1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_rss.h" 34 #include "ena.h" 35 #include "ena_datapath.h" 36 #ifdef DEV_NETMAP 37 #include "ena_netmap.h" 38 #endif /* DEV_NETMAP */ 39 #ifdef RSS 40 #include <net/rss_config.h> 41 #endif /* RSS */ 42 43 #include <netinet6/ip6_var.h> 44 45 /********************************************************************* 46 * Static functions prototypes 47 *********************************************************************/ 48 49 static int ena_tx_cleanup(struct ena_ring *); 50 static int ena_rx_cleanup(struct ena_ring *); 51 static inline int ena_get_tx_req_id(struct ena_ring *tx_ring, 52 struct ena_com_io_cq *io_cq, uint16_t *req_id); 53 static void ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *, 54 struct mbuf *); 55 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *, 56 struct ena_com_rx_ctx *, uint16_t *); 57 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *, 58 struct mbuf *); 59 static void ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *, bool); 60 static int ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, 61 struct mbuf **mbuf); 62 static int ena_xmit_mbuf(struct ena_ring *, struct mbuf **); 63 static void ena_start_xmit(struct ena_ring *); 64 65 /********************************************************************* 66 * Global functions 67 *********************************************************************/ 68 69 void 70 ena_cleanup(void *arg, int pending) 71 { 72 struct ena_que *que = arg; 73 struct ena_adapter *adapter = que->adapter; 74 if_t ifp = adapter->ifp; 75 struct ena_ring *tx_ring; 76 struct ena_ring *rx_ring; 77 struct ena_com_io_cq* io_cq; 78 struct ena_eth_io_intr_reg intr_reg; 79 int qid, ena_qid; 80 int txc, rxc, i; 81 82 if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)) 83 return; 84 85 ena_log_io(adapter->pdev, DBG, "MSI-X TX/RX routine\n"); 86 87 tx_ring = que->tx_ring; 88 rx_ring = que->rx_ring; 89 qid = que->id; 90 ena_qid = ENA_IO_TXQ_IDX(qid); 91 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid]; 92 93 tx_ring->first_interrupt = true; 94 rx_ring->first_interrupt = true; 95 96 for (i = 0; i < CLEAN_BUDGET; ++i) { 97 rxc = ena_rx_cleanup(rx_ring); 98 txc = ena_tx_cleanup(tx_ring); 99 100 if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)) 101 return; 102 103 if ((txc != TX_BUDGET) && (rxc != RX_BUDGET)) 104 break; 105 } 106 107 /* Signal that work is done and unmask interrupt */ 108 ena_com_update_intr_reg(&intr_reg, 109 RX_IRQ_INTERVAL, 110 TX_IRQ_INTERVAL, 111 true); 112 counter_u64_add(tx_ring->tx_stats.unmask_interrupt_num, 1); 113 ena_com_unmask_intr(io_cq, &intr_reg); 114 } 115 116 void 117 ena_deferred_mq_start(void *arg, int pending) 118 { 119 struct ena_ring *tx_ring = (struct ena_ring *)arg; 120 struct ifnet *ifp = tx_ring->adapter->ifp; 121 122 while (!drbr_empty(ifp, tx_ring->br) && 123 tx_ring->running && 124 (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 125 ENA_RING_MTX_LOCK(tx_ring); 126 ena_start_xmit(tx_ring); 127 ENA_RING_MTX_UNLOCK(tx_ring); 128 } 129 } 130 131 int 132 ena_mq_start(if_t ifp, struct mbuf *m) 133 { 134 struct ena_adapter *adapter = ifp->if_softc; 135 struct ena_ring *tx_ring; 136 int ret, is_drbr_empty; 137 uint32_t i; 138 #ifdef RSS 139 uint32_t bucket_id; 140 #endif 141 142 if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0)) 143 return (ENODEV); 144 145 /* Which queue to use */ 146 /* 147 * If everything is setup correctly, it should be the 148 * same bucket that the current CPU we're on is. 149 * It should improve performance. 150 */ 151 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) { 152 #ifdef RSS 153 if (rss_hash2bucket(m->m_pkthdr.flowid, M_HASHTYPE_GET(m), 154 &bucket_id) == 0) 155 i = bucket_id % adapter->num_io_queues; 156 else 157 #endif 158 i = m->m_pkthdr.flowid % adapter->num_io_queues; 159 } else { 160 i = curcpu % adapter->num_io_queues; 161 } 162 tx_ring = &adapter->tx_ring[i]; 163 164 /* Check if drbr is empty before putting packet */ 165 is_drbr_empty = drbr_empty(ifp, tx_ring->br); 166 ret = drbr_enqueue(ifp, tx_ring->br, m); 167 if (unlikely(ret != 0)) { 168 taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task); 169 return (ret); 170 } 171 172 if (is_drbr_empty && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) { 173 ena_start_xmit(tx_ring); 174 ENA_RING_MTX_UNLOCK(tx_ring); 175 } else { 176 taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task); 177 } 178 179 return (0); 180 } 181 182 void 183 ena_qflush(if_t ifp) 184 { 185 struct ena_adapter *adapter = ifp->if_softc; 186 struct ena_ring *tx_ring = adapter->tx_ring; 187 int i; 188 189 for(i = 0; i < adapter->num_io_queues; ++i, ++tx_ring) 190 if (!drbr_empty(ifp, tx_ring->br)) { 191 ENA_RING_MTX_LOCK(tx_ring); 192 drbr_flush(ifp, tx_ring->br); 193 ENA_RING_MTX_UNLOCK(tx_ring); 194 } 195 196 if_qflush(ifp); 197 } 198 199 /********************************************************************* 200 * Static functions 201 *********************************************************************/ 202 203 static inline int 204 ena_get_tx_req_id(struct ena_ring *tx_ring, struct ena_com_io_cq *io_cq, 205 uint16_t *req_id) 206 { 207 struct ena_adapter *adapter = tx_ring->adapter; 208 int rc; 209 210 rc = ena_com_tx_comp_req_id_get(io_cq, req_id); 211 if (rc == ENA_COM_TRY_AGAIN) 212 return (EAGAIN); 213 214 if (unlikely(rc != 0)) { 215 ena_log(adapter->pdev, ERR, "Invalid req_id: %hu\n", *req_id); 216 counter_u64_add(tx_ring->tx_stats.bad_req_id, 1); 217 goto err; 218 } 219 220 if (tx_ring->tx_buffer_info[*req_id].mbuf != NULL) 221 return (0); 222 223 ena_log(adapter->pdev, ERR, "tx_info doesn't have valid mbuf\n"); 224 err: 225 ena_trigger_reset(adapter, ENA_REGS_RESET_INV_TX_REQ_ID); 226 227 return (EFAULT); 228 } 229 230 /** 231 * ena_tx_cleanup - clear sent packets and corresponding descriptors 232 * @tx_ring: ring for which we want to clean packets 233 * 234 * Once packets are sent, we ask the device in a loop for no longer used 235 * descriptors. We find the related mbuf chain in a map (index in an array) 236 * and free it, then update ring state. 237 * This is performed in "endless" loop, updating ring pointers every 238 * TX_COMMIT. The first check of free descriptor is performed before the actual 239 * loop, then repeated at the loop end. 240 **/ 241 static int 242 ena_tx_cleanup(struct ena_ring *tx_ring) 243 { 244 struct ena_adapter *adapter; 245 struct ena_com_io_cq* io_cq; 246 uint16_t next_to_clean; 247 uint16_t req_id; 248 uint16_t ena_qid; 249 unsigned int total_done = 0; 250 int rc; 251 int commit = TX_COMMIT; 252 int budget = TX_BUDGET; 253 int work_done; 254 bool above_thresh; 255 256 adapter = tx_ring->que->adapter; 257 ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id); 258 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid]; 259 next_to_clean = tx_ring->next_to_clean; 260 261 #ifdef DEV_NETMAP 262 if (netmap_tx_irq(adapter->ifp, tx_ring->qid) != NM_IRQ_PASS) 263 return (0); 264 #endif /* DEV_NETMAP */ 265 266 do { 267 struct ena_tx_buffer *tx_info; 268 struct mbuf *mbuf; 269 270 rc = ena_get_tx_req_id(tx_ring, io_cq, &req_id); 271 if (unlikely(rc != 0)) 272 break; 273 274 tx_info = &tx_ring->tx_buffer_info[req_id]; 275 276 mbuf = tx_info->mbuf; 277 278 tx_info->mbuf = NULL; 279 bintime_clear(&tx_info->timestamp); 280 281 bus_dmamap_sync(adapter->tx_buf_tag, tx_info->dmamap, 282 BUS_DMASYNC_POSTWRITE); 283 bus_dmamap_unload(adapter->tx_buf_tag, 284 tx_info->dmamap); 285 286 ena_log_io(adapter->pdev, DBG, "tx: q %d mbuf %p completed\n", 287 tx_ring->qid, mbuf); 288 289 m_freem(mbuf); 290 291 total_done += tx_info->tx_descs; 292 293 tx_ring->free_tx_ids[next_to_clean] = req_id; 294 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean, 295 tx_ring->ring_size); 296 297 if (unlikely(--commit == 0)) { 298 commit = TX_COMMIT; 299 /* update ring state every TX_COMMIT descriptor */ 300 tx_ring->next_to_clean = next_to_clean; 301 ena_com_comp_ack( 302 &adapter->ena_dev->io_sq_queues[ena_qid], 303 total_done); 304 ena_com_update_dev_comp_head(io_cq); 305 total_done = 0; 306 } 307 } while (likely(--budget)); 308 309 work_done = TX_BUDGET - budget; 310 311 ena_log_io(adapter->pdev, DBG, "tx: q %d done. total pkts: %d\n", 312 tx_ring->qid, work_done); 313 314 /* If there is still something to commit update ring state */ 315 if (likely(commit != TX_COMMIT)) { 316 tx_ring->next_to_clean = next_to_clean; 317 ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid], 318 total_done); 319 ena_com_update_dev_comp_head(io_cq); 320 } 321 322 /* 323 * Need to make the rings circular update visible to 324 * ena_xmit_mbuf() before checking for tx_ring->running. 325 */ 326 mb(); 327 328 above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 329 ENA_TX_RESUME_THRESH); 330 if (unlikely(!tx_ring->running && above_thresh)) { 331 ENA_RING_MTX_LOCK(tx_ring); 332 above_thresh = 333 ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 334 ENA_TX_RESUME_THRESH); 335 if (!tx_ring->running && above_thresh) { 336 tx_ring->running = true; 337 counter_u64_add(tx_ring->tx_stats.queue_wakeup, 1); 338 taskqueue_enqueue(tx_ring->enqueue_tq, 339 &tx_ring->enqueue_task); 340 } 341 ENA_RING_MTX_UNLOCK(tx_ring); 342 } 343 344 return (work_done); 345 } 346 347 static void 348 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx, 349 struct mbuf *mbuf) 350 { 351 struct ena_adapter *adapter = rx_ring->adapter; 352 353 if (likely(ENA_FLAG_ISSET(ENA_FLAG_RSS_ACTIVE, adapter))) { 354 mbuf->m_pkthdr.flowid = ena_rx_ctx->hash; 355 356 #ifdef RSS 357 /* 358 * Hardware and software RSS are in agreement only when both are 359 * configured to Toeplitz algorithm. This driver configures 360 * that algorithm only when software RSS is enabled and uses it. 361 */ 362 if (adapter->ena_dev->rss.hash_func != ENA_ADMIN_TOEPLITZ && 363 ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN) { 364 M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH); 365 return; 366 } 367 #endif 368 369 if (ena_rx_ctx->frag && 370 (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) { 371 M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH); 372 return; 373 } 374 375 switch (ena_rx_ctx->l3_proto) { 376 case ENA_ETH_IO_L3_PROTO_IPV4: 377 switch (ena_rx_ctx->l4_proto) { 378 case ENA_ETH_IO_L4_PROTO_TCP: 379 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4); 380 break; 381 case ENA_ETH_IO_L4_PROTO_UDP: 382 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4); 383 break; 384 default: 385 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4); 386 } 387 break; 388 case ENA_ETH_IO_L3_PROTO_IPV6: 389 switch (ena_rx_ctx->l4_proto) { 390 case ENA_ETH_IO_L4_PROTO_TCP: 391 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6); 392 break; 393 case ENA_ETH_IO_L4_PROTO_UDP: 394 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6); 395 break; 396 default: 397 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6); 398 } 399 break; 400 case ENA_ETH_IO_L3_PROTO_UNKNOWN: 401 M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE); 402 break; 403 default: 404 M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH); 405 } 406 } else { 407 mbuf->m_pkthdr.flowid = rx_ring->qid; 408 M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE); 409 } 410 } 411 412 /** 413 * ena_rx_mbuf - assemble mbuf from descriptors 414 * @rx_ring: ring for which we want to clean packets 415 * @ena_bufs: buffer info 416 * @ena_rx_ctx: metadata for this packet(s) 417 * @next_to_clean: ring pointer, will be updated only upon success 418 * 419 **/ 420 static struct mbuf* 421 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs, 422 struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean) 423 { 424 struct mbuf *mbuf; 425 struct ena_rx_buffer *rx_info; 426 struct ena_adapter *adapter; 427 device_t pdev; 428 unsigned int descs = ena_rx_ctx->descs; 429 uint16_t ntc, len, req_id, buf = 0; 430 431 ntc = *next_to_clean; 432 adapter = rx_ring->adapter; 433 pdev = adapter->pdev; 434 435 len = ena_bufs[buf].len; 436 req_id = ena_bufs[buf].req_id; 437 rx_info = &rx_ring->rx_buffer_info[req_id]; 438 if (unlikely(rx_info->mbuf == NULL)) { 439 ena_log(pdev, ERR, "NULL mbuf in rx_info"); 440 return (NULL); 441 } 442 443 ena_log_io(pdev, DBG, "rx_info %p, mbuf %p, paddr %jx\n", rx_info, 444 rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr); 445 446 bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map, 447 BUS_DMASYNC_POSTREAD); 448 mbuf = rx_info->mbuf; 449 mbuf->m_flags |= M_PKTHDR; 450 mbuf->m_pkthdr.len = len; 451 mbuf->m_len = len; 452 /* Only for the first segment the data starts at specific offset */ 453 mbuf->m_data = mtodo(mbuf, ena_rx_ctx->pkt_offset); 454 ena_log_io(pdev, DBG, "Mbuf data offset=%u\n", ena_rx_ctx->pkt_offset); 455 mbuf->m_pkthdr.rcvif = rx_ring->que->adapter->ifp; 456 457 /* Fill mbuf with hash key and it's interpretation for optimization */ 458 ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf); 459 460 ena_log_io(pdev, DBG, "rx mbuf 0x%p, flags=0x%x, len: %d\n", mbuf, 461 mbuf->m_flags, mbuf->m_pkthdr.len); 462 463 /* DMA address is not needed anymore, unmap it */ 464 bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map); 465 466 rx_info->mbuf = NULL; 467 rx_ring->free_rx_ids[ntc] = req_id; 468 ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size); 469 470 /* 471 * While we have more than 1 descriptors for one rcvd packet, append 472 * other mbufs to the main one 473 */ 474 while (--descs) { 475 ++buf; 476 len = ena_bufs[buf].len; 477 req_id = ena_bufs[buf].req_id; 478 rx_info = &rx_ring->rx_buffer_info[req_id]; 479 480 if (unlikely(rx_info->mbuf == NULL)) { 481 ena_log(pdev, ERR, "NULL mbuf in rx_info"); 482 /* 483 * If one of the required mbufs was not allocated yet, 484 * we can break there. 485 * All earlier used descriptors will be reallocated 486 * later and not used mbufs can be reused. 487 * The next_to_clean pointer will not be updated in case 488 * of an error, so caller should advance it manually 489 * in error handling routine to keep it up to date 490 * with hw ring. 491 */ 492 m_freem(mbuf); 493 return (NULL); 494 } 495 496 bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map, 497 BUS_DMASYNC_POSTREAD); 498 if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) { 499 counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1); 500 ena_log_io(pdev, WARN, "Failed to append Rx mbuf %p\n", 501 mbuf); 502 } 503 504 ena_log_io(pdev, DBG, "rx mbuf updated. len %d\n", 505 mbuf->m_pkthdr.len); 506 507 /* Free already appended mbuf, it won't be useful anymore */ 508 bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map); 509 m_freem(rx_info->mbuf); 510 rx_info->mbuf = NULL; 511 512 rx_ring->free_rx_ids[ntc] = req_id; 513 ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size); 514 } 515 516 *next_to_clean = ntc; 517 518 return (mbuf); 519 } 520 521 /** 522 * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum 523 **/ 524 static inline void 525 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx, 526 struct mbuf *mbuf) 527 { 528 device_t pdev = rx_ring->adapter->pdev; 529 530 /* if IP and error */ 531 if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) && 532 ena_rx_ctx->l3_csum_err)) { 533 /* ipv4 checksum error */ 534 mbuf->m_pkthdr.csum_flags = 0; 535 counter_u64_add(rx_ring->rx_stats.csum_bad, 1); 536 ena_log_io(pdev, DBG, "RX IPv4 header checksum error\n"); 537 return; 538 } 539 540 /* if TCP/UDP */ 541 if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 542 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) { 543 if (ena_rx_ctx->l4_csum_err) { 544 /* TCP/UDP checksum error */ 545 mbuf->m_pkthdr.csum_flags = 0; 546 counter_u64_add(rx_ring->rx_stats.csum_bad, 1); 547 ena_log_io(pdev, DBG, "RX L4 checksum error\n"); 548 } else { 549 mbuf->m_pkthdr.csum_flags = CSUM_IP_CHECKED; 550 mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID; 551 counter_u64_add(rx_ring->rx_stats.csum_good, 1); 552 } 553 } 554 } 555 556 /** 557 * ena_rx_cleanup - handle rx irq 558 * @arg: ring for which irq is being handled 559 **/ 560 static int 561 ena_rx_cleanup(struct ena_ring *rx_ring) 562 { 563 struct ena_adapter *adapter; 564 device_t pdev; 565 struct mbuf *mbuf; 566 struct ena_com_rx_ctx ena_rx_ctx; 567 struct ena_com_io_cq* io_cq; 568 struct ena_com_io_sq* io_sq; 569 enum ena_regs_reset_reason_types reset_reason; 570 if_t ifp; 571 uint16_t ena_qid; 572 uint16_t next_to_clean; 573 uint32_t refill_required; 574 uint32_t refill_threshold; 575 uint32_t do_if_input = 0; 576 unsigned int qid; 577 int rc, i; 578 int budget = RX_BUDGET; 579 #ifdef DEV_NETMAP 580 int done; 581 #endif /* DEV_NETMAP */ 582 583 adapter = rx_ring->que->adapter; 584 pdev = adapter->pdev; 585 ifp = adapter->ifp; 586 qid = rx_ring->que->id; 587 ena_qid = ENA_IO_RXQ_IDX(qid); 588 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid]; 589 io_sq = &adapter->ena_dev->io_sq_queues[ena_qid]; 590 next_to_clean = rx_ring->next_to_clean; 591 592 #ifdef DEV_NETMAP 593 if (netmap_rx_irq(adapter->ifp, rx_ring->qid, &done) != NM_IRQ_PASS) 594 return (0); 595 #endif /* DEV_NETMAP */ 596 597 ena_log_io(pdev, DBG, "rx: qid %d\n", qid); 598 599 do { 600 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs; 601 ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size; 602 ena_rx_ctx.descs = 0; 603 ena_rx_ctx.pkt_offset = 0; 604 605 bus_dmamap_sync(io_cq->cdesc_addr.mem_handle.tag, 606 io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_POSTREAD); 607 rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx); 608 if (unlikely(rc != 0)) { 609 if (rc == ENA_COM_NO_SPACE) { 610 counter_u64_add(rx_ring->rx_stats.bad_desc_num, 611 1); 612 reset_reason = ENA_REGS_RESET_TOO_MANY_RX_DESCS; 613 } else { 614 counter_u64_add(rx_ring->rx_stats.bad_req_id, 615 1); 616 reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID; 617 } 618 ena_trigger_reset(adapter, reset_reason); 619 return (0); 620 } 621 622 if (unlikely(ena_rx_ctx.descs == 0)) 623 break; 624 625 ena_log_io(pdev, DBG, "rx: q %d got packet from ena. " 626 "descs #: %d l3 proto %d l4 proto %d hash: %x\n", 627 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto, 628 ena_rx_ctx.l4_proto, ena_rx_ctx.hash); 629 630 /* Receive mbuf from the ring */ 631 mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs, 632 &ena_rx_ctx, &next_to_clean); 633 bus_dmamap_sync(io_cq->cdesc_addr.mem_handle.tag, 634 io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_PREREAD); 635 /* Exit if we failed to retrieve a buffer */ 636 if (unlikely(mbuf == NULL)) { 637 for (i = 0; i < ena_rx_ctx.descs; ++i) { 638 rx_ring->free_rx_ids[next_to_clean] = 639 rx_ring->ena_bufs[i].req_id; 640 next_to_clean = 641 ENA_RX_RING_IDX_NEXT(next_to_clean, 642 rx_ring->ring_size); 643 644 } 645 break; 646 } 647 648 if (((ifp->if_capenable & IFCAP_RXCSUM) != 0) || 649 ((ifp->if_capenable & IFCAP_RXCSUM_IPV6) != 0)) { 650 ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf); 651 } 652 653 counter_enter(); 654 counter_u64_add_protected(rx_ring->rx_stats.bytes, 655 mbuf->m_pkthdr.len); 656 counter_u64_add_protected(adapter->hw_stats.rx_bytes, 657 mbuf->m_pkthdr.len); 658 counter_exit(); 659 /* 660 * LRO is only for IP/TCP packets and TCP checksum of the packet 661 * should be computed by hardware. 662 */ 663 do_if_input = 1; 664 if (((ifp->if_capenable & IFCAP_LRO) != 0) && 665 ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) && 666 (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) { 667 /* 668 * Send to the stack if: 669 * - LRO not enabled, or 670 * - no LRO resources, or 671 * - lro enqueue fails 672 */ 673 if ((rx_ring->lro.lro_cnt != 0) && 674 (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0)) 675 do_if_input = 0; 676 } 677 if (do_if_input != 0) { 678 ena_log_io(pdev, DBG, "calling if_input() with mbuf %p\n", 679 mbuf); 680 (*ifp->if_input)(ifp, mbuf); 681 } 682 683 counter_enter(); 684 counter_u64_add_protected(rx_ring->rx_stats.cnt, 1); 685 counter_u64_add_protected(adapter->hw_stats.rx_packets, 1); 686 counter_exit(); 687 } while (--budget); 688 689 rx_ring->next_to_clean = next_to_clean; 690 691 refill_required = ena_com_free_q_entries(io_sq); 692 refill_threshold = min_t(int, 693 rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER, 694 ENA_RX_REFILL_THRESH_PACKET); 695 696 if (refill_required > refill_threshold) { 697 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq); 698 ena_refill_rx_bufs(rx_ring, refill_required); 699 } 700 701 tcp_lro_flush_all(&rx_ring->lro); 702 703 return (RX_BUDGET - budget); 704 } 705 706 static void 707 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf, 708 bool disable_meta_caching) 709 { 710 struct ena_com_tx_meta *ena_meta; 711 struct ether_vlan_header *eh; 712 struct mbuf *mbuf_next; 713 u32 mss; 714 bool offload; 715 uint16_t etype; 716 int ehdrlen; 717 struct ip *ip; 718 int ipproto; 719 int iphlen; 720 struct tcphdr *th; 721 int offset; 722 723 offload = false; 724 ena_meta = &ena_tx_ctx->ena_meta; 725 mss = mbuf->m_pkthdr.tso_segsz; 726 727 if (mss != 0) 728 offload = true; 729 730 if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0) 731 offload = true; 732 733 if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0) 734 offload = true; 735 736 if ((mbuf->m_pkthdr.csum_flags & CSUM6_OFFLOAD) != 0) 737 offload = true; 738 739 if (!offload) { 740 if (disable_meta_caching) { 741 memset(ena_meta, 0, sizeof(*ena_meta)); 742 ena_tx_ctx->meta_valid = 1; 743 } else { 744 ena_tx_ctx->meta_valid = 0; 745 } 746 return; 747 } 748 749 /* Determine where frame payload starts. */ 750 eh = mtod(mbuf, struct ether_vlan_header *); 751 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 752 etype = ntohs(eh->evl_proto); 753 ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 754 } else { 755 etype = ntohs(eh->evl_encap_proto); 756 ehdrlen = ETHER_HDR_LEN; 757 } 758 759 mbuf_next = m_getptr(mbuf, ehdrlen, &offset); 760 761 switch (etype) { 762 case ETHERTYPE_IP: 763 ip = (struct ip *)(mtodo(mbuf_next, offset)); 764 iphlen = ip->ip_hl << 2; 765 ipproto = ip->ip_p; 766 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4; 767 if ((ip->ip_off & htons(IP_DF)) != 0) 768 ena_tx_ctx->df = 1; 769 break; 770 case ETHERTYPE_IPV6: 771 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6; 772 iphlen = ip6_lasthdr(mbuf, ehdrlen, IPPROTO_IPV6, &ipproto); 773 iphlen -= ehdrlen; 774 ena_tx_ctx->df = 1; 775 break; 776 default: 777 iphlen = 0; 778 ipproto = 0; 779 break; 780 } 781 782 mbuf_next = m_getptr(mbuf, iphlen + ehdrlen, &offset); 783 th = (struct tcphdr *)(mtodo(mbuf_next, offset)); 784 785 if ((mbuf->m_pkthdr.csum_flags & CSUM_IP) != 0) { 786 ena_tx_ctx->l3_csum_enable = 1; 787 } 788 if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 789 ena_tx_ctx->tso_enable = 1; 790 ena_meta->l4_hdr_len = (th->th_off); 791 } 792 793 if (ipproto == IPPROTO_TCP) { 794 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP; 795 if ((mbuf->m_pkthdr.csum_flags & 796 (CSUM_IP_TCP | CSUM_IP6_TCP)) != 0) 797 ena_tx_ctx->l4_csum_enable = 1; 798 else 799 ena_tx_ctx->l4_csum_enable = 0; 800 } else if (ipproto == IPPROTO_UDP) { 801 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP; 802 if ((mbuf->m_pkthdr.csum_flags & 803 (CSUM_IP_UDP | CSUM_IP6_UDP)) != 0) 804 ena_tx_ctx->l4_csum_enable = 1; 805 else 806 ena_tx_ctx->l4_csum_enable = 0; 807 } else { 808 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN; 809 ena_tx_ctx->l4_csum_enable = 0; 810 } 811 812 ena_meta->mss = mss; 813 ena_meta->l3_hdr_len = iphlen; 814 ena_meta->l3_hdr_offset = ehdrlen; 815 ena_tx_ctx->meta_valid = 1; 816 } 817 818 static int 819 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf) 820 { 821 struct ena_adapter *adapter; 822 struct mbuf *collapsed_mbuf; 823 int num_frags; 824 825 adapter = tx_ring->adapter; 826 num_frags = ena_mbuf_count(*mbuf); 827 828 /* One segment must be reserved for configuration descriptor. */ 829 if (num_frags < adapter->max_tx_sgl_size) 830 return (0); 831 832 if ((num_frags == adapter->max_tx_sgl_size) && 833 ((*mbuf)->m_pkthdr.len < tx_ring->tx_max_header_size)) 834 return (0); 835 836 counter_u64_add(tx_ring->tx_stats.collapse, 1); 837 838 collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT, 839 adapter->max_tx_sgl_size - 1); 840 if (unlikely(collapsed_mbuf == NULL)) { 841 counter_u64_add(tx_ring->tx_stats.collapse_err, 1); 842 return (ENOMEM); 843 } 844 845 /* If mbuf was collapsed succesfully, original mbuf is released. */ 846 *mbuf = collapsed_mbuf; 847 848 return (0); 849 } 850 851 static int 852 ena_tx_map_mbuf(struct ena_ring *tx_ring, struct ena_tx_buffer *tx_info, 853 struct mbuf *mbuf, void **push_hdr, u16 *header_len) 854 { 855 struct ena_adapter *adapter = tx_ring->adapter; 856 struct ena_com_buf *ena_buf; 857 bus_dma_segment_t segs[ENA_BUS_DMA_SEGS]; 858 size_t iseg = 0; 859 uint32_t mbuf_head_len; 860 uint16_t offset; 861 int rc, nsegs; 862 863 mbuf_head_len = mbuf->m_len; 864 tx_info->mbuf = mbuf; 865 ena_buf = tx_info->bufs; 866 867 /* 868 * For easier maintaining of the DMA map, map the whole mbuf even if 869 * the LLQ is used. The descriptors will be filled using the segments. 870 */ 871 rc = bus_dmamap_load_mbuf_sg(adapter->tx_buf_tag, tx_info->dmamap, mbuf, 872 segs, &nsegs, BUS_DMA_NOWAIT); 873 if (unlikely((rc != 0) || (nsegs == 0))) { 874 ena_log_io(adapter->pdev, WARN, 875 "dmamap load failed! err: %d nsegs: %d\n", rc, nsegs); 876 goto dma_error; 877 } 878 879 if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 880 /* 881 * When the device is LLQ mode, the driver will copy 882 * the header into the device memory space. 883 * the ena_com layer assumes the header is in a linear 884 * memory space. 885 * This assumption might be wrong since part of the header 886 * can be in the fragmented buffers. 887 * First check if header fits in the mbuf. If not, copy it to 888 * separate buffer that will be holding linearized data. 889 */ 890 *header_len = min_t(uint32_t, mbuf->m_pkthdr.len, tx_ring->tx_max_header_size); 891 892 /* If header is in linear space, just point into mbuf's data. */ 893 if (likely(*header_len <= mbuf_head_len)) { 894 *push_hdr = mbuf->m_data; 895 /* 896 * Otherwise, copy whole portion of header from multiple mbufs 897 * to intermediate buffer. 898 */ 899 } else { 900 m_copydata(mbuf, 0, *header_len, tx_ring->push_buf_intermediate_buf); 901 *push_hdr = tx_ring->push_buf_intermediate_buf; 902 903 counter_u64_add(tx_ring->tx_stats.llq_buffer_copy, 1); 904 } 905 906 ena_log_io(adapter->pdev, DBG, "mbuf: %p ""header_buf->vaddr: %p " 907 "push_len: %d\n", mbuf, *push_hdr, *header_len); 908 909 /* If packet is fitted in LLQ header, no need for DMA segments. */ 910 if (mbuf->m_pkthdr.len <= tx_ring->tx_max_header_size) { 911 return (0); 912 } else { 913 offset = tx_ring->tx_max_header_size; 914 /* 915 * As Header part is mapped to LLQ header, we can skip it and just 916 * map the residuum of the mbuf to DMA Segments. 917 */ 918 while (offset > 0) { 919 if (offset >= segs[iseg].ds_len) { 920 offset -= segs[iseg].ds_len; 921 } else { 922 ena_buf->paddr = segs[iseg].ds_addr + offset; 923 ena_buf->len = segs[iseg].ds_len - offset; 924 ena_buf++; 925 tx_info->num_of_bufs++; 926 offset = 0; 927 } 928 iseg++; 929 } 930 } 931 } else { 932 *push_hdr = NULL; 933 /* 934 * header_len is just a hint for the device. Because FreeBSD is not 935 * giving us information about packet header length and it is not 936 * guaranteed that all packet headers will be in the 1st mbuf, setting 937 * header_len to 0 is making the device ignore this value and resolve 938 * header on it's own. 939 */ 940 *header_len = 0; 941 } 942 943 /* Map rest of the mbuf */ 944 while (iseg < nsegs) { 945 ena_buf->paddr = segs[iseg].ds_addr; 946 ena_buf->len = segs[iseg].ds_len; 947 ena_buf++; 948 iseg++; 949 tx_info->num_of_bufs++; 950 } 951 952 return (0); 953 954 dma_error: 955 counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1); 956 tx_info->mbuf = NULL; 957 return (rc); 958 } 959 960 static int 961 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf) 962 { 963 struct ena_adapter *adapter; 964 device_t pdev; 965 struct ena_tx_buffer *tx_info; 966 struct ena_com_tx_ctx ena_tx_ctx; 967 struct ena_com_dev *ena_dev; 968 struct ena_com_io_sq* io_sq; 969 void *push_hdr; 970 uint16_t next_to_use; 971 uint16_t req_id; 972 uint16_t ena_qid; 973 uint16_t header_len; 974 int rc; 975 int nb_hw_desc; 976 977 ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id); 978 adapter = tx_ring->que->adapter; 979 pdev = adapter->pdev; 980 ena_dev = adapter->ena_dev; 981 io_sq = &ena_dev->io_sq_queues[ena_qid]; 982 983 rc = ena_check_and_collapse_mbuf(tx_ring, mbuf); 984 if (unlikely(rc != 0)) { 985 ena_log_io(pdev, WARN, "Failed to collapse mbuf! err: %d\n", 986 rc); 987 return (rc); 988 } 989 990 ena_log_io(pdev, DBG, "Tx: %d bytes\n", (*mbuf)->m_pkthdr.len); 991 992 next_to_use = tx_ring->next_to_use; 993 req_id = tx_ring->free_tx_ids[next_to_use]; 994 tx_info = &tx_ring->tx_buffer_info[req_id]; 995 tx_info->num_of_bufs = 0; 996 997 ENA_WARN(tx_info->mbuf != NULL, adapter->ena_dev, 998 "mbuf isn't NULL for req_id %d\n", req_id); 999 1000 rc = ena_tx_map_mbuf(tx_ring, tx_info, *mbuf, &push_hdr, &header_len); 1001 if (unlikely(rc != 0)) { 1002 ena_log_io(pdev, WARN, "Failed to map TX mbuf\n"); 1003 return (rc); 1004 } 1005 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx)); 1006 ena_tx_ctx.ena_bufs = tx_info->bufs; 1007 ena_tx_ctx.push_header = push_hdr; 1008 ena_tx_ctx.num_bufs = tx_info->num_of_bufs; 1009 ena_tx_ctx.req_id = req_id; 1010 ena_tx_ctx.header_len = header_len; 1011 1012 /* Set flags and meta data */ 1013 ena_tx_csum(&ena_tx_ctx, *mbuf, adapter->disable_meta_caching); 1014 1015 if (tx_ring->acum_pkts == DB_THRESHOLD || 1016 ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq, &ena_tx_ctx)) { 1017 ena_log_io(pdev, DBG, 1018 "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n", 1019 tx_ring->que->id); 1020 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq); 1021 counter_u64_add(tx_ring->tx_stats.doorbells, 1); 1022 tx_ring->acum_pkts = 0; 1023 } 1024 1025 /* Prepare the packet's descriptors and send them to device */ 1026 rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc); 1027 if (unlikely(rc != 0)) { 1028 if (likely(rc == ENA_COM_NO_MEM)) { 1029 ena_log_io(pdev, DBG, "tx ring[%d] is out of space\n", 1030 tx_ring->que->id); 1031 } else { 1032 ena_log(pdev, ERR, "failed to prepare tx bufs\n"); 1033 ena_trigger_reset(adapter, 1034 ENA_REGS_RESET_DRIVER_INVALID_STATE); 1035 } 1036 counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1); 1037 goto dma_error; 1038 } 1039 1040 counter_enter(); 1041 counter_u64_add_protected(tx_ring->tx_stats.cnt, 1); 1042 counter_u64_add_protected(tx_ring->tx_stats.bytes, 1043 (*mbuf)->m_pkthdr.len); 1044 1045 counter_u64_add_protected(adapter->hw_stats.tx_packets, 1); 1046 counter_u64_add_protected(adapter->hw_stats.tx_bytes, 1047 (*mbuf)->m_pkthdr.len); 1048 counter_exit(); 1049 1050 tx_info->tx_descs = nb_hw_desc; 1051 getbinuptime(&tx_info->timestamp); 1052 tx_info->print_once = true; 1053 1054 tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use, 1055 tx_ring->ring_size); 1056 1057 /* stop the queue when no more space available, the packet can have up 1058 * to sgl_size + 2. one for the meta descriptor and one for header 1059 * (if the header is larger than tx_max_header_size). 1060 */ 1061 if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 1062 adapter->max_tx_sgl_size + 2))) { 1063 ena_log_io(pdev, DBG, "Stop queue %d\n", tx_ring->que->id); 1064 1065 tx_ring->running = false; 1066 counter_u64_add(tx_ring->tx_stats.queue_stop, 1); 1067 1068 /* There is a rare condition where this function decides to 1069 * stop the queue but meanwhile tx_cleanup() updates 1070 * next_to_completion and terminates. 1071 * The queue will remain stopped forever. 1072 * To solve this issue this function performs mb(), checks 1073 * the wakeup condition and wakes up the queue if needed. 1074 */ 1075 mb(); 1076 1077 if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 1078 ENA_TX_RESUME_THRESH)) { 1079 tx_ring->running = true; 1080 counter_u64_add(tx_ring->tx_stats.queue_wakeup, 1); 1081 } 1082 } 1083 1084 bus_dmamap_sync(adapter->tx_buf_tag, tx_info->dmamap, 1085 BUS_DMASYNC_PREWRITE); 1086 1087 return (0); 1088 1089 dma_error: 1090 tx_info->mbuf = NULL; 1091 bus_dmamap_unload(adapter->tx_buf_tag, tx_info->dmamap); 1092 1093 return (rc); 1094 } 1095 1096 static void 1097 ena_start_xmit(struct ena_ring *tx_ring) 1098 { 1099 struct mbuf *mbuf; 1100 struct ena_adapter *adapter = tx_ring->adapter; 1101 struct ena_com_io_sq* io_sq; 1102 int ena_qid; 1103 int ret = 0; 1104 1105 ENA_RING_MTX_ASSERT(tx_ring); 1106 1107 if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0)) 1108 return; 1109 1110 if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter))) 1111 return; 1112 1113 ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id); 1114 io_sq = &adapter->ena_dev->io_sq_queues[ena_qid]; 1115 1116 while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) { 1117 ena_log_io(adapter->pdev, DBG, 1118 "\ndequeued mbuf %p with flags %#x and header csum flags %#jx\n", 1119 mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags); 1120 1121 if (unlikely(!tx_ring->running)) { 1122 drbr_putback(adapter->ifp, tx_ring->br, mbuf); 1123 break; 1124 } 1125 1126 if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) { 1127 if (ret == ENA_COM_NO_MEM) { 1128 drbr_putback(adapter->ifp, tx_ring->br, mbuf); 1129 } else if (ret == ENA_COM_NO_SPACE) { 1130 drbr_putback(adapter->ifp, tx_ring->br, mbuf); 1131 } else { 1132 m_freem(mbuf); 1133 drbr_advance(adapter->ifp, tx_ring->br); 1134 } 1135 1136 break; 1137 } 1138 1139 drbr_advance(adapter->ifp, tx_ring->br); 1140 1141 if (unlikely((if_getdrvflags(adapter->ifp) & 1142 IFF_DRV_RUNNING) == 0)) 1143 return; 1144 1145 tx_ring->acum_pkts++; 1146 1147 BPF_MTAP(adapter->ifp, mbuf); 1148 } 1149 1150 if (likely(tx_ring->acum_pkts != 0)) { 1151 /* Trigger the dma engine */ 1152 ena_com_write_sq_doorbell(io_sq); 1153 counter_u64_add(tx_ring->tx_stats.doorbells, 1); 1154 tx_ring->acum_pkts = 0; 1155 } 1156 1157 if (unlikely(!tx_ring->running)) 1158 taskqueue_enqueue(tx_ring->que->cleanup_tq, 1159 &tx_ring->que->cleanup_task); 1160 } 1161