1 /*- 2 * Copyright (c) 2004 Poul-Henning Kamp 3 * Copyright (c) 1990 The Regents of the University of California. 4 * All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * Don Ahn. 8 * 9 * Libretto PCMCIA floppy support by David Horwitt (dhorwitt@ucsd.edu) 10 * aided by the Linux floppy driver modifications from David Bateman 11 * (dbateman@eng.uts.edu.au). 12 * 13 * Copyright (c) 1993, 1994 by 14 * jc@irbs.UUCP (John Capo) 15 * vak@zebub.msk.su (Serge Vakulenko) 16 * ache@astral.msk.su (Andrew A. Chernov) 17 * 18 * Copyright (c) 1993, 1994, 1995 by 19 * joerg_wunsch@uriah.sax.de (Joerg Wunsch) 20 * dufault@hda.com (Peter Dufault) 21 * 22 * Copyright (c) 2001 Joerg Wunsch, 23 * joerg_wunsch@uriah.heep.sax.de (Joerg Wunsch) 24 * 25 * Redistribution and use in source and binary forms, with or without 26 * modification, are permitted provided that the following conditions 27 * are met: 28 * 1. Redistributions of source code must retain the above copyright 29 * notice, this list of conditions and the following disclaimer. 30 * 2. Redistributions in binary form must reproduce the above copyright 31 * notice, this list of conditions and the following disclaimer in the 32 * documentation and/or other materials provided with the distribution. 33 * 4. Neither the name of the University nor the names of its contributors 34 * may be used to endorse or promote products derived from this software 35 * without specific prior written permission. 36 * 37 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 38 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 40 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 41 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 42 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 43 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 45 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 46 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 47 * SUCH DAMAGE. 48 * 49 * from: @(#)fd.c 7.4 (Berkeley) 5/25/91 50 * 51 */ 52 53 #include <sys/cdefs.h> 54 __FBSDID("$FreeBSD$"); 55 56 #include "opt_fdc.h" 57 58 #include <sys/param.h> 59 #include <sys/bio.h> 60 #include <sys/bus.h> 61 #include <sys/devicestat.h> 62 #include <sys/disk.h> 63 #include <sys/fcntl.h> 64 #include <sys/fdcio.h> 65 #include <sys/filio.h> 66 #include <sys/kernel.h> 67 #include <sys/kthread.h> 68 #include <sys/lock.h> 69 #include <sys/malloc.h> 70 #include <sys/module.h> 71 #include <sys/mutex.h> 72 #include <sys/proc.h> 73 #include <sys/rman.h> 74 #include <sys/sysctl.h> 75 #include <sys/systm.h> 76 77 #include <geom/geom.h> 78 79 #include <machine/bus.h> 80 #include <machine/clock.h> 81 #include <machine/stdarg.h> 82 83 #include <isa/isavar.h> 84 #include <isa/isareg.h> 85 #include <dev/fdc/fdcvar.h> 86 #include <isa/rtc.h> 87 88 #include <dev/ic/nec765.h> 89 90 /* 91 * Runtime configuration hints/flags 92 */ 93 94 /* configuration flags for fd */ 95 #define FD_TYPEMASK 0x0f /* drive type, matches enum 96 * fd_drivetype; on i386 machines, if 97 * given as 0, use RTC type for fd0 98 * and fd1 */ 99 #define FD_NO_PROBE 0x20 /* don't probe drive (seek test), just 100 * assume it is there */ 101 102 /* 103 * Things that could conceiveably considered parameters or tweakables 104 */ 105 106 /* 107 * Maximal number of bytes in a cylinder. 108 * This is used for ISADMA bouncebuffer allocation and sets the max 109 * xfersize we support. 110 * 111 * 2.88M format has 2 x 36 x 512, allow for hacked up density. 112 */ 113 114 #define MAX_BYTES_PER_CYL (2 * 40 * 512) 115 116 /* 117 * Timeout value for the PIO loops to wait until the FDC main status 118 * register matches our expectations (request for master, direction 119 * bit). This is supposed to be a number of microseconds, although 120 * timing might actually not be very accurate. 121 * 122 * Timeouts of 100 msec are believed to be required for some broken 123 * (old) hardware. 124 */ 125 #define FDSTS_TIMEOUT 100000 126 127 /* 128 * After this many errors, stop whining. Close will reset this count. 129 */ 130 #define FDC_ERRMAX 100 131 132 /* 133 * AutoDensity search lists for each drive type. 134 */ 135 136 static struct fd_type fd_searchlist_360k[] = { 137 { FDF_5_360 }, 138 { 0 } 139 }; 140 141 static struct fd_type fd_searchlist_12m[] = { 142 { FDF_5_1200 | FL_AUTO }, 143 { FDF_5_360 | FL_2STEP | FL_AUTO}, 144 { 0 } 145 }; 146 147 static struct fd_type fd_searchlist_720k[] = { 148 { FDF_3_720 }, 149 { 0 } 150 }; 151 152 static struct fd_type fd_searchlist_144m[] = { 153 { FDF_3_1440 | FL_AUTO}, 154 { FDF_3_720 | FL_AUTO}, 155 { 0 } 156 }; 157 158 static struct fd_type fd_searchlist_288m[] = { 159 { FDF_3_1440 | FL_AUTO }, 160 #if 0 161 { FDF_3_2880 | FL_AUTO }, /* XXX: probably doesn't work */ 162 #endif 163 { FDF_3_720 | FL_AUTO}, 164 { 0 } 165 }; 166 167 /* 168 * Order must match enum fd_drivetype in <sys/fdcio.h>. 169 */ 170 static struct fd_type *fd_native_types[] = { 171 NULL, /* FDT_NONE */ 172 fd_searchlist_360k, /* FDT_360K */ 173 fd_searchlist_12m, /* FDT_12M */ 174 fd_searchlist_720k, /* FDT_720K */ 175 fd_searchlist_144m, /* FDT_144M */ 176 fd_searchlist_288m, /* FDT_288M_1 (mapped to FDT_288M) */ 177 fd_searchlist_288m, /* FDT_288M */ 178 }; 179 180 /* 181 * Internals start here 182 */ 183 184 /* registers */ 185 #define FDOUT 2 /* Digital Output Register (W) */ 186 #define FDO_FDSEL 0x03 /* floppy device select */ 187 #define FDO_FRST 0x04 /* floppy controller reset */ 188 #define FDO_FDMAEN 0x08 /* enable floppy DMA and Interrupt */ 189 #define FDO_MOEN0 0x10 /* motor enable drive 0 */ 190 #define FDO_MOEN1 0x20 /* motor enable drive 1 */ 191 #define FDO_MOEN2 0x40 /* motor enable drive 2 */ 192 #define FDO_MOEN3 0x80 /* motor enable drive 3 */ 193 194 #define FDSTS 4 /* NEC 765 Main Status Register (R) */ 195 #define FDDATA 5 /* NEC 765 Data Register (R/W) */ 196 #define FDCTL 7 /* Control Register (W) */ 197 198 /* 199 * The YE-DATA PC Card floppies use PIO to read in the data rather than 200 * DMA due to the wild variability of DMA for the PC Card devices. In 201 * addition, if we cannot setup the DMA resources for the ISA attachment, 202 * we'll use this same offset for data transfer. 203 * 204 * For this mode, offset 0 and 1 must be used to setup the transfer 205 * for this floppy. This means they are only available on those systems 206 * that map them to the floppy drive. Newer systems do not do this, and 207 * we should likely prohibit access to them (or disallow NODMA to be set). 208 */ 209 #define FDBCDR 0 /* And 1 */ 210 #define FD_YE_DATAPORT 6 /* Drive Data port */ 211 212 #define FDI_DCHG 0x80 /* diskette has been changed */ 213 /* requires drive and motor being selected */ 214 /* is cleared by any step pulse to drive */ 215 216 /* 217 * We have three private BIO commands. 218 */ 219 #define BIO_PROBE BIO_CMD0 220 #define BIO_RDID BIO_CMD1 221 #define BIO_FMT BIO_CMD2 222 223 /* 224 * Per drive structure (softc). 225 */ 226 struct fd_data { 227 u_char *fd_ioptr; /* IO pointer */ 228 u_int fd_iosize; /* Size of IO chunks */ 229 u_int fd_iocount; /* Outstanding requests */ 230 struct fdc_data *fdc; /* pointer to controller structure */ 231 int fdsu; /* this units number on this controller */ 232 enum fd_drivetype type; /* drive type */ 233 struct fd_type *ft; /* pointer to current type descriptor */ 234 struct fd_type fts; /* type descriptors */ 235 int sectorsize; 236 int flags; 237 #define FD_WP (1<<0) /* Write protected */ 238 #define FD_MOTOR (1<<1) /* motor should be on */ 239 #define FD_MOTORWAIT (1<<2) /* motor should be on */ 240 #define FD_EMPTY (1<<3) /* no media */ 241 #define FD_NEWDISK (1<<4) /* media changed */ 242 #define FD_ISADMA (1<<5) /* isa dma started */ 243 int track; /* where we think the head is */ 244 #define FD_NO_TRACK -2 245 int options; /* FDOPT_* */ 246 struct callout toffhandle; 247 struct callout tohandle; 248 struct g_geom *fd_geom; 249 struct g_provider *fd_provider; 250 device_t dev; 251 struct bio_queue_head fd_bq; 252 }; 253 254 #define FD_NOT_VALID -2 255 256 static driver_intr_t fdc_intr; 257 static void fdc_reset(struct fdc_data *); 258 259 SYSCTL_NODE(_debug, OID_AUTO, fdc, CTLFLAG_RW, 0, "fdc driver"); 260 261 static int fifo_threshold = 8; 262 SYSCTL_INT(_debug_fdc, OID_AUTO, fifo, CTLFLAG_RW, &fifo_threshold, 0, 263 "FIFO threshold setting"); 264 265 static int debugflags = 0; 266 SYSCTL_INT(_debug_fdc, OID_AUTO, debugflags, CTLFLAG_RW, &debugflags, 0, 267 "Debug flags"); 268 269 static int retries = 10; 270 SYSCTL_INT(_debug_fdc, OID_AUTO, retries, CTLFLAG_RW, &retries, 0, 271 "Number of retries to attempt"); 272 273 static int spec1 = 0xaf; 274 SYSCTL_INT(_debug_fdc, OID_AUTO, spec1, CTLFLAG_RW, &spec1, 0, 275 "Specification byte one (step-rate + head unload)"); 276 277 static int spec2 = 0x10; 278 SYSCTL_INT(_debug_fdc, OID_AUTO, spec2, CTLFLAG_RW, &spec2, 0, 279 "Specification byte two (head load time + no-dma)"); 280 281 static int settle; 282 SYSCTL_INT(_debug_fdc, OID_AUTO, settle, CTLFLAG_RW, &settle, 0, 283 "Head settling time in sec/hz"); 284 285 static void 286 fdprinttype(struct fd_type *ft) 287 { 288 289 printf("(%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,0x%x)", 290 ft->sectrac, ft->secsize, ft->datalen, ft->gap, ft->tracks, 291 ft->size, ft->trans, ft->heads, ft->f_gap, ft->f_inter, 292 ft->offset_side2, ft->flags); 293 } 294 295 static void 296 fdsettype(struct fd_data *fd, struct fd_type *ft) 297 { 298 fd->ft = ft; 299 ft->size = ft->sectrac * ft->heads * ft->tracks; 300 fd->sectorsize = 128 << fd->ft->secsize; 301 } 302 303 /* 304 * Bus space handling (access to low-level IO). 305 */ 306 static void 307 fdctl_wr(struct fdc_data *fdc, u_int8_t v) 308 { 309 310 bus_space_write_1(fdc->ctlt, fdc->ctlh, fdc->ctl_off, v); 311 } 312 313 static void 314 fdout_wr(struct fdc_data *fdc, u_int8_t v) 315 { 316 317 bus_space_write_1(fdc->portt, fdc->porth, FDOUT+fdc->port_off, v); 318 } 319 320 static u_int8_t 321 fdsts_rd(struct fdc_data *fdc) 322 { 323 324 return bus_space_read_1(fdc->portt, fdc->porth, FDSTS+fdc->port_off); 325 } 326 327 static void 328 fddata_wr(struct fdc_data *fdc, u_int8_t v) 329 { 330 331 bus_space_write_1(fdc->portt, fdc->porth, FDDATA+fdc->port_off, v); 332 } 333 334 static u_int8_t 335 fddata_rd(struct fdc_data *fdc) 336 { 337 338 return bus_space_read_1(fdc->portt, fdc->porth, FDDATA+fdc->port_off); 339 } 340 341 static u_int8_t 342 fdin_rd(struct fdc_data *fdc) 343 { 344 345 return bus_space_read_1(fdc->ctlt, fdc->ctlh, fdc->ctl_off); 346 } 347 348 /* 349 * Magic pseudo-DMA initialization for YE FDC. Sets count and 350 * direction. 351 */ 352 static void 353 fdbcdr_wr(struct fdc_data *fdc, int iswrite, uint16_t count) 354 { 355 bus_space_write_1(fdc->portt, fdc->porth, fdc->port_off + FDBCDR, 356 (count - 1) & 0xff); 357 bus_space_write_1(fdc->portt, fdc->porth, fdc->port_off + FDBCDR + 1, 358 ((iswrite ? 0x80 : 0) | (((count - 1) >> 8) & 0x7f))); 359 } 360 361 static int 362 fdc_err(struct fdc_data *fdc, const char *s) 363 { 364 fdc->fdc_errs++; 365 if (s) { 366 if (fdc->fdc_errs < FDC_ERRMAX) 367 device_printf(fdc->fdc_dev, "%s", s); 368 else if (fdc->fdc_errs == FDC_ERRMAX) 369 device_printf(fdc->fdc_dev, "too many errors, not " 370 "logging any more\n"); 371 } 372 373 return (1); 374 } 375 376 /* 377 * FDC IO functions, take care of the main status register, timeout 378 * in case the desired status bits are never set. 379 * 380 * These PIO loops initially start out with short delays between 381 * each iteration in the expectation that the required condition 382 * is usually met quickly, so it can be handled immediately. 383 */ 384 static int 385 fdc_in(struct fdc_data *fdc, int *ptr) 386 { 387 int i, j, step; 388 389 step = 1; 390 for (j = 0; j < FDSTS_TIMEOUT; j += step) { 391 i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM); 392 if (i == (NE7_DIO|NE7_RQM)) { 393 i = fddata_rd(fdc); 394 if (ptr) 395 *ptr = i; 396 return (0); 397 } 398 if (i == NE7_RQM) 399 return (fdc_err(fdc, "ready for output in input\n")); 400 step += step; 401 DELAY(step); 402 } 403 return (fdc_err(fdc, bootverbose? "input ready timeout\n": 0)); 404 } 405 406 static int 407 fdc_out(struct fdc_data *fdc, int x) 408 { 409 int i, j, step; 410 411 step = 1; 412 for (j = 0; j < FDSTS_TIMEOUT; j += step) { 413 i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM); 414 if (i == NE7_RQM) { 415 fddata_wr(fdc, x); 416 return (0); 417 } 418 if (i == (NE7_DIO|NE7_RQM)) 419 return (fdc_err(fdc, "ready for input in output\n")); 420 step += step; 421 DELAY(step); 422 } 423 return (fdc_err(fdc, bootverbose? "output ready timeout\n": 0)); 424 } 425 426 /* 427 * fdc_cmd: Send a command to the chip. 428 * Takes a varargs with this structure: 429 * # of output bytes 430 * output bytes as int [...] 431 * # of input bytes 432 * input bytes as int* [...] 433 */ 434 static int 435 fdc_cmd(struct fdc_data *fdc, int n_out, ...) 436 { 437 u_char cmd = 0; 438 int n_in; 439 int n, i; 440 va_list ap; 441 442 va_start(ap, n_out); 443 for (n = 0; n < n_out; n++) { 444 i = va_arg(ap, int); 445 if (n == 0) 446 cmd = i; 447 if (fdc_out(fdc, i) < 0) { 448 char msg[50]; 449 snprintf(msg, sizeof(msg), 450 "cmd %x failed at out byte %d of %d\n", 451 cmd, n + 1, n_out); 452 fdc->flags |= FDC_NEEDS_RESET; 453 return fdc_err(fdc, msg); 454 } 455 } 456 n_in = va_arg(ap, int); 457 for (n = 0; n < n_in; n++) { 458 int *ptr = va_arg(ap, int *); 459 if (fdc_in(fdc, ptr) < 0) { 460 char msg[50]; 461 snprintf(msg, sizeof(msg), 462 "cmd %02x failed at in byte %d of %d\n", 463 cmd, n + 1, n_in); 464 fdc->flags |= FDC_NEEDS_RESET; 465 return fdc_err(fdc, msg); 466 } 467 } 468 return (0); 469 } 470 471 static void 472 fdc_reset(struct fdc_data *fdc) 473 { 474 int i, r[10]; 475 476 /* Try a reset, keep motor on */ 477 fdout_wr(fdc, fdc->fdout & ~(FDO_FRST|FDO_FDMAEN)); 478 DELAY(100); 479 /* enable FDC, but defer interrupts a moment */ 480 fdout_wr(fdc, fdc->fdout & ~FDO_FDMAEN); 481 DELAY(100); 482 fdout_wr(fdc, fdc->fdout); 483 484 /* XXX after a reset, silently believe the FDC will accept commands */ 485 if (fdc_cmd(fdc, 3, NE7CMD_SPECIFY, spec1, spec2, 0)) 486 device_printf(fdc->fdc_dev, " SPECIFY failed in reset\n"); 487 488 if (fdc->fdct == FDC_ENHANCED) { 489 if (fdc_cmd(fdc, 4, 490 I8207X_CONFIGURE, 491 0, 492 0x40 | /* Enable Implied Seek */ 493 0x10 | /* Polling disabled */ 494 (fifo_threshold - 1), /* Fifo threshold */ 495 0x00, /* Precomp track */ 496 0)) 497 device_printf(fdc->fdc_dev, 498 " CONFIGURE failed in reset\n"); 499 if (debugflags & 1) { 500 if (fdc_cmd(fdc, 1, 501 0x0e, /* DUMPREG */ 502 10, &r[0], &r[1], &r[2], &r[3], &r[4], 503 &r[5], &r[6], &r[7], &r[8], &r[9])) 504 device_printf(fdc->fdc_dev, 505 " DUMPREG failed in reset\n"); 506 for (i = 0; i < 10; i++) 507 printf(" %02x", r[i]); 508 printf("\n"); 509 } 510 } 511 } 512 513 static int 514 fdc_sense_drive(struct fdc_data *fdc, int *st3p) 515 { 516 int st3; 517 518 if (fdc_cmd(fdc, 2, NE7CMD_SENSED, fdc->fd->fdsu, 1, &st3)) 519 return (fdc_err(fdc, "Sense Drive Status failed\n")); 520 if (st3p) 521 *st3p = st3; 522 return (0); 523 } 524 525 static int 526 fdc_sense_int(struct fdc_data *fdc, int *st0p, int *cylp) 527 { 528 int cyl, st0, ret; 529 530 ret = fdc_cmd(fdc, 1, NE7CMD_SENSEI, 1, &st0); 531 if (ret) { 532 (void)fdc_err(fdc, "sense intr err reading stat reg 0\n"); 533 return (ret); 534 } 535 536 if (st0p) 537 *st0p = st0; 538 539 if ((st0 & NE7_ST0_IC) == NE7_ST0_IC_IV) { 540 /* 541 * There doesn't seem to have been an interrupt. 542 */ 543 return (FD_NOT_VALID); 544 } 545 546 if (fdc_in(fdc, &cyl) < 0) 547 return fdc_err(fdc, "can't get cyl num\n"); 548 549 if (cylp) 550 *cylp = cyl; 551 552 return (0); 553 } 554 555 static int 556 fdc_read_status(struct fdc_data *fdc) 557 { 558 int i, ret, status; 559 560 for (i = ret = 0; i < 7; i++) { 561 ret = fdc_in(fdc, &status); 562 fdc->status[i] = status; 563 if (ret != 0) 564 break; 565 } 566 567 if (ret == 0) 568 fdc->flags |= FDC_STAT_VALID; 569 else 570 fdc->flags &= ~FDC_STAT_VALID; 571 572 return ret; 573 } 574 575 /* 576 * Select this drive 577 */ 578 static void 579 fd_select(struct fd_data *fd) 580 { 581 struct fdc_data *fdc; 582 583 /* XXX: lock controller */ 584 fdc = fd->fdc; 585 fdc->fdout &= ~FDO_FDSEL; 586 fdc->fdout |= FDO_FDMAEN | FDO_FRST | fd->fdsu; 587 fdout_wr(fdc, fdc->fdout); 588 } 589 590 static void 591 fd_turnon(void *arg) 592 { 593 struct fd_data *fd; 594 struct bio *bp; 595 int once; 596 597 fd = arg; 598 mtx_lock(&fd->fdc->fdc_mtx); 599 fd->flags &= ~FD_MOTORWAIT; 600 fd->flags |= FD_MOTOR; 601 once = 0; 602 for (;;) { 603 bp = bioq_takefirst(&fd->fd_bq); 604 if (bp == NULL) 605 break; 606 bioq_disksort(&fd->fdc->head, bp); 607 once = 1; 608 } 609 mtx_unlock(&fd->fdc->fdc_mtx); 610 if (once) 611 wakeup(&fd->fdc->head); 612 } 613 614 static void 615 fd_motor(struct fd_data *fd, int turnon) 616 { 617 struct fdc_data *fdc; 618 619 fdc = fd->fdc; 620 /* 621 mtx_assert(&fdc->fdc_mtx, MA_OWNED); 622 */ 623 if (turnon) { 624 fd->flags |= FD_MOTORWAIT; 625 fdc->fdout |= (FDO_MOEN0 << fd->fdsu); 626 callout_reset(&fd->toffhandle, hz, fd_turnon, fd); 627 } else { 628 callout_drain(&fd->toffhandle); 629 fd->flags &= ~(FD_MOTOR|FD_MOTORWAIT); 630 fdc->fdout &= ~(FDO_MOEN0 << fd->fdsu); 631 } 632 fdout_wr(fdc, fdc->fdout); 633 } 634 635 static void 636 fd_turnoff(void *xfd) 637 { 638 struct fd_data *fd = xfd; 639 640 mtx_lock(&fd->fdc->fdc_mtx); 641 fd_motor(fd, 0); 642 mtx_unlock(&fd->fdc->fdc_mtx); 643 } 644 645 /* 646 * fdc_intr - wake up the worker thread. 647 */ 648 649 static void 650 fdc_intr(void *arg) 651 { 652 653 wakeup(arg); 654 } 655 656 /* 657 * fdc_pio(): perform programmed IO read/write for YE PCMCIA floppy. 658 */ 659 static void 660 fdc_pio(struct fdc_data *fdc) 661 { 662 u_char *cptr; 663 struct bio *bp; 664 u_int count; 665 666 bp = fdc->bp; 667 cptr = fdc->fd->fd_ioptr; 668 count = fdc->fd->fd_iosize; 669 670 if (bp->bio_cmd == BIO_READ) { 671 fdbcdr_wr(fdc, 0, count); 672 bus_space_read_multi_1(fdc->portt, fdc->porth, fdc->port_off + 673 FD_YE_DATAPORT, cptr, count); 674 } else { 675 bus_space_write_multi_1(fdc->portt, fdc->porth, fdc->port_off + 676 FD_YE_DATAPORT, cptr, count); 677 fdbcdr_wr(fdc, 0, count); /* needed? */ 678 } 679 } 680 681 static int 682 fdc_biodone(struct fdc_data *fdc, int error) 683 { 684 struct fd_data *fd; 685 struct bio *bp; 686 687 fd = fdc->fd; 688 bp = fdc->bp; 689 690 mtx_lock(&fdc->fdc_mtx); 691 if (--fd->fd_iocount == 0) 692 callout_reset(&fd->toffhandle, 4 * hz, fd_turnoff, fd); 693 fdc->bp = NULL; 694 fdc->fd = NULL; 695 mtx_unlock(&fdc->fdc_mtx); 696 if (bp->bio_to != NULL) { 697 if ((debugflags & 2) && fd->fdc->retry > 0) 698 printf("retries: %d\n", fd->fdc->retry); 699 g_io_deliver(bp, error); 700 return (0); 701 } 702 bp->bio_error = error; 703 bp->bio_flags |= BIO_DONE; 704 wakeup(bp); 705 return (0); 706 } 707 708 static int retry_line; 709 710 static int 711 fdc_worker(struct fdc_data *fdc) 712 { 713 struct fd_data *fd; 714 struct bio *bp; 715 int i, nsect; 716 int st0, st3, cyl, mfm, steptrac, cylinder, descyl, sec; 717 int head; 718 static int need_recal; 719 struct fdc_readid *idp; 720 struct fd_formb *finfo; 721 722 /* Have we exhausted our retries ? */ 723 bp = fdc->bp; 724 fd = fdc->fd; 725 if (bp != NULL && 726 (fdc->retry >= retries || (fd->flags & FDOPT_NORETRY))) { 727 if ((debugflags & 4)) 728 printf("Too many retries (EIO)\n"); 729 return (fdc_biodone(fdc, EIO)); 730 } 731 732 /* Disable ISADMA if we bailed while it was active */ 733 if (fd != NULL && (fd->flags & FD_ISADMA)) { 734 mtx_lock(&Giant); 735 isa_dmadone( 736 bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE, 737 fd->fd_ioptr, fd->fd_iosize, fdc->dmachan); 738 mtx_unlock(&Giant); 739 mtx_lock(&fdc->fdc_mtx); 740 fd->flags &= ~FD_ISADMA; 741 mtx_unlock(&fdc->fdc_mtx); 742 } 743 744 /* Unwedge the controller ? */ 745 if (fdc->flags & FDC_NEEDS_RESET) { 746 fdc->flags &= ~FDC_NEEDS_RESET; 747 fdc_reset(fdc); 748 msleep(fdc, NULL, PRIBIO, "fdcrst", hz); 749 /* Discard results */ 750 for (i = 0; i < 4; i++) 751 fdc_sense_int(fdc, &st0, &cyl); 752 /* All drives must recal */ 753 need_recal = 0xf; 754 } 755 756 /* Pick up a request, if need be wait for it */ 757 if (fdc->bp == NULL) { 758 mtx_lock(&fdc->fdc_mtx); 759 do { 760 fdc->bp = bioq_takefirst(&fdc->head); 761 if (fdc->bp == NULL) 762 msleep(&fdc->head, &fdc->fdc_mtx, 763 PRIBIO, "-", hz); 764 } while (fdc->bp == NULL && 765 (fdc->flags & FDC_KTHREAD_EXIT) == 0); 766 mtx_unlock(&fdc->fdc_mtx); 767 768 if (fdc->bp == NULL) 769 /* 770 * Nothing to do, worker thread has been 771 * requested to stop. 772 */ 773 return (0); 774 775 bp = fdc->bp; 776 fd = fdc->fd = bp->bio_driver1; 777 fdc->retry = 0; 778 fd->fd_ioptr = bp->bio_data; 779 if (bp->bio_cmd & BIO_FMT) { 780 i = offsetof(struct fd_formb, fd_formb_cylno(0)); 781 fd->fd_ioptr += i; 782 fd->fd_iosize = bp->bio_length - i; 783 } 784 } 785 786 /* Select drive, setup params */ 787 fd_select(fd); 788 fdctl_wr(fdc, fd->ft->trans); 789 790 if (bp->bio_cmd & BIO_PROBE) { 791 792 if (!(fdin_rd(fdc) & FDI_DCHG) && !(fd->flags & FD_EMPTY)) 793 return (fdc_biodone(fdc, 0)); 794 795 /* 796 * Try to find out if we have a disk in the drive 797 * 798 * First recal, then seek to cyl#1, this clears the 799 * old condition on the disk change line so we can 800 * examine it for current status 801 */ 802 if (debugflags & 0x40) 803 printf("New disk in probe\n"); 804 mtx_lock(&fdc->fdc_mtx); 805 fd->flags |= FD_NEWDISK; 806 mtx_unlock(&fdc->fdc_mtx); 807 retry_line = __LINE__; 808 if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fd->fdsu, 0)) 809 return (1); 810 msleep(fdc, NULL, PRIBIO, "fdrecal", hz); 811 retry_line = __LINE__; 812 if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 813 return (1); /* XXX */ 814 retry_line = __LINE__; 815 if ((st0 & 0xc0) || cyl != 0) 816 return (1); 817 818 /* Seek to track 1 */ 819 retry_line = __LINE__; 820 if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fd->fdsu, 1, 0)) 821 return (1); 822 msleep(fdc, NULL, PRIBIO, "fdseek", hz); 823 retry_line = __LINE__; 824 if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 825 return (1); /* XXX */ 826 need_recal |= (1 << fd->fdsu); 827 if (fdin_rd(fdc) & FDI_DCHG) { 828 if (debugflags & 0x40) 829 printf("Empty in probe\n"); 830 mtx_lock(&fdc->fdc_mtx); 831 fd->flags |= FD_EMPTY; 832 mtx_unlock(&fdc->fdc_mtx); 833 } else { 834 if (debugflags & 0x40) 835 printf("Got disk in probe\n"); 836 mtx_lock(&fdc->fdc_mtx); 837 fd->flags &= ~FD_EMPTY; 838 mtx_unlock(&fdc->fdc_mtx); 839 retry_line = __LINE__; 840 if(fdc_sense_drive(fdc, &st3) != 0) 841 return (1); 842 mtx_lock(&fdc->fdc_mtx); 843 if(st3 & NE7_ST3_WP) 844 fd->flags |= FD_WP; 845 else 846 fd->flags &= ~FD_WP; 847 mtx_unlock(&fdc->fdc_mtx); 848 } 849 return (fdc_biodone(fdc, 0)); 850 } 851 852 /* 853 * If we are dead just flush the requests 854 */ 855 if (fd->flags & FD_EMPTY) 856 return (fdc_biodone(fdc, ENXIO)); 857 858 /* Check if we lost our media */ 859 if (fdin_rd(fdc) & FDI_DCHG) { 860 if (debugflags & 0x40) 861 printf("Lost disk\n"); 862 mtx_lock(&fdc->fdc_mtx); 863 fd->flags |= FD_EMPTY; 864 fd->flags |= FD_NEWDISK; 865 mtx_unlock(&fdc->fdc_mtx); 866 g_topology_lock(); 867 g_orphan_provider(fd->fd_provider, EXDEV); 868 fd->fd_provider->flags |= G_PF_WITHER; 869 fd->fd_provider = 870 g_new_providerf(fd->fd_geom, fd->fd_geom->name); 871 g_error_provider(fd->fd_provider, 0); 872 g_topology_unlock(); 873 return (fdc_biodone(fdc, ENXIO)); 874 } 875 876 /* Check if the floppy is write-protected */ 877 if(bp->bio_cmd & (BIO_FMT | BIO_WRITE)) { 878 retry_line = __LINE__; 879 if(fdc_sense_drive(fdc, &st3) != 0) 880 return (1); 881 if(st3 & NE7_ST3_WP) 882 return (fdc_biodone(fdc, EROFS)); 883 } 884 885 mfm = (fd->ft->flags & FL_MFM)? NE7CMD_MFM: 0; 886 steptrac = (fd->ft->flags & FL_2STEP)? 2: 1; 887 i = fd->ft->sectrac * fd->ft->heads; 888 cylinder = bp->bio_pblkno / i; 889 descyl = cylinder * steptrac; 890 sec = bp->bio_pblkno % i; 891 nsect = i - sec; 892 head = sec / fd->ft->sectrac; 893 sec = sec % fd->ft->sectrac + 1; 894 895 /* If everything is going swimmingly, use multisector xfer */ 896 if (fdc->retry == 0 && bp->bio_cmd & (BIO_READ|BIO_WRITE)) { 897 fd->fd_iosize = imin(nsect * fd->sectorsize, bp->bio_resid); 898 nsect = fd->fd_iosize / fd->sectorsize; 899 } else if (bp->bio_cmd & (BIO_READ|BIO_WRITE)) { 900 fd->fd_iosize = fd->sectorsize; 901 nsect = 1; 902 } 903 904 /* Do RECAL if we need to or are going to track zero anyway */ 905 if ((need_recal & (1 << fd->fdsu)) || 906 (cylinder == 0 && fd->track != 0) || 907 fdc->retry > 2) { 908 retry_line = __LINE__; 909 if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fd->fdsu, 0)) 910 return (1); 911 msleep(fdc, NULL, PRIBIO, "fdrecal", hz); 912 retry_line = __LINE__; 913 if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 914 return (1); /* XXX */ 915 retry_line = __LINE__; 916 if ((st0 & 0xc0) || cyl != 0) 917 return (1); 918 need_recal &= ~(1 << fd->fdsu); 919 fd->track = 0; 920 /* let the heads settle */ 921 if (settle) 922 msleep(fdc->fd, NULL, PRIBIO, "fdhdstl", settle); 923 } 924 925 /* 926 * SEEK to where we want to be 927 * 928 * Enhanced controllers do implied seeks for read&write as long as 929 * we do not need multiple steps per track. 930 */ 931 if (cylinder != fd->track && ( 932 fdc->fdct != FDC_ENHANCED || 933 descyl != cylinder || 934 (bp->bio_cmd & (BIO_RDID|BIO_FMT)))) { 935 retry_line = __LINE__; 936 if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fd->fdsu, descyl, 0)) 937 return (1); 938 msleep(fdc, NULL, PRIBIO, "fdseek", hz); 939 retry_line = __LINE__; 940 if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 941 return (1); /* XXX */ 942 retry_line = __LINE__; 943 if ((st0 & 0xc0) || cyl != descyl) { 944 need_recal |= (1 << fd->fdsu); 945 return (1); 946 } 947 /* let the heads settle */ 948 if (settle) 949 msleep(fdc->fd, NULL, PRIBIO, "fdhdstl", settle); 950 } 951 fd->track = cylinder; 952 953 if (debugflags & 8) 954 printf("op %x bn %ju siz %u ptr %p retry %d\n", 955 bp->bio_cmd, bp->bio_pblkno, fd->fd_iosize, 956 fd->fd_ioptr, fdc->retry); 957 958 /* Setup ISADMA if we need it and have it */ 959 if ((bp->bio_cmd & (BIO_READ|BIO_WRITE|BIO_FMT)) 960 && !(fdc->flags & FDC_NODMA)) { 961 mtx_lock(&Giant); 962 isa_dmastart( 963 bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE, 964 fd->fd_ioptr, fd->fd_iosize, fdc->dmachan); 965 mtx_unlock(&Giant); 966 mtx_lock(&fdc->fdc_mtx); 967 fd->flags |= FD_ISADMA; 968 mtx_unlock(&fdc->fdc_mtx); 969 } 970 971 /* Do PIO if we have to */ 972 if (fdc->flags & FDC_NODMA) { 973 if (bp->bio_cmd & (BIO_READ|BIO_WRITE|BIO_FMT)) 974 fdbcdr_wr(fdc, 1, fd->fd_iosize); 975 if (bp->bio_cmd & (BIO_WRITE|BIO_FMT)) 976 fdc_pio(fdc); 977 } 978 979 switch(bp->bio_cmd) { 980 case BIO_FMT: 981 /* formatting */ 982 finfo = (struct fd_formb *)bp->bio_data; 983 retry_line = __LINE__; 984 if (fdc_cmd(fdc, 6, 985 NE7CMD_FORMAT | mfm, 986 head << 2 | fd->fdsu, 987 finfo->fd_formb_secshift, 988 finfo->fd_formb_nsecs, 989 finfo->fd_formb_gaplen, 990 finfo->fd_formb_fillbyte, 0)) 991 return (1); 992 break; 993 case BIO_RDID: 994 retry_line = __LINE__; 995 if (fdc_cmd(fdc, 2, 996 NE7CMD_READID | mfm, 997 head << 2 | fd->fdsu, 0)) 998 return (1); 999 break; 1000 case BIO_READ: 1001 retry_line = __LINE__; 1002 if (fdc_cmd(fdc, 9, 1003 NE7CMD_READ | NE7CMD_SK | mfm | NE7CMD_MT, 1004 head << 2 | fd->fdsu, /* head & unit */ 1005 fd->track, /* track */ 1006 head, /* head */ 1007 sec, /* sector + 1 */ 1008 fd->ft->secsize, /* sector size */ 1009 fd->ft->sectrac, /* sectors/track */ 1010 fd->ft->gap, /* gap size */ 1011 fd->ft->datalen, /* data length */ 1012 0)) 1013 return (1); 1014 break; 1015 case BIO_WRITE: 1016 retry_line = __LINE__; 1017 if (fdc_cmd(fdc, 9, 1018 NE7CMD_WRITE | mfm | NE7CMD_MT, 1019 head << 2 | fd->fdsu, /* head & unit */ 1020 fd->track, /* track */ 1021 head, /* head */ 1022 sec, /* sector + 1 */ 1023 fd->ft->secsize, /* sector size */ 1024 fd->ft->sectrac, /* sectors/track */ 1025 fd->ft->gap, /* gap size */ 1026 fd->ft->datalen, /* data length */ 1027 0)) 1028 return (1); 1029 break; 1030 default: 1031 KASSERT(0 == 1, ("Wrong bio_cmd %x\n", bp->bio_cmd)); 1032 } 1033 1034 /* Wait for interrupt */ 1035 i = msleep(fdc, NULL, PRIBIO, "fddata", hz); 1036 1037 /* PIO if the read looks good */ 1038 if (i == 0 && (fdc->flags & FDC_NODMA) && (bp->bio_cmd & BIO_READ)) 1039 fdc_pio(fdc); 1040 1041 /* Finish DMA */ 1042 if (fd->flags & FD_ISADMA) { 1043 mtx_lock(&Giant); 1044 isa_dmadone( 1045 bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE, 1046 fd->fd_ioptr, fd->fd_iosize, fdc->dmachan); 1047 mtx_unlock(&Giant); 1048 mtx_lock(&fdc->fdc_mtx); 1049 fd->flags &= ~FD_ISADMA; 1050 mtx_unlock(&fdc->fdc_mtx); 1051 } 1052 1053 if (i != 0) { 1054 /* 1055 * Timeout. 1056 * 1057 * Due to IBM's brain-dead design, the FDC has a faked ready 1058 * signal, hardwired to ready == true. Thus, any command 1059 * issued if there's no diskette in the drive will _never_ 1060 * complete, and must be aborted by resetting the FDC. 1061 * Many thanks, Big Blue! 1062 */ 1063 retry_line = __LINE__; 1064 fdc->flags |= FDC_NEEDS_RESET; 1065 return (1); 1066 } 1067 1068 retry_line = __LINE__; 1069 if (fdc_read_status(fdc)) 1070 return (1); 1071 1072 if (debugflags & 0x10) 1073 printf(" -> %x %x %x %x\n", 1074 fdc->status[0], fdc->status[1], 1075 fdc->status[2], fdc->status[3]); 1076 1077 st0 = fdc->status[0] & NE7_ST0_IC; 1078 if (st0 != 0) { 1079 retry_line = __LINE__; 1080 if (st0 == NE7_ST0_IC_AT && fdc->status[1] & NE7_ST1_OR) { 1081 /* 1082 * DMA overrun. Someone hogged the bus and 1083 * didn't release it in time for the next 1084 * FDC transfer. 1085 */ 1086 return (1); 1087 } 1088 retry_line = __LINE__; 1089 if(st0 == NE7_ST0_IC_IV) { 1090 fdc->flags |= FDC_NEEDS_RESET; 1091 return (1); 1092 } 1093 retry_line = __LINE__; 1094 if(st0 == NE7_ST0_IC_AT && fdc->status[2] & NE7_ST2_WC) { 1095 need_recal |= (1 << fd->fdsu); 1096 return (1); 1097 } 1098 if (debugflags & 0x20) { 1099 printf("status %02x %02x %02x %02x %02x %02x\n", 1100 fdc->status[0], fdc->status[1], fdc->status[2], 1101 fdc->status[3], fdc->status[4], fdc->status[5]); 1102 } 1103 retry_line = __LINE__; 1104 return (1); 1105 } 1106 /* All OK */ 1107 switch(bp->bio_cmd) { 1108 case BIO_RDID: 1109 /* copy out ID field contents */ 1110 idp = (struct fdc_readid *)bp->bio_data; 1111 idp->cyl = fdc->status[3]; 1112 idp->head = fdc->status[4]; 1113 idp->sec = fdc->status[5]; 1114 idp->secshift = fdc->status[6]; 1115 if (debugflags & 0x40) 1116 printf("c %d h %d s %d z %d\n", 1117 idp->cyl, idp->head, idp->sec, idp->secshift); 1118 break; 1119 case BIO_READ: 1120 case BIO_WRITE: 1121 bp->bio_pblkno += nsect; 1122 bp->bio_resid -= fd->fd_iosize; 1123 bp->bio_completed += fd->fd_iosize; 1124 fd->fd_ioptr += fd->fd_iosize; 1125 /* Since we managed to get something done, reset the retry */ 1126 fdc->retry = 0; 1127 if (bp->bio_resid > 0) 1128 return (0); 1129 break; 1130 case BIO_FMT: 1131 break; 1132 } 1133 return (fdc_biodone(fdc, 0)); 1134 } 1135 1136 static void 1137 fdc_thread(void *arg) 1138 { 1139 struct fdc_data *fdc; 1140 1141 fdc = arg; 1142 int i; 1143 1144 mtx_lock(&fdc->fdc_mtx); 1145 fdc->flags |= FDC_KTHREAD_ALIVE; 1146 while ((fdc->flags & FDC_KTHREAD_EXIT) == 0) { 1147 mtx_unlock(&fdc->fdc_mtx); 1148 i = fdc_worker(fdc); 1149 if (i && debugflags & 0x20) { 1150 if (fdc->bp != NULL) { 1151 g_print_bio(fdc->bp); 1152 printf("\n"); 1153 } 1154 printf("Retry line %d\n", retry_line); 1155 } 1156 fdc->retry += i; 1157 mtx_lock(&fdc->fdc_mtx); 1158 } 1159 fdc->flags &= ~(FDC_KTHREAD_EXIT | FDC_KTHREAD_ALIVE); 1160 wakeup(&fdc->fdc_thread); 1161 mtx_unlock(&fdc->fdc_mtx); 1162 1163 kthread_exit(0); 1164 } 1165 1166 /* 1167 * Enqueue a request. 1168 */ 1169 static void 1170 fd_enqueue(struct fd_data *fd, struct bio *bp) 1171 { 1172 struct fdc_data *fdc; 1173 int call; 1174 1175 call = 0; 1176 fdc = fd->fdc; 1177 mtx_lock(&fdc->fdc_mtx); 1178 /* If we go from idle, cancel motor turnoff */ 1179 if (fd->fd_iocount++ == 0) 1180 callout_drain(&fd->toffhandle); 1181 if (fd->flags & FD_MOTOR) { 1182 /* The motor is on, send it directly to the controller */ 1183 bioq_disksort(&fdc->head, bp); 1184 wakeup(&fdc->head); 1185 } else { 1186 /* Queue it on the drive until the motor has started */ 1187 bioq_insert_tail(&fd->fd_bq, bp); 1188 if (!(fd->flags & FD_MOTORWAIT)) 1189 fd_motor(fd, 1); 1190 } 1191 mtx_unlock(&fdc->fdc_mtx); 1192 } 1193 1194 static int 1195 fdmisccmd(struct fd_data *fd, u_int cmd, void *data) 1196 { 1197 struct bio *bp; 1198 struct fd_formb *finfo; 1199 struct fdc_readid *idfield; 1200 int error; 1201 1202 bp = malloc(sizeof(struct bio), M_TEMP, M_WAITOK | M_ZERO); 1203 1204 /* 1205 * Set up a bio request for fdstrategy(). bio_offset is faked 1206 * so that fdstrategy() will seek to the the requested 1207 * cylinder, and use the desired head. 1208 */ 1209 bp->bio_cmd = cmd; 1210 if (cmd == BIO_FMT) { 1211 finfo = (struct fd_formb *)data; 1212 bp->bio_pblkno = 1213 (finfo->cyl * fd->ft->heads + finfo->head) * 1214 fd->ft->sectrac; 1215 bp->bio_length = sizeof *finfo; 1216 } else if (cmd == BIO_RDID) { 1217 idfield = (struct fdc_readid *)data; 1218 bp->bio_pblkno = 1219 (idfield->cyl * fd->ft->heads + idfield->head) * 1220 fd->ft->sectrac; 1221 bp->bio_length = sizeof(struct fdc_readid); 1222 } else if (cmd == BIO_PROBE) { 1223 /* nothing */ 1224 } else 1225 panic("wrong cmd in fdmisccmd()"); 1226 bp->bio_offset = bp->bio_pblkno * fd->sectorsize; 1227 bp->bio_data = data; 1228 bp->bio_driver1 = fd; 1229 bp->bio_flags = 0; 1230 1231 fd_enqueue(fd, bp); 1232 1233 do { 1234 msleep(bp, NULL, PRIBIO, "fdwait", hz); 1235 } while (!(bp->bio_flags & BIO_DONE)); 1236 error = bp->bio_error; 1237 1238 free(bp, M_TEMP); 1239 return (error); 1240 } 1241 1242 /* 1243 * Try figuring out the density of the media present in our device. 1244 */ 1245 static int 1246 fdautoselect(struct fd_data *fd) 1247 { 1248 struct fd_type *fdtp; 1249 struct fdc_readid id; 1250 int oopts, rv; 1251 1252 if (!(fd->ft->flags & FL_AUTO)) 1253 return (0); 1254 1255 fdtp = fd_native_types[fd->type]; 1256 fdsettype(fd, fdtp); 1257 if (!(fd->ft->flags & FL_AUTO)) 1258 return (0); 1259 1260 /* 1261 * Try reading sector ID fields, first at cylinder 0, head 0, 1262 * then at cylinder 2, head N. We don't probe cylinder 1, 1263 * since for 5.25in DD media in a HD drive, there are no data 1264 * to read (2 step pulses per media cylinder required). For 1265 * two-sided media, the second probe always goes to head 1, so 1266 * we can tell them apart from single-sided media. As a 1267 * side-effect this means that single-sided media should be 1268 * mentioned in the search list after two-sided media of an 1269 * otherwise identical density. Media with a different number 1270 * of sectors per track but otherwise identical parameters 1271 * cannot be distinguished at all. 1272 * 1273 * If we successfully read an ID field on both cylinders where 1274 * the recorded values match our expectation, we are done. 1275 * Otherwise, we try the next density entry from the table. 1276 * 1277 * Stepping to cylinder 2 has the side-effect of clearing the 1278 * unit attention bit. 1279 */ 1280 oopts = fd->options; 1281 fd->options |= FDOPT_NOERRLOG | FDOPT_NORETRY; 1282 for (; fdtp->heads; fdtp++) { 1283 fdsettype(fd, fdtp); 1284 1285 id.cyl = id.head = 0; 1286 rv = fdmisccmd(fd, BIO_RDID, &id); 1287 if (rv != 0) 1288 continue; 1289 if (id.cyl != 0 || id.head != 0 || id.secshift != fdtp->secsize) 1290 continue; 1291 id.cyl = 2; 1292 id.head = fd->ft->heads - 1; 1293 rv = fdmisccmd(fd, BIO_RDID, &id); 1294 if (id.cyl != 2 || id.head != fdtp->heads - 1 || 1295 id.secshift != fdtp->secsize) 1296 continue; 1297 if (rv == 0) 1298 break; 1299 } 1300 1301 fd->options = oopts; 1302 if (fdtp->heads == 0) { 1303 if (debugflags & 0x40) 1304 device_printf(fd->dev, "autoselection failed\n"); 1305 fdsettype(fd, fd_native_types[fd->type]); 1306 return (0); 1307 } else { 1308 if (debugflags & 0x40) { 1309 device_printf(fd->dev, 1310 "autoselected %d KB medium\n", fd->ft->size / 2); 1311 fdprinttype(fd->ft); 1312 } 1313 return (0); 1314 } 1315 } 1316 1317 /* 1318 * GEOM class implementation 1319 */ 1320 1321 static g_access_t fd_access; 1322 static g_start_t fd_start; 1323 static g_ioctl_t fd_ioctl; 1324 1325 struct g_class g_fd_class = { 1326 .name = "FD", 1327 .version = G_VERSION, 1328 .start = fd_start, 1329 .access = fd_access, 1330 .ioctl = fd_ioctl, 1331 }; 1332 1333 static int 1334 fd_access(struct g_provider *pp, int r, int w, int e) 1335 { 1336 struct fd_data *fd; 1337 struct fdc_data *fdc; 1338 int ar, aw, ae; 1339 1340 fd = pp->geom->softc; 1341 fdc = fd->fdc; 1342 1343 /* 1344 * If our provider is withering, we can only get negative requests 1345 * and we don't want to even see them 1346 */ 1347 if (pp->flags & G_PF_WITHER) 1348 return (0); 1349 1350 ar = r + pp->acr; 1351 aw = w + pp->acw; 1352 ae = e + pp->ace; 1353 1354 if (ar == 0 && aw == 0 && ae == 0) { 1355 device_unbusy(fd->dev); 1356 return (0); 1357 } 1358 1359 if (pp->acr == 0 && pp->acw == 0 && pp->ace == 0) { 1360 if (fdmisccmd(fd, BIO_PROBE, NULL)) 1361 return (ENXIO); 1362 if (fd->flags & FD_EMPTY) 1363 return (ENXIO); 1364 if (fd->flags & FD_NEWDISK) { 1365 fdautoselect(fd); 1366 mtx_lock(&fdc->fdc_mtx); 1367 fd->flags &= ~FD_NEWDISK; 1368 mtx_unlock(&fdc->fdc_mtx); 1369 } 1370 device_busy(fd->dev); 1371 } 1372 1373 if (w > 0 && (fd->flags & FD_WP)) 1374 return (EROFS); 1375 1376 pp->sectorsize = fd->sectorsize; 1377 pp->stripesize = fd->ft->heads * fd->ft->sectrac * fd->sectorsize; 1378 pp->mediasize = pp->stripesize * fd->ft->tracks; 1379 return (0); 1380 } 1381 1382 static void 1383 fd_start(struct bio *bp) 1384 { 1385 struct fdc_data * fdc; 1386 struct fd_data * fd; 1387 1388 fd = bp->bio_to->geom->softc; 1389 fdc = fd->fdc; 1390 bp->bio_driver1 = fd; 1391 if (bp->bio_cmd & BIO_GETATTR) { 1392 if (g_handleattr_int(bp, "GEOM::fwsectors", fd->ft->sectrac)) 1393 return; 1394 if (g_handleattr_int(bp, "GEOM::fwheads", fd->ft->heads)) 1395 return; 1396 g_io_deliver(bp, ENOIOCTL); 1397 return; 1398 } 1399 if (!(bp->bio_cmd & (BIO_READ|BIO_WRITE))) { 1400 g_io_deliver(bp, EOPNOTSUPP); 1401 return; 1402 } 1403 bp->bio_pblkno = bp->bio_offset / fd->sectorsize; 1404 bp->bio_resid = bp->bio_length; 1405 fd_enqueue(fd, bp); 1406 return; 1407 } 1408 1409 static int 1410 fd_ioctl(struct g_provider *pp, u_long cmd, void *data, struct thread *td) 1411 { 1412 struct fd_data *fd; 1413 struct fdc_status *fsp; 1414 struct fdc_readid *rid; 1415 int error; 1416 1417 fd = pp->geom->softc; 1418 1419 switch (cmd) { 1420 case FD_GTYPE: /* get drive type */ 1421 *(struct fd_type *)data = *fd->ft; 1422 return (0); 1423 1424 case FD_STYPE: /* set drive type */ 1425 /* 1426 * Allow setting drive type temporarily iff 1427 * currently unset. Used for fdformat so any 1428 * user can set it, and then start formatting. 1429 */ 1430 fd->fts = *(struct fd_type *)data; 1431 if (fd->fts.sectrac) { 1432 /* XXX: check for rubbish */ 1433 fdsettype(fd, &fd->fts); 1434 } else { 1435 fdsettype(fd, fd_native_types[fd->type]); 1436 } 1437 if (debugflags & 0x40) 1438 fdprinttype(fd->ft); 1439 return (0); 1440 1441 case FD_GOPTS: /* get drive options */ 1442 *(int *)data = fd->options; 1443 return (0); 1444 1445 case FD_SOPTS: /* set drive options */ 1446 fd->options = *(int *)data; 1447 return (0); 1448 1449 case FD_CLRERR: 1450 if (suser(td) != 0) 1451 return (EPERM); 1452 fd->fdc->fdc_errs = 0; 1453 return (0); 1454 1455 case FD_GSTAT: 1456 fsp = (struct fdc_status *)data; 1457 if ((fd->fdc->flags & FDC_STAT_VALID) == 0) 1458 return (EINVAL); 1459 memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int)); 1460 return (0); 1461 1462 case FD_GDTYPE: 1463 *(enum fd_drivetype *)data = fd->type; 1464 return (0); 1465 1466 case FD_FORM: 1467 if (((struct fd_formb *)data)->format_version != 1468 FD_FORMAT_VERSION) 1469 return (EINVAL); /* wrong version of formatting prog */ 1470 error = fdmisccmd(fd, BIO_FMT, data); 1471 mtx_lock(&fd->fdc->fdc_mtx); 1472 fd->flags |= FD_NEWDISK; 1473 mtx_unlock(&fd->fdc->fdc_mtx); 1474 break; 1475 1476 case FD_READID: 1477 rid = (struct fdc_readid *)data; 1478 if (rid->cyl > 85 || rid->head > 1) 1479 return (EINVAL); 1480 error = fdmisccmd(fd, BIO_RDID, data); 1481 break; 1482 1483 case FIONBIO: 1484 case FIOASYNC: 1485 /* For backwards compat with old fd*(8) tools */ 1486 error = 0; 1487 break; 1488 1489 default: 1490 if (debugflags & 0x80) 1491 printf("Unknown ioctl %lx\n", cmd); 1492 error = ENOIOCTL; 1493 break; 1494 } 1495 return (error); 1496 }; 1497 1498 1499 1500 /* 1501 * Configuration/initialization stuff, per controller. 1502 */ 1503 1504 devclass_t fdc_devclass; 1505 static devclass_t fd_devclass; 1506 1507 struct fdc_ivars { 1508 int fdunit; 1509 int fdtype; 1510 }; 1511 1512 void 1513 fdc_release_resources(struct fdc_data *fdc) 1514 { 1515 device_t dev; 1516 1517 dev = fdc->fdc_dev; 1518 if (fdc->fdc_intr) 1519 bus_teardown_intr(dev, fdc->res_irq, fdc->fdc_intr); 1520 fdc->fdc_intr = NULL; 1521 if (fdc->res_irq != NULL) 1522 bus_release_resource(dev, SYS_RES_IRQ, fdc->rid_irq, 1523 fdc->res_irq); 1524 fdc->res_irq = NULL; 1525 if (fdc->res_ctl != NULL) 1526 bus_release_resource(dev, SYS_RES_IOPORT, fdc->rid_ctl, 1527 fdc->res_ctl); 1528 fdc->res_ctl = NULL; 1529 if (fdc->res_sts != NULL) 1530 bus_release_resource(dev, SYS_RES_IOPORT, fdc->rid_sts, 1531 fdc->res_sts); 1532 fdc->res_sts = NULL; 1533 if (fdc->res_ioport != NULL) 1534 bus_release_resource(dev, SYS_RES_IOPORT, fdc->rid_ioport, 1535 fdc->res_ioport); 1536 fdc->res_ioport = NULL; 1537 if (fdc->res_drq != NULL) 1538 bus_release_resource(dev, SYS_RES_DRQ, fdc->rid_drq, 1539 fdc->res_drq); 1540 fdc->res_drq = NULL; 1541 } 1542 1543 int 1544 fdc_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) 1545 { 1546 struct fdc_ivars *ivars = device_get_ivars(child); 1547 1548 switch (which) { 1549 case FDC_IVAR_FDUNIT: 1550 *result = ivars->fdunit; 1551 break; 1552 case FDC_IVAR_FDTYPE: 1553 *result = ivars->fdtype; 1554 break; 1555 default: 1556 return (ENOENT); 1557 } 1558 return (0); 1559 } 1560 1561 int 1562 fdc_write_ivar(device_t dev, device_t child, int which, uintptr_t value) 1563 { 1564 struct fdc_ivars *ivars = device_get_ivars(child); 1565 1566 switch (which) { 1567 case FDC_IVAR_FDUNIT: 1568 ivars->fdunit = value; 1569 break; 1570 case FDC_IVAR_FDTYPE: 1571 ivars->fdtype = value; 1572 break; 1573 default: 1574 return (ENOENT); 1575 } 1576 return (0); 1577 } 1578 1579 int 1580 fdc_initial_reset(device_t dev, struct fdc_data *fdc) 1581 { 1582 int ic_type, part_id; 1583 1584 /* 1585 * A status value of 0xff is very unlikely, but not theoretically 1586 * impossible, but it is far more likely to indicate an empty bus. 1587 */ 1588 if (fdsts_rd(fdc) == 0xff) 1589 return (ENXIO); 1590 1591 /* 1592 * Assert a reset to the floppy controller and check that the status 1593 * register goes to zero. 1594 */ 1595 fdout_wr(fdc, 0); 1596 fdout_wr(fdc, 0); 1597 if (fdsts_rd(fdc) != 0) 1598 return (ENXIO); 1599 1600 /* 1601 * Clear the reset and see it come ready. 1602 */ 1603 fdout_wr(fdc, FDO_FRST); 1604 DELAY(100); 1605 if (fdsts_rd(fdc) != 0x80) 1606 return (ENXIO); 1607 1608 /* Then, see if it can handle a command. */ 1609 if (fdc_cmd(fdc, 3, NE7CMD_SPECIFY, 0xaf, 0x1e, 0)) 1610 return (ENXIO); 1611 1612 /* 1613 * Try to identify the chip. 1614 * 1615 * The i8272 datasheet documents that unknown commands 1616 * will return ST0 as 0x80. The i8272 is supposedly identical 1617 * to the NEC765. 1618 * The i82077SL datasheet says 0x90 for the VERSION command, 1619 * and several "superio" chips emulate this. 1620 */ 1621 if (fdc_cmd(fdc, 1, NE7CMD_VERSION, 1, &ic_type)) 1622 return (ENXIO); 1623 if (fdc_cmd(fdc, 1, 0x18, 1, &part_id)) 1624 return (ENXIO); 1625 if (bootverbose) 1626 device_printf(dev, 1627 "ic_type %02x part_id %02x\n", ic_type, part_id); 1628 switch (ic_type & 0xff) { 1629 case 0x80: 1630 device_set_desc(dev, "NEC 765 or clone"); 1631 fdc->fdct = FDC_NE765; 1632 break; 1633 case 0x81: 1634 case 0x90: 1635 device_set_desc(dev, 1636 "Enhanced floppy controller"); 1637 fdc->fdct = FDC_ENHANCED; 1638 break; 1639 default: 1640 device_set_desc(dev, "Generic floppy controller"); 1641 fdc->fdct = FDC_UNKNOWN; 1642 break; 1643 } 1644 return (0); 1645 } 1646 1647 int 1648 fdc_detach(device_t dev) 1649 { 1650 struct fdc_data *fdc; 1651 int error; 1652 1653 fdc = device_get_softc(dev); 1654 1655 /* have our children detached first */ 1656 if ((error = bus_generic_detach(dev))) 1657 return (error); 1658 1659 /* kill worker thread */ 1660 fdc->flags |= FDC_KTHREAD_EXIT; 1661 mtx_lock(&fdc->fdc_mtx); 1662 wakeup(&fdc->head); 1663 while ((fdc->flags & FDC_KTHREAD_ALIVE) != 0) 1664 msleep(&fdc->fdc_thread, &fdc->fdc_mtx, PRIBIO, "fdcdet", 0); 1665 mtx_unlock(&fdc->fdc_mtx); 1666 1667 /* reset controller, turn motor off */ 1668 fdout_wr(fdc, 0); 1669 1670 if (!(fdc->flags & FDC_NODMA)) 1671 isa_dma_release(fdc->dmachan); 1672 fdc_release_resources(fdc); 1673 mtx_destroy(&fdc->fdc_mtx); 1674 return (0); 1675 } 1676 1677 /* 1678 * Add a child device to the fdc controller. It will then be probed etc. 1679 */ 1680 device_t 1681 fdc_add_child(device_t dev, const char *name, int unit) 1682 { 1683 struct fdc_ivars *ivar; 1684 device_t child; 1685 1686 ivar = malloc(sizeof *ivar, M_DEVBUF /* XXX */, M_NOWAIT | M_ZERO); 1687 if (ivar == NULL) 1688 return (NULL); 1689 child = device_add_child(dev, name, unit); 1690 if (child == NULL) { 1691 free(ivar, M_DEVBUF); 1692 return (NULL); 1693 } 1694 device_set_ivars(child, ivar); 1695 ivar->fdunit = unit; 1696 ivar->fdtype = FDT_NONE; 1697 if (resource_disabled(name, unit)) 1698 device_disable(child); 1699 return (child); 1700 } 1701 1702 int 1703 fdc_attach(device_t dev) 1704 { 1705 struct fdc_data *fdc; 1706 int error; 1707 1708 fdc = device_get_softc(dev); 1709 fdc->fdc_dev = dev; 1710 error = fdc_initial_reset(dev, fdc); 1711 if (error) { 1712 device_printf(dev, "does not respond\n"); 1713 return (error); 1714 } 1715 error = bus_setup_intr(dev, fdc->res_irq, 1716 INTR_TYPE_BIO | INTR_ENTROPY | INTR_FAST | INTR_MPSAFE, 1717 fdc_intr, fdc, &fdc->fdc_intr); 1718 if (error) { 1719 device_printf(dev, "cannot setup interrupt\n"); 1720 return (error); 1721 } 1722 if (!(fdc->flags & FDC_NODMA)) { 1723 error = isa_dma_acquire(fdc->dmachan); 1724 if (!error) { 1725 error = isa_dma_init(fdc->dmachan, 1726 MAX_BYTES_PER_CYL, M_WAITOK); 1727 if (error) 1728 isa_dma_release(fdc->dmachan); 1729 } 1730 if (error) 1731 return (error); 1732 } 1733 fdc->fdcu = device_get_unit(dev); 1734 fdc->flags |= FDC_NEEDS_RESET; 1735 1736 mtx_init(&fdc->fdc_mtx, "fdc lock", NULL, MTX_DEF); 1737 1738 /* reset controller, turn motor off, clear fdout mirror reg */ 1739 fdout_wr(fdc, fdc->fdout = 0); 1740 bioq_init(&fdc->head); 1741 1742 kthread_create(fdc_thread, fdc, &fdc->fdc_thread, 0, 0, 1743 "fdc%d", device_get_unit(dev)); 1744 1745 settle = hz / 8; 1746 1747 return (0); 1748 } 1749 1750 int 1751 fdc_hints_probe(device_t dev) 1752 { 1753 const char *name, *dname; 1754 int i, error, dunit; 1755 1756 /* 1757 * Probe and attach any children. We should probably detect 1758 * devices from the BIOS unless overridden. 1759 */ 1760 name = device_get_nameunit(dev); 1761 i = 0; 1762 while ((resource_find_match(&i, &dname, &dunit, "at", name)) == 0) { 1763 resource_int_value(dname, dunit, "drive", &dunit); 1764 fdc_add_child(dev, dname, dunit); 1765 } 1766 1767 if ((error = bus_generic_attach(dev)) != 0) 1768 return (error); 1769 return (0); 1770 } 1771 1772 int 1773 fdc_print_child(device_t me, device_t child) 1774 { 1775 int retval = 0, flags; 1776 1777 retval += bus_print_child_header(me, child); 1778 retval += printf(" on %s drive %d", device_get_nameunit(me), 1779 fdc_get_fdunit(child)); 1780 if ((flags = device_get_flags(me)) != 0) 1781 retval += printf(" flags %#x", flags); 1782 retval += printf("\n"); 1783 1784 return (retval); 1785 } 1786 1787 /* 1788 * Configuration/initialization, per drive. 1789 */ 1790 static int 1791 fd_probe(device_t dev) 1792 { 1793 int i, unit; 1794 u_int st0, st3; 1795 struct fd_data *fd; 1796 struct fdc_data *fdc; 1797 int fdsu; 1798 int flags, type; 1799 1800 fdsu = fdc_get_fdunit(dev); 1801 fd = device_get_softc(dev); 1802 fdc = device_get_softc(device_get_parent(dev)); 1803 flags = device_get_flags(dev); 1804 1805 fd->dev = dev; 1806 fd->fdc = fdc; 1807 fd->fdsu = fdsu; 1808 unit = device_get_unit(dev); 1809 1810 /* Auto-probe if fdinfo is present, but always allow override. */ 1811 type = flags & FD_TYPEMASK; 1812 if (type == FDT_NONE && (type = fdc_get_fdtype(dev)) != FDT_NONE) { 1813 fd->type = type; 1814 goto done; 1815 } else { 1816 /* make sure fdautoselect() will be called */ 1817 fd->flags = FD_EMPTY; 1818 fd->type = type; 1819 } 1820 1821 #if (defined(__i386__) && !defined(PC98)) || defined(__amd64__) 1822 if (fd->type == FDT_NONE && (unit == 0 || unit == 1)) { 1823 /* Look up what the BIOS thinks we have. */ 1824 if (unit == 0) 1825 fd->type = (rtcin(RTC_FDISKETTE) & 0xf0) >> 4; 1826 else 1827 fd->type = rtcin(RTC_FDISKETTE) & 0x0f; 1828 if (fd->type == FDT_288M_1) 1829 fd->type = FDT_288M; 1830 } 1831 #endif /* __i386__ || __amd64__ */ 1832 /* is there a unit? */ 1833 if (fd->type == FDT_NONE) 1834 return (ENXIO); 1835 1836 /* 1837 mtx_lock(&fdc->fdc_mtx); 1838 */ 1839 /* select it */ 1840 fd_select(fd); 1841 fd_motor(fd, 1); 1842 fdc->fd = fd; 1843 fdc_reset(fdc); /* XXX reset, then unreset, etc. */ 1844 DELAY(1000000); /* 1 sec */ 1845 1846 if ((flags & FD_NO_PROBE) == 0) { 1847 /* If we're at track 0 first seek inwards. */ 1848 if ((fdc_sense_drive(fdc, &st3) == 0) && 1849 (st3 & NE7_ST3_T0)) { 1850 /* Seek some steps... */ 1851 if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fdsu, 10, 0) == 0) { 1852 /* ...wait a moment... */ 1853 DELAY(300000); 1854 /* make ctrlr happy: */ 1855 fdc_sense_int(fdc, 0, 0); 1856 } 1857 } 1858 1859 for (i = 0; i < 2; i++) { 1860 /* 1861 * we must recalibrate twice, just in case the 1862 * heads have been beyond cylinder 76, since 1863 * most FDCs still barf when attempting to 1864 * recalibrate more than 77 steps 1865 */ 1866 /* go back to 0: */ 1867 if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fdsu, 0) == 0) { 1868 /* a second being enough for full stroke seek*/ 1869 DELAY(i == 0 ? 1000000 : 300000); 1870 1871 /* anything responding? */ 1872 if (fdc_sense_int(fdc, &st0, 0) == 0 && 1873 (st0 & NE7_ST0_EC) == 0) 1874 break; /* already probed succesfully */ 1875 } 1876 } 1877 } 1878 1879 fd_motor(fd, 0); 1880 fdc->fd = NULL; 1881 /* 1882 mtx_unlock(&fdc->fdc_mtx); 1883 */ 1884 1885 if ((flags & FD_NO_PROBE) == 0 && 1886 (st0 & NE7_ST0_EC) != 0) /* no track 0 -> no drive present */ 1887 return (ENXIO); 1888 1889 done: 1890 1891 switch (fd->type) { 1892 case FDT_12M: 1893 device_set_desc(dev, "1200-KB 5.25\" drive"); 1894 break; 1895 case FDT_144M: 1896 device_set_desc(dev, "1440-KB 3.5\" drive"); 1897 break; 1898 case FDT_288M: 1899 device_set_desc(dev, "2880-KB 3.5\" drive (in 1440-KB mode)"); 1900 break; 1901 case FDT_360K: 1902 device_set_desc(dev, "360-KB 5.25\" drive"); 1903 break; 1904 case FDT_720K: 1905 device_set_desc(dev, "720-KB 3.5\" drive"); 1906 break; 1907 default: 1908 return (ENXIO); 1909 } 1910 fd->track = FD_NO_TRACK; 1911 fd->fdc = fdc; 1912 fd->fdsu = fdsu; 1913 fd->options = 0; 1914 callout_init(&fd->toffhandle, 1); 1915 callout_init(&fd->tohandle, 1); 1916 1917 /* initialize densities for subdevices */ 1918 fdsettype(fd, fd_native_types[fd->type]); 1919 return (0); 1920 } 1921 1922 /* 1923 * We have to do this in a geom event because GEOM is not running 1924 * when fd_attach() is. 1925 * XXX: move fd_attach after geom like ata/scsi disks 1926 */ 1927 static void 1928 fd_attach2(void *arg, int flag) 1929 { 1930 struct fd_data *fd; 1931 1932 fd = arg; 1933 1934 fd->fd_geom = g_new_geomf(&g_fd_class, 1935 "fd%d", device_get_unit(fd->dev)); 1936 fd->fd_provider = g_new_providerf(fd->fd_geom, fd->fd_geom->name); 1937 fd->fd_geom->softc = fd; 1938 g_error_provider(fd->fd_provider, 0); 1939 } 1940 1941 static int 1942 fd_attach(device_t dev) 1943 { 1944 struct fd_data *fd; 1945 1946 fd = device_get_softc(dev); 1947 g_post_event(fd_attach2, fd, M_WAITOK, NULL); 1948 fd->flags |= FD_EMPTY; 1949 bioq_init(&fd->fd_bq); 1950 1951 return (0); 1952 } 1953 1954 static int 1955 fd_detach(device_t dev) 1956 { 1957 struct fd_data *fd; 1958 1959 fd = device_get_softc(dev); 1960 g_topology_lock(); 1961 g_wither_geom(fd->fd_geom, ENXIO); 1962 g_topology_unlock(); 1963 while (device_get_state(dev) == DS_BUSY) 1964 tsleep(fd, PZERO, "fdd", hz/10); 1965 callout_drain(&fd->toffhandle); 1966 1967 return (0); 1968 } 1969 1970 static device_method_t fd_methods[] = { 1971 /* Device interface */ 1972 DEVMETHOD(device_probe, fd_probe), 1973 DEVMETHOD(device_attach, fd_attach), 1974 DEVMETHOD(device_detach, fd_detach), 1975 DEVMETHOD(device_shutdown, bus_generic_shutdown), 1976 DEVMETHOD(device_suspend, bus_generic_suspend), /* XXX */ 1977 DEVMETHOD(device_resume, bus_generic_resume), /* XXX */ 1978 { 0, 0 } 1979 }; 1980 1981 static driver_t fd_driver = { 1982 "fd", 1983 fd_methods, 1984 sizeof(struct fd_data) 1985 }; 1986 1987 static int 1988 fdc_modevent(module_t mod, int type, void *data) 1989 { 1990 1991 g_modevent(NULL, type, &g_fd_class); 1992 return (0); 1993 } 1994 1995 DRIVER_MODULE(fd, fdc, fd_driver, fd_devclass, fdc_modevent, 0); 1996