xref: /freebsd/sys/dev/ena/ena_datapath.c (revision 4fbb9c43aa44d9145151bb5f77d302ba01fb7551)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  *
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 #include <sys/cdefs.h>
31 #include "opt_rss.h"
32 #include "ena.h"
33 #include "ena_datapath.h"
34 #ifdef DEV_NETMAP
35 #include "ena_netmap.h"
36 #endif /* DEV_NETMAP */
37 #ifdef RSS
38 #include <net/rss_config.h>
39 #endif /* RSS */
40 
41 #include <netinet6/ip6_var.h>
42 
43 /*********************************************************************
44  *  Static functions prototypes
45  *********************************************************************/
46 
47 static int ena_tx_cleanup(struct ena_ring *);
48 static int ena_rx_cleanup(struct ena_ring *);
49 static inline int ena_get_tx_req_id(struct ena_ring *tx_ring,
50     struct ena_com_io_cq *io_cq, uint16_t *req_id);
51 static void ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
52     struct mbuf *);
53 static struct mbuf *ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *,
54     struct ena_com_rx_ctx *, uint16_t *);
55 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *,
56     struct mbuf *);
57 static void ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *, bool);
58 static int ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
59     struct mbuf **mbuf);
60 static int ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
61 static void ena_start_xmit(struct ena_ring *);
62 
63 /*********************************************************************
64  *  Global functions
65  *********************************************************************/
66 
67 void
68 ena_cleanup(void *arg, int pending)
69 {
70 	struct ena_que *que = arg;
71 	struct ena_adapter *adapter = que->adapter;
72 	if_t ifp = adapter->ifp;
73 	struct ena_ring *tx_ring;
74 	struct ena_ring *rx_ring;
75 	struct ena_com_io_cq *io_cq;
76 	struct ena_eth_io_intr_reg intr_reg;
77 	int qid, ena_qid;
78 	int txc, rxc, i;
79 
80 	if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0))
81 		return;
82 
83 	ena_log_io(adapter->pdev, DBG, "MSI-X TX/RX routine\n");
84 
85 	tx_ring = que->tx_ring;
86 	rx_ring = que->rx_ring;
87 	qid = que->id;
88 	ena_qid = ENA_IO_TXQ_IDX(qid);
89 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
90 
91 	atomic_store_8(&tx_ring->first_interrupt, 1);
92 	atomic_store_8(&rx_ring->first_interrupt, 1);
93 
94 	for (i = 0; i < ENA_CLEAN_BUDGET; ++i) {
95 		rxc = ena_rx_cleanup(rx_ring);
96 		txc = ena_tx_cleanup(tx_ring);
97 
98 		if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0))
99 			return;
100 
101 		if ((txc != ENA_TX_BUDGET) && (rxc != ENA_RX_BUDGET))
102 			break;
103 	}
104 
105 	/* Signal that work is done and unmask interrupt */
106 	ena_com_update_intr_reg(&intr_reg, ENA_RX_IRQ_INTERVAL,
107 	    ENA_TX_IRQ_INTERVAL, true);
108 	counter_u64_add(tx_ring->tx_stats.unmask_interrupt_num, 1);
109 	ena_com_unmask_intr(io_cq, &intr_reg);
110 }
111 
112 void
113 ena_deferred_mq_start(void *arg, int pending)
114 {
115 	struct ena_ring *tx_ring = (struct ena_ring *)arg;
116 	if_t ifp = tx_ring->adapter->ifp;
117 
118 	while (!drbr_empty(ifp, tx_ring->br) && tx_ring->running &&
119 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
120 		ENA_RING_MTX_LOCK(tx_ring);
121 		ena_start_xmit(tx_ring);
122 		ENA_RING_MTX_UNLOCK(tx_ring);
123 	}
124 }
125 
126 int
127 ena_mq_start(if_t ifp, struct mbuf *m)
128 {
129 	struct ena_adapter *adapter = if_getsoftc(ifp);
130 	struct ena_ring *tx_ring;
131 	int ret, is_drbr_empty;
132 	uint32_t i;
133 #ifdef RSS
134 	uint32_t bucket_id;
135 #endif
136 
137 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0))
138 		return (ENODEV);
139 
140 	/* Which queue to use */
141 	/*
142 	 * If everything is setup correctly, it should be the
143 	 * same bucket that the current CPU we're on is.
144 	 * It should improve performance.
145 	 */
146 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
147 #ifdef RSS
148 		if (rss_hash2bucket(m->m_pkthdr.flowid, M_HASHTYPE_GET(m),
149 		    &bucket_id) == 0)
150 			i = bucket_id % adapter->num_io_queues;
151 		else
152 #endif
153 			i = m->m_pkthdr.flowid % adapter->num_io_queues;
154 	} else {
155 		i = curcpu % adapter->num_io_queues;
156 	}
157 	tx_ring = &adapter->tx_ring[i];
158 
159 	/* Check if drbr is empty before putting packet */
160 	is_drbr_empty = drbr_empty(ifp, tx_ring->br);
161 	ret = drbr_enqueue(ifp, tx_ring->br, m);
162 	if (unlikely(ret != 0)) {
163 		taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
164 		return (ret);
165 	}
166 
167 	if (is_drbr_empty && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
168 		ena_start_xmit(tx_ring);
169 		ENA_RING_MTX_UNLOCK(tx_ring);
170 	} else {
171 		taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
172 	}
173 
174 	return (0);
175 }
176 
177 void
178 ena_qflush(if_t ifp)
179 {
180 	struct ena_adapter *adapter = if_getsoftc(ifp);
181 	struct ena_ring *tx_ring = adapter->tx_ring;
182 	int i;
183 
184 	for (i = 0; i < adapter->num_io_queues; ++i, ++tx_ring)
185 		if (!drbr_empty(ifp, tx_ring->br)) {
186 			ENA_RING_MTX_LOCK(tx_ring);
187 			drbr_flush(ifp, tx_ring->br);
188 			ENA_RING_MTX_UNLOCK(tx_ring);
189 		}
190 
191 	if_qflush(ifp);
192 }
193 
194 /*********************************************************************
195  *  Static functions
196  *********************************************************************/
197 
198 static inline int
199 ena_get_tx_req_id(struct ena_ring *tx_ring, struct ena_com_io_cq *io_cq,
200     uint16_t *req_id)
201 {
202 	struct ena_adapter *adapter = tx_ring->adapter;
203 	int rc;
204 
205 	rc = ena_com_tx_comp_req_id_get(io_cq, req_id);
206 	if (rc == ENA_COM_TRY_AGAIN)
207 		return (EAGAIN);
208 
209 	if (unlikely(rc != 0)) {
210 		ena_log(adapter->pdev, ERR, "Invalid req_id %hu in qid %hu\n",
211 		    *req_id, tx_ring->qid);
212 		counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
213 		goto err;
214 	}
215 
216 	if (tx_ring->tx_buffer_info[*req_id].mbuf != NULL)
217 		return (0);
218 
219 	ena_log(adapter->pdev, ERR,
220 	    "tx_info doesn't have valid mbuf. req_id %hu qid %hu\n",
221 	    *req_id, tx_ring->qid);
222 err:
223 	ena_trigger_reset(adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
224 
225 	return (EFAULT);
226 }
227 
228 /**
229  * ena_tx_cleanup - clear sent packets and corresponding descriptors
230  * @tx_ring: ring for which we want to clean packets
231  *
232  * Once packets are sent, we ask the device in a loop for no longer used
233  * descriptors. We find the related mbuf chain in a map (index in an array)
234  * and free it, then update ring state.
235  * This is performed in "endless" loop, updating ring pointers every
236  * TX_COMMIT. The first check of free descriptor is performed before the actual
237  * loop, then repeated at the loop end.
238  **/
239 static int
240 ena_tx_cleanup(struct ena_ring *tx_ring)
241 {
242 	struct ena_adapter *adapter;
243 	struct ena_com_io_cq *io_cq;
244 	uint16_t next_to_clean;
245 	uint16_t req_id;
246 	uint16_t ena_qid;
247 	unsigned int total_done = 0;
248 	int rc;
249 	int commit = ENA_TX_COMMIT;
250 	int budget = ENA_TX_BUDGET;
251 	int work_done;
252 	bool above_thresh;
253 
254 	adapter = tx_ring->que->adapter;
255 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
256 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
257 	next_to_clean = tx_ring->next_to_clean;
258 
259 #ifdef DEV_NETMAP
260 	if (netmap_tx_irq(adapter->ifp, tx_ring->qid) != NM_IRQ_PASS)
261 		return (0);
262 #endif /* DEV_NETMAP */
263 
264 	do {
265 		struct ena_tx_buffer *tx_info;
266 		struct mbuf *mbuf;
267 
268 		rc = ena_get_tx_req_id(tx_ring, io_cq, &req_id);
269 		if (unlikely(rc != 0))
270 			break;
271 
272 		tx_info = &tx_ring->tx_buffer_info[req_id];
273 
274 		mbuf = tx_info->mbuf;
275 
276 		tx_info->mbuf = NULL;
277 		bintime_clear(&tx_info->timestamp);
278 
279 		bus_dmamap_sync(adapter->tx_buf_tag, tx_info->dmamap,
280 		    BUS_DMASYNC_POSTWRITE);
281 		bus_dmamap_unload(adapter->tx_buf_tag, tx_info->dmamap);
282 
283 		ena_log_io(adapter->pdev, DBG, "tx: q %d mbuf %p completed\n",
284 		    tx_ring->qid, mbuf);
285 
286 		m_freem(mbuf);
287 
288 		total_done += tx_info->tx_descs;
289 
290 		tx_ring->free_tx_ids[next_to_clean] = req_id;
291 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
292 		    tx_ring->ring_size);
293 
294 		if (unlikely(--commit == 0)) {
295 			commit = ENA_TX_COMMIT;
296 			/* update ring state every ENA_TX_COMMIT descriptor */
297 			tx_ring->next_to_clean = next_to_clean;
298 			ena_com_comp_ack(
299 			    &adapter->ena_dev->io_sq_queues[ena_qid],
300 			    total_done);
301 			ena_com_update_dev_comp_head(io_cq);
302 			total_done = 0;
303 		}
304 	} while (likely(--budget));
305 
306 	work_done = ENA_TX_BUDGET - budget;
307 
308 	ena_log_io(adapter->pdev, DBG, "tx: q %d done. total pkts: %d\n",
309 	    tx_ring->qid, work_done);
310 
311 	/* If there is still something to commit update ring state */
312 	if (likely(commit != ENA_TX_COMMIT)) {
313 		tx_ring->next_to_clean = next_to_clean;
314 		ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
315 		    total_done);
316 		ena_com_update_dev_comp_head(io_cq);
317 	}
318 
319 	/*
320 	 * Need to make the rings circular update visible to
321 	 * ena_xmit_mbuf() before checking for tx_ring->running.
322 	 */
323 	mb();
324 
325 	above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
326 	    ENA_TX_RESUME_THRESH);
327 	if (unlikely(!tx_ring->running && above_thresh)) {
328 		ENA_RING_MTX_LOCK(tx_ring);
329 		above_thresh = ena_com_sq_have_enough_space(
330 		    tx_ring->ena_com_io_sq, ENA_TX_RESUME_THRESH);
331 		if (!tx_ring->running && above_thresh) {
332 			tx_ring->running = true;
333 			counter_u64_add(tx_ring->tx_stats.queue_wakeup, 1);
334 			taskqueue_enqueue(tx_ring->enqueue_tq,
335 			    &tx_ring->enqueue_task);
336 		}
337 		ENA_RING_MTX_UNLOCK(tx_ring);
338 	}
339 
340 	tx_ring->tx_last_cleanup_ticks = ticks;
341 
342 	return (work_done);
343 }
344 
345 static void
346 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
347     struct mbuf *mbuf)
348 {
349 	struct ena_adapter *adapter = rx_ring->adapter;
350 
351 	if (likely(ENA_FLAG_ISSET(ENA_FLAG_RSS_ACTIVE, adapter))) {
352 		mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
353 
354 #ifdef RSS
355 		/*
356 		 * Hardware and software RSS are in agreement only when both are
357 		 * configured to Toeplitz algorithm.  This driver configures
358 		 * that algorithm only when software RSS is enabled and uses it.
359 		 */
360 		if (adapter->ena_dev->rss.hash_func != ENA_ADMIN_TOEPLITZ &&
361 		    ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN) {
362 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
363 			return;
364 		}
365 #endif
366 
367 		if (ena_rx_ctx->frag &&
368 		    (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
369 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
370 			return;
371 		}
372 
373 		switch (ena_rx_ctx->l3_proto) {
374 		case ENA_ETH_IO_L3_PROTO_IPV4:
375 			switch (ena_rx_ctx->l4_proto) {
376 			case ENA_ETH_IO_L4_PROTO_TCP:
377 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
378 				break;
379 			case ENA_ETH_IO_L4_PROTO_UDP:
380 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
381 				break;
382 			default:
383 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
384 			}
385 			break;
386 		case ENA_ETH_IO_L3_PROTO_IPV6:
387 			switch (ena_rx_ctx->l4_proto) {
388 			case ENA_ETH_IO_L4_PROTO_TCP:
389 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
390 				break;
391 			case ENA_ETH_IO_L4_PROTO_UDP:
392 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
393 				break;
394 			default:
395 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
396 			}
397 			break;
398 		case ENA_ETH_IO_L3_PROTO_UNKNOWN:
399 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
400 			break;
401 		default:
402 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
403 		}
404 	} else {
405 		mbuf->m_pkthdr.flowid = rx_ring->qid;
406 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
407 	}
408 }
409 
410 /**
411  * ena_rx_mbuf - assemble mbuf from descriptors
412  * @rx_ring: ring for which we want to clean packets
413  * @ena_bufs: buffer info
414  * @ena_rx_ctx: metadata for this packet(s)
415  * @next_to_clean: ring pointer, will be updated only upon success
416  *
417  **/
418 static struct mbuf *
419 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
420     struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
421 {
422 	struct mbuf *mbuf;
423 	struct ena_rx_buffer *rx_info;
424 	struct ena_adapter *adapter;
425 	device_t pdev;
426 	unsigned int descs = ena_rx_ctx->descs;
427 	uint16_t ntc, len, req_id, buf = 0;
428 
429 	ntc = *next_to_clean;
430 	adapter = rx_ring->adapter;
431 	pdev = adapter->pdev;
432 
433 	len = ena_bufs[buf].len;
434 	req_id = ena_bufs[buf].req_id;
435 	rx_info = &rx_ring->rx_buffer_info[req_id];
436 	if (unlikely(rx_info->mbuf == NULL)) {
437 		ena_log(pdev, ERR, "NULL mbuf in rx_info");
438 		return (NULL);
439 	}
440 
441 	ena_log_io(pdev, DBG, "rx_info %p, mbuf %p, paddr %jx\n", rx_info,
442 	    rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
443 
444 	bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map,
445 	    BUS_DMASYNC_POSTREAD);
446 	mbuf = rx_info->mbuf;
447 	mbuf->m_flags |= M_PKTHDR;
448 	mbuf->m_pkthdr.len = len;
449 	mbuf->m_len = len;
450 	/* Only for the first segment the data starts at specific offset */
451 	mbuf->m_data = mtodo(mbuf, ena_rx_ctx->pkt_offset);
452 	ena_log_io(pdev, DBG, "Mbuf data offset=%u\n", ena_rx_ctx->pkt_offset);
453 	mbuf->m_pkthdr.rcvif = rx_ring->que->adapter->ifp;
454 
455 	/* Fill mbuf with hash key and it's interpretation for optimization */
456 	ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
457 
458 	ena_log_io(pdev, DBG, "rx mbuf 0x%p, flags=0x%x, len: %d\n", mbuf,
459 	    mbuf->m_flags, mbuf->m_pkthdr.len);
460 
461 	/* DMA address is not needed anymore, unmap it */
462 	bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map);
463 
464 	rx_info->mbuf = NULL;
465 	rx_ring->free_rx_ids[ntc] = req_id;
466 	ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
467 
468 	/*
469 	 * While we have more than 1 descriptors for one rcvd packet, append
470 	 * other mbufs to the main one
471 	 */
472 	while (--descs) {
473 		++buf;
474 		len = ena_bufs[buf].len;
475 		req_id = ena_bufs[buf].req_id;
476 		rx_info = &rx_ring->rx_buffer_info[req_id];
477 
478 		if (unlikely(rx_info->mbuf == NULL)) {
479 			ena_log(pdev, ERR, "NULL mbuf in rx_info");
480 			/*
481 			 * If one of the required mbufs was not allocated yet,
482 			 * we can break there.
483 			 * All earlier used descriptors will be reallocated
484 			 * later and not used mbufs can be reused.
485 			 * The next_to_clean pointer will not be updated in case
486 			 * of an error, so caller should advance it manually
487 			 * in error handling routine to keep it up to date
488 			 * with hw ring.
489 			 */
490 			m_freem(mbuf);
491 			return (NULL);
492 		}
493 
494 		bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map,
495 		    BUS_DMASYNC_POSTREAD);
496 		if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
497 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
498 			ena_log_io(pdev, WARN, "Failed to append Rx mbuf %p\n",
499 			    mbuf);
500 		}
501 
502 		ena_log_io(pdev, DBG, "rx mbuf updated. len %d\n",
503 		    mbuf->m_pkthdr.len);
504 
505 		/* Free already appended mbuf, it won't be useful anymore */
506 		bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map);
507 		m_freem(rx_info->mbuf);
508 		rx_info->mbuf = NULL;
509 
510 		rx_ring->free_rx_ids[ntc] = req_id;
511 		ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
512 	}
513 
514 	*next_to_clean = ntc;
515 
516 	return (mbuf);
517 }
518 
519 /**
520  * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
521  **/
522 static inline void
523 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
524     struct mbuf *mbuf)
525 {
526 	device_t pdev = rx_ring->adapter->pdev;
527 
528 	/* if IP and error */
529 	if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
530 	    ena_rx_ctx->l3_csum_err)) {
531 		/* ipv4 checksum error */
532 		mbuf->m_pkthdr.csum_flags = 0;
533 		counter_u64_add(rx_ring->rx_stats.csum_bad, 1);
534 		ena_log_io(pdev, DBG, "RX IPv4 header checksum error\n");
535 		return;
536 	}
537 
538 	/* if TCP/UDP */
539 	if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
540 	    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
541 		if (ena_rx_ctx->l4_csum_err) {
542 			/* TCP/UDP checksum error */
543 			mbuf->m_pkthdr.csum_flags = 0;
544 			counter_u64_add(rx_ring->rx_stats.csum_bad, 1);
545 			ena_log_io(pdev, DBG, "RX L4 checksum error\n");
546 		} else {
547 			mbuf->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
548 			mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
549 			counter_u64_add(rx_ring->rx_stats.csum_good, 1);
550 		}
551 	}
552 }
553 
554 /**
555  * ena_rx_cleanup - handle rx irq
556  * @arg: ring for which irq is being handled
557  **/
558 static int
559 ena_rx_cleanup(struct ena_ring *rx_ring)
560 {
561 	struct ena_adapter *adapter;
562 	device_t pdev;
563 	struct mbuf *mbuf;
564 	struct ena_com_rx_ctx ena_rx_ctx;
565 	struct ena_com_io_cq *io_cq;
566 	struct ena_com_io_sq *io_sq;
567 	enum ena_regs_reset_reason_types reset_reason;
568 	if_t ifp;
569 	uint16_t ena_qid;
570 	uint16_t next_to_clean;
571 	uint32_t refill_required;
572 	uint32_t refill_threshold;
573 	uint32_t do_if_input = 0;
574 	unsigned int qid;
575 	int rc, i;
576 	int budget = ENA_RX_BUDGET;
577 #ifdef DEV_NETMAP
578 	int done;
579 #endif /* DEV_NETMAP */
580 
581 	adapter = rx_ring->que->adapter;
582 	pdev = adapter->pdev;
583 	ifp = adapter->ifp;
584 	qid = rx_ring->que->id;
585 	ena_qid = ENA_IO_RXQ_IDX(qid);
586 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
587 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
588 	next_to_clean = rx_ring->next_to_clean;
589 
590 #ifdef DEV_NETMAP
591 	if (netmap_rx_irq(adapter->ifp, rx_ring->qid, &done) != NM_IRQ_PASS)
592 		return (0);
593 #endif /* DEV_NETMAP */
594 
595 	ena_log_io(pdev, DBG, "rx: qid %d\n", qid);
596 
597 	do {
598 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
599 		ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
600 		ena_rx_ctx.descs = 0;
601 		ena_rx_ctx.pkt_offset = 0;
602 
603 		bus_dmamap_sync(io_cq->cdesc_addr.mem_handle.tag,
604 		    io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_POSTREAD);
605 		rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
606 		if (unlikely(rc != 0)) {
607 			if (rc == ENA_COM_NO_SPACE) {
608 				counter_u64_add(rx_ring->rx_stats.bad_desc_num,
609 				    1);
610 				reset_reason = ENA_REGS_RESET_TOO_MANY_RX_DESCS;
611 			} else {
612 				counter_u64_add(rx_ring->rx_stats.bad_req_id,
613 				    1);
614 				reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
615 			}
616 			ena_trigger_reset(adapter, reset_reason);
617 			return (0);
618 		}
619 
620 		if (unlikely(ena_rx_ctx.descs == 0))
621 			break;
622 
623 		ena_log_io(pdev, DBG,
624 		    "rx: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n",
625 		    rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
626 		    ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
627 
628 		/* Receive mbuf from the ring */
629 		mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs, &ena_rx_ctx,
630 		    &next_to_clean);
631 		bus_dmamap_sync(io_cq->cdesc_addr.mem_handle.tag,
632 		    io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_PREREAD);
633 		/* Exit if we failed to retrieve a buffer */
634 		if (unlikely(mbuf == NULL)) {
635 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
636 				rx_ring->free_rx_ids[next_to_clean] =
637 				    rx_ring->ena_bufs[i].req_id;
638 				next_to_clean = ENA_RX_RING_IDX_NEXT(
639 				    next_to_clean, rx_ring->ring_size);
640 			}
641 			break;
642 		}
643 
644 		if (((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) ||
645 		    ((if_getcapenable(ifp) & IFCAP_RXCSUM_IPV6) != 0)) {
646 			ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
647 		}
648 
649 		counter_enter();
650 		counter_u64_add_protected(rx_ring->rx_stats.bytes,
651 		    mbuf->m_pkthdr.len);
652 		counter_u64_add_protected(adapter->hw_stats.rx_bytes,
653 		    mbuf->m_pkthdr.len);
654 		counter_exit();
655 		/*
656 		 * LRO is only for IP/TCP packets and TCP checksum of the packet
657 		 * should be computed by hardware.
658 		 */
659 		do_if_input = 1;
660 		if (((if_getcapenable(ifp) & IFCAP_LRO) != 0)  &&
661 		    ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
662 		    (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
663 			/*
664 			 * Send to the stack if:
665 			 *  - LRO not enabled, or
666 			 *  - no LRO resources, or
667 			 *  - lro enqueue fails
668 			 */
669 			if ((rx_ring->lro.lro_cnt != 0) &&
670 			    (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
671 				do_if_input = 0;
672 		}
673 		if (do_if_input != 0) {
674 			ena_log_io(pdev, DBG,
675 			    "calling if_input() with mbuf %p\n", mbuf);
676 			if_input(ifp, mbuf);
677 		}
678 
679 		counter_enter();
680 		counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
681 		counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
682 		counter_exit();
683 	} while (--budget);
684 
685 	rx_ring->next_to_clean = next_to_clean;
686 
687 	refill_required = ena_com_free_q_entries(io_sq);
688 	refill_threshold = min_t(int,
689 	    rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER,
690 	    ENA_RX_REFILL_THRESH_PACKET);
691 
692 	if (refill_required > refill_threshold) {
693 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
694 		ena_refill_rx_bufs(rx_ring, refill_required);
695 	}
696 
697 	tcp_lro_flush_all(&rx_ring->lro);
698 
699 	return (ENA_RX_BUDGET - budget);
700 }
701 
702 static void
703 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf,
704     bool disable_meta_caching)
705 {
706 	struct ena_com_tx_meta *ena_meta;
707 	struct ether_vlan_header *eh;
708 	struct mbuf *mbuf_next;
709 	u32 mss;
710 	bool offload;
711 	uint16_t etype;
712 	int ehdrlen;
713 	struct ip *ip;
714 	int ipproto;
715 	int iphlen;
716 	struct tcphdr *th;
717 	int offset;
718 
719 	offload = false;
720 	ena_meta = &ena_tx_ctx->ena_meta;
721 	mss = mbuf->m_pkthdr.tso_segsz;
722 
723 	if (mss != 0)
724 		offload = true;
725 
726 	if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0)
727 		offload = true;
728 
729 	if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
730 		offload = true;
731 
732 	if ((mbuf->m_pkthdr.csum_flags & CSUM6_OFFLOAD) != 0)
733 		offload = true;
734 
735 	if (!offload) {
736 		if (disable_meta_caching) {
737 			memset(ena_meta, 0, sizeof(*ena_meta));
738 			ena_tx_ctx->meta_valid = 1;
739 		} else {
740 			ena_tx_ctx->meta_valid = 0;
741 		}
742 		return;
743 	}
744 
745 	/* Determine where frame payload starts. */
746 	eh = mtod(mbuf, struct ether_vlan_header *);
747 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
748 		etype = ntohs(eh->evl_proto);
749 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
750 	} else {
751 		etype = ntohs(eh->evl_encap_proto);
752 		ehdrlen = ETHER_HDR_LEN;
753 	}
754 
755 	mbuf_next = m_getptr(mbuf, ehdrlen, &offset);
756 
757 	switch (etype) {
758 	case ETHERTYPE_IP:
759 		ip = (struct ip *)(mtodo(mbuf_next, offset));
760 		iphlen = ip->ip_hl << 2;
761 		ipproto = ip->ip_p;
762 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
763 		if ((ip->ip_off & htons(IP_DF)) != 0)
764 			ena_tx_ctx->df = 1;
765 		break;
766 	case ETHERTYPE_IPV6:
767 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
768 		iphlen = ip6_lasthdr(mbuf, ehdrlen, IPPROTO_IPV6, &ipproto);
769 		iphlen -= ehdrlen;
770 		ena_tx_ctx->df = 1;
771 		break;
772 	default:
773 		iphlen = 0;
774 		ipproto = 0;
775 		break;
776 	}
777 
778 	mbuf_next = m_getptr(mbuf, iphlen + ehdrlen, &offset);
779 	th = (struct tcphdr *)(mtodo(mbuf_next, offset));
780 
781 	if ((mbuf->m_pkthdr.csum_flags & CSUM_IP) != 0) {
782 		ena_tx_ctx->l3_csum_enable = 1;
783 	}
784 	if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
785 		ena_tx_ctx->tso_enable = 1;
786 		ena_meta->l4_hdr_len = (th->th_off);
787 	}
788 
789 	if (ipproto == IPPROTO_TCP) {
790 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
791 		if ((mbuf->m_pkthdr.csum_flags &
792 		    (CSUM_IP_TCP | CSUM_IP6_TCP)) != 0)
793 			ena_tx_ctx->l4_csum_enable = 1;
794 		else
795 			ena_tx_ctx->l4_csum_enable = 0;
796 	} else if (ipproto == IPPROTO_UDP) {
797 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
798 		if ((mbuf->m_pkthdr.csum_flags &
799 		    (CSUM_IP_UDP | CSUM_IP6_UDP)) != 0)
800 			ena_tx_ctx->l4_csum_enable = 1;
801 		else
802 			ena_tx_ctx->l4_csum_enable = 0;
803 	} else {
804 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
805 		ena_tx_ctx->l4_csum_enable = 0;
806 	}
807 
808 	ena_meta->mss = mss;
809 	ena_meta->l3_hdr_len = iphlen;
810 	ena_meta->l3_hdr_offset = ehdrlen;
811 	ena_tx_ctx->meta_valid = 1;
812 }
813 
814 static int
815 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
816 {
817 	struct ena_adapter *adapter;
818 	struct mbuf *collapsed_mbuf;
819 	int num_frags;
820 
821 	adapter = tx_ring->adapter;
822 	num_frags = ena_mbuf_count(*mbuf);
823 
824 	/* One segment must be reserved for configuration descriptor. */
825 	if (num_frags < adapter->max_tx_sgl_size)
826 		return (0);
827 
828 	if ((num_frags == adapter->max_tx_sgl_size) &&
829 	    ((*mbuf)->m_pkthdr.len < tx_ring->tx_max_header_size))
830 		return (0);
831 
832 	counter_u64_add(tx_ring->tx_stats.collapse, 1);
833 
834 	collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
835 	    adapter->max_tx_sgl_size - 1);
836 	if (unlikely(collapsed_mbuf == NULL)) {
837 		counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
838 		return (ENOMEM);
839 	}
840 
841 	/* If mbuf was collapsed succesfully, original mbuf is released. */
842 	*mbuf = collapsed_mbuf;
843 
844 	return (0);
845 }
846 
847 static int
848 ena_tx_map_mbuf(struct ena_ring *tx_ring, struct ena_tx_buffer *tx_info,
849     struct mbuf *mbuf, void **push_hdr, u16 *header_len)
850 {
851 	struct ena_adapter *adapter = tx_ring->adapter;
852 	struct ena_com_buf *ena_buf;
853 	bus_dma_segment_t segs[ENA_BUS_DMA_SEGS];
854 	size_t iseg = 0;
855 	uint32_t mbuf_head_len;
856 	uint16_t offset;
857 	int rc, nsegs;
858 
859 	mbuf_head_len = mbuf->m_len;
860 	tx_info->mbuf = mbuf;
861 	ena_buf = tx_info->bufs;
862 
863 	/*
864 	 * For easier maintaining of the DMA map, map the whole mbuf even if
865 	 * the LLQ is used. The descriptors will be filled using the segments.
866 	 */
867 	rc = bus_dmamap_load_mbuf_sg(adapter->tx_buf_tag,
868 	    tx_info->dmamap, mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
869 	if (unlikely((rc != 0) || (nsegs == 0))) {
870 		ena_log_io(adapter->pdev, WARN,
871 		    "dmamap load failed! err: %d nsegs: %d\n", rc, nsegs);
872 		goto dma_error;
873 	}
874 
875 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
876 		/*
877 		 * When the device is LLQ mode, the driver will copy
878 		 * the header into the device memory space.
879 		 * the ena_com layer assumes the header is in a linear
880 		 * memory space.
881 		 * This assumption might be wrong since part of the header
882 		 * can be in the fragmented buffers.
883 		 * First check if header fits in the mbuf. If not, copy it to
884 		 * separate buffer that will be holding linearized data.
885 		 */
886 		*header_len = min_t(uint32_t, mbuf->m_pkthdr.len,
887 		    tx_ring->tx_max_header_size);
888 
889 		/* If header is in linear space, just point into mbuf's data. */
890 		if (likely(*header_len <= mbuf_head_len)) {
891 			*push_hdr = mbuf->m_data;
892 		/*
893 		 * Otherwise, copy whole portion of header from multiple
894 		 * mbufs to intermediate buffer.
895 		 */
896 		} else {
897 			m_copydata(mbuf, 0, *header_len,
898 			    tx_ring->push_buf_intermediate_buf);
899 			*push_hdr = tx_ring->push_buf_intermediate_buf;
900 
901 			counter_u64_add(tx_ring->tx_stats.llq_buffer_copy, 1);
902 		}
903 
904 		ena_log_io(adapter->pdev, DBG,
905 		    "mbuf: %p header_buf->vaddr: %p push_len: %d\n",
906 		    mbuf, *push_hdr, *header_len);
907 
908 		/* If packet is fitted in LLQ header, no need for DMA segments. */
909 		if (mbuf->m_pkthdr.len <= tx_ring->tx_max_header_size) {
910 			return (0);
911 		} else {
912 			offset = tx_ring->tx_max_header_size;
913 			/*
914 			 * As Header part is mapped to LLQ header, we can skip
915 			 * it and just map the residuum of the mbuf to DMA
916 			 * Segments.
917 			 */
918 			while (offset > 0) {
919 				if (offset >= segs[iseg].ds_len) {
920 					offset -= segs[iseg].ds_len;
921 				} else {
922 					ena_buf->paddr = segs[iseg].ds_addr +
923 					    offset;
924 					ena_buf->len = segs[iseg].ds_len -
925 					    offset;
926 					ena_buf++;
927 					tx_info->num_of_bufs++;
928 					offset = 0;
929 				}
930 				iseg++;
931 			}
932 		}
933 	} else {
934 		*push_hdr = NULL;
935 		/*
936 		 * header_len is just a hint for the device. Because FreeBSD is
937 		 * not giving us information about packet header length and it
938 		 * is not guaranteed that all packet headers will be in the 1st
939 		 * mbuf, setting header_len to 0 is making the device ignore
940 		 * this value and resolve header on it's own.
941 		 */
942 		*header_len = 0;
943 	}
944 
945 	/* Map rest of the mbuf */
946 	while (iseg < nsegs) {
947 		ena_buf->paddr = segs[iseg].ds_addr;
948 		ena_buf->len = segs[iseg].ds_len;
949 		ena_buf++;
950 		iseg++;
951 		tx_info->num_of_bufs++;
952 	}
953 
954 	return (0);
955 
956 dma_error:
957 	counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
958 	tx_info->mbuf = NULL;
959 	return (rc);
960 }
961 
962 static int
963 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
964 {
965 	struct ena_adapter *adapter;
966 	device_t pdev;
967 	struct ena_tx_buffer *tx_info;
968 	struct ena_com_tx_ctx ena_tx_ctx;
969 	struct ena_com_dev *ena_dev;
970 	struct ena_com_io_sq *io_sq;
971 	void *push_hdr;
972 	uint16_t next_to_use;
973 	uint16_t req_id;
974 	uint16_t ena_qid;
975 	uint16_t header_len;
976 	int rc;
977 	int nb_hw_desc;
978 
979 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
980 	adapter = tx_ring->que->adapter;
981 	pdev = adapter->pdev;
982 	ena_dev = adapter->ena_dev;
983 	io_sq = &ena_dev->io_sq_queues[ena_qid];
984 
985 	rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
986 	if (unlikely(rc != 0)) {
987 		ena_log_io(pdev, WARN, "Failed to collapse mbuf! err: %d\n",
988 		    rc);
989 		return (rc);
990 	}
991 
992 	ena_log_io(pdev, DBG, "Tx: %d bytes\n", (*mbuf)->m_pkthdr.len);
993 
994 	next_to_use = tx_ring->next_to_use;
995 	req_id = tx_ring->free_tx_ids[next_to_use];
996 	tx_info = &tx_ring->tx_buffer_info[req_id];
997 	tx_info->num_of_bufs = 0;
998 
999 	ENA_WARN(tx_info->mbuf != NULL, adapter->ena_dev,
1000 	    "mbuf isn't NULL for req_id %d\n", req_id);
1001 
1002 	rc = ena_tx_map_mbuf(tx_ring, tx_info, *mbuf, &push_hdr, &header_len);
1003 	if (unlikely(rc != 0)) {
1004 		ena_log_io(pdev, WARN, "Failed to map TX mbuf\n");
1005 		return (rc);
1006 	}
1007 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
1008 	ena_tx_ctx.ena_bufs = tx_info->bufs;
1009 	ena_tx_ctx.push_header = push_hdr;
1010 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
1011 	ena_tx_ctx.req_id = req_id;
1012 	ena_tx_ctx.header_len = header_len;
1013 
1014 	/* Set flags and meta data */
1015 	ena_tx_csum(&ena_tx_ctx, *mbuf, adapter->disable_meta_caching);
1016 
1017 	if (tx_ring->acum_pkts == ENA_DB_THRESHOLD ||
1018 	    ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq, &ena_tx_ctx)) {
1019 		ena_log_io(pdev, DBG,
1020 		    "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
1021 		    tx_ring->que->id);
1022 		ena_ring_tx_doorbell(tx_ring);
1023 	}
1024 
1025 	/* Prepare the packet's descriptors and send them to device */
1026 	rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
1027 	if (unlikely(rc != 0)) {
1028 		if (likely(rc == ENA_COM_NO_MEM)) {
1029 			ena_log_io(pdev, DBG, "tx ring[%d] is out of space\n",
1030 			    tx_ring->que->id);
1031 		} else {
1032 			ena_log(pdev, ERR, "failed to prepare tx bufs\n");
1033 			ena_trigger_reset(adapter,
1034 			    ENA_REGS_RESET_DRIVER_INVALID_STATE);
1035 		}
1036 		counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
1037 		goto dma_error;
1038 	}
1039 
1040 	counter_enter();
1041 	counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
1042 	counter_u64_add_protected(tx_ring->tx_stats.bytes,
1043 	    (*mbuf)->m_pkthdr.len);
1044 
1045 	counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
1046 	counter_u64_add_protected(adapter->hw_stats.tx_bytes,
1047 	    (*mbuf)->m_pkthdr.len);
1048 	counter_exit();
1049 
1050 	tx_info->tx_descs = nb_hw_desc;
1051 	getbinuptime(&tx_info->timestamp);
1052 	tx_info->print_once = true;
1053 
1054 	tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
1055 	    tx_ring->ring_size);
1056 
1057 	/* stop the queue when no more space available, the packet can have up
1058 	 * to sgl_size + 2. one for the meta descriptor and one for header
1059 	 * (if the header is larger than tx_max_header_size).
1060 	 */
1061 	if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1062 	    adapter->max_tx_sgl_size + 2))) {
1063 		ena_log_io(pdev, DBG, "Stop queue %d\n", tx_ring->que->id);
1064 
1065 		tx_ring->running = false;
1066 		counter_u64_add(tx_ring->tx_stats.queue_stop, 1);
1067 
1068 		/* There is a rare condition where this function decides to
1069 		 * stop the queue but meanwhile tx_cleanup() updates
1070 		 * next_to_completion and terminates.
1071 		 * The queue will remain stopped forever.
1072 		 * To solve this issue this function performs mb(), checks
1073 		 * the wakeup condition and wakes up the queue if needed.
1074 		 */
1075 		mb();
1076 
1077 		if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1078 		    ENA_TX_RESUME_THRESH)) {
1079 			tx_ring->running = true;
1080 			counter_u64_add(tx_ring->tx_stats.queue_wakeup, 1);
1081 		}
1082 	}
1083 
1084 	bus_dmamap_sync(adapter->tx_buf_tag, tx_info->dmamap,
1085 	    BUS_DMASYNC_PREWRITE);
1086 
1087 	return (0);
1088 
1089 dma_error:
1090 	tx_info->mbuf = NULL;
1091 	bus_dmamap_unload(adapter->tx_buf_tag, tx_info->dmamap);
1092 
1093 	return (rc);
1094 }
1095 
1096 static void
1097 ena_start_xmit(struct ena_ring *tx_ring)
1098 {
1099 	struct mbuf *mbuf;
1100 	struct ena_adapter *adapter = tx_ring->adapter;
1101 	int ret = 0;
1102 
1103 	ENA_RING_MTX_ASSERT(tx_ring);
1104 
1105 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0))
1106 		return;
1107 
1108 	if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)))
1109 		return;
1110 
1111 	while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) {
1112 		ena_log_io(adapter->pdev, DBG,
1113 		    "\ndequeued mbuf %p with flags %#x and header csum flags %#jx\n",
1114 		    mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
1115 
1116 		if (unlikely(!tx_ring->running)) {
1117 			drbr_putback(adapter->ifp, tx_ring->br, mbuf);
1118 			break;
1119 		}
1120 
1121 		if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) {
1122 			if (ret == ENA_COM_NO_MEM) {
1123 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
1124 			} else if (ret == ENA_COM_NO_SPACE) {
1125 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
1126 			} else {
1127 				m_freem(mbuf);
1128 				drbr_advance(adapter->ifp, tx_ring->br);
1129 			}
1130 
1131 			break;
1132 		}
1133 
1134 		drbr_advance(adapter->ifp, tx_ring->br);
1135 
1136 		if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0))
1137 			return;
1138 
1139 		tx_ring->acum_pkts++;
1140 
1141 		BPF_MTAP(adapter->ifp, mbuf);
1142 	}
1143 
1144 	if (likely(tx_ring->acum_pkts != 0)) {
1145 		/* Trigger the dma engine */
1146 		ena_ring_tx_doorbell(tx_ring);
1147 	}
1148 
1149 	if (unlikely(!tx_ring->running))
1150 		taskqueue_enqueue(tx_ring->que->cleanup_tq,
1151 		    &tx_ring->que->cleanup_task);
1152 }
1153