xref: /freebsd/sys/dev/ena/ena_datapath.c (revision 6be3386466ab79a84b48429ae66244f21526d3df)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  *
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_rss.h"
34 #include "ena.h"
35 #include "ena_datapath.h"
36 #ifdef DEV_NETMAP
37 #include "ena_netmap.h"
38 #endif /* DEV_NETMAP */
39 
40 /*********************************************************************
41  *  Static functions prototypes
42  *********************************************************************/
43 
44 static int	ena_tx_cleanup(struct ena_ring *);
45 static int	ena_rx_cleanup(struct ena_ring *);
46 static inline int validate_tx_req_id(struct ena_ring *, uint16_t);
47 static void	ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
48     struct mbuf *);
49 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *,
50     struct ena_com_rx_ctx *, uint16_t *);
51 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *,
52     struct mbuf *);
53 static void	ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *, bool);
54 static int	ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
55     struct mbuf **mbuf);
56 static int	ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
57 static void	ena_start_xmit(struct ena_ring *);
58 
59 /*********************************************************************
60  *  Global functions
61  *********************************************************************/
62 
63 void
64 ena_cleanup(void *arg, int pending)
65 {
66 	struct ena_que	*que = arg;
67 	struct ena_adapter *adapter = que->adapter;
68 	if_t ifp = adapter->ifp;
69 	struct ena_ring *tx_ring;
70 	struct ena_ring *rx_ring;
71 	struct ena_com_io_cq* io_cq;
72 	struct ena_eth_io_intr_reg intr_reg;
73 	int qid, ena_qid;
74 	int txc, rxc, i;
75 
76 	if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0))
77 		return;
78 
79 	ena_trace(NULL, ENA_DBG, "MSI-X TX/RX routine\n");
80 
81 	tx_ring = que->tx_ring;
82 	rx_ring = que->rx_ring;
83 	qid = que->id;
84 	ena_qid = ENA_IO_TXQ_IDX(qid);
85 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
86 
87 	tx_ring->first_interrupt = true;
88 	rx_ring->first_interrupt = true;
89 
90 	for (i = 0; i < CLEAN_BUDGET; ++i) {
91 		rxc = ena_rx_cleanup(rx_ring);
92 		txc = ena_tx_cleanup(tx_ring);
93 
94 		if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0))
95 			return;
96 
97 		if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
98 		       break;
99 	}
100 
101 	/* Signal that work is done and unmask interrupt */
102 	ena_com_update_intr_reg(&intr_reg,
103 	    RX_IRQ_INTERVAL,
104 	    TX_IRQ_INTERVAL,
105 	    true);
106 	ena_com_unmask_intr(io_cq, &intr_reg);
107 }
108 
109 void
110 ena_deferred_mq_start(void *arg, int pending)
111 {
112 	struct ena_ring *tx_ring = (struct ena_ring *)arg;
113 	struct ifnet *ifp = tx_ring->adapter->ifp;
114 
115 	while (!drbr_empty(ifp, tx_ring->br) &&
116 	    tx_ring->running &&
117 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
118 		ENA_RING_MTX_LOCK(tx_ring);
119 		ena_start_xmit(tx_ring);
120 		ENA_RING_MTX_UNLOCK(tx_ring);
121 	}
122 }
123 
124 int
125 ena_mq_start(if_t ifp, struct mbuf *m)
126 {
127 	struct ena_adapter *adapter = ifp->if_softc;
128 	struct ena_ring *tx_ring;
129 	int ret, is_drbr_empty;
130 	uint32_t i;
131 
132 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0))
133 		return (ENODEV);
134 
135 	/* Which queue to use */
136 	/*
137 	 * If everything is setup correctly, it should be the
138 	 * same bucket that the current CPU we're on is.
139 	 * It should improve performance.
140 	 */
141 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
142 		i = m->m_pkthdr.flowid % adapter->num_io_queues;
143 	} else {
144 		i = curcpu % adapter->num_io_queues;
145 	}
146 	tx_ring = &adapter->tx_ring[i];
147 
148 	/* Check if drbr is empty before putting packet */
149 	is_drbr_empty = drbr_empty(ifp, tx_ring->br);
150 	ret = drbr_enqueue(ifp, tx_ring->br, m);
151 	if (unlikely(ret != 0)) {
152 		taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
153 		return (ret);
154 	}
155 
156 	if (is_drbr_empty && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
157 		ena_start_xmit(tx_ring);
158 		ENA_RING_MTX_UNLOCK(tx_ring);
159 	} else {
160 		taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
161 	}
162 
163 	return (0);
164 }
165 
166 void
167 ena_qflush(if_t ifp)
168 {
169 	struct ena_adapter *adapter = ifp->if_softc;
170 	struct ena_ring *tx_ring = adapter->tx_ring;
171 	int i;
172 
173 	for(i = 0; i < adapter->num_io_queues; ++i, ++tx_ring)
174 		if (!drbr_empty(ifp, tx_ring->br)) {
175 			ENA_RING_MTX_LOCK(tx_ring);
176 			drbr_flush(ifp, tx_ring->br);
177 			ENA_RING_MTX_UNLOCK(tx_ring);
178 		}
179 
180 	if_qflush(ifp);
181 }
182 
183 /*********************************************************************
184  *  Static functions
185  *********************************************************************/
186 
187 static inline int
188 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
189 {
190 	struct ena_adapter *adapter = tx_ring->adapter;
191 	struct ena_tx_buffer *tx_info = NULL;
192 
193 	if (likely(req_id < tx_ring->ring_size)) {
194 		tx_info = &tx_ring->tx_buffer_info[req_id];
195 		if (tx_info->mbuf != NULL)
196 			return (0);
197 		device_printf(adapter->pdev,
198 		    "tx_info doesn't have valid mbuf\n");
199 	}
200 
201 	device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id);
202 	counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
203 
204 	/* Trigger device reset */
205 	ena_trigger_reset(adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
206 
207 	return (EFAULT);
208 }
209 
210 /**
211  * ena_tx_cleanup - clear sent packets and corresponding descriptors
212  * @tx_ring: ring for which we want to clean packets
213  *
214  * Once packets are sent, we ask the device in a loop for no longer used
215  * descriptors. We find the related mbuf chain in a map (index in an array)
216  * and free it, then update ring state.
217  * This is performed in "endless" loop, updating ring pointers every
218  * TX_COMMIT. The first check of free descriptor is performed before the actual
219  * loop, then repeated at the loop end.
220  **/
221 static int
222 ena_tx_cleanup(struct ena_ring *tx_ring)
223 {
224 	struct ena_adapter *adapter;
225 	struct ena_com_io_cq* io_cq;
226 	uint16_t next_to_clean;
227 	uint16_t req_id;
228 	uint16_t ena_qid;
229 	unsigned int total_done = 0;
230 	int rc;
231 	int commit = TX_COMMIT;
232 	int budget = TX_BUDGET;
233 	int work_done;
234 	bool above_thresh;
235 
236 	adapter = tx_ring->que->adapter;
237 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
238 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
239 	next_to_clean = tx_ring->next_to_clean;
240 
241 #ifdef DEV_NETMAP
242 	if (netmap_tx_irq(adapter->ifp, tx_ring->qid) != NM_IRQ_PASS)
243 		return (0);
244 #endif /* DEV_NETMAP */
245 
246 	do {
247 		struct ena_tx_buffer *tx_info;
248 		struct mbuf *mbuf;
249 
250 		rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
251 		if (unlikely(rc != 0))
252 			break;
253 
254 		rc = validate_tx_req_id(tx_ring, req_id);
255 		if (unlikely(rc != 0))
256 			break;
257 
258 		tx_info = &tx_ring->tx_buffer_info[req_id];
259 
260 		mbuf = tx_info->mbuf;
261 
262 		tx_info->mbuf = NULL;
263 		bintime_clear(&tx_info->timestamp);
264 
265 		bus_dmamap_sync(adapter->tx_buf_tag, tx_info->dmamap,
266 		    BUS_DMASYNC_POSTWRITE);
267 		bus_dmamap_unload(adapter->tx_buf_tag,
268 		    tx_info->dmamap);
269 
270 		ena_trace(NULL, ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed\n",
271 		    tx_ring->qid, mbuf);
272 
273 		m_freem(mbuf);
274 
275 		total_done += tx_info->tx_descs;
276 
277 		tx_ring->free_tx_ids[next_to_clean] = req_id;
278 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
279 		    tx_ring->ring_size);
280 
281 		if (unlikely(--commit == 0)) {
282 			commit = TX_COMMIT;
283 			/* update ring state every TX_COMMIT descriptor */
284 			tx_ring->next_to_clean = next_to_clean;
285 			ena_com_comp_ack(
286 			    &adapter->ena_dev->io_sq_queues[ena_qid],
287 			    total_done);
288 			ena_com_update_dev_comp_head(io_cq);
289 			total_done = 0;
290 		}
291 	} while (likely(--budget));
292 
293 	work_done = TX_BUDGET - budget;
294 
295 	ena_trace(NULL, ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d\n",
296 	tx_ring->qid, work_done);
297 
298 	/* If there is still something to commit update ring state */
299 	if (likely(commit != TX_COMMIT)) {
300 		tx_ring->next_to_clean = next_to_clean;
301 		ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
302 		    total_done);
303 		ena_com_update_dev_comp_head(io_cq);
304 	}
305 
306 	/*
307 	 * Need to make the rings circular update visible to
308 	 * ena_xmit_mbuf() before checking for tx_ring->running.
309 	 */
310 	mb();
311 
312 	above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
313 	    ENA_TX_RESUME_THRESH);
314 	if (unlikely(!tx_ring->running && above_thresh)) {
315 		ENA_RING_MTX_LOCK(tx_ring);
316 		above_thresh =
317 		    ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
318 		    ENA_TX_RESUME_THRESH);
319 		if (!tx_ring->running && above_thresh) {
320 			tx_ring->running = true;
321 			counter_u64_add(tx_ring->tx_stats.queue_wakeup, 1);
322 			taskqueue_enqueue(tx_ring->enqueue_tq,
323 			    &tx_ring->enqueue_task);
324 		}
325 		ENA_RING_MTX_UNLOCK(tx_ring);
326 	}
327 
328 	return (work_done);
329 }
330 
331 static void
332 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
333     struct mbuf *mbuf)
334 {
335 	struct ena_adapter *adapter = rx_ring->adapter;
336 
337 	if (likely(ENA_FLAG_ISSET(ENA_FLAG_RSS_ACTIVE, adapter))) {
338 		mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
339 
340 #ifdef RSS
341 		/*
342 		 * Hardware and software RSS are in agreement only when both are
343 		 * configured to Toeplitz algorithm.  This driver configures
344 		 * that algorithm only when software RSS is enabled and uses it.
345 		 */
346 		if (adapter->ena_dev->rss.hash_func != ENA_ADMIN_TOEPLITZ &&
347 		    ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN) {
348 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
349 			return;
350 		}
351 #endif
352 
353 		if (ena_rx_ctx->frag &&
354 		    (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
355 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
356 			return;
357 		}
358 
359 		switch (ena_rx_ctx->l3_proto) {
360 		case ENA_ETH_IO_L3_PROTO_IPV4:
361 			switch (ena_rx_ctx->l4_proto) {
362 			case ENA_ETH_IO_L4_PROTO_TCP:
363 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
364 				break;
365 			case ENA_ETH_IO_L4_PROTO_UDP:
366 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
367 				break;
368 			default:
369 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
370 			}
371 			break;
372 		case ENA_ETH_IO_L3_PROTO_IPV6:
373 			switch (ena_rx_ctx->l4_proto) {
374 			case ENA_ETH_IO_L4_PROTO_TCP:
375 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
376 				break;
377 			case ENA_ETH_IO_L4_PROTO_UDP:
378 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
379 				break;
380 			default:
381 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
382 			}
383 			break;
384 		case ENA_ETH_IO_L3_PROTO_UNKNOWN:
385 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
386 			break;
387 		default:
388 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
389 		}
390 	} else {
391 		mbuf->m_pkthdr.flowid = rx_ring->qid;
392 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
393 	}
394 }
395 
396 /**
397  * ena_rx_mbuf - assemble mbuf from descriptors
398  * @rx_ring: ring for which we want to clean packets
399  * @ena_bufs: buffer info
400  * @ena_rx_ctx: metadata for this packet(s)
401  * @next_to_clean: ring pointer, will be updated only upon success
402  *
403  **/
404 static struct mbuf*
405 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
406     struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
407 {
408 	struct mbuf *mbuf;
409 	struct ena_rx_buffer *rx_info;
410 	struct ena_adapter *adapter;
411 	unsigned int descs = ena_rx_ctx->descs;
412 	uint16_t ntc, len, req_id, buf = 0;
413 
414 	ntc = *next_to_clean;
415 	adapter = rx_ring->adapter;
416 
417 	len = ena_bufs[buf].len;
418 	req_id = ena_bufs[buf].req_id;
419 	rx_info = &rx_ring->rx_buffer_info[req_id];
420 	if (unlikely(rx_info->mbuf == NULL)) {
421 		device_printf(adapter->pdev, "NULL mbuf in rx_info");
422 		return (NULL);
423 	}
424 
425 	ena_trace(NULL, ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx\n",
426 	    rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
427 
428 	bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map,
429 	    BUS_DMASYNC_POSTREAD);
430 	mbuf = rx_info->mbuf;
431 	mbuf->m_flags |= M_PKTHDR;
432 	mbuf->m_pkthdr.len = len;
433 	mbuf->m_len = len;
434 	// Only for the first segment the data starts at specific offset
435 	mbuf->m_data = mtodo(mbuf, ena_rx_ctx->pkt_offset);
436 	ena_trace(NULL, ENA_DBG | ENA_RXPTH,
437 		"Mbuf data offset=%u\n", ena_rx_ctx->pkt_offset);
438 	mbuf->m_pkthdr.rcvif = rx_ring->que->adapter->ifp;
439 
440 	/* Fill mbuf with hash key and it's interpretation for optimization */
441 	ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
442 
443 	ena_trace(NULL, ENA_DBG | ENA_RXPTH, "rx mbuf 0x%p, flags=0x%x, len: %d\n",
444 	    mbuf, mbuf->m_flags, mbuf->m_pkthdr.len);
445 
446 	/* DMA address is not needed anymore, unmap it */
447 	bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map);
448 
449 	rx_info->mbuf = NULL;
450 	rx_ring->free_rx_ids[ntc] = req_id;
451 	ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
452 
453 	/*
454 	 * While we have more than 1 descriptors for one rcvd packet, append
455 	 * other mbufs to the main one
456 	 */
457 	while (--descs) {
458 		++buf;
459 		len = ena_bufs[buf].len;
460 		req_id = ena_bufs[buf].req_id;
461 		rx_info = &rx_ring->rx_buffer_info[req_id];
462 
463 		if (unlikely(rx_info->mbuf == NULL)) {
464 			device_printf(adapter->pdev, "NULL mbuf in rx_info");
465 			/*
466 			 * If one of the required mbufs was not allocated yet,
467 			 * we can break there.
468 			 * All earlier used descriptors will be reallocated
469 			 * later and not used mbufs can be reused.
470 			 * The next_to_clean pointer will not be updated in case
471 			 * of an error, so caller should advance it manually
472 			 * in error handling routine to keep it up to date
473 			 * with hw ring.
474 			 */
475 			m_freem(mbuf);
476 			return (NULL);
477 		}
478 
479 		bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map,
480 		    BUS_DMASYNC_POSTREAD);
481 		if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
482 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
483 			ena_trace(NULL, ENA_WARNING, "Failed to append Rx mbuf %p\n",
484 			    mbuf);
485 		}
486 
487 		ena_trace(NULL, ENA_DBG | ENA_RXPTH,
488 		    "rx mbuf updated. len %d\n", mbuf->m_pkthdr.len);
489 
490 		/* Free already appended mbuf, it won't be useful anymore */
491 		bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map);
492 		m_freem(rx_info->mbuf);
493 		rx_info->mbuf = NULL;
494 
495 		rx_ring->free_rx_ids[ntc] = req_id;
496 		ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
497 	}
498 
499 	*next_to_clean = ntc;
500 
501 	return (mbuf);
502 }
503 
504 /**
505  * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
506  **/
507 static inline void
508 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
509     struct mbuf *mbuf)
510 {
511 
512 	/* if IP and error */
513 	if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
514 	    ena_rx_ctx->l3_csum_err)) {
515 		/* ipv4 checksum error */
516 		mbuf->m_pkthdr.csum_flags = 0;
517 		counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
518 		ena_trace(NULL, ENA_DBG, "RX IPv4 header checksum error\n");
519 		return;
520 	}
521 
522 	/* if TCP/UDP */
523 	if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
524 	    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
525 		if (ena_rx_ctx->l4_csum_err) {
526 			/* TCP/UDP checksum error */
527 			mbuf->m_pkthdr.csum_flags = 0;
528 			counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
529 			ena_trace(NULL, ENA_DBG, "RX L4 checksum error\n");
530 		} else {
531 			mbuf->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
532 			mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
533 		}
534 	}
535 }
536 
537 /**
538  * ena_rx_cleanup - handle rx irq
539  * @arg: ring for which irq is being handled
540  **/
541 static int
542 ena_rx_cleanup(struct ena_ring *rx_ring)
543 {
544 	struct ena_adapter *adapter;
545 	struct mbuf *mbuf;
546 	struct ena_com_rx_ctx ena_rx_ctx;
547 	struct ena_com_io_cq* io_cq;
548 	struct ena_com_io_sq* io_sq;
549 	enum ena_regs_reset_reason_types reset_reason;
550 	if_t ifp;
551 	uint16_t ena_qid;
552 	uint16_t next_to_clean;
553 	uint32_t refill_required;
554 	uint32_t refill_threshold;
555 	uint32_t do_if_input = 0;
556 	unsigned int qid;
557 	int rc, i;
558 	int budget = RX_BUDGET;
559 #ifdef DEV_NETMAP
560 	int done;
561 #endif /* DEV_NETMAP */
562 
563 	adapter = rx_ring->que->adapter;
564 	ifp = adapter->ifp;
565 	qid = rx_ring->que->id;
566 	ena_qid = ENA_IO_RXQ_IDX(qid);
567 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
568 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
569 	next_to_clean = rx_ring->next_to_clean;
570 
571 #ifdef DEV_NETMAP
572 	if (netmap_rx_irq(adapter->ifp, rx_ring->qid, &done) != NM_IRQ_PASS)
573 		return (0);
574 #endif /* DEV_NETMAP */
575 
576 	ena_trace(NULL, ENA_DBG, "rx: qid %d\n", qid);
577 
578 	do {
579 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
580 		ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
581 		ena_rx_ctx.descs = 0;
582 		ena_rx_ctx.pkt_offset = 0;
583 
584 		bus_dmamap_sync(io_cq->cdesc_addr.mem_handle.tag,
585 		    io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_POSTREAD);
586 		rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
587 		if (unlikely(rc != 0)) {
588 			if (rc == ENA_COM_NO_SPACE) {
589 				counter_u64_add(rx_ring->rx_stats.bad_desc_num,
590 				    1);
591 				reset_reason = ENA_REGS_RESET_TOO_MANY_RX_DESCS;
592 			} else {
593 				counter_u64_add(rx_ring->rx_stats.bad_req_id,
594 				    1);
595 				reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
596 			}
597 			ena_trigger_reset(adapter, reset_reason);
598 			return (0);
599 		}
600 
601 		if (unlikely(ena_rx_ctx.descs == 0))
602 			break;
603 
604 		ena_trace(NULL, ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. "
605 		    "descs #: %d l3 proto %d l4 proto %d hash: %x\n",
606 		    rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
607 		    ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
608 
609 		/* Receive mbuf from the ring */
610 		mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
611 		    &ena_rx_ctx, &next_to_clean);
612 		bus_dmamap_sync(io_cq->cdesc_addr.mem_handle.tag,
613 		    io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_PREREAD);
614 		/* Exit if we failed to retrieve a buffer */
615 		if (unlikely(mbuf == NULL)) {
616 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
617 				rx_ring->free_rx_ids[next_to_clean] =
618 				    rx_ring->ena_bufs[i].req_id;
619 				next_to_clean =
620 				    ENA_RX_RING_IDX_NEXT(next_to_clean,
621 				    rx_ring->ring_size);
622 
623 			}
624 			break;
625 		}
626 
627 		if (((ifp->if_capenable & IFCAP_RXCSUM) != 0) ||
628 		    ((ifp->if_capenable & IFCAP_RXCSUM_IPV6) != 0)) {
629 			ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
630 		}
631 
632 		counter_enter();
633 		counter_u64_add_protected(rx_ring->rx_stats.bytes,
634 		    mbuf->m_pkthdr.len);
635 		counter_u64_add_protected(adapter->hw_stats.rx_bytes,
636 		    mbuf->m_pkthdr.len);
637 		counter_exit();
638 		/*
639 		 * LRO is only for IP/TCP packets and TCP checksum of the packet
640 		 * should be computed by hardware.
641 		 */
642 		do_if_input = 1;
643 		if (((ifp->if_capenable & IFCAP_LRO) != 0)  &&
644 		    ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
645 		    (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
646 			/*
647 			 * Send to the stack if:
648 			 *  - LRO not enabled, or
649 			 *  - no LRO resources, or
650 			 *  - lro enqueue fails
651 			 */
652 			if ((rx_ring->lro.lro_cnt != 0) &&
653 			    (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
654 					do_if_input = 0;
655 		}
656 		if (do_if_input != 0) {
657 			ena_trace(NULL, ENA_DBG | ENA_RXPTH,
658 			    "calling if_input() with mbuf %p\n", mbuf);
659 			(*ifp->if_input)(ifp, mbuf);
660 		}
661 
662 		counter_enter();
663 		counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
664 		counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
665 		counter_exit();
666 	} while (--budget);
667 
668 	rx_ring->next_to_clean = next_to_clean;
669 
670 	refill_required = ena_com_free_q_entries(io_sq);
671 	refill_threshold = min_t(int,
672 	    rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER,
673 	    ENA_RX_REFILL_THRESH_PACKET);
674 
675 	if (refill_required > refill_threshold) {
676 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
677 		ena_refill_rx_bufs(rx_ring, refill_required);
678 	}
679 
680 	tcp_lro_flush_all(&rx_ring->lro);
681 
682 	return (RX_BUDGET - budget);
683 }
684 
685 static void
686 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf,
687     bool disable_meta_caching)
688 {
689 	struct ena_com_tx_meta *ena_meta;
690 	struct ether_vlan_header *eh;
691 	struct mbuf *mbuf_next;
692 	u32 mss;
693 	bool offload;
694 	uint16_t etype;
695 	int ehdrlen;
696 	struct ip *ip;
697 	int iphlen;
698 	struct tcphdr *th;
699 	int offset;
700 
701 	offload = false;
702 	ena_meta = &ena_tx_ctx->ena_meta;
703 	mss = mbuf->m_pkthdr.tso_segsz;
704 
705 	if (mss != 0)
706 		offload = true;
707 
708 	if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0)
709 		offload = true;
710 
711 	if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
712 		offload = true;
713 
714 	if (!offload) {
715 		if (disable_meta_caching) {
716 			memset(ena_meta, 0, sizeof(*ena_meta));
717 			ena_tx_ctx->meta_valid = 1;
718 		} else {
719 			ena_tx_ctx->meta_valid = 0;
720 		}
721 		return;
722 	}
723 
724 	/* Determine where frame payload starts. */
725 	eh = mtod(mbuf, struct ether_vlan_header *);
726 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
727 		etype = ntohs(eh->evl_proto);
728 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
729 	} else {
730 		etype = ntohs(eh->evl_encap_proto);
731 		ehdrlen = ETHER_HDR_LEN;
732 	}
733 
734 	mbuf_next = m_getptr(mbuf, ehdrlen, &offset);
735 	ip = (struct ip *)(mtodo(mbuf_next, offset));
736 	iphlen = ip->ip_hl << 2;
737 
738 	mbuf_next = m_getptr(mbuf, iphlen + ehdrlen, &offset);
739 	th = (struct tcphdr *)(mtodo(mbuf_next, offset));
740 
741 	if ((mbuf->m_pkthdr.csum_flags & CSUM_IP) != 0) {
742 		ena_tx_ctx->l3_csum_enable = 1;
743 	}
744 	if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
745 		ena_tx_ctx->tso_enable = 1;
746 		ena_meta->l4_hdr_len = (th->th_off);
747 	}
748 
749 	switch (etype) {
750 	case ETHERTYPE_IP:
751 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
752 		if ((ip->ip_off & htons(IP_DF)) != 0)
753 			ena_tx_ctx->df = 1;
754 		break;
755 	case ETHERTYPE_IPV6:
756 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
757 
758 	default:
759 		break;
760 	}
761 
762 	if (ip->ip_p == IPPROTO_TCP) {
763 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
764 		if ((mbuf->m_pkthdr.csum_flags &
765 		    (CSUM_IP_TCP | CSUM_IP6_TCP)) != 0)
766 			ena_tx_ctx->l4_csum_enable = 1;
767 		else
768 			ena_tx_ctx->l4_csum_enable = 0;
769 	} else if (ip->ip_p == IPPROTO_UDP) {
770 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
771 		if ((mbuf->m_pkthdr.csum_flags &
772 		    (CSUM_IP_UDP | CSUM_IP6_UDP)) != 0)
773 			ena_tx_ctx->l4_csum_enable = 1;
774 		else
775 			ena_tx_ctx->l4_csum_enable = 0;
776 	} else {
777 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
778 		ena_tx_ctx->l4_csum_enable = 0;
779 	}
780 
781 	ena_meta->mss = mss;
782 	ena_meta->l3_hdr_len = iphlen;
783 	ena_meta->l3_hdr_offset = ehdrlen;
784 	ena_tx_ctx->meta_valid = 1;
785 }
786 
787 static int
788 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
789 {
790 	struct ena_adapter *adapter;
791 	struct mbuf *collapsed_mbuf;
792 	int num_frags;
793 
794 	adapter = tx_ring->adapter;
795 	num_frags = ena_mbuf_count(*mbuf);
796 
797 	/* One segment must be reserved for configuration descriptor. */
798 	if (num_frags < adapter->max_tx_sgl_size)
799 		return (0);
800 	counter_u64_add(tx_ring->tx_stats.collapse, 1);
801 
802 	collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
803 	    adapter->max_tx_sgl_size - 1);
804 	if (unlikely(collapsed_mbuf == NULL)) {
805 		counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
806 		return (ENOMEM);
807 	}
808 
809 	/* If mbuf was collapsed succesfully, original mbuf is released. */
810 	*mbuf = collapsed_mbuf;
811 
812 	return (0);
813 }
814 
815 static int
816 ena_tx_map_mbuf(struct ena_ring *tx_ring, struct ena_tx_buffer *tx_info,
817     struct mbuf *mbuf, void **push_hdr, u16 *header_len)
818 {
819 	struct ena_adapter *adapter = tx_ring->adapter;
820 	struct ena_com_buf *ena_buf;
821 	bus_dma_segment_t segs[ENA_BUS_DMA_SEGS];
822 	size_t iseg = 0;
823 	uint32_t mbuf_head_len;
824 	uint16_t offset;
825 	int rc, nsegs;
826 
827 	mbuf_head_len = mbuf->m_len;
828 	tx_info->mbuf = mbuf;
829 	ena_buf = tx_info->bufs;
830 
831 	/*
832 	 * For easier maintaining of the DMA map, map the whole mbuf even if
833 	 * the LLQ is used. The descriptors will be filled using the segments.
834 	 */
835 	rc = bus_dmamap_load_mbuf_sg(adapter->tx_buf_tag, tx_info->dmamap, mbuf,
836 	    segs, &nsegs, BUS_DMA_NOWAIT);
837 	if (unlikely((rc != 0) || (nsegs == 0))) {
838 		ena_trace(NULL, ENA_WARNING,
839 		    "dmamap load failed! err: %d nsegs: %d\n", rc, nsegs);
840 		goto dma_error;
841 	}
842 
843 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
844 		/*
845 		 * When the device is LLQ mode, the driver will copy
846 		 * the header into the device memory space.
847 		 * the ena_com layer assumes the header is in a linear
848 		 * memory space.
849 		 * This assumption might be wrong since part of the header
850 		 * can be in the fragmented buffers.
851 		 * First check if header fits in the mbuf. If not, copy it to
852 		 * separate buffer that will be holding linearized data.
853 		 */
854 		*header_len = min_t(uint32_t, mbuf->m_pkthdr.len, tx_ring->tx_max_header_size);
855 
856 		/* If header is in linear space, just point into mbuf's data. */
857 		if (likely(*header_len <= mbuf_head_len)) {
858 			*push_hdr = mbuf->m_data;
859 		/*
860 		 * Otherwise, copy whole portion of header from multiple mbufs
861 		 * to intermediate buffer.
862 		 */
863 		} else {
864 			m_copydata(mbuf, 0, *header_len, tx_ring->push_buf_intermediate_buf);
865 			*push_hdr = tx_ring->push_buf_intermediate_buf;
866 
867 			counter_u64_add(tx_ring->tx_stats.llq_buffer_copy, 1);
868 		}
869 
870 		ena_trace(NULL, ENA_DBG | ENA_TXPTH,
871 		    "mbuf: %p header_buf->vaddr: %p push_len: %d\n",
872 		    mbuf, *push_hdr, *header_len);
873 
874 		/* If packet is fitted in LLQ header, no need for DMA segments. */
875 		if (mbuf->m_pkthdr.len <= tx_ring->tx_max_header_size) {
876 			return (0);
877 		} else {
878 			offset = tx_ring->tx_max_header_size;
879 			/*
880 			 * As Header part is mapped to LLQ header, we can skip it and just
881 			 * map the residuum of the mbuf to DMA Segments.
882 			 */
883 			while (offset > 0) {
884 				if (offset >= segs[iseg].ds_len) {
885 					offset -= segs[iseg].ds_len;
886 				} else {
887 					ena_buf->paddr = segs[iseg].ds_addr + offset;
888 					ena_buf->len = segs[iseg].ds_len - offset;
889 					ena_buf++;
890 					tx_info->num_of_bufs++;
891 					offset = 0;
892 				}
893 				iseg++;
894 			}
895 		}
896 	} else {
897 		*push_hdr = NULL;
898 		/*
899 		* header_len is just a hint for the device. Because FreeBSD is not
900 		* giving us information about packet header length and it is not
901 		* guaranteed that all packet headers will be in the 1st mbuf, setting
902 		* header_len to 0 is making the device ignore this value and resolve
903 		* header on it's own.
904 		*/
905 		*header_len = 0;
906 	}
907 
908 	/* Map rest of the mbuf */
909 	while (iseg < nsegs) {
910 		ena_buf->paddr = segs[iseg].ds_addr;
911 		ena_buf->len = segs[iseg].ds_len;
912 		ena_buf++;
913 		iseg++;
914 		tx_info->num_of_bufs++;
915 	}
916 
917 	return (0);
918 
919 dma_error:
920 	counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
921 	tx_info->mbuf = NULL;
922 	return (rc);
923 }
924 
925 static int
926 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
927 {
928 	struct ena_adapter *adapter;
929 	struct ena_tx_buffer *tx_info;
930 	struct ena_com_tx_ctx ena_tx_ctx;
931 	struct ena_com_dev *ena_dev;
932 	struct ena_com_io_sq* io_sq;
933 	void *push_hdr;
934 	uint16_t next_to_use;
935 	uint16_t req_id;
936 	uint16_t ena_qid;
937 	uint16_t header_len;
938 	int rc;
939 	int nb_hw_desc;
940 
941 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
942 	adapter = tx_ring->que->adapter;
943 	ena_dev = adapter->ena_dev;
944 	io_sq = &ena_dev->io_sq_queues[ena_qid];
945 
946 	rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
947 	if (unlikely(rc != 0)) {
948 		ena_trace(NULL, ENA_WARNING,
949 		    "Failed to collapse mbuf! err: %d\n", rc);
950 		return (rc);
951 	}
952 
953 	ena_trace(NULL, ENA_DBG | ENA_TXPTH, "Tx: %d bytes\n", (*mbuf)->m_pkthdr.len);
954 
955 	next_to_use = tx_ring->next_to_use;
956 	req_id = tx_ring->free_tx_ids[next_to_use];
957 	tx_info = &tx_ring->tx_buffer_info[req_id];
958 	tx_info->num_of_bufs = 0;
959 
960 	rc = ena_tx_map_mbuf(tx_ring, tx_info, *mbuf, &push_hdr, &header_len);
961 	if (unlikely(rc != 0)) {
962 		ena_trace(NULL, ENA_WARNING, "Failed to map TX mbuf\n");
963 		return (rc);
964 	}
965 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
966 	ena_tx_ctx.ena_bufs = tx_info->bufs;
967 	ena_tx_ctx.push_header = push_hdr;
968 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
969 	ena_tx_ctx.req_id = req_id;
970 	ena_tx_ctx.header_len = header_len;
971 
972 	/* Set flags and meta data */
973 	ena_tx_csum(&ena_tx_ctx, *mbuf, adapter->disable_meta_caching);
974 
975 	if (tx_ring->acum_pkts == DB_THRESHOLD ||
976 	    ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq, &ena_tx_ctx)) {
977 		ena_trace(NULL, ENA_DBG | ENA_TXPTH,
978 		    "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
979 		    tx_ring->que->id);
980 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
981 		counter_u64_add(tx_ring->tx_stats.doorbells, 1);
982 		tx_ring->acum_pkts = 0;
983 	}
984 
985 	/* Prepare the packet's descriptors and send them to device */
986 	rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
987 	if (unlikely(rc != 0)) {
988 		if (likely(rc == ENA_COM_NO_MEM)) {
989 			ena_trace(NULL, ENA_DBG | ENA_TXPTH,
990 			    "tx ring[%d] if out of space\n", tx_ring->que->id);
991 		} else {
992 			device_printf(adapter->pdev,
993 			    "failed to prepare tx bufs\n");
994 		}
995 		counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
996 		goto dma_error;
997 	}
998 
999 	counter_enter();
1000 	counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
1001 	counter_u64_add_protected(tx_ring->tx_stats.bytes,
1002 	    (*mbuf)->m_pkthdr.len);
1003 
1004 	counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
1005 	counter_u64_add_protected(adapter->hw_stats.tx_bytes,
1006 	    (*mbuf)->m_pkthdr.len);
1007 	counter_exit();
1008 
1009 	tx_info->tx_descs = nb_hw_desc;
1010 	getbinuptime(&tx_info->timestamp);
1011 	tx_info->print_once = true;
1012 
1013 	tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
1014 	    tx_ring->ring_size);
1015 
1016 	/* stop the queue when no more space available, the packet can have up
1017 	 * to sgl_size + 2. one for the meta descriptor and one for header
1018 	 * (if the header is larger than tx_max_header_size).
1019 	 */
1020 	if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1021 	    adapter->max_tx_sgl_size + 2))) {
1022 		ena_trace(NULL, ENA_DBG | ENA_TXPTH, "Stop queue %d\n",
1023 		    tx_ring->que->id);
1024 
1025 		tx_ring->running = false;
1026 		counter_u64_add(tx_ring->tx_stats.queue_stop, 1);
1027 
1028 		/* There is a rare condition where this function decides to
1029 		 * stop the queue but meanwhile tx_cleanup() updates
1030 		 * next_to_completion and terminates.
1031 		 * The queue will remain stopped forever.
1032 		 * To solve this issue this function performs mb(), checks
1033 		 * the wakeup condition and wakes up the queue if needed.
1034 		 */
1035 		mb();
1036 
1037 		if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1038 		    ENA_TX_RESUME_THRESH)) {
1039 			tx_ring->running = true;
1040 			counter_u64_add(tx_ring->tx_stats.queue_wakeup, 1);
1041 		}
1042 	}
1043 
1044 	bus_dmamap_sync(adapter->tx_buf_tag, tx_info->dmamap,
1045 	    BUS_DMASYNC_PREWRITE);
1046 
1047 	return (0);
1048 
1049 dma_error:
1050 	tx_info->mbuf = NULL;
1051 	bus_dmamap_unload(adapter->tx_buf_tag, tx_info->dmamap);
1052 
1053 	return (rc);
1054 }
1055 
1056 static void
1057 ena_start_xmit(struct ena_ring *tx_ring)
1058 {
1059 	struct mbuf *mbuf;
1060 	struct ena_adapter *adapter = tx_ring->adapter;
1061 	struct ena_com_io_sq* io_sq;
1062 	int ena_qid;
1063 	int ret = 0;
1064 
1065 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0))
1066 		return;
1067 
1068 	if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)))
1069 		return;
1070 
1071 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
1072 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
1073 
1074 	while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) {
1075 		ena_trace(NULL, ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and"
1076 		    " header csum flags %#jx\n",
1077 		    mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
1078 
1079 		if (unlikely(!tx_ring->running)) {
1080 			drbr_putback(adapter->ifp, tx_ring->br, mbuf);
1081 			break;
1082 		}
1083 
1084 		if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) {
1085 			if (ret == ENA_COM_NO_MEM) {
1086 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
1087 			} else if (ret == ENA_COM_NO_SPACE) {
1088 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
1089 			} else {
1090 				m_freem(mbuf);
1091 				drbr_advance(adapter->ifp, tx_ring->br);
1092 			}
1093 
1094 			break;
1095 		}
1096 
1097 		drbr_advance(adapter->ifp, tx_ring->br);
1098 
1099 		if (unlikely((if_getdrvflags(adapter->ifp) &
1100 		    IFF_DRV_RUNNING) == 0))
1101 			return;
1102 
1103 		tx_ring->acum_pkts++;
1104 
1105 		BPF_MTAP(adapter->ifp, mbuf);
1106 	}
1107 
1108 	if (likely(tx_ring->acum_pkts != 0)) {
1109 		/* Trigger the dma engine */
1110 		ena_com_write_sq_doorbell(io_sq);
1111 		counter_u64_add(tx_ring->tx_stats.doorbells, 1);
1112 		tx_ring->acum_pkts = 0;
1113 	}
1114 
1115 	if (unlikely(!tx_ring->running))
1116 		taskqueue_enqueue(tx_ring->que->cleanup_tq,
1117 		    &tx_ring->que->cleanup_task);
1118 }
1119