xref: /freebsd/sys/dev/ena/ena_datapath.c (revision 77013d11e6483b970af25e13c9b892075742f7e5)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  *
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_rss.h"
34 #include "ena.h"
35 #include "ena_datapath.h"
36 #ifdef DEV_NETMAP
37 #include "ena_netmap.h"
38 #endif /* DEV_NETMAP */
39 
40 /*********************************************************************
41  *  Static functions prototypes
42  *********************************************************************/
43 
44 static int	ena_tx_cleanup(struct ena_ring *);
45 static int	ena_rx_cleanup(struct ena_ring *);
46 static inline int validate_tx_req_id(struct ena_ring *, uint16_t);
47 static void	ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
48     struct mbuf *);
49 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *,
50     struct ena_com_rx_ctx *, uint16_t *);
51 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *,
52     struct mbuf *);
53 static void	ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *, bool);
54 static int	ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
55     struct mbuf **mbuf);
56 static int	ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
57 static void	ena_start_xmit(struct ena_ring *);
58 
59 /*********************************************************************
60  *  Global functions
61  *********************************************************************/
62 
63 void
64 ena_cleanup(void *arg, int pending)
65 {
66 	struct ena_que	*que = arg;
67 	struct ena_adapter *adapter = que->adapter;
68 	if_t ifp = adapter->ifp;
69 	struct ena_ring *tx_ring;
70 	struct ena_ring *rx_ring;
71 	struct ena_com_io_cq* io_cq;
72 	struct ena_eth_io_intr_reg intr_reg;
73 	int qid, ena_qid;
74 	int txc, rxc, i;
75 
76 	if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0))
77 		return;
78 
79 	ena_log_io(adapter->pdev, DBG, "MSI-X TX/RX routine\n");
80 
81 	tx_ring = que->tx_ring;
82 	rx_ring = que->rx_ring;
83 	qid = que->id;
84 	ena_qid = ENA_IO_TXQ_IDX(qid);
85 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
86 
87 	tx_ring->first_interrupt = true;
88 	rx_ring->first_interrupt = true;
89 
90 	for (i = 0; i < CLEAN_BUDGET; ++i) {
91 		rxc = ena_rx_cleanup(rx_ring);
92 		txc = ena_tx_cleanup(tx_ring);
93 
94 		if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0))
95 			return;
96 
97 		if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
98 		       break;
99 	}
100 
101 	/* Signal that work is done and unmask interrupt */
102 	ena_com_update_intr_reg(&intr_reg,
103 	    RX_IRQ_INTERVAL,
104 	    TX_IRQ_INTERVAL,
105 	    true);
106 	ena_com_unmask_intr(io_cq, &intr_reg);
107 }
108 
109 void
110 ena_deferred_mq_start(void *arg, int pending)
111 {
112 	struct ena_ring *tx_ring = (struct ena_ring *)arg;
113 	struct ifnet *ifp = tx_ring->adapter->ifp;
114 
115 	while (!drbr_empty(ifp, tx_ring->br) &&
116 	    tx_ring->running &&
117 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
118 		ENA_RING_MTX_LOCK(tx_ring);
119 		ena_start_xmit(tx_ring);
120 		ENA_RING_MTX_UNLOCK(tx_ring);
121 	}
122 }
123 
124 int
125 ena_mq_start(if_t ifp, struct mbuf *m)
126 {
127 	struct ena_adapter *adapter = ifp->if_softc;
128 	struct ena_ring *tx_ring;
129 	int ret, is_drbr_empty;
130 	uint32_t i;
131 
132 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0))
133 		return (ENODEV);
134 
135 	/* Which queue to use */
136 	/*
137 	 * If everything is setup correctly, it should be the
138 	 * same bucket that the current CPU we're on is.
139 	 * It should improve performance.
140 	 */
141 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
142 		i = m->m_pkthdr.flowid % adapter->num_io_queues;
143 	} else {
144 		i = curcpu % adapter->num_io_queues;
145 	}
146 	tx_ring = &adapter->tx_ring[i];
147 
148 	/* Check if drbr is empty before putting packet */
149 	is_drbr_empty = drbr_empty(ifp, tx_ring->br);
150 	ret = drbr_enqueue(ifp, tx_ring->br, m);
151 	if (unlikely(ret != 0)) {
152 		taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
153 		return (ret);
154 	}
155 
156 	if (is_drbr_empty && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
157 		ena_start_xmit(tx_ring);
158 		ENA_RING_MTX_UNLOCK(tx_ring);
159 	} else {
160 		taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
161 	}
162 
163 	return (0);
164 }
165 
166 void
167 ena_qflush(if_t ifp)
168 {
169 	struct ena_adapter *adapter = ifp->if_softc;
170 	struct ena_ring *tx_ring = adapter->tx_ring;
171 	int i;
172 
173 	for(i = 0; i < adapter->num_io_queues; ++i, ++tx_ring)
174 		if (!drbr_empty(ifp, tx_ring->br)) {
175 			ENA_RING_MTX_LOCK(tx_ring);
176 			drbr_flush(ifp, tx_ring->br);
177 			ENA_RING_MTX_UNLOCK(tx_ring);
178 		}
179 
180 	if_qflush(ifp);
181 }
182 
183 /*********************************************************************
184  *  Static functions
185  *********************************************************************/
186 
187 static inline int
188 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
189 {
190 	struct ena_adapter *adapter = tx_ring->adapter;
191 	struct ena_tx_buffer *tx_info = NULL;
192 
193 	if (likely(req_id < tx_ring->ring_size)) {
194 		tx_info = &tx_ring->tx_buffer_info[req_id];
195 		if (tx_info->mbuf != NULL)
196 			return (0);
197 		ena_log(adapter->pdev, ERR,
198 		    "tx_info doesn't have valid mbuf\n");
199 	}
200 
201 	ena_log(adapter->pdev, ERR, "Invalid req_id: %hu\n", req_id);
202 	counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
203 
204 	/* Trigger device reset */
205 	ena_trigger_reset(adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
206 
207 	return (EFAULT);
208 }
209 
210 /**
211  * ena_tx_cleanup - clear sent packets and corresponding descriptors
212  * @tx_ring: ring for which we want to clean packets
213  *
214  * Once packets are sent, we ask the device in a loop for no longer used
215  * descriptors. We find the related mbuf chain in a map (index in an array)
216  * and free it, then update ring state.
217  * This is performed in "endless" loop, updating ring pointers every
218  * TX_COMMIT. The first check of free descriptor is performed before the actual
219  * loop, then repeated at the loop end.
220  **/
221 static int
222 ena_tx_cleanup(struct ena_ring *tx_ring)
223 {
224 	struct ena_adapter *adapter;
225 	struct ena_com_io_cq* io_cq;
226 	uint16_t next_to_clean;
227 	uint16_t req_id;
228 	uint16_t ena_qid;
229 	unsigned int total_done = 0;
230 	int rc;
231 	int commit = TX_COMMIT;
232 	int budget = TX_BUDGET;
233 	int work_done;
234 	bool above_thresh;
235 
236 	adapter = tx_ring->que->adapter;
237 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
238 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
239 	next_to_clean = tx_ring->next_to_clean;
240 
241 #ifdef DEV_NETMAP
242 	if (netmap_tx_irq(adapter->ifp, tx_ring->qid) != NM_IRQ_PASS)
243 		return (0);
244 #endif /* DEV_NETMAP */
245 
246 	do {
247 		struct ena_tx_buffer *tx_info;
248 		struct mbuf *mbuf;
249 
250 		rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
251 		if (unlikely(rc != 0))
252 			break;
253 
254 		rc = validate_tx_req_id(tx_ring, req_id);
255 		if (unlikely(rc != 0))
256 			break;
257 
258 		tx_info = &tx_ring->tx_buffer_info[req_id];
259 
260 		mbuf = tx_info->mbuf;
261 
262 		tx_info->mbuf = NULL;
263 		bintime_clear(&tx_info->timestamp);
264 
265 		bus_dmamap_sync(adapter->tx_buf_tag, tx_info->dmamap,
266 		    BUS_DMASYNC_POSTWRITE);
267 		bus_dmamap_unload(adapter->tx_buf_tag,
268 		    tx_info->dmamap);
269 
270 		ena_log_io(adapter->pdev, DBG, "tx: q %d mbuf %p completed\n",
271 		    tx_ring->qid, mbuf);
272 
273 		m_freem(mbuf);
274 
275 		total_done += tx_info->tx_descs;
276 
277 		tx_ring->free_tx_ids[next_to_clean] = req_id;
278 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
279 		    tx_ring->ring_size);
280 
281 		if (unlikely(--commit == 0)) {
282 			commit = TX_COMMIT;
283 			/* update ring state every TX_COMMIT descriptor */
284 			tx_ring->next_to_clean = next_to_clean;
285 			ena_com_comp_ack(
286 			    &adapter->ena_dev->io_sq_queues[ena_qid],
287 			    total_done);
288 			ena_com_update_dev_comp_head(io_cq);
289 			total_done = 0;
290 		}
291 	} while (likely(--budget));
292 
293 	work_done = TX_BUDGET - budget;
294 
295 	ena_log_io(adapter->pdev, DBG, "tx: q %d done. total pkts: %d\n",
296 	    tx_ring->qid, work_done);
297 
298 	/* If there is still something to commit update ring state */
299 	if (likely(commit != TX_COMMIT)) {
300 		tx_ring->next_to_clean = next_to_clean;
301 		ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
302 		    total_done);
303 		ena_com_update_dev_comp_head(io_cq);
304 	}
305 
306 	/*
307 	 * Need to make the rings circular update visible to
308 	 * ena_xmit_mbuf() before checking for tx_ring->running.
309 	 */
310 	mb();
311 
312 	above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
313 	    ENA_TX_RESUME_THRESH);
314 	if (unlikely(!tx_ring->running && above_thresh)) {
315 		ENA_RING_MTX_LOCK(tx_ring);
316 		above_thresh =
317 		    ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
318 		    ENA_TX_RESUME_THRESH);
319 		if (!tx_ring->running && above_thresh) {
320 			tx_ring->running = true;
321 			counter_u64_add(tx_ring->tx_stats.queue_wakeup, 1);
322 			taskqueue_enqueue(tx_ring->enqueue_tq,
323 			    &tx_ring->enqueue_task);
324 		}
325 		ENA_RING_MTX_UNLOCK(tx_ring);
326 	}
327 
328 	return (work_done);
329 }
330 
331 static void
332 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
333     struct mbuf *mbuf)
334 {
335 	struct ena_adapter *adapter = rx_ring->adapter;
336 
337 	if (likely(ENA_FLAG_ISSET(ENA_FLAG_RSS_ACTIVE, adapter))) {
338 		mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
339 
340 #ifdef RSS
341 		/*
342 		 * Hardware and software RSS are in agreement only when both are
343 		 * configured to Toeplitz algorithm.  This driver configures
344 		 * that algorithm only when software RSS is enabled and uses it.
345 		 */
346 		if (adapter->ena_dev->rss.hash_func != ENA_ADMIN_TOEPLITZ &&
347 		    ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN) {
348 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
349 			return;
350 		}
351 #endif
352 
353 		if (ena_rx_ctx->frag &&
354 		    (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
355 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
356 			return;
357 		}
358 
359 		switch (ena_rx_ctx->l3_proto) {
360 		case ENA_ETH_IO_L3_PROTO_IPV4:
361 			switch (ena_rx_ctx->l4_proto) {
362 			case ENA_ETH_IO_L4_PROTO_TCP:
363 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
364 				break;
365 			case ENA_ETH_IO_L4_PROTO_UDP:
366 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
367 				break;
368 			default:
369 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
370 			}
371 			break;
372 		case ENA_ETH_IO_L3_PROTO_IPV6:
373 			switch (ena_rx_ctx->l4_proto) {
374 			case ENA_ETH_IO_L4_PROTO_TCP:
375 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
376 				break;
377 			case ENA_ETH_IO_L4_PROTO_UDP:
378 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
379 				break;
380 			default:
381 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
382 			}
383 			break;
384 		case ENA_ETH_IO_L3_PROTO_UNKNOWN:
385 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
386 			break;
387 		default:
388 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
389 		}
390 	} else {
391 		mbuf->m_pkthdr.flowid = rx_ring->qid;
392 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
393 	}
394 }
395 
396 /**
397  * ena_rx_mbuf - assemble mbuf from descriptors
398  * @rx_ring: ring for which we want to clean packets
399  * @ena_bufs: buffer info
400  * @ena_rx_ctx: metadata for this packet(s)
401  * @next_to_clean: ring pointer, will be updated only upon success
402  *
403  **/
404 static struct mbuf*
405 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
406     struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
407 {
408 	struct mbuf *mbuf;
409 	struct ena_rx_buffer *rx_info;
410 	struct ena_adapter *adapter;
411 	device_t pdev;
412 	unsigned int descs = ena_rx_ctx->descs;
413 	uint16_t ntc, len, req_id, buf = 0;
414 
415 	ntc = *next_to_clean;
416 	adapter = rx_ring->adapter;
417 	pdev = adapter->pdev;
418 
419 	len = ena_bufs[buf].len;
420 	req_id = ena_bufs[buf].req_id;
421 	rx_info = &rx_ring->rx_buffer_info[req_id];
422 	if (unlikely(rx_info->mbuf == NULL)) {
423 		ena_log(pdev, ERR, "NULL mbuf in rx_info");
424 		return (NULL);
425 	}
426 
427 	ena_log_io(pdev, DBG, "rx_info %p, mbuf %p, paddr %jx\n", rx_info,
428 	    rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
429 
430 	bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map,
431 	    BUS_DMASYNC_POSTREAD);
432 	mbuf = rx_info->mbuf;
433 	mbuf->m_flags |= M_PKTHDR;
434 	mbuf->m_pkthdr.len = len;
435 	mbuf->m_len = len;
436 	/* Only for the first segment the data starts at specific offset */
437 	mbuf->m_data = mtodo(mbuf, ena_rx_ctx->pkt_offset);
438 	ena_log_io(pdev, DBG, "Mbuf data offset=%u\n", ena_rx_ctx->pkt_offset);
439 	mbuf->m_pkthdr.rcvif = rx_ring->que->adapter->ifp;
440 
441 	/* Fill mbuf with hash key and it's interpretation for optimization */
442 	ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
443 
444 	ena_log_io(pdev, DBG, "rx mbuf 0x%p, flags=0x%x, len: %d\n", mbuf,
445 	    mbuf->m_flags, mbuf->m_pkthdr.len);
446 
447 	/* DMA address is not needed anymore, unmap it */
448 	bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map);
449 
450 	rx_info->mbuf = NULL;
451 	rx_ring->free_rx_ids[ntc] = req_id;
452 	ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
453 
454 	/*
455 	 * While we have more than 1 descriptors for one rcvd packet, append
456 	 * other mbufs to the main one
457 	 */
458 	while (--descs) {
459 		++buf;
460 		len = ena_bufs[buf].len;
461 		req_id = ena_bufs[buf].req_id;
462 		rx_info = &rx_ring->rx_buffer_info[req_id];
463 
464 		if (unlikely(rx_info->mbuf == NULL)) {
465 			ena_log(pdev, ERR, "NULL mbuf in rx_info");
466 			/*
467 			 * If one of the required mbufs was not allocated yet,
468 			 * we can break there.
469 			 * All earlier used descriptors will be reallocated
470 			 * later and not used mbufs can be reused.
471 			 * The next_to_clean pointer will not be updated in case
472 			 * of an error, so caller should advance it manually
473 			 * in error handling routine to keep it up to date
474 			 * with hw ring.
475 			 */
476 			m_freem(mbuf);
477 			return (NULL);
478 		}
479 
480 		bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map,
481 		    BUS_DMASYNC_POSTREAD);
482 		if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
483 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
484 			ena_log_io(pdev, WARN, "Failed to append Rx mbuf %p\n",
485 			    mbuf);
486 		}
487 
488 		ena_log_io(pdev, DBG, "rx mbuf updated. len %d\n",
489 		    mbuf->m_pkthdr.len);
490 
491 		/* Free already appended mbuf, it won't be useful anymore */
492 		bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map);
493 		m_freem(rx_info->mbuf);
494 		rx_info->mbuf = NULL;
495 
496 		rx_ring->free_rx_ids[ntc] = req_id;
497 		ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
498 	}
499 
500 	*next_to_clean = ntc;
501 
502 	return (mbuf);
503 }
504 
505 /**
506  * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
507  **/
508 static inline void
509 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
510     struct mbuf *mbuf)
511 {
512 	device_t pdev = rx_ring->adapter->pdev;
513 
514 	/* if IP and error */
515 	if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
516 	    ena_rx_ctx->l3_csum_err)) {
517 		/* ipv4 checksum error */
518 		mbuf->m_pkthdr.csum_flags = 0;
519 		counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
520 		ena_log_io(pdev, DBG, "RX IPv4 header checksum error\n");
521 		return;
522 	}
523 
524 	/* if TCP/UDP */
525 	if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
526 	    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
527 		if (ena_rx_ctx->l4_csum_err) {
528 			/* TCP/UDP checksum error */
529 			mbuf->m_pkthdr.csum_flags = 0;
530 			counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
531 			ena_log_io(pdev, DBG, "RX L4 checksum error\n");
532 		} else {
533 			mbuf->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
534 			mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
535 		}
536 	}
537 }
538 
539 /**
540  * ena_rx_cleanup - handle rx irq
541  * @arg: ring for which irq is being handled
542  **/
543 static int
544 ena_rx_cleanup(struct ena_ring *rx_ring)
545 {
546 	struct ena_adapter *adapter;
547 	device_t pdev;
548 	struct mbuf *mbuf;
549 	struct ena_com_rx_ctx ena_rx_ctx;
550 	struct ena_com_io_cq* io_cq;
551 	struct ena_com_io_sq* io_sq;
552 	enum ena_regs_reset_reason_types reset_reason;
553 	if_t ifp;
554 	uint16_t ena_qid;
555 	uint16_t next_to_clean;
556 	uint32_t refill_required;
557 	uint32_t refill_threshold;
558 	uint32_t do_if_input = 0;
559 	unsigned int qid;
560 	int rc, i;
561 	int budget = RX_BUDGET;
562 #ifdef DEV_NETMAP
563 	int done;
564 #endif /* DEV_NETMAP */
565 
566 	adapter = rx_ring->que->adapter;
567 	pdev = adapter->pdev;
568 	ifp = adapter->ifp;
569 	qid = rx_ring->que->id;
570 	ena_qid = ENA_IO_RXQ_IDX(qid);
571 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
572 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
573 	next_to_clean = rx_ring->next_to_clean;
574 
575 #ifdef DEV_NETMAP
576 	if (netmap_rx_irq(adapter->ifp, rx_ring->qid, &done) != NM_IRQ_PASS)
577 		return (0);
578 #endif /* DEV_NETMAP */
579 
580 	ena_log_io(pdev, DBG, "rx: qid %d\n", qid);
581 
582 	do {
583 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
584 		ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
585 		ena_rx_ctx.descs = 0;
586 		ena_rx_ctx.pkt_offset = 0;
587 
588 		bus_dmamap_sync(io_cq->cdesc_addr.mem_handle.tag,
589 		    io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_POSTREAD);
590 		rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
591 		if (unlikely(rc != 0)) {
592 			if (rc == ENA_COM_NO_SPACE) {
593 				counter_u64_add(rx_ring->rx_stats.bad_desc_num,
594 				    1);
595 				reset_reason = ENA_REGS_RESET_TOO_MANY_RX_DESCS;
596 			} else {
597 				counter_u64_add(rx_ring->rx_stats.bad_req_id,
598 				    1);
599 				reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
600 			}
601 			ena_trigger_reset(adapter, reset_reason);
602 			return (0);
603 		}
604 
605 		if (unlikely(ena_rx_ctx.descs == 0))
606 			break;
607 
608 		ena_log_io(pdev, DBG, "rx: q %d got packet from ena. "
609 		    "descs #: %d l3 proto %d l4 proto %d hash: %x\n",
610 		    rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
611 		    ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
612 
613 		/* Receive mbuf from the ring */
614 		mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
615 		    &ena_rx_ctx, &next_to_clean);
616 		bus_dmamap_sync(io_cq->cdesc_addr.mem_handle.tag,
617 		    io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_PREREAD);
618 		/* Exit if we failed to retrieve a buffer */
619 		if (unlikely(mbuf == NULL)) {
620 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
621 				rx_ring->free_rx_ids[next_to_clean] =
622 				    rx_ring->ena_bufs[i].req_id;
623 				next_to_clean =
624 				    ENA_RX_RING_IDX_NEXT(next_to_clean,
625 				    rx_ring->ring_size);
626 
627 			}
628 			break;
629 		}
630 
631 		if (((ifp->if_capenable & IFCAP_RXCSUM) != 0) ||
632 		    ((ifp->if_capenable & IFCAP_RXCSUM_IPV6) != 0)) {
633 			ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
634 		}
635 
636 		counter_enter();
637 		counter_u64_add_protected(rx_ring->rx_stats.bytes,
638 		    mbuf->m_pkthdr.len);
639 		counter_u64_add_protected(adapter->hw_stats.rx_bytes,
640 		    mbuf->m_pkthdr.len);
641 		counter_exit();
642 		/*
643 		 * LRO is only for IP/TCP packets and TCP checksum of the packet
644 		 * should be computed by hardware.
645 		 */
646 		do_if_input = 1;
647 		if (((ifp->if_capenable & IFCAP_LRO) != 0)  &&
648 		    ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
649 		    (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
650 			/*
651 			 * Send to the stack if:
652 			 *  - LRO not enabled, or
653 			 *  - no LRO resources, or
654 			 *  - lro enqueue fails
655 			 */
656 			if ((rx_ring->lro.lro_cnt != 0) &&
657 			    (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
658 					do_if_input = 0;
659 		}
660 		if (do_if_input != 0) {
661 			ena_log_io(pdev, DBG, "calling if_input() with mbuf %p\n",
662 			    mbuf);
663 			(*ifp->if_input)(ifp, mbuf);
664 		}
665 
666 		counter_enter();
667 		counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
668 		counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
669 		counter_exit();
670 	} while (--budget);
671 
672 	rx_ring->next_to_clean = next_to_clean;
673 
674 	refill_required = ena_com_free_q_entries(io_sq);
675 	refill_threshold = min_t(int,
676 	    rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER,
677 	    ENA_RX_REFILL_THRESH_PACKET);
678 
679 	if (refill_required > refill_threshold) {
680 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
681 		ena_refill_rx_bufs(rx_ring, refill_required);
682 	}
683 
684 	tcp_lro_flush_all(&rx_ring->lro);
685 
686 	return (RX_BUDGET - budget);
687 }
688 
689 static void
690 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf,
691     bool disable_meta_caching)
692 {
693 	struct ena_com_tx_meta *ena_meta;
694 	struct ether_vlan_header *eh;
695 	struct mbuf *mbuf_next;
696 	u32 mss;
697 	bool offload;
698 	uint16_t etype;
699 	int ehdrlen;
700 	struct ip *ip;
701 	int iphlen;
702 	struct tcphdr *th;
703 	int offset;
704 
705 	offload = false;
706 	ena_meta = &ena_tx_ctx->ena_meta;
707 	mss = mbuf->m_pkthdr.tso_segsz;
708 
709 	if (mss != 0)
710 		offload = true;
711 
712 	if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0)
713 		offload = true;
714 
715 	if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
716 		offload = true;
717 
718 	if (!offload) {
719 		if (disable_meta_caching) {
720 			memset(ena_meta, 0, sizeof(*ena_meta));
721 			ena_tx_ctx->meta_valid = 1;
722 		} else {
723 			ena_tx_ctx->meta_valid = 0;
724 		}
725 		return;
726 	}
727 
728 	/* Determine where frame payload starts. */
729 	eh = mtod(mbuf, struct ether_vlan_header *);
730 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
731 		etype = ntohs(eh->evl_proto);
732 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
733 	} else {
734 		etype = ntohs(eh->evl_encap_proto);
735 		ehdrlen = ETHER_HDR_LEN;
736 	}
737 
738 	mbuf_next = m_getptr(mbuf, ehdrlen, &offset);
739 	ip = (struct ip *)(mtodo(mbuf_next, offset));
740 	iphlen = ip->ip_hl << 2;
741 
742 	mbuf_next = m_getptr(mbuf, iphlen + ehdrlen, &offset);
743 	th = (struct tcphdr *)(mtodo(mbuf_next, offset));
744 
745 	if ((mbuf->m_pkthdr.csum_flags & CSUM_IP) != 0) {
746 		ena_tx_ctx->l3_csum_enable = 1;
747 	}
748 	if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
749 		ena_tx_ctx->tso_enable = 1;
750 		ena_meta->l4_hdr_len = (th->th_off);
751 	}
752 
753 	switch (etype) {
754 	case ETHERTYPE_IP:
755 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
756 		if ((ip->ip_off & htons(IP_DF)) != 0)
757 			ena_tx_ctx->df = 1;
758 		break;
759 	case ETHERTYPE_IPV6:
760 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
761 
762 	default:
763 		break;
764 	}
765 
766 	if (ip->ip_p == IPPROTO_TCP) {
767 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
768 		if ((mbuf->m_pkthdr.csum_flags &
769 		    (CSUM_IP_TCP | CSUM_IP6_TCP)) != 0)
770 			ena_tx_ctx->l4_csum_enable = 1;
771 		else
772 			ena_tx_ctx->l4_csum_enable = 0;
773 	} else if (ip->ip_p == IPPROTO_UDP) {
774 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
775 		if ((mbuf->m_pkthdr.csum_flags &
776 		    (CSUM_IP_UDP | CSUM_IP6_UDP)) != 0)
777 			ena_tx_ctx->l4_csum_enable = 1;
778 		else
779 			ena_tx_ctx->l4_csum_enable = 0;
780 	} else {
781 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
782 		ena_tx_ctx->l4_csum_enable = 0;
783 	}
784 
785 	ena_meta->mss = mss;
786 	ena_meta->l3_hdr_len = iphlen;
787 	ena_meta->l3_hdr_offset = ehdrlen;
788 	ena_tx_ctx->meta_valid = 1;
789 }
790 
791 static int
792 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
793 {
794 	struct ena_adapter *adapter;
795 	struct mbuf *collapsed_mbuf;
796 	int num_frags;
797 
798 	adapter = tx_ring->adapter;
799 	num_frags = ena_mbuf_count(*mbuf);
800 
801 	/* One segment must be reserved for configuration descriptor. */
802 	if (num_frags < adapter->max_tx_sgl_size)
803 		return (0);
804 	counter_u64_add(tx_ring->tx_stats.collapse, 1);
805 
806 	collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
807 	    adapter->max_tx_sgl_size - 1);
808 	if (unlikely(collapsed_mbuf == NULL)) {
809 		counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
810 		return (ENOMEM);
811 	}
812 
813 	/* If mbuf was collapsed succesfully, original mbuf is released. */
814 	*mbuf = collapsed_mbuf;
815 
816 	return (0);
817 }
818 
819 static int
820 ena_tx_map_mbuf(struct ena_ring *tx_ring, struct ena_tx_buffer *tx_info,
821     struct mbuf *mbuf, void **push_hdr, u16 *header_len)
822 {
823 	struct ena_adapter *adapter = tx_ring->adapter;
824 	struct ena_com_buf *ena_buf;
825 	bus_dma_segment_t segs[ENA_BUS_DMA_SEGS];
826 	size_t iseg = 0;
827 	uint32_t mbuf_head_len;
828 	uint16_t offset;
829 	int rc, nsegs;
830 
831 	mbuf_head_len = mbuf->m_len;
832 	tx_info->mbuf = mbuf;
833 	ena_buf = tx_info->bufs;
834 
835 	/*
836 	 * For easier maintaining of the DMA map, map the whole mbuf even if
837 	 * the LLQ is used. The descriptors will be filled using the segments.
838 	 */
839 	rc = bus_dmamap_load_mbuf_sg(adapter->tx_buf_tag, tx_info->dmamap, mbuf,
840 	    segs, &nsegs, BUS_DMA_NOWAIT);
841 	if (unlikely((rc != 0) || (nsegs == 0))) {
842 		ena_log_io(adapter->pdev, WARN,
843 		    "dmamap load failed! err: %d nsegs: %d\n", rc, nsegs);
844 		goto dma_error;
845 	}
846 
847 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
848 		/*
849 		 * When the device is LLQ mode, the driver will copy
850 		 * the header into the device memory space.
851 		 * the ena_com layer assumes the header is in a linear
852 		 * memory space.
853 		 * This assumption might be wrong since part of the header
854 		 * can be in the fragmented buffers.
855 		 * First check if header fits in the mbuf. If not, copy it to
856 		 * separate buffer that will be holding linearized data.
857 		 */
858 		*header_len = min_t(uint32_t, mbuf->m_pkthdr.len, tx_ring->tx_max_header_size);
859 
860 		/* If header is in linear space, just point into mbuf's data. */
861 		if (likely(*header_len <= mbuf_head_len)) {
862 			*push_hdr = mbuf->m_data;
863 		/*
864 		 * Otherwise, copy whole portion of header from multiple mbufs
865 		 * to intermediate buffer.
866 		 */
867 		} else {
868 			m_copydata(mbuf, 0, *header_len, tx_ring->push_buf_intermediate_buf);
869 			*push_hdr = tx_ring->push_buf_intermediate_buf;
870 
871 			counter_u64_add(tx_ring->tx_stats.llq_buffer_copy, 1);
872 		}
873 
874 		ena_log_io(adapter->pdev, DBG, "mbuf: %p ""header_buf->vaddr: %p "
875 		    "push_len: %d\n", mbuf, *push_hdr, *header_len);
876 
877 		/* If packet is fitted in LLQ header, no need for DMA segments. */
878 		if (mbuf->m_pkthdr.len <= tx_ring->tx_max_header_size) {
879 			return (0);
880 		} else {
881 			offset = tx_ring->tx_max_header_size;
882 			/*
883 			 * As Header part is mapped to LLQ header, we can skip it and just
884 			 * map the residuum of the mbuf to DMA Segments.
885 			 */
886 			while (offset > 0) {
887 				if (offset >= segs[iseg].ds_len) {
888 					offset -= segs[iseg].ds_len;
889 				} else {
890 					ena_buf->paddr = segs[iseg].ds_addr + offset;
891 					ena_buf->len = segs[iseg].ds_len - offset;
892 					ena_buf++;
893 					tx_info->num_of_bufs++;
894 					offset = 0;
895 				}
896 				iseg++;
897 			}
898 		}
899 	} else {
900 		*push_hdr = NULL;
901 		/*
902 		* header_len is just a hint for the device. Because FreeBSD is not
903 		* giving us information about packet header length and it is not
904 		* guaranteed that all packet headers will be in the 1st mbuf, setting
905 		* header_len to 0 is making the device ignore this value and resolve
906 		* header on it's own.
907 		*/
908 		*header_len = 0;
909 	}
910 
911 	/* Map rest of the mbuf */
912 	while (iseg < nsegs) {
913 		ena_buf->paddr = segs[iseg].ds_addr;
914 		ena_buf->len = segs[iseg].ds_len;
915 		ena_buf++;
916 		iseg++;
917 		tx_info->num_of_bufs++;
918 	}
919 
920 	return (0);
921 
922 dma_error:
923 	counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
924 	tx_info->mbuf = NULL;
925 	return (rc);
926 }
927 
928 static int
929 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
930 {
931 	struct ena_adapter *adapter;
932 	device_t pdev;
933 	struct ena_tx_buffer *tx_info;
934 	struct ena_com_tx_ctx ena_tx_ctx;
935 	struct ena_com_dev *ena_dev;
936 	struct ena_com_io_sq* io_sq;
937 	void *push_hdr;
938 	uint16_t next_to_use;
939 	uint16_t req_id;
940 	uint16_t ena_qid;
941 	uint16_t header_len;
942 	int rc;
943 	int nb_hw_desc;
944 
945 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
946 	adapter = tx_ring->que->adapter;
947 	pdev = adapter->pdev;
948 	ena_dev = adapter->ena_dev;
949 	io_sq = &ena_dev->io_sq_queues[ena_qid];
950 
951 	rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
952 	if (unlikely(rc != 0)) {
953 		ena_log_io(pdev, WARN, "Failed to collapse mbuf! err: %d\n",
954 		    rc);
955 		return (rc);
956 	}
957 
958 	ena_log_io(pdev, DBG, "Tx: %d bytes\n", (*mbuf)->m_pkthdr.len);
959 
960 	next_to_use = tx_ring->next_to_use;
961 	req_id = tx_ring->free_tx_ids[next_to_use];
962 	tx_info = &tx_ring->tx_buffer_info[req_id];
963 	tx_info->num_of_bufs = 0;
964 
965 	rc = ena_tx_map_mbuf(tx_ring, tx_info, *mbuf, &push_hdr, &header_len);
966 	if (unlikely(rc != 0)) {
967 		ena_log_io(pdev, WARN, "Failed to map TX mbuf\n");
968 		return (rc);
969 	}
970 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
971 	ena_tx_ctx.ena_bufs = tx_info->bufs;
972 	ena_tx_ctx.push_header = push_hdr;
973 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
974 	ena_tx_ctx.req_id = req_id;
975 	ena_tx_ctx.header_len = header_len;
976 
977 	/* Set flags and meta data */
978 	ena_tx_csum(&ena_tx_ctx, *mbuf, adapter->disable_meta_caching);
979 
980 	if (tx_ring->acum_pkts == DB_THRESHOLD ||
981 	    ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq, &ena_tx_ctx)) {
982 		ena_log_io(pdev, DBG,
983 		    "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
984 		    tx_ring->que->id);
985 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
986 		counter_u64_add(tx_ring->tx_stats.doorbells, 1);
987 		tx_ring->acum_pkts = 0;
988 	}
989 
990 	/* Prepare the packet's descriptors and send them to device */
991 	rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
992 	if (unlikely(rc != 0)) {
993 		if (likely(rc == ENA_COM_NO_MEM)) {
994 			ena_log_io(pdev, DBG, "tx ring[%d] is out of space\n",
995 			    tx_ring->que->id);
996 		} else {
997 			ena_log(pdev, ERR, "failed to prepare tx bufs\n");
998 		}
999 		counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
1000 		goto dma_error;
1001 	}
1002 
1003 	counter_enter();
1004 	counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
1005 	counter_u64_add_protected(tx_ring->tx_stats.bytes,
1006 	    (*mbuf)->m_pkthdr.len);
1007 
1008 	counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
1009 	counter_u64_add_protected(adapter->hw_stats.tx_bytes,
1010 	    (*mbuf)->m_pkthdr.len);
1011 	counter_exit();
1012 
1013 	tx_info->tx_descs = nb_hw_desc;
1014 	getbinuptime(&tx_info->timestamp);
1015 	tx_info->print_once = true;
1016 
1017 	tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
1018 	    tx_ring->ring_size);
1019 
1020 	/* stop the queue when no more space available, the packet can have up
1021 	 * to sgl_size + 2. one for the meta descriptor and one for header
1022 	 * (if the header is larger than tx_max_header_size).
1023 	 */
1024 	if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1025 	    adapter->max_tx_sgl_size + 2))) {
1026 		ena_log_io(pdev, DBG, "Stop queue %d\n", tx_ring->que->id);
1027 
1028 		tx_ring->running = false;
1029 		counter_u64_add(tx_ring->tx_stats.queue_stop, 1);
1030 
1031 		/* There is a rare condition where this function decides to
1032 		 * stop the queue but meanwhile tx_cleanup() updates
1033 		 * next_to_completion and terminates.
1034 		 * The queue will remain stopped forever.
1035 		 * To solve this issue this function performs mb(), checks
1036 		 * the wakeup condition and wakes up the queue if needed.
1037 		 */
1038 		mb();
1039 
1040 		if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1041 		    ENA_TX_RESUME_THRESH)) {
1042 			tx_ring->running = true;
1043 			counter_u64_add(tx_ring->tx_stats.queue_wakeup, 1);
1044 		}
1045 	}
1046 
1047 	bus_dmamap_sync(adapter->tx_buf_tag, tx_info->dmamap,
1048 	    BUS_DMASYNC_PREWRITE);
1049 
1050 	return (0);
1051 
1052 dma_error:
1053 	tx_info->mbuf = NULL;
1054 	bus_dmamap_unload(adapter->tx_buf_tag, tx_info->dmamap);
1055 
1056 	return (rc);
1057 }
1058 
1059 static void
1060 ena_start_xmit(struct ena_ring *tx_ring)
1061 {
1062 	struct mbuf *mbuf;
1063 	struct ena_adapter *adapter = tx_ring->adapter;
1064 	struct ena_com_io_sq* io_sq;
1065 	int ena_qid;
1066 	int ret = 0;
1067 
1068 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0))
1069 		return;
1070 
1071 	if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)))
1072 		return;
1073 
1074 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
1075 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
1076 
1077 	while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) {
1078 		ena_log_io(adapter->pdev, DBG,
1079 		    "\ndequeued mbuf %p with flags %#x and header csum flags %#jx\n",
1080 		    mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
1081 
1082 		if (unlikely(!tx_ring->running)) {
1083 			drbr_putback(adapter->ifp, tx_ring->br, mbuf);
1084 			break;
1085 		}
1086 
1087 		if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) {
1088 			if (ret == ENA_COM_NO_MEM) {
1089 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
1090 			} else if (ret == ENA_COM_NO_SPACE) {
1091 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
1092 			} else {
1093 				m_freem(mbuf);
1094 				drbr_advance(adapter->ifp, tx_ring->br);
1095 			}
1096 
1097 			break;
1098 		}
1099 
1100 		drbr_advance(adapter->ifp, tx_ring->br);
1101 
1102 		if (unlikely((if_getdrvflags(adapter->ifp) &
1103 		    IFF_DRV_RUNNING) == 0))
1104 			return;
1105 
1106 		tx_ring->acum_pkts++;
1107 
1108 		BPF_MTAP(adapter->ifp, mbuf);
1109 	}
1110 
1111 	if (likely(tx_ring->acum_pkts != 0)) {
1112 		/* Trigger the dma engine */
1113 		ena_com_write_sq_doorbell(io_sq);
1114 		counter_u64_add(tx_ring->tx_stats.doorbells, 1);
1115 		tx_ring->acum_pkts = 0;
1116 	}
1117 
1118 	if (unlikely(!tx_ring->running))
1119 		taskqueue_enqueue(tx_ring->que->cleanup_tq,
1120 		    &tx_ring->que->cleanup_task);
1121 }
1122