1 /* 2 * Copyright (c) 1990 The Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Don Ahn. 7 * 8 * Libretto PCMCIA floppy support by David Horwitt (dhorwitt@ucsd.edu) 9 * aided by the Linux floppy driver modifications from David Bateman 10 * (dbateman@eng.uts.edu.au). 11 * 12 * Copyright (c) 1993, 1994 by 13 * jc@irbs.UUCP (John Capo) 14 * vak@zebub.msk.su (Serge Vakulenko) 15 * ache@astral.msk.su (Andrew A. Chernov) 16 * 17 * Copyright (c) 1993, 1994, 1995 by 18 * joerg_wunsch@uriah.sax.de (Joerg Wunsch) 19 * dufault@hda.com (Peter Dufault) 20 * 21 * Copyright (c) 2001 Joerg Wunsch, 22 * joerg_wunsch@uriah.heep.sax.de (Joerg Wunsch) 23 * 24 * Redistribution and use in source and binary forms, with or without 25 * modification, are permitted provided that the following conditions 26 * are met: 27 * 1. Redistributions of source code must retain the above copyright 28 * notice, this list of conditions and the following disclaimer. 29 * 2. Redistributions in binary form must reproduce the above copyright 30 * notice, this list of conditions and the following disclaimer in the 31 * documentation and/or other materials provided with the distribution. 32 * 3. All advertising materials mentioning features or use of this software 33 * must display the following acknowledgement: 34 * This product includes software developed by the University of 35 * California, Berkeley and its contributors. 36 * 4. Neither the name of the University nor the names of its contributors 37 * may be used to endorse or promote products derived from this software 38 * without specific prior written permission. 39 * 40 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 43 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 50 * SUCH DAMAGE. 51 * 52 * from: @(#)fd.c 7.4 (Berkeley) 5/25/91 53 */ 54 55 #include <sys/cdefs.h> 56 __FBSDID("$FreeBSD$"); 57 58 #include "opt_fdc.h" 59 #include "card.h" 60 61 #include <sys/param.h> 62 #include <sys/systm.h> 63 #include <sys/bio.h> 64 #include <sys/bus.h> 65 #include <sys/conf.h> 66 #include <sys/devicestat.h> 67 #include <sys/disk.h> 68 #include <sys/fcntl.h> 69 #include <sys/fdcio.h> 70 #include <sys/filio.h> 71 #include <sys/kernel.h> 72 #include <sys/lock.h> 73 #include <sys/malloc.h> 74 #include <sys/module.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/syslog.h> 78 79 #include <machine/bus.h> 80 #include <sys/rman.h> 81 82 #include <machine/clock.h> 83 #include <machine/resource.h> 84 #include <machine/stdarg.h> 85 86 #include <isa/isavar.h> 87 #include <isa/isareg.h> 88 #include <isa/fdreg.h> 89 #include <isa/rtc.h> 90 91 enum fdc_type 92 { 93 FDC_NE765, FDC_ENHANCED, FDC_UNKNOWN = -1 94 }; 95 96 enum fdc_states { 97 DEVIDLE, 98 FINDWORK, 99 DOSEEK, 100 SEEKCOMPLETE , 101 IOCOMPLETE, 102 RECALCOMPLETE, 103 STARTRECAL, 104 RESETCTLR, 105 SEEKWAIT, 106 RECALWAIT, 107 MOTORWAIT, 108 IOTIMEDOUT, 109 RESETCOMPLETE, 110 PIOREAD 111 }; 112 113 #ifdef FDC_DEBUG 114 static char const * const fdstates[] = { 115 "DEVIDLE", 116 "FINDWORK", 117 "DOSEEK", 118 "SEEKCOMPLETE", 119 "IOCOMPLETE", 120 "RECALCOMPLETE", 121 "STARTRECAL", 122 "RESETCTLR", 123 "SEEKWAIT", 124 "RECALWAIT", 125 "MOTORWAIT", 126 "IOTIMEDOUT", 127 "RESETCOMPLETE", 128 "PIOREAD" 129 }; 130 #endif 131 132 /* 133 * Per controller structure (softc). 134 */ 135 struct fdc_data 136 { 137 int fdcu; /* our unit number */ 138 int dmachan; 139 int flags; 140 #define FDC_ATTACHED 0x01 141 #define FDC_STAT_VALID 0x08 142 #define FDC_HAS_FIFO 0x10 143 #define FDC_NEEDS_RESET 0x20 144 #define FDC_NODMA 0x40 145 #define FDC_ISPNP 0x80 146 #define FDC_ISPCMCIA 0x100 147 struct fd_data *fd; 148 int fdu; /* the active drive */ 149 enum fdc_states state; 150 int retry; 151 int fdout; /* mirror of the w/o digital output reg */ 152 u_int status[7]; /* copy of the registers */ 153 enum fdc_type fdct; /* chip version of FDC */ 154 int fdc_errs; /* number of logged errors */ 155 int dma_overruns; /* number of DMA overruns */ 156 struct bio_queue_head head; 157 struct bio *bp; /* active buffer */ 158 struct resource *res_ioport, *res_ctl, *res_irq, *res_drq; 159 int rid_ioport, rid_ctl, rid_irq, rid_drq; 160 int port_off; 161 bus_space_tag_t portt; 162 bus_space_handle_t porth; 163 bus_space_tag_t ctlt; 164 bus_space_handle_t ctlh; 165 void *fdc_intr; 166 struct device *fdc_dev; 167 void (*fdctl_wr)(struct fdc_data *fdc, u_int8_t v); 168 }; 169 170 #define FDBIO_FORMAT BIO_CMD2 171 172 typedef int fdu_t; 173 typedef int fdcu_t; 174 typedef int fdsu_t; 175 typedef struct fd_data *fd_p; 176 typedef struct fdc_data *fdc_p; 177 typedef enum fdc_type fdc_t; 178 179 #define FDNUMTOUNIT(n) (((n) & 3) << 6) 180 181 /* 182 * fdc maintains a set (1!) of ivars per child of each controller. 183 */ 184 enum fdc_device_ivars { 185 FDC_IVAR_FDUNIT, 186 }; 187 188 /* 189 * Simple access macros for the ivars. 190 */ 191 #define FDC_ACCESSOR(A, B, T) \ 192 static __inline T fdc_get_ ## A(device_t dev) \ 193 { \ 194 uintptr_t v; \ 195 BUS_READ_IVAR(device_get_parent(dev), dev, FDC_IVAR_ ## B, &v); \ 196 return (T) v; \ 197 } 198 FDC_ACCESSOR(fdunit, FDUNIT, int) 199 200 /* configuration flags for fdc */ 201 #define FDC_NO_FIFO (1 << 2) /* do not enable FIFO */ 202 203 /* error returns for fd_cmd() */ 204 #define FD_FAILED -1 205 #define FD_NOT_VALID -2 206 #define FDC_ERRMAX 100 /* do not log more */ 207 /* 208 * Stop retrying after this many DMA overruns. Since each retry takes 209 * one revolution, with 300 rpm., 25 retries take approximately 5 210 * seconds which the read attempt will block in case the DMA overrun 211 * is persistent. 212 */ 213 #define FDC_DMAOV_MAX 25 214 215 /* 216 * Timeout value for the PIO loops to wait until the FDC main status 217 * register matches our expectations (request for master, direction 218 * bit). This is supposed to be a number of microseconds, although 219 * timing might actually not be very accurate. 220 * 221 * Timeouts of 100 msec are believed to be required for some broken 222 * (old) hardware. 223 */ 224 #define FDSTS_TIMEOUT 100000 225 226 /* 227 * Number of subdevices that can be used for different density types. 228 */ 229 #define NUMDENS 16 230 231 #define FDBIO_RDSECTID BIO_CMD1 232 233 /* 234 * List of native drive densities. Order must match enum fd_drivetype 235 * in <sys/fdcio.h>. Upon attaching the drive, each of the 236 * programmable subdevices is initialized with the native density 237 * definition. 238 */ 239 static struct fd_type fd_native_types[] = 240 { 241 { 0 }, /* FDT_NONE */ 242 { 9,2,0xFF,0x2A,40, 720,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* FDT_360K */ 243 { 15,2,0xFF,0x1B,80,2400,FDC_500KBPS,2,0x54,1,0,FL_MFM }, /* FDT_12M */ 244 { 9,2,0xFF,0x20,80,1440,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* FDT_720K */ 245 { 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* FDT_144M */ 246 #if 0 /* we currently don't handle 2.88 MB */ 247 { 36,2,0xFF,0x1B,80,5760,FDC_1MBPS, 2,0x4C,1,1,FL_MFM|FL_PERPND } /*FDT_288M*/ 248 #else 249 { 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* FDT_144M */ 250 #endif 251 }; 252 253 /* 254 * 360 KB 5.25" and 720 KB 3.5" drives don't have automatic density 255 * selection, they just start out with their native density (or lose). 256 * So 1.2 MB 5.25", 1.44 MB 3.5", and 2.88 MB 3.5" drives have their 257 * respective lists of densities to search for. 258 */ 259 static struct fd_type fd_searchlist_12m[] = { 260 { 15,2,0xFF,0x1B,80,2400,FDC_500KBPS,2,0x54,1,0,FL_MFM }, /* 1.2M */ 261 { 9,2,0xFF,0x23,40, 720,FDC_300KBPS,2,0x50,1,0,FL_MFM|FL_2STEP }, /* 360K */ 262 { 9,2,0xFF,0x20,80,1440,FDC_300KBPS,2,0x50,1,0,FL_MFM }, /* 720K */ 263 }; 264 265 static struct fd_type fd_searchlist_144m[] = { 266 { 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* 1.44M */ 267 { 9,2,0xFF,0x20,80,1440,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* 720K */ 268 }; 269 270 /* We search for 1.44M first since this is the most common case. */ 271 static struct fd_type fd_searchlist_288m[] = { 272 { 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* 1.44M */ 273 #if 0 274 { 36,2,0xFF,0x1B,80,5760,FDC_1MBPS, 2,0x4C,1,1,FL_MFM|FL_PERPND } /* 2.88M */ 275 #endif 276 { 9,2,0xFF,0x20,80,1440,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* 720K */ 277 }; 278 279 #define MAX_SEC_SIZE (128 << 3) 280 #define MAX_CYLINDER 85 /* some people really stress their drives 281 * up to cyl 82 */ 282 #define MAX_HEAD 1 283 284 static devclass_t fdc_devclass; 285 286 /* 287 * Per drive structure (softc). 288 */ 289 struct fd_data { 290 struct fdc_data *fdc; /* pointer to controller structure */ 291 int fdsu; /* this units number on this controller */ 292 enum fd_drivetype type; /* drive type */ 293 struct fd_type *ft; /* pointer to current type descriptor */ 294 struct fd_type fts[NUMDENS]; /* type descriptors */ 295 int flags; 296 #define FD_OPEN 0x01 /* it's open */ 297 #define FD_NONBLOCK 0x02 /* O_NONBLOCK set */ 298 #define FD_ACTIVE 0x04 /* it's active */ 299 #define FD_MOTOR 0x08 /* motor should be on */ 300 #define FD_MOTOR_WAIT 0x10 /* motor coming up */ 301 #define FD_UA 0x20 /* force unit attention */ 302 int skip; 303 int hddrv; 304 #define FD_NO_TRACK -2 305 int track; /* where we think the head is */ 306 int options; /* user configurable options, see fdcio.h */ 307 struct callout_handle toffhandle; 308 struct callout_handle tohandle; 309 struct devstat *device_stats; 310 dev_t masterdev; 311 device_t dev; 312 fdu_t fdu; 313 }; 314 315 struct fdc_ivars { 316 int fdunit; 317 }; 318 static devclass_t fd_devclass; 319 320 /* configuration flags for fd */ 321 #define FD_TYPEMASK 0x0f /* drive type, matches enum 322 * fd_drivetype; on i386 machines, if 323 * given as 0, use RTC type for fd0 324 * and fd1 */ 325 #define FD_DTYPE(flags) ((flags) & FD_TYPEMASK) 326 #define FD_NO_CHLINE 0x10 /* drive does not support changeline 327 * aka. unit attention */ 328 #define FD_NO_PROBE 0x20 /* don't probe drive (seek test), just 329 * assume it is there */ 330 331 /* 332 * Throughout this file the following conventions will be used: 333 * 334 * fd is a pointer to the fd_data struct for the drive in question 335 * fdc is a pointer to the fdc_data struct for the controller 336 * fdu is the floppy drive unit number 337 * fdcu is the floppy controller unit number 338 * fdsu is the floppy drive unit number on that controller. (sub-unit) 339 */ 340 341 /* 342 * Function declarations, same (chaotic) order as they appear in the 343 * file. Re-ordering is too late now, it would only obfuscate the 344 * diffs against old and offspring versions (like the PC98 one). 345 * 346 * Anyone adding functions here, please keep this sequence the same 347 * as below -- makes locating a particular function in the body much 348 * easier. 349 */ 350 static void fdout_wr(fdc_p, u_int8_t); 351 static u_int8_t fdsts_rd(fdc_p); 352 static void fddata_wr(fdc_p, u_int8_t); 353 static u_int8_t fddata_rd(fdc_p); 354 static void fdctl_wr_isa(fdc_p, u_int8_t); 355 #if NCARD > 0 356 static void fdctl_wr_pcmcia(fdc_p, u_int8_t); 357 #endif 358 #if 0 359 static u_int8_t fdin_rd(fdc_p); 360 #endif 361 static int fdc_err(struct fdc_data *, const char *); 362 static int fd_cmd(struct fdc_data *, int, ...); 363 static int enable_fifo(fdc_p fdc); 364 static int fd_sense_drive_status(fdc_p, int *); 365 static int fd_sense_int(fdc_p, int *, int *); 366 static int fd_read_status(fdc_p); 367 static int fdc_alloc_resources(struct fdc_data *); 368 static void fdc_release_resources(struct fdc_data *); 369 static int fdc_read_ivar(device_t, device_t, int, uintptr_t *); 370 static int fdc_probe(device_t); 371 #if NCARD > 0 372 static int fdc_pccard_probe(device_t); 373 #endif 374 static int fdc_detach(device_t dev); 375 static void fdc_add_child(device_t, const char *, int); 376 static int fdc_attach(device_t); 377 static int fdc_print_child(device_t, device_t); 378 static int fd_probe(device_t); 379 static int fd_attach(device_t); 380 static int fd_detach(device_t); 381 static void set_motor(struct fdc_data *, int, int); 382 # define TURNON 1 383 # define TURNOFF 0 384 static timeout_t fd_turnoff; 385 static timeout_t fd_motor_on; 386 static void fd_turnon(struct fd_data *); 387 static void fdc_reset(fdc_p); 388 static int fd_in(struct fdc_data *, int *); 389 static int out_fdc(struct fdc_data *, int); 390 /* 391 * The open function is named fdopen() to avoid confusion with fdopen() 392 * in fd(4). The difference is now only meaningful for debuggers. 393 */ 394 static d_open_t fdopen; 395 static d_close_t fdclose; 396 static d_strategy_t fdstrategy; 397 static void fdstart(struct fdc_data *); 398 static timeout_t fd_iotimeout; 399 static timeout_t fd_pseudointr; 400 static driver_intr_t fdc_intr; 401 static int fdcpio(fdc_p, long, caddr_t, u_int); 402 static int fdautoselect(dev_t); 403 static int fdstate(struct fdc_data *); 404 static int retrier(struct fdc_data *); 405 static void fdbiodone(struct bio *); 406 static int fdmisccmd(dev_t, u_int, void *); 407 static d_ioctl_t fdioctl; 408 409 static int fifo_threshold = 8; /* XXX: should be accessible via sysctl */ 410 411 #ifdef FDC_DEBUG 412 /* CAUTION: fd_debug causes huge amounts of logging output */ 413 static int volatile fd_debug = 0; 414 #define TRACE0(arg) do { if (fd_debug) printf(arg); } while (0) 415 #define TRACE1(arg1, arg2) do { if (fd_debug) printf(arg1, arg2); } while (0) 416 #else /* FDC_DEBUG */ 417 #define TRACE0(arg) do { } while (0) 418 #define TRACE1(arg1, arg2) do { } while (0) 419 #endif /* FDC_DEBUG */ 420 421 /* 422 * Bus space handling (access to low-level IO). 423 */ 424 static void 425 fdout_wr(fdc_p fdc, u_int8_t v) 426 { 427 bus_space_write_1(fdc->portt, fdc->porth, FDOUT+fdc->port_off, v); 428 } 429 430 static u_int8_t 431 fdsts_rd(fdc_p fdc) 432 { 433 return bus_space_read_1(fdc->portt, fdc->porth, FDSTS+fdc->port_off); 434 } 435 436 static void 437 fddata_wr(fdc_p fdc, u_int8_t v) 438 { 439 bus_space_write_1(fdc->portt, fdc->porth, FDDATA+fdc->port_off, v); 440 } 441 442 static u_int8_t 443 fddata_rd(fdc_p fdc) 444 { 445 return bus_space_read_1(fdc->portt, fdc->porth, FDDATA+fdc->port_off); 446 } 447 448 static void 449 fdctl_wr_isa(fdc_p fdc, u_int8_t v) 450 { 451 bus_space_write_1(fdc->ctlt, fdc->ctlh, 0, v); 452 } 453 454 #if NCARD > 0 455 static void 456 fdctl_wr_pcmcia(fdc_p fdc, u_int8_t v) 457 { 458 bus_space_write_1(fdc->portt, fdc->porth, FDCTL+fdc->port_off, v); 459 } 460 #endif 461 462 static u_int8_t 463 fdin_rd(fdc_p fdc) 464 { 465 return bus_space_read_1(fdc->portt, fdc->porth, FDIN); 466 } 467 468 static struct cdevsw fd_cdevsw = { 469 .d_version = D_VERSION, 470 .d_open = fdopen, 471 .d_close = fdclose, 472 .d_read = physread, 473 .d_write = physwrite, 474 .d_ioctl = fdioctl, 475 .d_strategy = fdstrategy, 476 .d_name = "fd", 477 .d_flags = D_DISK | D_NEEDGIANT, 478 }; 479 480 /* 481 * Auxiliary functions. Well, some only. Others are scattered 482 * throughout the entire file. 483 */ 484 static int 485 fdc_err(struct fdc_data *fdc, const char *s) 486 { 487 fdc->fdc_errs++; 488 if (s) { 489 if (fdc->fdc_errs < FDC_ERRMAX) 490 device_printf(fdc->fdc_dev, "%s", s); 491 else if (fdc->fdc_errs == FDC_ERRMAX) 492 device_printf(fdc->fdc_dev, "too many errors, not " 493 "logging any more\n"); 494 } 495 496 return FD_FAILED; 497 } 498 499 /* 500 * fd_cmd: Send a command to the chip. Takes a varargs with this structure: 501 * Unit number, 502 * # of output bytes, output bytes as ints ..., 503 * # of input bytes, input bytes as ints ... 504 */ 505 static int 506 fd_cmd(struct fdc_data *fdc, int n_out, ...) 507 { 508 u_char cmd; 509 int n_in; 510 int n; 511 va_list ap; 512 513 va_start(ap, n_out); 514 cmd = (u_char)(va_arg(ap, int)); 515 va_end(ap); 516 va_start(ap, n_out); 517 for (n = 0; n < n_out; n++) 518 { 519 if (out_fdc(fdc, va_arg(ap, int)) < 0) 520 { 521 char msg[50]; 522 snprintf(msg, sizeof(msg), 523 "cmd %x failed at out byte %d of %d\n", 524 cmd, n + 1, n_out); 525 return fdc_err(fdc, msg); 526 } 527 } 528 n_in = va_arg(ap, int); 529 for (n = 0; n < n_in; n++) 530 { 531 int *ptr = va_arg(ap, int *); 532 if (fd_in(fdc, ptr) < 0) 533 { 534 char msg[50]; 535 snprintf(msg, sizeof(msg), 536 "cmd %02x failed at in byte %d of %d\n", 537 cmd, n + 1, n_in); 538 return fdc_err(fdc, msg); 539 } 540 } 541 542 return 0; 543 } 544 545 static int 546 enable_fifo(fdc_p fdc) 547 { 548 int i, j; 549 550 if ((fdc->flags & FDC_HAS_FIFO) == 0) { 551 552 /* 553 * Cannot use fd_cmd the normal way here, since 554 * this might be an invalid command. Thus we send the 555 * first byte, and check for an early turn of data directon. 556 */ 557 558 if (out_fdc(fdc, I8207X_CONFIGURE) < 0) 559 return fdc_err(fdc, "Enable FIFO failed\n"); 560 561 /* If command is invalid, return */ 562 j = FDSTS_TIMEOUT; 563 while ((i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM)) 564 != NE7_RQM && j-- > 0) { 565 if (i == (NE7_DIO | NE7_RQM)) { 566 fdc_reset(fdc); 567 return FD_FAILED; 568 } 569 DELAY(1); 570 } 571 if (j<0 || 572 fd_cmd(fdc, 3, 573 0, (fifo_threshold - 1) & 0xf, 0, 0) < 0) { 574 fdc_reset(fdc); 575 return fdc_err(fdc, "Enable FIFO failed\n"); 576 } 577 fdc->flags |= FDC_HAS_FIFO; 578 return 0; 579 } 580 if (fd_cmd(fdc, 4, 581 I8207X_CONFIGURE, 0, (fifo_threshold - 1) & 0xf, 0, 0) < 0) 582 return fdc_err(fdc, "Re-enable FIFO failed\n"); 583 return 0; 584 } 585 586 static int 587 fd_sense_drive_status(fdc_p fdc, int *st3p) 588 { 589 int st3; 590 591 if (fd_cmd(fdc, 2, NE7CMD_SENSED, fdc->fdu, 1, &st3)) 592 { 593 return fdc_err(fdc, "Sense Drive Status failed\n"); 594 } 595 if (st3p) 596 *st3p = st3; 597 598 return 0; 599 } 600 601 static int 602 fd_sense_int(fdc_p fdc, int *st0p, int *cylp) 603 { 604 int cyl, st0, ret; 605 606 ret = fd_cmd(fdc, 1, NE7CMD_SENSEI, 1, &st0); 607 if (ret) { 608 (void)fdc_err(fdc, 609 "sense intr err reading stat reg 0\n"); 610 return ret; 611 } 612 613 if (st0p) 614 *st0p = st0; 615 616 if ((st0 & NE7_ST0_IC) == NE7_ST0_IC_IV) { 617 /* 618 * There doesn't seem to have been an interrupt. 619 */ 620 return FD_NOT_VALID; 621 } 622 623 if (fd_in(fdc, &cyl) < 0) { 624 return fdc_err(fdc, "can't get cyl num\n"); 625 } 626 627 if (cylp) 628 *cylp = cyl; 629 630 return 0; 631 } 632 633 634 static int 635 fd_read_status(fdc_p fdc) 636 { 637 int i, ret; 638 639 for (i = ret = 0; i < 7; i++) { 640 /* 641 * XXX types are poorly chosen. Only bytes can be read 642 * from the hardware, but fdc->status[] wants u_ints and 643 * fd_in() gives ints. 644 */ 645 int status; 646 647 ret = fd_in(fdc, &status); 648 fdc->status[i] = status; 649 if (ret != 0) 650 break; 651 } 652 653 if (ret == 0) 654 fdc->flags |= FDC_STAT_VALID; 655 else 656 fdc->flags &= ~FDC_STAT_VALID; 657 658 return ret; 659 } 660 661 static int 662 fdc_alloc_resources(struct fdc_data *fdc) 663 { 664 device_t dev; 665 int ispnp, ispcmcia, nports; 666 667 dev = fdc->fdc_dev; 668 ispnp = (fdc->flags & FDC_ISPNP) != 0; 669 ispcmcia = (fdc->flags & FDC_ISPCMCIA) != 0; 670 fdc->rid_ioport = fdc->rid_irq = fdc->rid_drq = 0; 671 fdc->res_ioport = fdc->res_irq = fdc->res_drq = 0; 672 fdc->rid_ctl = 1; 673 674 /* 675 * On standard ISA, we don't just use an 8 port range 676 * (e.g. 0x3f0-0x3f7) since that covers an IDE control 677 * register at 0x3f6. 678 * 679 * Isn't PC hardware wonderful. 680 * 681 * The Y-E Data PCMCIA FDC doesn't have this problem, it 682 * uses the register with offset 6 for pseudo-DMA, and the 683 * one with offset 7 as control register. 684 */ 685 nports = ispcmcia ? 8 : (ispnp ? 1 : 6); 686 687 /* 688 * Some ACPI BIOSen have _CRS objects for the floppy device that 689 * split the I/O port resource into several resources. We detect 690 * this case by checking if there are more than 2 IOPORT resources. 691 * If so, we use the resource with the smallest start address as 692 * the port RID and the largest start address as the control RID. 693 */ 694 if (bus_get_resource_count(dev, SYS_RES_IOPORT, 2) != 0) { 695 u_long min_start, max_start, tmp; 696 int i; 697 698 /* Find the min/max start addresses and their RIDs. */ 699 max_start = 0ul; 700 min_start = ~0ul; 701 for (i = 0; bus_get_resource_count(dev, SYS_RES_IOPORT, i) > 0; 702 i++) { 703 tmp = bus_get_resource_start(dev, SYS_RES_IOPORT, i); 704 KASSERT(tmp != 0, ("bogus resource")); 705 if (tmp < min_start) { 706 min_start = tmp; 707 fdc->rid_ioport = i; 708 } 709 if (tmp > max_start) { 710 max_start = tmp; 711 fdc->rid_ctl = i; 712 } 713 } 714 if (min_start + 7 != max_start) { 715 device_printf(dev, "I/O to control range incorrect\n"); 716 return (ENXIO); 717 } 718 } 719 720 fdc->res_ioport = bus_alloc_resource(dev, SYS_RES_IOPORT, 721 &fdc->rid_ioport, 0ul, ~0ul, 722 nports, RF_ACTIVE); 723 if (fdc->res_ioport == 0) { 724 device_printf(dev, "cannot reserve I/O port range (%d ports)\n", 725 nports); 726 return ENXIO; 727 } 728 fdc->portt = rman_get_bustag(fdc->res_ioport); 729 fdc->porth = rman_get_bushandle(fdc->res_ioport); 730 731 if (!ispcmcia) { 732 /* 733 * Some BIOSen report the device at 0x3f2-0x3f5,0x3f7 734 * and some at 0x3f0-0x3f5,0x3f7. We detect the former 735 * by checking the size and adjust the port address 736 * accordingly. 737 */ 738 if (bus_get_resource_count(dev, SYS_RES_IOPORT, 0) == 4) 739 fdc->port_off = -2; 740 741 /* 742 * Register the control port range as rid 1 if it 743 * isn't there already. Most PnP BIOSen will have 744 * already done this but non-PnP configurations don't. 745 * 746 * And some (!!) report 0x3f2-0x3f5 and completely 747 * leave out the control register! It seems that some 748 * non-antique controller chips have a different 749 * method of programming the transfer speed which 750 * doesn't require the control register, but it's 751 * mighty bogus as the chip still responds to the 752 * address for the control register. 753 */ 754 if (bus_get_resource_count(dev, SYS_RES_IOPORT, 1) == 0) { 755 u_long ctlstart; 756 757 /* Find the control port, usually 0x3f7 */ 758 ctlstart = rman_get_start(fdc->res_ioport) + 759 fdc->port_off + 7; 760 761 bus_set_resource(dev, SYS_RES_IOPORT, 1, ctlstart, 1); 762 } 763 764 /* 765 * Now (finally!) allocate the control port. 766 */ 767 fdc->res_ctl = bus_alloc_resource(dev, SYS_RES_IOPORT, 768 &fdc->rid_ctl, 769 0ul, ~0ul, 1, RF_ACTIVE); 770 if (fdc->res_ctl == 0) { 771 device_printf(dev, 772 "cannot reserve control I/O port range (control port)\n"); 773 return ENXIO; 774 } 775 fdc->ctlt = rman_get_bustag(fdc->res_ctl); 776 fdc->ctlh = rman_get_bushandle(fdc->res_ctl); 777 } 778 779 fdc->res_irq = bus_alloc_resource(dev, SYS_RES_IRQ, 780 &fdc->rid_irq, 0ul, ~0ul, 1, 781 RF_ACTIVE); 782 if (fdc->res_irq == 0) { 783 device_printf(dev, "cannot reserve interrupt line\n"); 784 return ENXIO; 785 } 786 787 if ((fdc->flags & FDC_NODMA) == 0) { 788 fdc->res_drq = bus_alloc_resource(dev, SYS_RES_DRQ, 789 &fdc->rid_drq, 0ul, ~0ul, 1, 790 RF_ACTIVE); 791 if (fdc->res_drq == 0) { 792 device_printf(dev, "cannot reserve DMA request line\n"); 793 return ENXIO; 794 } 795 fdc->dmachan = fdc->res_drq->r_start; 796 } 797 798 return 0; 799 } 800 801 static void 802 fdc_release_resources(struct fdc_data *fdc) 803 { 804 device_t dev; 805 806 dev = fdc->fdc_dev; 807 if (fdc->res_irq != 0) { 808 bus_deactivate_resource(dev, SYS_RES_IRQ, fdc->rid_irq, 809 fdc->res_irq); 810 bus_release_resource(dev, SYS_RES_IRQ, fdc->rid_irq, 811 fdc->res_irq); 812 } 813 if (fdc->res_ctl != 0) { 814 bus_deactivate_resource(dev, SYS_RES_IOPORT, fdc->rid_ctl, 815 fdc->res_ctl); 816 bus_release_resource(dev, SYS_RES_IOPORT, fdc->rid_ctl, 817 fdc->res_ctl); 818 } 819 if (fdc->res_ioport != 0) { 820 bus_deactivate_resource(dev, SYS_RES_IOPORT, fdc->rid_ioport, 821 fdc->res_ioport); 822 bus_release_resource(dev, SYS_RES_IOPORT, fdc->rid_ioport, 823 fdc->res_ioport); 824 } 825 if (fdc->res_drq != 0) { 826 bus_deactivate_resource(dev, SYS_RES_DRQ, fdc->rid_drq, 827 fdc->res_drq); 828 bus_release_resource(dev, SYS_RES_DRQ, fdc->rid_drq, 829 fdc->res_drq); 830 } 831 } 832 833 /* 834 * Configuration/initialization stuff, per controller. 835 */ 836 837 static struct isa_pnp_id fdc_ids[] = { 838 {0x0007d041, "PC standard floppy disk controller"}, /* PNP0700 */ 839 {0x0107d041, "Standard floppy controller supporting MS Device Bay Spec"}, /* PNP0701 */ 840 {0} 841 }; 842 843 static int 844 fdc_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) 845 { 846 struct fdc_ivars *ivars = device_get_ivars(child); 847 848 switch (which) { 849 case FDC_IVAR_FDUNIT: 850 *result = ivars->fdunit; 851 break; 852 default: 853 return ENOENT; 854 } 855 return 0; 856 } 857 858 static int 859 fdc_probe(device_t dev) 860 { 861 int error, ic_type; 862 struct fdc_data *fdc; 863 864 fdc = device_get_softc(dev); 865 bzero(fdc, sizeof *fdc); 866 fdc->fdc_dev = dev; 867 fdc->fdctl_wr = fdctl_wr_isa; 868 869 /* Check pnp ids */ 870 error = ISA_PNP_PROBE(device_get_parent(dev), dev, fdc_ids); 871 if (error == ENXIO) 872 return ENXIO; 873 if (error == 0) 874 fdc->flags |= FDC_ISPNP; 875 876 /* Attempt to allocate our resources for the duration of the probe */ 877 error = fdc_alloc_resources(fdc); 878 if (error) 879 goto out; 880 881 /* First - lets reset the floppy controller */ 882 fdout_wr(fdc, 0); 883 DELAY(100); 884 fdout_wr(fdc, FDO_FRST); 885 886 /* see if it can handle a command */ 887 if (fd_cmd(fdc, 3, NE7CMD_SPECIFY, NE7_SPEC_1(3, 240), 888 NE7_SPEC_2(2, 0), 0)) { 889 error = ENXIO; 890 goto out; 891 } 892 893 if (fd_cmd(fdc, 1, NE7CMD_VERSION, 1, &ic_type) == 0) { 894 ic_type = (u_char)ic_type; 895 switch (ic_type) { 896 case 0x80: 897 device_set_desc(dev, "NEC 765 or clone"); 898 fdc->fdct = FDC_NE765; 899 break; 900 case 0x81: /* not mentioned in any hardware doc */ 901 case 0x90: 902 device_set_desc(dev, 903 "Enhanced floppy controller (i82077, NE72065 or clone)"); 904 fdc->fdct = FDC_ENHANCED; 905 break; 906 default: 907 device_set_desc(dev, "Generic floppy controller"); 908 fdc->fdct = FDC_UNKNOWN; 909 break; 910 } 911 } 912 913 out: 914 fdc_release_resources(fdc); 915 return (error); 916 } 917 918 #if NCARD > 0 919 920 static int 921 fdc_pccard_probe(device_t dev) 922 { 923 int error; 924 struct fdc_data *fdc; 925 926 fdc = device_get_softc(dev); 927 bzero(fdc, sizeof *fdc); 928 fdc->fdc_dev = dev; 929 fdc->fdctl_wr = fdctl_wr_pcmcia; 930 931 fdc->flags |= FDC_ISPCMCIA | FDC_NODMA; 932 933 /* Attempt to allocate our resources for the duration of the probe */ 934 error = fdc_alloc_resources(fdc); 935 if (error) 936 goto out; 937 938 /* First - lets reset the floppy controller */ 939 fdout_wr(fdc, 0); 940 DELAY(100); 941 fdout_wr(fdc, FDO_FRST); 942 943 /* see if it can handle a command */ 944 if (fd_cmd(fdc, 3, NE7CMD_SPECIFY, NE7_SPEC_1(3, 240), 945 NE7_SPEC_2(2, 0), 0)) { 946 error = ENXIO; 947 goto out; 948 } 949 950 device_set_desc(dev, "Y-E Data PCMCIA floppy"); 951 fdc->fdct = FDC_NE765; 952 953 out: 954 fdc_release_resources(fdc); 955 return (error); 956 } 957 958 #endif /* NCARD > 0 */ 959 960 static int 961 fdc_detach(device_t dev) 962 { 963 struct fdc_data *fdc; 964 int error; 965 966 fdc = device_get_softc(dev); 967 968 /* have our children detached first */ 969 if ((error = bus_generic_detach(dev))) 970 return (error); 971 972 /* reset controller, turn motor off */ 973 fdout_wr(fdc, 0); 974 975 if ((fdc->flags & FDC_NODMA) == 0) 976 isa_dma_release(fdc->dmachan); 977 978 if ((fdc->flags & FDC_ATTACHED) == 0) { 979 device_printf(dev, "already unloaded\n"); 980 return (0); 981 } 982 fdc->flags &= ~FDC_ATTACHED; 983 984 BUS_TEARDOWN_INTR(device_get_parent(dev), dev, fdc->res_irq, 985 fdc->fdc_intr); 986 fdc_release_resources(fdc); 987 device_printf(dev, "unload\n"); 988 return (0); 989 } 990 991 /* 992 * Add a child device to the fdc controller. It will then be probed etc. 993 */ 994 static void 995 fdc_add_child(device_t dev, const char *name, int unit) 996 { 997 int flags; 998 struct fdc_ivars *ivar; 999 device_t child; 1000 1001 ivar = malloc(sizeof *ivar, M_DEVBUF /* XXX */, M_NOWAIT | M_ZERO); 1002 if (ivar == NULL) 1003 return; 1004 if (resource_int_value(name, unit, "drive", &ivar->fdunit) != 0) 1005 ivar->fdunit = 0; 1006 child = device_add_child(dev, name, unit); 1007 if (child == NULL) { 1008 free(ivar, M_DEVBUF); 1009 return; 1010 } 1011 device_set_ivars(child, ivar); 1012 if (resource_int_value(name, unit, "flags", &flags) == 0) 1013 device_set_flags(child, flags); 1014 if (resource_disabled(name, unit)) 1015 device_disable(child); 1016 } 1017 1018 static int 1019 fdc_attach(device_t dev) 1020 { 1021 struct fdc_data *fdc; 1022 const char *name, *dname; 1023 int i, error, dunit; 1024 1025 fdc = device_get_softc(dev); 1026 error = fdc_alloc_resources(fdc); 1027 if (error) { 1028 device_printf(dev, "cannot re-acquire resources\n"); 1029 return error; 1030 } 1031 error = BUS_SETUP_INTR(device_get_parent(dev), dev, fdc->res_irq, 1032 INTR_TYPE_BIO | INTR_ENTROPY, fdc_intr, fdc, 1033 &fdc->fdc_intr); 1034 if (error) { 1035 device_printf(dev, "cannot setup interrupt\n"); 1036 return error; 1037 } 1038 fdc->fdcu = device_get_unit(dev); 1039 fdc->flags |= FDC_ATTACHED | FDC_NEEDS_RESET; 1040 1041 if ((fdc->flags & FDC_NODMA) == 0) { 1042 /* 1043 * Acquire the DMA channel forever, the driver will do 1044 * the rest 1045 * XXX should integrate with rman 1046 */ 1047 isa_dma_acquire(fdc->dmachan); 1048 isa_dmainit(fdc->dmachan, MAX_SEC_SIZE); 1049 } 1050 fdc->state = DEVIDLE; 1051 1052 /* reset controller, turn motor off, clear fdout mirror reg */ 1053 fdout_wr(fdc, fdc->fdout = 0); 1054 bioq_init(&fdc->head); 1055 1056 /* 1057 * Probe and attach any children. We should probably detect 1058 * devices from the BIOS unless overridden. 1059 */ 1060 name = device_get_nameunit(dev); 1061 i = 0; 1062 while ((resource_find_match(&i, &dname, &dunit, "at", name)) == 0) 1063 fdc_add_child(dev, dname, dunit); 1064 1065 if ((error = bus_generic_attach(dev)) != 0) 1066 return (error); 1067 1068 return (0); 1069 } 1070 1071 static int 1072 fdc_print_child(device_t me, device_t child) 1073 { 1074 int retval = 0, flags; 1075 1076 retval += bus_print_child_header(me, child); 1077 retval += printf(" on %s drive %d", device_get_nameunit(me), 1078 fdc_get_fdunit(child)); 1079 if ((flags = device_get_flags(me)) != 0) 1080 retval += printf(" flags %#x", flags); 1081 retval += printf("\n"); 1082 1083 return (retval); 1084 } 1085 1086 static device_method_t fdc_methods[] = { 1087 /* Device interface */ 1088 DEVMETHOD(device_probe, fdc_probe), 1089 DEVMETHOD(device_attach, fdc_attach), 1090 DEVMETHOD(device_detach, fdc_detach), 1091 DEVMETHOD(device_shutdown, bus_generic_shutdown), 1092 DEVMETHOD(device_suspend, bus_generic_suspend), 1093 DEVMETHOD(device_resume, bus_generic_resume), 1094 1095 /* Bus interface */ 1096 DEVMETHOD(bus_print_child, fdc_print_child), 1097 DEVMETHOD(bus_read_ivar, fdc_read_ivar), 1098 /* Our children never use any other bus interface methods. */ 1099 1100 { 0, 0 } 1101 }; 1102 1103 static driver_t fdc_driver = { 1104 "fdc", 1105 fdc_methods, 1106 sizeof(struct fdc_data) 1107 }; 1108 1109 DRIVER_MODULE(fdc, isa, fdc_driver, fdc_devclass, 0, 0); 1110 DRIVER_MODULE(fdc, acpi, fdc_driver, fdc_devclass, 0, 0); 1111 1112 #if NCARD > 0 1113 1114 static device_method_t fdc_pccard_methods[] = { 1115 /* Device interface */ 1116 DEVMETHOD(device_probe, fdc_pccard_probe), 1117 DEVMETHOD(device_attach, fdc_attach), 1118 DEVMETHOD(device_detach, fdc_detach), 1119 DEVMETHOD(device_shutdown, bus_generic_shutdown), 1120 DEVMETHOD(device_suspend, bus_generic_suspend), 1121 DEVMETHOD(device_resume, bus_generic_resume), 1122 1123 /* Bus interface */ 1124 DEVMETHOD(bus_print_child, fdc_print_child), 1125 DEVMETHOD(bus_read_ivar, fdc_read_ivar), 1126 /* Our children never use any other bus interface methods. */ 1127 1128 { 0, 0 } 1129 }; 1130 1131 static driver_t fdc_pccard_driver = { 1132 "fdc", 1133 fdc_pccard_methods, 1134 sizeof(struct fdc_data) 1135 }; 1136 1137 DRIVER_MODULE(fdc, pccard, fdc_pccard_driver, fdc_devclass, 0, 0); 1138 1139 #endif /* NCARD > 0 */ 1140 1141 1142 /* 1143 * Configuration/initialization, per drive. 1144 */ 1145 static int 1146 fd_probe(device_t dev) 1147 { 1148 int i; 1149 u_int st0, st3; 1150 struct fd_data *fd; 1151 struct fdc_data *fdc; 1152 fdsu_t fdsu; 1153 int flags; 1154 1155 fdsu = *(int *)device_get_ivars(dev); /* xxx cheat a bit... */ 1156 fd = device_get_softc(dev); 1157 fdc = device_get_softc(device_get_parent(dev)); 1158 flags = device_get_flags(dev); 1159 1160 bzero(fd, sizeof *fd); 1161 fd->dev = dev; 1162 fd->fdc = fdc; 1163 fd->fdsu = fdsu; 1164 fd->fdu = device_get_unit(dev); 1165 fd->flags = FD_UA; /* make sure fdautoselect() will be called */ 1166 1167 fd->type = FD_DTYPE(flags); 1168 /* 1169 * XXX I think using __i386__ is wrong here since we actually want to probe 1170 * for the machine type, not the CPU type (so non-PC arch's like the PC98 will 1171 * fail the probe). However, for whatever reason, testing for _MACHINE_ARCH 1172 * == i386 breaks the test on FreeBSD/Alpha. 1173 */ 1174 #if defined(__i386__) || defined(__amd64__) 1175 if (fd->type == FDT_NONE && (fd->fdu == 0 || fd->fdu == 1)) { 1176 /* Look up what the BIOS thinks we have. */ 1177 if (fd->fdu == 0) { 1178 if ((fdc->flags & FDC_ISPCMCIA)) 1179 /* 1180 * Somewhat special. No need to force the 1181 * user to set device flags, since the Y-E 1182 * Data PCMCIA floppy is always a 1.44 MB 1183 * device. 1184 */ 1185 fd->type = FDT_144M; 1186 else 1187 fd->type = (rtcin(RTC_FDISKETTE) & 0xf0) >> 4; 1188 } else { 1189 fd->type = rtcin(RTC_FDISKETTE) & 0x0f; 1190 } 1191 if (fd->type == FDT_288M_1) 1192 fd->type = FDT_288M; 1193 } 1194 #endif /* __i386__ || __amd64__ */ 1195 /* is there a unit? */ 1196 if (fd->type == FDT_NONE) 1197 return (ENXIO); 1198 1199 /* select it */ 1200 set_motor(fdc, fdsu, TURNON); 1201 fdc_reset(fdc); /* XXX reset, then unreset, etc. */ 1202 DELAY(1000000); /* 1 sec */ 1203 1204 /* XXX This doesn't work before the first set_motor() */ 1205 if ((fdc->flags & FDC_HAS_FIFO) == 0 && 1206 fdc->fdct == FDC_ENHANCED && 1207 (device_get_flags(fdc->fdc_dev) & FDC_NO_FIFO) == 0 && 1208 enable_fifo(fdc) == 0) { 1209 device_printf(device_get_parent(dev), 1210 "FIFO enabled, %d bytes threshold\n", fifo_threshold); 1211 } 1212 1213 if ((flags & FD_NO_PROBE) == 0) { 1214 /* If we're at track 0 first seek inwards. */ 1215 if ((fd_sense_drive_status(fdc, &st3) == 0) && 1216 (st3 & NE7_ST3_T0)) { 1217 /* Seek some steps... */ 1218 if (fd_cmd(fdc, 3, NE7CMD_SEEK, fdsu, 10, 0) == 0) { 1219 /* ...wait a moment... */ 1220 DELAY(300000); 1221 /* make ctrlr happy: */ 1222 fd_sense_int(fdc, 0, 0); 1223 } 1224 } 1225 1226 for (i = 0; i < 2; i++) { 1227 /* 1228 * we must recalibrate twice, just in case the 1229 * heads have been beyond cylinder 76, since 1230 * most FDCs still barf when attempting to 1231 * recalibrate more than 77 steps 1232 */ 1233 /* go back to 0: */ 1234 if (fd_cmd(fdc, 2, NE7CMD_RECAL, fdsu, 0) == 0) { 1235 /* a second being enough for full stroke seek*/ 1236 DELAY(i == 0 ? 1000000 : 300000); 1237 1238 /* anything responding? */ 1239 if (fd_sense_int(fdc, &st0, 0) == 0 && 1240 (st0 & NE7_ST0_EC) == 0) 1241 break; /* already probed succesfully */ 1242 } 1243 } 1244 } 1245 1246 set_motor(fdc, fdsu, TURNOFF); 1247 1248 if ((flags & FD_NO_PROBE) == 0 && 1249 (st0 & NE7_ST0_EC) != 0) /* no track 0 -> no drive present */ 1250 return (ENXIO); 1251 1252 switch (fd->type) { 1253 case FDT_12M: 1254 device_set_desc(dev, "1200-KB 5.25\" drive"); 1255 fd->type = FDT_12M; 1256 break; 1257 case FDT_144M: 1258 device_set_desc(dev, "1440-KB 3.5\" drive"); 1259 fd->type = FDT_144M; 1260 break; 1261 case FDT_288M: 1262 device_set_desc(dev, "2880-KB 3.5\" drive (in 1440-KB mode)"); 1263 fd->type = FDT_288M; 1264 break; 1265 case FDT_360K: 1266 device_set_desc(dev, "360-KB 5.25\" drive"); 1267 fd->type = FDT_360K; 1268 break; 1269 case FDT_720K: 1270 device_set_desc(dev, "720-KB 3.5\" drive"); 1271 fd->type = FDT_720K; 1272 break; 1273 default: 1274 return (ENXIO); 1275 } 1276 fd->track = FD_NO_TRACK; 1277 fd->fdc = fdc; 1278 fd->fdsu = fdsu; 1279 fd->options = 0; 1280 callout_handle_init(&fd->toffhandle); 1281 callout_handle_init(&fd->tohandle); 1282 1283 /* initialize densities for subdevices */ 1284 for (i = 0; i < NUMDENS; i++) 1285 memcpy(fd->fts + i, fd_native_types + fd->type, 1286 sizeof(struct fd_type)); 1287 return (0); 1288 } 1289 1290 static int 1291 fd_attach(device_t dev) 1292 { 1293 struct fd_data *fd; 1294 1295 fd = device_get_softc(dev); 1296 fd->masterdev = make_dev(&fd_cdevsw, fd->fdu, 1297 UID_ROOT, GID_OPERATOR, 0640, "fd%d", fd->fdu); 1298 fd->masterdev->si_drv1 = fd; 1299 fd->device_stats = devstat_new_entry(device_get_name(dev), 1300 device_get_unit(dev), 0, DEVSTAT_NO_ORDERED_TAGS, 1301 DEVSTAT_TYPE_FLOPPY | DEVSTAT_TYPE_IF_OTHER, 1302 DEVSTAT_PRIORITY_FD); 1303 return (0); 1304 } 1305 1306 static int 1307 fd_detach(device_t dev) 1308 { 1309 struct fd_data *fd; 1310 1311 fd = device_get_softc(dev); 1312 untimeout(fd_turnoff, fd, fd->toffhandle); 1313 devstat_remove_entry(fd->device_stats); 1314 destroy_dev(fd->masterdev); 1315 1316 return (0); 1317 } 1318 1319 static device_method_t fd_methods[] = { 1320 /* Device interface */ 1321 DEVMETHOD(device_probe, fd_probe), 1322 DEVMETHOD(device_attach, fd_attach), 1323 DEVMETHOD(device_detach, fd_detach), 1324 DEVMETHOD(device_shutdown, bus_generic_shutdown), 1325 DEVMETHOD(device_suspend, bus_generic_suspend), /* XXX */ 1326 DEVMETHOD(device_resume, bus_generic_resume), /* XXX */ 1327 1328 { 0, 0 } 1329 }; 1330 1331 static driver_t fd_driver = { 1332 "fd", 1333 fd_methods, 1334 sizeof(struct fd_data) 1335 }; 1336 1337 DRIVER_MODULE(fd, fdc, fd_driver, fd_devclass, 0, 0); 1338 1339 /* 1340 * More auxiliary functions. 1341 */ 1342 /* 1343 * Motor control stuff. 1344 * Remember to not deselect the drive we're working on. 1345 */ 1346 static void 1347 set_motor(struct fdc_data *fdc, int fdsu, int turnon) 1348 { 1349 int fdout; 1350 1351 fdout = fdc->fdout; 1352 if (turnon) { 1353 fdout &= ~FDO_FDSEL; 1354 fdout |= (FDO_MOEN0 << fdsu) | FDO_FDMAEN | FDO_FRST | fdsu; 1355 } else 1356 fdout &= ~(FDO_MOEN0 << fdsu); 1357 fdc->fdout = fdout; 1358 fdout_wr(fdc, fdout); 1359 TRACE1("[0x%x->FDOUT]", fdout); 1360 } 1361 1362 static void 1363 fd_turnoff(void *xfd) 1364 { 1365 int s; 1366 fd_p fd = xfd; 1367 1368 TRACE1("[fd%d: turnoff]", fd->fdu); 1369 1370 s = splbio(); 1371 /* 1372 * Don't turn off the motor yet if the drive is active. 1373 * 1374 * If we got here, this could only mean we missed an interrupt. 1375 * This can e. g. happen on the Y-E Date PCMCIA floppy controller 1376 * after a controller reset. Just schedule a pseudo-interrupt 1377 * so the state machine gets re-entered. 1378 */ 1379 if (fd->fdc->state != DEVIDLE && fd->fdc->fdu == fd->fdu) { 1380 fdc_intr(fd->fdc); 1381 splx(s); 1382 return; 1383 } 1384 1385 fd->flags &= ~FD_MOTOR; 1386 set_motor(fd->fdc, fd->fdsu, TURNOFF); 1387 splx(s); 1388 } 1389 1390 static void 1391 fd_motor_on(void *xfd) 1392 { 1393 int s; 1394 fd_p fd = xfd; 1395 1396 s = splbio(); 1397 fd->flags &= ~FD_MOTOR_WAIT; 1398 if((fd->fdc->fd == fd) && (fd->fdc->state == MOTORWAIT)) 1399 { 1400 fdc_intr(fd->fdc); 1401 } 1402 splx(s); 1403 } 1404 1405 static void 1406 fd_turnon(fd_p fd) 1407 { 1408 if(!(fd->flags & FD_MOTOR)) 1409 { 1410 fd->flags |= (FD_MOTOR + FD_MOTOR_WAIT); 1411 set_motor(fd->fdc, fd->fdsu, TURNON); 1412 timeout(fd_motor_on, fd, hz); /* in 1 sec its ok */ 1413 } 1414 } 1415 1416 static void 1417 fdc_reset(fdc_p fdc) 1418 { 1419 /* Try a reset, keep motor on */ 1420 fdout_wr(fdc, fdc->fdout & ~(FDO_FRST|FDO_FDMAEN)); 1421 TRACE1("[0x%x->FDOUT]", fdc->fdout & ~(FDO_FRST|FDO_FDMAEN)); 1422 DELAY(100); 1423 /* enable FDC, but defer interrupts a moment */ 1424 fdout_wr(fdc, fdc->fdout & ~FDO_FDMAEN); 1425 TRACE1("[0x%x->FDOUT]", fdc->fdout & ~FDO_FDMAEN); 1426 DELAY(100); 1427 fdout_wr(fdc, fdc->fdout); 1428 TRACE1("[0x%x->FDOUT]", fdc->fdout); 1429 1430 /* XXX after a reset, silently believe the FDC will accept commands */ 1431 (void)fd_cmd(fdc, 3, NE7CMD_SPECIFY, 1432 NE7_SPEC_1(3, 240), NE7_SPEC_2(2, 0), 1433 0); 1434 if (fdc->flags & FDC_HAS_FIFO) 1435 (void) enable_fifo(fdc); 1436 } 1437 1438 /* 1439 * FDC IO functions, take care of the main status register, timeout 1440 * in case the desired status bits are never set. 1441 * 1442 * These PIO loops initially start out with short delays between 1443 * each iteration in the expectation that the required condition 1444 * is usually met quickly, so it can be handled immediately. After 1445 * about 1 ms, stepping is increased to achieve a better timing 1446 * accuracy in the calls to DELAY(). 1447 */ 1448 static int 1449 fd_in(struct fdc_data *fdc, int *ptr) 1450 { 1451 int i, j, step; 1452 1453 for (j = 0, step = 1; 1454 (i = fdsts_rd(fdc) & (NE7_DIO|NE7_RQM)) != (NE7_DIO|NE7_RQM) && 1455 j < FDSTS_TIMEOUT; 1456 j += step) { 1457 if (i == NE7_RQM) 1458 return (fdc_err(fdc, "ready for output in input\n")); 1459 if (j == 1000) 1460 step = 1000; 1461 DELAY(step); 1462 } 1463 if (j >= FDSTS_TIMEOUT) 1464 return (fdc_err(fdc, bootverbose? "input ready timeout\n": 0)); 1465 #ifdef FDC_DEBUG 1466 i = fddata_rd(fdc); 1467 TRACE1("[FDDATA->0x%x]", (unsigned char)i); 1468 *ptr = i; 1469 return (0); 1470 #else /* !FDC_DEBUG */ 1471 i = fddata_rd(fdc); 1472 if (ptr) 1473 *ptr = i; 1474 return (0); 1475 #endif /* FDC_DEBUG */ 1476 } 1477 1478 static int 1479 out_fdc(struct fdc_data *fdc, int x) 1480 { 1481 int i, j, step; 1482 1483 for (j = 0, step = 1; 1484 (i = fdsts_rd(fdc) & (NE7_DIO|NE7_RQM)) != NE7_RQM && 1485 j < FDSTS_TIMEOUT; 1486 j += step) { 1487 if (i == (NE7_DIO|NE7_RQM)) 1488 return (fdc_err(fdc, "ready for input in output\n")); 1489 if (j == 1000) 1490 step = 1000; 1491 DELAY(step); 1492 } 1493 if (j >= FDSTS_TIMEOUT) 1494 return (fdc_err(fdc, bootverbose? "output ready timeout\n": 0)); 1495 1496 /* Send the command and return */ 1497 fddata_wr(fdc, x); 1498 TRACE1("[0x%x->FDDATA]", x); 1499 return (0); 1500 } 1501 1502 /* 1503 * Block device driver interface functions (interspersed with even more 1504 * auxiliary functions). 1505 */ 1506 static int 1507 fdopen(dev_t dev, int flags, int mode, struct thread *td) 1508 { 1509 fd_p fd; 1510 fdc_p fdc; 1511 int rv, unitattn, dflags; 1512 1513 fd = dev->si_drv1; 1514 if (fd == NULL) 1515 return (ENXIO); 1516 fdc = fd->fdc; 1517 if ((fdc == NULL) || (fd->type == FDT_NONE)) 1518 return (ENXIO); 1519 dflags = device_get_flags(fd->dev); 1520 /* 1521 * This is a bit bogus. It's still possible that e. g. a 1522 * descriptor gets inherited to a child, but then it's at 1523 * least for the same subdevice. By checking FD_OPEN here, we 1524 * can ensure that a device isn't attempted to be opened with 1525 * different densities at the same time where the second open 1526 * could clobber the settings from the first one. 1527 */ 1528 if (fd->flags & FD_OPEN) 1529 return (EBUSY); 1530 1531 if (flags & FNONBLOCK) { 1532 /* 1533 * Unfortunately, physio(9) discards its ioflag 1534 * argument, thus preventing us from seeing the 1535 * IO_NDELAY bit. So we need to keep track 1536 * ourselves. 1537 */ 1538 fd->flags |= FD_NONBLOCK; 1539 fd->ft = 0; 1540 } else { 1541 /* 1542 * Figure out a unit attention condition. 1543 * 1544 * If UA has been forced, proceed. 1545 * 1546 * If the drive has no changeline support, 1547 * or if the drive parameters have been lost 1548 * due to previous non-blocking access, 1549 * assume a forced UA condition. 1550 * 1551 * If motor is off, turn it on for a moment 1552 * and select our drive, in order to read the 1553 * UA hardware signal. 1554 * 1555 * If motor is on, and our drive is currently 1556 * selected, just read the hardware bit. 1557 * 1558 * If motor is on, but active for another 1559 * drive on that controller, we are lost. We 1560 * cannot risk to deselect the other drive, so 1561 * we just assume a forced UA condition to be 1562 * on the safe side. 1563 */ 1564 unitattn = 0; 1565 if ((dflags & FD_NO_CHLINE) != 0 || 1566 (fd->flags & FD_UA) != 0 || 1567 fd->ft == 0) { 1568 unitattn = 1; 1569 fd->flags &= ~FD_UA; 1570 } else if (fdc->fdout & (FDO_MOEN0 | FDO_MOEN1 | 1571 FDO_MOEN2 | FDO_MOEN3)) { 1572 if ((fdc->fdout & FDO_FDSEL) == fd->fdsu) 1573 unitattn = fdin_rd(fdc) & FDI_DCHG; 1574 else 1575 unitattn = 1; 1576 } else { 1577 set_motor(fdc, fd->fdsu, TURNON); 1578 unitattn = fdin_rd(fdc) & FDI_DCHG; 1579 set_motor(fdc, fd->fdsu, TURNOFF); 1580 } 1581 if (unitattn && (rv = fdautoselect(dev)) != 0) 1582 return (rv); 1583 } 1584 fd->flags |= FD_OPEN; 1585 /* 1586 * Clearing the DMA overrun counter at open time is a bit messy. 1587 * Since we're only managing one counter per controller, opening 1588 * the second drive could mess it up. Anyway, if the DMA overrun 1589 * condition is really persistent, it will eventually time out 1590 * still. OTOH, clearing it here will ensure we'll at least start 1591 * trying again after a previous (maybe even long ago) failure. 1592 * Also, this is merely a stop-gap measure only that should not 1593 * happen during normal operation, so we can tolerate it to be a 1594 * bit sloppy about this. 1595 */ 1596 fdc->dma_overruns = 0; 1597 1598 return 0; 1599 } 1600 1601 static int 1602 fdclose(dev_t dev, int flags, int mode, struct thread *td) 1603 { 1604 struct fd_data *fd; 1605 1606 fd = dev->si_drv1; 1607 fd->flags &= ~(FD_OPEN | FD_NONBLOCK); 1608 fd->options &= ~(FDOPT_NORETRY | FDOPT_NOERRLOG | FDOPT_NOERROR); 1609 1610 return (0); 1611 } 1612 1613 static void 1614 fdstrategy(struct bio *bp) 1615 { 1616 long blknum, nblocks; 1617 int s; 1618 fdu_t fdu; 1619 fdc_p fdc; 1620 fd_p fd; 1621 size_t fdblk; 1622 1623 fd = bp->bio_dev->si_drv1; 1624 fdu = fd->fdu; 1625 fdc = fd->fdc; 1626 bp->bio_resid = bp->bio_bcount; 1627 if (fd->type == FDT_NONE || fd->ft == 0) { 1628 if (fd->type != FDT_NONE && (fd->flags & FD_NONBLOCK)) 1629 bp->bio_error = EAGAIN; 1630 else 1631 bp->bio_error = ENXIO; 1632 bp->bio_flags |= BIO_ERROR; 1633 goto bad; 1634 } 1635 fdblk = 128 << (fd->ft->secsize); 1636 if (bp->bio_cmd != FDBIO_FORMAT && bp->bio_cmd != FDBIO_RDSECTID) { 1637 if (fd->flags & FD_NONBLOCK) { 1638 bp->bio_error = EAGAIN; 1639 bp->bio_flags |= BIO_ERROR; 1640 goto bad; 1641 } 1642 if (bp->bio_offset < 0) { 1643 printf( 1644 "fd%d: fdstrat: bad request offset = %ju, bcount = %ld\n", 1645 fdu, (intmax_t)bp->bio_offset, bp->bio_bcount); 1646 bp->bio_error = EINVAL; 1647 bp->bio_flags |= BIO_ERROR; 1648 goto bad; 1649 } 1650 if ((bp->bio_bcount % fdblk) != 0) { 1651 bp->bio_error = EINVAL; 1652 bp->bio_flags |= BIO_ERROR; 1653 goto bad; 1654 } 1655 } 1656 1657 /* 1658 * Set up block calculations. 1659 */ 1660 if (bp->bio_offset >= ((off_t)128 << fd->ft->secsize) * fd->ft->size) { 1661 bp->bio_error = EINVAL; 1662 bp->bio_flags |= BIO_ERROR; 1663 goto bad; 1664 } 1665 blknum = bp->bio_offset / fdblk; 1666 nblocks = fd->ft->size; 1667 if (blknum + bp->bio_bcount / fdblk > nblocks) { 1668 if (blknum >= nblocks) { 1669 if (bp->bio_cmd != BIO_READ) { 1670 bp->bio_error = ENOSPC; 1671 bp->bio_flags |= BIO_ERROR; 1672 } 1673 goto bad; /* not always bad, but EOF */ 1674 } 1675 bp->bio_bcount = (nblocks - blknum) * fdblk; 1676 } 1677 bp->bio_pblkno = blknum; 1678 s = splbio(); 1679 bioq_disksort(&fdc->head, bp); 1680 untimeout(fd_turnoff, fd, fd->toffhandle); /* a good idea */ 1681 devstat_start_transaction_bio(fd->device_stats, bp); 1682 device_busy(fd->dev); 1683 fdstart(fdc); 1684 splx(s); 1685 return; 1686 1687 bad: 1688 biodone(bp); 1689 } 1690 1691 /* 1692 * fdstart 1693 * 1694 * We have just queued something. If the controller is not busy 1695 * then simulate the case where it has just finished a command 1696 * So that it (the interrupt routine) looks on the queue for more 1697 * work to do and picks up what we just added. 1698 * 1699 * If the controller is already busy, we need do nothing, as it 1700 * will pick up our work when the present work completes. 1701 */ 1702 static void 1703 fdstart(struct fdc_data *fdc) 1704 { 1705 int s; 1706 1707 s = splbio(); 1708 if(fdc->state == DEVIDLE) 1709 { 1710 fdc_intr(fdc); 1711 } 1712 splx(s); 1713 } 1714 1715 static void 1716 fd_iotimeout(void *xfdc) 1717 { 1718 fdc_p fdc; 1719 int s; 1720 1721 fdc = xfdc; 1722 TRACE1("fd%d[fd_iotimeout()]", fdc->fdu); 1723 1724 /* 1725 * Due to IBM's brain-dead design, the FDC has a faked ready 1726 * signal, hardwired to ready == true. Thus, any command 1727 * issued if there's no diskette in the drive will _never_ 1728 * complete, and must be aborted by resetting the FDC. 1729 * Many thanks, Big Blue! 1730 * The FDC must not be reset directly, since that would 1731 * interfere with the state machine. Instead, pretend that 1732 * the command completed but was invalid. The state machine 1733 * will reset the FDC and retry once. 1734 */ 1735 s = splbio(); 1736 fdc->status[0] = NE7_ST0_IC_IV; 1737 fdc->flags &= ~FDC_STAT_VALID; 1738 fdc->state = IOTIMEDOUT; 1739 fdc_intr(fdc); 1740 splx(s); 1741 } 1742 1743 /* Just ensure it has the right spl. */ 1744 static void 1745 fd_pseudointr(void *xfdc) 1746 { 1747 int s; 1748 1749 s = splbio(); 1750 fdc_intr(xfdc); 1751 splx(s); 1752 } 1753 1754 /* 1755 * fdc_intr 1756 * 1757 * Keep calling the state machine until it returns a 0. 1758 * Always called at splbio. 1759 */ 1760 static void 1761 fdc_intr(void *xfdc) 1762 { 1763 fdc_p fdc = xfdc; 1764 while(fdstate(fdc)) 1765 ; 1766 } 1767 1768 /* 1769 * Magic pseudo-DMA initialization for YE FDC. Sets count and 1770 * direction. 1771 */ 1772 #define SET_BCDR(fdc,wr,cnt,port) \ 1773 bus_space_write_1(fdc->portt, fdc->porth, fdc->port_off + port, \ 1774 ((cnt)-1) & 0xff); \ 1775 bus_space_write_1(fdc->portt, fdc->porth, fdc->port_off + port + 1, \ 1776 ((wr ? 0x80 : 0) | ((((cnt)-1) >> 8) & 0x7f))); 1777 1778 /* 1779 * fdcpio(): perform programmed IO read/write for YE PCMCIA floppy. 1780 */ 1781 static int 1782 fdcpio(fdc_p fdc, long flags, caddr_t addr, u_int count) 1783 { 1784 u_char *cptr = (u_char *)addr; 1785 1786 if (flags == BIO_READ) { 1787 if (fdc->state != PIOREAD) { 1788 fdc->state = PIOREAD; 1789 return(0); 1790 } 1791 SET_BCDR(fdc, 0, count, 0); 1792 bus_space_read_multi_1(fdc->portt, fdc->porth, fdc->port_off + 1793 FDC_YE_DATAPORT, cptr, count); 1794 } else { 1795 bus_space_write_multi_1(fdc->portt, fdc->porth, fdc->port_off + 1796 FDC_YE_DATAPORT, cptr, count); 1797 SET_BCDR(fdc, 0, count, 0); 1798 } 1799 return(1); 1800 } 1801 1802 /* 1803 * Try figuring out the density of the media present in our device. 1804 */ 1805 static int 1806 fdautoselect(dev_t dev) 1807 { 1808 fd_p fd; 1809 struct fd_type *fdtp; 1810 struct fdc_readid id; 1811 int i, n, oopts, rv; 1812 1813 fd = dev->si_drv1; 1814 1815 switch (fd->type) { 1816 default: 1817 return (ENXIO); 1818 1819 case FDT_360K: 1820 case FDT_720K: 1821 /* no autoselection on those drives */ 1822 fd->ft = fd_native_types + fd->type; 1823 return (0); 1824 1825 case FDT_12M: 1826 fdtp = fd_searchlist_12m; 1827 n = sizeof fd_searchlist_12m / sizeof(struct fd_type); 1828 break; 1829 1830 case FDT_144M: 1831 fdtp = fd_searchlist_144m; 1832 n = sizeof fd_searchlist_144m / sizeof(struct fd_type); 1833 break; 1834 1835 case FDT_288M: 1836 fdtp = fd_searchlist_288m; 1837 n = sizeof fd_searchlist_288m / sizeof(struct fd_type); 1838 break; 1839 } 1840 1841 /* 1842 * Try reading sector ID fields, first at cylinder 0, head 0, 1843 * then at cylinder 2, head N. We don't probe cylinder 1, 1844 * since for 5.25in DD media in a HD drive, there are no data 1845 * to read (2 step pulses per media cylinder required). For 1846 * two-sided media, the second probe always goes to head 1, so 1847 * we can tell them apart from single-sided media. As a 1848 * side-effect this means that single-sided media should be 1849 * mentioned in the search list after two-sided media of an 1850 * otherwise identical density. Media with a different number 1851 * of sectors per track but otherwise identical parameters 1852 * cannot be distinguished at all. 1853 * 1854 * If we successfully read an ID field on both cylinders where 1855 * the recorded values match our expectation, we are done. 1856 * Otherwise, we try the next density entry from the table. 1857 * 1858 * Stepping to cylinder 2 has the side-effect of clearing the 1859 * unit attention bit. 1860 */ 1861 oopts = fd->options; 1862 fd->options |= FDOPT_NOERRLOG | FDOPT_NORETRY; 1863 for (i = 0; i < n; i++, fdtp++) { 1864 fd->ft = fdtp; 1865 1866 id.cyl = id.head = 0; 1867 rv = fdmisccmd(dev, FDBIO_RDSECTID, &id); 1868 if (rv != 0) 1869 continue; 1870 if (id.cyl != 0 || id.head != 0 || 1871 id.secshift != fdtp->secsize) 1872 continue; 1873 id.cyl = 2; 1874 id.head = fd->ft->heads - 1; 1875 rv = fdmisccmd(dev, FDBIO_RDSECTID, &id); 1876 if (id.cyl != 2 || id.head != fdtp->heads - 1 || 1877 id.secshift != fdtp->secsize) 1878 continue; 1879 if (rv == 0) 1880 break; 1881 } 1882 1883 fd->options = oopts; 1884 if (i == n) { 1885 if (bootverbose) 1886 device_printf(fd->dev, "autoselection failed\n"); 1887 fd->ft = 0; 1888 return (EIO); 1889 } else { 1890 if (bootverbose) 1891 device_printf(fd->dev, "autoselected %d KB medium\n", 1892 fd->ft->size / 2); 1893 return (0); 1894 } 1895 } 1896 1897 1898 /* 1899 * The controller state machine. 1900 * 1901 * If it returns a non zero value, it should be called again immediately. 1902 */ 1903 static int 1904 fdstate(fdc_p fdc) 1905 { 1906 struct fdc_readid *idp; 1907 int read, format, rdsectid, cylinder, head, i, sec = 0, sectrac; 1908 int st0, cyl, st3, idf, ne7cmd, mfm, steptrac; 1909 unsigned long blknum; 1910 fdu_t fdu = fdc->fdu; 1911 fd_p fd; 1912 register struct bio *bp; 1913 struct fd_formb *finfo = NULL; 1914 size_t fdblk; 1915 1916 bp = fdc->bp; 1917 if (bp == NULL) { 1918 bp = bioq_first(&fdc->head); 1919 if (bp != NULL) { 1920 bioq_remove(&fdc->head, bp); 1921 fdc->bp = bp; 1922 } 1923 } 1924 if (bp == NULL) { 1925 /* 1926 * Nothing left for this controller to do, 1927 * force into the IDLE state. 1928 */ 1929 fdc->state = DEVIDLE; 1930 if (fdc->fd) { 1931 device_printf(fdc->fdc_dev, 1932 "unexpected valid fd pointer\n"); 1933 fdc->fd = (fd_p) 0; 1934 fdc->fdu = -1; 1935 } 1936 TRACE1("[fdc%d IDLE]", fdc->fdcu); 1937 return (0); 1938 } 1939 fd = bp->bio_dev->si_drv1; 1940 fdu = fd->fdu; 1941 fdblk = 128 << fd->ft->secsize; 1942 if (fdc->fd && (fd != fdc->fd)) 1943 device_printf(fd->dev, "confused fd pointers\n"); 1944 read = bp->bio_cmd == BIO_READ; 1945 mfm = (fd->ft->flags & FL_MFM)? NE7CMD_MFM: 0; 1946 steptrac = (fd->ft->flags & FL_2STEP)? 2: 1; 1947 if (read) 1948 idf = ISADMA_READ; 1949 else 1950 idf = ISADMA_WRITE; 1951 format = bp->bio_cmd == FDBIO_FORMAT; 1952 rdsectid = bp->bio_cmd == FDBIO_RDSECTID; 1953 if (format) 1954 finfo = (struct fd_formb *)bp->bio_data; 1955 TRACE1("fd%d", fdu); 1956 TRACE1("[%s]", fdstates[fdc->state]); 1957 TRACE1("(0x%x)", fd->flags); 1958 untimeout(fd_turnoff, fd, fd->toffhandle); 1959 fd->toffhandle = timeout(fd_turnoff, fd, 4 * hz); 1960 switch (fdc->state) 1961 { 1962 case DEVIDLE: 1963 case FINDWORK: /* we have found new work */ 1964 fdc->retry = 0; 1965 fd->skip = 0; 1966 fdc->fd = fd; 1967 fdc->fdu = fdu; 1968 fdc->fdctl_wr(fdc, fd->ft->trans); 1969 TRACE1("[0x%x->FDCTL]", fd->ft->trans); 1970 /* 1971 * If the next drive has a motor startup pending, then 1972 * it will start up in its own good time. 1973 */ 1974 if(fd->flags & FD_MOTOR_WAIT) { 1975 fdc->state = MOTORWAIT; 1976 return (0); /* will return later */ 1977 } 1978 /* 1979 * Maybe if it's not starting, it SHOULD be starting. 1980 */ 1981 if (!(fd->flags & FD_MOTOR)) 1982 { 1983 fdc->state = MOTORWAIT; 1984 fd_turnon(fd); 1985 return (0); /* will return later */ 1986 } 1987 else /* at least make sure we are selected */ 1988 { 1989 set_motor(fdc, fd->fdsu, TURNON); 1990 } 1991 if (fdc->flags & FDC_NEEDS_RESET) { 1992 fdc->state = RESETCTLR; 1993 fdc->flags &= ~FDC_NEEDS_RESET; 1994 } else 1995 fdc->state = DOSEEK; 1996 return (1); /* will return immediately */ 1997 1998 case DOSEEK: 1999 blknum = bp->bio_pblkno + fd->skip / fdblk; 2000 cylinder = blknum / (fd->ft->sectrac * fd->ft->heads); 2001 if (cylinder == fd->track) 2002 { 2003 fdc->state = SEEKCOMPLETE; 2004 return (1); /* will return immediately */ 2005 } 2006 if (fd_cmd(fdc, 3, NE7CMD_SEEK, 2007 fd->fdsu, cylinder * steptrac, 0)) 2008 { 2009 /* 2010 * Seek command not accepted, looks like 2011 * the FDC went off to the Saints... 2012 */ 2013 fdc->retry = 6; /* try a reset */ 2014 return(retrier(fdc)); 2015 } 2016 fd->track = FD_NO_TRACK; 2017 fdc->state = SEEKWAIT; 2018 return(0); /* will return later */ 2019 2020 case SEEKWAIT: 2021 /* allow heads to settle */ 2022 timeout(fd_pseudointr, fdc, hz / 16); 2023 fdc->state = SEEKCOMPLETE; 2024 return(0); /* will return later */ 2025 2026 case SEEKCOMPLETE : /* seek done, start DMA */ 2027 blknum = bp->bio_pblkno + fd->skip / fdblk; 2028 cylinder = blknum / (fd->ft->sectrac * fd->ft->heads); 2029 2030 /* Make sure seek really happened. */ 2031 if(fd->track == FD_NO_TRACK) { 2032 int descyl = cylinder * steptrac; 2033 do { 2034 /* 2035 * This might be a "ready changed" interrupt, 2036 * which cannot really happen since the 2037 * RDY pin is hardwired to + 5 volts. This 2038 * generally indicates a "bouncing" intr 2039 * line, so do one of the following: 2040 * 2041 * When running on an enhanced FDC that is 2042 * known to not go stuck after responding 2043 * with INVALID, fetch all interrupt states 2044 * until seeing either an INVALID or a 2045 * real interrupt condition. 2046 * 2047 * When running on a dumb old NE765, give 2048 * up immediately. The controller will 2049 * provide up to four dummy RC interrupt 2050 * conditions right after reset (for the 2051 * corresponding four drives), so this is 2052 * our only chance to get notice that it 2053 * was not the FDC that caused the interrupt. 2054 */ 2055 if (fd_sense_int(fdc, &st0, &cyl) 2056 == FD_NOT_VALID) 2057 return (0); /* will return later */ 2058 if(fdc->fdct == FDC_NE765 2059 && (st0 & NE7_ST0_IC) == NE7_ST0_IC_RC) 2060 return (0); /* hope for a real intr */ 2061 } while ((st0 & NE7_ST0_IC) == NE7_ST0_IC_RC); 2062 2063 if (0 == descyl) { 2064 int failed = 0; 2065 /* 2066 * seek to cyl 0 requested; make sure we are 2067 * really there 2068 */ 2069 if (fd_sense_drive_status(fdc, &st3)) 2070 failed = 1; 2071 if ((st3 & NE7_ST3_T0) == 0) { 2072 printf( 2073 "fd%d: Seek to cyl 0, but not really there (ST3 = %b)\n", 2074 fdu, st3, NE7_ST3BITS); 2075 failed = 1; 2076 } 2077 2078 if (failed) { 2079 if(fdc->retry < 3) 2080 fdc->retry = 3; 2081 return (retrier(fdc)); 2082 } 2083 } 2084 2085 if (cyl != descyl) { 2086 printf( 2087 "fd%d: Seek to cyl %d failed; am at cyl %d (ST0 = 0x%x)\n", 2088 fdu, descyl, cyl, st0); 2089 if (fdc->retry < 3) 2090 fdc->retry = 3; 2091 return (retrier(fdc)); 2092 } 2093 } 2094 2095 fd->track = cylinder; 2096 if (format) 2097 fd->skip = (char *)&(finfo->fd_formb_cylno(0)) 2098 - (char *)finfo; 2099 if (!rdsectid && !(fdc->flags & FDC_NODMA)) 2100 isa_dmastart(idf, bp->bio_data+fd->skip, 2101 format ? bp->bio_bcount : fdblk, fdc->dmachan); 2102 blknum = bp->bio_pblkno + fd->skip / fdblk; 2103 sectrac = fd->ft->sectrac; 2104 sec = blknum % (sectrac * fd->ft->heads); 2105 head = sec / sectrac; 2106 sec = sec % sectrac + 1; 2107 if (head != 0 && fd->ft->offset_side2 != 0) 2108 sec += fd->ft->offset_side2; 2109 fd->hddrv = ((head&1)<<2)+fdu; 2110 2111 if(format || !(read || rdsectid)) 2112 { 2113 /* make sure the drive is writable */ 2114 if(fd_sense_drive_status(fdc, &st3) != 0) 2115 { 2116 /* stuck controller? */ 2117 if (!(fdc->flags & FDC_NODMA)) 2118 isa_dmadone(idf, 2119 bp->bio_data + fd->skip, 2120 format ? bp->bio_bcount : fdblk, 2121 fdc->dmachan); 2122 fdc->retry = 6; /* reset the beast */ 2123 return (retrier(fdc)); 2124 } 2125 if(st3 & NE7_ST3_WP) 2126 { 2127 /* 2128 * XXX YES! this is ugly. 2129 * in order to force the current operation 2130 * to fail, we will have to fake an FDC 2131 * error - all error handling is done 2132 * by the retrier() 2133 */ 2134 fdc->status[0] = NE7_ST0_IC_AT; 2135 fdc->status[1] = NE7_ST1_NW; 2136 fdc->status[2] = 0; 2137 fdc->status[3] = fd->track; 2138 fdc->status[4] = head; 2139 fdc->status[5] = sec; 2140 fdc->retry = 8; /* break out immediately */ 2141 fdc->state = IOTIMEDOUT; /* not really... */ 2142 return (1); /* will return immediately */ 2143 } 2144 } 2145 2146 if (format) { 2147 ne7cmd = NE7CMD_FORMAT | mfm; 2148 if (fdc->flags & FDC_NODMA) { 2149 /* 2150 * This seems to be necessary for 2151 * whatever obscure reason; if we omit 2152 * it, we end up filling the sector ID 2153 * fields of the newly formatted track 2154 * entirely with garbage, causing 2155 * `wrong cylinder' errors all over 2156 * the place when trying to read them 2157 * back. 2158 * 2159 * Umpf. 2160 */ 2161 SET_BCDR(fdc, 1, bp->bio_bcount, 0); 2162 2163 (void)fdcpio(fdc,bp->bio_cmd, 2164 bp->bio_data+fd->skip, 2165 bp->bio_bcount); 2166 2167 } 2168 /* formatting */ 2169 if(fd_cmd(fdc, 6, ne7cmd, head << 2 | fdu, 2170 finfo->fd_formb_secshift, 2171 finfo->fd_formb_nsecs, 2172 finfo->fd_formb_gaplen, 2173 finfo->fd_formb_fillbyte, 0)) { 2174 /* controller fell over */ 2175 if (!(fdc->flags & FDC_NODMA)) 2176 isa_dmadone(idf, 2177 bp->bio_data + fd->skip, 2178 format ? bp->bio_bcount : fdblk, 2179 fdc->dmachan); 2180 fdc->retry = 6; 2181 return (retrier(fdc)); 2182 } 2183 } else if (rdsectid) { 2184 ne7cmd = NE7CMD_READID | mfm; 2185 if (fd_cmd(fdc, 2, ne7cmd, head << 2 | fdu, 0)) { 2186 /* controller jamming */ 2187 fdc->retry = 6; 2188 return (retrier(fdc)); 2189 } 2190 } else { 2191 /* read or write operation */ 2192 ne7cmd = (read ? NE7CMD_READ | NE7CMD_SK : NE7CMD_WRITE) | mfm; 2193 if (fdc->flags & FDC_NODMA) { 2194 /* 2195 * This seems to be necessary even when 2196 * reading data. 2197 */ 2198 SET_BCDR(fdc, 1, fdblk, 0); 2199 2200 /* 2201 * Perform the write pseudo-DMA before 2202 * the WRITE command is sent. 2203 */ 2204 if (!read) 2205 (void)fdcpio(fdc,bp->bio_cmd, 2206 bp->bio_data+fd->skip, 2207 fdblk); 2208 } 2209 if (fd_cmd(fdc, 9, 2210 ne7cmd, 2211 head << 2 | fdu, /* head & unit */ 2212 fd->track, /* track */ 2213 head, 2214 sec, /* sector + 1 */ 2215 fd->ft->secsize, /* sector size */ 2216 sectrac, /* sectors/track */ 2217 fd->ft->gap, /* gap size */ 2218 fd->ft->datalen, /* data length */ 2219 0)) { 2220 /* the beast is sleeping again */ 2221 if (!(fdc->flags & FDC_NODMA)) 2222 isa_dmadone(idf, 2223 bp->bio_data + fd->skip, 2224 format ? bp->bio_bcount : fdblk, 2225 fdc->dmachan); 2226 fdc->retry = 6; 2227 return (retrier(fdc)); 2228 } 2229 } 2230 if (!rdsectid && (fdc->flags & FDC_NODMA)) 2231 /* 2232 * If this is a read, then simply await interrupt 2233 * before performing PIO. 2234 */ 2235 if (read && !fdcpio(fdc,bp->bio_cmd, 2236 bp->bio_data+fd->skip,fdblk)) { 2237 fd->tohandle = timeout(fd_iotimeout, fdc, hz); 2238 return(0); /* will return later */ 2239 } 2240 2241 /* 2242 * Write (or format) operation will fall through and 2243 * await completion interrupt. 2244 */ 2245 fdc->state = IOCOMPLETE; 2246 fd->tohandle = timeout(fd_iotimeout, fdc, hz); 2247 return (0); /* will return later */ 2248 2249 case PIOREAD: 2250 /* 2251 * Actually perform the PIO read. The IOCOMPLETE case 2252 * removes the timeout for us. 2253 */ 2254 (void)fdcpio(fdc,bp->bio_cmd,bp->bio_data+fd->skip,fdblk); 2255 fdc->state = IOCOMPLETE; 2256 /* FALLTHROUGH */ 2257 case IOCOMPLETE: /* IO done, post-analyze */ 2258 untimeout(fd_iotimeout, fdc, fd->tohandle); 2259 2260 if (fd_read_status(fdc)) { 2261 if (!rdsectid && !(fdc->flags & FDC_NODMA)) 2262 isa_dmadone(idf, bp->bio_data + fd->skip, 2263 format ? bp->bio_bcount : fdblk, 2264 fdc->dmachan); 2265 if (fdc->retry < 6) 2266 fdc->retry = 6; /* force a reset */ 2267 return (retrier(fdc)); 2268 } 2269 2270 fdc->state = IOTIMEDOUT; 2271 2272 /* FALLTHROUGH */ 2273 case IOTIMEDOUT: 2274 if (!rdsectid && !(fdc->flags & FDC_NODMA)) 2275 isa_dmadone(idf, bp->bio_data + fd->skip, 2276 format ? bp->bio_bcount : fdblk, fdc->dmachan); 2277 if (fdc->status[0] & NE7_ST0_IC) { 2278 if ((fdc->status[0] & NE7_ST0_IC) == NE7_ST0_IC_AT 2279 && fdc->status[1] & NE7_ST1_OR) { 2280 /* 2281 * DMA overrun. Someone hogged the bus and 2282 * didn't release it in time for the next 2283 * FDC transfer. 2284 * 2285 * We normally restart this without bumping 2286 * the retry counter. However, in case 2287 * something is seriously messed up (like 2288 * broken hardware), we rather limit the 2289 * number of retries so the IO operation 2290 * doesn't block indefinately. 2291 */ 2292 if (fdc->dma_overruns++ < FDC_DMAOV_MAX) { 2293 fdc->state = SEEKCOMPLETE; 2294 return (1);/* will return immediately */ 2295 } /* else fall through */ 2296 } 2297 if((fdc->status[0] & NE7_ST0_IC) == NE7_ST0_IC_IV 2298 && fdc->retry < 6) 2299 fdc->retry = 6; /* force a reset */ 2300 else if((fdc->status[0] & NE7_ST0_IC) == NE7_ST0_IC_AT 2301 && fdc->status[2] & NE7_ST2_WC 2302 && fdc->retry < 3) 2303 fdc->retry = 3; /* force recalibrate */ 2304 return (retrier(fdc)); 2305 } 2306 /* All OK */ 2307 if (rdsectid) { 2308 /* copy out ID field contents */ 2309 idp = (struct fdc_readid *)bp->bio_data; 2310 idp->cyl = fdc->status[3]; 2311 idp->head = fdc->status[4]; 2312 idp->sec = fdc->status[5]; 2313 idp->secshift = fdc->status[6]; 2314 } 2315 /* Operation successful, retry DMA overruns again next time. */ 2316 fdc->dma_overruns = 0; 2317 fd->skip += fdblk; 2318 if (!rdsectid && !format && fd->skip < bp->bio_bcount) { 2319 /* set up next transfer */ 2320 fdc->state = DOSEEK; 2321 } else { 2322 /* ALL DONE */ 2323 fd->skip = 0; 2324 bp->bio_resid = 0; 2325 fdc->bp = NULL; 2326 device_unbusy(fd->dev); 2327 biofinish(bp, fd->device_stats, 0); 2328 fdc->fd = (fd_p) 0; 2329 fdc->fdu = -1; 2330 fdc->state = FINDWORK; 2331 } 2332 return (1); /* will return immediately */ 2333 2334 case RESETCTLR: 2335 fdc_reset(fdc); 2336 fdc->retry++; 2337 fdc->state = RESETCOMPLETE; 2338 return (0); /* will return later */ 2339 2340 case RESETCOMPLETE: 2341 /* 2342 * Discard all the results from the reset so that they 2343 * can't cause an unexpected interrupt later. 2344 */ 2345 for (i = 0; i < 4; i++) 2346 (void)fd_sense_int(fdc, &st0, &cyl); 2347 fdc->state = STARTRECAL; 2348 /* FALLTHROUGH */ 2349 case STARTRECAL: 2350 if(fd_cmd(fdc, 2, NE7CMD_RECAL, fdu, 0)) { 2351 /* arrgl */ 2352 fdc->retry = 6; 2353 return (retrier(fdc)); 2354 } 2355 fdc->state = RECALWAIT; 2356 return (0); /* will return later */ 2357 2358 case RECALWAIT: 2359 /* allow heads to settle */ 2360 timeout(fd_pseudointr, fdc, hz / 8); 2361 fdc->state = RECALCOMPLETE; 2362 return (0); /* will return later */ 2363 2364 case RECALCOMPLETE: 2365 do { 2366 /* 2367 * See SEEKCOMPLETE for a comment on this: 2368 */ 2369 if (fd_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 2370 return (0); /* will return later */ 2371 if(fdc->fdct == FDC_NE765 2372 && (st0 & NE7_ST0_IC) == NE7_ST0_IC_RC) 2373 return (0); /* hope for a real intr */ 2374 } while ((st0 & NE7_ST0_IC) == NE7_ST0_IC_RC); 2375 if ((st0 & NE7_ST0_IC) != NE7_ST0_IC_NT || cyl != 0) 2376 { 2377 if(fdc->retry > 3) 2378 /* 2379 * A recalibrate from beyond cylinder 77 2380 * will "fail" due to the FDC limitations; 2381 * since people used to complain much about 2382 * the failure message, try not logging 2383 * this one if it seems to be the first 2384 * time in a line. 2385 */ 2386 printf("fd%d: recal failed ST0 %b cyl %d\n", 2387 fdu, st0, NE7_ST0BITS, cyl); 2388 if(fdc->retry < 3) fdc->retry = 3; 2389 return (retrier(fdc)); 2390 } 2391 fd->track = 0; 2392 /* Seek (probably) necessary */ 2393 fdc->state = DOSEEK; 2394 return (1); /* will return immediately */ 2395 2396 case MOTORWAIT: 2397 if(fd->flags & FD_MOTOR_WAIT) 2398 { 2399 return (0); /* time's not up yet */ 2400 } 2401 if (fdc->flags & FDC_NEEDS_RESET) { 2402 fdc->state = RESETCTLR; 2403 fdc->flags &= ~FDC_NEEDS_RESET; 2404 } else 2405 fdc->state = DOSEEK; 2406 return (1); /* will return immediately */ 2407 2408 default: 2409 device_printf(fdc->fdc_dev, "unexpected FD int->"); 2410 if (fd_read_status(fdc) == 0) 2411 printf("FDC status :%x %x %x %x %x %x %x ", 2412 fdc->status[0], 2413 fdc->status[1], 2414 fdc->status[2], 2415 fdc->status[3], 2416 fdc->status[4], 2417 fdc->status[5], 2418 fdc->status[6] ); 2419 else 2420 printf("No status available "); 2421 if (fd_sense_int(fdc, &st0, &cyl) != 0) 2422 { 2423 printf("[controller is dead now]\n"); 2424 return (0); /* will return later */ 2425 } 2426 printf("ST0 = %x, PCN = %x\n", st0, cyl); 2427 return (0); /* will return later */ 2428 } 2429 /* noone should ever get here */ 2430 } 2431 2432 static int 2433 retrier(struct fdc_data *fdc) 2434 { 2435 struct bio *bp; 2436 struct fd_data *fd; 2437 int fdu; 2438 2439 bp = fdc->bp; 2440 2441 /* XXX shouldn't this be cached somewhere? */ 2442 fd = bp->bio_dev->si_drv1; 2443 fdu = fd->fdu; 2444 if (fd->options & FDOPT_NORETRY) 2445 goto fail; 2446 2447 switch (fdc->retry) { 2448 case 0: case 1: case 2: 2449 fdc->state = SEEKCOMPLETE; 2450 break; 2451 case 3: case 4: case 5: 2452 fdc->state = STARTRECAL; 2453 break; 2454 case 6: 2455 fdc->state = RESETCTLR; 2456 break; 2457 case 7: 2458 break; 2459 default: 2460 fail: 2461 if ((fd->options & FDOPT_NOERRLOG) == 0) { 2462 disk_err(bp, "hard error", 2463 fdc->fd->skip / DEV_BSIZE, 0); 2464 if (fdc->flags & FDC_STAT_VALID) { 2465 printf( 2466 " (ST0 %b ST1 %b ST2 %b cyl %u hd %u sec %u)\n", 2467 fdc->status[0], NE7_ST0BITS, 2468 fdc->status[1], NE7_ST1BITS, 2469 fdc->status[2], NE7_ST2BITS, 2470 fdc->status[3], fdc->status[4], 2471 fdc->status[5]); 2472 } 2473 else 2474 printf(" (No status)\n"); 2475 } 2476 if ((fd->options & FDOPT_NOERROR) == 0) { 2477 bp->bio_flags |= BIO_ERROR; 2478 bp->bio_error = EIO; 2479 bp->bio_resid = bp->bio_bcount - fdc->fd->skip; 2480 } else 2481 bp->bio_resid = 0; 2482 fdc->bp = NULL; 2483 fdc->fd->skip = 0; 2484 device_unbusy(fd->dev); 2485 biofinish(bp, fdc->fd->device_stats, 0); 2486 fdc->state = FINDWORK; 2487 fdc->flags |= FDC_NEEDS_RESET; 2488 fdc->fd = (fd_p) 0; 2489 fdc->fdu = -1; 2490 return (1); 2491 } 2492 fdc->retry++; 2493 return (1); 2494 } 2495 2496 static void 2497 fdbiodone(struct bio *bp) 2498 { 2499 wakeup(bp); 2500 } 2501 2502 static int 2503 fdmisccmd(dev_t dev, u_int cmd, void *data) 2504 { 2505 fdu_t fdu; 2506 fd_p fd; 2507 struct bio *bp; 2508 struct fd_formb *finfo; 2509 struct fdc_readid *idfield; 2510 size_t fdblk; 2511 int error; 2512 2513 fd = dev->si_drv1; 2514 fdu = fd->fdu; 2515 fdblk = 128 << fd->ft->secsize; 2516 finfo = (struct fd_formb *)data; 2517 idfield = (struct fdc_readid *)data; 2518 2519 bp = malloc(sizeof(struct bio), M_TEMP, M_WAITOK | M_ZERO); 2520 2521 /* 2522 * Set up a bio request for fdstrategy(). bio_offset is faked 2523 * so that fdstrategy() will seek to the the requested 2524 * cylinder, and use the desired head. 2525 */ 2526 bp->bio_cmd = cmd; 2527 if (cmd == FDBIO_FORMAT) { 2528 bp->bio_offset = 2529 (finfo->cyl * (fd->ft->sectrac * fd->ft->heads) + 2530 finfo->head * fd->ft->sectrac) * fdblk; 2531 bp->bio_bcount = sizeof(struct fd_idfield_data) * 2532 finfo->fd_formb_nsecs; 2533 } else if (cmd == FDBIO_RDSECTID) { 2534 bp->bio_offset = 2535 (idfield->cyl * (fd->ft->sectrac * fd->ft->heads) + 2536 idfield->head * fd->ft->sectrac) * fdblk; 2537 bp->bio_bcount = sizeof(struct fdc_readid); 2538 } else 2539 panic("wrong cmd in fdmisccmd()"); 2540 bp->bio_data = data; 2541 bp->bio_dev = dev; 2542 bp->bio_done = fdbiodone; 2543 bp->bio_flags = 0; 2544 2545 /* Now run the command. */ 2546 fdstrategy(bp); 2547 error = biowait(bp, "fdcmd"); 2548 2549 free(bp, M_TEMP); 2550 return (error); 2551 } 2552 2553 static int 2554 fdioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 2555 { 2556 fdu_t fdu; 2557 fd_p fd; 2558 struct fdc_status *fsp; 2559 struct fdc_readid *rid; 2560 int error; 2561 2562 fd = dev->si_drv1; 2563 fdu = fd->fdu; 2564 2565 /* 2566 * First, handle everything that could be done with 2567 * FD_NONBLOCK still being set. 2568 */ 2569 switch (cmd) { 2570 2571 case DIOCGMEDIASIZE: 2572 if (fd->ft == 0) 2573 return ((fd->flags & FD_NONBLOCK) ? EAGAIN : ENXIO); 2574 *(off_t *)addr = (128 << (fd->ft->secsize)) * fd->ft->size; 2575 return (0); 2576 2577 case DIOCGSECTORSIZE: 2578 if (fd->ft == 0) 2579 return ((fd->flags & FD_NONBLOCK) ? EAGAIN : ENXIO); 2580 *(u_int *)addr = 128 << (fd->ft->secsize); 2581 return (0); 2582 2583 case FIONBIO: 2584 if (*(int *)addr != 0) 2585 fd->flags |= FD_NONBLOCK; 2586 else { 2587 if (fd->ft == 0) { 2588 /* 2589 * No drive type has been selected yet, 2590 * cannot turn FNONBLOCK off. 2591 */ 2592 return (EINVAL); 2593 } 2594 fd->flags &= ~FD_NONBLOCK; 2595 } 2596 return (0); 2597 2598 case FIOASYNC: 2599 /* keep the generic fcntl() code happy */ 2600 return (0); 2601 2602 case FD_GTYPE: /* get drive type */ 2603 if (fd->ft == 0) 2604 /* no type known yet, return the native type */ 2605 *(struct fd_type *)addr = fd_native_types[fd->type]; 2606 else 2607 *(struct fd_type *)addr = *fd->ft; 2608 return (0); 2609 2610 case FD_STYPE: /* set drive type */ 2611 if (suser(td) != 0) 2612 return (EPERM); 2613 fd->fts[0] = *(struct fd_type *)addr; 2614 return (0); 2615 2616 case FD_GOPTS: /* get drive options */ 2617 *(int *)addr = fd->options + FDOPT_AUTOSEL; 2618 return (0); 2619 2620 case FD_SOPTS: /* set drive options */ 2621 fd->options = *(int *)addr & ~FDOPT_AUTOSEL; 2622 return (0); 2623 2624 #ifdef FDC_DEBUG 2625 case FD_DEBUG: 2626 if ((fd_debug != 0) != (*(int *)addr != 0)) { 2627 fd_debug = (*(int *)addr != 0); 2628 printf("fd%d: debugging turned %s\n", 2629 fd->fdu, fd_debug ? "on" : "off"); 2630 } 2631 return (0); 2632 #endif 2633 2634 case FD_CLRERR: 2635 if (suser(td) != 0) 2636 return (EPERM); 2637 fd->fdc->fdc_errs = 0; 2638 return (0); 2639 2640 case FD_GSTAT: 2641 fsp = (struct fdc_status *)addr; 2642 if ((fd->fdc->flags & FDC_STAT_VALID) == 0) 2643 return (EINVAL); 2644 memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int)); 2645 return (0); 2646 2647 case FD_GDTYPE: 2648 *(enum fd_drivetype *)addr = fd->type; 2649 return (0); 2650 } 2651 2652 /* 2653 * Now handle everything else. Make sure we have a valid 2654 * drive type. 2655 */ 2656 if (fd->flags & FD_NONBLOCK) 2657 return (EAGAIN); 2658 if (fd->ft == 0) 2659 return (ENXIO); 2660 error = 0; 2661 2662 switch (cmd) { 2663 2664 case FD_FORM: 2665 if ((flag & FWRITE) == 0) 2666 return (EBADF); /* must be opened for writing */ 2667 if (((struct fd_formb *)addr)->format_version != 2668 FD_FORMAT_VERSION) 2669 return (EINVAL); /* wrong version of formatting prog */ 2670 error = fdmisccmd(dev, FDBIO_FORMAT, addr); 2671 break; 2672 2673 case FD_GTYPE: /* get drive type */ 2674 *(struct fd_type *)addr = *fd->ft; 2675 break; 2676 2677 case FD_STYPE: /* set drive type */ 2678 /* this is considered harmful; only allow for superuser */ 2679 if (suser(td) != 0) 2680 return (EPERM); 2681 *fd->ft = *(struct fd_type *)addr; 2682 break; 2683 2684 case FD_GOPTS: /* get drive options */ 2685 *(int *)addr = fd->options; 2686 break; 2687 2688 case FD_SOPTS: /* set drive options */ 2689 fd->options = *(int *)addr; 2690 break; 2691 2692 #ifdef FDC_DEBUG 2693 case FD_DEBUG: 2694 if ((fd_debug != 0) != (*(int *)addr != 0)) { 2695 fd_debug = (*(int *)addr != 0); 2696 printf("fd%d: debugging turned %s\n", 2697 fd->fdu, fd_debug ? "on" : "off"); 2698 } 2699 break; 2700 #endif 2701 2702 case FD_CLRERR: 2703 if (suser(td) != 0) 2704 return (EPERM); 2705 fd->fdc->fdc_errs = 0; 2706 break; 2707 2708 case FD_GSTAT: 2709 fsp = (struct fdc_status *)addr; 2710 if ((fd->fdc->flags & FDC_STAT_VALID) == 0) 2711 return (EINVAL); 2712 memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int)); 2713 break; 2714 2715 case FD_READID: 2716 rid = (struct fdc_readid *)addr; 2717 if (rid->cyl > MAX_CYLINDER || rid->head > MAX_HEAD) 2718 return (EINVAL); 2719 error = fdmisccmd(dev, FDBIO_RDSECTID, addr); 2720 break; 2721 2722 default: 2723 error = ENOTTY; 2724 break; 2725 } 2726 return (error); 2727 } 2728