xref: /freebsd/sys/dev/fdc/fdc.c (revision 262e143bd46171a6415a5b28af260a5efa2a3db8)
1 /*-
2  * Copyright (c) 2004 Poul-Henning Kamp
3  * Copyright (c) 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Don Ahn.
8  *
9  * Libretto PCMCIA floppy support by David Horwitt (dhorwitt@ucsd.edu)
10  * aided by the Linux floppy driver modifications from David Bateman
11  * (dbateman@eng.uts.edu.au).
12  *
13  * Copyright (c) 1993, 1994 by
14  *  jc@irbs.UUCP (John Capo)
15  *  vak@zebub.msk.su (Serge Vakulenko)
16  *  ache@astral.msk.su (Andrew A. Chernov)
17  *
18  * Copyright (c) 1993, 1994, 1995 by
19  *  joerg_wunsch@uriah.sax.de (Joerg Wunsch)
20  *  dufault@hda.com (Peter Dufault)
21  *
22  * Copyright (c) 2001 Joerg Wunsch,
23  *  joerg_wunsch@uriah.heep.sax.de (Joerg Wunsch)
24  *
25  * Redistribution and use in source and binary forms, with or without
26  * modification, are permitted provided that the following conditions
27  * are met:
28  * 1. Redistributions of source code must retain the above copyright
29  *    notice, this list of conditions and the following disclaimer.
30  * 2. Redistributions in binary form must reproduce the above copyright
31  *    notice, this list of conditions and the following disclaimer in the
32  *    documentation and/or other materials provided with the distribution.
33  * 4. Neither the name of the University nor the names of its contributors
34  *    may be used to endorse or promote products derived from this software
35  *    without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
38  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
40  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
41  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
42  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
43  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
45  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
46  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
47  * SUCH DAMAGE.
48  *
49  *	from:	@(#)fd.c	7.4 (Berkeley) 5/25/91
50  *
51  */
52 
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD$");
55 
56 #include "opt_fdc.h"
57 
58 #include <sys/param.h>
59 #include <sys/bio.h>
60 #include <sys/bus.h>
61 #include <sys/devicestat.h>
62 #include <sys/disk.h>
63 #include <sys/fcntl.h>
64 #include <sys/fdcio.h>
65 #include <sys/filio.h>
66 #include <sys/kernel.h>
67 #include <sys/kthread.h>
68 #include <sys/lock.h>
69 #include <sys/malloc.h>
70 #include <sys/module.h>
71 #include <sys/mutex.h>
72 #include <sys/proc.h>
73 #include <sys/rman.h>
74 #include <sys/sysctl.h>
75 #include <sys/systm.h>
76 
77 #include <geom/geom.h>
78 
79 #include <machine/bus.h>
80 #include <machine/clock.h>
81 #include <machine/stdarg.h>
82 
83 #include <isa/isavar.h>
84 #include <isa/isareg.h>
85 #include <dev/fdc/fdcvar.h>
86 #include <isa/rtc.h>
87 
88 #include <dev/ic/nec765.h>
89 
90 /*
91  * Runtime configuration hints/flags
92  */
93 
94 /* configuration flags for fd */
95 #define FD_TYPEMASK	0x0f	/* drive type, matches enum
96 				 * fd_drivetype; on i386 machines, if
97 				 * given as 0, use RTC type for fd0
98 				 * and fd1 */
99 #define FD_NO_PROBE	0x20	/* don't probe drive (seek test), just
100 				 * assume it is there */
101 
102 /*
103  * Things that could conceiveably considered parameters or tweakables
104  */
105 
106 /*
107  * Maximal number of bytes in a cylinder.
108  * This is used for ISADMA bouncebuffer allocation and sets the max
109  * xfersize we support.
110  *
111  * 2.88M format has 2 x 36 x 512, allow for hacked up density.
112  */
113 #define MAX_BYTES_PER_CYL	(2 * 40 * 512)
114 
115 /*
116  * Timeout value for the PIO loops to wait until the FDC main status
117  * register matches our expectations (request for master, direction
118  * bit).  This is supposed to be a number of microseconds, although
119  * timing might actually not be very accurate.
120  *
121  * Timeouts of 100 msec are believed to be required for some broken
122  * (old) hardware.
123  */
124 #define	FDSTS_TIMEOUT	100000
125 
126 /*
127  * After this many errors, stop whining.  Close will reset this count.
128  */
129 #define FDC_ERRMAX	100
130 
131 /*
132  * AutoDensity search lists for each drive type.
133  */
134 
135 static struct fd_type fd_searchlist_360k[] = {
136 	{ FDF_5_360 },
137 	{ 0 }
138 };
139 
140 static struct fd_type fd_searchlist_12m[] = {
141 	{ FDF_5_1200 | FL_AUTO },
142 	{ FDF_5_360 | FL_2STEP | FL_AUTO},
143 	{ 0 }
144 };
145 
146 static struct fd_type fd_searchlist_720k[] = {
147 	{ FDF_3_720 },
148 	{ 0 }
149 };
150 
151 static struct fd_type fd_searchlist_144m[] = {
152 	{ FDF_3_1440 | FL_AUTO},
153 	{ FDF_3_720 | FL_AUTO},
154 	{ 0 }
155 };
156 
157 static struct fd_type fd_searchlist_288m[] = {
158 	{ FDF_3_1440 | FL_AUTO },
159 #if 0
160 	{ FDF_3_2880 | FL_AUTO }, /* XXX: probably doesn't work */
161 #endif
162 	{ FDF_3_720 | FL_AUTO},
163 	{ 0 }
164 };
165 
166 /*
167  * Order must match enum fd_drivetype in <sys/fdcio.h>.
168  */
169 static struct fd_type *fd_native_types[] = {
170 	NULL,				/* FDT_NONE */
171 	fd_searchlist_360k, 		/* FDT_360K */
172 	fd_searchlist_12m, 		/* FDT_12M */
173 	fd_searchlist_720k, 		/* FDT_720K */
174 	fd_searchlist_144m, 		/* FDT_144M */
175 	fd_searchlist_288m,		/* FDT_288M_1 (mapped to FDT_288M) */
176 	fd_searchlist_288m, 		/* FDT_288M */
177 };
178 
179 /*
180  * Internals start here
181  */
182 
183 /* registers */
184 #define	FDOUT	2	/* Digital Output Register (W) */
185 #define	FDO_FDSEL	0x03	/*  floppy device select */
186 #define	FDO_FRST	0x04	/*  floppy controller reset */
187 #define	FDO_FDMAEN	0x08	/*  enable floppy DMA and Interrupt */
188 #define	FDO_MOEN0	0x10	/*  motor enable drive 0 */
189 #define	FDO_MOEN1	0x20	/*  motor enable drive 1 */
190 #define	FDO_MOEN2	0x40	/*  motor enable drive 2 */
191 #define	FDO_MOEN3	0x80	/*  motor enable drive 3 */
192 
193 #define	FDSTS	4	/* NEC 765 Main Status Register (R) */
194 #define	FDDATA	5	/* NEC 765 Data Register (R/W) */
195 #define	FDCTL	7	/* Control Register (W) */
196 
197 /*
198  * The YE-DATA PC Card floppies use PIO to read in the data rather
199  * than DMA due to the wild variability of DMA for the PC Card
200  * devices.  DMA was deleted from the PC Card specification in version
201  * 7.2 of the standard, but that post-dates the YE-DATA devices by many
202  * years.
203  *
204  * In addition, if we cannot setup the DMA resources for the ISA
205  * attachment, we'll use this same offset for data transfer.  However,
206  * that almost certainly won't work.
207  *
208  * For this mode, offset 0 and 1 must be used to setup the transfer
209  * for this floppy.  This is OK for PC Card YE Data devices, but for
210  * ISA this is likely wrong.  These registers are only available on
211  * those systems that map them to the floppy drive.  Newer systems do
212  * not do this, and we should likely prohibit access to them (or
213  * disallow NODMA to be set).
214  */
215 #define FDBCDR		0	/* And 1 */
216 #define FD_YE_DATAPORT	6	/* Drive Data port */
217 
218 #define	FDI_DCHG	0x80	/* diskette has been changed */
219 				/* requires drive and motor being selected */
220 				/* is cleared by any step pulse to drive */
221 
222 /*
223  * We have three private BIO commands.
224  */
225 #define BIO_PROBE	BIO_CMD0
226 #define BIO_RDID	BIO_CMD1
227 #define BIO_FMT		BIO_CMD2
228 
229 /*
230  * Per drive structure (softc).
231  */
232 struct fd_data {
233 	u_char 	*fd_ioptr;	/* IO pointer */
234 	u_int	fd_iosize;	/* Size of IO chunks */
235 	u_int	fd_iocount;	/* Outstanding requests */
236 	struct	fdc_data *fdc;	/* pointer to controller structure */
237 	int	fdsu;		/* this units number on this controller */
238 	enum	fd_drivetype type; /* drive type */
239 	struct	fd_type *ft;	/* pointer to current type descriptor */
240 	struct	fd_type fts;	/* type descriptors */
241 	int	sectorsize;
242 	int	flags;
243 #define	FD_WP		(1<<0)	/* Write protected	*/
244 #define	FD_MOTOR	(1<<1)	/* motor should be on	*/
245 #define	FD_MOTORWAIT	(1<<2)	/* motor should be on	*/
246 #define	FD_EMPTY	(1<<3)	/* no media		*/
247 #define	FD_NEWDISK	(1<<4)	/* media changed	*/
248 #define	FD_ISADMA	(1<<5)	/* isa dma started 	*/
249 	int	track;		/* where we think the head is */
250 #define FD_NO_TRACK	 -2
251 	int	options;	/* FDOPT_* */
252 	struct	callout toffhandle;
253 	struct	callout tohandle;
254 	struct g_geom *fd_geom;
255 	struct g_provider *fd_provider;
256 	device_t dev;
257 	struct bio_queue_head fd_bq;
258 };
259 
260 #define FD_NOT_VALID -2
261 
262 static driver_intr_t fdc_intr;
263 static void fdc_reset(struct fdc_data *);
264 
265 SYSCTL_NODE(_debug, OID_AUTO, fdc, CTLFLAG_RW, 0, "fdc driver");
266 
267 static int fifo_threshold = 8;
268 SYSCTL_INT(_debug_fdc, OID_AUTO, fifo, CTLFLAG_RW, &fifo_threshold, 0,
269 	"FIFO threshold setting");
270 
271 static int debugflags = 0;
272 SYSCTL_INT(_debug_fdc, OID_AUTO, debugflags, CTLFLAG_RW, &debugflags, 0,
273 	"Debug flags");
274 
275 static int retries = 10;
276 SYSCTL_INT(_debug_fdc, OID_AUTO, retries, CTLFLAG_RW, &retries, 0,
277 	"Number of retries to attempt");
278 
279 static int spec1 = 0xaf;
280 SYSCTL_INT(_debug_fdc, OID_AUTO, spec1, CTLFLAG_RW, &spec1, 0,
281 	"Specification byte one (step-rate + head unload)");
282 
283 static int spec2 = 0x10;
284 SYSCTL_INT(_debug_fdc, OID_AUTO, spec2, CTLFLAG_RW, &spec2, 0,
285 	"Specification byte two (head load time + no-dma)");
286 
287 static int settle;
288 SYSCTL_INT(_debug_fdc, OID_AUTO, settle, CTLFLAG_RW, &settle, 0,
289 	"Head settling time in sec/hz");
290 
291 static void
292 fdprinttype(struct fd_type *ft)
293 {
294 
295 	printf("(%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,0x%x)",
296 	    ft->sectrac, ft->secsize, ft->datalen, ft->gap, ft->tracks,
297 	    ft->size, ft->trans, ft->heads, ft->f_gap, ft->f_inter,
298 	    ft->offset_side2, ft->flags);
299 }
300 
301 static void
302 fdsettype(struct fd_data *fd, struct fd_type *ft)
303 {
304 	fd->ft = ft;
305 	ft->size = ft->sectrac * ft->heads * ft->tracks;
306 	fd->sectorsize = 128 << fd->ft->secsize;
307 }
308 
309 /*
310  * Bus space handling (access to low-level IO).
311  */
312 __inline static void
313 fdregwr(struct fdc_data *fdc, int reg, uint8_t v)
314 {
315 
316 	bus_space_write_1(fdc->iot, fdc->ioh[reg], fdc->ioff[reg], v);
317 }
318 
319 __inline static uint8_t
320 fdregrd(struct fdc_data *fdc, int reg)
321 {
322 
323 	return bus_space_read_1(fdc->iot, fdc->ioh[reg], fdc->ioff[reg]);
324 }
325 
326 static void
327 fdctl_wr(struct fdc_data *fdc, u_int8_t v)
328 {
329 
330 	fdregwr(fdc, FDCTL, v);
331 }
332 
333 static void
334 fdout_wr(struct fdc_data *fdc, u_int8_t v)
335 {
336 
337 	fdregwr(fdc, FDOUT, v);
338 }
339 
340 static u_int8_t
341 fdsts_rd(struct fdc_data *fdc)
342 {
343 
344 	return fdregrd(fdc, FDSTS);
345 }
346 
347 static void
348 fddata_wr(struct fdc_data *fdc, u_int8_t v)
349 {
350 
351 	fdregwr(fdc, FDDATA, v);
352 }
353 
354 static u_int8_t
355 fddata_rd(struct fdc_data *fdc)
356 {
357 
358 	return fdregrd(fdc, FDDATA);
359 }
360 
361 static u_int8_t
362 fdin_rd(struct fdc_data *fdc)
363 {
364 
365 	return fdregrd(fdc, FDCTL);
366 }
367 
368 /*
369  * Magic pseudo-DMA initialization for YE FDC. Sets count and
370  * direction.
371  */
372 static void
373 fdbcdr_wr(struct fdc_data *fdc, int iswrite, uint16_t count)
374 {
375 	fdregwr(fdc, FDBCDR, (count - 1) & 0xff);
376 	fdregwr(fdc, FDBCDR + 1,
377 	    (iswrite ? 0x80 : 0) | (((count - 1) >> 8) & 0x7f));
378 }
379 
380 static int
381 fdc_err(struct fdc_data *fdc, const char *s)
382 {
383 	fdc->fdc_errs++;
384 	if (s) {
385 		if (fdc->fdc_errs < FDC_ERRMAX)
386 			device_printf(fdc->fdc_dev, "%s", s);
387 		else if (fdc->fdc_errs == FDC_ERRMAX)
388 			device_printf(fdc->fdc_dev, "too many errors, not "
389 						    "logging any more\n");
390 	}
391 
392 	return (1);
393 }
394 
395 /*
396  * FDC IO functions, take care of the main status register, timeout
397  * in case the desired status bits are never set.
398  *
399  * These PIO loops initially start out with short delays between
400  * each iteration in the expectation that the required condition
401  * is usually met quickly, so it can be handled immediately.
402  */
403 static int
404 fdc_in(struct fdc_data *fdc, int *ptr)
405 {
406 	int i, j, step;
407 
408 	step = 1;
409 	for (j = 0; j < FDSTS_TIMEOUT; j += step) {
410 	        i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM);
411 	        if (i == (NE7_DIO|NE7_RQM)) {
412 			i = fddata_rd(fdc);
413 			if (ptr)
414 				*ptr = i;
415 			return (0);
416 		}
417 		if (i == NE7_RQM)
418 			return (fdc_err(fdc, "ready for output in input\n"));
419 		step += step;
420 		DELAY(step);
421 	}
422 	return (fdc_err(fdc, bootverbose? "input ready timeout\n": 0));
423 }
424 
425 static int
426 fdc_out(struct fdc_data *fdc, int x)
427 {
428 	int i, j, step;
429 
430 	step = 1;
431 	for (j = 0; j < FDSTS_TIMEOUT; j += step) {
432 	        i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM);
433 	        if (i == NE7_RQM) {
434 			fddata_wr(fdc, x);
435 			return (0);
436 		}
437 		if (i == (NE7_DIO|NE7_RQM))
438 			return (fdc_err(fdc, "ready for input in output\n"));
439 		step += step;
440 		DELAY(step);
441 	}
442 	return (fdc_err(fdc, bootverbose? "output ready timeout\n": 0));
443 }
444 
445 /*
446  * fdc_cmd: Send a command to the chip.
447  * Takes a varargs with this structure:
448  *	# of output bytes
449  *	output bytes as int [...]
450  *	# of input bytes
451  *	input bytes as int* [...]
452  */
453 static int
454 fdc_cmd(struct fdc_data *fdc, int n_out, ...)
455 {
456 	u_char cmd = 0;
457 	int n_in;
458 	int n, i;
459 	va_list ap;
460 
461 	va_start(ap, n_out);
462 	for (n = 0; n < n_out; n++) {
463 		i = va_arg(ap, int);
464 		if (n == 0)
465 			cmd = i;
466 		if (fdc_out(fdc, i) < 0) {
467 			char msg[50];
468 			snprintf(msg, sizeof(msg),
469 				"cmd %x failed at out byte %d of %d\n",
470 				cmd, n + 1, n_out);
471 			fdc->flags |= FDC_NEEDS_RESET;
472 			va_end(ap);
473 			return fdc_err(fdc, msg);
474 		}
475 	}
476 	n_in = va_arg(ap, int);
477 	for (n = 0; n < n_in; n++) {
478 		int *ptr = va_arg(ap, int *);
479 		if (fdc_in(fdc, ptr) < 0) {
480 			char msg[50];
481 			snprintf(msg, sizeof(msg),
482 				"cmd %02x failed at in byte %d of %d\n",
483 				cmd, n + 1, n_in);
484 			fdc->flags |= FDC_NEEDS_RESET;
485 			va_end(ap);
486 			return fdc_err(fdc, msg);
487 		}
488 	}
489 	va_end(ap);
490 	return (0);
491 }
492 
493 static void
494 fdc_reset(struct fdc_data *fdc)
495 {
496 	int i, r[10];
497 
498 	/* Try a reset, keep motor on */
499 	fdout_wr(fdc, fdc->fdout & ~(FDO_FRST|FDO_FDMAEN));
500 	DELAY(100);
501 	/* enable FDC, but defer interrupts a moment */
502 	fdout_wr(fdc, fdc->fdout & ~FDO_FDMAEN);
503 	DELAY(100);
504 	fdout_wr(fdc, fdc->fdout);
505 
506 	/* XXX after a reset, silently believe the FDC will accept commands */
507 	if (fdc_cmd(fdc, 3, NE7CMD_SPECIFY, spec1, spec2, 0))
508 		device_printf(fdc->fdc_dev, " SPECIFY failed in reset\n");
509 
510 	if (fdc->fdct == FDC_ENHANCED) {
511 		if (fdc_cmd(fdc, 4,
512 		    I8207X_CONFIGURE,
513 		    0,
514 		    0x40 |			/* Enable Implied Seek */
515 		    0x10 |			/* Polling disabled */
516 		    (fifo_threshold - 1),	/* Fifo threshold */
517 		    0x00,			/* Precomp track */
518 		    0))
519 			device_printf(fdc->fdc_dev,
520 			    " CONFIGURE failed in reset\n");
521 		if (debugflags & 1) {
522 			if (fdc_cmd(fdc, 1,
523 			    0x0e,			/* DUMPREG */
524 			    10, &r[0], &r[1], &r[2], &r[3], &r[4],
525 			    &r[5], &r[6], &r[7], &r[8], &r[9]))
526 				device_printf(fdc->fdc_dev,
527 				    " DUMPREG failed in reset\n");
528 			for (i = 0; i < 10; i++)
529 				printf(" %02x", r[i]);
530 			printf("\n");
531 		}
532 	}
533 }
534 
535 static int
536 fdc_sense_drive(struct fdc_data *fdc, int *st3p)
537 {
538 	int st3;
539 
540 	if (fdc_cmd(fdc, 2, NE7CMD_SENSED, fdc->fd->fdsu, 1, &st3))
541 		return (fdc_err(fdc, "Sense Drive Status failed\n"));
542 	if (st3p)
543 		*st3p = st3;
544 	return (0);
545 }
546 
547 static int
548 fdc_sense_int(struct fdc_data *fdc, int *st0p, int *cylp)
549 {
550 	int cyl, st0, ret;
551 
552 	ret = fdc_cmd(fdc, 1, NE7CMD_SENSEI, 1, &st0);
553 	if (ret) {
554 		(void)fdc_err(fdc, "sense intr err reading stat reg 0\n");
555 		return (ret);
556 	}
557 
558 	if (st0p)
559 		*st0p = st0;
560 
561 	if ((st0 & NE7_ST0_IC) == NE7_ST0_IC_IV) {
562 		/*
563 		 * There doesn't seem to have been an interrupt.
564 		 */
565 		return (FD_NOT_VALID);
566 	}
567 
568 	if (fdc_in(fdc, &cyl) < 0)
569 		return fdc_err(fdc, "can't get cyl num\n");
570 
571 	if (cylp)
572 		*cylp = cyl;
573 
574 	return (0);
575 }
576 
577 static int
578 fdc_read_status(struct fdc_data *fdc)
579 {
580 	int i, ret, status;
581 
582 	for (i = ret = 0; i < 7; i++) {
583 		ret = fdc_in(fdc, &status);
584 		fdc->status[i] = status;
585 		if (ret != 0)
586 			break;
587 	}
588 
589 	if (ret == 0)
590 		fdc->flags |= FDC_STAT_VALID;
591 	else
592 		fdc->flags &= ~FDC_STAT_VALID;
593 
594 	return ret;
595 }
596 
597 /*
598  * Select this drive
599  */
600 static void
601 fd_select(struct fd_data *fd)
602 {
603 	struct fdc_data *fdc;
604 
605 	/* XXX: lock controller */
606 	fdc = fd->fdc;
607 	fdc->fdout &= ~FDO_FDSEL;
608 	fdc->fdout |= FDO_FDMAEN | FDO_FRST | fd->fdsu;
609 	fdout_wr(fdc, fdc->fdout);
610 }
611 
612 static void
613 fd_turnon(void *arg)
614 {
615 	struct fd_data *fd;
616 	struct bio *bp;
617 	int once;
618 
619 	fd = arg;
620 	mtx_lock(&fd->fdc->fdc_mtx);
621 	fd->flags &= ~FD_MOTORWAIT;
622 	fd->flags |= FD_MOTOR;
623 	once = 0;
624 	for (;;) {
625 		bp = bioq_takefirst(&fd->fd_bq);
626 		if (bp == NULL)
627 			break;
628 		bioq_disksort(&fd->fdc->head, bp);
629 		once = 1;
630 	}
631 	mtx_unlock(&fd->fdc->fdc_mtx);
632 	if (once)
633 		wakeup(&fd->fdc->head);
634 }
635 
636 static void
637 fd_motor(struct fd_data *fd, int turnon)
638 {
639 	struct fdc_data *fdc;
640 
641 	fdc = fd->fdc;
642 /*
643 	mtx_assert(&fdc->fdc_mtx, MA_OWNED);
644 */
645 	if (turnon) {
646 		fd->flags |= FD_MOTORWAIT;
647 		fdc->fdout |= (FDO_MOEN0 << fd->fdsu);
648 		callout_reset(&fd->toffhandle, hz, fd_turnon, fd);
649 	} else {
650 		callout_drain(&fd->toffhandle);
651 		fd->flags &= ~(FD_MOTOR|FD_MOTORWAIT);
652 		fdc->fdout &= ~(FDO_MOEN0 << fd->fdsu);
653 	}
654 	fdout_wr(fdc, fdc->fdout);
655 }
656 
657 static void
658 fd_turnoff(void *xfd)
659 {
660 	struct fd_data *fd = xfd;
661 
662 	mtx_lock(&fd->fdc->fdc_mtx);
663 	fd_motor(fd, 0);
664 	mtx_unlock(&fd->fdc->fdc_mtx);
665 }
666 
667 /*
668  * fdc_intr - wake up the worker thread.
669  */
670 
671 static void
672 fdc_intr(void *arg)
673 {
674 
675 	wakeup(arg);
676 }
677 
678 /*
679  * fdc_pio(): perform programmed IO read/write for YE PCMCIA floppy.
680  */
681 static void
682 fdc_pio(struct fdc_data *fdc)
683 {
684 	u_char *cptr;
685 	struct bio *bp;
686 	u_int count;
687 
688 	bp = fdc->bp;
689 	cptr = fdc->fd->fd_ioptr;
690 	count = fdc->fd->fd_iosize;
691 
692 	if (bp->bio_cmd == BIO_READ) {
693 		fdbcdr_wr(fdc, 0, count);
694 		bus_space_read_multi_1(fdc->iot, fdc->ioh[FD_YE_DATAPORT],
695 		    fdc->ioff[FD_YE_DATAPORT], cptr, count);
696 	} else {
697 		bus_space_write_multi_1(fdc->iot, fdc->ioh[FD_YE_DATAPORT],
698 		    fdc->ioff[FD_YE_DATAPORT], cptr, count);
699 		fdbcdr_wr(fdc, 0, count);	/* needed? */
700 	}
701 }
702 
703 static int
704 fdc_biodone(struct fdc_data *fdc, int error)
705 {
706 	struct fd_data *fd;
707 	struct bio *bp;
708 
709 	fd = fdc->fd;
710 	bp = fdc->bp;
711 
712 	mtx_lock(&fdc->fdc_mtx);
713 	if (--fd->fd_iocount == 0)
714 		callout_reset(&fd->toffhandle, 4 * hz, fd_turnoff, fd);
715 	fdc->bp = NULL;
716 	fdc->fd = NULL;
717 	mtx_unlock(&fdc->fdc_mtx);
718 	if (bp->bio_to != NULL) {
719 		if ((debugflags & 2) && fd->fdc->retry > 0)
720 			printf("retries: %d\n", fd->fdc->retry);
721 		g_io_deliver(bp, error);
722 		return (0);
723 	}
724 	bp->bio_error = error;
725 	bp->bio_flags |= BIO_DONE;
726 	wakeup(bp);
727 	return (0);
728 }
729 
730 static int retry_line;
731 
732 static int
733 fdc_worker(struct fdc_data *fdc)
734 {
735 	struct fd_data *fd;
736 	struct bio *bp;
737 	int i, nsect;
738 	int st0, st3, cyl, mfm, steptrac, cylinder, descyl, sec;
739 	int head;
740 	static int need_recal;
741 	struct fdc_readid *idp;
742 	struct fd_formb *finfo;
743 
744 	/* Have we exhausted our retries ? */
745 	bp = fdc->bp;
746 	fd = fdc->fd;
747 	if (bp != NULL &&
748 		(fdc->retry >= retries || (fd->options & FDOPT_NORETRY))) {
749 		if ((debugflags & 4))
750 			printf("Too many retries (EIO)\n");
751 		return (fdc_biodone(fdc, EIO));
752 	}
753 
754 	/* Disable ISADMA if we bailed while it was active */
755 	if (fd != NULL && (fd->flags & FD_ISADMA)) {
756 		mtx_lock(&Giant);
757 		isa_dmadone(
758 		    bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE,
759 		    fd->fd_ioptr, fd->fd_iosize, fdc->dmachan);
760 		mtx_unlock(&Giant);
761 		mtx_lock(&fdc->fdc_mtx);
762 		fd->flags &= ~FD_ISADMA;
763 		mtx_unlock(&fdc->fdc_mtx);
764 	}
765 
766 	/* Unwedge the controller ? */
767 	if (fdc->flags & FDC_NEEDS_RESET) {
768 		fdc->flags &= ~FDC_NEEDS_RESET;
769 		fdc_reset(fdc);
770 		msleep(fdc, NULL, PRIBIO, "fdcrst", hz);
771 		/* Discard results */
772 		for (i = 0; i < 4; i++)
773 			fdc_sense_int(fdc, &st0, &cyl);
774 		/* All drives must recal */
775 		need_recal = 0xf;
776 	}
777 
778 	/* Pick up a request, if need be wait for it */
779 	if (fdc->bp == NULL) {
780 		mtx_lock(&fdc->fdc_mtx);
781 		do {
782 			fdc->bp = bioq_takefirst(&fdc->head);
783 			if (fdc->bp == NULL)
784 				msleep(&fdc->head, &fdc->fdc_mtx,
785 				    PRIBIO, "-", hz);
786 		} while (fdc->bp == NULL &&
787 		    (fdc->flags & FDC_KTHREAD_EXIT) == 0);
788 		mtx_unlock(&fdc->fdc_mtx);
789 
790 		if (fdc->bp == NULL)
791 			/*
792 			 * Nothing to do, worker thread has been
793 			 * requested to stop.
794 			 */
795 			return (0);
796 
797 		bp = fdc->bp;
798 		fd = fdc->fd = bp->bio_driver1;
799 		fdc->retry = 0;
800 		fd->fd_ioptr = bp->bio_data;
801 		if (bp->bio_cmd & BIO_FMT) {
802 			i = offsetof(struct fd_formb, fd_formb_cylno(0));
803 			fd->fd_ioptr += i;
804 			fd->fd_iosize = bp->bio_length - i;
805 		}
806 	}
807 
808 	/* Select drive, setup params */
809 	fd_select(fd);
810 	fdctl_wr(fdc, fd->ft->trans);
811 
812 	if (bp->bio_cmd & BIO_PROBE) {
813 
814 		if (!(fdin_rd(fdc) & FDI_DCHG) && !(fd->flags & FD_EMPTY))
815 			return (fdc_biodone(fdc, 0));
816 
817 		/*
818 		 * Try to find out if we have a disk in the drive
819 		 *
820 		 * First recal, then seek to cyl#1, this clears the
821 		 * old condition on the disk change line so we can
822 		 * examine it for current status
823 		 */
824 		if (debugflags & 0x40)
825 			printf("New disk in probe\n");
826 		mtx_lock(&fdc->fdc_mtx);
827 		fd->flags |= FD_NEWDISK;
828 		mtx_unlock(&fdc->fdc_mtx);
829 		retry_line = __LINE__;
830 		if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fd->fdsu, 0))
831 			return (1);
832 		msleep(fdc, NULL, PRIBIO, "fdrecal", hz);
833 		retry_line = __LINE__;
834 		if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID)
835 			return (1); /* XXX */
836 		retry_line = __LINE__;
837 		if ((st0 & 0xc0) || cyl != 0)
838 			return (1);
839 
840 		/* Seek to track 1 */
841 		retry_line = __LINE__;
842 		if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fd->fdsu, 1, 0))
843 			return (1);
844 		msleep(fdc, NULL, PRIBIO, "fdseek", hz);
845 		retry_line = __LINE__;
846 		if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID)
847 			return (1); /* XXX */
848 		need_recal |= (1 << fd->fdsu);
849 		if (fdin_rd(fdc) & FDI_DCHG) {
850 			if (debugflags & 0x40)
851 				printf("Empty in probe\n");
852 			mtx_lock(&fdc->fdc_mtx);
853 			fd->flags |= FD_EMPTY;
854 			mtx_unlock(&fdc->fdc_mtx);
855 		} else {
856 			if (debugflags & 0x40)
857 				printf("Got disk in probe\n");
858 			mtx_lock(&fdc->fdc_mtx);
859 			fd->flags &= ~FD_EMPTY;
860 			mtx_unlock(&fdc->fdc_mtx);
861 			retry_line = __LINE__;
862 			if(fdc_sense_drive(fdc, &st3) != 0)
863 				return (1);
864 			mtx_lock(&fdc->fdc_mtx);
865 			if(st3 & NE7_ST3_WP)
866 				fd->flags |= FD_WP;
867 			else
868 				fd->flags &= ~FD_WP;
869 			mtx_unlock(&fdc->fdc_mtx);
870 		}
871 		return (fdc_biodone(fdc, 0));
872 	}
873 
874 	/*
875 	 * If we are dead just flush the requests
876 	 */
877 	if (fd->flags & FD_EMPTY)
878 		return (fdc_biodone(fdc, ENXIO));
879 
880 	/* Check if we lost our media */
881 	if (fdin_rd(fdc) & FDI_DCHG) {
882 		if (debugflags & 0x40)
883 			printf("Lost disk\n");
884 		mtx_lock(&fdc->fdc_mtx);
885 		fd->flags |= FD_EMPTY;
886 		fd->flags |= FD_NEWDISK;
887 		mtx_unlock(&fdc->fdc_mtx);
888 		g_topology_lock();
889 		g_orphan_provider(fd->fd_provider, EXDEV);
890 		fd->fd_provider->flags |= G_PF_WITHER;
891 		fd->fd_provider =
892 		    g_new_providerf(fd->fd_geom, fd->fd_geom->name);
893 		g_error_provider(fd->fd_provider, 0);
894 		g_topology_unlock();
895 		return (fdc_biodone(fdc, ENXIO));
896 	}
897 
898 	/* Check if the floppy is write-protected */
899 	if(bp->bio_cmd & (BIO_FMT | BIO_WRITE)) {
900 		retry_line = __LINE__;
901 		if(fdc_sense_drive(fdc, &st3) != 0)
902 			return (1);
903 		if(st3 & NE7_ST3_WP)
904 			return (fdc_biodone(fdc, EROFS));
905 	}
906 
907 	mfm = (fd->ft->flags & FL_MFM)? NE7CMD_MFM: 0;
908 	steptrac = (fd->ft->flags & FL_2STEP)? 2: 1;
909 	i = fd->ft->sectrac * fd->ft->heads;
910 	cylinder = bp->bio_pblkno / i;
911 	descyl = cylinder * steptrac;
912 	sec = bp->bio_pblkno % i;
913 	nsect = i - sec;
914 	head = sec / fd->ft->sectrac;
915 	sec = sec % fd->ft->sectrac + 1;
916 
917 	/* If everything is going swimmingly, use multisector xfer */
918 	if (fdc->retry == 0 && bp->bio_cmd & (BIO_READ|BIO_WRITE)) {
919 		fd->fd_iosize = imin(nsect * fd->sectorsize, bp->bio_resid);
920 		nsect = fd->fd_iosize / fd->sectorsize;
921 	} else if (bp->bio_cmd & (BIO_READ|BIO_WRITE)) {
922 		fd->fd_iosize = fd->sectorsize;
923 		nsect = 1;
924 	}
925 
926 	/* Do RECAL if we need to or are going to track zero anyway */
927 	if ((need_recal & (1 << fd->fdsu)) ||
928 	    (cylinder == 0 && fd->track != 0) ||
929 	    fdc->retry > 2) {
930 		retry_line = __LINE__;
931 		if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fd->fdsu, 0))
932 			return (1);
933 		msleep(fdc, NULL, PRIBIO, "fdrecal", hz);
934 		retry_line = __LINE__;
935 		if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID)
936 			return (1); /* XXX */
937 		retry_line = __LINE__;
938 		if ((st0 & 0xc0) || cyl != 0)
939 			return (1);
940 		need_recal &= ~(1 << fd->fdsu);
941 		fd->track = 0;
942 		/* let the heads settle */
943 		if (settle)
944 			msleep(fdc->fd, NULL, PRIBIO, "fdhdstl", settle);
945 	}
946 
947 	/*
948 	 * SEEK to where we want to be
949 	 *
950 	 * Enhanced controllers do implied seeks for read&write as long as
951 	 * we do not need multiple steps per track.
952 	 */
953 	if (cylinder != fd->track && (
954 	    fdc->fdct != FDC_ENHANCED ||
955 	    descyl != cylinder ||
956 	    (bp->bio_cmd & (BIO_RDID|BIO_FMT)))) {
957 		retry_line = __LINE__;
958 		if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fd->fdsu, descyl, 0))
959 			return (1);
960 		msleep(fdc, NULL, PRIBIO, "fdseek", hz);
961 		retry_line = __LINE__;
962 		if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID)
963 			return (1); /* XXX */
964 		retry_line = __LINE__;
965 		if ((st0 & 0xc0) || cyl != descyl) {
966 			need_recal |= (1 << fd->fdsu);
967 			return (1);
968 		}
969 		/* let the heads settle */
970 		if (settle)
971 			msleep(fdc->fd, NULL, PRIBIO, "fdhdstl", settle);
972 	}
973 	fd->track = cylinder;
974 
975 	if (debugflags & 8)
976 		printf("op %x bn %ju siz %u ptr %p retry %d\n",
977 		    bp->bio_cmd, bp->bio_pblkno, fd->fd_iosize,
978 		    fd->fd_ioptr, fdc->retry);
979 
980 	/* Setup ISADMA if we need it and have it */
981 	if ((bp->bio_cmd & (BIO_READ|BIO_WRITE|BIO_FMT))
982 	     && !(fdc->flags & FDC_NODMA)) {
983 		mtx_lock(&Giant);
984 		isa_dmastart(
985 		    bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE,
986 		    fd->fd_ioptr, fd->fd_iosize, fdc->dmachan);
987 		mtx_unlock(&Giant);
988 		mtx_lock(&fdc->fdc_mtx);
989 		fd->flags |= FD_ISADMA;
990 		mtx_unlock(&fdc->fdc_mtx);
991 	}
992 
993 	/* Do PIO if we have to */
994 	if (fdc->flags & FDC_NODMA) {
995 		if (bp->bio_cmd & (BIO_READ|BIO_WRITE|BIO_FMT))
996 			fdbcdr_wr(fdc, 1, fd->fd_iosize);
997 		if (bp->bio_cmd & (BIO_WRITE|BIO_FMT))
998 			fdc_pio(fdc);
999 	}
1000 
1001 	switch(bp->bio_cmd) {
1002 	case BIO_FMT:
1003 		/* formatting */
1004 		finfo = (struct fd_formb *)bp->bio_data;
1005 		retry_line = __LINE__;
1006 		if (fdc_cmd(fdc, 6,
1007 		    NE7CMD_FORMAT | mfm,
1008 		    head << 2 | fd->fdsu,
1009 		    finfo->fd_formb_secshift,
1010 		    finfo->fd_formb_nsecs,
1011 		    finfo->fd_formb_gaplen,
1012 		    finfo->fd_formb_fillbyte, 0))
1013 			return (1);
1014 		break;
1015 	case BIO_RDID:
1016 		retry_line = __LINE__;
1017 		if (fdc_cmd(fdc, 2,
1018 		    NE7CMD_READID | mfm,
1019 		    head << 2 | fd->fdsu, 0))
1020 			return (1);
1021 		break;
1022 	case BIO_READ:
1023 		retry_line = __LINE__;
1024 		if (fdc_cmd(fdc, 9,
1025 		    NE7CMD_READ | NE7CMD_SK | mfm | NE7CMD_MT,
1026 		    head << 2 | fd->fdsu,	/* head & unit */
1027 		    fd->track,			/* track */
1028 		    head,			/* head */
1029 		    sec,			/* sector + 1 */
1030 		    fd->ft->secsize,		/* sector size */
1031 		    fd->ft->sectrac,		/* sectors/track */
1032 		    fd->ft->gap,		/* gap size */
1033 		    fd->ft->datalen,		/* data length */
1034 		    0))
1035 			return (1);
1036 		break;
1037 	case BIO_WRITE:
1038 		retry_line = __LINE__;
1039 		if (fdc_cmd(fdc, 9,
1040 		    NE7CMD_WRITE | mfm | NE7CMD_MT,
1041 		    head << 2 | fd->fdsu,	/* head & unit */
1042 		    fd->track,			/* track */
1043 		    head,			/* head */
1044 		    sec,			/* sector + 1 */
1045 		    fd->ft->secsize,		/* sector size */
1046 		    fd->ft->sectrac,		/* sectors/track */
1047 		    fd->ft->gap,		/* gap size */
1048 		    fd->ft->datalen,		/* data length */
1049 		    0))
1050 			return (1);
1051 		break;
1052 	default:
1053 		KASSERT(0 == 1, ("Wrong bio_cmd %x\n", bp->bio_cmd));
1054 	}
1055 
1056 	/* Wait for interrupt */
1057 	i = msleep(fdc, NULL, PRIBIO, "fddata", hz);
1058 
1059 	/* PIO if the read looks good */
1060 	if (i == 0 && (fdc->flags & FDC_NODMA) && (bp->bio_cmd & BIO_READ))
1061 		fdc_pio(fdc);
1062 
1063 	/* Finish DMA */
1064 	if (fd->flags & FD_ISADMA) {
1065 		mtx_lock(&Giant);
1066 		isa_dmadone(
1067 		    bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE,
1068 		    fd->fd_ioptr, fd->fd_iosize, fdc->dmachan);
1069 		mtx_unlock(&Giant);
1070 		mtx_lock(&fdc->fdc_mtx);
1071 		fd->flags &= ~FD_ISADMA;
1072 		mtx_unlock(&fdc->fdc_mtx);
1073 	}
1074 
1075 	if (i != 0) {
1076 		/*
1077 		 * Timeout.
1078 		 *
1079 		 * Due to IBM's brain-dead design, the FDC has a faked ready
1080 		 * signal, hardwired to ready == true. Thus, any command
1081 		 * issued if there's no diskette in the drive will _never_
1082 		 * complete, and must be aborted by resetting the FDC.
1083 		 * Many thanks, Big Blue!
1084 		 */
1085 		retry_line = __LINE__;
1086 		fdc->flags |= FDC_NEEDS_RESET;
1087 		return (1);
1088 	}
1089 
1090 	retry_line = __LINE__;
1091 	if (fdc_read_status(fdc))
1092 		return (1);
1093 
1094 	if (debugflags & 0x10)
1095 		printf("  -> %x %x %x %x\n",
1096 		    fdc->status[0], fdc->status[1],
1097 		    fdc->status[2], fdc->status[3]);
1098 
1099 	st0 = fdc->status[0] & NE7_ST0_IC;
1100 	if (st0 != 0) {
1101 		retry_line = __LINE__;
1102 		if (st0 == NE7_ST0_IC_AT && fdc->status[1] & NE7_ST1_OR) {
1103 			/*
1104 			 * DMA overrun. Someone hogged the bus and
1105 			 * didn't release it in time for the next
1106 			 * FDC transfer.
1107 			 */
1108 			return (1);
1109 		}
1110 		retry_line = __LINE__;
1111 		if(st0 == NE7_ST0_IC_IV) {
1112 			fdc->flags |= FDC_NEEDS_RESET;
1113 			return (1);
1114 		}
1115 		retry_line = __LINE__;
1116 		if(st0 == NE7_ST0_IC_AT && fdc->status[2] & NE7_ST2_WC) {
1117 			need_recal |= (1 << fd->fdsu);
1118 			return (1);
1119 		}
1120 		if (debugflags & 0x20) {
1121 			printf("status %02x %02x %02x %02x %02x %02x\n",
1122 			    fdc->status[0], fdc->status[1], fdc->status[2],
1123 			    fdc->status[3], fdc->status[4], fdc->status[5]);
1124 		}
1125 		retry_line = __LINE__;
1126 		return (1);
1127 	}
1128 	/* All OK */
1129 	switch(bp->bio_cmd) {
1130 	case BIO_RDID:
1131 		/* copy out ID field contents */
1132 		idp = (struct fdc_readid *)bp->bio_data;
1133 		idp->cyl = fdc->status[3];
1134 		idp->head = fdc->status[4];
1135 		idp->sec = fdc->status[5];
1136 		idp->secshift = fdc->status[6];
1137 		if (debugflags & 0x40)
1138 			printf("c %d h %d s %d z %d\n",
1139 			    idp->cyl, idp->head, idp->sec, idp->secshift);
1140 		break;
1141 	case BIO_READ:
1142 	case BIO_WRITE:
1143 		bp->bio_pblkno += nsect;
1144 		bp->bio_resid -= fd->fd_iosize;
1145 		bp->bio_completed += fd->fd_iosize;
1146 		fd->fd_ioptr += fd->fd_iosize;
1147 		/* Since we managed to get something done, reset the retry */
1148 		fdc->retry = 0;
1149 		if (bp->bio_resid > 0)
1150 			return (0);
1151 		break;
1152 	case BIO_FMT:
1153 		break;
1154 	}
1155 	return (fdc_biodone(fdc, 0));
1156 }
1157 
1158 static void
1159 fdc_thread(void *arg)
1160 {
1161 	struct fdc_data *fdc;
1162 
1163 	fdc = arg;
1164 	int i;
1165 
1166 	mtx_lock(&fdc->fdc_mtx);
1167 	fdc->flags |= FDC_KTHREAD_ALIVE;
1168 	while ((fdc->flags & FDC_KTHREAD_EXIT) == 0) {
1169 		mtx_unlock(&fdc->fdc_mtx);
1170 		i = fdc_worker(fdc);
1171 		if (i && debugflags & 0x20) {
1172 			if (fdc->bp != NULL) {
1173 				g_print_bio(fdc->bp);
1174 				printf("\n");
1175 			}
1176 			printf("Retry line %d\n", retry_line);
1177 		}
1178 		fdc->retry += i;
1179 		mtx_lock(&fdc->fdc_mtx);
1180 	}
1181 	fdc->flags &= ~(FDC_KTHREAD_EXIT | FDC_KTHREAD_ALIVE);
1182 	wakeup(&fdc->fdc_thread);
1183 	mtx_unlock(&fdc->fdc_mtx);
1184 
1185 	kthread_exit(0);
1186 }
1187 
1188 /*
1189  * Enqueue a request.
1190  */
1191 static void
1192 fd_enqueue(struct fd_data *fd, struct bio *bp)
1193 {
1194 	struct fdc_data *fdc;
1195 	int call;
1196 
1197 	call = 0;
1198 	fdc = fd->fdc;
1199 	mtx_lock(&fdc->fdc_mtx);
1200 	/* If we go from idle, cancel motor turnoff */
1201 	if (fd->fd_iocount++ == 0)
1202 		callout_drain(&fd->toffhandle);
1203 	if (fd->flags & FD_MOTOR) {
1204 		/* The motor is on, send it directly to the controller */
1205 		bioq_disksort(&fdc->head, bp);
1206 		wakeup(&fdc->head);
1207 	} else {
1208 		/* Queue it on the drive until the motor has started */
1209 		bioq_insert_tail(&fd->fd_bq, bp);
1210 		if (!(fd->flags & FD_MOTORWAIT))
1211 			fd_motor(fd, 1);
1212 	}
1213 	mtx_unlock(&fdc->fdc_mtx);
1214 }
1215 
1216 static int
1217 fdmisccmd(struct fd_data *fd, u_int cmd, void *data)
1218 {
1219 	struct bio *bp;
1220 	struct fd_formb *finfo;
1221 	struct fdc_readid *idfield;
1222 	int error;
1223 
1224 	bp = malloc(sizeof(struct bio), M_TEMP, M_WAITOK | M_ZERO);
1225 
1226 	/*
1227 	 * Set up a bio request for fdstrategy().  bio_offset is faked
1228 	 * so that fdstrategy() will seek to the the requested
1229 	 * cylinder, and use the desired head.
1230 	 */
1231 	bp->bio_cmd = cmd;
1232 	if (cmd == BIO_FMT) {
1233 		finfo = (struct fd_formb *)data;
1234 		bp->bio_pblkno =
1235 		    (finfo->cyl * fd->ft->heads + finfo->head) *
1236 		    fd->ft->sectrac;
1237 		bp->bio_length = sizeof *finfo;
1238 	} else if (cmd == BIO_RDID) {
1239 		idfield = (struct fdc_readid *)data;
1240 		bp->bio_pblkno =
1241 		    (idfield->cyl * fd->ft->heads + idfield->head) *
1242 		    fd->ft->sectrac;
1243 		bp->bio_length = sizeof(struct fdc_readid);
1244 	} else if (cmd == BIO_PROBE) {
1245 		/* nothing */
1246 	} else
1247 		panic("wrong cmd in fdmisccmd()");
1248 	bp->bio_offset = bp->bio_pblkno * fd->sectorsize;
1249 	bp->bio_data = data;
1250 	bp->bio_driver1 = fd;
1251 	bp->bio_flags = 0;
1252 
1253 	fd_enqueue(fd, bp);
1254 
1255 	do {
1256 		msleep(bp, NULL, PRIBIO, "fdwait", hz);
1257 	} while (!(bp->bio_flags & BIO_DONE));
1258 	error = bp->bio_error;
1259 
1260 	free(bp, M_TEMP);
1261 	return (error);
1262 }
1263 
1264 /*
1265  * Try figuring out the density of the media present in our device.
1266  */
1267 static int
1268 fdautoselect(struct fd_data *fd)
1269 {
1270 	struct fd_type *fdtp;
1271 	struct fdc_readid id;
1272 	int oopts, rv;
1273 
1274 	if (!(fd->ft->flags & FL_AUTO))
1275 		return (0);
1276 
1277 	fdtp = fd_native_types[fd->type];
1278 	fdsettype(fd, fdtp);
1279 	if (!(fd->ft->flags & FL_AUTO))
1280 		return (0);
1281 
1282 	/*
1283 	 * Try reading sector ID fields, first at cylinder 0, head 0,
1284 	 * then at cylinder 2, head N.  We don't probe cylinder 1,
1285 	 * since for 5.25in DD media in a HD drive, there are no data
1286 	 * to read (2 step pulses per media cylinder required).  For
1287 	 * two-sided media, the second probe always goes to head 1, so
1288 	 * we can tell them apart from single-sided media.  As a
1289 	 * side-effect this means that single-sided media should be
1290 	 * mentioned in the search list after two-sided media of an
1291 	 * otherwise identical density.  Media with a different number
1292 	 * of sectors per track but otherwise identical parameters
1293 	 * cannot be distinguished at all.
1294 	 *
1295 	 * If we successfully read an ID field on both cylinders where
1296 	 * the recorded values match our expectation, we are done.
1297 	 * Otherwise, we try the next density entry from the table.
1298 	 *
1299 	 * Stepping to cylinder 2 has the side-effect of clearing the
1300 	 * unit attention bit.
1301 	 */
1302 	oopts = fd->options;
1303 	fd->options |= FDOPT_NOERRLOG | FDOPT_NORETRY;
1304 	for (; fdtp->heads; fdtp++) {
1305 		fdsettype(fd, fdtp);
1306 
1307 		id.cyl = id.head = 0;
1308 		rv = fdmisccmd(fd, BIO_RDID, &id);
1309 		if (rv != 0)
1310 			continue;
1311 		if (id.cyl != 0 || id.head != 0 || id.secshift != fdtp->secsize)
1312 			continue;
1313 		id.cyl = 2;
1314 		id.head = fd->ft->heads - 1;
1315 		rv = fdmisccmd(fd, BIO_RDID, &id);
1316 		if (id.cyl != 2 || id.head != fdtp->heads - 1 ||
1317 		    id.secshift != fdtp->secsize)
1318 			continue;
1319 		if (rv == 0)
1320 			break;
1321 	}
1322 
1323 	fd->options = oopts;
1324 	if (fdtp->heads == 0) {
1325 		if (debugflags & 0x40)
1326 			device_printf(fd->dev, "autoselection failed\n");
1327 		fdsettype(fd, fd_native_types[fd->type]);
1328 		return (0);
1329 	} else {
1330 		if (debugflags & 0x40) {
1331 			device_printf(fd->dev,
1332 			    "autoselected %d KB medium\n", fd->ft->size / 2);
1333 			fdprinttype(fd->ft);
1334 		}
1335 		return (0);
1336 	}
1337 }
1338 
1339 /*
1340  * GEOM class implementation
1341  */
1342 
1343 static g_access_t	fd_access;
1344 static g_start_t	fd_start;
1345 static g_ioctl_t	fd_ioctl;
1346 
1347 struct g_class g_fd_class = {
1348 	.name =		"FD",
1349 	.version =	G_VERSION,
1350 	.start =	fd_start,
1351 	.access =	fd_access,
1352 	.ioctl =	fd_ioctl,
1353 };
1354 
1355 static int
1356 fd_access(struct g_provider *pp, int r, int w, int e)
1357 {
1358 	struct fd_data *fd;
1359 	struct fdc_data *fdc;
1360 	int ar, aw, ae;
1361 
1362 	fd = pp->geom->softc;
1363 	fdc = fd->fdc;
1364 
1365 	/*
1366 	 * If our provider is withering, we can only get negative requests
1367 	 * and we don't want to even see them
1368 	 */
1369 	if (pp->flags & G_PF_WITHER)
1370 		return (0);
1371 
1372 	ar = r + pp->acr;
1373 	aw = w + pp->acw;
1374 	ae = e + pp->ace;
1375 
1376 	if (ar == 0 && aw == 0 && ae == 0) {
1377 		device_unbusy(fd->dev);
1378 		return (0);
1379 	}
1380 
1381 	if (pp->acr == 0 && pp->acw == 0 && pp->ace == 0) {
1382 		if (fdmisccmd(fd, BIO_PROBE, NULL))
1383 			return (ENXIO);
1384 		if (fd->flags & FD_EMPTY)
1385 			return (ENXIO);
1386 		if (fd->flags & FD_NEWDISK) {
1387 			fdautoselect(fd);
1388 			mtx_lock(&fdc->fdc_mtx);
1389 			fd->flags &= ~FD_NEWDISK;
1390 			mtx_unlock(&fdc->fdc_mtx);
1391 		}
1392 		device_busy(fd->dev);
1393 	}
1394 
1395 	if (w > 0 && (fd->flags & FD_WP))
1396 		return (EROFS);
1397 
1398 	pp->sectorsize = fd->sectorsize;
1399 	pp->stripesize = fd->ft->heads * fd->ft->sectrac * fd->sectorsize;
1400 	pp->mediasize = pp->stripesize * fd->ft->tracks;
1401 	return (0);
1402 }
1403 
1404 static void
1405 fd_start(struct bio *bp)
1406 {
1407  	struct fdc_data *	fdc;
1408  	struct fd_data *	fd;
1409 
1410 	fd = bp->bio_to->geom->softc;
1411 	fdc = fd->fdc;
1412 	bp->bio_driver1 = fd;
1413 	if (bp->bio_cmd & BIO_GETATTR) {
1414 		if (g_handleattr_int(bp, "GEOM::fwsectors", fd->ft->sectrac))
1415 			return;
1416 		if (g_handleattr_int(bp, "GEOM::fwheads", fd->ft->heads))
1417 			return;
1418 		g_io_deliver(bp, ENOIOCTL);
1419 		return;
1420 	}
1421 	if (!(bp->bio_cmd & (BIO_READ|BIO_WRITE))) {
1422 		g_io_deliver(bp, EOPNOTSUPP);
1423 		return;
1424 	}
1425 	bp->bio_pblkno = bp->bio_offset / fd->sectorsize;
1426 	bp->bio_resid = bp->bio_length;
1427 	fd_enqueue(fd, bp);
1428 	return;
1429 }
1430 
1431 static int
1432 fd_ioctl(struct g_provider *pp, u_long cmd, void *data, int fflag, struct thread *td)
1433 {
1434 	struct fd_data *fd;
1435 	struct fdc_status *fsp;
1436 	struct fdc_readid *rid;
1437 	int error;
1438 
1439 	fd = pp->geom->softc;
1440 
1441 	switch (cmd) {
1442 	case FD_GTYPE:                  /* get drive type */
1443 		*(struct fd_type *)data = *fd->ft;
1444 		return (0);
1445 
1446 	case FD_STYPE:                  /* set drive type */
1447 		if (!(fflag & FWRITE))
1448 			return (EPERM);
1449 		/*
1450 		 * Allow setting drive type temporarily iff
1451 		 * currently unset.  Used for fdformat so any
1452 		 * user can set it, and then start formatting.
1453 		 */
1454 		fd->fts = *(struct fd_type *)data;
1455 		if (fd->fts.sectrac) {
1456 			/* XXX: check for rubbish */
1457 			fdsettype(fd, &fd->fts);
1458 		} else {
1459 			fdsettype(fd, fd_native_types[fd->type]);
1460 		}
1461 		if (debugflags & 0x40)
1462 			fdprinttype(fd->ft);
1463 		return (0);
1464 
1465 	case FD_GOPTS:			/* get drive options */
1466 		*(int *)data = fd->options;
1467 		return (0);
1468 
1469 	case FD_SOPTS:			/* set drive options */
1470 		if (!(fflag & FWRITE))
1471 			return (EPERM);
1472 		fd->options = *(int *)data;
1473 		return (0);
1474 
1475 	case FD_CLRERR:
1476 		if (suser(td) != 0)
1477 			return (EPERM);
1478 		fd->fdc->fdc_errs = 0;
1479 		return (0);
1480 
1481 	case FD_GSTAT:
1482 		fsp = (struct fdc_status *)data;
1483 		if ((fd->fdc->flags & FDC_STAT_VALID) == 0)
1484 			return (EINVAL);
1485 		memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int));
1486 		return (0);
1487 
1488 	case FD_GDTYPE:
1489 		*(enum fd_drivetype *)data = fd->type;
1490 		return (0);
1491 
1492 	case FD_FORM:
1493 		if (!(fflag & FWRITE))
1494 			return (EPERM);
1495 		if (((struct fd_formb *)data)->format_version !=
1496 		    FD_FORMAT_VERSION)
1497 			return (EINVAL); /* wrong version of formatting prog */
1498 		error = fdmisccmd(fd, BIO_FMT, data);
1499 		mtx_lock(&fd->fdc->fdc_mtx);
1500 		fd->flags |= FD_NEWDISK;
1501 		mtx_unlock(&fd->fdc->fdc_mtx);
1502 		break;
1503 
1504 	case FD_READID:
1505 		rid = (struct fdc_readid *)data;
1506 		if (rid->cyl > 85 || rid->head > 1)
1507 			return (EINVAL);
1508 		error = fdmisccmd(fd, BIO_RDID, data);
1509 		break;
1510 
1511 	case FIONBIO:
1512 	case FIOASYNC:
1513 		/* For backwards compat with old fd*(8) tools */
1514 		error = 0;
1515 		break;
1516 
1517 	default:
1518 		if (debugflags & 0x80)
1519 			printf("Unknown ioctl %lx\n", cmd);
1520 		error = ENOIOCTL;
1521 		break;
1522 	}
1523 	return (error);
1524 };
1525 
1526 
1527 
1528 /*
1529  * Configuration/initialization stuff, per controller.
1530  */
1531 
1532 devclass_t fdc_devclass;
1533 static devclass_t fd_devclass;
1534 
1535 struct fdc_ivars {
1536 	int	fdunit;
1537 	int	fdtype;
1538 };
1539 
1540 void
1541 fdc_release_resources(struct fdc_data *fdc)
1542 {
1543 	device_t dev;
1544 	struct resource *last;
1545 	int i;
1546 
1547 	dev = fdc->fdc_dev;
1548 	if (fdc->fdc_intr)
1549 		bus_teardown_intr(dev, fdc->res_irq, fdc->fdc_intr);
1550 	fdc->fdc_intr = NULL;
1551 	if (fdc->res_irq != NULL)
1552 		bus_release_resource(dev, SYS_RES_IRQ, fdc->rid_irq,
1553 		    fdc->res_irq);
1554 	fdc->res_irq = NULL;
1555 	last = NULL;
1556 	for (i = 0; i < FDC_MAXREG; i++) {
1557 		if (fdc->resio[i] != NULL && fdc->resio[i] != last) {
1558 			bus_release_resource(dev, SYS_RES_IOPORT,
1559 			    fdc->ridio[i], fdc->resio[i]);
1560 			last = fdc->resio[i];
1561 			fdc->resio[i] = NULL;
1562 		}
1563 	}
1564 	if (fdc->res_drq != NULL)
1565 		bus_release_resource(dev, SYS_RES_DRQ, fdc->rid_drq,
1566 		    fdc->res_drq);
1567 	fdc->res_drq = NULL;
1568 }
1569 
1570 int
1571 fdc_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1572 {
1573 	struct fdc_ivars *ivars = device_get_ivars(child);
1574 
1575 	switch (which) {
1576 	case FDC_IVAR_FDUNIT:
1577 		*result = ivars->fdunit;
1578 		break;
1579 	case FDC_IVAR_FDTYPE:
1580 		*result = ivars->fdtype;
1581 		break;
1582 	default:
1583 		return (ENOENT);
1584 	}
1585 	return (0);
1586 }
1587 
1588 int
1589 fdc_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
1590 {
1591 	struct fdc_ivars *ivars = device_get_ivars(child);
1592 
1593 	switch (which) {
1594 	case FDC_IVAR_FDUNIT:
1595 		ivars->fdunit = value;
1596 		break;
1597 	case FDC_IVAR_FDTYPE:
1598 		ivars->fdtype = value;
1599 		break;
1600 	default:
1601 		return (ENOENT);
1602 	}
1603 	return (0);
1604 }
1605 
1606 int
1607 fdc_initial_reset(device_t dev, struct fdc_data *fdc)
1608 {
1609 	int ic_type, part_id;
1610 
1611 	/*
1612 	 * A status value of 0xff is very unlikely, but not theoretically
1613 	 * impossible, but it is far more likely to indicate an empty bus.
1614 	 */
1615 	if (fdsts_rd(fdc) == 0xff)
1616 		return (ENXIO);
1617 
1618 	/*
1619 	 * Assert a reset to the floppy controller and check that the status
1620 	 * register goes to zero.
1621 	 */
1622 	fdout_wr(fdc, 0);
1623 	fdout_wr(fdc, 0);
1624 	if (fdsts_rd(fdc) != 0)
1625 		return (ENXIO);
1626 
1627 	/*
1628 	 * Clear the reset and see it come ready.
1629 	 */
1630 	fdout_wr(fdc, FDO_FRST);
1631 	DELAY(100);
1632 	if (fdsts_rd(fdc) != 0x80)
1633 		return (ENXIO);
1634 
1635 	/* Then, see if it can handle a command. */
1636 	if (fdc_cmd(fdc, 3, NE7CMD_SPECIFY, 0xaf, 0x1e, 0))
1637 		return (ENXIO);
1638 
1639 	/*
1640 	 * Try to identify the chip.
1641 	 *
1642 	 * The i8272 datasheet documents that unknown commands
1643 	 * will return ST0 as 0x80.  The i8272 is supposedly identical
1644 	 * to the NEC765.
1645 	 * The i82077SL datasheet says 0x90 for the VERSION command,
1646 	 * and several "superio" chips emulate this.
1647 	 */
1648 	if (fdc_cmd(fdc, 1, NE7CMD_VERSION, 1, &ic_type))
1649 		return (ENXIO);
1650 	if (fdc_cmd(fdc, 1, 0x18, 1, &part_id))
1651 		return (ENXIO);
1652 	if (bootverbose)
1653 		device_printf(dev,
1654 		    "ic_type %02x part_id %02x\n", ic_type, part_id);
1655 	switch (ic_type & 0xff) {
1656 	case 0x80:
1657 		device_set_desc(dev, "NEC 765 or clone");
1658 		fdc->fdct = FDC_NE765;
1659 		break;
1660 	case 0x81:
1661 	case 0x90:
1662 		device_set_desc(dev,
1663 		    "Enhanced floppy controller");
1664 		fdc->fdct = FDC_ENHANCED;
1665 		break;
1666 	default:
1667 		device_set_desc(dev, "Generic floppy controller");
1668 		fdc->fdct = FDC_UNKNOWN;
1669 		break;
1670 	}
1671 	return (0);
1672 }
1673 
1674 int
1675 fdc_detach(device_t dev)
1676 {
1677 	struct	fdc_data *fdc;
1678 	int	error;
1679 
1680 	fdc = device_get_softc(dev);
1681 
1682 	/* have our children detached first */
1683 	if ((error = bus_generic_detach(dev)))
1684 		return (error);
1685 
1686 	/* kill worker thread */
1687 	fdc->flags |= FDC_KTHREAD_EXIT;
1688 	mtx_lock(&fdc->fdc_mtx);
1689 	wakeup(&fdc->head);
1690 	while ((fdc->flags & FDC_KTHREAD_ALIVE) != 0)
1691 		msleep(&fdc->fdc_thread, &fdc->fdc_mtx, PRIBIO, "fdcdet", 0);
1692 	mtx_unlock(&fdc->fdc_mtx);
1693 
1694 	/* reset controller, turn motor off */
1695 	fdout_wr(fdc, 0);
1696 
1697 	if (!(fdc->flags & FDC_NODMA))
1698 		isa_dma_release(fdc->dmachan);
1699 	fdc_release_resources(fdc);
1700 	mtx_destroy(&fdc->fdc_mtx);
1701 	return (0);
1702 }
1703 
1704 /*
1705  * Add a child device to the fdc controller.  It will then be probed etc.
1706  */
1707 device_t
1708 fdc_add_child(device_t dev, const char *name, int unit)
1709 {
1710 	struct fdc_ivars *ivar;
1711 	device_t child;
1712 
1713 	ivar = malloc(sizeof *ivar, M_DEVBUF /* XXX */, M_NOWAIT | M_ZERO);
1714 	if (ivar == NULL)
1715 		return (NULL);
1716 	child = device_add_child(dev, name, unit);
1717 	if (child == NULL) {
1718 		free(ivar, M_DEVBUF);
1719 		return (NULL);
1720 	}
1721 	device_set_ivars(child, ivar);
1722 	ivar->fdunit = unit;
1723 	ivar->fdtype = FDT_NONE;
1724 	if (resource_disabled(name, unit))
1725 		device_disable(child);
1726 	return (child);
1727 }
1728 
1729 int
1730 fdc_attach(device_t dev)
1731 {
1732 	struct	fdc_data *fdc;
1733 	int	error;
1734 
1735 	fdc = device_get_softc(dev);
1736 	fdc->fdc_dev = dev;
1737 	error = fdc_initial_reset(dev, fdc);
1738 	if (error) {
1739 		device_printf(dev, "does not respond\n");
1740 		return (error);
1741 	}
1742 	error = bus_setup_intr(dev, fdc->res_irq,
1743 	    INTR_TYPE_BIO | INTR_ENTROPY | INTR_MPSAFE |
1744 	    ((fdc->flags & FDC_NOFAST) ? 0 : INTR_FAST),
1745 	    fdc_intr, fdc, &fdc->fdc_intr);
1746 	if (error) {
1747 		device_printf(dev, "cannot setup interrupt\n");
1748 		return (error);
1749 	}
1750 	if (!(fdc->flags & FDC_NODMA)) {
1751 		error = isa_dma_acquire(fdc->dmachan);
1752 		if (!error) {
1753 			error = isa_dma_init(fdc->dmachan,
1754 			    MAX_BYTES_PER_CYL, M_WAITOK);
1755 			if (error)
1756 				isa_dma_release(fdc->dmachan);
1757 		}
1758 		if (error)
1759 			return (error);
1760 	}
1761 	fdc->fdcu = device_get_unit(dev);
1762 	fdc->flags |= FDC_NEEDS_RESET;
1763 
1764 	mtx_init(&fdc->fdc_mtx, "fdc lock", NULL, MTX_DEF);
1765 
1766 	/* reset controller, turn motor off, clear fdout mirror reg */
1767 	fdout_wr(fdc, fdc->fdout = 0);
1768 	bioq_init(&fdc->head);
1769 
1770 	kthread_create(fdc_thread, fdc, &fdc->fdc_thread, 0, 0,
1771 	    "fdc%d", device_get_unit(dev));
1772 
1773 	settle = hz / 8;
1774 
1775 	return (0);
1776 }
1777 
1778 int
1779 fdc_hints_probe(device_t dev)
1780 {
1781 	const char *name, *dname;
1782 	int i, error, dunit;
1783 
1784 	/*
1785 	 * Probe and attach any children.  We should probably detect
1786 	 * devices from the BIOS unless overridden.
1787 	 */
1788 	name = device_get_nameunit(dev);
1789 	i = 0;
1790 	while ((resource_find_match(&i, &dname, &dunit, "at", name)) == 0) {
1791 		resource_int_value(dname, dunit, "drive", &dunit);
1792 		fdc_add_child(dev, dname, dunit);
1793 	}
1794 
1795 	if ((error = bus_generic_attach(dev)) != 0)
1796 		return (error);
1797 	return (0);
1798 }
1799 
1800 int
1801 fdc_print_child(device_t me, device_t child)
1802 {
1803 	int retval = 0, flags;
1804 
1805 	retval += bus_print_child_header(me, child);
1806 	retval += printf(" on %s drive %d", device_get_nameunit(me),
1807 	       fdc_get_fdunit(child));
1808 	if ((flags = device_get_flags(me)) != 0)
1809 		retval += printf(" flags %#x", flags);
1810 	retval += printf("\n");
1811 
1812 	return (retval);
1813 }
1814 
1815 /*
1816  * Configuration/initialization, per drive.
1817  */
1818 static int
1819 fd_probe(device_t dev)
1820 {
1821 	int	i, unit;
1822 	u_int	st0, st3;
1823 	struct	fd_data *fd;
1824 	struct	fdc_data *fdc;
1825 	int	fdsu;
1826 	int	flags, type;
1827 
1828 	fdsu = fdc_get_fdunit(dev);
1829 	fd = device_get_softc(dev);
1830 	fdc = device_get_softc(device_get_parent(dev));
1831 	flags = device_get_flags(dev);
1832 
1833 	fd->dev = dev;
1834 	fd->fdc = fdc;
1835 	fd->fdsu = fdsu;
1836 	unit = device_get_unit(dev);
1837 
1838 	/* Auto-probe if fdinfo is present, but always allow override. */
1839 	type = flags & FD_TYPEMASK;
1840 	if (type == FDT_NONE && (type = fdc_get_fdtype(dev)) != FDT_NONE) {
1841 		fd->type = type;
1842 		goto done;
1843 	} else {
1844 		/* make sure fdautoselect() will be called */
1845 		fd->flags = FD_EMPTY;
1846 		fd->type = type;
1847 	}
1848 
1849 #if (defined(__i386__) && !defined(PC98)) || defined(__amd64__)
1850 	if (fd->type == FDT_NONE && (unit == 0 || unit == 1)) {
1851 		/* Look up what the BIOS thinks we have. */
1852 		if (unit == 0)
1853 			fd->type = (rtcin(RTC_FDISKETTE) & 0xf0) >> 4;
1854 		else
1855 			fd->type = rtcin(RTC_FDISKETTE) & 0x0f;
1856 		if (fd->type == FDT_288M_1)
1857 			fd->type = FDT_288M;
1858 	}
1859 #endif /* __i386__ || __amd64__ */
1860 	/* is there a unit? */
1861 	if (fd->type == FDT_NONE)
1862 		return (ENXIO);
1863 
1864 /*
1865 	mtx_lock(&fdc->fdc_mtx);
1866 */
1867 	/* select it */
1868 	fd_select(fd);
1869 	fd_motor(fd, 1);
1870 	fdc->fd = fd;
1871 	fdc_reset(fdc);		/* XXX reset, then unreset, etc. */
1872 	DELAY(1000000);	/* 1 sec */
1873 
1874 	if ((flags & FD_NO_PROBE) == 0) {
1875 		/* If we're at track 0 first seek inwards. */
1876 		if ((fdc_sense_drive(fdc, &st3) == 0) &&
1877 		    (st3 & NE7_ST3_T0)) {
1878 			/* Seek some steps... */
1879 			if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fdsu, 10, 0) == 0) {
1880 				/* ...wait a moment... */
1881 				DELAY(300000);
1882 				/* make ctrlr happy: */
1883 				fdc_sense_int(fdc, NULL, NULL);
1884 			}
1885 		}
1886 
1887 		for (i = 0; i < 2; i++) {
1888 			/*
1889 			 * we must recalibrate twice, just in case the
1890 			 * heads have been beyond cylinder 76, since
1891 			 * most FDCs still barf when attempting to
1892 			 * recalibrate more than 77 steps
1893 			 */
1894 			/* go back to 0: */
1895 			if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fdsu, 0) == 0) {
1896 				/* a second being enough for full stroke seek*/
1897 				DELAY(i == 0 ? 1000000 : 300000);
1898 
1899 				/* anything responding? */
1900 				if (fdc_sense_int(fdc, &st0, NULL) == 0 &&
1901 				    (st0 & NE7_ST0_EC) == 0)
1902 					break; /* already probed succesfully */
1903 			}
1904 		}
1905 	}
1906 
1907 	fd_motor(fd, 0);
1908 	fdc->fd = NULL;
1909 /*
1910 	mtx_unlock(&fdc->fdc_mtx);
1911 */
1912 
1913 	if ((flags & FD_NO_PROBE) == 0 &&
1914 	    (st0 & NE7_ST0_EC) != 0) /* no track 0 -> no drive present */
1915 		return (ENXIO);
1916 
1917 done:
1918 
1919 	switch (fd->type) {
1920 	case FDT_12M:
1921 		device_set_desc(dev, "1200-KB 5.25\" drive");
1922 		break;
1923 	case FDT_144M:
1924 		device_set_desc(dev, "1440-KB 3.5\" drive");
1925 		break;
1926 	case FDT_288M:
1927 		device_set_desc(dev, "2880-KB 3.5\" drive (in 1440-KB mode)");
1928 		break;
1929 	case FDT_360K:
1930 		device_set_desc(dev, "360-KB 5.25\" drive");
1931 		break;
1932 	case FDT_720K:
1933 		device_set_desc(dev, "720-KB 3.5\" drive");
1934 		break;
1935 	default:
1936 		return (ENXIO);
1937 	}
1938 	fd->track = FD_NO_TRACK;
1939 	fd->fdc = fdc;
1940 	fd->fdsu = fdsu;
1941 	fd->options = 0;
1942 	callout_init(&fd->toffhandle, 1);
1943 	callout_init(&fd->tohandle, 1);
1944 
1945 	/* initialize densities for subdevices */
1946 	fdsettype(fd, fd_native_types[fd->type]);
1947 	return (0);
1948 }
1949 
1950 /*
1951  * We have to do this in a geom event because GEOM is not running
1952  * when fd_attach() is.
1953  * XXX: move fd_attach after geom like ata/scsi disks
1954  */
1955 static void
1956 fd_attach2(void *arg, int flag)
1957 {
1958 	struct	fd_data *fd;
1959 
1960 	fd = arg;
1961 
1962 	fd->fd_geom = g_new_geomf(&g_fd_class,
1963 	    "fd%d", device_get_unit(fd->dev));
1964 	fd->fd_provider = g_new_providerf(fd->fd_geom, fd->fd_geom->name);
1965 	fd->fd_geom->softc = fd;
1966 	g_error_provider(fd->fd_provider, 0);
1967 }
1968 
1969 static int
1970 fd_attach(device_t dev)
1971 {
1972 	struct	fd_data *fd;
1973 
1974 	fd = device_get_softc(dev);
1975 	g_post_event(fd_attach2, fd, M_WAITOK, NULL);
1976 	fd->flags |= FD_EMPTY;
1977 	bioq_init(&fd->fd_bq);
1978 
1979 	return (0);
1980 }
1981 
1982 static int
1983 fd_detach(device_t dev)
1984 {
1985 	struct	fd_data *fd;
1986 
1987 	fd = device_get_softc(dev);
1988 	g_topology_lock();
1989 	g_wither_geom(fd->fd_geom, ENXIO);
1990 	g_topology_unlock();
1991 	while (device_get_state(dev) == DS_BUSY)
1992 		tsleep(fd, PZERO, "fdd", hz/10);
1993 	callout_drain(&fd->toffhandle);
1994 
1995 	return (0);
1996 }
1997 
1998 static device_method_t fd_methods[] = {
1999 	/* Device interface */
2000 	DEVMETHOD(device_probe,		fd_probe),
2001 	DEVMETHOD(device_attach,	fd_attach),
2002 	DEVMETHOD(device_detach,	fd_detach),
2003 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
2004 	DEVMETHOD(device_suspend,	bus_generic_suspend), /* XXX */
2005 	DEVMETHOD(device_resume,	bus_generic_resume), /* XXX */
2006 	{ 0, 0 }
2007 };
2008 
2009 static driver_t fd_driver = {
2010 	"fd",
2011 	fd_methods,
2012 	sizeof(struct fd_data)
2013 };
2014 
2015 static int
2016 fdc_modevent(module_t mod, int type, void *data)
2017 {
2018 
2019 	g_modevent(NULL, type, &g_fd_class);
2020 	return (0);
2021 }
2022 
2023 DRIVER_MODULE(fd, fdc, fd_driver, fd_devclass, fdc_modevent, 0);
2024