2728 /* 2729 * Set density definition permanently. Only 2730 * allow for superuser. 2731 */ 2732 if (suser(td) != 0) 2733 return (EPERM); 2734 fd->fts[type] = *(struct fd_type *)addr; 2735 } 2736 return (0); 2737 2738 case FD_GOPTS: /* get drive options */ 2739 *(int *)addr = fd->options + (type == 0? FDOPT_AUTOSEL: 0); 2740 return (0); 2741 2742 case FD_SOPTS: /* set drive options */ 2743 fd->options = *(int *)addr & ~FDOPT_AUTOSEL; 2744 return (0); 2745 2746 #ifdef FDC_DEBUG 2747 case FD_DEBUG: 2748 if ((fd_debug != 0) != (*(int *)addr != 0)) { 2749 fd_debug = (*(int *)addr != 0); 2750 printf("fd%d: debugging turned %s\n", 2751 fd->fdu, fd_debug ? "on" : "off"); 2752 } 2753 return (0); 2754 #endif 2755 2756 case FD_CLRERR: 2757 if (suser(td) != 0) 2758 return (EPERM); 2759 fd->fdc->fdc_errs = 0; 2760 return (0); 2761 2762 case FD_GSTAT: 2763 fsp = (struct fdc_status *)addr; 2764 if ((fd->fdc->flags & FDC_STAT_VALID) == 0) 2765 return (EINVAL); 2766 memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int)); 2767 return (0); 2768 2769 case FD_GDTYPE: 2770 *(enum fd_drivetype *)addr = fd->type; 2771 return (0); 2772 } 2773 2774 /* 2775 * Now handle everything else. Make sure we have a valid 2776 * drive type. 2777 */ 2778 if (fd->flags & FD_NONBLOCK) 2779 return (EAGAIN); 2780 if (fd->ft == 0) 2781 return (ENXIO); 2782 error = 0; 2783 2784 switch (cmd) { 2785 2786 case FD_FORM: 2787 if ((flag & FWRITE) == 0) 2788 return (EBADF); /* must be opened for writing */ 2789 if (((struct fd_formb *)addr)->format_version != 2790 FD_FORMAT_VERSION) 2791 return (EINVAL); /* wrong version of formatting prog */ 2792 error = fdmisccmd(dev, FDBIO_FORMAT, addr); 2793 break; 2794 2795 case FD_GTYPE: /* get drive type */ 2796 *(struct fd_type *)addr = *fd->ft; 2797 break; 2798 2799 case FD_STYPE: /* set drive type */ 2800 /* this is considered harmful; only allow for superuser */ 2801 if (suser(td) != 0) 2802 return (EPERM); 2803 *fd->ft = *(struct fd_type *)addr; 2804 break; 2805 2806 case FD_GOPTS: /* get drive options */ 2807 *(int *)addr = fd->options; 2808 break; 2809 2810 case FD_SOPTS: /* set drive options */ 2811 fd->options = *(int *)addr; 2812 break; 2813 2814 #ifdef FDC_DEBUG 2815 case FD_DEBUG: 2816 if ((fd_debug != 0) != (*(int *)addr != 0)) { 2817 fd_debug = (*(int *)addr != 0); 2818 printf("fd%d: debugging turned %s\n", 2819 fd->fdu, fd_debug ? "on" : "off"); 2820 } 2821 break; 2822 #endif 2823 2824 case FD_CLRERR: 2825 if (suser(td) != 0) 2826 return (EPERM); 2827 fd->fdc->fdc_errs = 0; 2828 break; 2829 2830 case FD_GSTAT: 2831 fsp = (struct fdc_status *)addr; 2832 if ((fd->fdc->flags & FDC_STAT_VALID) == 0) 2833 return (EINVAL); 2834 memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int)); 2835 break; 2836 2837 case FD_READID: 2838 rid = (struct fdc_readid *)addr; 2839 if (rid->cyl > MAX_CYLINDER || rid->head > MAX_HEAD) 2840 return (EINVAL); 2841 error = fdmisccmd(dev, FDBIO_RDSECTID, addr); 2842 break; 2843 2844 default: 2845 error = ENOTTY; 2846 break; 2847 } 2848 return (error); 2849 } 2850