1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) 2015-2019 Amazon.com, Inc. or its affiliates. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "ena.h" 34 #include "ena_datapath.h" 35 #ifdef DEV_NETMAP 36 #include "ena_netmap.h" 37 #endif /* DEV_NETMAP */ 38 39 /********************************************************************* 40 * Static functions prototypes 41 *********************************************************************/ 42 43 static int ena_tx_cleanup(struct ena_ring *); 44 static int ena_rx_cleanup(struct ena_ring *); 45 static inline int validate_tx_req_id(struct ena_ring *, uint16_t); 46 static void ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *, 47 struct mbuf *); 48 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *, 49 struct ena_com_rx_ctx *, uint16_t *); 50 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *, 51 struct mbuf *); 52 static void ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *); 53 static int ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, 54 struct mbuf **mbuf); 55 static void ena_dmamap_llq(void *, bus_dma_segment_t *, int, int); 56 static int ena_xmit_mbuf(struct ena_ring *, struct mbuf **); 57 static void ena_start_xmit(struct ena_ring *); 58 59 /********************************************************************* 60 * Global functions 61 *********************************************************************/ 62 63 void 64 ena_cleanup(void *arg, int pending) 65 { 66 struct ena_que *que = arg; 67 struct ena_adapter *adapter = que->adapter; 68 if_t ifp = adapter->ifp; 69 struct ena_ring *tx_ring; 70 struct ena_ring *rx_ring; 71 struct ena_com_io_cq* io_cq; 72 struct ena_eth_io_intr_reg intr_reg; 73 int qid, ena_qid; 74 int txc, rxc, i; 75 76 if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)) 77 return; 78 79 ena_trace(ENA_DBG, "MSI-X TX/RX routine\n"); 80 81 tx_ring = que->tx_ring; 82 rx_ring = que->rx_ring; 83 qid = que->id; 84 ena_qid = ENA_IO_TXQ_IDX(qid); 85 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid]; 86 87 tx_ring->first_interrupt = true; 88 rx_ring->first_interrupt = true; 89 90 for (i = 0; i < CLEAN_BUDGET; ++i) { 91 rxc = ena_rx_cleanup(rx_ring); 92 txc = ena_tx_cleanup(tx_ring); 93 94 if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)) 95 return; 96 97 if ((txc != TX_BUDGET) && (rxc != RX_BUDGET)) 98 break; 99 } 100 101 /* Signal that work is done and unmask interrupt */ 102 ena_com_update_intr_reg(&intr_reg, 103 RX_IRQ_INTERVAL, 104 TX_IRQ_INTERVAL, 105 true); 106 ena_com_unmask_intr(io_cq, &intr_reg); 107 } 108 109 void 110 ena_deferred_mq_start(void *arg, int pending) 111 { 112 struct ena_ring *tx_ring = (struct ena_ring *)arg; 113 struct ifnet *ifp = tx_ring->adapter->ifp; 114 115 while (!drbr_empty(ifp, tx_ring->br) && 116 tx_ring->running && 117 (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 118 ENA_RING_MTX_LOCK(tx_ring); 119 ena_start_xmit(tx_ring); 120 ENA_RING_MTX_UNLOCK(tx_ring); 121 } 122 } 123 124 int 125 ena_mq_start(if_t ifp, struct mbuf *m) 126 { 127 struct ena_adapter *adapter = ifp->if_softc; 128 struct ena_ring *tx_ring; 129 int ret, is_drbr_empty; 130 uint32_t i; 131 132 if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0)) 133 return (ENODEV); 134 135 /* Which queue to use */ 136 /* 137 * If everything is setup correctly, it should be the 138 * same bucket that the current CPU we're on is. 139 * It should improve performance. 140 */ 141 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) { 142 i = m->m_pkthdr.flowid % adapter->num_queues; 143 } else { 144 i = curcpu % adapter->num_queues; 145 } 146 tx_ring = &adapter->tx_ring[i]; 147 148 /* Check if drbr is empty before putting packet */ 149 is_drbr_empty = drbr_empty(ifp, tx_ring->br); 150 ret = drbr_enqueue(ifp, tx_ring->br, m); 151 if (unlikely(ret != 0)) { 152 taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task); 153 return (ret); 154 } 155 156 if (is_drbr_empty && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) { 157 ena_start_xmit(tx_ring); 158 ENA_RING_MTX_UNLOCK(tx_ring); 159 } else { 160 taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task); 161 } 162 163 return (0); 164 } 165 166 void 167 ena_qflush(if_t ifp) 168 { 169 struct ena_adapter *adapter = ifp->if_softc; 170 struct ena_ring *tx_ring = adapter->tx_ring; 171 int i; 172 173 for(i = 0; i < adapter->num_queues; ++i, ++tx_ring) 174 if (!drbr_empty(ifp, tx_ring->br)) { 175 ENA_RING_MTX_LOCK(tx_ring); 176 drbr_flush(ifp, tx_ring->br); 177 ENA_RING_MTX_UNLOCK(tx_ring); 178 } 179 180 if_qflush(ifp); 181 } 182 183 /********************************************************************* 184 * Static functions 185 *********************************************************************/ 186 187 static inline int 188 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id) 189 { 190 struct ena_adapter *adapter = tx_ring->adapter; 191 struct ena_tx_buffer *tx_info = NULL; 192 193 if (likely(req_id < tx_ring->ring_size)) { 194 tx_info = &tx_ring->tx_buffer_info[req_id]; 195 if (tx_info->mbuf != NULL) 196 return (0); 197 device_printf(adapter->pdev, 198 "tx_info doesn't have valid mbuf\n"); 199 } 200 201 device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id); 202 counter_u64_add(tx_ring->tx_stats.bad_req_id, 1); 203 204 /* Trigger device reset */ 205 adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID; 206 ENA_FLAG_SET_ATOMIC(ENA_FLAG_TRIGGER_RESET, adapter); 207 208 return (EFAULT); 209 } 210 211 /** 212 * ena_tx_cleanup - clear sent packets and corresponding descriptors 213 * @tx_ring: ring for which we want to clean packets 214 * 215 * Once packets are sent, we ask the device in a loop for no longer used 216 * descriptors. We find the related mbuf chain in a map (index in an array) 217 * and free it, then update ring state. 218 * This is performed in "endless" loop, updating ring pointers every 219 * TX_COMMIT. The first check of free descriptor is performed before the actual 220 * loop, then repeated at the loop end. 221 **/ 222 static int 223 ena_tx_cleanup(struct ena_ring *tx_ring) 224 { 225 struct ena_adapter *adapter; 226 struct ena_com_io_cq* io_cq; 227 uint16_t next_to_clean; 228 uint16_t req_id; 229 uint16_t ena_qid; 230 unsigned int total_done = 0; 231 int rc; 232 int commit = TX_COMMIT; 233 int budget = TX_BUDGET; 234 int work_done; 235 bool above_thresh; 236 237 adapter = tx_ring->que->adapter; 238 ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id); 239 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid]; 240 next_to_clean = tx_ring->next_to_clean; 241 242 #ifdef DEV_NETMAP 243 if (netmap_tx_irq(adapter->ifp, tx_ring->qid) != NM_IRQ_PASS) 244 return (0); 245 #endif /* DEV_NETMAP */ 246 247 do { 248 struct ena_tx_buffer *tx_info; 249 struct mbuf *mbuf; 250 251 rc = ena_com_tx_comp_req_id_get(io_cq, &req_id); 252 if (unlikely(rc != 0)) 253 break; 254 255 rc = validate_tx_req_id(tx_ring, req_id); 256 if (unlikely(rc != 0)) 257 break; 258 259 tx_info = &tx_ring->tx_buffer_info[req_id]; 260 261 mbuf = tx_info->mbuf; 262 263 tx_info->mbuf = NULL; 264 bintime_clear(&tx_info->timestamp); 265 266 /* Map is no longer required */ 267 if (tx_info->head_mapped == true) { 268 bus_dmamap_sync(adapter->tx_buf_tag, tx_info->map_head, 269 BUS_DMASYNC_POSTWRITE); 270 bus_dmamap_unload(adapter->tx_buf_tag, 271 tx_info->map_head); 272 tx_info->head_mapped = false; 273 } 274 if (tx_info->seg_mapped == true) { 275 bus_dmamap_sync(adapter->tx_buf_tag, tx_info->map_seg, 276 BUS_DMASYNC_POSTWRITE); 277 bus_dmamap_unload(adapter->tx_buf_tag, 278 tx_info->map_seg); 279 tx_info->seg_mapped = false; 280 } 281 282 ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed\n", 283 tx_ring->qid, mbuf); 284 285 m_freem(mbuf); 286 287 total_done += tx_info->tx_descs; 288 289 tx_ring->free_tx_ids[next_to_clean] = req_id; 290 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean, 291 tx_ring->ring_size); 292 293 if (unlikely(--commit == 0)) { 294 commit = TX_COMMIT; 295 /* update ring state every TX_COMMIT descriptor */ 296 tx_ring->next_to_clean = next_to_clean; 297 ena_com_comp_ack( 298 &adapter->ena_dev->io_sq_queues[ena_qid], 299 total_done); 300 ena_com_update_dev_comp_head(io_cq); 301 total_done = 0; 302 } 303 } while (likely(--budget)); 304 305 work_done = TX_BUDGET - budget; 306 307 ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d\n", 308 tx_ring->qid, work_done); 309 310 /* If there is still something to commit update ring state */ 311 if (likely(commit != TX_COMMIT)) { 312 tx_ring->next_to_clean = next_to_clean; 313 ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid], 314 total_done); 315 ena_com_update_dev_comp_head(io_cq); 316 } 317 318 /* 319 * Need to make the rings circular update visible to 320 * ena_xmit_mbuf() before checking for tx_ring->running. 321 */ 322 mb(); 323 324 above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 325 ENA_TX_RESUME_THRESH); 326 if (unlikely(!tx_ring->running && above_thresh)) { 327 ENA_RING_MTX_LOCK(tx_ring); 328 above_thresh = 329 ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 330 ENA_TX_RESUME_THRESH); 331 if (!tx_ring->running && above_thresh) { 332 tx_ring->running = true; 333 counter_u64_add(tx_ring->tx_stats.queue_wakeup, 1); 334 taskqueue_enqueue(tx_ring->enqueue_tq, 335 &tx_ring->enqueue_task); 336 } 337 ENA_RING_MTX_UNLOCK(tx_ring); 338 } 339 340 return (work_done); 341 } 342 343 static void 344 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx, 345 struct mbuf *mbuf) 346 { 347 struct ena_adapter *adapter = rx_ring->adapter; 348 349 if (likely(ENA_FLAG_ISSET(ENA_FLAG_RSS_ACTIVE, adapter))) { 350 mbuf->m_pkthdr.flowid = ena_rx_ctx->hash; 351 352 if (ena_rx_ctx->frag && 353 (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) { 354 M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH); 355 return; 356 } 357 358 switch (ena_rx_ctx->l3_proto) { 359 case ENA_ETH_IO_L3_PROTO_IPV4: 360 switch (ena_rx_ctx->l4_proto) { 361 case ENA_ETH_IO_L4_PROTO_TCP: 362 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4); 363 break; 364 case ENA_ETH_IO_L4_PROTO_UDP: 365 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4); 366 break; 367 default: 368 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4); 369 } 370 break; 371 case ENA_ETH_IO_L3_PROTO_IPV6: 372 switch (ena_rx_ctx->l4_proto) { 373 case ENA_ETH_IO_L4_PROTO_TCP: 374 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6); 375 break; 376 case ENA_ETH_IO_L4_PROTO_UDP: 377 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6); 378 break; 379 default: 380 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6); 381 } 382 break; 383 case ENA_ETH_IO_L3_PROTO_UNKNOWN: 384 M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE); 385 break; 386 default: 387 M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH); 388 } 389 } else { 390 mbuf->m_pkthdr.flowid = rx_ring->qid; 391 M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE); 392 } 393 } 394 395 /** 396 * ena_rx_mbuf - assemble mbuf from descriptors 397 * @rx_ring: ring for which we want to clean packets 398 * @ena_bufs: buffer info 399 * @ena_rx_ctx: metadata for this packet(s) 400 * @next_to_clean: ring pointer, will be updated only upon success 401 * 402 **/ 403 static struct mbuf* 404 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs, 405 struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean) 406 { 407 struct mbuf *mbuf; 408 struct ena_rx_buffer *rx_info; 409 struct ena_adapter *adapter; 410 unsigned int descs = ena_rx_ctx->descs; 411 int rc; 412 uint16_t ntc, len, req_id, buf = 0; 413 414 ntc = *next_to_clean; 415 adapter = rx_ring->adapter; 416 417 len = ena_bufs[buf].len; 418 req_id = ena_bufs[buf].req_id; 419 rc = validate_rx_req_id(rx_ring, req_id); 420 if (unlikely(rc != 0)) 421 return (NULL); 422 423 rx_info = &rx_ring->rx_buffer_info[req_id]; 424 if (unlikely(rx_info->mbuf == NULL)) { 425 device_printf(adapter->pdev, "NULL mbuf in rx_info"); 426 return (NULL); 427 } 428 429 ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx\n", 430 rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr); 431 432 bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map, 433 BUS_DMASYNC_POSTREAD); 434 mbuf = rx_info->mbuf; 435 mbuf->m_flags |= M_PKTHDR; 436 mbuf->m_pkthdr.len = len; 437 mbuf->m_len = len; 438 mbuf->m_pkthdr.rcvif = rx_ring->que->adapter->ifp; 439 440 /* Fill mbuf with hash key and it's interpretation for optimization */ 441 ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf); 442 443 ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf 0x%p, flags=0x%x, len: %d\n", 444 mbuf, mbuf->m_flags, mbuf->m_pkthdr.len); 445 446 /* DMA address is not needed anymore, unmap it */ 447 bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map); 448 449 rx_info->mbuf = NULL; 450 rx_ring->free_rx_ids[ntc] = req_id; 451 ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size); 452 453 /* 454 * While we have more than 1 descriptors for one rcvd packet, append 455 * other mbufs to the main one 456 */ 457 while (--descs) { 458 ++buf; 459 len = ena_bufs[buf].len; 460 req_id = ena_bufs[buf].req_id; 461 rc = validate_rx_req_id(rx_ring, req_id); 462 if (unlikely(rc != 0)) { 463 /* 464 * If the req_id is invalid, then the device will be 465 * reset. In that case we must free all mbufs that 466 * were already gathered. 467 */ 468 m_freem(mbuf); 469 return (NULL); 470 } 471 rx_info = &rx_ring->rx_buffer_info[req_id]; 472 473 if (unlikely(rx_info->mbuf == NULL)) { 474 device_printf(adapter->pdev, "NULL mbuf in rx_info"); 475 /* 476 * If one of the required mbufs was not allocated yet, 477 * we can break there. 478 * All earlier used descriptors will be reallocated 479 * later and not used mbufs can be reused. 480 * The next_to_clean pointer will not be updated in case 481 * of an error, so caller should advance it manually 482 * in error handling routine to keep it up to date 483 * with hw ring. 484 */ 485 m_freem(mbuf); 486 return (NULL); 487 } 488 489 bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map, 490 BUS_DMASYNC_POSTREAD); 491 if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) { 492 counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1); 493 ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p\n", 494 mbuf); 495 } 496 497 ena_trace(ENA_DBG | ENA_RXPTH, 498 "rx mbuf updated. len %d\n", mbuf->m_pkthdr.len); 499 500 /* Free already appended mbuf, it won't be useful anymore */ 501 bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map); 502 m_freem(rx_info->mbuf); 503 rx_info->mbuf = NULL; 504 505 rx_ring->free_rx_ids[ntc] = req_id; 506 ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size); 507 } 508 509 *next_to_clean = ntc; 510 511 return (mbuf); 512 } 513 514 /** 515 * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum 516 **/ 517 static inline void 518 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx, 519 struct mbuf *mbuf) 520 { 521 522 /* if IP and error */ 523 if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) && 524 ena_rx_ctx->l3_csum_err)) { 525 /* ipv4 checksum error */ 526 mbuf->m_pkthdr.csum_flags = 0; 527 counter_u64_add(rx_ring->rx_stats.bad_csum, 1); 528 ena_trace(ENA_DBG, "RX IPv4 header checksum error\n"); 529 return; 530 } 531 532 /* if TCP/UDP */ 533 if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 534 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) { 535 if (ena_rx_ctx->l4_csum_err) { 536 /* TCP/UDP checksum error */ 537 mbuf->m_pkthdr.csum_flags = 0; 538 counter_u64_add(rx_ring->rx_stats.bad_csum, 1); 539 ena_trace(ENA_DBG, "RX L4 checksum error\n"); 540 } else { 541 mbuf->m_pkthdr.csum_flags = CSUM_IP_CHECKED; 542 mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID; 543 } 544 } 545 } 546 547 /** 548 * ena_rx_cleanup - handle rx irq 549 * @arg: ring for which irq is being handled 550 **/ 551 static int 552 ena_rx_cleanup(struct ena_ring *rx_ring) 553 { 554 struct ena_adapter *adapter; 555 struct mbuf *mbuf; 556 struct ena_com_rx_ctx ena_rx_ctx; 557 struct ena_com_io_cq* io_cq; 558 struct ena_com_io_sq* io_sq; 559 if_t ifp; 560 uint16_t ena_qid; 561 uint16_t next_to_clean; 562 uint32_t refill_required; 563 uint32_t refill_threshold; 564 uint32_t do_if_input = 0; 565 unsigned int qid; 566 int rc, i; 567 int budget = RX_BUDGET; 568 #ifdef DEV_NETMAP 569 int done; 570 #endif /* DEV_NETMAP */ 571 572 adapter = rx_ring->que->adapter; 573 ifp = adapter->ifp; 574 qid = rx_ring->que->id; 575 ena_qid = ENA_IO_RXQ_IDX(qid); 576 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid]; 577 io_sq = &adapter->ena_dev->io_sq_queues[ena_qid]; 578 next_to_clean = rx_ring->next_to_clean; 579 580 #ifdef DEV_NETMAP 581 if (netmap_rx_irq(adapter->ifp, rx_ring->qid, &done) != NM_IRQ_PASS) 582 return (0); 583 #endif /* DEV_NETMAP */ 584 585 ena_trace(ENA_DBG, "rx: qid %d\n", qid); 586 587 do { 588 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs; 589 ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size; 590 ena_rx_ctx.descs = 0; 591 bus_dmamap_sync(io_cq->cdesc_addr.mem_handle.tag, 592 io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_POSTREAD); 593 rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx); 594 595 if (unlikely(rc != 0)) 596 goto error; 597 598 if (unlikely(ena_rx_ctx.descs == 0)) 599 break; 600 601 ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. " 602 "descs #: %d l3 proto %d l4 proto %d hash: %x\n", 603 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto, 604 ena_rx_ctx.l4_proto, ena_rx_ctx.hash); 605 606 /* Receive mbuf from the ring */ 607 mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs, 608 &ena_rx_ctx, &next_to_clean); 609 bus_dmamap_sync(io_cq->cdesc_addr.mem_handle.tag, 610 io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_PREREAD); 611 /* Exit if we failed to retrieve a buffer */ 612 if (unlikely(mbuf == NULL)) { 613 for (i = 0; i < ena_rx_ctx.descs; ++i) { 614 rx_ring->free_rx_ids[next_to_clean] = 615 rx_ring->ena_bufs[i].req_id; 616 next_to_clean = 617 ENA_RX_RING_IDX_NEXT(next_to_clean, 618 rx_ring->ring_size); 619 620 } 621 break; 622 } 623 624 if (((ifp->if_capenable & IFCAP_RXCSUM) != 0) || 625 ((ifp->if_capenable & IFCAP_RXCSUM_IPV6) != 0)) { 626 ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf); 627 } 628 629 counter_enter(); 630 counter_u64_add_protected(rx_ring->rx_stats.bytes, 631 mbuf->m_pkthdr.len); 632 counter_u64_add_protected(adapter->hw_stats.rx_bytes, 633 mbuf->m_pkthdr.len); 634 counter_exit(); 635 /* 636 * LRO is only for IP/TCP packets and TCP checksum of the packet 637 * should be computed by hardware. 638 */ 639 do_if_input = 1; 640 if (((ifp->if_capenable & IFCAP_LRO) != 0) && 641 ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) && 642 (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) { 643 /* 644 * Send to the stack if: 645 * - LRO not enabled, or 646 * - no LRO resources, or 647 * - lro enqueue fails 648 */ 649 if ((rx_ring->lro.lro_cnt != 0) && 650 (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0)) 651 do_if_input = 0; 652 } 653 if (do_if_input != 0) { 654 ena_trace(ENA_DBG | ENA_RXPTH, 655 "calling if_input() with mbuf %p\n", mbuf); 656 (*ifp->if_input)(ifp, mbuf); 657 } 658 659 counter_enter(); 660 counter_u64_add_protected(rx_ring->rx_stats.cnt, 1); 661 counter_u64_add_protected(adapter->hw_stats.rx_packets, 1); 662 counter_exit(); 663 } while (--budget); 664 665 rx_ring->next_to_clean = next_to_clean; 666 667 refill_required = ena_com_free_desc(io_sq); 668 refill_threshold = min_t(int, 669 rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER, 670 ENA_RX_REFILL_THRESH_PACKET); 671 672 if (refill_required > refill_threshold) { 673 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq); 674 ena_refill_rx_bufs(rx_ring, refill_required); 675 } 676 677 tcp_lro_flush_all(&rx_ring->lro); 678 679 return (RX_BUDGET - budget); 680 681 error: 682 counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1); 683 684 /* Too many desc from the device. Trigger reset */ 685 if (likely(!ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter))) { 686 adapter->reset_reason = ENA_REGS_RESET_TOO_MANY_RX_DESCS; 687 ENA_FLAG_SET_ATOMIC(ENA_FLAG_TRIGGER_RESET, adapter); 688 } 689 690 return (0); 691 } 692 693 static void 694 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf) 695 { 696 struct ena_com_tx_meta *ena_meta; 697 struct ether_vlan_header *eh; 698 struct mbuf *mbuf_next; 699 u32 mss; 700 bool offload; 701 uint16_t etype; 702 int ehdrlen; 703 struct ip *ip; 704 int iphlen; 705 struct tcphdr *th; 706 int offset; 707 708 offload = false; 709 ena_meta = &ena_tx_ctx->ena_meta; 710 mss = mbuf->m_pkthdr.tso_segsz; 711 712 if (mss != 0) 713 offload = true; 714 715 if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0) 716 offload = true; 717 718 if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0) 719 offload = true; 720 721 if (!offload) { 722 ena_tx_ctx->meta_valid = 0; 723 return; 724 } 725 726 /* Determine where frame payload starts. */ 727 eh = mtod(mbuf, struct ether_vlan_header *); 728 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 729 etype = ntohs(eh->evl_proto); 730 ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 731 } else { 732 etype = ntohs(eh->evl_encap_proto); 733 ehdrlen = ETHER_HDR_LEN; 734 } 735 736 mbuf_next = m_getptr(mbuf, ehdrlen, &offset); 737 ip = (struct ip *)(mtodo(mbuf_next, offset)); 738 iphlen = ip->ip_hl << 2; 739 740 mbuf_next = m_getptr(mbuf, iphlen + ehdrlen, &offset); 741 th = (struct tcphdr *)(mtodo(mbuf_next, offset)); 742 743 if ((mbuf->m_pkthdr.csum_flags & CSUM_IP) != 0) { 744 ena_tx_ctx->l3_csum_enable = 1; 745 } 746 if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 747 ena_tx_ctx->tso_enable = 1; 748 ena_meta->l4_hdr_len = (th->th_off); 749 } 750 751 switch (etype) { 752 case ETHERTYPE_IP: 753 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4; 754 if ((ip->ip_off & htons(IP_DF)) != 0) 755 ena_tx_ctx->df = 1; 756 break; 757 case ETHERTYPE_IPV6: 758 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6; 759 760 default: 761 break; 762 } 763 764 if (ip->ip_p == IPPROTO_TCP) { 765 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP; 766 if ((mbuf->m_pkthdr.csum_flags & 767 (CSUM_IP_TCP | CSUM_IP6_TCP)) != 0) 768 ena_tx_ctx->l4_csum_enable = 1; 769 else 770 ena_tx_ctx->l4_csum_enable = 0; 771 } else if (ip->ip_p == IPPROTO_UDP) { 772 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP; 773 if ((mbuf->m_pkthdr.csum_flags & 774 (CSUM_IP_UDP | CSUM_IP6_UDP)) != 0) 775 ena_tx_ctx->l4_csum_enable = 1; 776 else 777 ena_tx_ctx->l4_csum_enable = 0; 778 } else { 779 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN; 780 ena_tx_ctx->l4_csum_enable = 0; 781 } 782 783 ena_meta->mss = mss; 784 ena_meta->l3_hdr_len = iphlen; 785 ena_meta->l3_hdr_offset = ehdrlen; 786 ena_tx_ctx->meta_valid = 1; 787 } 788 789 static int 790 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf) 791 { 792 struct ena_adapter *adapter; 793 struct mbuf *collapsed_mbuf; 794 int num_frags; 795 796 adapter = tx_ring->adapter; 797 num_frags = ena_mbuf_count(*mbuf); 798 799 /* One segment must be reserved for configuration descriptor. */ 800 if (num_frags < adapter->max_tx_sgl_size) 801 return (0); 802 counter_u64_add(tx_ring->tx_stats.collapse, 1); 803 804 collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT, 805 adapter->max_tx_sgl_size - 1); 806 if (unlikely(collapsed_mbuf == NULL)) { 807 counter_u64_add(tx_ring->tx_stats.collapse_err, 1); 808 return (ENOMEM); 809 } 810 811 /* If mbuf was collapsed succesfully, original mbuf is released. */ 812 *mbuf = collapsed_mbuf; 813 814 return (0); 815 } 816 817 static void 818 ena_dmamap_llq(void *arg, bus_dma_segment_t *segs, int nseg, int error) 819 { 820 struct ena_com_buf *ena_buf = arg; 821 822 if (unlikely(error != 0)) { 823 ena_buf->paddr = 0; 824 return; 825 } 826 827 KASSERT(nseg == 1, ("Invalid num of segments for LLQ dma")); 828 829 ena_buf->paddr = segs->ds_addr; 830 ena_buf->len = segs->ds_len; 831 } 832 833 static int 834 ena_tx_map_mbuf(struct ena_ring *tx_ring, struct ena_tx_buffer *tx_info, 835 struct mbuf *mbuf, void **push_hdr, u16 *header_len) 836 { 837 struct ena_adapter *adapter = tx_ring->adapter; 838 struct ena_com_buf *ena_buf; 839 bus_dma_segment_t segs[ENA_BUS_DMA_SEGS]; 840 uint32_t mbuf_head_len, frag_len; 841 uint16_t push_len = 0; 842 uint16_t delta = 0; 843 int i, rc, nsegs; 844 845 mbuf_head_len = mbuf->m_len; 846 tx_info->mbuf = mbuf; 847 ena_buf = tx_info->bufs; 848 849 if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 850 /* 851 * When the device is LLQ mode, the driver will copy 852 * the header into the device memory space. 853 * the ena_com layer assumes the header is in a linear 854 * memory space. 855 * This assumption might be wrong since part of the header 856 * can be in the fragmented buffers. 857 * First check if header fits in the mbuf. If not, copy it to 858 * separate buffer that will be holding linearized data. 859 */ 860 push_len = min_t(uint32_t, mbuf->m_pkthdr.len, 861 tx_ring->tx_max_header_size); 862 *header_len = push_len; 863 /* If header is in linear space, just point into mbuf's data. */ 864 if (likely(push_len <= mbuf_head_len)) { 865 *push_hdr = mbuf->m_data; 866 /* 867 * Otherwise, copy whole portion of header from multiple mbufs 868 * to intermediate buffer. 869 */ 870 } else { 871 m_copydata(mbuf, 0, push_len, 872 tx_ring->push_buf_intermediate_buf); 873 *push_hdr = tx_ring->push_buf_intermediate_buf; 874 875 counter_u64_add(tx_ring->tx_stats.llq_buffer_copy, 1); 876 delta = push_len - mbuf_head_len; 877 } 878 879 ena_trace(ENA_DBG | ENA_TXPTH, 880 "mbuf: %p header_buf->vaddr: %p push_len: %d\n", 881 mbuf, *push_hdr, push_len); 882 883 /* 884 * If header was in linear memory space, map for the dma rest of the data 885 * in the first mbuf of the mbuf chain. 886 */ 887 if (mbuf_head_len > push_len) { 888 rc = bus_dmamap_load(adapter->tx_buf_tag, 889 tx_info->map_head, 890 mbuf->m_data + push_len, mbuf_head_len - push_len, 891 ena_dmamap_llq, ena_buf, BUS_DMA_NOWAIT); 892 if (unlikely((rc != 0) || (ena_buf->paddr == 0))) 893 goto single_dma_error; 894 895 ena_buf++; 896 tx_info->num_of_bufs++; 897 898 tx_info->head_mapped = true; 899 } 900 mbuf = mbuf->m_next; 901 } else { 902 *push_hdr = NULL; 903 /* 904 * header_len is just a hint for the device. Because FreeBSD is not 905 * giving us information about packet header length and it is not 906 * guaranteed that all packet headers will be in the 1st mbuf, setting 907 * header_len to 0 is making the device ignore this value and resolve 908 * header on it's own. 909 */ 910 *header_len = 0; 911 } 912 913 /* 914 * If header is in non linear space (delta > 0), then skip mbufs 915 * containing header and map the last one containing both header and the 916 * packet data. 917 * The first segment is already counted in. 918 * If LLQ is not supported, the loop will be skipped. 919 */ 920 while (delta > 0) { 921 frag_len = mbuf->m_len; 922 923 /* 924 * If whole segment contains header just move to the 925 * next one and reduce delta. 926 */ 927 if (unlikely(delta >= frag_len)) { 928 delta -= frag_len; 929 } else { 930 /* 931 * Map rest of the packet data that was contained in 932 * the mbuf. 933 */ 934 rc = bus_dmamap_load(adapter->tx_buf_tag, 935 tx_info->map_head, mbuf->m_data + delta, 936 frag_len - delta, ena_dmamap_llq, ena_buf, 937 BUS_DMA_NOWAIT); 938 if (unlikely((rc != 0) || (ena_buf->paddr == 0))) 939 goto single_dma_error; 940 941 ena_buf++; 942 tx_info->num_of_bufs++; 943 tx_info->head_mapped = true; 944 945 delta = 0; 946 } 947 948 mbuf = mbuf->m_next; 949 } 950 951 if (mbuf == NULL) { 952 return (0); 953 } 954 955 /* Map rest of the mbufs */ 956 rc = bus_dmamap_load_mbuf_sg(adapter->tx_buf_tag, tx_info->map_seg, mbuf, 957 segs, &nsegs, BUS_DMA_NOWAIT); 958 if (unlikely((rc != 0) || (nsegs == 0))) { 959 ena_trace(ENA_WARNING, 960 "dmamap load failed! err: %d nsegs: %d\n", rc, nsegs); 961 goto dma_error; 962 } 963 964 for (i = 0; i < nsegs; i++) { 965 ena_buf->len = segs[i].ds_len; 966 ena_buf->paddr = segs[i].ds_addr; 967 ena_buf++; 968 } 969 tx_info->num_of_bufs += nsegs; 970 tx_info->seg_mapped = true; 971 972 return (0); 973 974 dma_error: 975 if (tx_info->head_mapped == true) 976 bus_dmamap_unload(adapter->tx_buf_tag, tx_info->map_head); 977 single_dma_error: 978 counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1); 979 tx_info->mbuf = NULL; 980 return (rc); 981 } 982 983 static int 984 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf) 985 { 986 struct ena_adapter *adapter; 987 struct ena_tx_buffer *tx_info; 988 struct ena_com_tx_ctx ena_tx_ctx; 989 struct ena_com_dev *ena_dev; 990 struct ena_com_io_sq* io_sq; 991 void *push_hdr; 992 uint16_t next_to_use; 993 uint16_t req_id; 994 uint16_t ena_qid; 995 uint16_t header_len; 996 int rc; 997 int nb_hw_desc; 998 999 ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id); 1000 adapter = tx_ring->que->adapter; 1001 ena_dev = adapter->ena_dev; 1002 io_sq = &ena_dev->io_sq_queues[ena_qid]; 1003 1004 rc = ena_check_and_collapse_mbuf(tx_ring, mbuf); 1005 if (unlikely(rc != 0)) { 1006 ena_trace(ENA_WARNING, 1007 "Failed to collapse mbuf! err: %d\n", rc); 1008 return (rc); 1009 } 1010 1011 ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes\n", (*mbuf)->m_pkthdr.len); 1012 1013 next_to_use = tx_ring->next_to_use; 1014 req_id = tx_ring->free_tx_ids[next_to_use]; 1015 tx_info = &tx_ring->tx_buffer_info[req_id]; 1016 tx_info->num_of_bufs = 0; 1017 1018 rc = ena_tx_map_mbuf(tx_ring, tx_info, *mbuf, &push_hdr, &header_len); 1019 if (unlikely(rc != 0)) { 1020 ena_trace(ENA_WARNING, "Failed to map TX mbuf\n"); 1021 return (rc); 1022 } 1023 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx)); 1024 ena_tx_ctx.ena_bufs = tx_info->bufs; 1025 ena_tx_ctx.push_header = push_hdr; 1026 ena_tx_ctx.num_bufs = tx_info->num_of_bufs; 1027 ena_tx_ctx.req_id = req_id; 1028 ena_tx_ctx.header_len = header_len; 1029 1030 /* Set flags and meta data */ 1031 ena_tx_csum(&ena_tx_ctx, *mbuf); 1032 1033 if (tx_ring->acum_pkts == DB_THRESHOLD || 1034 ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq, &ena_tx_ctx)) { 1035 ena_trace(ENA_DBG | ENA_TXPTH, 1036 "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n", 1037 tx_ring->que->id); 1038 wmb(); 1039 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq); 1040 counter_u64_add(tx_ring->tx_stats.doorbells, 1); 1041 tx_ring->acum_pkts = 0; 1042 } 1043 1044 /* Prepare the packet's descriptors and send them to device */ 1045 rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc); 1046 if (unlikely(rc != 0)) { 1047 if (likely(rc == ENA_COM_NO_MEM)) { 1048 ena_trace(ENA_DBG | ENA_TXPTH, 1049 "tx ring[%d] if out of space\n", tx_ring->que->id); 1050 } else { 1051 device_printf(adapter->pdev, 1052 "failed to prepare tx bufs\n"); 1053 } 1054 counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1); 1055 goto dma_error; 1056 } 1057 1058 counter_enter(); 1059 counter_u64_add_protected(tx_ring->tx_stats.cnt, 1); 1060 counter_u64_add_protected(tx_ring->tx_stats.bytes, 1061 (*mbuf)->m_pkthdr.len); 1062 1063 counter_u64_add_protected(adapter->hw_stats.tx_packets, 1); 1064 counter_u64_add_protected(adapter->hw_stats.tx_bytes, 1065 (*mbuf)->m_pkthdr.len); 1066 counter_exit(); 1067 1068 tx_info->tx_descs = nb_hw_desc; 1069 getbinuptime(&tx_info->timestamp); 1070 tx_info->print_once = true; 1071 1072 tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use, 1073 tx_ring->ring_size); 1074 1075 /* stop the queue when no more space available, the packet can have up 1076 * to sgl_size + 2. one for the meta descriptor and one for header 1077 * (if the header is larger than tx_max_header_size). 1078 */ 1079 if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 1080 adapter->max_tx_sgl_size + 2))) { 1081 ena_trace(ENA_DBG | ENA_TXPTH, "Stop queue %d\n", 1082 tx_ring->que->id); 1083 1084 tx_ring->running = false; 1085 counter_u64_add(tx_ring->tx_stats.queue_stop, 1); 1086 1087 /* There is a rare condition where this function decides to 1088 * stop the queue but meanwhile tx_cleanup() updates 1089 * next_to_completion and terminates. 1090 * The queue will remain stopped forever. 1091 * To solve this issue this function performs mb(), checks 1092 * the wakeup condition and wakes up the queue if needed. 1093 */ 1094 mb(); 1095 1096 if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 1097 ENA_TX_RESUME_THRESH)) { 1098 tx_ring->running = true; 1099 counter_u64_add(tx_ring->tx_stats.queue_wakeup, 1); 1100 } 1101 } 1102 1103 if (tx_info->head_mapped == true) 1104 bus_dmamap_sync(adapter->tx_buf_tag, tx_info->map_head, 1105 BUS_DMASYNC_PREWRITE); 1106 if (tx_info->seg_mapped == true) 1107 bus_dmamap_sync(adapter->tx_buf_tag, tx_info->map_seg, 1108 BUS_DMASYNC_PREWRITE); 1109 1110 return (0); 1111 1112 dma_error: 1113 tx_info->mbuf = NULL; 1114 if (tx_info->seg_mapped == true) { 1115 bus_dmamap_unload(adapter->tx_buf_tag, tx_info->map_seg); 1116 tx_info->seg_mapped = false; 1117 } 1118 if (tx_info->head_mapped == true) { 1119 bus_dmamap_unload(adapter->tx_buf_tag, tx_info->map_head); 1120 tx_info->head_mapped = false; 1121 } 1122 1123 return (rc); 1124 } 1125 1126 static void 1127 ena_start_xmit(struct ena_ring *tx_ring) 1128 { 1129 struct mbuf *mbuf; 1130 struct ena_adapter *adapter = tx_ring->adapter; 1131 struct ena_com_io_sq* io_sq; 1132 int ena_qid; 1133 int ret = 0; 1134 1135 if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0)) 1136 return; 1137 1138 if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter))) 1139 return; 1140 1141 ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id); 1142 io_sq = &adapter->ena_dev->io_sq_queues[ena_qid]; 1143 1144 while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) { 1145 ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and" 1146 " header csum flags %#jx\n", 1147 mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags); 1148 1149 if (unlikely(!tx_ring->running)) { 1150 drbr_putback(adapter->ifp, tx_ring->br, mbuf); 1151 break; 1152 } 1153 1154 if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) { 1155 if (ret == ENA_COM_NO_MEM) { 1156 drbr_putback(adapter->ifp, tx_ring->br, mbuf); 1157 } else if (ret == ENA_COM_NO_SPACE) { 1158 drbr_putback(adapter->ifp, tx_ring->br, mbuf); 1159 } else { 1160 m_freem(mbuf); 1161 drbr_advance(adapter->ifp, tx_ring->br); 1162 } 1163 1164 break; 1165 } 1166 1167 drbr_advance(adapter->ifp, tx_ring->br); 1168 1169 if (unlikely((if_getdrvflags(adapter->ifp) & 1170 IFF_DRV_RUNNING) == 0)) 1171 return; 1172 1173 tx_ring->acum_pkts++; 1174 1175 BPF_MTAP(adapter->ifp, mbuf); 1176 } 1177 1178 if (likely(tx_ring->acum_pkts != 0)) { 1179 wmb(); 1180 /* Trigger the dma engine */ 1181 ena_com_write_sq_doorbell(io_sq); 1182 counter_u64_add(tx_ring->tx_stats.doorbells, 1); 1183 tx_ring->acum_pkts = 0; 1184 } 1185 1186 if (unlikely(!tx_ring->running)) 1187 taskqueue_enqueue(tx_ring->que->cleanup_tq, 1188 &tx_ring->que->cleanup_task); 1189 } 1190