1 /*- 2 * Copyright (c) 2004 Poul-Henning Kamp 3 * Copyright (c) 1990 The Regents of the University of California. 4 * All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * Don Ahn. 8 * 9 * Libretto PCMCIA floppy support by David Horwitt (dhorwitt@ucsd.edu) 10 * aided by the Linux floppy driver modifications from David Bateman 11 * (dbateman@eng.uts.edu.au). 12 * 13 * Copyright (c) 1993, 1994 by 14 * jc@irbs.UUCP (John Capo) 15 * vak@zebub.msk.su (Serge Vakulenko) 16 * ache@astral.msk.su (Andrew A. Chernov) 17 * 18 * Copyright (c) 1993, 1994, 1995 by 19 * joerg_wunsch@uriah.sax.de (Joerg Wunsch) 20 * dufault@hda.com (Peter Dufault) 21 * 22 * Copyright (c) 2001 Joerg Wunsch, 23 * joerg_wunsch@uriah.heep.sax.de (Joerg Wunsch) 24 * 25 * Redistribution and use in source and binary forms, with or without 26 * modification, are permitted provided that the following conditions 27 * are met: 28 * 1. Redistributions of source code must retain the above copyright 29 * notice, this list of conditions and the following disclaimer. 30 * 2. Redistributions in binary form must reproduce the above copyright 31 * notice, this list of conditions and the following disclaimer in the 32 * documentation and/or other materials provided with the distribution. 33 * 4. Neither the name of the University nor the names of its contributors 34 * may be used to endorse or promote products derived from this software 35 * without specific prior written permission. 36 * 37 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 38 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 40 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 41 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 42 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 43 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 45 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 46 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 47 * SUCH DAMAGE. 48 * 49 * from: @(#)fd.c 7.4 (Berkeley) 5/25/91 50 * 51 */ 52 53 #include <sys/cdefs.h> 54 __FBSDID("$FreeBSD$"); 55 56 #include "opt_fdc.h" 57 58 #include <sys/param.h> 59 #include <sys/bio.h> 60 #include <sys/bus.h> 61 #include <sys/devicestat.h> 62 #include <sys/disk.h> 63 #include <sys/fcntl.h> 64 #include <sys/fdcio.h> 65 #include <sys/filio.h> 66 #include <sys/kernel.h> 67 #include <sys/kthread.h> 68 #include <sys/lock.h> 69 #include <sys/malloc.h> 70 #include <sys/module.h> 71 #include <sys/mutex.h> 72 #include <sys/priv.h> 73 #include <sys/proc.h> 74 #include <sys/rman.h> 75 #include <sys/sysctl.h> 76 #include <sys/systm.h> 77 78 #include <geom/geom.h> 79 80 #include <machine/bus.h> 81 #include <machine/clock.h> 82 #include <machine/stdarg.h> 83 84 #include <isa/isavar.h> 85 #include <isa/isareg.h> 86 #include <dev/fdc/fdcvar.h> 87 #include <isa/rtc.h> 88 89 #include <dev/ic/nec765.h> 90 91 /* 92 * Runtime configuration hints/flags 93 */ 94 95 /* configuration flags for fd */ 96 #define FD_TYPEMASK 0x0f /* drive type, matches enum 97 * fd_drivetype; on i386 machines, if 98 * given as 0, use RTC type for fd0 99 * and fd1 */ 100 #define FD_NO_PROBE 0x20 /* don't probe drive (seek test), just 101 * assume it is there */ 102 103 /* 104 * Things that could conceiveably considered parameters or tweakables 105 */ 106 107 /* 108 * Maximal number of bytes in a cylinder. 109 * This is used for ISADMA bouncebuffer allocation and sets the max 110 * xfersize we support. 111 * 112 * 2.88M format has 2 x 36 x 512, allow for hacked up density. 113 */ 114 #define MAX_BYTES_PER_CYL (2 * 40 * 512) 115 116 /* 117 * Timeout value for the PIO loops to wait until the FDC main status 118 * register matches our expectations (request for master, direction 119 * bit). This is supposed to be a number of microseconds, although 120 * timing might actually not be very accurate. 121 * 122 * Timeouts of 100 msec are believed to be required for some broken 123 * (old) hardware. 124 */ 125 #define FDSTS_TIMEOUT 100000 126 127 /* 128 * After this many errors, stop whining. Close will reset this count. 129 */ 130 #define FDC_ERRMAX 100 131 132 /* 133 * AutoDensity search lists for each drive type. 134 */ 135 136 static struct fd_type fd_searchlist_360k[] = { 137 { FDF_5_360 }, 138 { 0 } 139 }; 140 141 static struct fd_type fd_searchlist_12m[] = { 142 { FDF_5_1200 | FL_AUTO }, 143 { FDF_5_360 | FL_2STEP | FL_AUTO}, 144 { 0 } 145 }; 146 147 static struct fd_type fd_searchlist_720k[] = { 148 { FDF_3_720 }, 149 { 0 } 150 }; 151 152 static struct fd_type fd_searchlist_144m[] = { 153 { FDF_3_1440 | FL_AUTO}, 154 { FDF_3_720 | FL_AUTO}, 155 { 0 } 156 }; 157 158 static struct fd_type fd_searchlist_288m[] = { 159 { FDF_3_1440 | FL_AUTO }, 160 #if 0 161 { FDF_3_2880 | FL_AUTO }, /* XXX: probably doesn't work */ 162 #endif 163 { FDF_3_720 | FL_AUTO}, 164 { 0 } 165 }; 166 167 /* 168 * Order must match enum fd_drivetype in <sys/fdcio.h>. 169 */ 170 static struct fd_type *fd_native_types[] = { 171 NULL, /* FDT_NONE */ 172 fd_searchlist_360k, /* FDT_360K */ 173 fd_searchlist_12m, /* FDT_12M */ 174 fd_searchlist_720k, /* FDT_720K */ 175 fd_searchlist_144m, /* FDT_144M */ 176 fd_searchlist_288m, /* FDT_288M_1 (mapped to FDT_288M) */ 177 fd_searchlist_288m, /* FDT_288M */ 178 }; 179 180 /* 181 * Internals start here 182 */ 183 184 /* registers */ 185 #define FDOUT 2 /* Digital Output Register (W) */ 186 #define FDO_FDSEL 0x03 /* floppy device select */ 187 #define FDO_FRST 0x04 /* floppy controller reset */ 188 #define FDO_FDMAEN 0x08 /* enable floppy DMA and Interrupt */ 189 #define FDO_MOEN0 0x10 /* motor enable drive 0 */ 190 #define FDO_MOEN1 0x20 /* motor enable drive 1 */ 191 #define FDO_MOEN2 0x40 /* motor enable drive 2 */ 192 #define FDO_MOEN3 0x80 /* motor enable drive 3 */ 193 194 #define FDSTS 4 /* NEC 765 Main Status Register (R) */ 195 #define FDDSR 4 /* Data Rate Select Register (W) */ 196 #define FDDATA 5 /* NEC 765 Data Register (R/W) */ 197 #define FDCTL 7 /* Control Register (W) */ 198 199 /* 200 * The YE-DATA PC Card floppies use PIO to read in the data rather 201 * than DMA due to the wild variability of DMA for the PC Card 202 * devices. DMA was deleted from the PC Card specification in version 203 * 7.2 of the standard, but that post-dates the YE-DATA devices by many 204 * years. 205 * 206 * In addition, if we cannot setup the DMA resources for the ISA 207 * attachment, we'll use this same offset for data transfer. However, 208 * that almost certainly won't work. 209 * 210 * For this mode, offset 0 and 1 must be used to setup the transfer 211 * for this floppy. This is OK for PC Card YE Data devices, but for 212 * ISA this is likely wrong. These registers are only available on 213 * those systems that map them to the floppy drive. Newer systems do 214 * not do this, and we should likely prohibit access to them (or 215 * disallow NODMA to be set). 216 */ 217 #define FDBCDR 0 /* And 1 */ 218 #define FD_YE_DATAPORT 6 /* Drive Data port */ 219 220 #define FDI_DCHG 0x80 /* diskette has been changed */ 221 /* requires drive and motor being selected */ 222 /* is cleared by any step pulse to drive */ 223 224 /* 225 * We have three private BIO commands. 226 */ 227 #define BIO_PROBE BIO_CMD0 228 #define BIO_RDID BIO_CMD1 229 #define BIO_FMT BIO_CMD2 230 231 /* 232 * Per drive structure (softc). 233 */ 234 struct fd_data { 235 u_char *fd_ioptr; /* IO pointer */ 236 u_int fd_iosize; /* Size of IO chunks */ 237 u_int fd_iocount; /* Outstanding requests */ 238 struct fdc_data *fdc; /* pointer to controller structure */ 239 int fdsu; /* this units number on this controller */ 240 enum fd_drivetype type; /* drive type */ 241 struct fd_type *ft; /* pointer to current type descriptor */ 242 struct fd_type fts; /* type descriptors */ 243 int sectorsize; 244 int flags; 245 #define FD_WP (1<<0) /* Write protected */ 246 #define FD_MOTOR (1<<1) /* motor should be on */ 247 #define FD_MOTORWAIT (1<<2) /* motor should be on */ 248 #define FD_EMPTY (1<<3) /* no media */ 249 #define FD_NEWDISK (1<<4) /* media changed */ 250 #define FD_ISADMA (1<<5) /* isa dma started */ 251 int track; /* where we think the head is */ 252 #define FD_NO_TRACK -2 253 int options; /* FDOPT_* */ 254 struct callout toffhandle; 255 struct g_geom *fd_geom; 256 struct g_provider *fd_provider; 257 device_t dev; 258 struct bio_queue_head fd_bq; 259 }; 260 261 #define FD_NOT_VALID -2 262 263 static driver_intr_t fdc_intr; 264 static driver_filter_t fdc_intr_fast; 265 static void fdc_reset(struct fdc_data *); 266 267 SYSCTL_NODE(_debug, OID_AUTO, fdc, CTLFLAG_RW, 0, "fdc driver"); 268 269 static int fifo_threshold = 8; 270 SYSCTL_INT(_debug_fdc, OID_AUTO, fifo, CTLFLAG_RW, &fifo_threshold, 0, 271 "FIFO threshold setting"); 272 273 static int debugflags = 0; 274 SYSCTL_INT(_debug_fdc, OID_AUTO, debugflags, CTLFLAG_RW, &debugflags, 0, 275 "Debug flags"); 276 277 static int retries = 10; 278 SYSCTL_INT(_debug_fdc, OID_AUTO, retries, CTLFLAG_RW, &retries, 0, 279 "Number of retries to attempt"); 280 281 static int spec1 = 0xaf; 282 SYSCTL_INT(_debug_fdc, OID_AUTO, spec1, CTLFLAG_RW, &spec1, 0, 283 "Specification byte one (step-rate + head unload)"); 284 285 static int spec2 = 0x10; 286 SYSCTL_INT(_debug_fdc, OID_AUTO, spec2, CTLFLAG_RW, &spec2, 0, 287 "Specification byte two (head load time + no-dma)"); 288 289 static int settle; 290 SYSCTL_INT(_debug_fdc, OID_AUTO, settle, CTLFLAG_RW, &settle, 0, 291 "Head settling time in sec/hz"); 292 293 static void 294 fdprinttype(struct fd_type *ft) 295 { 296 297 printf("(%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,0x%x)", 298 ft->sectrac, ft->secsize, ft->datalen, ft->gap, ft->tracks, 299 ft->size, ft->trans, ft->heads, ft->f_gap, ft->f_inter, 300 ft->offset_side2, ft->flags); 301 } 302 303 static void 304 fdsettype(struct fd_data *fd, struct fd_type *ft) 305 { 306 fd->ft = ft; 307 ft->size = ft->sectrac * ft->heads * ft->tracks; 308 fd->sectorsize = 128 << fd->ft->secsize; 309 } 310 311 /* 312 * Bus space handling (access to low-level IO). 313 */ 314 __inline static void 315 fdregwr(struct fdc_data *fdc, int reg, uint8_t v) 316 { 317 318 bus_space_write_1(fdc->iot, fdc->ioh[reg], fdc->ioff[reg], v); 319 } 320 321 __inline static uint8_t 322 fdregrd(struct fdc_data *fdc, int reg) 323 { 324 325 return bus_space_read_1(fdc->iot, fdc->ioh[reg], fdc->ioff[reg]); 326 } 327 328 static void 329 fdctl_wr(struct fdc_data *fdc, u_int8_t v) 330 { 331 332 fdregwr(fdc, FDCTL, v); 333 } 334 335 static void 336 fdout_wr(struct fdc_data *fdc, u_int8_t v) 337 { 338 339 fdregwr(fdc, FDOUT, v); 340 } 341 342 static u_int8_t 343 fdsts_rd(struct fdc_data *fdc) 344 { 345 346 return fdregrd(fdc, FDSTS); 347 } 348 349 static void 350 fddsr_wr(struct fdc_data *fdc, u_int8_t v) 351 { 352 353 fdregwr(fdc, FDDSR, v); 354 } 355 356 static void 357 fddata_wr(struct fdc_data *fdc, u_int8_t v) 358 { 359 360 fdregwr(fdc, FDDATA, v); 361 } 362 363 static u_int8_t 364 fddata_rd(struct fdc_data *fdc) 365 { 366 367 return fdregrd(fdc, FDDATA); 368 } 369 370 static u_int8_t 371 fdin_rd(struct fdc_data *fdc) 372 { 373 374 return fdregrd(fdc, FDCTL); 375 } 376 377 /* 378 * Magic pseudo-DMA initialization for YE FDC. Sets count and 379 * direction. 380 */ 381 static void 382 fdbcdr_wr(struct fdc_data *fdc, int iswrite, uint16_t count) 383 { 384 fdregwr(fdc, FDBCDR, (count - 1) & 0xff); 385 fdregwr(fdc, FDBCDR + 1, 386 (iswrite ? 0x80 : 0) | (((count - 1) >> 8) & 0x7f)); 387 } 388 389 static int 390 fdc_err(struct fdc_data *fdc, const char *s) 391 { 392 fdc->fdc_errs++; 393 if (s) { 394 if (fdc->fdc_errs < FDC_ERRMAX) 395 device_printf(fdc->fdc_dev, "%s", s); 396 else if (fdc->fdc_errs == FDC_ERRMAX) 397 device_printf(fdc->fdc_dev, "too many errors, not " 398 "logging any more\n"); 399 } 400 401 return (1); 402 } 403 404 /* 405 * FDC IO functions, take care of the main status register, timeout 406 * in case the desired status bits are never set. 407 * 408 * These PIO loops initially start out with short delays between 409 * each iteration in the expectation that the required condition 410 * is usually met quickly, so it can be handled immediately. 411 */ 412 static int 413 fdc_in(struct fdc_data *fdc, int *ptr) 414 { 415 int i, j, step; 416 417 step = 1; 418 for (j = 0; j < FDSTS_TIMEOUT; j += step) { 419 i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM); 420 if (i == (NE7_DIO|NE7_RQM)) { 421 i = fddata_rd(fdc); 422 if (ptr) 423 *ptr = i; 424 return (0); 425 } 426 if (i == NE7_RQM) 427 return (fdc_err(fdc, "ready for output in input\n")); 428 step += step; 429 DELAY(step); 430 } 431 return (fdc_err(fdc, bootverbose? "input ready timeout\n": 0)); 432 } 433 434 static int 435 fdc_out(struct fdc_data *fdc, int x) 436 { 437 int i, j, step; 438 439 step = 1; 440 for (j = 0; j < FDSTS_TIMEOUT; j += step) { 441 i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM); 442 if (i == NE7_RQM) { 443 fddata_wr(fdc, x); 444 return (0); 445 } 446 if (i == (NE7_DIO|NE7_RQM)) 447 return (fdc_err(fdc, "ready for input in output\n")); 448 step += step; 449 DELAY(step); 450 } 451 return (fdc_err(fdc, bootverbose? "output ready timeout\n": 0)); 452 } 453 454 /* 455 * fdc_cmd: Send a command to the chip. 456 * Takes a varargs with this structure: 457 * # of output bytes 458 * output bytes as int [...] 459 * # of input bytes 460 * input bytes as int* [...] 461 */ 462 static int 463 fdc_cmd(struct fdc_data *fdc, int n_out, ...) 464 { 465 u_char cmd = 0; 466 int n_in; 467 int n, i; 468 va_list ap; 469 470 va_start(ap, n_out); 471 for (n = 0; n < n_out; n++) { 472 i = va_arg(ap, int); 473 if (n == 0) 474 cmd = i; 475 if (fdc_out(fdc, i) < 0) { 476 char msg[50]; 477 snprintf(msg, sizeof(msg), 478 "cmd %x failed at out byte %d of %d\n", 479 cmd, n + 1, n_out); 480 fdc->flags |= FDC_NEEDS_RESET; 481 va_end(ap); 482 return fdc_err(fdc, msg); 483 } 484 } 485 n_in = va_arg(ap, int); 486 for (n = 0; n < n_in; n++) { 487 int *ptr = va_arg(ap, int *); 488 if (fdc_in(fdc, ptr) < 0) { 489 char msg[50]; 490 snprintf(msg, sizeof(msg), 491 "cmd %02x failed at in byte %d of %d\n", 492 cmd, n + 1, n_in); 493 fdc->flags |= FDC_NEEDS_RESET; 494 va_end(ap); 495 return fdc_err(fdc, msg); 496 } 497 } 498 va_end(ap); 499 return (0); 500 } 501 502 static void 503 fdc_reset(struct fdc_data *fdc) 504 { 505 int i, r[10]; 506 507 if (fdc->fdct == FDC_ENHANCED) { 508 /* Try a software reset, default precomp, and 500 kb/s */ 509 fddsr_wr(fdc, I8207X_DSR_SR); 510 } else { 511 /* Try a hardware reset, keep motor on */ 512 fdout_wr(fdc, fdc->fdout & ~(FDO_FRST|FDO_FDMAEN)); 513 DELAY(100); 514 /* enable FDC, but defer interrupts a moment */ 515 fdout_wr(fdc, fdc->fdout & ~FDO_FDMAEN); 516 } 517 DELAY(100); 518 fdout_wr(fdc, fdc->fdout); 519 520 /* XXX after a reset, silently believe the FDC will accept commands */ 521 if (fdc_cmd(fdc, 3, NE7CMD_SPECIFY, spec1, spec2, 0)) 522 device_printf(fdc->fdc_dev, " SPECIFY failed in reset\n"); 523 524 if (fdc->fdct == FDC_ENHANCED) { 525 if (fdc_cmd(fdc, 4, 526 I8207X_CONFIG, 527 0, 528 0x40 | /* Enable Implied Seek */ 529 0x10 | /* Polling disabled */ 530 (fifo_threshold - 1), /* Fifo threshold */ 531 0x00, /* Precomp track */ 532 0)) 533 device_printf(fdc->fdc_dev, 534 " CONFIGURE failed in reset\n"); 535 if (debugflags & 1) { 536 if (fdc_cmd(fdc, 1, 537 I8207X_DUMPREG, 538 10, &r[0], &r[1], &r[2], &r[3], &r[4], 539 &r[5], &r[6], &r[7], &r[8], &r[9])) 540 device_printf(fdc->fdc_dev, 541 " DUMPREG failed in reset\n"); 542 for (i = 0; i < 10; i++) 543 printf(" %02x", r[i]); 544 printf("\n"); 545 } 546 } 547 } 548 549 static int 550 fdc_sense_drive(struct fdc_data *fdc, int *st3p) 551 { 552 int st3; 553 554 if (fdc_cmd(fdc, 2, NE7CMD_SENSED, fdc->fd->fdsu, 1, &st3)) 555 return (fdc_err(fdc, "Sense Drive Status failed\n")); 556 if (st3p) 557 *st3p = st3; 558 return (0); 559 } 560 561 static int 562 fdc_sense_int(struct fdc_data *fdc, int *st0p, int *cylp) 563 { 564 int cyl, st0, ret; 565 566 ret = fdc_cmd(fdc, 1, NE7CMD_SENSEI, 1, &st0); 567 if (ret) { 568 (void)fdc_err(fdc, "sense intr err reading stat reg 0\n"); 569 return (ret); 570 } 571 572 if (st0p) 573 *st0p = st0; 574 575 if ((st0 & NE7_ST0_IC) == NE7_ST0_IC_IV) { 576 /* 577 * There doesn't seem to have been an interrupt. 578 */ 579 return (FD_NOT_VALID); 580 } 581 582 if (fdc_in(fdc, &cyl) < 0) 583 return fdc_err(fdc, "can't get cyl num\n"); 584 585 if (cylp) 586 *cylp = cyl; 587 588 return (0); 589 } 590 591 static int 592 fdc_read_status(struct fdc_data *fdc) 593 { 594 int i, ret, status; 595 596 for (i = ret = 0; i < 7; i++) { 597 ret = fdc_in(fdc, &status); 598 fdc->status[i] = status; 599 if (ret != 0) 600 break; 601 } 602 603 if (ret == 0) 604 fdc->flags |= FDC_STAT_VALID; 605 else 606 fdc->flags &= ~FDC_STAT_VALID; 607 608 return ret; 609 } 610 611 /* 612 * Select this drive 613 */ 614 static void 615 fd_select(struct fd_data *fd) 616 { 617 struct fdc_data *fdc; 618 619 /* XXX: lock controller */ 620 fdc = fd->fdc; 621 fdc->fdout &= ~FDO_FDSEL; 622 fdc->fdout |= FDO_FDMAEN | FDO_FRST | fd->fdsu; 623 fdout_wr(fdc, fdc->fdout); 624 } 625 626 static void 627 fd_turnon(void *arg) 628 { 629 struct fd_data *fd; 630 struct bio *bp; 631 int once; 632 633 fd = arg; 634 mtx_assert(&fd->fdc->fdc_mtx, MA_OWNED); 635 fd->flags &= ~FD_MOTORWAIT; 636 fd->flags |= FD_MOTOR; 637 once = 0; 638 for (;;) { 639 bp = bioq_takefirst(&fd->fd_bq); 640 if (bp == NULL) 641 break; 642 bioq_disksort(&fd->fdc->head, bp); 643 once = 1; 644 } 645 if (once) 646 wakeup(&fd->fdc->head); 647 } 648 649 static void 650 fd_motor(struct fd_data *fd, int turnon) 651 { 652 struct fdc_data *fdc; 653 654 fdc = fd->fdc; 655 /* 656 mtx_assert(&fdc->fdc_mtx, MA_OWNED); 657 */ 658 if (turnon) { 659 fd->flags |= FD_MOTORWAIT; 660 fdc->fdout |= (FDO_MOEN0 << fd->fdsu); 661 callout_reset(&fd->toffhandle, hz, fd_turnon, fd); 662 } else { 663 callout_stop(&fd->toffhandle); 664 fd->flags &= ~(FD_MOTOR|FD_MOTORWAIT); 665 fdc->fdout &= ~(FDO_MOEN0 << fd->fdsu); 666 } 667 fdout_wr(fdc, fdc->fdout); 668 } 669 670 static void 671 fd_turnoff(void *xfd) 672 { 673 struct fd_data *fd = xfd; 674 675 mtx_assert(&fd->fdc->fdc_mtx, MA_OWNED); 676 fd_motor(fd, 0); 677 } 678 679 /* 680 * fdc_intr - wake up the worker thread. 681 */ 682 683 static void 684 fdc_intr(void *arg) 685 { 686 687 wakeup(arg); 688 } 689 690 static int 691 fdc_intr_fast(void *arg) 692 { 693 694 wakeup(arg); 695 return(FILTER_HANDLED); 696 } 697 698 /* 699 * fdc_pio(): perform programmed IO read/write for YE PCMCIA floppy. 700 */ 701 static void 702 fdc_pio(struct fdc_data *fdc) 703 { 704 u_char *cptr; 705 struct bio *bp; 706 u_int count; 707 708 bp = fdc->bp; 709 cptr = fdc->fd->fd_ioptr; 710 count = fdc->fd->fd_iosize; 711 712 if (bp->bio_cmd == BIO_READ) { 713 fdbcdr_wr(fdc, 0, count); 714 bus_space_read_multi_1(fdc->iot, fdc->ioh[FD_YE_DATAPORT], 715 fdc->ioff[FD_YE_DATAPORT], cptr, count); 716 } else { 717 bus_space_write_multi_1(fdc->iot, fdc->ioh[FD_YE_DATAPORT], 718 fdc->ioff[FD_YE_DATAPORT], cptr, count); 719 fdbcdr_wr(fdc, 0, count); /* needed? */ 720 } 721 } 722 723 static int 724 fdc_biodone(struct fdc_data *fdc, int error) 725 { 726 struct fd_data *fd; 727 struct bio *bp; 728 729 fd = fdc->fd; 730 bp = fdc->bp; 731 732 mtx_lock(&fdc->fdc_mtx); 733 if (--fd->fd_iocount == 0) 734 callout_reset(&fd->toffhandle, 4 * hz, fd_turnoff, fd); 735 fdc->bp = NULL; 736 fdc->fd = NULL; 737 mtx_unlock(&fdc->fdc_mtx); 738 if (bp->bio_to != NULL) { 739 if ((debugflags & 2) && fd->fdc->retry > 0) 740 printf("retries: %d\n", fd->fdc->retry); 741 g_io_deliver(bp, error); 742 return (0); 743 } 744 bp->bio_error = error; 745 bp->bio_flags |= BIO_DONE; 746 wakeup(bp); 747 return (0); 748 } 749 750 static int retry_line; 751 752 static int 753 fdc_worker(struct fdc_data *fdc) 754 { 755 struct fd_data *fd; 756 struct bio *bp; 757 int i, nsect; 758 int st0, st3, cyl, mfm, steptrac, cylinder, descyl, sec; 759 int head; 760 static int need_recal; 761 struct fdc_readid *idp; 762 struct fd_formb *finfo; 763 764 /* Have we exhausted our retries ? */ 765 bp = fdc->bp; 766 fd = fdc->fd; 767 if (bp != NULL && 768 (fdc->retry >= retries || (fd->options & FDOPT_NORETRY))) { 769 if ((debugflags & 4)) 770 printf("Too many retries (EIO)\n"); 771 mtx_lock(&fdc->fdc_mtx); 772 fd->flags |= FD_EMPTY; 773 mtx_unlock(&fdc->fdc_mtx); 774 return (fdc_biodone(fdc, EIO)); 775 } 776 777 /* Disable ISADMA if we bailed while it was active */ 778 if (fd != NULL && (fd->flags & FD_ISADMA)) { 779 mtx_lock(&Giant); 780 isa_dmadone( 781 bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE, 782 fd->fd_ioptr, fd->fd_iosize, fdc->dmachan); 783 mtx_unlock(&Giant); 784 mtx_lock(&fdc->fdc_mtx); 785 fd->flags &= ~FD_ISADMA; 786 mtx_unlock(&fdc->fdc_mtx); 787 } 788 789 /* Unwedge the controller ? */ 790 if (fdc->flags & FDC_NEEDS_RESET) { 791 fdc->flags &= ~FDC_NEEDS_RESET; 792 fdc_reset(fdc); 793 tsleep(fdc, PRIBIO, "fdcrst", hz); 794 /* Discard results */ 795 for (i = 0; i < 4; i++) 796 fdc_sense_int(fdc, &st0, &cyl); 797 /* All drives must recal */ 798 need_recal = 0xf; 799 } 800 801 /* Pick up a request, if need be wait for it */ 802 if (fdc->bp == NULL) { 803 mtx_lock(&fdc->fdc_mtx); 804 do { 805 fdc->bp = bioq_takefirst(&fdc->head); 806 if (fdc->bp == NULL) 807 msleep(&fdc->head, &fdc->fdc_mtx, 808 PRIBIO, "-", hz); 809 } while (fdc->bp == NULL && 810 (fdc->flags & FDC_KTHREAD_EXIT) == 0); 811 mtx_unlock(&fdc->fdc_mtx); 812 813 if (fdc->bp == NULL) 814 /* 815 * Nothing to do, worker thread has been 816 * requested to stop. 817 */ 818 return (0); 819 820 bp = fdc->bp; 821 fd = fdc->fd = bp->bio_driver1; 822 fdc->retry = 0; 823 fd->fd_ioptr = bp->bio_data; 824 if (bp->bio_cmd & BIO_FMT) { 825 i = offsetof(struct fd_formb, fd_formb_cylno(0)); 826 fd->fd_ioptr += i; 827 fd->fd_iosize = bp->bio_length - i; 828 } 829 } 830 831 /* Select drive, setup params */ 832 fd_select(fd); 833 if (fdc->fdct == FDC_ENHANCED) 834 fddsr_wr(fdc, fd->ft->trans); 835 else 836 fdctl_wr(fdc, fd->ft->trans); 837 838 if (bp->bio_cmd & BIO_PROBE) { 839 840 if (!(fdin_rd(fdc) & FDI_DCHG) && !(fd->flags & FD_EMPTY)) 841 return (fdc_biodone(fdc, 0)); 842 843 /* 844 * Try to find out if we have a disk in the drive 845 * 846 * First recal, then seek to cyl#1, this clears the 847 * old condition on the disk change line so we can 848 * examine it for current status 849 */ 850 if (debugflags & 0x40) 851 printf("New disk in probe\n"); 852 mtx_lock(&fdc->fdc_mtx); 853 fd->flags |= FD_NEWDISK; 854 mtx_unlock(&fdc->fdc_mtx); 855 retry_line = __LINE__; 856 if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fd->fdsu, 0)) 857 return (1); 858 tsleep(fdc, PRIBIO, "fdrecal", hz); 859 retry_line = __LINE__; 860 if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 861 return (1); /* XXX */ 862 retry_line = __LINE__; 863 if ((st0 & 0xc0) || cyl != 0) 864 return (1); 865 866 /* Seek to track 1 */ 867 retry_line = __LINE__; 868 if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fd->fdsu, 1, 0)) 869 return (1); 870 tsleep(fdc, PRIBIO, "fdseek", hz); 871 retry_line = __LINE__; 872 if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 873 return (1); /* XXX */ 874 need_recal |= (1 << fd->fdsu); 875 if (fdin_rd(fdc) & FDI_DCHG) { 876 if (debugflags & 0x40) 877 printf("Empty in probe\n"); 878 mtx_lock(&fdc->fdc_mtx); 879 fd->flags |= FD_EMPTY; 880 mtx_unlock(&fdc->fdc_mtx); 881 } else { 882 if (debugflags & 0x40) 883 printf("Got disk in probe\n"); 884 mtx_lock(&fdc->fdc_mtx); 885 fd->flags &= ~FD_EMPTY; 886 mtx_unlock(&fdc->fdc_mtx); 887 retry_line = __LINE__; 888 if(fdc_sense_drive(fdc, &st3) != 0) 889 return (1); 890 mtx_lock(&fdc->fdc_mtx); 891 if(st3 & NE7_ST3_WP) 892 fd->flags |= FD_WP; 893 else 894 fd->flags &= ~FD_WP; 895 mtx_unlock(&fdc->fdc_mtx); 896 } 897 return (fdc_biodone(fdc, 0)); 898 } 899 900 /* 901 * If we are dead just flush the requests 902 */ 903 if (fd->flags & FD_EMPTY) 904 return (fdc_biodone(fdc, ENXIO)); 905 906 /* Check if we lost our media */ 907 if (fdin_rd(fdc) & FDI_DCHG) { 908 if (debugflags & 0x40) 909 printf("Lost disk\n"); 910 mtx_lock(&fdc->fdc_mtx); 911 fd->flags |= FD_EMPTY; 912 fd->flags |= FD_NEWDISK; 913 mtx_unlock(&fdc->fdc_mtx); 914 g_topology_lock(); 915 g_orphan_provider(fd->fd_provider, EXDEV); 916 fd->fd_provider->flags |= G_PF_WITHER; 917 fd->fd_provider = 918 g_new_providerf(fd->fd_geom, fd->fd_geom->name); 919 g_error_provider(fd->fd_provider, 0); 920 g_topology_unlock(); 921 return (fdc_biodone(fdc, ENXIO)); 922 } 923 924 /* Check if the floppy is write-protected */ 925 if(bp->bio_cmd & (BIO_FMT | BIO_WRITE)) { 926 retry_line = __LINE__; 927 if(fdc_sense_drive(fdc, &st3) != 0) 928 return (1); 929 if(st3 & NE7_ST3_WP) 930 return (fdc_biodone(fdc, EROFS)); 931 } 932 933 mfm = (fd->ft->flags & FL_MFM)? NE7CMD_MFM: 0; 934 steptrac = (fd->ft->flags & FL_2STEP)? 2: 1; 935 i = fd->ft->sectrac * fd->ft->heads; 936 cylinder = bp->bio_pblkno / i; 937 descyl = cylinder * steptrac; 938 sec = bp->bio_pblkno % i; 939 nsect = i - sec; 940 head = sec / fd->ft->sectrac; 941 sec = sec % fd->ft->sectrac + 1; 942 943 /* If everything is going swimmingly, use multisector xfer */ 944 if (fdc->retry == 0 && bp->bio_cmd & (BIO_READ|BIO_WRITE)) { 945 fd->fd_iosize = imin(nsect * fd->sectorsize, bp->bio_resid); 946 nsect = fd->fd_iosize / fd->sectorsize; 947 } else if (bp->bio_cmd & (BIO_READ|BIO_WRITE)) { 948 fd->fd_iosize = fd->sectorsize; 949 nsect = 1; 950 } 951 952 /* Do RECAL if we need to or are going to track zero anyway */ 953 if ((need_recal & (1 << fd->fdsu)) || 954 (cylinder == 0 && fd->track != 0) || 955 fdc->retry > 2) { 956 retry_line = __LINE__; 957 if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fd->fdsu, 0)) 958 return (1); 959 tsleep(fdc, PRIBIO, "fdrecal", hz); 960 retry_line = __LINE__; 961 if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 962 return (1); /* XXX */ 963 retry_line = __LINE__; 964 if ((st0 & 0xc0) || cyl != 0) 965 return (1); 966 need_recal &= ~(1 << fd->fdsu); 967 fd->track = 0; 968 /* let the heads settle */ 969 if (settle) 970 tsleep(fdc->fd, PRIBIO, "fdhdstl", settle); 971 } 972 973 /* 974 * SEEK to where we want to be 975 * 976 * Enhanced controllers do implied seeks for read&write as long as 977 * we do not need multiple steps per track. 978 */ 979 if (cylinder != fd->track && ( 980 fdc->fdct != FDC_ENHANCED || 981 descyl != cylinder || 982 (bp->bio_cmd & (BIO_RDID|BIO_FMT)))) { 983 retry_line = __LINE__; 984 if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fd->fdsu, descyl, 0)) 985 return (1); 986 tsleep(fdc, PRIBIO, "fdseek", hz); 987 retry_line = __LINE__; 988 if (fdc_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID) 989 return (1); /* XXX */ 990 retry_line = __LINE__; 991 if ((st0 & 0xc0) || cyl != descyl) { 992 need_recal |= (1 << fd->fdsu); 993 return (1); 994 } 995 /* let the heads settle */ 996 if (settle) 997 tsleep(fdc->fd, PRIBIO, "fdhdstl", settle); 998 } 999 fd->track = cylinder; 1000 1001 if (debugflags & 8) 1002 printf("op %x bn %ju siz %u ptr %p retry %d\n", 1003 bp->bio_cmd, bp->bio_pblkno, fd->fd_iosize, 1004 fd->fd_ioptr, fdc->retry); 1005 1006 /* Setup ISADMA if we need it and have it */ 1007 if ((bp->bio_cmd & (BIO_READ|BIO_WRITE|BIO_FMT)) 1008 && !(fdc->flags & FDC_NODMA)) { 1009 mtx_lock(&Giant); 1010 isa_dmastart( 1011 bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE, 1012 fd->fd_ioptr, fd->fd_iosize, fdc->dmachan); 1013 mtx_unlock(&Giant); 1014 mtx_lock(&fdc->fdc_mtx); 1015 fd->flags |= FD_ISADMA; 1016 mtx_unlock(&fdc->fdc_mtx); 1017 } 1018 1019 /* Do PIO if we have to */ 1020 if (fdc->flags & FDC_NODMA) { 1021 if (bp->bio_cmd & (BIO_READ|BIO_WRITE|BIO_FMT)) 1022 fdbcdr_wr(fdc, 1, fd->fd_iosize); 1023 if (bp->bio_cmd & (BIO_WRITE|BIO_FMT)) 1024 fdc_pio(fdc); 1025 } 1026 1027 switch(bp->bio_cmd) { 1028 case BIO_FMT: 1029 /* formatting */ 1030 finfo = (struct fd_formb *)bp->bio_data; 1031 retry_line = __LINE__; 1032 if (fdc_cmd(fdc, 6, 1033 NE7CMD_FORMAT | mfm, 1034 head << 2 | fd->fdsu, 1035 finfo->fd_formb_secshift, 1036 finfo->fd_formb_nsecs, 1037 finfo->fd_formb_gaplen, 1038 finfo->fd_formb_fillbyte, 0)) 1039 return (1); 1040 break; 1041 case BIO_RDID: 1042 retry_line = __LINE__; 1043 if (fdc_cmd(fdc, 2, 1044 NE7CMD_READID | mfm, 1045 head << 2 | fd->fdsu, 0)) 1046 return (1); 1047 break; 1048 case BIO_READ: 1049 retry_line = __LINE__; 1050 if (fdc_cmd(fdc, 9, 1051 NE7CMD_READ | NE7CMD_SK | mfm | NE7CMD_MT, 1052 head << 2 | fd->fdsu, /* head & unit */ 1053 fd->track, /* track */ 1054 head, /* head */ 1055 sec, /* sector + 1 */ 1056 fd->ft->secsize, /* sector size */ 1057 fd->ft->sectrac, /* sectors/track */ 1058 fd->ft->gap, /* gap size */ 1059 fd->ft->datalen, /* data length */ 1060 0)) 1061 return (1); 1062 break; 1063 case BIO_WRITE: 1064 retry_line = __LINE__; 1065 if (fdc_cmd(fdc, 9, 1066 NE7CMD_WRITE | mfm | NE7CMD_MT, 1067 head << 2 | fd->fdsu, /* head & unit */ 1068 fd->track, /* track */ 1069 head, /* head */ 1070 sec, /* sector + 1 */ 1071 fd->ft->secsize, /* sector size */ 1072 fd->ft->sectrac, /* sectors/track */ 1073 fd->ft->gap, /* gap size */ 1074 fd->ft->datalen, /* data length */ 1075 0)) 1076 return (1); 1077 break; 1078 default: 1079 KASSERT(0 == 1, ("Wrong bio_cmd %x\n", bp->bio_cmd)); 1080 } 1081 1082 /* Wait for interrupt */ 1083 i = tsleep(fdc, PRIBIO, "fddata", hz); 1084 1085 /* PIO if the read looks good */ 1086 if (i == 0 && (fdc->flags & FDC_NODMA) && (bp->bio_cmd & BIO_READ)) 1087 fdc_pio(fdc); 1088 1089 /* Finish DMA */ 1090 if (fd->flags & FD_ISADMA) { 1091 mtx_lock(&Giant); 1092 isa_dmadone( 1093 bp->bio_cmd & BIO_READ ? ISADMA_READ : ISADMA_WRITE, 1094 fd->fd_ioptr, fd->fd_iosize, fdc->dmachan); 1095 mtx_unlock(&Giant); 1096 mtx_lock(&fdc->fdc_mtx); 1097 fd->flags &= ~FD_ISADMA; 1098 mtx_unlock(&fdc->fdc_mtx); 1099 } 1100 1101 if (i != 0) { 1102 /* 1103 * Timeout. 1104 * 1105 * Due to IBM's brain-dead design, the FDC has a faked ready 1106 * signal, hardwired to ready == true. Thus, any command 1107 * issued if there's no diskette in the drive will _never_ 1108 * complete, and must be aborted by resetting the FDC. 1109 * Many thanks, Big Blue! 1110 */ 1111 retry_line = __LINE__; 1112 fdc->flags |= FDC_NEEDS_RESET; 1113 return (1); 1114 } 1115 1116 retry_line = __LINE__; 1117 if (fdc_read_status(fdc)) 1118 return (1); 1119 1120 if (debugflags & 0x10) 1121 printf(" -> %x %x %x %x\n", 1122 fdc->status[0], fdc->status[1], 1123 fdc->status[2], fdc->status[3]); 1124 1125 st0 = fdc->status[0] & NE7_ST0_IC; 1126 if (st0 != 0) { 1127 retry_line = __LINE__; 1128 if (st0 == NE7_ST0_IC_AT && fdc->status[1] & NE7_ST1_OR) { 1129 /* 1130 * DMA overrun. Someone hogged the bus and 1131 * didn't release it in time for the next 1132 * FDC transfer. 1133 */ 1134 return (1); 1135 } 1136 retry_line = __LINE__; 1137 if(st0 == NE7_ST0_IC_IV) { 1138 fdc->flags |= FDC_NEEDS_RESET; 1139 return (1); 1140 } 1141 retry_line = __LINE__; 1142 if(st0 == NE7_ST0_IC_AT && fdc->status[2] & NE7_ST2_WC) { 1143 need_recal |= (1 << fd->fdsu); 1144 return (1); 1145 } 1146 if (debugflags & 0x20) { 1147 printf("status %02x %02x %02x %02x %02x %02x\n", 1148 fdc->status[0], fdc->status[1], fdc->status[2], 1149 fdc->status[3], fdc->status[4], fdc->status[5]); 1150 } 1151 retry_line = __LINE__; 1152 return (1); 1153 } 1154 /* All OK */ 1155 switch(bp->bio_cmd) { 1156 case BIO_RDID: 1157 /* copy out ID field contents */ 1158 idp = (struct fdc_readid *)bp->bio_data; 1159 idp->cyl = fdc->status[3]; 1160 idp->head = fdc->status[4]; 1161 idp->sec = fdc->status[5]; 1162 idp->secshift = fdc->status[6]; 1163 if (debugflags & 0x40) 1164 printf("c %d h %d s %d z %d\n", 1165 idp->cyl, idp->head, idp->sec, idp->secshift); 1166 break; 1167 case BIO_READ: 1168 case BIO_WRITE: 1169 bp->bio_pblkno += nsect; 1170 bp->bio_resid -= fd->fd_iosize; 1171 bp->bio_completed += fd->fd_iosize; 1172 fd->fd_ioptr += fd->fd_iosize; 1173 /* Since we managed to get something done, reset the retry */ 1174 fdc->retry = 0; 1175 if (bp->bio_resid > 0) 1176 return (0); 1177 break; 1178 case BIO_FMT: 1179 break; 1180 } 1181 return (fdc_biodone(fdc, 0)); 1182 } 1183 1184 static void 1185 fdc_thread(void *arg) 1186 { 1187 struct fdc_data *fdc; 1188 1189 fdc = arg; 1190 int i; 1191 1192 mtx_lock(&fdc->fdc_mtx); 1193 fdc->flags |= FDC_KTHREAD_ALIVE; 1194 while ((fdc->flags & FDC_KTHREAD_EXIT) == 0) { 1195 mtx_unlock(&fdc->fdc_mtx); 1196 i = fdc_worker(fdc); 1197 if (i && debugflags & 0x20) { 1198 if (fdc->bp != NULL) { 1199 g_print_bio(fdc->bp); 1200 printf("\n"); 1201 } 1202 printf("Retry line %d\n", retry_line); 1203 } 1204 fdc->retry += i; 1205 mtx_lock(&fdc->fdc_mtx); 1206 } 1207 fdc->flags &= ~(FDC_KTHREAD_EXIT | FDC_KTHREAD_ALIVE); 1208 mtx_unlock(&fdc->fdc_mtx); 1209 1210 kproc_exit(0); 1211 } 1212 1213 /* 1214 * Enqueue a request. 1215 */ 1216 static void 1217 fd_enqueue(struct fd_data *fd, struct bio *bp) 1218 { 1219 struct fdc_data *fdc; 1220 int call; 1221 1222 call = 0; 1223 fdc = fd->fdc; 1224 mtx_lock(&fdc->fdc_mtx); 1225 /* If we go from idle, cancel motor turnoff */ 1226 if (fd->fd_iocount++ == 0) 1227 callout_stop(&fd->toffhandle); 1228 if (fd->flags & FD_MOTOR) { 1229 /* The motor is on, send it directly to the controller */ 1230 bioq_disksort(&fdc->head, bp); 1231 wakeup(&fdc->head); 1232 } else { 1233 /* Queue it on the drive until the motor has started */ 1234 bioq_insert_tail(&fd->fd_bq, bp); 1235 if (!(fd->flags & FD_MOTORWAIT)) 1236 fd_motor(fd, 1); 1237 } 1238 mtx_unlock(&fdc->fdc_mtx); 1239 } 1240 1241 static int 1242 fdmisccmd(struct fd_data *fd, u_int cmd, void *data) 1243 { 1244 struct bio *bp; 1245 struct fd_formb *finfo; 1246 struct fdc_readid *idfield; 1247 int error; 1248 1249 bp = malloc(sizeof(struct bio), M_TEMP, M_WAITOK | M_ZERO); 1250 1251 /* 1252 * Set up a bio request for fdstrategy(). bio_offset is faked 1253 * so that fdstrategy() will seek to the the requested 1254 * cylinder, and use the desired head. 1255 */ 1256 bp->bio_cmd = cmd; 1257 if (cmd == BIO_FMT) { 1258 finfo = (struct fd_formb *)data; 1259 bp->bio_pblkno = 1260 (finfo->cyl * fd->ft->heads + finfo->head) * 1261 fd->ft->sectrac; 1262 bp->bio_length = sizeof *finfo; 1263 } else if (cmd == BIO_RDID) { 1264 idfield = (struct fdc_readid *)data; 1265 bp->bio_pblkno = 1266 (idfield->cyl * fd->ft->heads + idfield->head) * 1267 fd->ft->sectrac; 1268 bp->bio_length = sizeof(struct fdc_readid); 1269 } else if (cmd == BIO_PROBE) { 1270 /* nothing */ 1271 } else 1272 panic("wrong cmd in fdmisccmd()"); 1273 bp->bio_offset = bp->bio_pblkno * fd->sectorsize; 1274 bp->bio_data = data; 1275 bp->bio_driver1 = fd; 1276 bp->bio_flags = 0; 1277 1278 fd_enqueue(fd, bp); 1279 1280 do { 1281 tsleep(bp, PRIBIO, "fdwait", hz); 1282 } while (!(bp->bio_flags & BIO_DONE)); 1283 error = bp->bio_error; 1284 1285 free(bp, M_TEMP); 1286 return (error); 1287 } 1288 1289 /* 1290 * Try figuring out the density of the media present in our device. 1291 */ 1292 static int 1293 fdautoselect(struct fd_data *fd) 1294 { 1295 struct fd_type *fdtp; 1296 struct fdc_readid id; 1297 int oopts, rv; 1298 1299 if (!(fd->ft->flags & FL_AUTO)) 1300 return (0); 1301 1302 fdtp = fd_native_types[fd->type]; 1303 fdsettype(fd, fdtp); 1304 if (!(fd->ft->flags & FL_AUTO)) 1305 return (0); 1306 1307 /* 1308 * Try reading sector ID fields, first at cylinder 0, head 0, 1309 * then at cylinder 2, head N. We don't probe cylinder 1, 1310 * since for 5.25in DD media in a HD drive, there are no data 1311 * to read (2 step pulses per media cylinder required). For 1312 * two-sided media, the second probe always goes to head 1, so 1313 * we can tell them apart from single-sided media. As a 1314 * side-effect this means that single-sided media should be 1315 * mentioned in the search list after two-sided media of an 1316 * otherwise identical density. Media with a different number 1317 * of sectors per track but otherwise identical parameters 1318 * cannot be distinguished at all. 1319 * 1320 * If we successfully read an ID field on both cylinders where 1321 * the recorded values match our expectation, we are done. 1322 * Otherwise, we try the next density entry from the table. 1323 * 1324 * Stepping to cylinder 2 has the side-effect of clearing the 1325 * unit attention bit. 1326 */ 1327 oopts = fd->options; 1328 fd->options |= FDOPT_NOERRLOG | FDOPT_NORETRY; 1329 for (; fdtp->heads; fdtp++) { 1330 fdsettype(fd, fdtp); 1331 1332 id.cyl = id.head = 0; 1333 rv = fdmisccmd(fd, BIO_RDID, &id); 1334 if (rv != 0) 1335 continue; 1336 if (id.cyl != 0 || id.head != 0 || id.secshift != fdtp->secsize) 1337 continue; 1338 id.cyl = 2; 1339 id.head = fd->ft->heads - 1; 1340 rv = fdmisccmd(fd, BIO_RDID, &id); 1341 if (id.cyl != 2 || id.head != fdtp->heads - 1 || 1342 id.secshift != fdtp->secsize) 1343 continue; 1344 if (rv == 0) 1345 break; 1346 } 1347 1348 fd->options = oopts; 1349 if (fdtp->heads == 0) { 1350 if (debugflags & 0x40) 1351 device_printf(fd->dev, "autoselection failed\n"); 1352 fdsettype(fd, fd_native_types[fd->type]); 1353 return (0); 1354 } else { 1355 if (debugflags & 0x40) { 1356 device_printf(fd->dev, 1357 "autoselected %d KB medium\n", fd->ft->size / 2); 1358 fdprinttype(fd->ft); 1359 } 1360 return (0); 1361 } 1362 } 1363 1364 /* 1365 * GEOM class implementation 1366 */ 1367 1368 static g_access_t fd_access; 1369 static g_start_t fd_start; 1370 static g_ioctl_t fd_ioctl; 1371 1372 struct g_class g_fd_class = { 1373 .name = "FD", 1374 .version = G_VERSION, 1375 .start = fd_start, 1376 .access = fd_access, 1377 .ioctl = fd_ioctl, 1378 }; 1379 1380 static int 1381 fd_access(struct g_provider *pp, int r, int w, int e) 1382 { 1383 struct fd_data *fd; 1384 struct fdc_data *fdc; 1385 int ar, aw, ae; 1386 int busy; 1387 1388 fd = pp->geom->softc; 1389 fdc = fd->fdc; 1390 1391 /* 1392 * If our provider is withering, we can only get negative requests 1393 * and we don't want to even see them 1394 */ 1395 if (pp->flags & G_PF_WITHER) 1396 return (0); 1397 1398 ar = r + pp->acr; 1399 aw = w + pp->acw; 1400 ae = e + pp->ace; 1401 1402 if (ar == 0 && aw == 0 && ae == 0) { 1403 device_unbusy(fd->dev); 1404 return (0); 1405 } 1406 1407 busy = 0; 1408 if (pp->acr == 0 && pp->acw == 0 && pp->ace == 0) { 1409 if (fdmisccmd(fd, BIO_PROBE, NULL)) 1410 return (ENXIO); 1411 if (fd->flags & FD_EMPTY) 1412 return (ENXIO); 1413 if (fd->flags & FD_NEWDISK) { 1414 fdautoselect(fd); 1415 mtx_lock(&fdc->fdc_mtx); 1416 fd->flags &= ~FD_NEWDISK; 1417 mtx_unlock(&fdc->fdc_mtx); 1418 } 1419 device_busy(fd->dev); 1420 busy = 1; 1421 } 1422 1423 if (w > 0 && (fd->flags & FD_WP)) { 1424 if (busy) 1425 device_unbusy(fd->dev); 1426 return (EROFS); 1427 } 1428 1429 pp->sectorsize = fd->sectorsize; 1430 pp->stripesize = fd->ft->heads * fd->ft->sectrac * fd->sectorsize; 1431 pp->mediasize = pp->stripesize * fd->ft->tracks; 1432 return (0); 1433 } 1434 1435 static void 1436 fd_start(struct bio *bp) 1437 { 1438 struct fdc_data * fdc; 1439 struct fd_data * fd; 1440 1441 fd = bp->bio_to->geom->softc; 1442 fdc = fd->fdc; 1443 bp->bio_driver1 = fd; 1444 if (bp->bio_cmd & BIO_GETATTR) { 1445 if (g_handleattr_int(bp, "GEOM::fwsectors", fd->ft->sectrac)) 1446 return; 1447 if (g_handleattr_int(bp, "GEOM::fwheads", fd->ft->heads)) 1448 return; 1449 g_io_deliver(bp, ENOIOCTL); 1450 return; 1451 } 1452 if (!(bp->bio_cmd & (BIO_READ|BIO_WRITE))) { 1453 g_io_deliver(bp, EOPNOTSUPP); 1454 return; 1455 } 1456 bp->bio_pblkno = bp->bio_offset / fd->sectorsize; 1457 bp->bio_resid = bp->bio_length; 1458 fd_enqueue(fd, bp); 1459 return; 1460 } 1461 1462 static int 1463 fd_ioctl(struct g_provider *pp, u_long cmd, void *data, int fflag, struct thread *td) 1464 { 1465 struct fd_data *fd; 1466 struct fdc_status *fsp; 1467 struct fdc_readid *rid; 1468 int error; 1469 1470 fd = pp->geom->softc; 1471 1472 switch (cmd) { 1473 case FD_GTYPE: /* get drive type */ 1474 *(struct fd_type *)data = *fd->ft; 1475 return (0); 1476 1477 case FD_STYPE: /* set drive type */ 1478 if (!(fflag & FWRITE)) 1479 return (EPERM); 1480 /* 1481 * Allow setting drive type temporarily iff 1482 * currently unset. Used for fdformat so any 1483 * user can set it, and then start formatting. 1484 */ 1485 fd->fts = *(struct fd_type *)data; 1486 if (fd->fts.sectrac) { 1487 /* XXX: check for rubbish */ 1488 fdsettype(fd, &fd->fts); 1489 } else { 1490 fdsettype(fd, fd_native_types[fd->type]); 1491 } 1492 if (debugflags & 0x40) 1493 fdprinttype(fd->ft); 1494 return (0); 1495 1496 case FD_GOPTS: /* get drive options */ 1497 *(int *)data = fd->options; 1498 return (0); 1499 1500 case FD_SOPTS: /* set drive options */ 1501 if (!(fflag & FWRITE)) 1502 return (EPERM); 1503 fd->options = *(int *)data; 1504 return (0); 1505 1506 case FD_CLRERR: 1507 error = priv_check(td, PRIV_DRIVER); 1508 if (error) 1509 return (error); 1510 fd->fdc->fdc_errs = 0; 1511 return (0); 1512 1513 case FD_GSTAT: 1514 fsp = (struct fdc_status *)data; 1515 if ((fd->fdc->flags & FDC_STAT_VALID) == 0) 1516 return (EINVAL); 1517 memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int)); 1518 return (0); 1519 1520 case FD_GDTYPE: 1521 *(enum fd_drivetype *)data = fd->type; 1522 return (0); 1523 1524 case FD_FORM: 1525 if (!(fflag & FWRITE)) 1526 return (EPERM); 1527 if (((struct fd_formb *)data)->format_version != 1528 FD_FORMAT_VERSION) 1529 return (EINVAL); /* wrong version of formatting prog */ 1530 error = fdmisccmd(fd, BIO_FMT, data); 1531 mtx_lock(&fd->fdc->fdc_mtx); 1532 fd->flags |= FD_NEWDISK; 1533 mtx_unlock(&fd->fdc->fdc_mtx); 1534 break; 1535 1536 case FD_READID: 1537 rid = (struct fdc_readid *)data; 1538 if (rid->cyl > 85 || rid->head > 1) 1539 return (EINVAL); 1540 error = fdmisccmd(fd, BIO_RDID, data); 1541 break; 1542 1543 case FIONBIO: 1544 case FIOASYNC: 1545 /* For backwards compat with old fd*(8) tools */ 1546 error = 0; 1547 break; 1548 1549 default: 1550 if (debugflags & 0x80) 1551 printf("Unknown ioctl %lx\n", cmd); 1552 error = ENOIOCTL; 1553 break; 1554 } 1555 return (error); 1556 }; 1557 1558 1559 1560 /* 1561 * Configuration/initialization stuff, per controller. 1562 */ 1563 1564 devclass_t fdc_devclass; 1565 static devclass_t fd_devclass; 1566 1567 struct fdc_ivars { 1568 int fdunit; 1569 int fdtype; 1570 }; 1571 1572 void 1573 fdc_release_resources(struct fdc_data *fdc) 1574 { 1575 device_t dev; 1576 struct resource *last; 1577 int i; 1578 1579 dev = fdc->fdc_dev; 1580 if (fdc->fdc_intr) 1581 bus_teardown_intr(dev, fdc->res_irq, fdc->fdc_intr); 1582 fdc->fdc_intr = NULL; 1583 if (fdc->res_irq != NULL) 1584 bus_release_resource(dev, SYS_RES_IRQ, fdc->rid_irq, 1585 fdc->res_irq); 1586 fdc->res_irq = NULL; 1587 last = NULL; 1588 for (i = 0; i < FDC_MAXREG; i++) { 1589 if (fdc->resio[i] != NULL && fdc->resio[i] != last) { 1590 bus_release_resource(dev, SYS_RES_IOPORT, 1591 fdc->ridio[i], fdc->resio[i]); 1592 last = fdc->resio[i]; 1593 fdc->resio[i] = NULL; 1594 } 1595 } 1596 if (fdc->res_drq != NULL) 1597 bus_release_resource(dev, SYS_RES_DRQ, fdc->rid_drq, 1598 fdc->res_drq); 1599 fdc->res_drq = NULL; 1600 } 1601 1602 int 1603 fdc_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) 1604 { 1605 struct fdc_ivars *ivars = device_get_ivars(child); 1606 1607 switch (which) { 1608 case FDC_IVAR_FDUNIT: 1609 *result = ivars->fdunit; 1610 break; 1611 case FDC_IVAR_FDTYPE: 1612 *result = ivars->fdtype; 1613 break; 1614 default: 1615 return (ENOENT); 1616 } 1617 return (0); 1618 } 1619 1620 int 1621 fdc_write_ivar(device_t dev, device_t child, int which, uintptr_t value) 1622 { 1623 struct fdc_ivars *ivars = device_get_ivars(child); 1624 1625 switch (which) { 1626 case FDC_IVAR_FDUNIT: 1627 ivars->fdunit = value; 1628 break; 1629 case FDC_IVAR_FDTYPE: 1630 ivars->fdtype = value; 1631 break; 1632 default: 1633 return (ENOENT); 1634 } 1635 return (0); 1636 } 1637 1638 int 1639 fdc_initial_reset(device_t dev, struct fdc_data *fdc) 1640 { 1641 int ic_type, part_id; 1642 1643 /* 1644 * A status value of 0xff is very unlikely, but not theoretically 1645 * impossible, but it is far more likely to indicate an empty bus. 1646 */ 1647 if (fdsts_rd(fdc) == 0xff) 1648 return (ENXIO); 1649 1650 /* 1651 * Assert a reset to the floppy controller and check that the status 1652 * register goes to zero. 1653 */ 1654 fdout_wr(fdc, 0); 1655 fdout_wr(fdc, 0); 1656 if (fdsts_rd(fdc) != 0) 1657 return (ENXIO); 1658 1659 /* 1660 * Clear the reset and see it come ready. 1661 */ 1662 fdout_wr(fdc, FDO_FRST); 1663 DELAY(100); 1664 if (fdsts_rd(fdc) != 0x80) 1665 return (ENXIO); 1666 1667 /* Then, see if it can handle a command. */ 1668 if (fdc_cmd(fdc, 3, NE7CMD_SPECIFY, 0xaf, 0x1e, 0)) 1669 return (ENXIO); 1670 1671 /* 1672 * Try to identify the chip. 1673 * 1674 * The i8272 datasheet documents that unknown commands 1675 * will return ST0 as 0x80. The i8272 is supposedly identical 1676 * to the NEC765. 1677 * The i82077SL datasheet says 0x90 for the VERSION command, 1678 * and several "superio" chips emulate this. 1679 */ 1680 if (fdc_cmd(fdc, 1, NE7CMD_VERSION, 1, &ic_type)) 1681 return (ENXIO); 1682 if (fdc_cmd(fdc, 1, 0x18, 1, &part_id)) 1683 return (ENXIO); 1684 if (bootverbose) 1685 device_printf(dev, 1686 "ic_type %02x part_id %02x\n", ic_type, part_id); 1687 switch (ic_type & 0xff) { 1688 case 0x80: 1689 device_set_desc(dev, "NEC 765 or clone"); 1690 fdc->fdct = FDC_NE765; 1691 break; 1692 case 0x81: 1693 case 0x90: 1694 device_set_desc(dev, 1695 "Enhanced floppy controller"); 1696 fdc->fdct = FDC_ENHANCED; 1697 break; 1698 default: 1699 device_set_desc(dev, "Generic floppy controller"); 1700 fdc->fdct = FDC_UNKNOWN; 1701 break; 1702 } 1703 return (0); 1704 } 1705 1706 int 1707 fdc_detach(device_t dev) 1708 { 1709 struct fdc_data *fdc; 1710 int error; 1711 1712 fdc = device_get_softc(dev); 1713 1714 /* have our children detached first */ 1715 if ((error = bus_generic_detach(dev))) 1716 return (error); 1717 1718 /* kill worker thread */ 1719 mtx_lock(&fdc->fdc_mtx); 1720 fdc->flags |= FDC_KTHREAD_EXIT; 1721 wakeup(&fdc->head); 1722 while ((fdc->flags & FDC_KTHREAD_ALIVE) != 0) 1723 msleep(fdc->fdc_thread, &fdc->fdc_mtx, PRIBIO, "fdcdet", 0); 1724 mtx_unlock(&fdc->fdc_mtx); 1725 1726 /* reset controller, turn motor off */ 1727 fdout_wr(fdc, 0); 1728 1729 if (!(fdc->flags & FDC_NODMA)) 1730 isa_dma_release(fdc->dmachan); 1731 fdc_release_resources(fdc); 1732 mtx_destroy(&fdc->fdc_mtx); 1733 return (0); 1734 } 1735 1736 /* 1737 * Add a child device to the fdc controller. It will then be probed etc. 1738 */ 1739 device_t 1740 fdc_add_child(device_t dev, const char *name, int unit) 1741 { 1742 struct fdc_ivars *ivar; 1743 device_t child; 1744 1745 ivar = malloc(sizeof *ivar, M_DEVBUF /* XXX */, M_NOWAIT | M_ZERO); 1746 if (ivar == NULL) 1747 return (NULL); 1748 child = device_add_child(dev, name, unit); 1749 if (child == NULL) { 1750 free(ivar, M_DEVBUF); 1751 return (NULL); 1752 } 1753 device_set_ivars(child, ivar); 1754 ivar->fdunit = unit; 1755 ivar->fdtype = FDT_NONE; 1756 if (resource_disabled(name, unit)) 1757 device_disable(child); 1758 return (child); 1759 } 1760 1761 int 1762 fdc_attach(device_t dev) 1763 { 1764 struct fdc_data *fdc; 1765 int error; 1766 1767 fdc = device_get_softc(dev); 1768 fdc->fdc_dev = dev; 1769 error = fdc_initial_reset(dev, fdc); 1770 if (error) { 1771 device_printf(dev, "does not respond\n"); 1772 return (error); 1773 } 1774 error = bus_setup_intr(dev, fdc->res_irq, 1775 INTR_TYPE_BIO | INTR_ENTROPY | 1776 ((fdc->flags & FDC_NOFAST) ? INTR_MPSAFE : 0), 1777 ((fdc->flags & FDC_NOFAST) ? NULL : fdc_intr_fast), 1778 ((fdc->flags & FDC_NOFAST) ? fdc_intr : NULL), 1779 fdc, &fdc->fdc_intr); 1780 if (error) { 1781 device_printf(dev, "cannot setup interrupt\n"); 1782 return (error); 1783 } 1784 if (!(fdc->flags & FDC_NODMA)) { 1785 error = isa_dma_acquire(fdc->dmachan); 1786 if (!error) { 1787 error = isa_dma_init(fdc->dmachan, 1788 MAX_BYTES_PER_CYL, M_WAITOK); 1789 if (error) 1790 isa_dma_release(fdc->dmachan); 1791 } 1792 if (error) 1793 return (error); 1794 } 1795 fdc->fdcu = device_get_unit(dev); 1796 fdc->flags |= FDC_NEEDS_RESET; 1797 1798 mtx_init(&fdc->fdc_mtx, "fdc lock", NULL, MTX_DEF); 1799 1800 /* reset controller, turn motor off, clear fdout mirror reg */ 1801 fdout_wr(fdc, fdc->fdout = 0); 1802 bioq_init(&fdc->head); 1803 1804 kproc_create(fdc_thread, fdc, &fdc->fdc_thread, 0, 0, 1805 "fdc%d", device_get_unit(dev)); 1806 1807 settle = hz / 8; 1808 1809 return (0); 1810 } 1811 1812 int 1813 fdc_hints_probe(device_t dev) 1814 { 1815 const char *name, *dname; 1816 int i, error, dunit; 1817 1818 /* 1819 * Probe and attach any children. We should probably detect 1820 * devices from the BIOS unless overridden. 1821 */ 1822 name = device_get_nameunit(dev); 1823 i = 0; 1824 while ((resource_find_match(&i, &dname, &dunit, "at", name)) == 0) { 1825 resource_int_value(dname, dunit, "drive", &dunit); 1826 fdc_add_child(dev, dname, dunit); 1827 } 1828 1829 if ((error = bus_generic_attach(dev)) != 0) 1830 return (error); 1831 return (0); 1832 } 1833 1834 int 1835 fdc_print_child(device_t me, device_t child) 1836 { 1837 int retval = 0, flags; 1838 1839 retval += bus_print_child_header(me, child); 1840 retval += printf(" on %s drive %d", device_get_nameunit(me), 1841 fdc_get_fdunit(child)); 1842 if ((flags = device_get_flags(me)) != 0) 1843 retval += printf(" flags %#x", flags); 1844 retval += printf("\n"); 1845 1846 return (retval); 1847 } 1848 1849 /* 1850 * Configuration/initialization, per drive. 1851 */ 1852 static int 1853 fd_probe(device_t dev) 1854 { 1855 int i, unit; 1856 u_int st0, st3; 1857 struct fd_data *fd; 1858 struct fdc_data *fdc; 1859 int fdsu; 1860 int flags, type; 1861 1862 fdsu = fdc_get_fdunit(dev); 1863 fd = device_get_softc(dev); 1864 fdc = device_get_softc(device_get_parent(dev)); 1865 flags = device_get_flags(dev); 1866 1867 fd->dev = dev; 1868 fd->fdc = fdc; 1869 fd->fdsu = fdsu; 1870 unit = device_get_unit(dev); 1871 1872 /* Auto-probe if fdinfo is present, but always allow override. */ 1873 type = flags & FD_TYPEMASK; 1874 if (type == FDT_NONE && (type = fdc_get_fdtype(dev)) != FDT_NONE) { 1875 fd->type = type; 1876 goto done; 1877 } else { 1878 /* make sure fdautoselect() will be called */ 1879 fd->flags = FD_EMPTY; 1880 fd->type = type; 1881 } 1882 1883 #if (defined(__i386__) && !defined(PC98)) || defined(__amd64__) 1884 if (fd->type == FDT_NONE && (unit == 0 || unit == 1)) { 1885 /* Look up what the BIOS thinks we have. */ 1886 if (unit == 0) 1887 fd->type = (rtcin(RTC_FDISKETTE) & 0xf0) >> 4; 1888 else 1889 fd->type = rtcin(RTC_FDISKETTE) & 0x0f; 1890 if (fd->type == FDT_288M_1) 1891 fd->type = FDT_288M; 1892 } 1893 #endif /* __i386__ || __amd64__ */ 1894 /* is there a unit? */ 1895 if (fd->type == FDT_NONE) 1896 return (ENXIO); 1897 1898 /* 1899 mtx_lock(&fdc->fdc_mtx); 1900 */ 1901 /* select it */ 1902 fd_select(fd); 1903 fd_motor(fd, 1); 1904 fdc->fd = fd; 1905 fdc_reset(fdc); /* XXX reset, then unreset, etc. */ 1906 DELAY(1000000); /* 1 sec */ 1907 1908 if ((flags & FD_NO_PROBE) == 0) { 1909 /* If we're at track 0 first seek inwards. */ 1910 if ((fdc_sense_drive(fdc, &st3) == 0) && 1911 (st3 & NE7_ST3_T0)) { 1912 /* Seek some steps... */ 1913 if (fdc_cmd(fdc, 3, NE7CMD_SEEK, fdsu, 10, 0) == 0) { 1914 /* ...wait a moment... */ 1915 DELAY(300000); 1916 /* make ctrlr happy: */ 1917 fdc_sense_int(fdc, NULL, NULL); 1918 } 1919 } 1920 1921 for (i = 0; i < 2; i++) { 1922 /* 1923 * we must recalibrate twice, just in case the 1924 * heads have been beyond cylinder 76, since 1925 * most FDCs still barf when attempting to 1926 * recalibrate more than 77 steps 1927 */ 1928 /* go back to 0: */ 1929 if (fdc_cmd(fdc, 2, NE7CMD_RECAL, fdsu, 0) == 0) { 1930 /* a second being enough for full stroke seek*/ 1931 DELAY(i == 0 ? 1000000 : 300000); 1932 1933 /* anything responding? */ 1934 if (fdc_sense_int(fdc, &st0, NULL) == 0 && 1935 (st0 & NE7_ST0_EC) == 0) 1936 break; /* already probed succesfully */ 1937 } 1938 } 1939 } 1940 1941 fd_motor(fd, 0); 1942 fdc->fd = NULL; 1943 /* 1944 mtx_unlock(&fdc->fdc_mtx); 1945 */ 1946 1947 if ((flags & FD_NO_PROBE) == 0 && 1948 (st0 & NE7_ST0_EC) != 0) /* no track 0 -> no drive present */ 1949 return (ENXIO); 1950 1951 done: 1952 1953 switch (fd->type) { 1954 case FDT_12M: 1955 device_set_desc(dev, "1200-KB 5.25\" drive"); 1956 break; 1957 case FDT_144M: 1958 device_set_desc(dev, "1440-KB 3.5\" drive"); 1959 break; 1960 case FDT_288M: 1961 device_set_desc(dev, "2880-KB 3.5\" drive (in 1440-KB mode)"); 1962 break; 1963 case FDT_360K: 1964 device_set_desc(dev, "360-KB 5.25\" drive"); 1965 break; 1966 case FDT_720K: 1967 device_set_desc(dev, "720-KB 3.5\" drive"); 1968 break; 1969 default: 1970 return (ENXIO); 1971 } 1972 fd->track = FD_NO_TRACK; 1973 fd->fdc = fdc; 1974 fd->fdsu = fdsu; 1975 fd->options = 0; 1976 callout_init_mtx(&fd->toffhandle, &fd->fdc->fdc_mtx, 0); 1977 1978 /* initialize densities for subdevices */ 1979 fdsettype(fd, fd_native_types[fd->type]); 1980 return (0); 1981 } 1982 1983 /* 1984 * We have to do this in a geom event because GEOM is not running 1985 * when fd_attach() is. 1986 * XXX: move fd_attach after geom like ata/scsi disks 1987 */ 1988 static void 1989 fd_attach2(void *arg, int flag) 1990 { 1991 struct fd_data *fd; 1992 1993 fd = arg; 1994 1995 fd->fd_geom = g_new_geomf(&g_fd_class, 1996 "fd%d", device_get_unit(fd->dev)); 1997 fd->fd_provider = g_new_providerf(fd->fd_geom, fd->fd_geom->name); 1998 fd->fd_geom->softc = fd; 1999 g_error_provider(fd->fd_provider, 0); 2000 } 2001 2002 static int 2003 fd_attach(device_t dev) 2004 { 2005 struct fd_data *fd; 2006 2007 fd = device_get_softc(dev); 2008 g_post_event(fd_attach2, fd, M_WAITOK, NULL); 2009 fd->flags |= FD_EMPTY; 2010 bioq_init(&fd->fd_bq); 2011 2012 return (0); 2013 } 2014 2015 static int 2016 fd_detach(device_t dev) 2017 { 2018 struct fd_data *fd; 2019 2020 fd = device_get_softc(dev); 2021 g_topology_lock(); 2022 g_wither_geom(fd->fd_geom, ENXIO); 2023 g_topology_unlock(); 2024 while (device_get_state(dev) == DS_BUSY) 2025 tsleep(fd, PZERO, "fdd", hz/10); 2026 callout_drain(&fd->toffhandle); 2027 2028 return (0); 2029 } 2030 2031 static device_method_t fd_methods[] = { 2032 /* Device interface */ 2033 DEVMETHOD(device_probe, fd_probe), 2034 DEVMETHOD(device_attach, fd_attach), 2035 DEVMETHOD(device_detach, fd_detach), 2036 DEVMETHOD(device_shutdown, bus_generic_shutdown), 2037 DEVMETHOD(device_suspend, bus_generic_suspend), /* XXX */ 2038 DEVMETHOD(device_resume, bus_generic_resume), /* XXX */ 2039 { 0, 0 } 2040 }; 2041 2042 static driver_t fd_driver = { 2043 "fd", 2044 fd_methods, 2045 sizeof(struct fd_data) 2046 }; 2047 2048 static int 2049 fdc_modevent(module_t mod, int type, void *data) 2050 { 2051 2052 g_modevent(NULL, type, &g_fd_class); 2053 return (0); 2054 } 2055 2056 DRIVER_MODULE(fd, fdc, fd_driver, fd_devclass, fdc_modevent, 0); 2057