1 /*- 2 * Copyright (c) 2004 Poul-Henning Kamp 3 * Copyright (c) 1990 The Regents of the University of California. 4 * All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * Don Ahn. 8 * 9 * Libretto PCMCIA floppy support by David Horwitt (dhorwitt@ucsd.edu) 10 * aided by the Linux floppy driver modifications from David Bateman 11 * (dbateman@eng.uts.edu.au). 12 * 13 * Copyright (c) 1993, 1994 by 14 * jc@irbs.UUCP (John Capo) 15 * vak@zebub.msk.su (Serge Vakulenko) 16 * ache@astral.msk.su (Andrew A. Chernov) 17 * 18 * Copyright (c) 1993, 1994, 1995 by 19 * joerg_wunsch@uriah.sax.de (Joerg Wunsch) 20 * dufault@hda.com (Peter Dufault) 21 * 22 * Copyright (c) 2001 Joerg Wunsch, 23 * joerg_wunsch@uriah.heep.sax.de (Joerg Wunsch) 24 * 25 * Redistribution and use in source and binary forms, with or without 26 * modification, are permitted provided that the following conditions 27 * are met: 28 * 1. Redistributions of source code must retain the above copyright 29 * notice, this list of conditions and the following disclaimer. 30 * 2. Redistributions in binary form must reproduce the above copyright 31 * notice, this list of conditions and the following disclaimer in the 32 * documentation and/or other materials provided with the distribution. 33 * 4. Neither the name of the University nor the names of its contributors 34 * may be used to endorse or promote products derived from this software 35 * without specific prior written permission. 36 * 37 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 38 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 40 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 41 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 42 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 43 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 45 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 46 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 47 * SUCH DAMAGE. 48 * 49 * from: @(#)fd.c 7.4 (Berkeley) 5/25/91 50 * 51 */ 52 53 #include <sys/cdefs.h> 54 __FBSDID("$FreeBSD$"); 55 56 #include "opt_fdc.h" 57 58 #include <sys/param.h> 59 #include <sys/bio.h> 60 #include <sys/bus.h> 61 #include <sys/devicestat.h> 62 #include <sys/disk.h> 63 #include <sys/fcntl.h> 64 #include <sys/fdcio.h> 65 #include <sys/filio.h> 66 #include <sys/kernel.h> 67 #include <sys/kthread.h> 68 #include <sys/lock.h> 69 #include <sys/malloc.h> 70 #include <sys/module.h> 71 #include <sys/mutex.h> 72 #include <sys/proc.h> 73 #include <sys/rman.h> 74 #include <sys/sysctl.h> 75 #include <sys/systm.h> 76 77 #include <geom/geom.h> 78 79 #include <machine/bus.h> 80 #include <machine/clock.h> 81 #include <machine/stdarg.h> 82 83 #include <isa/isavar.h> 84 #include <isa/isareg.h> 85 #include <dev/fdc/fdcvar.h> 86 #include <isa/rtc.h> 87 88 #include <dev/ic/nec765.h> 89 90 /* 91 * Runtime configuration hints/flags 92 */ 93 94 /* configuration flags for fd */ 95 #define FD_TYPEMASK 0x0f /* drive type, matches enum 96 * fd_drivetype; on i386 machines, if 97 * given as 0, use RTC type for fd0 98 * and fd1 */ 99 #define FD_NO_PROBE 0x20 /* don't probe drive (seek test), just 100 * assume it is there */ 101 102 /* 103 * Things that could conceiveably considered parameters or tweakables 104 */ 105 106 /* 107 * Maximal number of bytes in a cylinder. 108 * This is used for ISADMA bouncebuffer allocation and sets the max 109 * xfersize we support. 110 * 111 * 2.88M format has 2 x 36 x 512, allow for hacked up density. 112 */ 113 #define MAX_BYTES_PER_CYL (2 * 40 * 512) 114 115 /* 116 * Timeout value for the PIO loops to wait until the FDC main status 117 * register matches our expectations (request for master, direction 118 * bit). This is supposed to be a number of microseconds, although 119 * timing might actually not be very accurate. 120 * 121 * Timeouts of 100 msec are believed to be required for some broken 122 * (old) hardware. 123 */ 124 #define FDSTS_TIMEOUT 100000 125 126 /* 127 * After this many errors, stop whining. Close will reset this count. 128 */ 129 #define FDC_ERRMAX 100 130 131 /* 132 * AutoDensity search lists for each drive type. 133 */ 134 135 static struct fd_type fd_searchlist_360k[] = { 136 { FDF_5_360 }, 137 { 0 } 138 }; 139 140 static struct fd_type fd_searchlist_12m[] = { 141 { FDF_5_1200 | FL_AUTO }, 142 { FDF_5_360 | FL_2STEP | FL_AUTO}, 143 { 0 } 144 }; 145 146 static struct fd_type fd_searchlist_720k[] = { 147 { FDF_3_720 }, 148 { 0 } 149 }; 150 151 static struct fd_type fd_searchlist_144m[] = { 152 { FDF_3_1440 | FL_AUTO}, 153 { FDF_3_720 | FL_AUTO}, 154 { 0 } 155 }; 156 157 static struct fd_type fd_searchlist_288m[] = { 158 { FDF_3_1440 | FL_AUTO }, 159 #if 0 160 { FDF_3_2880 | FL_AUTO }, /* XXX: probably doesn't work */ 161 #endif 162 { FDF_3_720 | FL_AUTO}, 163 { 0 } 164 }; 165 166 /* 167 * Order must match enum fd_drivetype in <sys/fdcio.h>. 168 */ 169 static struct fd_type *fd_native_types[] = { 170 NULL, /* FDT_NONE */ 171 fd_searchlist_360k, /* FDT_360K */ 172 fd_searchlist_12m, /* FDT_12M */ 173 fd_searchlist_720k, /* FDT_720K */ 174 fd_searchlist_144m, /* FDT_144M */ 175 fd_searchlist_288m, /* FDT_288M_1 (mapped to FDT_288M) */ 176 fd_searchlist_288m, /* FDT_288M */ 177 }; 178 179 /* 180 * Internals start here 181 */ 182 183 /* registers */ 184 #define FDOUT 2 /* Digital Output Register (W) */ 185 #define FDO_FDSEL 0x03 /* floppy device select */ 186 #define FDO_FRST 0x04 /* floppy controller reset */ 187 #define FDO_FDMAEN 0x08 /* enable floppy DMA and Interrupt */ 188 #define FDO_MOEN0 0x10 /* motor enable drive 0 */ 189 #define FDO_MOEN1 0x20 /* motor enable drive 1 */ 190 #define FDO_MOEN2 0x40 /* motor enable drive 2 */ 191 #define FDO_MOEN3 0x80 /* motor enable drive 3 */ 192 193 #define FDSTS 4 /* NEC 765 Main Status Register (R) */ 194 #define FDDATA 5 /* NEC 765 Data Register (R/W) */ 195 #define FDCTL 7 /* Control Register (W) */ 196 197 /* 198 * The YE-DATA PC Card floppies use PIO to read in the data rather 199 * than DMA due to the wild variability of DMA for the PC Card 200 * devices. DMA was deleted from the PC Card specification in version 201 * 7.2 of the standard, but that post-dates the YE-DATA devices by many 202 * years. 203 * 204 * In addition, if we cannot setup the DMA resources for the ISA 205 * attachment, we'll use this same offset for data transfer. However, 206 * that almost certainly won't work. 207 * 208 * For this mode, offset 0 and 1 must be used to setup the transfer 209 * for this floppy. This is OK for PC Card YE Data devices, but for 210 * ISA this is likely wrong. These registers are only available on 211 * those systems that map them to the floppy drive. Newer systems do 212 * not do this, and we should likely prohibit access to them (or 213 * disallow NODMA to be set). 214 */ 215 #define FDBCDR 0 /* And 1 */ 216 #define FD_YE_DATAPORT 6 /* Drive Data port */ 217 218 #define FDI_DCHG 0x80 /* diskette has been changed */ 219 /* requires drive and motor being selected */ 220 /* is cleared by any step pulse to drive */ 221 222 /* 223 * We have three private BIO commands. 224 */ 225 #define BIO_PROBE BIO_CMD0 226 #define BIO_RDID BIO_CMD1 227 #define BIO_FMT BIO_CMD2 228 229 /* 230 * Per drive structure (softc). 231 */ 232 struct fd_data { 233 u_char *fd_ioptr; /* IO pointer */ 234 u_int fd_iosize; /* Size of IO chunks */ 235 u_int fd_iocount; /* Outstanding requests */ 236 struct fdc_data *fdc; /* pointer to controller structure */ 237 int fdsu; /* this units number on this controller */ 238 enum fd_drivetype type; /* drive type */ 239 struct fd_type *ft; /* pointer to current type descriptor */ 240 struct fd_type fts; /* type descriptors */ 241 int sectorsize; 242 int flags; 243 #define FD_WP (1<<0) /* Write protected */ 244 #define FD_MOTOR (1<<1) /* motor should be on */ 245 #define FD_MOTORWAIT (1<<2) /* motor should be on */ 246 #define FD_EMPTY (1<<3) /* no media */ 247 #define FD_NEWDISK (1<<4) /* media changed */ 248 #define FD_ISADMA (1<<5) /* isa dma started */ 249 int track; /* where we think the head is */ 250 #define FD_NO_TRACK -2 251 int options; /* FDOPT_* */ 252 struct callout toffhandle; 253 struct callout tohandle; 254 struct g_geom *fd_geom; 255 struct g_provider *fd_provider; 256 device_t dev; 257 struct bio_queue_head fd_bq; 258 }; 259 260 #define FD_NOT_VALID -2 261 262 static driver_intr_t fdc_intr; 263 static void fdc_reset(struct fdc_data *); 264 265 SYSCTL_NODE(_debug, OID_AUTO, fdc, CTLFLAG_RW, 0, "fdc driver"); 266 267 static int fifo_threshold = 8; 268 SYSCTL_INT(_debug_fdc, OID_AUTO, fifo, CTLFLAG_RW, &fifo_threshold, 0, 269 "FIFO threshold setting"); 270 271 static int debugflags = 0; 272 SYSCTL_INT(_debug_fdc, OID_AUTO, debugflags, CTLFLAG_RW, &debugflags, 0, 273 "Debug flags"); 274 275 static int retries = 10; 276 SYSCTL_INT(_debug_fdc, OID_AUTO, retries, CTLFLAG_RW, &retries, 0, 277 "Number of retries to attempt"); 278 279 static int spec1 = 0xaf; 280 SYSCTL_INT(_debug_fdc, OID_AUTO, spec1, CTLFLAG_RW, &spec1, 0, 281 "Specification byte one (step-rate + head unload)"); 282 283 static int spec2 = 0x10; 284 SYSCTL_INT(_debug_fdc, OID_AUTO, spec2, CTLFLAG_RW, &spec2, 0, 285 "Specification byte two (head load time + no-dma)"); 286 287 static int settle; 288 SYSCTL_INT(_debug_fdc, OID_AUTO, settle, CTLFLAG_RW, &settle, 0, 289 "Head settling time in sec/hz"); 290 291 static void 292 fdprinttype(struct fd_type *ft) 293 { 294 295 printf("(%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,0x%x)", 296 ft->sectrac, ft->secsize, ft->datalen, ft->gap, ft->tracks, 297 ft->size, ft->trans, ft->heads, ft->f_gap, ft->f_inter, 298 ft->offset_side2, ft->flags); 299 } 300 301 static void 302 fdsettype(struct fd_data *fd, struct fd_type *ft) 303 { 304 fd->ft = ft; 305 ft->size = ft->sectrac * ft->heads * ft->tracks; 306 fd->sectorsize = 128 << fd->ft->secsize; 307 } 308 309 /* 310 * Bus space handling (access to low-level IO). 311 */ 312 __inline static void 313 fdregwr(struct fdc_data *fdc, int reg, uint8_t v) 314 { 315 316 bus_space_write_1(fdc->iot, fdc->ioh[reg], fdc->ioff[reg], v); 317 } 318 319 __inline static uint8_t 320 fdregrd(struct fdc_data *fdc, int reg) 321 { 322 323 return bus_space_read_1(fdc->iot, fdc->ioh[reg], fdc->ioff[reg]); 324 } 325 326 static void 327 fdctl_wr(struct fdc_data *fdc, u_int8_t v) 328 { 329 330 fdregwr(fdc, FDCTL, v); 331 } 332 333 static void 334 fdout_wr(struct fdc_data *fdc, u_int8_t v) 335 { 336 337 fdregwr(fdc, FDOUT, v); 338 } 339 340 static u_int8_t 341 fdsts_rd(struct fdc_data *fdc) 342 { 343 344 return fdregrd(fdc, FDSTS); 345 } 346 347 static void 348 fddata_wr(struct fdc_data *fdc, u_int8_t v) 349 { 350 351 fdregwr(fdc, FDDATA, v); 352 } 353 354 static u_int8_t 355 fddata_rd(struct fdc_data *fdc) 356 { 357 358 return fdregrd(fdc, FDDATA); 359 } 360 361 static u_int8_t 362 fdin_rd(struct fdc_data *fdc) 363 { 364 365 return fdregrd(fdc, FDCTL); 366 } 367 368 /* 369 * Magic pseudo-DMA initialization for YE FDC. Sets count and 370 * direction. 371 */ 372 static void 373 fdbcdr_wr(struct fdc_data *fdc, int iswrite, uint16_t count) 374 { 375 fdregwr(fdc, FDBCDR, (count - 1) & 0xff); 376 fdregwr(fdc, FDBCDR + 1, 377 (iswrite ? 0x80 : 0) | (((count - 1) >> 8) & 0x7f)); 378 } 379 380 static int 381 fdc_err(struct fdc_data *fdc, const char *s) 382 { 383 fdc->fdc_errs++; 384 if (s) { 385 if (fdc->fdc_errs < FDC_ERRMAX) 386 device_printf(fdc->fdc_dev, "%s", s); 387 else if (fdc->fdc_errs == FDC_ERRMAX) 388 device_printf(fdc->fdc_dev, "too many errors, not " 389 "logging any more\n"); 390 } 391 392 return (1); 393 } 394 395 /* 396 * FDC IO functions, take care of the main status register, timeout 397 * in case the desired status bits are never set. 398 * 399 * These PIO loops initially start out with short delays between 400 * each iteration in the expectation that the required condition 401 * is usually met quickly, so it can be handled immediately. 402 */ 403 static int 404 fdc_in(struct fdc_data *fdc, int *ptr) 405 { 406 int i, j, step; 407 408 step = 1; 409 for (j = 0; j < FDSTS_TIMEOUT; j += step) { 410 i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM); 411 if (i == (NE7_DIO|NE7_RQM)) { 412 i = fddata_rd(fdc); 413 if (ptr) 414 *ptr = i; 415 return (0); 416 } 417 if (i == NE7_RQM) 418 return (fdc_err(fdc, "ready for output in input\n")); 419 step += step; 420 DELAY(step); 421 } 422 return (fdc_err(fdc, bootverbose? "input ready timeout\n": 0)); 423 } 424 425 static int 426 fdc_out(struct fdc_data *fdc, int x) 427 { 428 int i, j, step; 429 430 step = 1; 431 for (j = 0; j < FDSTS_TIMEOUT; j += step) { 432 i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM); 433 if (i == NE7_RQM) { 434 fddata_wr(fdc, x); 435 return (0); 436 } 437 if (i == (NE7_DIO|NE7_RQM)) 438 return (fdc_err(fdc, "ready for input in output\n")); 439 step += step; 440 DELAY(step); 441 } 442 return (fdc_err(fdc, bootverbose? "output ready timeout\n": 0)); 443 } 444 445 /* 446 * fdc_cmd: Send a command to the chip. 447 * Takes a varargs with this structure: 448 * # of output bytes 449 * output bytes as int [...] 450 * # of input bytes 451 * input bytes as int* [...] 452 */ 453 static int 454 fdc_cmd(struct fdc_data *fdc, int n_out, ...) 455 { 456 u_char cmd = 0; 457 int n_in; 458 int n, i; 459 va_list ap; 460 461 va_start(ap, n_out); 462 for (n = 0; n < n_out; n++) { 463 i = va_arg(ap, int); 464 if (n == 0) 465 cmd = i; 466 if (fdc_out(fdc, i) < 0) { 467 char msg[50]; 468 snprintf(msg, sizeof(msg), 469 "cmd %x failed at out byte %d of %d\n", 470 cmd, n + 1, n_out); 471 fdc->flags |= FDC_NEEDS_RESET; 472 va_end(ap); 473 return fdc_err(fdc, msg); 474 } 475 } 476 n_in = va_arg(ap, int); 477 for (n = 0; n < n_in; n++) { 478 int *ptr = va_arg(ap, int *); 479 if (fdc_in(fdc, ptr) < 0) { 480 char msg[50]; 481 snprintf(msg, sizeof(msg), 482 "cmd %02x failed at in byte %d of %d\n", 483 cmd, n + 1, n_in); 484 fdc->flags |= FDC_NEEDS_RESET; 485 va_end(ap); 486 return fdc_err(fdc, msg); 487 } 488 } 489 va_end(ap); 490 return (0); 491 } 492 493 static void 494 fdc_reset(struct fdc_data *fdc) 495 { 496 int i, r[10]; 497 498 /* Try a reset, keep motor on */ 499 fdout_wr(fdc, fdc->fdout & ~(FDO_FRST|FDO_FDMAEN)); 500 DELAY(100); 501 /* enable FDC, but defer interrupts a moment */ 502 fdout_wr(fdc, fdc->fdout & ~FDO_FDMAEN); 503 DELAY(100); 504 fdout_wr(fdc, fdc->fdout); 505 506 /* XXX after a reset, silently believe the FDC will accept commands */ 507 if (fdc_cmd(fdc, 3, NE7CMD_SPECIFY, spec1, spec2, 0)) 508 device_printf(fdc->fdc_dev, " SPECIFY failed in reset\n"); 509 510 if (fdc->fdct == FDC_ENHANCED) { 511 if (fdc_cmd(fdc, 4, 512 I8207X_CONFIGURE, 513 0, 514 0x40 | /* Enable Implied Seek */ 515 0x10 | /* Polling disabled */ 516 (fifo_threshold - 1), /* Fifo threshold */ 517 0x00, /* Precomp track */ 518 0)) 519 device_printf(fdc->fdc_dev, 520 " CONFIGURE failed in reset\n"); 521 if (debugflags & 1) { 522 if (fdc_cmd(fdc, 1, 523 0x0e, /* DUMPREG */ 524 10, &r[0], &r[1], &r[2], &r[3], &r[4], 525 &r[5], &r[6], &r[7], &r[8], &r[9])) 526 device_printf(fdc->fdc_dev, 527 " DUMPREG failed in reset\n"); 528 for (i = 0; i < 10; i++) 529 printf(" %02x", r[i]); 530 printf("\n"); 531 } 532 } 533 } 534 535 static int 536 fdc_sense_drive(struct fdc_data *fdc, int *st3p) 537 { 538 int st3; 539 540 if (fdc_cmd(fdc, 2, NE7CMD_SENSED, fdc->fd->fdsu, 1, &st3)) 541 return (fdc_err(fdc, "Sense Drive Status failed\n")); 542 if (st3p) 543 *st3p = st3; 544 return (0); 545 } 546 547 static int 548 fdc_sense_int(struct fdc_data *fdc, int *st0p, int *cylp) 549 { 550 int cyl, st0, ret; 551 552 ret = fdc_cmd(fdc, 1, NE7CMD_SENSEI, 1, &st0); 553 if (ret) { 554 (void)fdc_err(fdc, "sense intr err reading stat reg 0\n"); 555 return (ret); 556 } 557 558 if (st0p) 559 *st0p = st0; 560 561 if ((st0 & NE7_ST0_IC) == NE7_ST0_IC_IV) { 562 /* 563 * There doesn't seem to have been an interrupt. 564 */ 565 return (FD_NOT_VALID); 566 } 567 568 if (fdc_in(fdc, &cyl) < 0) 569 return fdc_err(fdc, "can't get cyl num\n"); 570 571 if (cylp) 572 *cylp = cyl; 573 574 return (0); 575 } 576 577 static int 578 fdc_read_status(struct fdc_data *fdc) 579 { 580 int i, ret, status; 581 582 for (i = ret = 0; i < 7; i++) { 583 ret = fdc_in(fdc, &status); 584 fdc->status[i] = status; 585 if (ret != 0) 586 break; 587 } 588 589 if (ret == 0) 590 fdc->flags |= FDC_STAT_VALID; 591 else 592 fdc->flags &= ~FDC_STAT_VALID; 593 594 return ret; 595 } 596 597 /* 598 * Select this drive 599 */ 600 static void 601 fd_select(struct fd_data *fd) 602 { 603 struct fdc_data *fdc; 604 605 /* XXX: lock controller */ 606 fdc = fd->fdc; 607 fdc->fdout &= ~FDO_FDSEL; 608 fdc->fdout |= FDO_FDMAEN | FDO_FRST | fd->fdsu; 609 fdout_wr(fdc, fdc->fdout); 610 } 611 612 static void 613 fd_turnon(void *arg) 614 { 615 struct fd_data *fd; 616 struct bio *bp; 617 int once; 618 619 fd = arg; 620 mtx_lock(&fd->fdc->fdc_mtx); 621 fd->flags &= ~FD_MOTORWAIT; 622 fd->flags |= FD_MOTOR; 623 once = 0; 624 for (;;) { 625 bp = bioq_takefirst(&fd->fd_bq); 626 if (bp == NULL) 627 break; 628 bioq_disksort(&fd->fdc->head, bp); 629 once = 1; 630 } 631 mtx_unlock(&fd->fdc->fdc_mtx); 632 if (once) 633 wakeup(&fd->fdc->head); 634 } 635 636 static void 637 fd_motor(struct fd_data *fd, int turnon) 638 { 639 struct fdc_data *fdc; 640 641 fdc = fd->fdc; 642 /* 643 mtx_assert(&fdc->fdc_mtx, MA_OWNED); 644 */ 645 if (turnon) { 646 fd->flags |= FD_MOTORWAIT; 647 fdc->fdout |= (FDO_MOEN0 << fd->fdsu); 648 callout_reset(&fd->toffhandle, hz, fd_turnon, fd); 649 } else { 650 callout_drain(&fd->toffhandle); 651 fd->flags &= ~(FD_MOTOR|FD_MOTORWAIT); 652 fdc->fdout &= ~(FDO_MOEN0 << fd->fdsu); 653 } 654 fdout_wr(fdc, fdc->fdout); 655 } 656 657 static void 658 fd_turnoff(void *xfd) 659 { 660 struct fd_data *fd = xfd; 661 662 mtx_lock(&fd->fdc->fdc_mtx); 663 fd_motor(fd, 0); 664 mtx_unlock(&fd->fdc->fdc_mtx); 665 } 666 667 /* 668 * fdc_intr - wake up the worker thread. 669 */ 670 671 static void 672 fdc_intr(void *arg) 673 { 674 675 wakeup(arg); 676 } 677 678 /* 679 * fdc_pio(): perform programmed IO read/write for YE PCMCIA floppy. 680 */ 681 static void 682 fdc_pio(struct fdc_data *fdc) 683 { 684 u_char *cptr; 685 struct bio *bp; 686 u_int count; 687 688 bp = fdc->bp; 689 cptr = fdc->fd->fd_ioptr; 690 count = fdc->fd->fd_iosize; 691 692 if (bp->bio_cmd == BIO_READ) { 693 fdbcdr_wr(fdc, 0, count); 694 bus_space_read_multi_1(fdc->iot, fdc->ioh[FD_YE_DATAPORT], 695 fdc->ioff[FD_YE_DATAPORT], cptr, count); 696 } else { 697 bus_space_write_multi_1(fdc->iot, fdc->ioh[FD_YE_DATAPORT], 698 fdc->ioff[FD_YE_DATAPORT], cptr, count); 699 fdbcdr_wr(fdc, 0, count); /* needed? */ 700 } 701 } 702 703 static int 704 fdc_biodone(struct fdc_data *fdc, int error) 705 { 706 struct fd_data *fd; 707 struct bio *bp; 708 709 fd = fdc->fd; 710 bp = fdc->bp; 711 712 mtx_lock(&fdc->fdc_mtx); 713 if (--fd->fd_iocount == 0) 714 callout_reset(&fd->toffhandle, 4 * hz, fd_turnoff, fd); 715 fdc->bp = NULL; 716 fdc->fd = NULL; 717 mtx_unlock(&fdc->fdc_mtx); 718 if (bp->bio_to != NULL) { 719 if ((debugflags & 2) && fd->fdc->retry > 0) 720 printf("retries: %d\n", fd->fdc->retry); 721 g_io_deliver(bp, error); 722 return (0); 723 } 724 bp->bio_error = error; 725 bp->bio_flags |= BIO_DONE; 726 wakeup(bp); 727 return (0); 728 } 729 730 static int retry_line; 731 732 static int 733 fdc_worker(struct fdc_data *fdc) 734 { 735 struct fd_data *fd; 736 struct bio *bp; 737 int i, nsect; 738 int st0, st3, cyl, mfm, steptrac, cylinder, descyl, sec; 739 int head; 740 static int need_recal; 741 struct fdc_readid *idp; 742 struct fd_formb *finfo; 743 744 /* Have we exhausted our retries ? */ 745 bp = fdc->bp; 746 fd = fdc->fd; 747 if (bp != NULL && 748 (fdc->retry >= retries || (fd->options & FDOPT_NORETRY))) { 749 if ((debugflags & 4)) 750 printf("Too many retries (EIO)\n"); 751 return (fdc_biodone(fdc, EIO)); 752 } 753 754 /* Disable ISADMA if we bailed while it was active */ 755 if (fd != NULL && (fd->flags & FD_ISADMA)) { 756 mtx_lock(&Giant); 757 isa_dmadone( 758 bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE, 759 fd->fd_ioptr, fd->fd_iosize, fdc->dmachan); 760 mtx_unlock(&Giant); 761 mtx_lock(&fdc->fdc_mtx); 762 fd->flags &= ~FD_ISADMA; 763 mtx_unlock(&fdc->fdc_mtx); 764 } 765 766 /* Unwedge the controller ? */ 767 if (fdc->flags & FDC_NEEDS_RESET) { 768 fdc->flags &= ~FDC_NEEDS_RESET; 769 fdc_reset(fdc); 770 msleep(fdc, NULL, PRIBIO, "fdcrst", hz); 771 /* Discard results */ 772 for (i = 0; i < 4; i++) 773 fdc_sense_int(fdc, &st0, &cyl); 774 /* All drives must recal */ 775 need_recal = 0xf; 776 } 777 778 /* Pick up a request, if need be wait for it */ 779 if (fdc->bp == NULL) { 780 mtx_lock(&fdc->fdc_mtx); 781 do { 782 fdc->bp = bioq_takefirst(&fdc->head); 783 if (fdc->bp == NULL) 784 msleep(&fdc->head, &fdc->fdc_mtx, 785 PRIBIO, "-", hz); 786 } while (fdc->bp == NULL && 787 (fdc->flags & FDC_KTHREAD_EXIT) == 0); 788 mtx_unlock(&fdc->fdc_mtx); 789 790 if (fdc->bp == NULL) 791 /* 792 * Nothing to do, worker thread has been 793 * requested to stop. 794 */ 795 return (0); 796 797 bp = fdc->bp; 798 fd = fdc->fd = bp->bio_driver1; 799 fdc->retry = 0; 800 fd->fd_ioptr = bp->bio_data; 801 if (bp->bio_cmd & BIO_FMT) { 802 i = offsetof(struct fd_formb, fd_formb_cylno(0)); 803 fd->fd_ioptr += i; 804 fd->fd_iosize = bp->bio_length - i; 805 } 806 } 807 808 /* Select drive, setup params */ 809 fd_select(fd); 810 fdctl_wr(fdc, fd->ft->trans); 811 812 if (bp->bio_cmd & BIO_PROBE) { 813 814 if (!(fdin_rd(fdc) & FDI_DCHG) && !(fd->flags & FD_EMPTY)) 815 return (fdc_biodone(fdc, 0)); 816 817 /* 818 * Try to find out if we have a disk in the drive 819 * 820 * First recal, then seek to cyl#1, this clears the 821 * old condition on the disk change line so we can 822 * examine it for current status 823 */ 824 if (debugflags & 0x40) 825 printf("New disk in probe\n"); 826 mtx_lock(&fdc->fdc_mtx); 827 fd->flags |= FD_NEWDISK; 828 mtx_unlock(&fdc->fdc_mtx); 829 retry_line = __LINE__; 830 if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fd->fdsu, 0)) 831 return (1); 832 msleep(fdc, NULL, PRIBIO, "fdrecal", hz); 833 retry_line = __LINE__; 834 if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 835 return (1); /* XXX */ 836 retry_line = __LINE__; 837 if ((st0 & 0xc0) || cyl != 0) 838 return (1); 839 840 /* Seek to track 1 */ 841 retry_line = __LINE__; 842 if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fd->fdsu, 1, 0)) 843 return (1); 844 msleep(fdc, NULL, PRIBIO, "fdseek", hz); 845 retry_line = __LINE__; 846 if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 847 return (1); /* XXX */ 848 need_recal |= (1 << fd->fdsu); 849 if (fdin_rd(fdc) & FDI_DCHG) { 850 if (debugflags & 0x40) 851 printf("Empty in probe\n"); 852 mtx_lock(&fdc->fdc_mtx); 853 fd->flags |= FD_EMPTY; 854 mtx_unlock(&fdc->fdc_mtx); 855 } else { 856 if (debugflags & 0x40) 857 printf("Got disk in probe\n"); 858 mtx_lock(&fdc->fdc_mtx); 859 fd->flags &= ~FD_EMPTY; 860 mtx_unlock(&fdc->fdc_mtx); 861 retry_line = __LINE__; 862 if(fdc_sense_drive(fdc, &st3) != 0) 863 return (1); 864 mtx_lock(&fdc->fdc_mtx); 865 if(st3 & NE7_ST3_WP) 866 fd->flags |= FD_WP; 867 else 868 fd->flags &= ~FD_WP; 869 mtx_unlock(&fdc->fdc_mtx); 870 } 871 return (fdc_biodone(fdc, 0)); 872 } 873 874 /* 875 * If we are dead just flush the requests 876 */ 877 if (fd->flags & FD_EMPTY) 878 return (fdc_biodone(fdc, ENXIO)); 879 880 /* Check if we lost our media */ 881 if (fdin_rd(fdc) & FDI_DCHG) { 882 if (debugflags & 0x40) 883 printf("Lost disk\n"); 884 mtx_lock(&fdc->fdc_mtx); 885 fd->flags |= FD_EMPTY; 886 fd->flags |= FD_NEWDISK; 887 mtx_unlock(&fdc->fdc_mtx); 888 g_topology_lock(); 889 g_orphan_provider(fd->fd_provider, EXDEV); 890 fd->fd_provider->flags |= G_PF_WITHER; 891 fd->fd_provider = 892 g_new_providerf(fd->fd_geom, fd->fd_geom->name); 893 g_error_provider(fd->fd_provider, 0); 894 g_topology_unlock(); 895 return (fdc_biodone(fdc, ENXIO)); 896 } 897 898 /* Check if the floppy is write-protected */ 899 if(bp->bio_cmd & (BIO_FMT | BIO_WRITE)) { 900 retry_line = __LINE__; 901 if(fdc_sense_drive(fdc, &st3) != 0) 902 return (1); 903 if(st3 & NE7_ST3_WP) 904 return (fdc_biodone(fdc, EROFS)); 905 } 906 907 mfm = (fd->ft->flags & FL_MFM)? NE7CMD_MFM: 0; 908 steptrac = (fd->ft->flags & FL_2STEP)? 2: 1; 909 i = fd->ft->sectrac * fd->ft->heads; 910 cylinder = bp->bio_pblkno / i; 911 descyl = cylinder * steptrac; 912 sec = bp->bio_pblkno % i; 913 nsect = i - sec; 914 head = sec / fd->ft->sectrac; 915 sec = sec % fd->ft->sectrac + 1; 916 917 /* If everything is going swimmingly, use multisector xfer */ 918 if (fdc->retry == 0 && bp->bio_cmd & (BIO_READ|BIO_WRITE)) { 919 fd->fd_iosize = imin(nsect * fd->sectorsize, bp->bio_resid); 920 nsect = fd->fd_iosize / fd->sectorsize; 921 } else if (bp->bio_cmd & (BIO_READ|BIO_WRITE)) { 922 fd->fd_iosize = fd->sectorsize; 923 nsect = 1; 924 } 925 926 /* Do RECAL if we need to or are going to track zero anyway */ 927 if ((need_recal & (1 << fd->fdsu)) || 928 (cylinder == 0 && fd->track != 0) || 929 fdc->retry > 2) { 930 retry_line = __LINE__; 931 if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fd->fdsu, 0)) 932 return (1); 933 msleep(fdc, NULL, PRIBIO, "fdrecal", hz); 934 retry_line = __LINE__; 935 if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 936 return (1); /* XXX */ 937 retry_line = __LINE__; 938 if ((st0 & 0xc0) || cyl != 0) 939 return (1); 940 need_recal &= ~(1 << fd->fdsu); 941 fd->track = 0; 942 /* let the heads settle */ 943 if (settle) 944 msleep(fdc->fd, NULL, PRIBIO, "fdhdstl", settle); 945 } 946 947 /* 948 * SEEK to where we want to be 949 * 950 * Enhanced controllers do implied seeks for read&write as long as 951 * we do not need multiple steps per track. 952 */ 953 if (cylinder != fd->track && ( 954 fdc->fdct != FDC_ENHANCED || 955 descyl != cylinder || 956 (bp->bio_cmd & (BIO_RDID|BIO_FMT)))) { 957 retry_line = __LINE__; 958 if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fd->fdsu, descyl, 0)) 959 return (1); 960 msleep(fdc, NULL, PRIBIO, "fdseek", hz); 961 retry_line = __LINE__; 962 if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 963 return (1); /* XXX */ 964 retry_line = __LINE__; 965 if ((st0 & 0xc0) || cyl != descyl) { 966 need_recal |= (1 << fd->fdsu); 967 return (1); 968 } 969 /* let the heads settle */ 970 if (settle) 971 msleep(fdc->fd, NULL, PRIBIO, "fdhdstl", settle); 972 } 973 fd->track = cylinder; 974 975 if (debugflags & 8) 976 printf("op %x bn %ju siz %u ptr %p retry %d\n", 977 bp->bio_cmd, bp->bio_pblkno, fd->fd_iosize, 978 fd->fd_ioptr, fdc->retry); 979 980 /* Setup ISADMA if we need it and have it */ 981 if ((bp->bio_cmd & (BIO_READ|BIO_WRITE|BIO_FMT)) 982 && !(fdc->flags & FDC_NODMA)) { 983 mtx_lock(&Giant); 984 isa_dmastart( 985 bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE, 986 fd->fd_ioptr, fd->fd_iosize, fdc->dmachan); 987 mtx_unlock(&Giant); 988 mtx_lock(&fdc->fdc_mtx); 989 fd->flags |= FD_ISADMA; 990 mtx_unlock(&fdc->fdc_mtx); 991 } 992 993 /* Do PIO if we have to */ 994 if (fdc->flags & FDC_NODMA) { 995 if (bp->bio_cmd & (BIO_READ|BIO_WRITE|BIO_FMT)) 996 fdbcdr_wr(fdc, 1, fd->fd_iosize); 997 if (bp->bio_cmd & (BIO_WRITE|BIO_FMT)) 998 fdc_pio(fdc); 999 } 1000 1001 switch(bp->bio_cmd) { 1002 case BIO_FMT: 1003 /* formatting */ 1004 finfo = (struct fd_formb *)bp->bio_data; 1005 retry_line = __LINE__; 1006 if (fdc_cmd(fdc, 6, 1007 NE7CMD_FORMAT | mfm, 1008 head << 2 | fd->fdsu, 1009 finfo->fd_formb_secshift, 1010 finfo->fd_formb_nsecs, 1011 finfo->fd_formb_gaplen, 1012 finfo->fd_formb_fillbyte, 0)) 1013 return (1); 1014 break; 1015 case BIO_RDID: 1016 retry_line = __LINE__; 1017 if (fdc_cmd(fdc, 2, 1018 NE7CMD_READID | mfm, 1019 head << 2 | fd->fdsu, 0)) 1020 return (1); 1021 break; 1022 case BIO_READ: 1023 retry_line = __LINE__; 1024 if (fdc_cmd(fdc, 9, 1025 NE7CMD_READ | NE7CMD_SK | mfm | NE7CMD_MT, 1026 head << 2 | fd->fdsu, /* head & unit */ 1027 fd->track, /* track */ 1028 head, /* head */ 1029 sec, /* sector + 1 */ 1030 fd->ft->secsize, /* sector size */ 1031 fd->ft->sectrac, /* sectors/track */ 1032 fd->ft->gap, /* gap size */ 1033 fd->ft->datalen, /* data length */ 1034 0)) 1035 return (1); 1036 break; 1037 case BIO_WRITE: 1038 retry_line = __LINE__; 1039 if (fdc_cmd(fdc, 9, 1040 NE7CMD_WRITE | mfm | NE7CMD_MT, 1041 head << 2 | fd->fdsu, /* head & unit */ 1042 fd->track, /* track */ 1043 head, /* head */ 1044 sec, /* sector + 1 */ 1045 fd->ft->secsize, /* sector size */ 1046 fd->ft->sectrac, /* sectors/track */ 1047 fd->ft->gap, /* gap size */ 1048 fd->ft->datalen, /* data length */ 1049 0)) 1050 return (1); 1051 break; 1052 default: 1053 KASSERT(0 == 1, ("Wrong bio_cmd %x\n", bp->bio_cmd)); 1054 } 1055 1056 /* Wait for interrupt */ 1057 i = msleep(fdc, NULL, PRIBIO, "fddata", hz); 1058 1059 /* PIO if the read looks good */ 1060 if (i == 0 && (fdc->flags & FDC_NODMA) && (bp->bio_cmd & BIO_READ)) 1061 fdc_pio(fdc); 1062 1063 /* Finish DMA */ 1064 if (fd->flags & FD_ISADMA) { 1065 mtx_lock(&Giant); 1066 isa_dmadone( 1067 bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE, 1068 fd->fd_ioptr, fd->fd_iosize, fdc->dmachan); 1069 mtx_unlock(&Giant); 1070 mtx_lock(&fdc->fdc_mtx); 1071 fd->flags &= ~FD_ISADMA; 1072 mtx_unlock(&fdc->fdc_mtx); 1073 } 1074 1075 if (i != 0) { 1076 /* 1077 * Timeout. 1078 * 1079 * Due to IBM's brain-dead design, the FDC has a faked ready 1080 * signal, hardwired to ready == true. Thus, any command 1081 * issued if there's no diskette in the drive will _never_ 1082 * complete, and must be aborted by resetting the FDC. 1083 * Many thanks, Big Blue! 1084 */ 1085 retry_line = __LINE__; 1086 fdc->flags |= FDC_NEEDS_RESET; 1087 return (1); 1088 } 1089 1090 retry_line = __LINE__; 1091 if (fdc_read_status(fdc)) 1092 return (1); 1093 1094 if (debugflags & 0x10) 1095 printf(" -> %x %x %x %x\n", 1096 fdc->status[0], fdc->status[1], 1097 fdc->status[2], fdc->status[3]); 1098 1099 st0 = fdc->status[0] & NE7_ST0_IC; 1100 if (st0 != 0) { 1101 retry_line = __LINE__; 1102 if (st0 == NE7_ST0_IC_AT && fdc->status[1] & NE7_ST1_OR) { 1103 /* 1104 * DMA overrun. Someone hogged the bus and 1105 * didn't release it in time for the next 1106 * FDC transfer. 1107 */ 1108 return (1); 1109 } 1110 retry_line = __LINE__; 1111 if(st0 == NE7_ST0_IC_IV) { 1112 fdc->flags |= FDC_NEEDS_RESET; 1113 return (1); 1114 } 1115 retry_line = __LINE__; 1116 if(st0 == NE7_ST0_IC_AT && fdc->status[2] & NE7_ST2_WC) { 1117 need_recal |= (1 << fd->fdsu); 1118 return (1); 1119 } 1120 if (debugflags & 0x20) { 1121 printf("status %02x %02x %02x %02x %02x %02x\n", 1122 fdc->status[0], fdc->status[1], fdc->status[2], 1123 fdc->status[3], fdc->status[4], fdc->status[5]); 1124 } 1125 retry_line = __LINE__; 1126 return (1); 1127 } 1128 /* All OK */ 1129 switch(bp->bio_cmd) { 1130 case BIO_RDID: 1131 /* copy out ID field contents */ 1132 idp = (struct fdc_readid *)bp->bio_data; 1133 idp->cyl = fdc->status[3]; 1134 idp->head = fdc->status[4]; 1135 idp->sec = fdc->status[5]; 1136 idp->secshift = fdc->status[6]; 1137 if (debugflags & 0x40) 1138 printf("c %d h %d s %d z %d\n", 1139 idp->cyl, idp->head, idp->sec, idp->secshift); 1140 break; 1141 case BIO_READ: 1142 case BIO_WRITE: 1143 bp->bio_pblkno += nsect; 1144 bp->bio_resid -= fd->fd_iosize; 1145 bp->bio_completed += fd->fd_iosize; 1146 fd->fd_ioptr += fd->fd_iosize; 1147 /* Since we managed to get something done, reset the retry */ 1148 fdc->retry = 0; 1149 if (bp->bio_resid > 0) 1150 return (0); 1151 break; 1152 case BIO_FMT: 1153 break; 1154 } 1155 return (fdc_biodone(fdc, 0)); 1156 } 1157 1158 static void 1159 fdc_thread(void *arg) 1160 { 1161 struct fdc_data *fdc; 1162 1163 fdc = arg; 1164 int i; 1165 1166 mtx_lock(&fdc->fdc_mtx); 1167 fdc->flags |= FDC_KTHREAD_ALIVE; 1168 while ((fdc->flags & FDC_KTHREAD_EXIT) == 0) { 1169 mtx_unlock(&fdc->fdc_mtx); 1170 i = fdc_worker(fdc); 1171 if (i && debugflags & 0x20) { 1172 if (fdc->bp != NULL) { 1173 g_print_bio(fdc->bp); 1174 printf("\n"); 1175 } 1176 printf("Retry line %d\n", retry_line); 1177 } 1178 fdc->retry += i; 1179 mtx_lock(&fdc->fdc_mtx); 1180 } 1181 fdc->flags &= ~(FDC_KTHREAD_EXIT | FDC_KTHREAD_ALIVE); 1182 wakeup(&fdc->fdc_thread); 1183 mtx_unlock(&fdc->fdc_mtx); 1184 1185 kthread_exit(0); 1186 } 1187 1188 /* 1189 * Enqueue a request. 1190 */ 1191 static void 1192 fd_enqueue(struct fd_data *fd, struct bio *bp) 1193 { 1194 struct fdc_data *fdc; 1195 int call; 1196 1197 call = 0; 1198 fdc = fd->fdc; 1199 mtx_lock(&fdc->fdc_mtx); 1200 /* If we go from idle, cancel motor turnoff */ 1201 if (fd->fd_iocount++ == 0) 1202 callout_drain(&fd->toffhandle); 1203 if (fd->flags & FD_MOTOR) { 1204 /* The motor is on, send it directly to the controller */ 1205 bioq_disksort(&fdc->head, bp); 1206 wakeup(&fdc->head); 1207 } else { 1208 /* Queue it on the drive until the motor has started */ 1209 bioq_insert_tail(&fd->fd_bq, bp); 1210 if (!(fd->flags & FD_MOTORWAIT)) 1211 fd_motor(fd, 1); 1212 } 1213 mtx_unlock(&fdc->fdc_mtx); 1214 } 1215 1216 static int 1217 fdmisccmd(struct fd_data *fd, u_int cmd, void *data) 1218 { 1219 struct bio *bp; 1220 struct fd_formb *finfo; 1221 struct fdc_readid *idfield; 1222 int error; 1223 1224 bp = malloc(sizeof(struct bio), M_TEMP, M_WAITOK | M_ZERO); 1225 1226 /* 1227 * Set up a bio request for fdstrategy(). bio_offset is faked 1228 * so that fdstrategy() will seek to the the requested 1229 * cylinder, and use the desired head. 1230 */ 1231 bp->bio_cmd = cmd; 1232 if (cmd == BIO_FMT) { 1233 finfo = (struct fd_formb *)data; 1234 bp->bio_pblkno = 1235 (finfo->cyl * fd->ft->heads + finfo->head) * 1236 fd->ft->sectrac; 1237 bp->bio_length = sizeof *finfo; 1238 } else if (cmd == BIO_RDID) { 1239 idfield = (struct fdc_readid *)data; 1240 bp->bio_pblkno = 1241 (idfield->cyl * fd->ft->heads + idfield->head) * 1242 fd->ft->sectrac; 1243 bp->bio_length = sizeof(struct fdc_readid); 1244 } else if (cmd == BIO_PROBE) { 1245 /* nothing */ 1246 } else 1247 panic("wrong cmd in fdmisccmd()"); 1248 bp->bio_offset = bp->bio_pblkno * fd->sectorsize; 1249 bp->bio_data = data; 1250 bp->bio_driver1 = fd; 1251 bp->bio_flags = 0; 1252 1253 fd_enqueue(fd, bp); 1254 1255 do { 1256 msleep(bp, NULL, PRIBIO, "fdwait", hz); 1257 } while (!(bp->bio_flags & BIO_DONE)); 1258 error = bp->bio_error; 1259 1260 free(bp, M_TEMP); 1261 return (error); 1262 } 1263 1264 /* 1265 * Try figuring out the density of the media present in our device. 1266 */ 1267 static int 1268 fdautoselect(struct fd_data *fd) 1269 { 1270 struct fd_type *fdtp; 1271 struct fdc_readid id; 1272 int oopts, rv; 1273 1274 if (!(fd->ft->flags & FL_AUTO)) 1275 return (0); 1276 1277 fdtp = fd_native_types[fd->type]; 1278 fdsettype(fd, fdtp); 1279 if (!(fd->ft->flags & FL_AUTO)) 1280 return (0); 1281 1282 /* 1283 * Try reading sector ID fields, first at cylinder 0, head 0, 1284 * then at cylinder 2, head N. We don't probe cylinder 1, 1285 * since for 5.25in DD media in a HD drive, there are no data 1286 * to read (2 step pulses per media cylinder required). For 1287 * two-sided media, the second probe always goes to head 1, so 1288 * we can tell them apart from single-sided media. As a 1289 * side-effect this means that single-sided media should be 1290 * mentioned in the search list after two-sided media of an 1291 * otherwise identical density. Media with a different number 1292 * of sectors per track but otherwise identical parameters 1293 * cannot be distinguished at all. 1294 * 1295 * If we successfully read an ID field on both cylinders where 1296 * the recorded values match our expectation, we are done. 1297 * Otherwise, we try the next density entry from the table. 1298 * 1299 * Stepping to cylinder 2 has the side-effect of clearing the 1300 * unit attention bit. 1301 */ 1302 oopts = fd->options; 1303 fd->options |= FDOPT_NOERRLOG | FDOPT_NORETRY; 1304 for (; fdtp->heads; fdtp++) { 1305 fdsettype(fd, fdtp); 1306 1307 id.cyl = id.head = 0; 1308 rv = fdmisccmd(fd, BIO_RDID, &id); 1309 if (rv != 0) 1310 continue; 1311 if (id.cyl != 0 || id.head != 0 || id.secshift != fdtp->secsize) 1312 continue; 1313 id.cyl = 2; 1314 id.head = fd->ft->heads - 1; 1315 rv = fdmisccmd(fd, BIO_RDID, &id); 1316 if (id.cyl != 2 || id.head != fdtp->heads - 1 || 1317 id.secshift != fdtp->secsize) 1318 continue; 1319 if (rv == 0) 1320 break; 1321 } 1322 1323 fd->options = oopts; 1324 if (fdtp->heads == 0) { 1325 if (debugflags & 0x40) 1326 device_printf(fd->dev, "autoselection failed\n"); 1327 fdsettype(fd, fd_native_types[fd->type]); 1328 return (0); 1329 } else { 1330 if (debugflags & 0x40) { 1331 device_printf(fd->dev, 1332 "autoselected %d KB medium\n", fd->ft->size / 2); 1333 fdprinttype(fd->ft); 1334 } 1335 return (0); 1336 } 1337 } 1338 1339 /* 1340 * GEOM class implementation 1341 */ 1342 1343 static g_access_t fd_access; 1344 static g_start_t fd_start; 1345 static g_ioctl_t fd_ioctl; 1346 1347 struct g_class g_fd_class = { 1348 .name = "FD", 1349 .version = G_VERSION, 1350 .start = fd_start, 1351 .access = fd_access, 1352 .ioctl = fd_ioctl, 1353 }; 1354 1355 static int 1356 fd_access(struct g_provider *pp, int r, int w, int e) 1357 { 1358 struct fd_data *fd; 1359 struct fdc_data *fdc; 1360 int ar, aw, ae; 1361 1362 fd = pp->geom->softc; 1363 fdc = fd->fdc; 1364 1365 /* 1366 * If our provider is withering, we can only get negative requests 1367 * and we don't want to even see them 1368 */ 1369 if (pp->flags & G_PF_WITHER) 1370 return (0); 1371 1372 ar = r + pp->acr; 1373 aw = w + pp->acw; 1374 ae = e + pp->ace; 1375 1376 if (ar == 0 && aw == 0 && ae == 0) { 1377 device_unbusy(fd->dev); 1378 return (0); 1379 } 1380 1381 if (pp->acr == 0 && pp->acw == 0 && pp->ace == 0) { 1382 if (fdmisccmd(fd, BIO_PROBE, NULL)) 1383 return (ENXIO); 1384 if (fd->flags & FD_EMPTY) 1385 return (ENXIO); 1386 if (fd->flags & FD_NEWDISK) { 1387 fdautoselect(fd); 1388 mtx_lock(&fdc->fdc_mtx); 1389 fd->flags &= ~FD_NEWDISK; 1390 mtx_unlock(&fdc->fdc_mtx); 1391 } 1392 device_busy(fd->dev); 1393 } 1394 1395 if (w > 0 && (fd->flags & FD_WP)) 1396 return (EROFS); 1397 1398 pp->sectorsize = fd->sectorsize; 1399 pp->stripesize = fd->ft->heads * fd->ft->sectrac * fd->sectorsize; 1400 pp->mediasize = pp->stripesize * fd->ft->tracks; 1401 return (0); 1402 } 1403 1404 static void 1405 fd_start(struct bio *bp) 1406 { 1407 struct fdc_data * fdc; 1408 struct fd_data * fd; 1409 1410 fd = bp->bio_to->geom->softc; 1411 fdc = fd->fdc; 1412 bp->bio_driver1 = fd; 1413 if (bp->bio_cmd & BIO_GETATTR) { 1414 if (g_handleattr_int(bp, "GEOM::fwsectors", fd->ft->sectrac)) 1415 return; 1416 if (g_handleattr_int(bp, "GEOM::fwheads", fd->ft->heads)) 1417 return; 1418 g_io_deliver(bp, ENOIOCTL); 1419 return; 1420 } 1421 if (!(bp->bio_cmd & (BIO_READ|BIO_WRITE))) { 1422 g_io_deliver(bp, EOPNOTSUPP); 1423 return; 1424 } 1425 bp->bio_pblkno = bp->bio_offset / fd->sectorsize; 1426 bp->bio_resid = bp->bio_length; 1427 fd_enqueue(fd, bp); 1428 return; 1429 } 1430 1431 static int 1432 fd_ioctl(struct g_provider *pp, u_long cmd, void *data, int fflag, struct thread *td) 1433 { 1434 struct fd_data *fd; 1435 struct fdc_status *fsp; 1436 struct fdc_readid *rid; 1437 int error; 1438 1439 fd = pp->geom->softc; 1440 1441 switch (cmd) { 1442 case FD_GTYPE: /* get drive type */ 1443 *(struct fd_type *)data = *fd->ft; 1444 return (0); 1445 1446 case FD_STYPE: /* set drive type */ 1447 if (!(fflag & FWRITE)) 1448 return (EPERM); 1449 /* 1450 * Allow setting drive type temporarily iff 1451 * currently unset. Used for fdformat so any 1452 * user can set it, and then start formatting. 1453 */ 1454 fd->fts = *(struct fd_type *)data; 1455 if (fd->fts.sectrac) { 1456 /* XXX: check for rubbish */ 1457 fdsettype(fd, &fd->fts); 1458 } else { 1459 fdsettype(fd, fd_native_types[fd->type]); 1460 } 1461 if (debugflags & 0x40) 1462 fdprinttype(fd->ft); 1463 return (0); 1464 1465 case FD_GOPTS: /* get drive options */ 1466 *(int *)data = fd->options; 1467 return (0); 1468 1469 case FD_SOPTS: /* set drive options */ 1470 if (!(fflag & FWRITE)) 1471 return (EPERM); 1472 fd->options = *(int *)data; 1473 return (0); 1474 1475 case FD_CLRERR: 1476 if (suser(td) != 0) 1477 return (EPERM); 1478 fd->fdc->fdc_errs = 0; 1479 return (0); 1480 1481 case FD_GSTAT: 1482 fsp = (struct fdc_status *)data; 1483 if ((fd->fdc->flags & FDC_STAT_VALID) == 0) 1484 return (EINVAL); 1485 memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int)); 1486 return (0); 1487 1488 case FD_GDTYPE: 1489 *(enum fd_drivetype *)data = fd->type; 1490 return (0); 1491 1492 case FD_FORM: 1493 if (!(fflag & FWRITE)) 1494 return (EPERM); 1495 if (((struct fd_formb *)data)->format_version != 1496 FD_FORMAT_VERSION) 1497 return (EINVAL); /* wrong version of formatting prog */ 1498 error = fdmisccmd(fd, BIO_FMT, data); 1499 mtx_lock(&fd->fdc->fdc_mtx); 1500 fd->flags |= FD_NEWDISK; 1501 mtx_unlock(&fd->fdc->fdc_mtx); 1502 break; 1503 1504 case FD_READID: 1505 rid = (struct fdc_readid *)data; 1506 if (rid->cyl > 85 || rid->head > 1) 1507 return (EINVAL); 1508 error = fdmisccmd(fd, BIO_RDID, data); 1509 break; 1510 1511 case FIONBIO: 1512 case FIOASYNC: 1513 /* For backwards compat with old fd*(8) tools */ 1514 error = 0; 1515 break; 1516 1517 default: 1518 if (debugflags & 0x80) 1519 printf("Unknown ioctl %lx\n", cmd); 1520 error = ENOIOCTL; 1521 break; 1522 } 1523 return (error); 1524 }; 1525 1526 1527 1528 /* 1529 * Configuration/initialization stuff, per controller. 1530 */ 1531 1532 devclass_t fdc_devclass; 1533 static devclass_t fd_devclass; 1534 1535 struct fdc_ivars { 1536 int fdunit; 1537 int fdtype; 1538 }; 1539 1540 void 1541 fdc_release_resources(struct fdc_data *fdc) 1542 { 1543 device_t dev; 1544 struct resource *last; 1545 int i; 1546 1547 dev = fdc->fdc_dev; 1548 if (fdc->fdc_intr) 1549 bus_teardown_intr(dev, fdc->res_irq, fdc->fdc_intr); 1550 fdc->fdc_intr = NULL; 1551 if (fdc->res_irq != NULL) 1552 bus_release_resource(dev, SYS_RES_IRQ, fdc->rid_irq, 1553 fdc->res_irq); 1554 fdc->res_irq = NULL; 1555 last = NULL; 1556 for (i = 0; i < FDC_MAXREG; i++) { 1557 if (fdc->resio[i] != NULL && fdc->resio[i] != last) { 1558 bus_release_resource(dev, SYS_RES_IOPORT, 1559 fdc->ridio[i], fdc->resio[i]); 1560 last = fdc->resio[i]; 1561 fdc->resio[i] = NULL; 1562 } 1563 } 1564 if (fdc->res_drq != NULL) 1565 bus_release_resource(dev, SYS_RES_DRQ, fdc->rid_drq, 1566 fdc->res_drq); 1567 fdc->res_drq = NULL; 1568 } 1569 1570 int 1571 fdc_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) 1572 { 1573 struct fdc_ivars *ivars = device_get_ivars(child); 1574 1575 switch (which) { 1576 case FDC_IVAR_FDUNIT: 1577 *result = ivars->fdunit; 1578 break; 1579 case FDC_IVAR_FDTYPE: 1580 *result = ivars->fdtype; 1581 break; 1582 default: 1583 return (ENOENT); 1584 } 1585 return (0); 1586 } 1587 1588 int 1589 fdc_write_ivar(device_t dev, device_t child, int which, uintptr_t value) 1590 { 1591 struct fdc_ivars *ivars = device_get_ivars(child); 1592 1593 switch (which) { 1594 case FDC_IVAR_FDUNIT: 1595 ivars->fdunit = value; 1596 break; 1597 case FDC_IVAR_FDTYPE: 1598 ivars->fdtype = value; 1599 break; 1600 default: 1601 return (ENOENT); 1602 } 1603 return (0); 1604 } 1605 1606 int 1607 fdc_initial_reset(device_t dev, struct fdc_data *fdc) 1608 { 1609 int ic_type, part_id; 1610 1611 /* 1612 * A status value of 0xff is very unlikely, but not theoretically 1613 * impossible, but it is far more likely to indicate an empty bus. 1614 */ 1615 if (fdsts_rd(fdc) == 0xff) 1616 return (ENXIO); 1617 1618 /* 1619 * Assert a reset to the floppy controller and check that the status 1620 * register goes to zero. 1621 */ 1622 fdout_wr(fdc, 0); 1623 fdout_wr(fdc, 0); 1624 if (fdsts_rd(fdc) != 0) 1625 return (ENXIO); 1626 1627 /* 1628 * Clear the reset and see it come ready. 1629 */ 1630 fdout_wr(fdc, FDO_FRST); 1631 DELAY(100); 1632 if (fdsts_rd(fdc) != 0x80) 1633 return (ENXIO); 1634 1635 /* Then, see if it can handle a command. */ 1636 if (fdc_cmd(fdc, 3, NE7CMD_SPECIFY, 0xaf, 0x1e, 0)) 1637 return (ENXIO); 1638 1639 /* 1640 * Try to identify the chip. 1641 * 1642 * The i8272 datasheet documents that unknown commands 1643 * will return ST0 as 0x80. The i8272 is supposedly identical 1644 * to the NEC765. 1645 * The i82077SL datasheet says 0x90 for the VERSION command, 1646 * and several "superio" chips emulate this. 1647 */ 1648 if (fdc_cmd(fdc, 1, NE7CMD_VERSION, 1, &ic_type)) 1649 return (ENXIO); 1650 if (fdc_cmd(fdc, 1, 0x18, 1, &part_id)) 1651 return (ENXIO); 1652 if (bootverbose) 1653 device_printf(dev, 1654 "ic_type %02x part_id %02x\n", ic_type, part_id); 1655 switch (ic_type & 0xff) { 1656 case 0x80: 1657 device_set_desc(dev, "NEC 765 or clone"); 1658 fdc->fdct = FDC_NE765; 1659 break; 1660 case 0x81: 1661 case 0x90: 1662 device_set_desc(dev, 1663 "Enhanced floppy controller"); 1664 fdc->fdct = FDC_ENHANCED; 1665 break; 1666 default: 1667 device_set_desc(dev, "Generic floppy controller"); 1668 fdc->fdct = FDC_UNKNOWN; 1669 break; 1670 } 1671 return (0); 1672 } 1673 1674 int 1675 fdc_detach(device_t dev) 1676 { 1677 struct fdc_data *fdc; 1678 int error; 1679 1680 fdc = device_get_softc(dev); 1681 1682 /* have our children detached first */ 1683 if ((error = bus_generic_detach(dev))) 1684 return (error); 1685 1686 /* kill worker thread */ 1687 fdc->flags |= FDC_KTHREAD_EXIT; 1688 mtx_lock(&fdc->fdc_mtx); 1689 wakeup(&fdc->head); 1690 while ((fdc->flags & FDC_KTHREAD_ALIVE) != 0) 1691 msleep(&fdc->fdc_thread, &fdc->fdc_mtx, PRIBIO, "fdcdet", 0); 1692 mtx_unlock(&fdc->fdc_mtx); 1693 1694 /* reset controller, turn motor off */ 1695 fdout_wr(fdc, 0); 1696 1697 if (!(fdc->flags & FDC_NODMA)) 1698 isa_dma_release(fdc->dmachan); 1699 fdc_release_resources(fdc); 1700 mtx_destroy(&fdc->fdc_mtx); 1701 return (0); 1702 } 1703 1704 /* 1705 * Add a child device to the fdc controller. It will then be probed etc. 1706 */ 1707 device_t 1708 fdc_add_child(device_t dev, const char *name, int unit) 1709 { 1710 struct fdc_ivars *ivar; 1711 device_t child; 1712 1713 ivar = malloc(sizeof *ivar, M_DEVBUF /* XXX */, M_NOWAIT | M_ZERO); 1714 if (ivar == NULL) 1715 return (NULL); 1716 child = device_add_child(dev, name, unit); 1717 if (child == NULL) { 1718 free(ivar, M_DEVBUF); 1719 return (NULL); 1720 } 1721 device_set_ivars(child, ivar); 1722 ivar->fdunit = unit; 1723 ivar->fdtype = FDT_NONE; 1724 if (resource_disabled(name, unit)) 1725 device_disable(child); 1726 return (child); 1727 } 1728 1729 int 1730 fdc_attach(device_t dev) 1731 { 1732 struct fdc_data *fdc; 1733 int error; 1734 1735 fdc = device_get_softc(dev); 1736 fdc->fdc_dev = dev; 1737 error = fdc_initial_reset(dev, fdc); 1738 if (error) { 1739 device_printf(dev, "does not respond\n"); 1740 return (error); 1741 } 1742 error = bus_setup_intr(dev, fdc->res_irq, 1743 INTR_TYPE_BIO | INTR_ENTROPY | INTR_MPSAFE | 1744 ((fdc->flags & FDC_NOFAST) ? 0 : INTR_FAST), 1745 fdc_intr, fdc, &fdc->fdc_intr); 1746 if (error) { 1747 device_printf(dev, "cannot setup interrupt\n"); 1748 return (error); 1749 } 1750 if (!(fdc->flags & FDC_NODMA)) { 1751 error = isa_dma_acquire(fdc->dmachan); 1752 if (!error) { 1753 error = isa_dma_init(fdc->dmachan, 1754 MAX_BYTES_PER_CYL, M_WAITOK); 1755 if (error) 1756 isa_dma_release(fdc->dmachan); 1757 } 1758 if (error) 1759 return (error); 1760 } 1761 fdc->fdcu = device_get_unit(dev); 1762 fdc->flags |= FDC_NEEDS_RESET; 1763 1764 mtx_init(&fdc->fdc_mtx, "fdc lock", NULL, MTX_DEF); 1765 1766 /* reset controller, turn motor off, clear fdout mirror reg */ 1767 fdout_wr(fdc, fdc->fdout = 0); 1768 bioq_init(&fdc->head); 1769 1770 kthread_create(fdc_thread, fdc, &fdc->fdc_thread, 0, 0, 1771 "fdc%d", device_get_unit(dev)); 1772 1773 settle = hz / 8; 1774 1775 return (0); 1776 } 1777 1778 int 1779 fdc_hints_probe(device_t dev) 1780 { 1781 const char *name, *dname; 1782 int i, error, dunit; 1783 1784 /* 1785 * Probe and attach any children. We should probably detect 1786 * devices from the BIOS unless overridden. 1787 */ 1788 name = device_get_nameunit(dev); 1789 i = 0; 1790 while ((resource_find_match(&i, &dname, &dunit, "at", name)) == 0) { 1791 resource_int_value(dname, dunit, "drive", &dunit); 1792 fdc_add_child(dev, dname, dunit); 1793 } 1794 1795 if ((error = bus_generic_attach(dev)) != 0) 1796 return (error); 1797 return (0); 1798 } 1799 1800 int 1801 fdc_print_child(device_t me, device_t child) 1802 { 1803 int retval = 0, flags; 1804 1805 retval += bus_print_child_header(me, child); 1806 retval += printf(" on %s drive %d", device_get_nameunit(me), 1807 fdc_get_fdunit(child)); 1808 if ((flags = device_get_flags(me)) != 0) 1809 retval += printf(" flags %#x", flags); 1810 retval += printf("\n"); 1811 1812 return (retval); 1813 } 1814 1815 /* 1816 * Configuration/initialization, per drive. 1817 */ 1818 static int 1819 fd_probe(device_t dev) 1820 { 1821 int i, unit; 1822 u_int st0, st3; 1823 struct fd_data *fd; 1824 struct fdc_data *fdc; 1825 int fdsu; 1826 int flags, type; 1827 1828 fdsu = fdc_get_fdunit(dev); 1829 fd = device_get_softc(dev); 1830 fdc = device_get_softc(device_get_parent(dev)); 1831 flags = device_get_flags(dev); 1832 1833 fd->dev = dev; 1834 fd->fdc = fdc; 1835 fd->fdsu = fdsu; 1836 unit = device_get_unit(dev); 1837 1838 /* Auto-probe if fdinfo is present, but always allow override. */ 1839 type = flags & FD_TYPEMASK; 1840 if (type == FDT_NONE && (type = fdc_get_fdtype(dev)) != FDT_NONE) { 1841 fd->type = type; 1842 goto done; 1843 } else { 1844 /* make sure fdautoselect() will be called */ 1845 fd->flags = FD_EMPTY; 1846 fd->type = type; 1847 } 1848 1849 #if (defined(__i386__) && !defined(PC98)) || defined(__amd64__) 1850 if (fd->type == FDT_NONE && (unit == 0 || unit == 1)) { 1851 /* Look up what the BIOS thinks we have. */ 1852 if (unit == 0) 1853 fd->type = (rtcin(RTC_FDISKETTE) & 0xf0) >> 4; 1854 else 1855 fd->type = rtcin(RTC_FDISKETTE) & 0x0f; 1856 if (fd->type == FDT_288M_1) 1857 fd->type = FDT_288M; 1858 } 1859 #endif /* __i386__ || __amd64__ */ 1860 /* is there a unit? */ 1861 if (fd->type == FDT_NONE) 1862 return (ENXIO); 1863 1864 /* 1865 mtx_lock(&fdc->fdc_mtx); 1866 */ 1867 /* select it */ 1868 fd_select(fd); 1869 fd_motor(fd, 1); 1870 fdc->fd = fd; 1871 fdc_reset(fdc); /* XXX reset, then unreset, etc. */ 1872 DELAY(1000000); /* 1 sec */ 1873 1874 if ((flags & FD_NO_PROBE) == 0) { 1875 /* If we're at track 0 first seek inwards. */ 1876 if ((fdc_sense_drive(fdc, &st3) == 0) && 1877 (st3 & NE7_ST3_T0)) { 1878 /* Seek some steps... */ 1879 if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fdsu, 10, 0) == 0) { 1880 /* ...wait a moment... */ 1881 DELAY(300000); 1882 /* make ctrlr happy: */ 1883 fdc_sense_int(fdc, NULL, NULL); 1884 } 1885 } 1886 1887 for (i = 0; i < 2; i++) { 1888 /* 1889 * we must recalibrate twice, just in case the 1890 * heads have been beyond cylinder 76, since 1891 * most FDCs still barf when attempting to 1892 * recalibrate more than 77 steps 1893 */ 1894 /* go back to 0: */ 1895 if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fdsu, 0) == 0) { 1896 /* a second being enough for full stroke seek*/ 1897 DELAY(i == 0 ? 1000000 : 300000); 1898 1899 /* anything responding? */ 1900 if (fdc_sense_int(fdc, &st0, NULL) == 0 && 1901 (st0 & NE7_ST0_EC) == 0) 1902 break; /* already probed succesfully */ 1903 } 1904 } 1905 } 1906 1907 fd_motor(fd, 0); 1908 fdc->fd = NULL; 1909 /* 1910 mtx_unlock(&fdc->fdc_mtx); 1911 */ 1912 1913 if ((flags & FD_NO_PROBE) == 0 && 1914 (st0 & NE7_ST0_EC) != 0) /* no track 0 -> no drive present */ 1915 return (ENXIO); 1916 1917 done: 1918 1919 switch (fd->type) { 1920 case FDT_12M: 1921 device_set_desc(dev, "1200-KB 5.25\" drive"); 1922 break; 1923 case FDT_144M: 1924 device_set_desc(dev, "1440-KB 3.5\" drive"); 1925 break; 1926 case FDT_288M: 1927 device_set_desc(dev, "2880-KB 3.5\" drive (in 1440-KB mode)"); 1928 break; 1929 case FDT_360K: 1930 device_set_desc(dev, "360-KB 5.25\" drive"); 1931 break; 1932 case FDT_720K: 1933 device_set_desc(dev, "720-KB 3.5\" drive"); 1934 break; 1935 default: 1936 return (ENXIO); 1937 } 1938 fd->track = FD_NO_TRACK; 1939 fd->fdc = fdc; 1940 fd->fdsu = fdsu; 1941 fd->options = 0; 1942 callout_init(&fd->toffhandle, 1); 1943 callout_init(&fd->tohandle, 1); 1944 1945 /* initialize densities for subdevices */ 1946 fdsettype(fd, fd_native_types[fd->type]); 1947 return (0); 1948 } 1949 1950 /* 1951 * We have to do this in a geom event because GEOM is not running 1952 * when fd_attach() is. 1953 * XXX: move fd_attach after geom like ata/scsi disks 1954 */ 1955 static void 1956 fd_attach2(void *arg, int flag) 1957 { 1958 struct fd_data *fd; 1959 1960 fd = arg; 1961 1962 fd->fd_geom = g_new_geomf(&g_fd_class, 1963 "fd%d", device_get_unit(fd->dev)); 1964 fd->fd_provider = g_new_providerf(fd->fd_geom, fd->fd_geom->name); 1965 fd->fd_geom->softc = fd; 1966 g_error_provider(fd->fd_provider, 0); 1967 } 1968 1969 static int 1970 fd_attach(device_t dev) 1971 { 1972 struct fd_data *fd; 1973 1974 fd = device_get_softc(dev); 1975 g_post_event(fd_attach2, fd, M_WAITOK, NULL); 1976 fd->flags |= FD_EMPTY; 1977 bioq_init(&fd->fd_bq); 1978 1979 return (0); 1980 } 1981 1982 static int 1983 fd_detach(device_t dev) 1984 { 1985 struct fd_data *fd; 1986 1987 fd = device_get_softc(dev); 1988 g_topology_lock(); 1989 g_wither_geom(fd->fd_geom, ENXIO); 1990 g_topology_unlock(); 1991 while (device_get_state(dev) == DS_BUSY) 1992 tsleep(fd, PZERO, "fdd", hz/10); 1993 callout_drain(&fd->toffhandle); 1994 1995 return (0); 1996 } 1997 1998 static device_method_t fd_methods[] = { 1999 /* Device interface */ 2000 DEVMETHOD(device_probe, fd_probe), 2001 DEVMETHOD(device_attach, fd_attach), 2002 DEVMETHOD(device_detach, fd_detach), 2003 DEVMETHOD(device_shutdown, bus_generic_shutdown), 2004 DEVMETHOD(device_suspend, bus_generic_suspend), /* XXX */ 2005 DEVMETHOD(device_resume, bus_generic_resume), /* XXX */ 2006 { 0, 0 } 2007 }; 2008 2009 static driver_t fd_driver = { 2010 "fd", 2011 fd_methods, 2012 sizeof(struct fd_data) 2013 }; 2014 2015 static int 2016 fdc_modevent(module_t mod, int type, void *data) 2017 { 2018 2019 g_modevent(NULL, type, &g_fd_class); 2020 return (0); 2021 } 2022 2023 DRIVER_MODULE(fd, fdc, fd_driver, fd_devclass, fdc_modevent, 0); 2024