xref: /freebsd/sys/dev/ena/ena_datapath.c (revision 652a9748855320619e075c4e83aef2f5294412d2)
1 /*-
2  * BSD LICENSE
3  *
4  * Copyright (c) 2015-2019 Amazon.com, Inc. or its affiliates.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  *
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "ena.h"
34 #include "ena_datapath.h"
35 #ifdef DEV_NETMAP
36 #include "ena_netmap.h"
37 #endif /* DEV_NETMAP */
38 
39 /*********************************************************************
40  *  Static functions prototypes
41  *********************************************************************/
42 
43 static int	ena_tx_cleanup(struct ena_ring *);
44 static int	ena_rx_cleanup(struct ena_ring *);
45 static inline int validate_tx_req_id(struct ena_ring *, uint16_t);
46 static void	ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
47     struct mbuf *);
48 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *,
49     struct ena_com_rx_ctx *, uint16_t *);
50 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *,
51     struct mbuf *);
52 static void	ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *);
53 static int	ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
54     struct mbuf **mbuf);
55 static int	ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
56 static void	ena_start_xmit(struct ena_ring *);
57 
58 /*********************************************************************
59  *  Global functions
60  *********************************************************************/
61 
62 void
63 ena_cleanup(void *arg, int pending)
64 {
65 	struct ena_que	*que = arg;
66 	struct ena_adapter *adapter = que->adapter;
67 	if_t ifp = adapter->ifp;
68 	struct ena_ring *tx_ring;
69 	struct ena_ring *rx_ring;
70 	struct ena_com_io_cq* io_cq;
71 	struct ena_eth_io_intr_reg intr_reg;
72 	int qid, ena_qid;
73 	int txc, rxc, i;
74 
75 	if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0))
76 		return;
77 
78 	ena_trace(ENA_DBG, "MSI-X TX/RX routine\n");
79 
80 	tx_ring = que->tx_ring;
81 	rx_ring = que->rx_ring;
82 	qid = que->id;
83 	ena_qid = ENA_IO_TXQ_IDX(qid);
84 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
85 
86 	tx_ring->first_interrupt = true;
87 	rx_ring->first_interrupt = true;
88 
89 	for (i = 0; i < CLEAN_BUDGET; ++i) {
90 		rxc = ena_rx_cleanup(rx_ring);
91 		txc = ena_tx_cleanup(tx_ring);
92 
93 		if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0))
94 			return;
95 
96 		if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
97 		       break;
98 	}
99 
100 	/* Signal that work is done and unmask interrupt */
101 	ena_com_update_intr_reg(&intr_reg,
102 	    RX_IRQ_INTERVAL,
103 	    TX_IRQ_INTERVAL,
104 	    true);
105 	ena_com_unmask_intr(io_cq, &intr_reg);
106 }
107 
108 void
109 ena_deferred_mq_start(void *arg, int pending)
110 {
111 	struct ena_ring *tx_ring = (struct ena_ring *)arg;
112 	struct ifnet *ifp = tx_ring->adapter->ifp;
113 
114 	while (!drbr_empty(ifp, tx_ring->br) &&
115 	    tx_ring->running &&
116 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
117 		ENA_RING_MTX_LOCK(tx_ring);
118 		ena_start_xmit(tx_ring);
119 		ENA_RING_MTX_UNLOCK(tx_ring);
120 	}
121 }
122 
123 int
124 ena_mq_start(if_t ifp, struct mbuf *m)
125 {
126 	struct ena_adapter *adapter = ifp->if_softc;
127 	struct ena_ring *tx_ring;
128 	int ret, is_drbr_empty;
129 	uint32_t i;
130 
131 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0))
132 		return (ENODEV);
133 
134 	/* Which queue to use */
135 	/*
136 	 * If everything is setup correctly, it should be the
137 	 * same bucket that the current CPU we're on is.
138 	 * It should improve performance.
139 	 */
140 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
141 		i = m->m_pkthdr.flowid % adapter->num_queues;
142 	} else {
143 		i = curcpu % adapter->num_queues;
144 	}
145 	tx_ring = &adapter->tx_ring[i];
146 
147 	/* Check if drbr is empty before putting packet */
148 	is_drbr_empty = drbr_empty(ifp, tx_ring->br);
149 	ret = drbr_enqueue(ifp, tx_ring->br, m);
150 	if (unlikely(ret != 0)) {
151 		taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
152 		return (ret);
153 	}
154 
155 	if (is_drbr_empty && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
156 		ena_start_xmit(tx_ring);
157 		ENA_RING_MTX_UNLOCK(tx_ring);
158 	} else {
159 		taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
160 	}
161 
162 	return (0);
163 }
164 
165 void
166 ena_qflush(if_t ifp)
167 {
168 	struct ena_adapter *adapter = ifp->if_softc;
169 	struct ena_ring *tx_ring = adapter->tx_ring;
170 	int i;
171 
172 	for(i = 0; i < adapter->num_queues; ++i, ++tx_ring)
173 		if (!drbr_empty(ifp, tx_ring->br)) {
174 			ENA_RING_MTX_LOCK(tx_ring);
175 			drbr_flush(ifp, tx_ring->br);
176 			ENA_RING_MTX_UNLOCK(tx_ring);
177 		}
178 
179 	if_qflush(ifp);
180 }
181 
182 /*********************************************************************
183  *  Static functions
184  *********************************************************************/
185 
186 static inline int
187 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
188 {
189 	struct ena_adapter *adapter = tx_ring->adapter;
190 	struct ena_tx_buffer *tx_info = NULL;
191 
192 	if (likely(req_id < tx_ring->ring_size)) {
193 		tx_info = &tx_ring->tx_buffer_info[req_id];
194 		if (tx_info->mbuf != NULL)
195 			return (0);
196 		device_printf(adapter->pdev,
197 		    "tx_info doesn't have valid mbuf\n");
198 	}
199 
200 	device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id);
201 	counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
202 
203 	/* Trigger device reset */
204 	adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
205 	ENA_FLAG_SET_ATOMIC(ENA_FLAG_TRIGGER_RESET, adapter);
206 
207 	return (EFAULT);
208 }
209 
210 /**
211  * ena_tx_cleanup - clear sent packets and corresponding descriptors
212  * @tx_ring: ring for which we want to clean packets
213  *
214  * Once packets are sent, we ask the device in a loop for no longer used
215  * descriptors. We find the related mbuf chain in a map (index in an array)
216  * and free it, then update ring state.
217  * This is performed in "endless" loop, updating ring pointers every
218  * TX_COMMIT. The first check of free descriptor is performed before the actual
219  * loop, then repeated at the loop end.
220  **/
221 static int
222 ena_tx_cleanup(struct ena_ring *tx_ring)
223 {
224 	struct ena_adapter *adapter;
225 	struct ena_com_io_cq* io_cq;
226 	uint16_t next_to_clean;
227 	uint16_t req_id;
228 	uint16_t ena_qid;
229 	unsigned int total_done = 0;
230 	int rc;
231 	int commit = TX_COMMIT;
232 	int budget = TX_BUDGET;
233 	int work_done;
234 	bool above_thresh;
235 
236 	adapter = tx_ring->que->adapter;
237 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
238 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
239 	next_to_clean = tx_ring->next_to_clean;
240 
241 #ifdef DEV_NETMAP
242 	if (netmap_tx_irq(adapter->ifp, tx_ring->qid) != NM_IRQ_PASS)
243 		return (0);
244 #endif /* DEV_NETMAP */
245 
246 	do {
247 		struct ena_tx_buffer *tx_info;
248 		struct mbuf *mbuf;
249 
250 		rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
251 		if (unlikely(rc != 0))
252 			break;
253 
254 		rc = validate_tx_req_id(tx_ring, req_id);
255 		if (unlikely(rc != 0))
256 			break;
257 
258 		tx_info = &tx_ring->tx_buffer_info[req_id];
259 
260 		mbuf = tx_info->mbuf;
261 
262 		tx_info->mbuf = NULL;
263 		bintime_clear(&tx_info->timestamp);
264 
265 		bus_dmamap_sync(adapter->tx_buf_tag, tx_info->dmamap,
266 		    BUS_DMASYNC_POSTWRITE);
267 		bus_dmamap_unload(adapter->tx_buf_tag,
268 		    tx_info->dmamap);
269 
270 		ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed\n",
271 		    tx_ring->qid, mbuf);
272 
273 		m_freem(mbuf);
274 
275 		total_done += tx_info->tx_descs;
276 
277 		tx_ring->free_tx_ids[next_to_clean] = req_id;
278 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
279 		    tx_ring->ring_size);
280 
281 		if (unlikely(--commit == 0)) {
282 			commit = TX_COMMIT;
283 			/* update ring state every TX_COMMIT descriptor */
284 			tx_ring->next_to_clean = next_to_clean;
285 			ena_com_comp_ack(
286 			    &adapter->ena_dev->io_sq_queues[ena_qid],
287 			    total_done);
288 			ena_com_update_dev_comp_head(io_cq);
289 			total_done = 0;
290 		}
291 	} while (likely(--budget));
292 
293 	work_done = TX_BUDGET - budget;
294 
295 	ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d\n",
296 	tx_ring->qid, work_done);
297 
298 	/* If there is still something to commit update ring state */
299 	if (likely(commit != TX_COMMIT)) {
300 		tx_ring->next_to_clean = next_to_clean;
301 		ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
302 		    total_done);
303 		ena_com_update_dev_comp_head(io_cq);
304 	}
305 
306 	/*
307 	 * Need to make the rings circular update visible to
308 	 * ena_xmit_mbuf() before checking for tx_ring->running.
309 	 */
310 	mb();
311 
312 	above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
313 	    ENA_TX_RESUME_THRESH);
314 	if (unlikely(!tx_ring->running && above_thresh)) {
315 		ENA_RING_MTX_LOCK(tx_ring);
316 		above_thresh =
317 		    ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
318 		    ENA_TX_RESUME_THRESH);
319 		if (!tx_ring->running && above_thresh) {
320 			tx_ring->running = true;
321 			counter_u64_add(tx_ring->tx_stats.queue_wakeup, 1);
322 			taskqueue_enqueue(tx_ring->enqueue_tq,
323 			    &tx_ring->enqueue_task);
324 		}
325 		ENA_RING_MTX_UNLOCK(tx_ring);
326 	}
327 
328 	return (work_done);
329 }
330 
331 static void
332 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
333     struct mbuf *mbuf)
334 {
335 	struct ena_adapter *adapter = rx_ring->adapter;
336 
337 	if (likely(ENA_FLAG_ISSET(ENA_FLAG_RSS_ACTIVE, adapter))) {
338 		mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
339 
340 		if (ena_rx_ctx->frag &&
341 		    (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
342 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
343 			return;
344 		}
345 
346 		switch (ena_rx_ctx->l3_proto) {
347 		case ENA_ETH_IO_L3_PROTO_IPV4:
348 			switch (ena_rx_ctx->l4_proto) {
349 			case ENA_ETH_IO_L4_PROTO_TCP:
350 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
351 				break;
352 			case ENA_ETH_IO_L4_PROTO_UDP:
353 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
354 				break;
355 			default:
356 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
357 			}
358 			break;
359 		case ENA_ETH_IO_L3_PROTO_IPV6:
360 			switch (ena_rx_ctx->l4_proto) {
361 			case ENA_ETH_IO_L4_PROTO_TCP:
362 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
363 				break;
364 			case ENA_ETH_IO_L4_PROTO_UDP:
365 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
366 				break;
367 			default:
368 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
369 			}
370 			break;
371 		case ENA_ETH_IO_L3_PROTO_UNKNOWN:
372 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
373 			break;
374 		default:
375 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
376 		}
377 	} else {
378 		mbuf->m_pkthdr.flowid = rx_ring->qid;
379 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
380 	}
381 }
382 
383 /**
384  * ena_rx_mbuf - assemble mbuf from descriptors
385  * @rx_ring: ring for which we want to clean packets
386  * @ena_bufs: buffer info
387  * @ena_rx_ctx: metadata for this packet(s)
388  * @next_to_clean: ring pointer, will be updated only upon success
389  *
390  **/
391 static struct mbuf*
392 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
393     struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
394 {
395 	struct mbuf *mbuf;
396 	struct ena_rx_buffer *rx_info;
397 	struct ena_adapter *adapter;
398 	unsigned int descs = ena_rx_ctx->descs;
399 	int rc;
400 	uint16_t ntc, len, req_id, buf = 0;
401 
402 	ntc = *next_to_clean;
403 	adapter = rx_ring->adapter;
404 
405 	len = ena_bufs[buf].len;
406 	req_id = ena_bufs[buf].req_id;
407 	rc = validate_rx_req_id(rx_ring, req_id);
408 	if (unlikely(rc != 0))
409 		return (NULL);
410 
411 	rx_info = &rx_ring->rx_buffer_info[req_id];
412 	if (unlikely(rx_info->mbuf == NULL)) {
413 		device_printf(adapter->pdev, "NULL mbuf in rx_info");
414 		return (NULL);
415 	}
416 
417 	ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx\n",
418 	    rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
419 
420 	bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map,
421 	    BUS_DMASYNC_POSTREAD);
422 	mbuf = rx_info->mbuf;
423 	mbuf->m_flags |= M_PKTHDR;
424 	mbuf->m_pkthdr.len = len;
425 	mbuf->m_len = len;
426 	mbuf->m_pkthdr.rcvif = rx_ring->que->adapter->ifp;
427 
428 	/* Fill mbuf with hash key and it's interpretation for optimization */
429 	ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
430 
431 	ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf 0x%p, flags=0x%x, len: %d\n",
432 	    mbuf, mbuf->m_flags, mbuf->m_pkthdr.len);
433 
434 	/* DMA address is not needed anymore, unmap it */
435 	bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map);
436 
437 	rx_info->mbuf = NULL;
438 	rx_ring->free_rx_ids[ntc] = req_id;
439 	ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
440 
441 	/*
442 	 * While we have more than 1 descriptors for one rcvd packet, append
443 	 * other mbufs to the main one
444 	 */
445 	while (--descs) {
446 		++buf;
447 		len = ena_bufs[buf].len;
448 		req_id = ena_bufs[buf].req_id;
449 		rc = validate_rx_req_id(rx_ring, req_id);
450 		if (unlikely(rc != 0)) {
451 			/*
452 			 * If the req_id is invalid, then the device will be
453 			 * reset. In that case we must free all mbufs that
454 			 * were already gathered.
455 			 */
456 			m_freem(mbuf);
457 			return (NULL);
458 		}
459 		rx_info = &rx_ring->rx_buffer_info[req_id];
460 
461 		if (unlikely(rx_info->mbuf == NULL)) {
462 			device_printf(adapter->pdev, "NULL mbuf in rx_info");
463 			/*
464 			 * If one of the required mbufs was not allocated yet,
465 			 * we can break there.
466 			 * All earlier used descriptors will be reallocated
467 			 * later and not used mbufs can be reused.
468 			 * The next_to_clean pointer will not be updated in case
469 			 * of an error, so caller should advance it manually
470 			 * in error handling routine to keep it up to date
471 			 * with hw ring.
472 			 */
473 			m_freem(mbuf);
474 			return (NULL);
475 		}
476 
477 		bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map,
478 		    BUS_DMASYNC_POSTREAD);
479 		if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
480 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
481 			ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p\n",
482 			    mbuf);
483 		}
484 
485 		ena_trace(ENA_DBG | ENA_RXPTH,
486 		    "rx mbuf updated. len %d\n", mbuf->m_pkthdr.len);
487 
488 		/* Free already appended mbuf, it won't be useful anymore */
489 		bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map);
490 		m_freem(rx_info->mbuf);
491 		rx_info->mbuf = NULL;
492 
493 		rx_ring->free_rx_ids[ntc] = req_id;
494 		ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
495 	}
496 
497 	*next_to_clean = ntc;
498 
499 	return (mbuf);
500 }
501 
502 /**
503  * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
504  **/
505 static inline void
506 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
507     struct mbuf *mbuf)
508 {
509 
510 	/* if IP and error */
511 	if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
512 	    ena_rx_ctx->l3_csum_err)) {
513 		/* ipv4 checksum error */
514 		mbuf->m_pkthdr.csum_flags = 0;
515 		counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
516 		ena_trace(ENA_DBG, "RX IPv4 header checksum error\n");
517 		return;
518 	}
519 
520 	/* if TCP/UDP */
521 	if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
522 	    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
523 		if (ena_rx_ctx->l4_csum_err) {
524 			/* TCP/UDP checksum error */
525 			mbuf->m_pkthdr.csum_flags = 0;
526 			counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
527 			ena_trace(ENA_DBG, "RX L4 checksum error\n");
528 		} else {
529 			mbuf->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
530 			mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
531 		}
532 	}
533 }
534 
535 /**
536  * ena_rx_cleanup - handle rx irq
537  * @arg: ring for which irq is being handled
538  **/
539 static int
540 ena_rx_cleanup(struct ena_ring *rx_ring)
541 {
542 	struct ena_adapter *adapter;
543 	struct mbuf *mbuf;
544 	struct ena_com_rx_ctx ena_rx_ctx;
545 	struct ena_com_io_cq* io_cq;
546 	struct ena_com_io_sq* io_sq;
547 	if_t ifp;
548 	uint16_t ena_qid;
549 	uint16_t next_to_clean;
550 	uint32_t refill_required;
551 	uint32_t refill_threshold;
552 	uint32_t do_if_input = 0;
553 	unsigned int qid;
554 	int rc, i;
555 	int budget = RX_BUDGET;
556 #ifdef DEV_NETMAP
557 	int done;
558 #endif /* DEV_NETMAP */
559 
560 	adapter = rx_ring->que->adapter;
561 	ifp = adapter->ifp;
562 	qid = rx_ring->que->id;
563 	ena_qid = ENA_IO_RXQ_IDX(qid);
564 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
565 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
566 	next_to_clean = rx_ring->next_to_clean;
567 
568 #ifdef DEV_NETMAP
569 	if (netmap_rx_irq(adapter->ifp, rx_ring->qid, &done) != NM_IRQ_PASS)
570 		return (0);
571 #endif /* DEV_NETMAP */
572 
573 	ena_trace(ENA_DBG, "rx: qid %d\n", qid);
574 
575 	do {
576 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
577 		ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
578 		ena_rx_ctx.descs = 0;
579 		bus_dmamap_sync(io_cq->cdesc_addr.mem_handle.tag,
580 		    io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_POSTREAD);
581 		rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
582 
583 		if (unlikely(rc != 0))
584 			goto error;
585 
586 		if (unlikely(ena_rx_ctx.descs == 0))
587 			break;
588 
589 		ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. "
590 		    "descs #: %d l3 proto %d l4 proto %d hash: %x\n",
591 		    rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
592 		    ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
593 
594 		/* Receive mbuf from the ring */
595 		mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
596 		    &ena_rx_ctx, &next_to_clean);
597 		bus_dmamap_sync(io_cq->cdesc_addr.mem_handle.tag,
598 		    io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_PREREAD);
599 		/* Exit if we failed to retrieve a buffer */
600 		if (unlikely(mbuf == NULL)) {
601 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
602 				rx_ring->free_rx_ids[next_to_clean] =
603 				    rx_ring->ena_bufs[i].req_id;
604 				next_to_clean =
605 				    ENA_RX_RING_IDX_NEXT(next_to_clean,
606 				    rx_ring->ring_size);
607 
608 			}
609 			break;
610 		}
611 
612 		if (((ifp->if_capenable & IFCAP_RXCSUM) != 0) ||
613 		    ((ifp->if_capenable & IFCAP_RXCSUM_IPV6) != 0)) {
614 			ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
615 		}
616 
617 		counter_enter();
618 		counter_u64_add_protected(rx_ring->rx_stats.bytes,
619 		    mbuf->m_pkthdr.len);
620 		counter_u64_add_protected(adapter->hw_stats.rx_bytes,
621 		    mbuf->m_pkthdr.len);
622 		counter_exit();
623 		/*
624 		 * LRO is only for IP/TCP packets and TCP checksum of the packet
625 		 * should be computed by hardware.
626 		 */
627 		do_if_input = 1;
628 		if (((ifp->if_capenable & IFCAP_LRO) != 0)  &&
629 		    ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
630 		    (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
631 			/*
632 			 * Send to the stack if:
633 			 *  - LRO not enabled, or
634 			 *  - no LRO resources, or
635 			 *  - lro enqueue fails
636 			 */
637 			if ((rx_ring->lro.lro_cnt != 0) &&
638 			    (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
639 					do_if_input = 0;
640 		}
641 		if (do_if_input != 0) {
642 			ena_trace(ENA_DBG | ENA_RXPTH,
643 			    "calling if_input() with mbuf %p\n", mbuf);
644 			(*ifp->if_input)(ifp, mbuf);
645 		}
646 
647 		counter_enter();
648 		counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
649 		counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
650 		counter_exit();
651 	} while (--budget);
652 
653 	rx_ring->next_to_clean = next_to_clean;
654 
655 	refill_required = ena_com_free_desc(io_sq);
656 	refill_threshold = min_t(int,
657 	    rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER,
658 	    ENA_RX_REFILL_THRESH_PACKET);
659 
660 	if (refill_required > refill_threshold) {
661 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
662 		ena_refill_rx_bufs(rx_ring, refill_required);
663 	}
664 
665 	tcp_lro_flush_all(&rx_ring->lro);
666 
667 	return (RX_BUDGET - budget);
668 
669 error:
670 	counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1);
671 
672 	/* Too many desc from the device. Trigger reset */
673 	if (likely(!ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter))) {
674 		adapter->reset_reason = ENA_REGS_RESET_TOO_MANY_RX_DESCS;
675 		ENA_FLAG_SET_ATOMIC(ENA_FLAG_TRIGGER_RESET, adapter);
676 	}
677 
678 	return (0);
679 }
680 
681 static void
682 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf)
683 {
684 	struct ena_com_tx_meta *ena_meta;
685 	struct ether_vlan_header *eh;
686 	struct mbuf *mbuf_next;
687 	u32 mss;
688 	bool offload;
689 	uint16_t etype;
690 	int ehdrlen;
691 	struct ip *ip;
692 	int iphlen;
693 	struct tcphdr *th;
694 	int offset;
695 
696 	offload = false;
697 	ena_meta = &ena_tx_ctx->ena_meta;
698 	mss = mbuf->m_pkthdr.tso_segsz;
699 
700 	if (mss != 0)
701 		offload = true;
702 
703 	if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0)
704 		offload = true;
705 
706 	if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
707 		offload = true;
708 
709 	if (!offload) {
710 		ena_tx_ctx->meta_valid = 0;
711 		return;
712 	}
713 
714 	/* Determine where frame payload starts. */
715 	eh = mtod(mbuf, struct ether_vlan_header *);
716 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
717 		etype = ntohs(eh->evl_proto);
718 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
719 	} else {
720 		etype = ntohs(eh->evl_encap_proto);
721 		ehdrlen = ETHER_HDR_LEN;
722 	}
723 
724 	mbuf_next = m_getptr(mbuf, ehdrlen, &offset);
725 	ip = (struct ip *)(mtodo(mbuf_next, offset));
726 	iphlen = ip->ip_hl << 2;
727 
728 	mbuf_next = m_getptr(mbuf, iphlen + ehdrlen, &offset);
729 	th = (struct tcphdr *)(mtodo(mbuf_next, offset));
730 
731 	if ((mbuf->m_pkthdr.csum_flags & CSUM_IP) != 0) {
732 		ena_tx_ctx->l3_csum_enable = 1;
733 	}
734 	if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
735 		ena_tx_ctx->tso_enable = 1;
736 		ena_meta->l4_hdr_len = (th->th_off);
737 	}
738 
739 	switch (etype) {
740 	case ETHERTYPE_IP:
741 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
742 		if ((ip->ip_off & htons(IP_DF)) != 0)
743 			ena_tx_ctx->df = 1;
744 		break;
745 	case ETHERTYPE_IPV6:
746 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
747 
748 	default:
749 		break;
750 	}
751 
752 	if (ip->ip_p == IPPROTO_TCP) {
753 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
754 		if ((mbuf->m_pkthdr.csum_flags &
755 		    (CSUM_IP_TCP | CSUM_IP6_TCP)) != 0)
756 			ena_tx_ctx->l4_csum_enable = 1;
757 		else
758 			ena_tx_ctx->l4_csum_enable = 0;
759 	} else if (ip->ip_p == IPPROTO_UDP) {
760 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
761 		if ((mbuf->m_pkthdr.csum_flags &
762 		    (CSUM_IP_UDP | CSUM_IP6_UDP)) != 0)
763 			ena_tx_ctx->l4_csum_enable = 1;
764 		else
765 			ena_tx_ctx->l4_csum_enable = 0;
766 	} else {
767 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
768 		ena_tx_ctx->l4_csum_enable = 0;
769 	}
770 
771 	ena_meta->mss = mss;
772 	ena_meta->l3_hdr_len = iphlen;
773 	ena_meta->l3_hdr_offset = ehdrlen;
774 	ena_tx_ctx->meta_valid = 1;
775 }
776 
777 static int
778 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
779 {
780 	struct ena_adapter *adapter;
781 	struct mbuf *collapsed_mbuf;
782 	int num_frags;
783 
784 	adapter = tx_ring->adapter;
785 	num_frags = ena_mbuf_count(*mbuf);
786 
787 	/* One segment must be reserved for configuration descriptor. */
788 	if (num_frags < adapter->max_tx_sgl_size)
789 		return (0);
790 	counter_u64_add(tx_ring->tx_stats.collapse, 1);
791 
792 	collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
793 	    adapter->max_tx_sgl_size - 1);
794 	if (unlikely(collapsed_mbuf == NULL)) {
795 		counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
796 		return (ENOMEM);
797 	}
798 
799 	/* If mbuf was collapsed succesfully, original mbuf is released. */
800 	*mbuf = collapsed_mbuf;
801 
802 	return (0);
803 }
804 
805 static int
806 ena_tx_map_mbuf(struct ena_ring *tx_ring, struct ena_tx_buffer *tx_info,
807     struct mbuf *mbuf, void **push_hdr, u16 *header_len)
808 {
809 	struct ena_adapter *adapter = tx_ring->adapter;
810 	struct ena_com_buf *ena_buf;
811 	bus_dma_segment_t segs[ENA_BUS_DMA_SEGS];
812 	size_t iseg = 0;
813 	uint32_t mbuf_head_len, frag_len;
814 	uint16_t push_len = 0;
815 	uint16_t delta = 0;
816 	int rc, nsegs;
817 
818 	mbuf_head_len = mbuf->m_len;
819 	tx_info->mbuf = mbuf;
820 	ena_buf = tx_info->bufs;
821 
822 	/*
823 	 * For easier maintaining of the DMA map, map the whole mbuf even if
824 	 * the LLQ is used. The descriptors will be filled using the segments.
825 	 */
826 	rc = bus_dmamap_load_mbuf_sg(adapter->tx_buf_tag, tx_info->dmamap, mbuf,
827 	    segs, &nsegs, BUS_DMA_NOWAIT);
828 	if (unlikely((rc != 0) || (nsegs == 0))) {
829 		ena_trace(ENA_WARNING,
830 		    "dmamap load failed! err: %d nsegs: %d\n", rc, nsegs);
831 		goto dma_error;
832 	}
833 
834 
835 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
836 		/*
837 		 * When the device is LLQ mode, the driver will copy
838 		 * the header into the device memory space.
839 		 * the ena_com layer assumes the header is in a linear
840 		 * memory space.
841 		 * This assumption might be wrong since part of the header
842 		 * can be in the fragmented buffers.
843 		 * First check if header fits in the mbuf. If not, copy it to
844 		 * separate buffer that will be holding linearized data.
845 		 */
846 		push_len = min_t(uint32_t, mbuf->m_pkthdr.len,
847 		    tx_ring->tx_max_header_size);
848 		*header_len = push_len;
849 		/* If header is in linear space, just point into mbuf's data. */
850 		if (likely(push_len <= mbuf_head_len)) {
851 			*push_hdr = mbuf->m_data;
852 		/*
853 		 * Otherwise, copy whole portion of header from multiple mbufs
854 		 * to intermediate buffer.
855 		 */
856 		} else {
857 			m_copydata(mbuf, 0, push_len,
858 			    tx_ring->push_buf_intermediate_buf);
859 			*push_hdr = tx_ring->push_buf_intermediate_buf;
860 
861 			counter_u64_add(tx_ring->tx_stats.llq_buffer_copy, 1);
862 			delta = push_len - mbuf_head_len;
863 		}
864 
865 		ena_trace(ENA_DBG | ENA_TXPTH,
866 		    "mbuf: %p header_buf->vaddr: %p push_len: %d\n",
867 		    mbuf, *push_hdr, push_len);
868 
869 		/*
870 		* If header was in linear memory space, map for the dma rest of the data
871 		* in the first mbuf of the mbuf chain.
872 		*/
873 		if (mbuf_head_len > push_len) {
874 			ena_buf->paddr = segs[iseg].ds_addr + push_len;
875 			ena_buf->len = segs[iseg].ds_len - push_len;
876 			ena_buf++;
877 			tx_info->num_of_bufs++;
878 		}
879 		/*
880 		 * Advance the seg index as either the 1st mbuf was mapped or is
881 		 * a part of push_hdr.
882 		 */
883 		iseg++;
884 	} else {
885 		*push_hdr = NULL;
886 		/*
887 		* header_len is just a hint for the device. Because FreeBSD is not
888 		* giving us information about packet header length and it is not
889 		* guaranteed that all packet headers will be in the 1st mbuf, setting
890 		* header_len to 0 is making the device ignore this value and resolve
891 		* header on it's own.
892 		*/
893 		*header_len = 0;
894 	}
895 
896 	/*
897 	 * If header is in non linear space (delta > 0), then skip mbufs
898 	 * containing header and map the last one containing both header and the
899 	 * packet data.
900 	 * The first segment is already counted in.
901 	 * If LLQ is not supported, the loop will be skipped.
902 	 */
903 	while (delta > 0) {
904 		frag_len = segs[iseg].ds_len;
905 
906 		/*
907 		 * If whole segment contains header just move to the
908 		 * next one and reduce delta.
909 		 */
910 		if (unlikely(delta >= frag_len)) {
911 			delta -= frag_len;
912 		} else {
913 			/*
914 			 * Map rest of the packet data that was contained in
915 			 * the mbuf.
916 			 */
917 			ena_buf->paddr = segs[iseg].ds_addr + delta;
918 			ena_buf->len = frag_len - delta;
919 			ena_buf++;
920 			tx_info->num_of_bufs++;
921 
922 			delta = 0;
923 		}
924 		iseg++;
925 	}
926 
927 	if (mbuf == NULL) {
928 		return (0);
929 	}
930 
931 	/* Map rest of the mbuf */
932 	while (iseg < nsegs) {
933 		ena_buf->paddr = segs[iseg].ds_addr;
934 		ena_buf->len = segs[iseg].ds_len;
935 		ena_buf++;
936 		iseg++;
937 		tx_info->num_of_bufs++;
938 	}
939 
940 	return (0);
941 
942 dma_error:
943 	counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
944 	tx_info->mbuf = NULL;
945 	return (rc);
946 }
947 
948 static int
949 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
950 {
951 	struct ena_adapter *adapter;
952 	struct ena_tx_buffer *tx_info;
953 	struct ena_com_tx_ctx ena_tx_ctx;
954 	struct ena_com_dev *ena_dev;
955 	struct ena_com_io_sq* io_sq;
956 	void *push_hdr;
957 	uint16_t next_to_use;
958 	uint16_t req_id;
959 	uint16_t ena_qid;
960 	uint16_t header_len;
961 	int rc;
962 	int nb_hw_desc;
963 
964 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
965 	adapter = tx_ring->que->adapter;
966 	ena_dev = adapter->ena_dev;
967 	io_sq = &ena_dev->io_sq_queues[ena_qid];
968 
969 	rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
970 	if (unlikely(rc != 0)) {
971 		ena_trace(ENA_WARNING,
972 		    "Failed to collapse mbuf! err: %d\n", rc);
973 		return (rc);
974 	}
975 
976 	ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes\n", (*mbuf)->m_pkthdr.len);
977 
978 	next_to_use = tx_ring->next_to_use;
979 	req_id = tx_ring->free_tx_ids[next_to_use];
980 	tx_info = &tx_ring->tx_buffer_info[req_id];
981 	tx_info->num_of_bufs = 0;
982 
983 	rc = ena_tx_map_mbuf(tx_ring, tx_info, *mbuf, &push_hdr, &header_len);
984 	if (unlikely(rc != 0)) {
985 		ena_trace(ENA_WARNING, "Failed to map TX mbuf\n");
986 		return (rc);
987 	}
988 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
989 	ena_tx_ctx.ena_bufs = tx_info->bufs;
990 	ena_tx_ctx.push_header = push_hdr;
991 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
992 	ena_tx_ctx.req_id = req_id;
993 	ena_tx_ctx.header_len = header_len;
994 
995 	/* Set flags and meta data */
996 	ena_tx_csum(&ena_tx_ctx, *mbuf);
997 
998 	if (tx_ring->acum_pkts == DB_THRESHOLD ||
999 	    ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq, &ena_tx_ctx)) {
1000 		ena_trace(ENA_DBG | ENA_TXPTH,
1001 		    "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
1002 		    tx_ring->que->id);
1003 		wmb();
1004 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
1005 		counter_u64_add(tx_ring->tx_stats.doorbells, 1);
1006 		tx_ring->acum_pkts = 0;
1007 	}
1008 
1009 	/* Prepare the packet's descriptors and send them to device */
1010 	rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
1011 	if (unlikely(rc != 0)) {
1012 		if (likely(rc == ENA_COM_NO_MEM)) {
1013 			ena_trace(ENA_DBG | ENA_TXPTH,
1014 			    "tx ring[%d] if out of space\n", tx_ring->que->id);
1015 		} else {
1016 			device_printf(adapter->pdev,
1017 			    "failed to prepare tx bufs\n");
1018 		}
1019 		counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
1020 		goto dma_error;
1021 	}
1022 
1023 	counter_enter();
1024 	counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
1025 	counter_u64_add_protected(tx_ring->tx_stats.bytes,
1026 	    (*mbuf)->m_pkthdr.len);
1027 
1028 	counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
1029 	counter_u64_add_protected(adapter->hw_stats.tx_bytes,
1030 	    (*mbuf)->m_pkthdr.len);
1031 	counter_exit();
1032 
1033 	tx_info->tx_descs = nb_hw_desc;
1034 	getbinuptime(&tx_info->timestamp);
1035 	tx_info->print_once = true;
1036 
1037 	tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
1038 	    tx_ring->ring_size);
1039 
1040 	/* stop the queue when no more space available, the packet can have up
1041 	 * to sgl_size + 2. one for the meta descriptor and one for header
1042 	 * (if the header is larger than tx_max_header_size).
1043 	 */
1044 	if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1045 	    adapter->max_tx_sgl_size + 2))) {
1046 		ena_trace(ENA_DBG | ENA_TXPTH, "Stop queue %d\n",
1047 		    tx_ring->que->id);
1048 
1049 		tx_ring->running = false;
1050 		counter_u64_add(tx_ring->tx_stats.queue_stop, 1);
1051 
1052 		/* There is a rare condition where this function decides to
1053 		 * stop the queue but meanwhile tx_cleanup() updates
1054 		 * next_to_completion and terminates.
1055 		 * The queue will remain stopped forever.
1056 		 * To solve this issue this function performs mb(), checks
1057 		 * the wakeup condition and wakes up the queue if needed.
1058 		 */
1059 		mb();
1060 
1061 		if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1062 		    ENA_TX_RESUME_THRESH)) {
1063 			tx_ring->running = true;
1064 			counter_u64_add(tx_ring->tx_stats.queue_wakeup, 1);
1065 		}
1066 	}
1067 
1068 	bus_dmamap_sync(adapter->tx_buf_tag, tx_info->dmamap,
1069 	    BUS_DMASYNC_PREWRITE);
1070 
1071 	return (0);
1072 
1073 dma_error:
1074 	tx_info->mbuf = NULL;
1075 	bus_dmamap_unload(adapter->tx_buf_tag, tx_info->dmamap);
1076 
1077 	return (rc);
1078 }
1079 
1080 static void
1081 ena_start_xmit(struct ena_ring *tx_ring)
1082 {
1083 	struct mbuf *mbuf;
1084 	struct ena_adapter *adapter = tx_ring->adapter;
1085 	struct ena_com_io_sq* io_sq;
1086 	int ena_qid;
1087 	int ret = 0;
1088 
1089 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0))
1090 		return;
1091 
1092 	if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)))
1093 		return;
1094 
1095 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
1096 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
1097 
1098 	while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) {
1099 		ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and"
1100 		    " header csum flags %#jx\n",
1101 		    mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
1102 
1103 		if (unlikely(!tx_ring->running)) {
1104 			drbr_putback(adapter->ifp, tx_ring->br, mbuf);
1105 			break;
1106 		}
1107 
1108 		if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) {
1109 			if (ret == ENA_COM_NO_MEM) {
1110 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
1111 			} else if (ret == ENA_COM_NO_SPACE) {
1112 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
1113 			} else {
1114 				m_freem(mbuf);
1115 				drbr_advance(adapter->ifp, tx_ring->br);
1116 			}
1117 
1118 			break;
1119 		}
1120 
1121 		drbr_advance(adapter->ifp, tx_ring->br);
1122 
1123 		if (unlikely((if_getdrvflags(adapter->ifp) &
1124 		    IFF_DRV_RUNNING) == 0))
1125 			return;
1126 
1127 		tx_ring->acum_pkts++;
1128 
1129 		BPF_MTAP(adapter->ifp, mbuf);
1130 	}
1131 
1132 	if (likely(tx_ring->acum_pkts != 0)) {
1133 		wmb();
1134 		/* Trigger the dma engine */
1135 		ena_com_write_sq_doorbell(io_sq);
1136 		counter_u64_add(tx_ring->tx_stats.doorbells, 1);
1137 		tx_ring->acum_pkts = 0;
1138 	}
1139 
1140 	if (unlikely(!tx_ring->running))
1141 		taskqueue_enqueue(tx_ring->que->cleanup_tq,
1142 		    &tx_ring->que->cleanup_task);
1143 }
1144