xref: /freebsd/sys/dev/ena/ena_datapath.c (revision b4af4f93c682e445bf159f0d1ec90b636296c946)
1 /*-
2  * BSD LICENSE
3  *
4  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  *
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_rss.h"
34 #include "ena.h"
35 #include "ena_datapath.h"
36 #ifdef DEV_NETMAP
37 #include "ena_netmap.h"
38 #endif /* DEV_NETMAP */
39 
40 /*********************************************************************
41  *  Static functions prototypes
42  *********************************************************************/
43 
44 static int	ena_tx_cleanup(struct ena_ring *);
45 static int	ena_rx_cleanup(struct ena_ring *);
46 static inline int validate_tx_req_id(struct ena_ring *, uint16_t);
47 static void	ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
48     struct mbuf *);
49 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *,
50     struct ena_com_rx_ctx *, uint16_t *);
51 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *,
52     struct mbuf *);
53 static void	ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *, bool);
54 static int	ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
55     struct mbuf **mbuf);
56 static int	ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
57 static void	ena_start_xmit(struct ena_ring *);
58 
59 /*********************************************************************
60  *  Global functions
61  *********************************************************************/
62 
63 void
64 ena_cleanup(void *arg, int pending)
65 {
66 	struct ena_que	*que = arg;
67 	struct ena_adapter *adapter = que->adapter;
68 	if_t ifp = adapter->ifp;
69 	struct ena_ring *tx_ring;
70 	struct ena_ring *rx_ring;
71 	struct ena_com_io_cq* io_cq;
72 	struct ena_eth_io_intr_reg intr_reg;
73 	int qid, ena_qid;
74 	int txc, rxc, i;
75 
76 	if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0))
77 		return;
78 
79 	ena_trace(ENA_DBG, "MSI-X TX/RX routine\n");
80 
81 	tx_ring = que->tx_ring;
82 	rx_ring = que->rx_ring;
83 	qid = que->id;
84 	ena_qid = ENA_IO_TXQ_IDX(qid);
85 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
86 
87 	tx_ring->first_interrupt = true;
88 	rx_ring->first_interrupt = true;
89 
90 	for (i = 0; i < CLEAN_BUDGET; ++i) {
91 		rxc = ena_rx_cleanup(rx_ring);
92 		txc = ena_tx_cleanup(tx_ring);
93 
94 		if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0))
95 			return;
96 
97 		if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
98 		       break;
99 	}
100 
101 	/* Signal that work is done and unmask interrupt */
102 	ena_com_update_intr_reg(&intr_reg,
103 	    RX_IRQ_INTERVAL,
104 	    TX_IRQ_INTERVAL,
105 	    true);
106 	ena_com_unmask_intr(io_cq, &intr_reg);
107 }
108 
109 void
110 ena_deferred_mq_start(void *arg, int pending)
111 {
112 	struct ena_ring *tx_ring = (struct ena_ring *)arg;
113 	struct ifnet *ifp = tx_ring->adapter->ifp;
114 
115 	while (!drbr_empty(ifp, tx_ring->br) &&
116 	    tx_ring->running &&
117 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
118 		ENA_RING_MTX_LOCK(tx_ring);
119 		ena_start_xmit(tx_ring);
120 		ENA_RING_MTX_UNLOCK(tx_ring);
121 	}
122 }
123 
124 int
125 ena_mq_start(if_t ifp, struct mbuf *m)
126 {
127 	struct ena_adapter *adapter = ifp->if_softc;
128 	struct ena_ring *tx_ring;
129 	int ret, is_drbr_empty;
130 	uint32_t i;
131 
132 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0))
133 		return (ENODEV);
134 
135 	/* Which queue to use */
136 	/*
137 	 * If everything is setup correctly, it should be the
138 	 * same bucket that the current CPU we're on is.
139 	 * It should improve performance.
140 	 */
141 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
142 		i = m->m_pkthdr.flowid % adapter->num_io_queues;
143 	} else {
144 		i = curcpu % adapter->num_io_queues;
145 	}
146 	tx_ring = &adapter->tx_ring[i];
147 
148 	/* Check if drbr is empty before putting packet */
149 	is_drbr_empty = drbr_empty(ifp, tx_ring->br);
150 	ret = drbr_enqueue(ifp, tx_ring->br, m);
151 	if (unlikely(ret != 0)) {
152 		taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
153 		return (ret);
154 	}
155 
156 	if (is_drbr_empty && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
157 		ena_start_xmit(tx_ring);
158 		ENA_RING_MTX_UNLOCK(tx_ring);
159 	} else {
160 		taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
161 	}
162 
163 	return (0);
164 }
165 
166 void
167 ena_qflush(if_t ifp)
168 {
169 	struct ena_adapter *adapter = ifp->if_softc;
170 	struct ena_ring *tx_ring = adapter->tx_ring;
171 	int i;
172 
173 	for(i = 0; i < adapter->num_io_queues; ++i, ++tx_ring)
174 		if (!drbr_empty(ifp, tx_ring->br)) {
175 			ENA_RING_MTX_LOCK(tx_ring);
176 			drbr_flush(ifp, tx_ring->br);
177 			ENA_RING_MTX_UNLOCK(tx_ring);
178 		}
179 
180 	if_qflush(ifp);
181 }
182 
183 /*********************************************************************
184  *  Static functions
185  *********************************************************************/
186 
187 static inline int
188 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
189 {
190 	struct ena_adapter *adapter = tx_ring->adapter;
191 	struct ena_tx_buffer *tx_info = NULL;
192 
193 	if (likely(req_id < tx_ring->ring_size)) {
194 		tx_info = &tx_ring->tx_buffer_info[req_id];
195 		if (tx_info->mbuf != NULL)
196 			return (0);
197 		device_printf(adapter->pdev,
198 		    "tx_info doesn't have valid mbuf\n");
199 	}
200 
201 	device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id);
202 	counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
203 
204 	/* Trigger device reset */
205 	ena_trigger_reset(adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
206 
207 	return (EFAULT);
208 }
209 
210 /**
211  * ena_tx_cleanup - clear sent packets and corresponding descriptors
212  * @tx_ring: ring for which we want to clean packets
213  *
214  * Once packets are sent, we ask the device in a loop for no longer used
215  * descriptors. We find the related mbuf chain in a map (index in an array)
216  * and free it, then update ring state.
217  * This is performed in "endless" loop, updating ring pointers every
218  * TX_COMMIT. The first check of free descriptor is performed before the actual
219  * loop, then repeated at the loop end.
220  **/
221 static int
222 ena_tx_cleanup(struct ena_ring *tx_ring)
223 {
224 	struct ena_adapter *adapter;
225 	struct ena_com_io_cq* io_cq;
226 	uint16_t next_to_clean;
227 	uint16_t req_id;
228 	uint16_t ena_qid;
229 	unsigned int total_done = 0;
230 	int rc;
231 	int commit = TX_COMMIT;
232 	int budget = TX_BUDGET;
233 	int work_done;
234 	bool above_thresh;
235 
236 	adapter = tx_ring->que->adapter;
237 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
238 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
239 	next_to_clean = tx_ring->next_to_clean;
240 
241 #ifdef DEV_NETMAP
242 	if (netmap_tx_irq(adapter->ifp, tx_ring->qid) != NM_IRQ_PASS)
243 		return (0);
244 #endif /* DEV_NETMAP */
245 
246 	do {
247 		struct ena_tx_buffer *tx_info;
248 		struct mbuf *mbuf;
249 
250 		rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
251 		if (unlikely(rc != 0))
252 			break;
253 
254 		rc = validate_tx_req_id(tx_ring, req_id);
255 		if (unlikely(rc != 0))
256 			break;
257 
258 		tx_info = &tx_ring->tx_buffer_info[req_id];
259 
260 		mbuf = tx_info->mbuf;
261 
262 		tx_info->mbuf = NULL;
263 		bintime_clear(&tx_info->timestamp);
264 
265 		bus_dmamap_sync(adapter->tx_buf_tag, tx_info->dmamap,
266 		    BUS_DMASYNC_POSTWRITE);
267 		bus_dmamap_unload(adapter->tx_buf_tag,
268 		    tx_info->dmamap);
269 
270 		ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed\n",
271 		    tx_ring->qid, mbuf);
272 
273 		m_freem(mbuf);
274 
275 		total_done += tx_info->tx_descs;
276 
277 		tx_ring->free_tx_ids[next_to_clean] = req_id;
278 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
279 		    tx_ring->ring_size);
280 
281 		if (unlikely(--commit == 0)) {
282 			commit = TX_COMMIT;
283 			/* update ring state every TX_COMMIT descriptor */
284 			tx_ring->next_to_clean = next_to_clean;
285 			ena_com_comp_ack(
286 			    &adapter->ena_dev->io_sq_queues[ena_qid],
287 			    total_done);
288 			ena_com_update_dev_comp_head(io_cq);
289 			total_done = 0;
290 		}
291 	} while (likely(--budget));
292 
293 	work_done = TX_BUDGET - budget;
294 
295 	ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d\n",
296 	tx_ring->qid, work_done);
297 
298 	/* If there is still something to commit update ring state */
299 	if (likely(commit != TX_COMMIT)) {
300 		tx_ring->next_to_clean = next_to_clean;
301 		ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
302 		    total_done);
303 		ena_com_update_dev_comp_head(io_cq);
304 	}
305 
306 	/*
307 	 * Need to make the rings circular update visible to
308 	 * ena_xmit_mbuf() before checking for tx_ring->running.
309 	 */
310 	mb();
311 
312 	above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
313 	    ENA_TX_RESUME_THRESH);
314 	if (unlikely(!tx_ring->running && above_thresh)) {
315 		ENA_RING_MTX_LOCK(tx_ring);
316 		above_thresh =
317 		    ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
318 		    ENA_TX_RESUME_THRESH);
319 		if (!tx_ring->running && above_thresh) {
320 			tx_ring->running = true;
321 			counter_u64_add(tx_ring->tx_stats.queue_wakeup, 1);
322 			taskqueue_enqueue(tx_ring->enqueue_tq,
323 			    &tx_ring->enqueue_task);
324 		}
325 		ENA_RING_MTX_UNLOCK(tx_ring);
326 	}
327 
328 	return (work_done);
329 }
330 
331 static void
332 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
333     struct mbuf *mbuf)
334 {
335 	struct ena_adapter *adapter = rx_ring->adapter;
336 
337 	if (likely(ENA_FLAG_ISSET(ENA_FLAG_RSS_ACTIVE, adapter))) {
338 		mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
339 
340 #ifdef RSS
341 		/*
342 		 * Hardware and software RSS are in agreement only when both are
343 		 * configured to Toeplitz algorithm.  This driver configures
344 		 * that algorithm only when software RSS is enabled and uses it.
345 		 */
346 		if (adapter->ena_dev->rss.hash_func != ENA_ADMIN_TOEPLITZ &&
347 		    ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN) {
348 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
349 			return;
350 		}
351 #endif
352 
353 		if (ena_rx_ctx->frag &&
354 		    (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
355 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
356 			return;
357 		}
358 
359 		switch (ena_rx_ctx->l3_proto) {
360 		case ENA_ETH_IO_L3_PROTO_IPV4:
361 			switch (ena_rx_ctx->l4_proto) {
362 			case ENA_ETH_IO_L4_PROTO_TCP:
363 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
364 				break;
365 			case ENA_ETH_IO_L4_PROTO_UDP:
366 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
367 				break;
368 			default:
369 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
370 			}
371 			break;
372 		case ENA_ETH_IO_L3_PROTO_IPV6:
373 			switch (ena_rx_ctx->l4_proto) {
374 			case ENA_ETH_IO_L4_PROTO_TCP:
375 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
376 				break;
377 			case ENA_ETH_IO_L4_PROTO_UDP:
378 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
379 				break;
380 			default:
381 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
382 			}
383 			break;
384 		case ENA_ETH_IO_L3_PROTO_UNKNOWN:
385 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
386 			break;
387 		default:
388 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
389 		}
390 	} else {
391 		mbuf->m_pkthdr.flowid = rx_ring->qid;
392 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
393 	}
394 }
395 
396 /**
397  * ena_rx_mbuf - assemble mbuf from descriptors
398  * @rx_ring: ring for which we want to clean packets
399  * @ena_bufs: buffer info
400  * @ena_rx_ctx: metadata for this packet(s)
401  * @next_to_clean: ring pointer, will be updated only upon success
402  *
403  **/
404 static struct mbuf*
405 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
406     struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
407 {
408 	struct mbuf *mbuf;
409 	struct ena_rx_buffer *rx_info;
410 	struct ena_adapter *adapter;
411 	unsigned int descs = ena_rx_ctx->descs;
412 	int rc;
413 	uint16_t ntc, len, req_id, buf = 0;
414 
415 	ntc = *next_to_clean;
416 	adapter = rx_ring->adapter;
417 
418 	len = ena_bufs[buf].len;
419 	req_id = ena_bufs[buf].req_id;
420 	rc = validate_rx_req_id(rx_ring, req_id);
421 	if (unlikely(rc != 0))
422 		return (NULL);
423 
424 	rx_info = &rx_ring->rx_buffer_info[req_id];
425 	if (unlikely(rx_info->mbuf == NULL)) {
426 		device_printf(adapter->pdev, "NULL mbuf in rx_info");
427 		return (NULL);
428 	}
429 
430 	ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx\n",
431 	    rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
432 
433 	bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map,
434 	    BUS_DMASYNC_POSTREAD);
435 	mbuf = rx_info->mbuf;
436 	mbuf->m_flags |= M_PKTHDR;
437 	mbuf->m_pkthdr.len = len;
438 	mbuf->m_len = len;
439 	mbuf->m_pkthdr.rcvif = rx_ring->que->adapter->ifp;
440 
441 	/* Fill mbuf with hash key and it's interpretation for optimization */
442 	ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
443 
444 	ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf 0x%p, flags=0x%x, len: %d\n",
445 	    mbuf, mbuf->m_flags, mbuf->m_pkthdr.len);
446 
447 	/* DMA address is not needed anymore, unmap it */
448 	bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map);
449 
450 	rx_info->mbuf = NULL;
451 	rx_ring->free_rx_ids[ntc] = req_id;
452 	ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
453 
454 	/*
455 	 * While we have more than 1 descriptors for one rcvd packet, append
456 	 * other mbufs to the main one
457 	 */
458 	while (--descs) {
459 		++buf;
460 		len = ena_bufs[buf].len;
461 		req_id = ena_bufs[buf].req_id;
462 		rc = validate_rx_req_id(rx_ring, req_id);
463 		if (unlikely(rc != 0)) {
464 			/*
465 			 * If the req_id is invalid, then the device will be
466 			 * reset. In that case we must free all mbufs that
467 			 * were already gathered.
468 			 */
469 			m_freem(mbuf);
470 			return (NULL);
471 		}
472 		rx_info = &rx_ring->rx_buffer_info[req_id];
473 
474 		if (unlikely(rx_info->mbuf == NULL)) {
475 			device_printf(adapter->pdev, "NULL mbuf in rx_info");
476 			/*
477 			 * If one of the required mbufs was not allocated yet,
478 			 * we can break there.
479 			 * All earlier used descriptors will be reallocated
480 			 * later and not used mbufs can be reused.
481 			 * The next_to_clean pointer will not be updated in case
482 			 * of an error, so caller should advance it manually
483 			 * in error handling routine to keep it up to date
484 			 * with hw ring.
485 			 */
486 			m_freem(mbuf);
487 			return (NULL);
488 		}
489 
490 		bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map,
491 		    BUS_DMASYNC_POSTREAD);
492 		if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
493 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
494 			ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p\n",
495 			    mbuf);
496 		}
497 
498 		ena_trace(ENA_DBG | ENA_RXPTH,
499 		    "rx mbuf updated. len %d\n", mbuf->m_pkthdr.len);
500 
501 		/* Free already appended mbuf, it won't be useful anymore */
502 		bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map);
503 		m_freem(rx_info->mbuf);
504 		rx_info->mbuf = NULL;
505 
506 		rx_ring->free_rx_ids[ntc] = req_id;
507 		ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
508 	}
509 
510 	*next_to_clean = ntc;
511 
512 	return (mbuf);
513 }
514 
515 /**
516  * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
517  **/
518 static inline void
519 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
520     struct mbuf *mbuf)
521 {
522 
523 	/* if IP and error */
524 	if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
525 	    ena_rx_ctx->l3_csum_err)) {
526 		/* ipv4 checksum error */
527 		mbuf->m_pkthdr.csum_flags = 0;
528 		counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
529 		ena_trace(ENA_DBG, "RX IPv4 header checksum error\n");
530 		return;
531 	}
532 
533 	/* if TCP/UDP */
534 	if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
535 	    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
536 		if (ena_rx_ctx->l4_csum_err) {
537 			/* TCP/UDP checksum error */
538 			mbuf->m_pkthdr.csum_flags = 0;
539 			counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
540 			ena_trace(ENA_DBG, "RX L4 checksum error\n");
541 		} else {
542 			mbuf->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
543 			mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
544 		}
545 	}
546 }
547 
548 /**
549  * ena_rx_cleanup - handle rx irq
550  * @arg: ring for which irq is being handled
551  **/
552 static int
553 ena_rx_cleanup(struct ena_ring *rx_ring)
554 {
555 	struct ena_adapter *adapter;
556 	struct mbuf *mbuf;
557 	struct ena_com_rx_ctx ena_rx_ctx;
558 	struct ena_com_io_cq* io_cq;
559 	struct ena_com_io_sq* io_sq;
560 	if_t ifp;
561 	uint16_t ena_qid;
562 	uint16_t next_to_clean;
563 	uint32_t refill_required;
564 	uint32_t refill_threshold;
565 	uint32_t do_if_input = 0;
566 	unsigned int qid;
567 	int rc, i;
568 	int budget = RX_BUDGET;
569 #ifdef DEV_NETMAP
570 	int done;
571 #endif /* DEV_NETMAP */
572 
573 	adapter = rx_ring->que->adapter;
574 	ifp = adapter->ifp;
575 	qid = rx_ring->que->id;
576 	ena_qid = ENA_IO_RXQ_IDX(qid);
577 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
578 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
579 	next_to_clean = rx_ring->next_to_clean;
580 
581 #ifdef DEV_NETMAP
582 	if (netmap_rx_irq(adapter->ifp, rx_ring->qid, &done) != NM_IRQ_PASS)
583 		return (0);
584 #endif /* DEV_NETMAP */
585 
586 	ena_trace(ENA_DBG, "rx: qid %d\n", qid);
587 
588 	do {
589 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
590 		ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
591 		ena_rx_ctx.descs = 0;
592 		bus_dmamap_sync(io_cq->cdesc_addr.mem_handle.tag,
593 		    io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_POSTREAD);
594 		rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
595 
596 		if (unlikely(rc != 0))
597 			goto error;
598 
599 		if (unlikely(ena_rx_ctx.descs == 0))
600 			break;
601 
602 		ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. "
603 		    "descs #: %d l3 proto %d l4 proto %d hash: %x\n",
604 		    rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
605 		    ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
606 
607 		/* Receive mbuf from the ring */
608 		mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
609 		    &ena_rx_ctx, &next_to_clean);
610 		bus_dmamap_sync(io_cq->cdesc_addr.mem_handle.tag,
611 		    io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_PREREAD);
612 		/* Exit if we failed to retrieve a buffer */
613 		if (unlikely(mbuf == NULL)) {
614 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
615 				rx_ring->free_rx_ids[next_to_clean] =
616 				    rx_ring->ena_bufs[i].req_id;
617 				next_to_clean =
618 				    ENA_RX_RING_IDX_NEXT(next_to_clean,
619 				    rx_ring->ring_size);
620 
621 			}
622 			break;
623 		}
624 
625 		if (((ifp->if_capenable & IFCAP_RXCSUM) != 0) ||
626 		    ((ifp->if_capenable & IFCAP_RXCSUM_IPV6) != 0)) {
627 			ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
628 		}
629 
630 		counter_enter();
631 		counter_u64_add_protected(rx_ring->rx_stats.bytes,
632 		    mbuf->m_pkthdr.len);
633 		counter_u64_add_protected(adapter->hw_stats.rx_bytes,
634 		    mbuf->m_pkthdr.len);
635 		counter_exit();
636 		/*
637 		 * LRO is only for IP/TCP packets and TCP checksum of the packet
638 		 * should be computed by hardware.
639 		 */
640 		do_if_input = 1;
641 		if (((ifp->if_capenable & IFCAP_LRO) != 0)  &&
642 		    ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
643 		    (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
644 			/*
645 			 * Send to the stack if:
646 			 *  - LRO not enabled, or
647 			 *  - no LRO resources, or
648 			 *  - lro enqueue fails
649 			 */
650 			if ((rx_ring->lro.lro_cnt != 0) &&
651 			    (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
652 					do_if_input = 0;
653 		}
654 		if (do_if_input != 0) {
655 			ena_trace(ENA_DBG | ENA_RXPTH,
656 			    "calling if_input() with mbuf %p\n", mbuf);
657 			(*ifp->if_input)(ifp, mbuf);
658 		}
659 
660 		counter_enter();
661 		counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
662 		counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
663 		counter_exit();
664 	} while (--budget);
665 
666 	rx_ring->next_to_clean = next_to_clean;
667 
668 	refill_required = ena_com_free_q_entries(io_sq);
669 	refill_threshold = min_t(int,
670 	    rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER,
671 	    ENA_RX_REFILL_THRESH_PACKET);
672 
673 	if (refill_required > refill_threshold) {
674 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
675 		ena_refill_rx_bufs(rx_ring, refill_required);
676 	}
677 
678 	tcp_lro_flush_all(&rx_ring->lro);
679 
680 	return (RX_BUDGET - budget);
681 
682 error:
683 	counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1);
684 
685 	/* Too many desc from the device. Trigger reset */
686 	ena_trigger_reset(adapter, ENA_REGS_RESET_TOO_MANY_RX_DESCS);
687 
688 	return (0);
689 }
690 
691 static void
692 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf,
693     bool disable_meta_caching)
694 {
695 	struct ena_com_tx_meta *ena_meta;
696 	struct ether_vlan_header *eh;
697 	struct mbuf *mbuf_next;
698 	u32 mss;
699 	bool offload;
700 	uint16_t etype;
701 	int ehdrlen;
702 	struct ip *ip;
703 	int iphlen;
704 	struct tcphdr *th;
705 	int offset;
706 
707 	offload = false;
708 	ena_meta = &ena_tx_ctx->ena_meta;
709 	mss = mbuf->m_pkthdr.tso_segsz;
710 
711 	if (mss != 0)
712 		offload = true;
713 
714 	if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0)
715 		offload = true;
716 
717 	if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
718 		offload = true;
719 
720 	if (!offload) {
721 		if (disable_meta_caching) {
722 			memset(ena_meta, 0, sizeof(*ena_meta));
723 			ena_tx_ctx->meta_valid = 1;
724 		} else {
725 			ena_tx_ctx->meta_valid = 0;
726 		}
727 		return;
728 	}
729 
730 	/* Determine where frame payload starts. */
731 	eh = mtod(mbuf, struct ether_vlan_header *);
732 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
733 		etype = ntohs(eh->evl_proto);
734 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
735 	} else {
736 		etype = ntohs(eh->evl_encap_proto);
737 		ehdrlen = ETHER_HDR_LEN;
738 	}
739 
740 	mbuf_next = m_getptr(mbuf, ehdrlen, &offset);
741 	ip = (struct ip *)(mtodo(mbuf_next, offset));
742 	iphlen = ip->ip_hl << 2;
743 
744 	mbuf_next = m_getptr(mbuf, iphlen + ehdrlen, &offset);
745 	th = (struct tcphdr *)(mtodo(mbuf_next, offset));
746 
747 	if ((mbuf->m_pkthdr.csum_flags & CSUM_IP) != 0) {
748 		ena_tx_ctx->l3_csum_enable = 1;
749 	}
750 	if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
751 		ena_tx_ctx->tso_enable = 1;
752 		ena_meta->l4_hdr_len = (th->th_off);
753 	}
754 
755 	switch (etype) {
756 	case ETHERTYPE_IP:
757 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
758 		if ((ip->ip_off & htons(IP_DF)) != 0)
759 			ena_tx_ctx->df = 1;
760 		break;
761 	case ETHERTYPE_IPV6:
762 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
763 
764 	default:
765 		break;
766 	}
767 
768 	if (ip->ip_p == IPPROTO_TCP) {
769 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
770 		if ((mbuf->m_pkthdr.csum_flags &
771 		    (CSUM_IP_TCP | CSUM_IP6_TCP)) != 0)
772 			ena_tx_ctx->l4_csum_enable = 1;
773 		else
774 			ena_tx_ctx->l4_csum_enable = 0;
775 	} else if (ip->ip_p == IPPROTO_UDP) {
776 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
777 		if ((mbuf->m_pkthdr.csum_flags &
778 		    (CSUM_IP_UDP | CSUM_IP6_UDP)) != 0)
779 			ena_tx_ctx->l4_csum_enable = 1;
780 		else
781 			ena_tx_ctx->l4_csum_enable = 0;
782 	} else {
783 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
784 		ena_tx_ctx->l4_csum_enable = 0;
785 	}
786 
787 	ena_meta->mss = mss;
788 	ena_meta->l3_hdr_len = iphlen;
789 	ena_meta->l3_hdr_offset = ehdrlen;
790 	ena_tx_ctx->meta_valid = 1;
791 }
792 
793 static int
794 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
795 {
796 	struct ena_adapter *adapter;
797 	struct mbuf *collapsed_mbuf;
798 	int num_frags;
799 
800 	adapter = tx_ring->adapter;
801 	num_frags = ena_mbuf_count(*mbuf);
802 
803 	/* One segment must be reserved for configuration descriptor. */
804 	if (num_frags < adapter->max_tx_sgl_size)
805 		return (0);
806 	counter_u64_add(tx_ring->tx_stats.collapse, 1);
807 
808 	collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
809 	    adapter->max_tx_sgl_size - 1);
810 	if (unlikely(collapsed_mbuf == NULL)) {
811 		counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
812 		return (ENOMEM);
813 	}
814 
815 	/* If mbuf was collapsed succesfully, original mbuf is released. */
816 	*mbuf = collapsed_mbuf;
817 
818 	return (0);
819 }
820 
821 static int
822 ena_tx_map_mbuf(struct ena_ring *tx_ring, struct ena_tx_buffer *tx_info,
823     struct mbuf *mbuf, void **push_hdr, u16 *header_len)
824 {
825 	struct ena_adapter *adapter = tx_ring->adapter;
826 	struct ena_com_buf *ena_buf;
827 	bus_dma_segment_t segs[ENA_BUS_DMA_SEGS];
828 	size_t iseg = 0;
829 	uint32_t mbuf_head_len;
830 	uint16_t offset;
831 	int rc, nsegs;
832 
833 	mbuf_head_len = mbuf->m_len;
834 	tx_info->mbuf = mbuf;
835 	ena_buf = tx_info->bufs;
836 
837 	/*
838 	 * For easier maintaining of the DMA map, map the whole mbuf even if
839 	 * the LLQ is used. The descriptors will be filled using the segments.
840 	 */
841 	rc = bus_dmamap_load_mbuf_sg(adapter->tx_buf_tag, tx_info->dmamap, mbuf,
842 	    segs, &nsegs, BUS_DMA_NOWAIT);
843 	if (unlikely((rc != 0) || (nsegs == 0))) {
844 		ena_trace(ENA_WARNING,
845 		    "dmamap load failed! err: %d nsegs: %d\n", rc, nsegs);
846 		goto dma_error;
847 	}
848 
849 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
850 		/*
851 		 * When the device is LLQ mode, the driver will copy
852 		 * the header into the device memory space.
853 		 * the ena_com layer assumes the header is in a linear
854 		 * memory space.
855 		 * This assumption might be wrong since part of the header
856 		 * can be in the fragmented buffers.
857 		 * First check if header fits in the mbuf. If not, copy it to
858 		 * separate buffer that will be holding linearized data.
859 		 */
860 		*header_len = min_t(uint32_t, mbuf->m_pkthdr.len, tx_ring->tx_max_header_size);
861 
862 		/* If header is in linear space, just point into mbuf's data. */
863 		if (likely(*header_len <= mbuf_head_len)) {
864 			*push_hdr = mbuf->m_data;
865 		/*
866 		 * Otherwise, copy whole portion of header from multiple mbufs
867 		 * to intermediate buffer.
868 		 */
869 		} else {
870 			m_copydata(mbuf, 0, *header_len, tx_ring->push_buf_intermediate_buf);
871 			*push_hdr = tx_ring->push_buf_intermediate_buf;
872 
873 			counter_u64_add(tx_ring->tx_stats.llq_buffer_copy, 1);
874 		}
875 
876 		ena_trace(ENA_DBG | ENA_TXPTH,
877 		    "mbuf: %p header_buf->vaddr: %p push_len: %d\n",
878 		    mbuf, *push_hdr, *header_len);
879 
880 		/* If packet is fitted in LLQ header, no need for DMA segments. */
881 		if (mbuf->m_pkthdr.len <= tx_ring->tx_max_header_size) {
882 			return (0);
883 		} else {
884 			offset = tx_ring->tx_max_header_size;
885 			/*
886 			 * As Header part is mapped to LLQ header, we can skip it and just
887 			 * map the residuum of the mbuf to DMA Segments.
888 			 */
889 			while (offset > 0) {
890 				if (offset >= segs[iseg].ds_len) {
891 					offset -= segs[iseg].ds_len;
892 				} else {
893 					ena_buf->paddr = segs[iseg].ds_addr + offset;
894 					ena_buf->len = segs[iseg].ds_len - offset;
895 					ena_buf++;
896 					tx_info->num_of_bufs++;
897 					offset = 0;
898 				}
899 				iseg++;
900 			}
901 		}
902 	} else {
903 		*push_hdr = NULL;
904 		/*
905 		* header_len is just a hint for the device. Because FreeBSD is not
906 		* giving us information about packet header length and it is not
907 		* guaranteed that all packet headers will be in the 1st mbuf, setting
908 		* header_len to 0 is making the device ignore this value and resolve
909 		* header on it's own.
910 		*/
911 		*header_len = 0;
912 	}
913 
914 	/* Map rest of the mbuf */
915 	while (iseg < nsegs) {
916 		ena_buf->paddr = segs[iseg].ds_addr;
917 		ena_buf->len = segs[iseg].ds_len;
918 		ena_buf++;
919 		iseg++;
920 		tx_info->num_of_bufs++;
921 	}
922 
923 	return (0);
924 
925 dma_error:
926 	counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
927 	tx_info->mbuf = NULL;
928 	return (rc);
929 }
930 
931 static int
932 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
933 {
934 	struct ena_adapter *adapter;
935 	struct ena_tx_buffer *tx_info;
936 	struct ena_com_tx_ctx ena_tx_ctx;
937 	struct ena_com_dev *ena_dev;
938 	struct ena_com_io_sq* io_sq;
939 	void *push_hdr;
940 	uint16_t next_to_use;
941 	uint16_t req_id;
942 	uint16_t ena_qid;
943 	uint16_t header_len;
944 	int rc;
945 	int nb_hw_desc;
946 
947 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
948 	adapter = tx_ring->que->adapter;
949 	ena_dev = adapter->ena_dev;
950 	io_sq = &ena_dev->io_sq_queues[ena_qid];
951 
952 	rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
953 	if (unlikely(rc != 0)) {
954 		ena_trace(ENA_WARNING,
955 		    "Failed to collapse mbuf! err: %d\n", rc);
956 		return (rc);
957 	}
958 
959 	ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes\n", (*mbuf)->m_pkthdr.len);
960 
961 	next_to_use = tx_ring->next_to_use;
962 	req_id = tx_ring->free_tx_ids[next_to_use];
963 	tx_info = &tx_ring->tx_buffer_info[req_id];
964 	tx_info->num_of_bufs = 0;
965 
966 	rc = ena_tx_map_mbuf(tx_ring, tx_info, *mbuf, &push_hdr, &header_len);
967 	if (unlikely(rc != 0)) {
968 		ena_trace(ENA_WARNING, "Failed to map TX mbuf\n");
969 		return (rc);
970 	}
971 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
972 	ena_tx_ctx.ena_bufs = tx_info->bufs;
973 	ena_tx_ctx.push_header = push_hdr;
974 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
975 	ena_tx_ctx.req_id = req_id;
976 	ena_tx_ctx.header_len = header_len;
977 
978 	/* Set flags and meta data */
979 	ena_tx_csum(&ena_tx_ctx, *mbuf, adapter->disable_meta_caching);
980 
981 	if (tx_ring->acum_pkts == DB_THRESHOLD ||
982 	    ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq, &ena_tx_ctx)) {
983 		ena_trace(ENA_DBG | ENA_TXPTH,
984 		    "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
985 		    tx_ring->que->id);
986 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
987 		counter_u64_add(tx_ring->tx_stats.doorbells, 1);
988 		tx_ring->acum_pkts = 0;
989 	}
990 
991 	/* Prepare the packet's descriptors and send them to device */
992 	rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
993 	if (unlikely(rc != 0)) {
994 		if (likely(rc == ENA_COM_NO_MEM)) {
995 			ena_trace(ENA_DBG | ENA_TXPTH,
996 			    "tx ring[%d] if out of space\n", tx_ring->que->id);
997 		} else {
998 			device_printf(adapter->pdev,
999 			    "failed to prepare tx bufs\n");
1000 		}
1001 		counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
1002 		goto dma_error;
1003 	}
1004 
1005 	counter_enter();
1006 	counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
1007 	counter_u64_add_protected(tx_ring->tx_stats.bytes,
1008 	    (*mbuf)->m_pkthdr.len);
1009 
1010 	counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
1011 	counter_u64_add_protected(adapter->hw_stats.tx_bytes,
1012 	    (*mbuf)->m_pkthdr.len);
1013 	counter_exit();
1014 
1015 	tx_info->tx_descs = nb_hw_desc;
1016 	getbinuptime(&tx_info->timestamp);
1017 	tx_info->print_once = true;
1018 
1019 	tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
1020 	    tx_ring->ring_size);
1021 
1022 	/* stop the queue when no more space available, the packet can have up
1023 	 * to sgl_size + 2. one for the meta descriptor and one for header
1024 	 * (if the header is larger than tx_max_header_size).
1025 	 */
1026 	if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1027 	    adapter->max_tx_sgl_size + 2))) {
1028 		ena_trace(ENA_DBG | ENA_TXPTH, "Stop queue %d\n",
1029 		    tx_ring->que->id);
1030 
1031 		tx_ring->running = false;
1032 		counter_u64_add(tx_ring->tx_stats.queue_stop, 1);
1033 
1034 		/* There is a rare condition where this function decides to
1035 		 * stop the queue but meanwhile tx_cleanup() updates
1036 		 * next_to_completion and terminates.
1037 		 * The queue will remain stopped forever.
1038 		 * To solve this issue this function performs mb(), checks
1039 		 * the wakeup condition and wakes up the queue if needed.
1040 		 */
1041 		mb();
1042 
1043 		if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1044 		    ENA_TX_RESUME_THRESH)) {
1045 			tx_ring->running = true;
1046 			counter_u64_add(tx_ring->tx_stats.queue_wakeup, 1);
1047 		}
1048 	}
1049 
1050 	bus_dmamap_sync(adapter->tx_buf_tag, tx_info->dmamap,
1051 	    BUS_DMASYNC_PREWRITE);
1052 
1053 	return (0);
1054 
1055 dma_error:
1056 	tx_info->mbuf = NULL;
1057 	bus_dmamap_unload(adapter->tx_buf_tag, tx_info->dmamap);
1058 
1059 	return (rc);
1060 }
1061 
1062 static void
1063 ena_start_xmit(struct ena_ring *tx_ring)
1064 {
1065 	struct mbuf *mbuf;
1066 	struct ena_adapter *adapter = tx_ring->adapter;
1067 	struct ena_com_io_sq* io_sq;
1068 	int ena_qid;
1069 	int ret = 0;
1070 
1071 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0))
1072 		return;
1073 
1074 	if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)))
1075 		return;
1076 
1077 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
1078 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
1079 
1080 	while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) {
1081 		ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and"
1082 		    " header csum flags %#jx\n",
1083 		    mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
1084 
1085 		if (unlikely(!tx_ring->running)) {
1086 			drbr_putback(adapter->ifp, tx_ring->br, mbuf);
1087 			break;
1088 		}
1089 
1090 		if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) {
1091 			if (ret == ENA_COM_NO_MEM) {
1092 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
1093 			} else if (ret == ENA_COM_NO_SPACE) {
1094 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
1095 			} else {
1096 				m_freem(mbuf);
1097 				drbr_advance(adapter->ifp, tx_ring->br);
1098 			}
1099 
1100 			break;
1101 		}
1102 
1103 		drbr_advance(adapter->ifp, tx_ring->br);
1104 
1105 		if (unlikely((if_getdrvflags(adapter->ifp) &
1106 		    IFF_DRV_RUNNING) == 0))
1107 			return;
1108 
1109 		tx_ring->acum_pkts++;
1110 
1111 		BPF_MTAP(adapter->ifp, mbuf);
1112 	}
1113 
1114 	if (likely(tx_ring->acum_pkts != 0)) {
1115 		/* Trigger the dma engine */
1116 		ena_com_write_sq_doorbell(io_sq);
1117 		counter_u64_add(tx_ring->tx_stats.doorbells, 1);
1118 		tx_ring->acum_pkts = 0;
1119 	}
1120 
1121 	if (unlikely(!tx_ring->running))
1122 		taskqueue_enqueue(tx_ring->que->cleanup_tq,
1123 		    &tx_ring->que->cleanup_task);
1124 }
1125