1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) 2015-2017 Amazon.com, Inc. or its affiliates. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/bus.h> 36 #include <sys/endian.h> 37 #include <sys/kernel.h> 38 #include <sys/kthread.h> 39 #include <sys/malloc.h> 40 #include <sys/mbuf.h> 41 #include <sys/module.h> 42 #include <sys/rman.h> 43 #include <sys/smp.h> 44 #include <sys/socket.h> 45 #include <sys/sockio.h> 46 #include <sys/sysctl.h> 47 #include <sys/taskqueue.h> 48 #include <sys/time.h> 49 #include <sys/eventhandler.h> 50 51 #include <machine/bus.h> 52 #include <machine/resource.h> 53 #include <machine/in_cksum.h> 54 55 #include <net/bpf.h> 56 #include <net/ethernet.h> 57 #include <net/if.h> 58 #include <net/if_var.h> 59 #include <net/if_arp.h> 60 #include <net/if_dl.h> 61 #include <net/if_media.h> 62 #include <net/rss_config.h> 63 #include <net/if_types.h> 64 #include <net/if_vlan_var.h> 65 66 #include <netinet/in_rss.h> 67 #include <netinet/in_systm.h> 68 #include <netinet/in.h> 69 #include <netinet/if_ether.h> 70 #include <netinet/ip.h> 71 #include <netinet/ip6.h> 72 #include <netinet/tcp.h> 73 #include <netinet/udp.h> 74 75 #include <dev/pci/pcivar.h> 76 #include <dev/pci/pcireg.h> 77 78 #include "ena.h" 79 #include "ena_sysctl.h" 80 81 /********************************************************* 82 * Function prototypes 83 *********************************************************/ 84 static int ena_probe(device_t); 85 static void ena_intr_msix_mgmnt(void *); 86 static int ena_allocate_pci_resources(struct ena_adapter*); 87 static void ena_free_pci_resources(struct ena_adapter *); 88 static int ena_change_mtu(if_t, int); 89 static inline void ena_alloc_counters(counter_u64_t *, int); 90 static inline void ena_free_counters(counter_u64_t *, int); 91 static inline void ena_reset_counters(counter_u64_t *, int); 92 static void ena_init_io_rings_common(struct ena_adapter *, 93 struct ena_ring *, uint16_t); 94 static void ena_init_io_rings(struct ena_adapter *); 95 static void ena_free_io_ring_resources(struct ena_adapter *, unsigned int); 96 static void ena_free_all_io_rings_resources(struct ena_adapter *); 97 static int ena_setup_tx_dma_tag(struct ena_adapter *); 98 static int ena_free_tx_dma_tag(struct ena_adapter *); 99 static int ena_setup_rx_dma_tag(struct ena_adapter *); 100 static int ena_free_rx_dma_tag(struct ena_adapter *); 101 static int ena_setup_tx_resources(struct ena_adapter *, int); 102 static void ena_free_tx_resources(struct ena_adapter *, int); 103 static int ena_setup_all_tx_resources(struct ena_adapter *); 104 static void ena_free_all_tx_resources(struct ena_adapter *); 105 static inline int validate_rx_req_id(struct ena_ring *, uint16_t); 106 static int ena_setup_rx_resources(struct ena_adapter *, unsigned int); 107 static void ena_free_rx_resources(struct ena_adapter *, unsigned int); 108 static int ena_setup_all_rx_resources(struct ena_adapter *); 109 static void ena_free_all_rx_resources(struct ena_adapter *); 110 static inline int ena_alloc_rx_mbuf(struct ena_adapter *, struct ena_ring *, 111 struct ena_rx_buffer *); 112 static void ena_free_rx_mbuf(struct ena_adapter *, struct ena_ring *, 113 struct ena_rx_buffer *); 114 static int ena_refill_rx_bufs(struct ena_ring *, uint32_t); 115 static void ena_free_rx_bufs(struct ena_adapter *, unsigned int); 116 static void ena_refill_all_rx_bufs(struct ena_adapter *); 117 static void ena_free_all_rx_bufs(struct ena_adapter *); 118 static void ena_free_tx_bufs(struct ena_adapter *, unsigned int); 119 static void ena_free_all_tx_bufs(struct ena_adapter *); 120 static void ena_destroy_all_tx_queues(struct ena_adapter *); 121 static void ena_destroy_all_rx_queues(struct ena_adapter *); 122 static void ena_destroy_all_io_queues(struct ena_adapter *); 123 static int ena_create_io_queues(struct ena_adapter *); 124 static int ena_tx_cleanup(struct ena_ring *); 125 static void ena_deferred_rx_cleanup(void *, int); 126 static int ena_rx_cleanup(struct ena_ring *); 127 static inline int validate_tx_req_id(struct ena_ring *, uint16_t); 128 static void ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *, 129 struct mbuf *); 130 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *, 131 struct ena_com_rx_ctx *, uint16_t *); 132 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *, 133 struct mbuf *); 134 static void ena_handle_msix(void *); 135 static int ena_enable_msix(struct ena_adapter *); 136 static void ena_setup_mgmnt_intr(struct ena_adapter *); 137 static void ena_setup_io_intr(struct ena_adapter *); 138 static int ena_request_mgmnt_irq(struct ena_adapter *); 139 static int ena_request_io_irq(struct ena_adapter *); 140 static void ena_free_mgmnt_irq(struct ena_adapter *); 141 static void ena_free_io_irq(struct ena_adapter *); 142 static void ena_free_irqs(struct ena_adapter*); 143 static void ena_disable_msix(struct ena_adapter *); 144 static void ena_unmask_all_io_irqs(struct ena_adapter *); 145 static int ena_rss_configure(struct ena_adapter *); 146 static int ena_up_complete(struct ena_adapter *); 147 static int ena_up(struct ena_adapter *); 148 static void ena_down(struct ena_adapter *); 149 static uint64_t ena_get_counter(if_t, ift_counter); 150 static int ena_media_change(if_t); 151 static void ena_media_status(if_t, struct ifmediareq *); 152 static void ena_init(void *); 153 static int ena_ioctl(if_t, u_long, caddr_t); 154 static int ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *); 155 static void ena_update_host_info(struct ena_admin_host_info *, if_t); 156 static void ena_update_hwassist(struct ena_adapter *); 157 static int ena_setup_ifnet(device_t, struct ena_adapter *, 158 struct ena_com_dev_get_features_ctx *); 159 static void ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *); 160 static int ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, 161 struct mbuf **mbuf); 162 static int ena_xmit_mbuf(struct ena_ring *, struct mbuf **); 163 static void ena_start_xmit(struct ena_ring *); 164 static int ena_mq_start(if_t, struct mbuf *); 165 static void ena_deferred_mq_start(void *, int); 166 static void ena_qflush(if_t); 167 static int ena_calc_io_queue_num(struct ena_adapter *, 168 struct ena_com_dev_get_features_ctx *); 169 static int ena_calc_queue_size(struct ena_adapter *, uint16_t *, 170 uint16_t *, struct ena_com_dev_get_features_ctx *); 171 static int ena_rss_init_default(struct ena_adapter *); 172 static void ena_rss_init_default_deferred(void *); 173 static void ena_config_host_info(struct ena_com_dev *); 174 static int ena_attach(device_t); 175 static int ena_detach(device_t); 176 static int ena_device_init(struct ena_adapter *, device_t, 177 struct ena_com_dev_get_features_ctx *, int *); 178 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *, 179 int); 180 static void ena_update_on_link_change(void *, struct ena_admin_aenq_entry *); 181 static void unimplemented_aenq_handler(void *, 182 struct ena_admin_aenq_entry *); 183 static void ena_timer_service(void *); 184 185 static char ena_version[] = DEVICE_NAME DRV_MODULE_NAME " v" DRV_MODULE_VERSION; 186 187 static SYSCTL_NODE(_hw, OID_AUTO, ena, CTLFLAG_RD, 0, "ENA driver parameters"); 188 189 /* 190 * Tuneable number of buffers in the buf-ring (drbr) 191 */ 192 static int ena_buf_ring_size = 4096; 193 SYSCTL_INT(_hw_ena, OID_AUTO, buf_ring_size, CTLFLAG_RWTUN, 194 &ena_buf_ring_size, 0, "Size of the bufring"); 195 196 /* 197 * Logging level for changing verbosity of the output 198 */ 199 int ena_log_level = ENA_ALERT | ENA_WARNING; 200 SYSCTL_INT(_hw_ena, OID_AUTO, log_level, CTLFLAG_RWTUN, 201 &ena_log_level, 0, "Logging level indicating verbosity of the logs"); 202 203 static ena_vendor_info_t ena_vendor_info_array[] = { 204 { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_PF, 0}, 205 { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_PF, 0}, 206 { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_VF, 0}, 207 { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_VF, 0}, 208 /* Last entry */ 209 { 0, 0, 0 } 210 }; 211 212 /* 213 * Contains pointers to event handlers, e.g. link state chage. 214 */ 215 static struct ena_aenq_handlers aenq_handlers; 216 217 void 218 ena_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error) 219 { 220 if (error != 0) 221 return; 222 *(bus_addr_t *) arg = segs[0].ds_addr; 223 } 224 225 int 226 ena_dma_alloc(device_t dmadev, bus_size_t size, 227 ena_mem_handle_t *dma , int mapflags) 228 { 229 struct ena_adapter* adapter = device_get_softc(dmadev); 230 uint32_t maxsize; 231 uint64_t dma_space_addr; 232 int error; 233 234 maxsize = ((size - 1) / PAGE_SIZE + 1) * PAGE_SIZE; 235 236 dma_space_addr = ENA_DMA_BIT_MASK(adapter->dma_width); 237 if (unlikely(dma_space_addr == 0)) 238 dma_space_addr = BUS_SPACE_MAXADDR; 239 240 error = bus_dma_tag_create(bus_get_dma_tag(dmadev), /* parent */ 241 8, 0, /* alignment, bounds */ 242 dma_space_addr, /* lowaddr of exclusion window */ 243 BUS_SPACE_MAXADDR,/* highaddr of exclusion window */ 244 NULL, NULL, /* filter, filterarg */ 245 maxsize, /* maxsize */ 246 1, /* nsegments */ 247 maxsize, /* maxsegsize */ 248 BUS_DMA_ALLOCNOW, /* flags */ 249 NULL, /* lockfunc */ 250 NULL, /* lockarg */ 251 &dma->tag); 252 if (unlikely(error != 0)) { 253 ena_trace(ENA_ALERT, "bus_dma_tag_create failed: %d\n", error); 254 goto fail_tag; 255 } 256 257 error = bus_dmamem_alloc(dma->tag, (void**) &dma->vaddr, 258 BUS_DMA_COHERENT | BUS_DMA_ZERO, &dma->map); 259 if (unlikely(error != 0)) { 260 ena_trace(ENA_ALERT, "bus_dmamem_alloc(%ju) failed: %d\n", 261 (uintmax_t)size, error); 262 goto fail_map_create; 263 } 264 265 dma->paddr = 0; 266 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, 267 size, ena_dmamap_callback, &dma->paddr, mapflags); 268 if (unlikely((error != 0) || (dma->paddr == 0))) { 269 ena_trace(ENA_ALERT, ": bus_dmamap_load failed: %d\n", error); 270 goto fail_map_load; 271 } 272 273 return (0); 274 275 fail_map_load: 276 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 277 fail_map_create: 278 bus_dma_tag_destroy(dma->tag); 279 fail_tag: 280 dma->tag = NULL; 281 282 return (error); 283 } 284 285 static int 286 ena_allocate_pci_resources(struct ena_adapter* adapter) 287 { 288 device_t pdev = adapter->pdev; 289 int rid; 290 291 rid = PCIR_BAR(ENA_REG_BAR); 292 adapter->memory = NULL; 293 adapter->registers = bus_alloc_resource_any(pdev, SYS_RES_MEMORY, 294 &rid, RF_ACTIVE); 295 if (unlikely(adapter->registers == NULL)) { 296 device_printf(pdev, "Unable to allocate bus resource: " 297 "registers\n"); 298 return (ENXIO); 299 } 300 301 return (0); 302 } 303 304 static void 305 ena_free_pci_resources(struct ena_adapter *adapter) 306 { 307 device_t pdev = adapter->pdev; 308 309 if (adapter->memory != NULL) { 310 bus_release_resource(pdev, SYS_RES_MEMORY, 311 PCIR_BAR(ENA_MEM_BAR), adapter->memory); 312 } 313 314 if (adapter->registers != NULL) { 315 bus_release_resource(pdev, SYS_RES_MEMORY, 316 PCIR_BAR(ENA_REG_BAR), adapter->registers); 317 } 318 } 319 320 static int 321 ena_probe(device_t dev) 322 { 323 ena_vendor_info_t *ent; 324 char adapter_name[60]; 325 uint16_t pci_vendor_id = 0; 326 uint16_t pci_device_id = 0; 327 328 pci_vendor_id = pci_get_vendor(dev); 329 pci_device_id = pci_get_device(dev); 330 331 ent = ena_vendor_info_array; 332 while (ent->vendor_id != 0) { 333 if ((pci_vendor_id == ent->vendor_id) && 334 (pci_device_id == ent->device_id)) { 335 ena_trace(ENA_DBG, "vendor=%x device=%x ", 336 pci_vendor_id, pci_device_id); 337 338 sprintf(adapter_name, DEVICE_DESC); 339 device_set_desc_copy(dev, adapter_name); 340 return (BUS_PROBE_DEFAULT); 341 } 342 343 ent++; 344 345 } 346 347 return (ENXIO); 348 } 349 350 static int 351 ena_change_mtu(if_t ifp, int new_mtu) 352 { 353 struct ena_adapter *adapter = if_getsoftc(ifp); 354 int rc; 355 356 if ((new_mtu > adapter->max_mtu) || (new_mtu < ENA_MIN_MTU)) { 357 device_printf(adapter->pdev, "Invalid MTU setting. " 358 "new_mtu: %d max mtu: %d min mtu: %d\n", 359 new_mtu, adapter->max_mtu, ENA_MIN_MTU); 360 return (EINVAL); 361 } 362 363 rc = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu); 364 if (likely(rc == 0)) { 365 ena_trace(ENA_DBG, "set MTU to %d\n", new_mtu); 366 if_setmtu(ifp, new_mtu); 367 } else { 368 device_printf(adapter->pdev, "Failed to set MTU to %d\n", 369 new_mtu); 370 } 371 372 return (rc); 373 } 374 375 static inline void 376 ena_alloc_counters(counter_u64_t *begin, int size) 377 { 378 counter_u64_t *end = (counter_u64_t *)((char *)begin + size); 379 380 for (; begin < end; ++begin) 381 *begin = counter_u64_alloc(M_WAITOK); 382 } 383 384 static inline void 385 ena_free_counters(counter_u64_t *begin, int size) 386 { 387 counter_u64_t *end = (counter_u64_t *)((char *)begin + size); 388 389 for (; begin < end; ++begin) 390 counter_u64_free(*begin); 391 } 392 393 static inline void 394 ena_reset_counters(counter_u64_t *begin, int size) 395 { 396 counter_u64_t *end = (counter_u64_t *)((char *)begin + size); 397 398 for (; begin < end; ++begin) 399 counter_u64_zero(*begin); 400 } 401 402 static void 403 ena_init_io_rings_common(struct ena_adapter *adapter, struct ena_ring *ring, 404 uint16_t qid) 405 { 406 407 ring->qid = qid; 408 ring->adapter = adapter; 409 ring->ena_dev = adapter->ena_dev; 410 } 411 412 static void 413 ena_init_io_rings(struct ena_adapter *adapter) 414 { 415 struct ena_com_dev *ena_dev; 416 struct ena_ring *txr, *rxr; 417 struct ena_que *que; 418 int i; 419 420 ena_dev = adapter->ena_dev; 421 422 for (i = 0; i < adapter->num_queues; i++) { 423 txr = &adapter->tx_ring[i]; 424 rxr = &adapter->rx_ring[i]; 425 426 /* TX/RX common ring state */ 427 ena_init_io_rings_common(adapter, txr, i); 428 ena_init_io_rings_common(adapter, rxr, i); 429 430 /* TX specific ring state */ 431 txr->ring_size = adapter->tx_ring_size; 432 txr->tx_max_header_size = ena_dev->tx_max_header_size; 433 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type; 434 txr->smoothed_interval = 435 ena_com_get_nonadaptive_moderation_interval_tx(ena_dev); 436 437 /* Allocate a buf ring */ 438 txr->br = buf_ring_alloc(ena_buf_ring_size, M_DEVBUF, 439 M_WAITOK, &txr->ring_mtx); 440 441 /* Alloc TX statistics. */ 442 ena_alloc_counters((counter_u64_t *)&txr->tx_stats, 443 sizeof(txr->tx_stats)); 444 445 /* RX specific ring state */ 446 rxr->ring_size = adapter->rx_ring_size; 447 rxr->smoothed_interval = 448 ena_com_get_nonadaptive_moderation_interval_rx(ena_dev); 449 450 /* Alloc RX statistics. */ 451 ena_alloc_counters((counter_u64_t *)&rxr->rx_stats, 452 sizeof(rxr->rx_stats)); 453 454 /* Initialize locks */ 455 snprintf(txr->mtx_name, nitems(txr->mtx_name), "%s:tx(%d)", 456 device_get_nameunit(adapter->pdev), i); 457 snprintf(rxr->mtx_name, nitems(rxr->mtx_name), "%s:rx(%d)", 458 device_get_nameunit(adapter->pdev), i); 459 460 mtx_init(&txr->ring_mtx, txr->mtx_name, NULL, MTX_DEF); 461 mtx_init(&rxr->ring_mtx, rxr->mtx_name, NULL, MTX_DEF); 462 463 que = &adapter->que[i]; 464 que->adapter = adapter; 465 que->id = i; 466 que->tx_ring = txr; 467 que->rx_ring = rxr; 468 469 txr->que = que; 470 rxr->que = que; 471 472 rxr->empty_rx_queue = 0; 473 } 474 } 475 476 static void 477 ena_free_io_ring_resources(struct ena_adapter *adapter, unsigned int qid) 478 { 479 struct ena_ring *txr = &adapter->tx_ring[qid]; 480 struct ena_ring *rxr = &adapter->rx_ring[qid]; 481 482 ena_free_counters((counter_u64_t *)&txr->tx_stats, 483 sizeof(txr->tx_stats)); 484 ena_free_counters((counter_u64_t *)&rxr->rx_stats, 485 sizeof(rxr->rx_stats)); 486 487 ENA_RING_MTX_LOCK(txr); 488 drbr_free(txr->br, M_DEVBUF); 489 ENA_RING_MTX_UNLOCK(txr); 490 491 mtx_destroy(&txr->ring_mtx); 492 mtx_destroy(&rxr->ring_mtx); 493 } 494 495 static void 496 ena_free_all_io_rings_resources(struct ena_adapter *adapter) 497 { 498 int i; 499 500 for (i = 0; i < adapter->num_queues; i++) 501 ena_free_io_ring_resources(adapter, i); 502 503 } 504 505 static int 506 ena_setup_tx_dma_tag(struct ena_adapter *adapter) 507 { 508 int ret; 509 510 /* Create DMA tag for Tx buffers */ 511 ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), 512 1, 0, /* alignment, bounds */ 513 ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window */ 514 BUS_SPACE_MAXADDR, /* highaddr of excl window */ 515 NULL, NULL, /* filter, filterarg */ 516 ENA_TSO_MAXSIZE, /* maxsize */ 517 adapter->max_tx_sgl_size - 1, /* nsegments */ 518 ENA_TSO_MAXSIZE, /* maxsegsize */ 519 0, /* flags */ 520 NULL, /* lockfunc */ 521 NULL, /* lockfuncarg */ 522 &adapter->tx_buf_tag); 523 524 return (ret); 525 } 526 527 static int 528 ena_free_tx_dma_tag(struct ena_adapter *adapter) 529 { 530 int ret; 531 532 ret = bus_dma_tag_destroy(adapter->tx_buf_tag); 533 534 if (likely(ret == 0)) 535 adapter->tx_buf_tag = NULL; 536 537 return (ret); 538 } 539 540 static int 541 ena_setup_rx_dma_tag(struct ena_adapter *adapter) 542 { 543 int ret; 544 545 /* Create DMA tag for Rx buffers*/ 546 ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), /* parent */ 547 1, 0, /* alignment, bounds */ 548 ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window */ 549 BUS_SPACE_MAXADDR, /* highaddr of excl window */ 550 NULL, NULL, /* filter, filterarg */ 551 MJUM16BYTES, /* maxsize */ 552 adapter->max_rx_sgl_size, /* nsegments */ 553 MJUM16BYTES, /* maxsegsize */ 554 0, /* flags */ 555 NULL, /* lockfunc */ 556 NULL, /* lockarg */ 557 &adapter->rx_buf_tag); 558 559 return (ret); 560 } 561 562 static int 563 ena_free_rx_dma_tag(struct ena_adapter *adapter) 564 { 565 int ret; 566 567 ret = bus_dma_tag_destroy(adapter->rx_buf_tag); 568 569 if (likely(ret == 0)) 570 adapter->rx_buf_tag = NULL; 571 572 return (ret); 573 } 574 575 /** 576 * ena_setup_tx_resources - allocate Tx resources (Descriptors) 577 * @adapter: network interface device structure 578 * @qid: queue index 579 * 580 * Returns 0 on success, otherwise on failure. 581 **/ 582 static int 583 ena_setup_tx_resources(struct ena_adapter *adapter, int qid) 584 { 585 struct ena_que *que = &adapter->que[qid]; 586 struct ena_ring *tx_ring = que->tx_ring; 587 int size, i, err; 588 #ifdef RSS 589 cpuset_t cpu_mask; 590 #endif 591 592 size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size; 593 594 tx_ring->tx_buffer_info = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 595 if (unlikely(tx_ring->tx_buffer_info == NULL)) 596 return (ENOMEM); 597 598 size = sizeof(uint16_t) * tx_ring->ring_size; 599 tx_ring->free_tx_ids = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 600 if (unlikely(tx_ring->free_tx_ids == NULL)) 601 goto err_buf_info_free; 602 603 /* Req id stack for TX OOO completions */ 604 for (i = 0; i < tx_ring->ring_size; i++) 605 tx_ring->free_tx_ids[i] = i; 606 607 /* Reset TX statistics. */ 608 ena_reset_counters((counter_u64_t *)&tx_ring->tx_stats, 609 sizeof(tx_ring->tx_stats)); 610 611 tx_ring->next_to_use = 0; 612 tx_ring->next_to_clean = 0; 613 614 /* Make sure that drbr is empty */ 615 ENA_RING_MTX_LOCK(tx_ring); 616 drbr_flush(adapter->ifp, tx_ring->br); 617 ENA_RING_MTX_UNLOCK(tx_ring); 618 619 /* ... and create the buffer DMA maps */ 620 for (i = 0; i < tx_ring->ring_size; i++) { 621 err = bus_dmamap_create(adapter->tx_buf_tag, 0, 622 &tx_ring->tx_buffer_info[i].map); 623 if (unlikely(err != 0)) { 624 ena_trace(ENA_ALERT, 625 "Unable to create Tx DMA map for buffer %d\n", i); 626 goto err_buf_info_unmap; 627 } 628 } 629 630 /* Allocate taskqueues */ 631 TASK_INIT(&tx_ring->enqueue_task, 0, ena_deferred_mq_start, tx_ring); 632 tx_ring->enqueue_tq = taskqueue_create_fast("ena_tx_enque", M_NOWAIT, 633 taskqueue_thread_enqueue, &tx_ring->enqueue_tq); 634 if (unlikely(tx_ring->enqueue_tq == NULL)) { 635 ena_trace(ENA_ALERT, 636 "Unable to create taskqueue for enqueue task\n"); 637 i = tx_ring->ring_size; 638 goto err_buf_info_unmap; 639 } 640 641 /* RSS set cpu for thread */ 642 #ifdef RSS 643 CPU_SETOF(que->cpu, &cpu_mask); 644 taskqueue_start_threads_cpuset(&tx_ring->enqueue_tq, 1, PI_NET, 645 &cpu_mask, "%s tx_ring enq (bucket %d)", 646 device_get_nameunit(adapter->pdev), que->cpu); 647 #else /* RSS */ 648 taskqueue_start_threads(&tx_ring->enqueue_tq, 1, PI_NET, 649 "%s txeq %d", device_get_nameunit(adapter->pdev), que->cpu); 650 #endif /* RSS */ 651 652 return (0); 653 654 err_buf_info_unmap: 655 while (i--) { 656 bus_dmamap_destroy(adapter->tx_buf_tag, 657 tx_ring->tx_buffer_info[i].map); 658 } 659 free(tx_ring->free_tx_ids, M_DEVBUF); 660 tx_ring->free_tx_ids = NULL; 661 err_buf_info_free: 662 free(tx_ring->tx_buffer_info, M_DEVBUF); 663 tx_ring->tx_buffer_info = NULL; 664 665 return (ENOMEM); 666 } 667 668 /** 669 * ena_free_tx_resources - Free Tx Resources per Queue 670 * @adapter: network interface device structure 671 * @qid: queue index 672 * 673 * Free all transmit software resources 674 **/ 675 static void 676 ena_free_tx_resources(struct ena_adapter *adapter, int qid) 677 { 678 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 679 680 while (taskqueue_cancel(tx_ring->enqueue_tq, &tx_ring->enqueue_task, 681 NULL)) 682 taskqueue_drain(tx_ring->enqueue_tq, &tx_ring->enqueue_task); 683 684 taskqueue_free(tx_ring->enqueue_tq); 685 686 ENA_RING_MTX_LOCK(tx_ring); 687 /* Flush buffer ring, */ 688 drbr_flush(adapter->ifp, tx_ring->br); 689 690 /* Free buffer DMA maps, */ 691 for (int i = 0; i < tx_ring->ring_size; i++) { 692 m_freem(tx_ring->tx_buffer_info[i].mbuf); 693 tx_ring->tx_buffer_info[i].mbuf = NULL; 694 bus_dmamap_unload(adapter->tx_buf_tag, 695 tx_ring->tx_buffer_info[i].map); 696 bus_dmamap_destroy(adapter->tx_buf_tag, 697 tx_ring->tx_buffer_info[i].map); 698 } 699 ENA_RING_MTX_UNLOCK(tx_ring); 700 701 /* And free allocated memory. */ 702 free(tx_ring->tx_buffer_info, M_DEVBUF); 703 tx_ring->tx_buffer_info = NULL; 704 705 free(tx_ring->free_tx_ids, M_DEVBUF); 706 tx_ring->free_tx_ids = NULL; 707 } 708 709 /** 710 * ena_setup_all_tx_resources - allocate all queues Tx resources 711 * @adapter: network interface device structure 712 * 713 * Returns 0 on success, otherwise on failure. 714 **/ 715 static int 716 ena_setup_all_tx_resources(struct ena_adapter *adapter) 717 { 718 int i, rc; 719 720 for (i = 0; i < adapter->num_queues; i++) { 721 rc = ena_setup_tx_resources(adapter, i); 722 if (rc != 0) { 723 device_printf(adapter->pdev, 724 "Allocation for Tx Queue %u failed\n", i); 725 goto err_setup_tx; 726 } 727 } 728 729 return (0); 730 731 err_setup_tx: 732 /* Rewind the index freeing the rings as we go */ 733 while (i--) 734 ena_free_tx_resources(adapter, i); 735 return (rc); 736 } 737 738 /** 739 * ena_free_all_tx_resources - Free Tx Resources for All Queues 740 * @adapter: network interface device structure 741 * 742 * Free all transmit software resources 743 **/ 744 static void 745 ena_free_all_tx_resources(struct ena_adapter *adapter) 746 { 747 int i; 748 749 for (i = 0; i < adapter->num_queues; i++) 750 ena_free_tx_resources(adapter, i); 751 } 752 753 static inline int 754 validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id) 755 { 756 if (likely(req_id < rx_ring->ring_size)) 757 return (0); 758 759 device_printf(rx_ring->adapter->pdev, "Invalid rx req_id: %hu\n", 760 req_id); 761 counter_u64_add(rx_ring->rx_stats.bad_req_id, 1); 762 763 /* Trigger device reset */ 764 rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID; 765 rx_ring->adapter->trigger_reset = true; 766 767 return (EFAULT); 768 } 769 770 /** 771 * ena_setup_rx_resources - allocate Rx resources (Descriptors) 772 * @adapter: network interface device structure 773 * @qid: queue index 774 * 775 * Returns 0 on success, otherwise on failure. 776 **/ 777 static int 778 ena_setup_rx_resources(struct ena_adapter *adapter, unsigned int qid) 779 { 780 struct ena_que *que = &adapter->que[qid]; 781 struct ena_ring *rx_ring = que->rx_ring; 782 int size, err, i; 783 #ifdef RSS 784 cpuset_t cpu_mask; 785 #endif 786 787 size = sizeof(struct ena_rx_buffer) * rx_ring->ring_size; 788 789 /* 790 * Alloc extra element so in rx path 791 * we can always prefetch rx_info + 1 792 */ 793 size += sizeof(struct ena_rx_buffer); 794 795 rx_ring->rx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO); 796 797 size = sizeof(uint16_t) * rx_ring->ring_size; 798 rx_ring->free_rx_ids = malloc(size, M_DEVBUF, M_WAITOK); 799 800 for (i = 0; i < rx_ring->ring_size; i++) 801 rx_ring->free_rx_ids[i] = i; 802 803 /* Reset RX statistics. */ 804 ena_reset_counters((counter_u64_t *)&rx_ring->rx_stats, 805 sizeof(rx_ring->rx_stats)); 806 807 rx_ring->next_to_clean = 0; 808 rx_ring->next_to_use = 0; 809 810 /* ... and create the buffer DMA maps */ 811 for (i = 0; i < rx_ring->ring_size; i++) { 812 err = bus_dmamap_create(adapter->rx_buf_tag, 0, 813 &(rx_ring->rx_buffer_info[i].map)); 814 if (err != 0) { 815 ena_trace(ENA_ALERT, 816 "Unable to create Rx DMA map for buffer %d\n", i); 817 goto err_buf_info_unmap; 818 } 819 } 820 821 /* Create LRO for the ring */ 822 if ((adapter->ifp->if_capenable & IFCAP_LRO) != 0) { 823 int err = tcp_lro_init(&rx_ring->lro); 824 if (err != 0) { 825 device_printf(adapter->pdev, 826 "LRO[%d] Initialization failed!\n", qid); 827 } else { 828 ena_trace(ENA_INFO, 829 "RX Soft LRO[%d] Initialized\n", qid); 830 rx_ring->lro.ifp = adapter->ifp; 831 } 832 } 833 834 /* Allocate taskqueues */ 835 TASK_INIT(&rx_ring->cmpl_task, 0, ena_deferred_rx_cleanup, rx_ring); 836 rx_ring->cmpl_tq = taskqueue_create_fast("ena RX completion", M_WAITOK, 837 taskqueue_thread_enqueue, &rx_ring->cmpl_tq); 838 839 /* RSS set cpu for thread */ 840 #ifdef RSS 841 CPU_SETOF(que->cpu, &cpu_mask); 842 taskqueue_start_threads_cpuset(&rx_ring->cmpl_tq, 1, PI_NET, &cpu_mask, 843 "%s rx_ring cmpl (bucket %d)", 844 device_get_nameunit(adapter->pdev), que->cpu); 845 #else 846 taskqueue_start_threads(&rx_ring->cmpl_tq, 1, PI_NET, 847 "%s rx_ring cmpl %d", device_get_nameunit(adapter->pdev), que->cpu); 848 #endif 849 850 return (0); 851 852 err_buf_info_unmap: 853 while (i--) { 854 bus_dmamap_destroy(adapter->rx_buf_tag, 855 rx_ring->rx_buffer_info[i].map); 856 } 857 858 free(rx_ring->free_rx_ids, M_DEVBUF); 859 rx_ring->free_rx_ids = NULL; 860 free(rx_ring->rx_buffer_info, M_DEVBUF); 861 rx_ring->rx_buffer_info = NULL; 862 return (ENOMEM); 863 } 864 865 /** 866 * ena_free_rx_resources - Free Rx Resources 867 * @adapter: network interface device structure 868 * @qid: queue index 869 * 870 * Free all receive software resources 871 **/ 872 static void 873 ena_free_rx_resources(struct ena_adapter *adapter, unsigned int qid) 874 { 875 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 876 877 while (taskqueue_cancel(rx_ring->cmpl_tq, &rx_ring->cmpl_task, NULL) != 0) 878 taskqueue_drain(rx_ring->cmpl_tq, &rx_ring->cmpl_task); 879 880 taskqueue_free(rx_ring->cmpl_tq); 881 882 /* Free buffer DMA maps, */ 883 for (int i = 0; i < rx_ring->ring_size; i++) { 884 m_freem(rx_ring->rx_buffer_info[i].mbuf); 885 rx_ring->rx_buffer_info[i].mbuf = NULL; 886 bus_dmamap_unload(adapter->rx_buf_tag, 887 rx_ring->rx_buffer_info[i].map); 888 bus_dmamap_destroy(adapter->rx_buf_tag, 889 rx_ring->rx_buffer_info[i].map); 890 } 891 892 /* free LRO resources, */ 893 tcp_lro_free(&rx_ring->lro); 894 895 /* free allocated memory */ 896 free(rx_ring->rx_buffer_info, M_DEVBUF); 897 rx_ring->rx_buffer_info = NULL; 898 899 free(rx_ring->free_rx_ids, M_DEVBUF); 900 rx_ring->free_rx_ids = NULL; 901 } 902 903 /** 904 * ena_setup_all_rx_resources - allocate all queues Rx resources 905 * @adapter: network interface device structure 906 * 907 * Returns 0 on success, otherwise on failure. 908 **/ 909 static int 910 ena_setup_all_rx_resources(struct ena_adapter *adapter) 911 { 912 int i, rc = 0; 913 914 for (i = 0; i < adapter->num_queues; i++) { 915 rc = ena_setup_rx_resources(adapter, i); 916 if (rc != 0) { 917 device_printf(adapter->pdev, 918 "Allocation for Rx Queue %u failed\n", i); 919 goto err_setup_rx; 920 } 921 } 922 return (0); 923 924 err_setup_rx: 925 /* rewind the index freeing the rings as we go */ 926 while (i--) 927 ena_free_rx_resources(adapter, i); 928 return (rc); 929 } 930 931 /** 932 * ena_free_all_rx_resources - Free Rx resources for all queues 933 * @adapter: network interface device structure 934 * 935 * Free all receive software resources 936 **/ 937 static void 938 ena_free_all_rx_resources(struct ena_adapter *adapter) 939 { 940 int i; 941 942 for (i = 0; i < adapter->num_queues; i++) 943 ena_free_rx_resources(adapter, i); 944 } 945 946 static inline int 947 ena_alloc_rx_mbuf(struct ena_adapter *adapter, 948 struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info) 949 { 950 struct ena_com_buf *ena_buf; 951 bus_dma_segment_t segs[1]; 952 int nsegs, error; 953 int mlen; 954 955 /* if previous allocated frag is not used */ 956 if (unlikely(rx_info->mbuf != NULL)) 957 return (0); 958 959 /* Get mbuf using UMA allocator */ 960 rx_info->mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM16BYTES); 961 962 if (unlikely(rx_info->mbuf == NULL)) { 963 counter_u64_add(rx_ring->rx_stats.mjum_alloc_fail, 1); 964 rx_info->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 965 if (unlikely(rx_info->mbuf == NULL)) { 966 counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1); 967 return (ENOMEM); 968 } 969 mlen = MCLBYTES; 970 } else { 971 mlen = MJUM16BYTES; 972 } 973 /* Set mbuf length*/ 974 rx_info->mbuf->m_pkthdr.len = rx_info->mbuf->m_len = mlen; 975 976 /* Map packets for DMA */ 977 ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH, 978 "Using tag %p for buffers' DMA mapping, mbuf %p len: %d", 979 adapter->rx_buf_tag,rx_info->mbuf, rx_info->mbuf->m_len); 980 error = bus_dmamap_load_mbuf_sg(adapter->rx_buf_tag, rx_info->map, 981 rx_info->mbuf, segs, &nsegs, BUS_DMA_NOWAIT); 982 if (unlikely((error != 0) || (nsegs != 1))) { 983 ena_trace(ENA_WARNING, "failed to map mbuf, error: %d, " 984 "nsegs: %d\n", error, nsegs); 985 counter_u64_add(rx_ring->rx_stats.dma_mapping_err, 1); 986 goto exit; 987 988 } 989 990 bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map, BUS_DMASYNC_PREREAD); 991 992 ena_buf = &rx_info->ena_buf; 993 ena_buf->paddr = segs[0].ds_addr; 994 ena_buf->len = mlen; 995 996 ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH, 997 "ALLOC RX BUF: mbuf %p, rx_info %p, len %d, paddr %#jx\n", 998 rx_info->mbuf, rx_info,ena_buf->len, (uintmax_t)ena_buf->paddr); 999 1000 return (0); 1001 1002 exit: 1003 m_freem(rx_info->mbuf); 1004 rx_info->mbuf = NULL; 1005 return (EFAULT); 1006 } 1007 1008 static void 1009 ena_free_rx_mbuf(struct ena_adapter *adapter, struct ena_ring *rx_ring, 1010 struct ena_rx_buffer *rx_info) 1011 { 1012 1013 if (rx_info->mbuf == NULL) { 1014 ena_trace(ENA_WARNING, "Trying to free unallocated buffer\n"); 1015 return; 1016 } 1017 1018 bus_dmamap_unload(adapter->rx_buf_tag, rx_info->map); 1019 m_freem(rx_info->mbuf); 1020 rx_info->mbuf = NULL; 1021 } 1022 1023 /** 1024 * ena_refill_rx_bufs - Refills ring with descriptors 1025 * @rx_ring: the ring which we want to feed with free descriptors 1026 * @num: number of descriptors to refill 1027 * Refills the ring with newly allocated DMA-mapped mbufs for receiving 1028 **/ 1029 static int 1030 ena_refill_rx_bufs(struct ena_ring *rx_ring, uint32_t num) 1031 { 1032 struct ena_adapter *adapter = rx_ring->adapter; 1033 uint16_t next_to_use, req_id; 1034 uint32_t i; 1035 int rc; 1036 1037 ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC, "refill qid: %d", 1038 rx_ring->qid); 1039 1040 next_to_use = rx_ring->next_to_use; 1041 1042 for (i = 0; i < num; i++) { 1043 struct ena_rx_buffer *rx_info; 1044 1045 ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC, 1046 "RX buffer - next to use: %d", next_to_use); 1047 1048 req_id = rx_ring->free_rx_ids[next_to_use]; 1049 rc = validate_rx_req_id(rx_ring, req_id); 1050 if (unlikely(rc != 0)) 1051 break; 1052 1053 rx_info = &rx_ring->rx_buffer_info[req_id]; 1054 1055 rc = ena_alloc_rx_mbuf(adapter, rx_ring, rx_info); 1056 if (unlikely(rc != 0)) { 1057 ena_trace(ENA_WARNING, 1058 "failed to alloc buffer for rx queue %d\n", 1059 rx_ring->qid); 1060 break; 1061 } 1062 rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq, 1063 &rx_info->ena_buf, req_id); 1064 if (unlikely(rc != 0)) { 1065 ena_trace(ENA_WARNING, 1066 "failed to add buffer for rx queue %d\n", 1067 rx_ring->qid); 1068 break; 1069 } 1070 next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use, 1071 rx_ring->ring_size); 1072 } 1073 1074 if (unlikely(i < num)) { 1075 counter_u64_add(rx_ring->rx_stats.refil_partial, 1); 1076 ena_trace(ENA_WARNING, 1077 "refilled rx qid %d with only %d mbufs (from %d)\n", 1078 rx_ring->qid, i, num); 1079 } 1080 1081 if (likely(i != 0)) { 1082 wmb(); 1083 ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq); 1084 } 1085 rx_ring->next_to_use = next_to_use; 1086 return (i); 1087 } 1088 1089 static void 1090 ena_free_rx_bufs(struct ena_adapter *adapter, unsigned int qid) 1091 { 1092 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 1093 unsigned int i; 1094 1095 for (i = 0; i < rx_ring->ring_size; i++) { 1096 struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i]; 1097 1098 if (rx_info->mbuf != NULL) 1099 ena_free_rx_mbuf(adapter, rx_ring, rx_info); 1100 } 1101 } 1102 1103 /** 1104 * ena_refill_all_rx_bufs - allocate all queues Rx buffers 1105 * @adapter: network interface device structure 1106 * 1107 */ 1108 static void 1109 ena_refill_all_rx_bufs(struct ena_adapter *adapter) 1110 { 1111 struct ena_ring *rx_ring; 1112 int i, rc, bufs_num; 1113 1114 for (i = 0; i < adapter->num_queues; i++) { 1115 rx_ring = &adapter->rx_ring[i]; 1116 bufs_num = rx_ring->ring_size - 1; 1117 rc = ena_refill_rx_bufs(rx_ring, bufs_num); 1118 1119 if (unlikely(rc != bufs_num)) 1120 ena_trace(ENA_WARNING, "refilling Queue %d failed. " 1121 "Allocated %d buffers from: %d\n", i, rc, bufs_num); 1122 } 1123 } 1124 1125 static void 1126 ena_free_all_rx_bufs(struct ena_adapter *adapter) 1127 { 1128 int i; 1129 1130 for (i = 0; i < adapter->num_queues; i++) 1131 ena_free_rx_bufs(adapter, i); 1132 } 1133 1134 /** 1135 * ena_free_tx_bufs - Free Tx Buffers per Queue 1136 * @adapter: network interface device structure 1137 * @qid: queue index 1138 **/ 1139 static void 1140 ena_free_tx_bufs(struct ena_adapter *adapter, unsigned int qid) 1141 { 1142 bool print_once = true; 1143 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 1144 1145 ENA_RING_MTX_LOCK(tx_ring); 1146 for (int i = 0; i < tx_ring->ring_size; i++) { 1147 struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i]; 1148 1149 if (tx_info->mbuf == NULL) 1150 continue; 1151 1152 if (print_once) { 1153 device_printf(adapter->pdev, 1154 "free uncompleted tx mbuf qid %d idx 0x%x", 1155 qid, i); 1156 print_once = false; 1157 } else { 1158 ena_trace(ENA_DBG, 1159 "free uncompleted tx mbuf qid %d idx 0x%x", 1160 qid, i); 1161 } 1162 1163 bus_dmamap_unload(adapter->tx_buf_tag, tx_info->map); 1164 m_free(tx_info->mbuf); 1165 tx_info->mbuf = NULL; 1166 } 1167 ENA_RING_MTX_UNLOCK(tx_ring); 1168 } 1169 1170 static void 1171 ena_free_all_tx_bufs(struct ena_adapter *adapter) 1172 { 1173 1174 for (int i = 0; i < adapter->num_queues; i++) 1175 ena_free_tx_bufs(adapter, i); 1176 } 1177 1178 static void 1179 ena_destroy_all_tx_queues(struct ena_adapter *adapter) 1180 { 1181 uint16_t ena_qid; 1182 int i; 1183 1184 for (i = 0; i < adapter->num_queues; i++) { 1185 ena_qid = ENA_IO_TXQ_IDX(i); 1186 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 1187 } 1188 } 1189 1190 static void 1191 ena_destroy_all_rx_queues(struct ena_adapter *adapter) 1192 { 1193 uint16_t ena_qid; 1194 int i; 1195 1196 for (i = 0; i < adapter->num_queues; i++) { 1197 ena_qid = ENA_IO_RXQ_IDX(i); 1198 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 1199 } 1200 } 1201 1202 static void 1203 ena_destroy_all_io_queues(struct ena_adapter *adapter) 1204 { 1205 ena_destroy_all_tx_queues(adapter); 1206 ena_destroy_all_rx_queues(adapter); 1207 } 1208 1209 static inline int 1210 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id) 1211 { 1212 struct ena_adapter *adapter = tx_ring->adapter; 1213 struct ena_tx_buffer *tx_info = NULL; 1214 1215 if (likely(req_id < tx_ring->ring_size)) { 1216 tx_info = &tx_ring->tx_buffer_info[req_id]; 1217 if (tx_info->mbuf != NULL) 1218 return (0); 1219 } 1220 1221 if (tx_info->mbuf == NULL) 1222 device_printf(adapter->pdev, 1223 "tx_info doesn't have valid mbuf\n"); 1224 else 1225 device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id); 1226 1227 counter_u64_add(tx_ring->tx_stats.bad_req_id, 1); 1228 1229 return (EFAULT); 1230 } 1231 1232 static int 1233 ena_create_io_queues(struct ena_adapter *adapter) 1234 { 1235 struct ena_com_dev *ena_dev = adapter->ena_dev; 1236 struct ena_com_create_io_ctx ctx; 1237 struct ena_ring *ring; 1238 uint16_t ena_qid; 1239 uint32_t msix_vector; 1240 int rc, i; 1241 1242 /* Create TX queues */ 1243 for (i = 0; i < adapter->num_queues; i++) { 1244 msix_vector = ENA_IO_IRQ_IDX(i); 1245 ena_qid = ENA_IO_TXQ_IDX(i); 1246 ctx.mem_queue_type = ena_dev->tx_mem_queue_type; 1247 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX; 1248 ctx.queue_size = adapter->tx_ring_size; 1249 ctx.msix_vector = msix_vector; 1250 ctx.qid = ena_qid; 1251 rc = ena_com_create_io_queue(ena_dev, &ctx); 1252 if (rc != 0) { 1253 device_printf(adapter->pdev, 1254 "Failed to create io TX queue #%d rc: %d\n", i, rc); 1255 goto err_tx; 1256 } 1257 ring = &adapter->tx_ring[i]; 1258 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 1259 &ring->ena_com_io_sq, 1260 &ring->ena_com_io_cq); 1261 if (rc != 0) { 1262 device_printf(adapter->pdev, 1263 "Failed to get TX queue handlers. TX queue num" 1264 " %d rc: %d\n", i, rc); 1265 ena_com_destroy_io_queue(ena_dev, ena_qid); 1266 goto err_tx; 1267 } 1268 } 1269 1270 /* Create RX queues */ 1271 for (i = 0; i < adapter->num_queues; i++) { 1272 msix_vector = ENA_IO_IRQ_IDX(i); 1273 ena_qid = ENA_IO_RXQ_IDX(i); 1274 ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 1275 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX; 1276 ctx.queue_size = adapter->rx_ring_size; 1277 ctx.msix_vector = msix_vector; 1278 ctx.qid = ena_qid; 1279 rc = ena_com_create_io_queue(ena_dev, &ctx); 1280 if (unlikely(rc != 0)) { 1281 device_printf(adapter->pdev, 1282 "Failed to create io RX queue[%d] rc: %d\n", i, rc); 1283 goto err_rx; 1284 } 1285 1286 ring = &adapter->rx_ring[i]; 1287 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 1288 &ring->ena_com_io_sq, 1289 &ring->ena_com_io_cq); 1290 if (unlikely(rc != 0)) { 1291 device_printf(adapter->pdev, 1292 "Failed to get RX queue handlers. RX queue num" 1293 " %d rc: %d\n", i, rc); 1294 ena_com_destroy_io_queue(ena_dev, ena_qid); 1295 goto err_rx; 1296 } 1297 } 1298 1299 return (0); 1300 1301 err_rx: 1302 while (i--) 1303 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i)); 1304 i = adapter->num_queues; 1305 err_tx: 1306 while (i--) 1307 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i)); 1308 1309 return (ENXIO); 1310 } 1311 1312 /** 1313 * ena_tx_cleanup - clear sent packets and corresponding descriptors 1314 * @tx_ring: ring for which we want to clean packets 1315 * 1316 * Once packets are sent, we ask the device in a loop for no longer used 1317 * descriptors. We find the related mbuf chain in a map (index in an array) 1318 * and free it, then update ring state. 1319 * This is performed in "endless" loop, updating ring pointers every 1320 * TX_COMMIT. The first check of free descriptor is performed before the actual 1321 * loop, then repeated at the loop end. 1322 **/ 1323 static int 1324 ena_tx_cleanup(struct ena_ring *tx_ring) 1325 { 1326 struct ena_adapter *adapter; 1327 struct ena_com_io_cq* io_cq; 1328 uint16_t next_to_clean; 1329 uint16_t req_id; 1330 uint16_t ena_qid; 1331 unsigned int total_done = 0; 1332 int rc; 1333 int commit = TX_COMMIT; 1334 int budget = TX_BUDGET; 1335 int work_done; 1336 1337 adapter = tx_ring->que->adapter; 1338 ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id); 1339 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid]; 1340 next_to_clean = tx_ring->next_to_clean; 1341 1342 do { 1343 struct ena_tx_buffer *tx_info; 1344 struct mbuf *mbuf; 1345 1346 rc = ena_com_tx_comp_req_id_get(io_cq, &req_id); 1347 if (unlikely(rc != 0)) 1348 break; 1349 1350 rc = validate_tx_req_id(tx_ring, req_id); 1351 if (unlikely(rc != 0)) 1352 break; 1353 1354 tx_info = &tx_ring->tx_buffer_info[req_id]; 1355 1356 mbuf = tx_info->mbuf; 1357 1358 tx_info->mbuf = NULL; 1359 bintime_clear(&tx_info->timestamp); 1360 1361 if (likely(tx_info->num_of_bufs != 0)) { 1362 /* Map is no longer required */ 1363 bus_dmamap_unload(adapter->tx_buf_tag, tx_info->map); 1364 } 1365 1366 ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed", 1367 tx_ring->qid, mbuf); 1368 1369 m_freem(mbuf); 1370 1371 total_done += tx_info->tx_descs; 1372 1373 tx_ring->free_tx_ids[next_to_clean] = req_id; 1374 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean, 1375 tx_ring->ring_size); 1376 1377 if (unlikely(--commit == 0)) { 1378 commit = TX_COMMIT; 1379 /* update ring state every TX_COMMIT descriptor */ 1380 tx_ring->next_to_clean = next_to_clean; 1381 ena_com_comp_ack( 1382 &adapter->ena_dev->io_sq_queues[ena_qid], 1383 total_done); 1384 ena_com_update_dev_comp_head(io_cq); 1385 total_done = 0; 1386 } 1387 } while (likely(--budget)); 1388 1389 work_done = TX_BUDGET - budget; 1390 1391 ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d", 1392 tx_ring->qid, work_done); 1393 1394 /* If there is still something to commit update ring state */ 1395 if (likely(commit != TX_COMMIT)) { 1396 tx_ring->next_to_clean = next_to_clean; 1397 ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid], 1398 total_done); 1399 ena_com_update_dev_comp_head(io_cq); 1400 } 1401 1402 taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task); 1403 1404 return (work_done); 1405 } 1406 1407 static void 1408 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx, 1409 struct mbuf *mbuf) 1410 { 1411 struct ena_adapter *adapter = rx_ring->adapter; 1412 1413 if (likely(adapter->rss_support)) { 1414 mbuf->m_pkthdr.flowid = ena_rx_ctx->hash; 1415 1416 if (ena_rx_ctx->frag && 1417 (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) { 1418 M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH); 1419 return; 1420 } 1421 1422 switch (ena_rx_ctx->l3_proto) { 1423 case ENA_ETH_IO_L3_PROTO_IPV4: 1424 switch (ena_rx_ctx->l4_proto) { 1425 case ENA_ETH_IO_L4_PROTO_TCP: 1426 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4); 1427 break; 1428 case ENA_ETH_IO_L4_PROTO_UDP: 1429 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4); 1430 break; 1431 default: 1432 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4); 1433 } 1434 break; 1435 case ENA_ETH_IO_L3_PROTO_IPV6: 1436 switch (ena_rx_ctx->l4_proto) { 1437 case ENA_ETH_IO_L4_PROTO_TCP: 1438 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6); 1439 break; 1440 case ENA_ETH_IO_L4_PROTO_UDP: 1441 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6); 1442 break; 1443 default: 1444 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6); 1445 } 1446 break; 1447 case ENA_ETH_IO_L3_PROTO_UNKNOWN: 1448 M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE); 1449 break; 1450 default: 1451 M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH); 1452 } 1453 } else { 1454 mbuf->m_pkthdr.flowid = rx_ring->qid; 1455 M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE); 1456 } 1457 } 1458 1459 /** 1460 * ena_rx_mbuf - assemble mbuf from descriptors 1461 * @rx_ring: ring for which we want to clean packets 1462 * @ena_bufs: buffer info 1463 * @ena_rx_ctx: metadata for this packet(s) 1464 * @next_to_clean: ring pointer, will be updated only upon success 1465 * 1466 **/ 1467 static struct mbuf* 1468 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs, 1469 struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean) 1470 { 1471 struct mbuf *mbuf; 1472 struct ena_rx_buffer *rx_info; 1473 struct ena_adapter *adapter; 1474 unsigned int descs = ena_rx_ctx->descs; 1475 uint16_t ntc, len, req_id, buf = 0; 1476 1477 ntc = *next_to_clean; 1478 adapter = rx_ring->adapter; 1479 rx_info = &rx_ring->rx_buffer_info[ntc]; 1480 1481 if (unlikely(rx_info->mbuf == NULL)) { 1482 device_printf(adapter->pdev, "NULL mbuf in rx_info"); 1483 return (NULL); 1484 } 1485 1486 len = ena_bufs[buf].len; 1487 req_id = ena_bufs[buf].req_id; 1488 rx_info = &rx_ring->rx_buffer_info[req_id]; 1489 1490 ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx", 1491 rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr); 1492 1493 mbuf = rx_info->mbuf; 1494 mbuf->m_flags |= M_PKTHDR; 1495 mbuf->m_pkthdr.len = len; 1496 mbuf->m_len = len; 1497 mbuf->m_pkthdr.rcvif = rx_ring->que->adapter->ifp; 1498 1499 /* Fill mbuf with hash key and it's interpretation for optimization */ 1500 ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf); 1501 1502 ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf 0x%p, flags=0x%x, len: %d", 1503 mbuf, mbuf->m_flags, mbuf->m_pkthdr.len); 1504 1505 /* DMA address is not needed anymore, unmap it */ 1506 bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map); 1507 1508 rx_info->mbuf = NULL; 1509 rx_ring->free_rx_ids[ntc] = req_id; 1510 ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size); 1511 1512 /* 1513 * While we have more than 1 descriptors for one rcvd packet, append 1514 * other mbufs to the main one 1515 */ 1516 while (--descs) { 1517 ++buf; 1518 len = ena_bufs[buf].len; 1519 req_id = ena_bufs[buf].req_id; 1520 rx_info = &rx_ring->rx_buffer_info[req_id]; 1521 1522 if (unlikely(rx_info->mbuf == NULL)) { 1523 device_printf(adapter->pdev, "NULL mbuf in rx_info"); 1524 /* 1525 * If one of the required mbufs was not allocated yet, 1526 * we can break there. 1527 * All earlier used descriptors will be reallocated 1528 * later and not used mbufs can be reused. 1529 * The next_to_clean pointer will not be updated in case 1530 * of an error, so caller should advance it manually 1531 * in error handling routine to keep it up to date 1532 * with hw ring. 1533 */ 1534 m_freem(mbuf); 1535 return (NULL); 1536 } 1537 1538 if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) { 1539 counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1); 1540 ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p", 1541 mbuf); 1542 } 1543 1544 ena_trace(ENA_DBG | ENA_RXPTH, 1545 "rx mbuf updated. len %d", mbuf->m_pkthdr.len); 1546 1547 /* Free already appended mbuf, it won't be useful anymore */ 1548 bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map); 1549 m_freem(rx_info->mbuf); 1550 rx_info->mbuf = NULL; 1551 1552 rx_ring->free_rx_ids[ntc] = req_id; 1553 ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size); 1554 } 1555 1556 *next_to_clean = ntc; 1557 1558 return (mbuf); 1559 } 1560 1561 /** 1562 * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum 1563 **/ 1564 static inline void 1565 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx, 1566 struct mbuf *mbuf) 1567 { 1568 1569 /* if IP and error */ 1570 if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) && 1571 ena_rx_ctx->l3_csum_err)) { 1572 /* ipv4 checksum error */ 1573 mbuf->m_pkthdr.csum_flags = 0; 1574 counter_u64_add(rx_ring->rx_stats.bad_csum, 1); 1575 ena_trace(ENA_DBG, "RX IPv4 header checksum error"); 1576 return; 1577 } 1578 1579 /* if TCP/UDP */ 1580 if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 1581 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) { 1582 if (ena_rx_ctx->l4_csum_err) { 1583 /* TCP/UDP checksum error */ 1584 mbuf->m_pkthdr.csum_flags = 0; 1585 counter_u64_add(rx_ring->rx_stats.bad_csum, 1); 1586 ena_trace(ENA_DBG, "RX L4 checksum error"); 1587 } else { 1588 mbuf->m_pkthdr.csum_flags = CSUM_IP_CHECKED; 1589 mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID; 1590 } 1591 } 1592 } 1593 1594 static void 1595 ena_deferred_rx_cleanup(void *arg, int pending) 1596 { 1597 struct ena_ring *rx_ring = arg; 1598 int budget = CLEAN_BUDGET; 1599 1600 ENA_RING_MTX_LOCK(rx_ring); 1601 /* 1602 * If deferred task was executed, perform cleanup of all awaiting 1603 * descs (or until given budget is depleted to avoid infinite loop). 1604 */ 1605 while (likely(budget--)) { 1606 if (ena_rx_cleanup(rx_ring) == 0) 1607 break; 1608 } 1609 ENA_RING_MTX_UNLOCK(rx_ring); 1610 } 1611 1612 /** 1613 * ena_rx_cleanup - handle rx irq 1614 * @arg: ring for which irq is being handled 1615 **/ 1616 static int 1617 ena_rx_cleanup(struct ena_ring *rx_ring) 1618 { 1619 struct ena_adapter *adapter; 1620 struct mbuf *mbuf; 1621 struct ena_com_rx_ctx ena_rx_ctx; 1622 struct ena_com_io_cq* io_cq; 1623 struct ena_com_io_sq* io_sq; 1624 if_t ifp; 1625 uint16_t ena_qid; 1626 uint16_t next_to_clean; 1627 uint32_t refill_required; 1628 uint32_t refill_threshold; 1629 uint32_t do_if_input = 0; 1630 unsigned int qid; 1631 int rc, i; 1632 int budget = RX_BUDGET; 1633 1634 adapter = rx_ring->que->adapter; 1635 ifp = adapter->ifp; 1636 qid = rx_ring->que->id; 1637 ena_qid = ENA_IO_RXQ_IDX(qid); 1638 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid]; 1639 io_sq = &adapter->ena_dev->io_sq_queues[ena_qid]; 1640 next_to_clean = rx_ring->next_to_clean; 1641 1642 ena_trace(ENA_DBG, "rx: qid %d", qid); 1643 1644 do { 1645 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs; 1646 ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size; 1647 ena_rx_ctx.descs = 0; 1648 rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx); 1649 1650 if (unlikely(rc != 0)) 1651 goto error; 1652 1653 if (unlikely(ena_rx_ctx.descs == 0)) 1654 break; 1655 1656 ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. " 1657 "descs #: %d l3 proto %d l4 proto %d hash: %x", 1658 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto, 1659 ena_rx_ctx.l4_proto, ena_rx_ctx.hash); 1660 1661 /* Receive mbuf from the ring */ 1662 mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs, 1663 &ena_rx_ctx, &next_to_clean); 1664 1665 /* Exit if we failed to retrieve a buffer */ 1666 if (unlikely(mbuf == NULL)) { 1667 for (i = 0; i < ena_rx_ctx.descs; ++i) { 1668 rx_ring->free_rx_ids[next_to_clean] = 1669 rx_ring->ena_bufs[i].req_id; 1670 next_to_clean = 1671 ENA_RX_RING_IDX_NEXT(next_to_clean, 1672 rx_ring->ring_size); 1673 1674 } 1675 break; 1676 } 1677 1678 if (((ifp->if_capenable & IFCAP_RXCSUM) != 0) || 1679 ((ifp->if_capenable & IFCAP_RXCSUM_IPV6) != 0)) { 1680 ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf); 1681 } 1682 1683 counter_enter(); 1684 counter_u64_add_protected(rx_ring->rx_stats.bytes, 1685 mbuf->m_pkthdr.len); 1686 counter_u64_add_protected(adapter->hw_stats.rx_bytes, 1687 mbuf->m_pkthdr.len); 1688 counter_exit(); 1689 /* 1690 * LRO is only for IP/TCP packets and TCP checksum of the packet 1691 * should be computed by hardware. 1692 */ 1693 do_if_input = 1; 1694 if (((ifp->if_capenable & IFCAP_LRO) != 0) && 1695 ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) && 1696 (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) { 1697 /* 1698 * Send to the stack if: 1699 * - LRO not enabled, or 1700 * - no LRO resources, or 1701 * - lro enqueue fails 1702 */ 1703 if ((rx_ring->lro.lro_cnt != 0) && 1704 (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0)) 1705 do_if_input = 0; 1706 } 1707 if (do_if_input != 0) { 1708 ena_trace(ENA_DBG | ENA_RXPTH, 1709 "calling if_input() with mbuf %p", mbuf); 1710 (*ifp->if_input)(ifp, mbuf); 1711 } 1712 1713 counter_enter(); 1714 counter_u64_add_protected(rx_ring->rx_stats.cnt, 1); 1715 counter_u64_add_protected(adapter->hw_stats.rx_packets, 1); 1716 counter_exit(); 1717 } while (--budget); 1718 1719 rx_ring->next_to_clean = next_to_clean; 1720 1721 refill_required = ena_com_free_desc(io_sq); 1722 refill_threshold = rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER; 1723 1724 if (refill_required > refill_threshold) { 1725 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq); 1726 ena_refill_rx_bufs(rx_ring, refill_required); 1727 } 1728 1729 tcp_lro_flush_all(&rx_ring->lro); 1730 1731 return (RX_BUDGET - budget); 1732 1733 error: 1734 counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1); 1735 return (RX_BUDGET - budget); 1736 } 1737 1738 /********************************************************************* 1739 * 1740 * MSIX & Interrupt Service routine 1741 * 1742 **********************************************************************/ 1743 1744 /** 1745 * ena_handle_msix - MSIX Interrupt Handler for admin/async queue 1746 * @arg: interrupt number 1747 **/ 1748 static void 1749 ena_intr_msix_mgmnt(void *arg) 1750 { 1751 struct ena_adapter *adapter = (struct ena_adapter *)arg; 1752 1753 ena_com_admin_q_comp_intr_handler(adapter->ena_dev); 1754 if (likely(adapter->running)) 1755 ena_com_aenq_intr_handler(adapter->ena_dev, arg); 1756 } 1757 1758 /** 1759 * ena_handle_msix - MSIX Interrupt Handler for Tx/Rx 1760 * @arg: interrupt number 1761 **/ 1762 static void 1763 ena_handle_msix(void *arg) 1764 { 1765 struct ena_que *que = arg; 1766 struct ena_adapter *adapter = que->adapter; 1767 if_t ifp = adapter->ifp; 1768 struct ena_ring *tx_ring; 1769 struct ena_ring *rx_ring; 1770 struct ena_com_io_cq* io_cq; 1771 struct ena_eth_io_intr_reg intr_reg; 1772 int qid, ena_qid; 1773 int txc, rxc, i; 1774 1775 if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)) 1776 return; 1777 1778 ena_trace(ENA_DBG, "MSI-X TX/RX routine"); 1779 1780 tx_ring = que->tx_ring; 1781 rx_ring = que->rx_ring; 1782 qid = que->id; 1783 ena_qid = ENA_IO_TXQ_IDX(qid); 1784 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid]; 1785 1786 for (i = 0; i < CLEAN_BUDGET; ++i) { 1787 /* 1788 * If lock cannot be acquired, then deferred cleanup task was 1789 * being executed and rx ring is being cleaned up in 1790 * another thread. 1791 */ 1792 if (likely(ENA_RING_MTX_TRYLOCK(rx_ring) != 0)) { 1793 rxc = ena_rx_cleanup(rx_ring); 1794 ENA_RING_MTX_UNLOCK(rx_ring); 1795 } else { 1796 rxc = 0; 1797 } 1798 1799 /* Protection from calling ena_tx_cleanup from ena_start_xmit */ 1800 ENA_RING_MTX_LOCK(tx_ring); 1801 txc = ena_tx_cleanup(tx_ring); 1802 ENA_RING_MTX_UNLOCK(tx_ring); 1803 1804 if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)) 1805 return; 1806 1807 if ((txc != TX_BUDGET) && (rxc != RX_BUDGET)) 1808 break; 1809 } 1810 1811 /* Signal that work is done and unmask interrupt */ 1812 ena_com_update_intr_reg(&intr_reg, 1813 RX_IRQ_INTERVAL, 1814 TX_IRQ_INTERVAL, 1815 true); 1816 ena_com_unmask_intr(io_cq, &intr_reg); 1817 } 1818 1819 static int 1820 ena_enable_msix(struct ena_adapter *adapter) 1821 { 1822 device_t dev = adapter->pdev; 1823 int msix_vecs, msix_req; 1824 int i, rc = 0; 1825 1826 /* Reserved the max msix vectors we might need */ 1827 msix_vecs = ENA_MAX_MSIX_VEC(adapter->num_queues); 1828 1829 adapter->msix_entries = malloc(msix_vecs * sizeof(struct msix_entry), 1830 M_DEVBUF, M_WAITOK | M_ZERO); 1831 1832 ena_trace(ENA_DBG, "trying to enable MSI-X, vectors: %d", msix_vecs); 1833 1834 for (i = 0; i < msix_vecs; i++) { 1835 adapter->msix_entries[i].entry = i; 1836 /* Vectors must start from 1 */ 1837 adapter->msix_entries[i].vector = i + 1; 1838 } 1839 1840 msix_req = msix_vecs; 1841 rc = pci_alloc_msix(dev, &msix_vecs); 1842 if (unlikely(rc != 0)) { 1843 device_printf(dev, 1844 "Failed to enable MSIX, vectors %d rc %d\n", msix_vecs, rc); 1845 1846 rc = ENOSPC; 1847 goto err_msix_free; 1848 } 1849 1850 if (msix_vecs != msix_req) { 1851 device_printf(dev, "Enable only %d MSI-x (out of %d), reduce " 1852 "the number of queues\n", msix_vecs, msix_req); 1853 adapter->num_queues = msix_vecs - ENA_ADMIN_MSIX_VEC; 1854 } 1855 1856 adapter->msix_vecs = msix_vecs; 1857 adapter->msix_enabled = true; 1858 1859 return (0); 1860 1861 err_msix_free: 1862 free(adapter->msix_entries, M_DEVBUF); 1863 adapter->msix_entries = NULL; 1864 1865 return (rc); 1866 } 1867 1868 static void 1869 ena_setup_mgmnt_intr(struct ena_adapter *adapter) 1870 { 1871 1872 snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name, 1873 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s", 1874 device_get_nameunit(adapter->pdev)); 1875 /* 1876 * Handler is NULL on purpose, it will be set 1877 * when mgmnt interrupt is acquired 1878 */ 1879 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler = NULL; 1880 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter; 1881 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector = 1882 adapter->msix_entries[ENA_MGMNT_IRQ_IDX].vector; 1883 } 1884 1885 static void 1886 ena_setup_io_intr(struct ena_adapter *adapter) 1887 { 1888 static int last_bind_cpu = -1; 1889 int irq_idx; 1890 1891 for (int i = 0; i < adapter->num_queues; i++) { 1892 irq_idx = ENA_IO_IRQ_IDX(i); 1893 1894 snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE, 1895 "%s-TxRx-%d", device_get_nameunit(adapter->pdev), i); 1896 adapter->irq_tbl[irq_idx].handler = ena_handle_msix; 1897 adapter->irq_tbl[irq_idx].data = &adapter->que[i]; 1898 adapter->irq_tbl[irq_idx].vector = 1899 adapter->msix_entries[irq_idx].vector; 1900 ena_trace(ENA_INFO | ENA_IOQ, "ena_setup_io_intr vector: %d\n", 1901 adapter->msix_entries[irq_idx].vector); 1902 #ifdef RSS 1903 adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu = 1904 rss_getcpu(i % rss_getnumbuckets()); 1905 #else 1906 /* 1907 * We still want to bind rings to the corresponding cpu 1908 * using something similar to the RSS round-robin technique. 1909 */ 1910 if (unlikely(last_bind_cpu < 0)) 1911 last_bind_cpu = CPU_FIRST(); 1912 adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu = 1913 last_bind_cpu; 1914 last_bind_cpu = CPU_NEXT(last_bind_cpu); 1915 #endif 1916 } 1917 } 1918 1919 static int 1920 ena_request_mgmnt_irq(struct ena_adapter *adapter) 1921 { 1922 struct ena_irq *irq; 1923 unsigned long flags; 1924 int rc, rcc; 1925 1926 flags = RF_ACTIVE | RF_SHAREABLE; 1927 1928 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 1929 irq->res = bus_alloc_resource_any(adapter->pdev, SYS_RES_IRQ, 1930 &irq->vector, flags); 1931 1932 if (unlikely(irq->res == NULL)) { 1933 device_printf(adapter->pdev, "could not allocate " 1934 "irq vector: %d\n", irq->vector); 1935 return (ENXIO); 1936 } 1937 1938 rc = bus_activate_resource(adapter->pdev, SYS_RES_IRQ, 1939 irq->vector, irq->res); 1940 if (unlikely(rc != 0)) { 1941 device_printf(adapter->pdev, "could not activate " 1942 "irq vector: %d\n", irq->vector); 1943 goto err_res_free; 1944 } 1945 1946 rc = bus_setup_intr(adapter->pdev, irq->res, 1947 INTR_TYPE_NET | INTR_MPSAFE, NULL, ena_intr_msix_mgmnt, 1948 irq->data, &irq->cookie); 1949 if (unlikely(rc != 0)) { 1950 device_printf(adapter->pdev, "failed to register " 1951 "interrupt handler for irq %ju: %d\n", 1952 rman_get_start(irq->res), rc); 1953 goto err_res_free; 1954 } 1955 irq->requested = true; 1956 1957 return (rc); 1958 1959 err_res_free: 1960 ena_trace(ENA_INFO | ENA_ADMQ, "releasing resource for irq %d\n", 1961 irq->vector); 1962 rcc = bus_release_resource(adapter->pdev, SYS_RES_IRQ, 1963 irq->vector, irq->res); 1964 if (unlikely(rcc != 0)) 1965 device_printf(adapter->pdev, "dev has no parent while " 1966 "releasing res for irq: %d\n", irq->vector); 1967 irq->res = NULL; 1968 1969 return (rc); 1970 } 1971 1972 static int 1973 ena_request_io_irq(struct ena_adapter *adapter) 1974 { 1975 struct ena_irq *irq; 1976 unsigned long flags = 0; 1977 int rc = 0, i, rcc; 1978 1979 if (unlikely(adapter->msix_enabled == 0)) { 1980 device_printf(adapter->pdev, 1981 "failed to request I/O IRQ: MSI-X is not enabled\n"); 1982 return (EINVAL); 1983 } else { 1984 flags = RF_ACTIVE | RF_SHAREABLE; 1985 } 1986 1987 for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) { 1988 irq = &adapter->irq_tbl[i]; 1989 1990 if (unlikely(irq->requested)) 1991 continue; 1992 1993 irq->res = bus_alloc_resource_any(adapter->pdev, SYS_RES_IRQ, 1994 &irq->vector, flags); 1995 if (unlikely(irq->res == NULL)) { 1996 device_printf(adapter->pdev, "could not allocate " 1997 "irq vector: %d\n", irq->vector); 1998 goto err; 1999 } 2000 2001 rc = bus_setup_intr(adapter->pdev, irq->res, 2002 INTR_TYPE_NET | INTR_MPSAFE, NULL, 2003 irq->handler, irq->data, &irq->cookie); 2004 if (unlikely(rc != 0)) { 2005 device_printf(adapter->pdev, "failed to register " 2006 "interrupt handler for irq %ju: %d\n", 2007 rman_get_start(irq->res), rc); 2008 goto err; 2009 } 2010 irq->requested = true; 2011 2012 #ifdef RSS 2013 ena_trace(ENA_INFO, "queue %d - RSS bucket %d\n", 2014 i - ENA_IO_IRQ_FIRST_IDX, irq->cpu); 2015 #else 2016 ena_trace(ENA_INFO, "queue %d - cpu %d\n", 2017 i - ENA_IO_IRQ_FIRST_IDX, irq->cpu); 2018 #endif 2019 } 2020 2021 return (rc); 2022 2023 err: 2024 2025 for (; i >= ENA_IO_IRQ_FIRST_IDX; i--) { 2026 irq = &adapter->irq_tbl[i]; 2027 rcc = 0; 2028 2029 /* Once we entered err: section and irq->requested is true we 2030 free both intr and resources */ 2031 if (irq->requested) 2032 rcc = bus_teardown_intr(adapter->pdev, irq->res, irq->cookie); 2033 if (unlikely(rcc != 0)) 2034 device_printf(adapter->pdev, "could not release" 2035 " irq: %d, error: %d\n", irq->vector, rcc); 2036 2037 /* If we entred err: section without irq->requested set we know 2038 it was bus_alloc_resource_any() that needs cleanup, provided 2039 res is not NULL. In case res is NULL no work in needed in 2040 this iteration */ 2041 rcc = 0; 2042 if (irq->res != NULL) { 2043 rcc = bus_release_resource(adapter->pdev, SYS_RES_IRQ, 2044 irq->vector, irq->res); 2045 } 2046 if (unlikely(rcc != 0)) 2047 device_printf(adapter->pdev, "dev has no parent while " 2048 "releasing res for irq: %d\n", irq->vector); 2049 irq->requested = false; 2050 irq->res = NULL; 2051 } 2052 2053 return (rc); 2054 } 2055 2056 static void 2057 ena_free_mgmnt_irq(struct ena_adapter *adapter) 2058 { 2059 struct ena_irq *irq; 2060 int rc; 2061 2062 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 2063 if (irq->requested) { 2064 ena_trace(ENA_INFO | ENA_ADMQ, "tear down irq: %d\n", 2065 irq->vector); 2066 rc = bus_teardown_intr(adapter->pdev, irq->res, irq->cookie); 2067 if (unlikely(rc != 0)) 2068 device_printf(adapter->pdev, "failed to tear " 2069 "down irq: %d\n", irq->vector); 2070 irq->requested = 0; 2071 } 2072 2073 if (irq->res != NULL) { 2074 ena_trace(ENA_INFO | ENA_ADMQ, "release resource irq: %d\n", 2075 irq->vector); 2076 rc = bus_release_resource(adapter->pdev, SYS_RES_IRQ, 2077 irq->vector, irq->res); 2078 irq->res = NULL; 2079 if (unlikely(rc != 0)) 2080 device_printf(adapter->pdev, "dev has no parent while " 2081 "releasing res for irq: %d\n", irq->vector); 2082 } 2083 } 2084 2085 static void 2086 ena_free_io_irq(struct ena_adapter *adapter) 2087 { 2088 struct ena_irq *irq; 2089 int rc; 2090 2091 for (int i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) { 2092 irq = &adapter->irq_tbl[i]; 2093 if (irq->requested) { 2094 ena_trace(ENA_INFO | ENA_IOQ, "tear down irq: %d\n", 2095 irq->vector); 2096 rc = bus_teardown_intr(adapter->pdev, irq->res, 2097 irq->cookie); 2098 if (unlikely(rc != 0)) { 2099 device_printf(adapter->pdev, "failed to tear " 2100 "down irq: %d\n", irq->vector); 2101 } 2102 irq->requested = 0; 2103 } 2104 2105 if (irq->res != NULL) { 2106 ena_trace(ENA_INFO | ENA_IOQ, "release resource irq: %d\n", 2107 irq->vector); 2108 rc = bus_release_resource(adapter->pdev, SYS_RES_IRQ, 2109 irq->vector, irq->res); 2110 irq->res = NULL; 2111 if (unlikely(rc != 0)) { 2112 device_printf(adapter->pdev, "dev has no parent" 2113 " while releasing res for irq: %d\n", 2114 irq->vector); 2115 } 2116 } 2117 } 2118 } 2119 2120 static void 2121 ena_free_irqs(struct ena_adapter* adapter) 2122 { 2123 2124 ena_free_io_irq(adapter); 2125 ena_free_mgmnt_irq(adapter); 2126 ena_disable_msix(adapter); 2127 } 2128 2129 static void 2130 ena_disable_msix(struct ena_adapter *adapter) 2131 { 2132 2133 pci_release_msi(adapter->pdev); 2134 2135 adapter->msix_vecs = 0; 2136 free(adapter->msix_entries, M_DEVBUF); 2137 adapter->msix_entries = NULL; 2138 } 2139 2140 static void 2141 ena_unmask_all_io_irqs(struct ena_adapter *adapter) 2142 { 2143 struct ena_com_io_cq* io_cq; 2144 struct ena_eth_io_intr_reg intr_reg; 2145 uint16_t ena_qid; 2146 int i; 2147 2148 /* Unmask interrupts for all queues */ 2149 for (i = 0; i < adapter->num_queues; i++) { 2150 ena_qid = ENA_IO_TXQ_IDX(i); 2151 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid]; 2152 ena_com_update_intr_reg(&intr_reg, 0, 0, true); 2153 ena_com_unmask_intr(io_cq, &intr_reg); 2154 } 2155 } 2156 2157 /* Configure the Rx forwarding */ 2158 static int 2159 ena_rss_configure(struct ena_adapter *adapter) 2160 { 2161 struct ena_com_dev *ena_dev = adapter->ena_dev; 2162 int rc; 2163 2164 /* Set indirect table */ 2165 rc = ena_com_indirect_table_set(ena_dev); 2166 if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) 2167 return (rc); 2168 2169 /* Configure hash function (if supported) */ 2170 rc = ena_com_set_hash_function(ena_dev); 2171 if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) 2172 return (rc); 2173 2174 /* Configure hash inputs (if supported) */ 2175 rc = ena_com_set_hash_ctrl(ena_dev); 2176 if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) 2177 return (rc); 2178 2179 return (0); 2180 } 2181 2182 static int 2183 ena_up_complete(struct ena_adapter *adapter) 2184 { 2185 int rc; 2186 2187 if (likely(adapter->rss_support)) { 2188 rc = ena_rss_configure(adapter); 2189 if (rc != 0) 2190 return (rc); 2191 } 2192 2193 rc = ena_change_mtu(adapter->ifp, adapter->ifp->if_mtu); 2194 if (unlikely(rc != 0)) 2195 return (rc); 2196 2197 ena_refill_all_rx_bufs(adapter); 2198 ena_reset_counters((counter_u64_t *)&adapter->hw_stats, 2199 sizeof(adapter->hw_stats)); 2200 2201 return (0); 2202 } 2203 2204 static int 2205 ena_up(struct ena_adapter *adapter) 2206 { 2207 int rc = 0; 2208 2209 if (unlikely(device_is_attached(adapter->pdev) == 0)) { 2210 device_printf(adapter->pdev, "device is not attached!\n"); 2211 return (ENXIO); 2212 } 2213 2214 if (unlikely(!adapter->running)) { 2215 device_printf(adapter->pdev, "device is not running!\n"); 2216 return (ENXIO); 2217 } 2218 2219 if (!adapter->up) { 2220 device_printf(adapter->pdev, "device is going UP\n"); 2221 2222 /* setup interrupts for IO queues */ 2223 ena_setup_io_intr(adapter); 2224 rc = ena_request_io_irq(adapter); 2225 if (unlikely(rc != 0)) { 2226 ena_trace(ENA_ALERT, "err_req_irq"); 2227 goto err_req_irq; 2228 } 2229 2230 /* allocate transmit descriptors */ 2231 rc = ena_setup_all_tx_resources(adapter); 2232 if (unlikely(rc != 0)) { 2233 ena_trace(ENA_ALERT, "err_setup_tx"); 2234 goto err_setup_tx; 2235 } 2236 2237 /* allocate receive descriptors */ 2238 rc = ena_setup_all_rx_resources(adapter); 2239 if (unlikely(rc != 0)) { 2240 ena_trace(ENA_ALERT, "err_setup_rx"); 2241 goto err_setup_rx; 2242 } 2243 2244 /* create IO queues for Rx & Tx */ 2245 rc = ena_create_io_queues(adapter); 2246 if (unlikely(rc != 0)) { 2247 ena_trace(ENA_ALERT, 2248 "create IO queues failed"); 2249 goto err_io_que; 2250 } 2251 2252 if (unlikely(adapter->link_status)) 2253 if_link_state_change(adapter->ifp, LINK_STATE_UP); 2254 2255 rc = ena_up_complete(adapter); 2256 if (unlikely(rc != 0)) 2257 goto err_up_complete; 2258 2259 counter_u64_add(adapter->dev_stats.interface_up, 1); 2260 2261 ena_update_hwassist(adapter); 2262 2263 if_setdrvflagbits(adapter->ifp, IFF_DRV_RUNNING, 2264 IFF_DRV_OACTIVE); 2265 2266 callout_reset_sbt(&adapter->timer_service, SBT_1S, SBT_1S, 2267 ena_timer_service, (void *)adapter, 0); 2268 2269 adapter->up = true; 2270 2271 ena_unmask_all_io_irqs(adapter); 2272 } 2273 2274 return (0); 2275 2276 err_up_complete: 2277 ena_destroy_all_io_queues(adapter); 2278 err_io_que: 2279 ena_free_all_rx_resources(adapter); 2280 err_setup_rx: 2281 ena_free_all_tx_resources(adapter); 2282 err_setup_tx: 2283 ena_free_io_irq(adapter); 2284 err_req_irq: 2285 return (rc); 2286 } 2287 2288 static uint64_t 2289 ena_get_counter(if_t ifp, ift_counter cnt) 2290 { 2291 struct ena_adapter *adapter; 2292 struct ena_hw_stats *stats; 2293 2294 adapter = if_getsoftc(ifp); 2295 stats = &adapter->hw_stats; 2296 2297 switch (cnt) { 2298 case IFCOUNTER_IPACKETS: 2299 return (counter_u64_fetch(stats->rx_packets)); 2300 case IFCOUNTER_OPACKETS: 2301 return (counter_u64_fetch(stats->tx_packets)); 2302 case IFCOUNTER_IBYTES: 2303 return (counter_u64_fetch(stats->rx_bytes)); 2304 case IFCOUNTER_OBYTES: 2305 return (counter_u64_fetch(stats->tx_bytes)); 2306 case IFCOUNTER_IQDROPS: 2307 return (counter_u64_fetch(stats->rx_drops)); 2308 default: 2309 return (if_get_counter_default(ifp, cnt)); 2310 } 2311 } 2312 2313 static int 2314 ena_media_change(if_t ifp) 2315 { 2316 /* Media Change is not supported by firmware */ 2317 return (0); 2318 } 2319 2320 static void 2321 ena_media_status(if_t ifp, struct ifmediareq *ifmr) 2322 { 2323 struct ena_adapter *adapter = if_getsoftc(ifp); 2324 ena_trace(ENA_DBG, "enter"); 2325 2326 mtx_lock(&adapter->global_mtx); 2327 2328 ifmr->ifm_status = IFM_AVALID; 2329 ifmr->ifm_active = IFM_ETHER; 2330 2331 if (!adapter->link_status) { 2332 mtx_unlock(&adapter->global_mtx); 2333 ena_trace(ENA_INFO, "link_status = false"); 2334 return; 2335 } 2336 2337 ifmr->ifm_status |= IFM_ACTIVE; 2338 ifmr->ifm_active |= IFM_10G_T | IFM_FDX; 2339 2340 mtx_unlock(&adapter->global_mtx); 2341 } 2342 2343 static void 2344 ena_init(void *arg) 2345 { 2346 struct ena_adapter *adapter = (struct ena_adapter *)arg; 2347 2348 if (!adapter->up) { 2349 sx_xlock(&adapter->ioctl_sx); 2350 ena_up(adapter); 2351 sx_unlock(&adapter->ioctl_sx); 2352 } 2353 } 2354 2355 static int 2356 ena_ioctl(if_t ifp, u_long command, caddr_t data) 2357 { 2358 struct ena_adapter *adapter; 2359 struct ifreq *ifr; 2360 int rc; 2361 2362 adapter = ifp->if_softc; 2363 ifr = (struct ifreq *)data; 2364 2365 /* 2366 * Acquiring lock to prevent from running up and down routines parallel. 2367 */ 2368 rc = 0; 2369 switch (command) { 2370 case SIOCSIFMTU: 2371 sx_xlock(&adapter->ioctl_sx); 2372 ena_down(adapter); 2373 2374 ena_change_mtu(ifp, ifr->ifr_mtu); 2375 2376 rc = ena_up(adapter); 2377 sx_unlock(&adapter->ioctl_sx); 2378 break; 2379 2380 case SIOCSIFFLAGS: 2381 if ((ifp->if_flags & IFF_UP) != 0) { 2382 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 2383 if ((ifp->if_flags & (IFF_PROMISC | 2384 IFF_ALLMULTI)) != 0) { 2385 device_printf(adapter->pdev, 2386 "ioctl promisc/allmulti\n"); 2387 } 2388 } else { 2389 sx_xlock(&adapter->ioctl_sx); 2390 rc = ena_up(adapter); 2391 sx_unlock(&adapter->ioctl_sx); 2392 } 2393 } else { 2394 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 2395 sx_xlock(&adapter->ioctl_sx); 2396 ena_down(adapter); 2397 sx_unlock(&adapter->ioctl_sx); 2398 } 2399 } 2400 break; 2401 2402 case SIOCADDMULTI: 2403 case SIOCDELMULTI: 2404 break; 2405 2406 case SIOCSIFMEDIA: 2407 case SIOCGIFMEDIA: 2408 rc = ifmedia_ioctl(ifp, ifr, &adapter->media, command); 2409 break; 2410 2411 case SIOCSIFCAP: 2412 { 2413 int reinit = 0; 2414 2415 if (ifr->ifr_reqcap != ifp->if_capenable) { 2416 ifp->if_capenable = ifr->ifr_reqcap; 2417 reinit = 1; 2418 } 2419 2420 if ((reinit != 0) && 2421 ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)) { 2422 sx_xlock(&adapter->ioctl_sx); 2423 ena_down(adapter); 2424 rc = ena_up(adapter); 2425 sx_unlock(&adapter->ioctl_sx); 2426 } 2427 } 2428 2429 break; 2430 default: 2431 rc = ether_ioctl(ifp, command, data); 2432 break; 2433 } 2434 2435 return (rc); 2436 } 2437 2438 static int 2439 ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *feat) 2440 { 2441 int caps = 0; 2442 2443 if ((feat->offload.tx & 2444 (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK | 2445 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK | 2446 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)) != 0) 2447 caps |= IFCAP_TXCSUM; 2448 2449 if ((feat->offload.tx & 2450 (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK | 2451 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)) != 0) 2452 caps |= IFCAP_TXCSUM_IPV6; 2453 2454 if ((feat->offload.tx & 2455 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0) 2456 caps |= IFCAP_TSO4; 2457 2458 if ((feat->offload.tx & 2459 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) != 0) 2460 caps |= IFCAP_TSO6; 2461 2462 if ((feat->offload.rx_supported & 2463 (ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK | 2464 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)) != 0) 2465 caps |= IFCAP_RXCSUM; 2466 2467 if ((feat->offload.rx_supported & 2468 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) != 0) 2469 caps |= IFCAP_RXCSUM_IPV6; 2470 2471 caps |= IFCAP_LRO | IFCAP_JUMBO_MTU; 2472 2473 return (caps); 2474 } 2475 2476 static void 2477 ena_update_host_info(struct ena_admin_host_info *host_info, if_t ifp) 2478 { 2479 2480 host_info->supported_network_features[0] = 2481 (uint32_t)if_getcapabilities(ifp); 2482 } 2483 2484 static void 2485 ena_update_hwassist(struct ena_adapter *adapter) 2486 { 2487 if_t ifp = adapter->ifp; 2488 uint32_t feat = adapter->tx_offload_cap; 2489 int cap = if_getcapenable(ifp); 2490 int flags = 0; 2491 2492 if_clearhwassist(ifp); 2493 2494 if ((cap & IFCAP_TXCSUM) != 0) { 2495 if ((feat & 2496 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK) != 0) 2497 flags |= CSUM_IP; 2498 if ((feat & 2499 (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK | 2500 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)) != 0) 2501 flags |= CSUM_IP_UDP | CSUM_IP_TCP; 2502 } 2503 2504 if ((cap & IFCAP_TXCSUM_IPV6) != 0) 2505 flags |= CSUM_IP6_UDP | CSUM_IP6_TCP; 2506 2507 if ((cap & IFCAP_TSO4) != 0) 2508 flags |= CSUM_IP_TSO; 2509 2510 if ((cap & IFCAP_TSO6) != 0) 2511 flags |= CSUM_IP6_TSO; 2512 2513 if_sethwassistbits(ifp, flags, 0); 2514 } 2515 2516 static int 2517 ena_setup_ifnet(device_t pdev, struct ena_adapter *adapter, 2518 struct ena_com_dev_get_features_ctx *feat) 2519 { 2520 if_t ifp; 2521 int caps = 0; 2522 2523 ifp = adapter->ifp = if_gethandle(IFT_ETHER); 2524 if (unlikely(ifp == NULL)) { 2525 ena_trace(ENA_ALERT, "can not allocate ifnet structure\n"); 2526 return (ENXIO); 2527 } 2528 if_initname(ifp, device_get_name(pdev), device_get_unit(pdev)); 2529 if_setdev(ifp, pdev); 2530 if_setsoftc(ifp, adapter); 2531 2532 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 2533 if_setinitfn(ifp, ena_init); 2534 if_settransmitfn(ifp, ena_mq_start); 2535 if_setqflushfn(ifp, ena_qflush); 2536 if_setioctlfn(ifp, ena_ioctl); 2537 if_setgetcounterfn(ifp, ena_get_counter); 2538 2539 if_setsendqlen(ifp, adapter->tx_ring_size); 2540 if_setsendqready(ifp); 2541 if_setmtu(ifp, ETHERMTU); 2542 if_setbaudrate(ifp, 0); 2543 /* Zeroize capabilities... */ 2544 if_setcapabilities(ifp, 0); 2545 if_setcapenable(ifp, 0); 2546 /* check hardware support */ 2547 caps = ena_get_dev_offloads(feat); 2548 /* ... and set them */ 2549 if_setcapabilitiesbit(ifp, caps, 0); 2550 2551 /* TSO parameters */ 2552 ifp->if_hw_tsomax = ENA_TSO_MAXSIZE - 2553 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 2554 ifp->if_hw_tsomaxsegcount = adapter->max_tx_sgl_size - 1; 2555 ifp->if_hw_tsomaxsegsize = ENA_TSO_MAXSIZE; 2556 2557 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); 2558 if_setcapenable(ifp, if_getcapabilities(ifp)); 2559 2560 /* 2561 * Specify the media types supported by this adapter and register 2562 * callbacks to update media and link information 2563 */ 2564 ifmedia_init(&adapter->media, IFM_IMASK, 2565 ena_media_change, ena_media_status); 2566 ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL); 2567 ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO); 2568 2569 ether_ifattach(ifp, adapter->mac_addr); 2570 2571 return (0); 2572 } 2573 2574 static void 2575 ena_down(struct ena_adapter *adapter) 2576 { 2577 int rc; 2578 2579 if (adapter->up) { 2580 device_printf(adapter->pdev, "device is going DOWN\n"); 2581 2582 callout_drain(&adapter->timer_service); 2583 2584 adapter->up = false; 2585 if_setdrvflagbits(adapter->ifp, IFF_DRV_OACTIVE, 2586 IFF_DRV_RUNNING); 2587 2588 ena_free_io_irq(adapter); 2589 2590 if (adapter->trigger_reset) { 2591 rc = ena_com_dev_reset(adapter->ena_dev, 2592 adapter->reset_reason); 2593 if (unlikely(rc != 0)) 2594 device_printf(adapter->pdev, 2595 "Device reset failed\n"); 2596 } 2597 2598 ena_destroy_all_io_queues(adapter); 2599 2600 ena_free_all_tx_bufs(adapter); 2601 ena_free_all_rx_bufs(adapter); 2602 ena_free_all_tx_resources(adapter); 2603 ena_free_all_rx_resources(adapter); 2604 2605 counter_u64_add(adapter->dev_stats.interface_down, 1); 2606 } 2607 } 2608 2609 static void 2610 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf) 2611 { 2612 struct ena_com_tx_meta *ena_meta; 2613 struct ether_vlan_header *eh; 2614 u32 mss; 2615 bool offload; 2616 uint16_t etype; 2617 int ehdrlen; 2618 struct ip *ip; 2619 int iphlen; 2620 struct tcphdr *th; 2621 2622 offload = false; 2623 ena_meta = &ena_tx_ctx->ena_meta; 2624 mss = mbuf->m_pkthdr.tso_segsz; 2625 2626 if (mss != 0) 2627 offload = true; 2628 2629 if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0) 2630 offload = true; 2631 2632 if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0) 2633 offload = true; 2634 2635 if (!offload) { 2636 ena_tx_ctx->meta_valid = 0; 2637 return; 2638 } 2639 2640 /* Determine where frame payload starts. */ 2641 eh = mtod(mbuf, struct ether_vlan_header *); 2642 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 2643 etype = ntohs(eh->evl_proto); 2644 ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 2645 } else { 2646 etype = ntohs(eh->evl_encap_proto); 2647 ehdrlen = ETHER_HDR_LEN; 2648 } 2649 2650 ip = (struct ip *)(mbuf->m_data + ehdrlen); 2651 iphlen = ip->ip_hl << 2; 2652 th = (struct tcphdr *)((caddr_t)ip + iphlen); 2653 2654 if ((mbuf->m_pkthdr.csum_flags & CSUM_IP) != 0) { 2655 ena_tx_ctx->l3_csum_enable = 1; 2656 } 2657 if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 2658 ena_tx_ctx->tso_enable = 1; 2659 ena_meta->l4_hdr_len = (th->th_off); 2660 } 2661 2662 switch (etype) { 2663 case ETHERTYPE_IP: 2664 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4; 2665 if ((ip->ip_off & htons(IP_DF)) != 0) 2666 ena_tx_ctx->df = 1; 2667 break; 2668 case ETHERTYPE_IPV6: 2669 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6; 2670 2671 default: 2672 break; 2673 } 2674 2675 if (ip->ip_p == IPPROTO_TCP) { 2676 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP; 2677 if ((mbuf->m_pkthdr.csum_flags & 2678 (CSUM_IP_TCP | CSUM_IP6_TCP)) != 0) 2679 ena_tx_ctx->l4_csum_enable = 1; 2680 else 2681 ena_tx_ctx->l4_csum_enable = 0; 2682 } else if (ip->ip_p == IPPROTO_UDP) { 2683 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP; 2684 if ((mbuf->m_pkthdr.csum_flags & 2685 (CSUM_IP_UDP | CSUM_IP6_UDP)) != 0) 2686 ena_tx_ctx->l4_csum_enable = 1; 2687 else 2688 ena_tx_ctx->l4_csum_enable = 0; 2689 } else { 2690 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN; 2691 ena_tx_ctx->l4_csum_enable = 0; 2692 } 2693 2694 ena_meta->mss = mss; 2695 ena_meta->l3_hdr_len = iphlen; 2696 ena_meta->l3_hdr_offset = ehdrlen; 2697 ena_tx_ctx->meta_valid = 1; 2698 } 2699 2700 static int 2701 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf) 2702 { 2703 struct ena_adapter *adapter; 2704 struct mbuf *collapsed_mbuf; 2705 int num_frags; 2706 2707 adapter = tx_ring->adapter; 2708 num_frags = ena_mbuf_count(*mbuf); 2709 2710 /* One segment must be reserved for configuration descriptor. */ 2711 if (num_frags < adapter->max_tx_sgl_size) 2712 return (0); 2713 counter_u64_add(tx_ring->tx_stats.collapse, 1); 2714 2715 collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT, 2716 adapter->max_tx_sgl_size - 1); 2717 if (unlikely(collapsed_mbuf == NULL)) { 2718 counter_u64_add(tx_ring->tx_stats.collapse_err, 1); 2719 return (ENOMEM); 2720 } 2721 2722 /* If mbuf was collapsed succesfully, original mbuf is released. */ 2723 *mbuf = collapsed_mbuf; 2724 2725 return (0); 2726 } 2727 2728 static int 2729 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf) 2730 { 2731 struct ena_adapter *adapter; 2732 struct ena_tx_buffer *tx_info; 2733 struct ena_com_tx_ctx ena_tx_ctx; 2734 struct ena_com_dev *ena_dev; 2735 struct ena_com_buf *ena_buf; 2736 struct ena_com_io_sq* io_sq; 2737 bus_dma_segment_t segs[ENA_BUS_DMA_SEGS]; 2738 void *push_hdr; 2739 uint16_t next_to_use; 2740 uint16_t req_id; 2741 uint16_t push_len; 2742 uint16_t ena_qid; 2743 uint32_t len, nsegs, header_len; 2744 int i, rc; 2745 int nb_hw_desc; 2746 2747 ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id); 2748 adapter = tx_ring->que->adapter; 2749 ena_dev = adapter->ena_dev; 2750 io_sq = &ena_dev->io_sq_queues[ena_qid]; 2751 2752 rc = ena_check_and_collapse_mbuf(tx_ring, mbuf); 2753 if (unlikely(rc != 0)) { 2754 ena_trace(ENA_WARNING, 2755 "Failed to collapse mbuf! err: %d", rc); 2756 return (rc); 2757 } 2758 2759 next_to_use = tx_ring->next_to_use; 2760 req_id = tx_ring->free_tx_ids[next_to_use]; 2761 tx_info = &tx_ring->tx_buffer_info[req_id]; 2762 2763 tx_info->mbuf = *mbuf; 2764 tx_info->num_of_bufs = 0; 2765 2766 ena_buf = tx_info->bufs; 2767 len = (*mbuf)->m_len; 2768 2769 ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes", (*mbuf)->m_pkthdr.len); 2770 2771 push_len = 0; 2772 header_len = min_t(uint32_t, len, tx_ring->tx_max_header_size); 2773 push_hdr = NULL; 2774 2775 rc = bus_dmamap_load_mbuf_sg(adapter->tx_buf_tag, tx_info->map, 2776 *mbuf, segs, &nsegs, BUS_DMA_NOWAIT); 2777 2778 if (unlikely((rc != 0) || (nsegs == 0))) { 2779 ena_trace(ENA_WARNING, 2780 "dmamap load failed! err: %d nsegs: %d", rc, nsegs); 2781 counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1); 2782 tx_info->mbuf = NULL; 2783 if (rc == ENOMEM) 2784 return (ENA_COM_NO_MEM); 2785 else 2786 return (ENA_COM_INVAL); 2787 } 2788 2789 for (i = 0; i < nsegs; i++) { 2790 ena_buf->len = segs[i].ds_len; 2791 ena_buf->paddr = segs[i].ds_addr; 2792 ena_buf++; 2793 } 2794 tx_info->num_of_bufs = nsegs; 2795 2796 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx)); 2797 ena_tx_ctx.ena_bufs = tx_info->bufs; 2798 ena_tx_ctx.push_header = push_hdr; 2799 ena_tx_ctx.num_bufs = tx_info->num_of_bufs; 2800 ena_tx_ctx.req_id = req_id; 2801 ena_tx_ctx.header_len = header_len; 2802 2803 /* Set flags and meta data */ 2804 ena_tx_csum(&ena_tx_ctx, *mbuf); 2805 /* Prepare the packet's descriptors and send them to device */ 2806 rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc); 2807 if (unlikely(rc != 0)) { 2808 device_printf(adapter->pdev, "failed to prepare tx bufs\n"); 2809 counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1); 2810 goto dma_error; 2811 } 2812 2813 counter_enter(); 2814 counter_u64_add_protected(tx_ring->tx_stats.cnt, 1); 2815 counter_u64_add_protected(tx_ring->tx_stats.bytes, 2816 (*mbuf)->m_pkthdr.len); 2817 2818 counter_u64_add_protected(adapter->hw_stats.tx_packets, 1); 2819 counter_u64_add_protected(adapter->hw_stats.tx_bytes, 2820 (*mbuf)->m_pkthdr.len); 2821 counter_exit(); 2822 2823 tx_info->tx_descs = nb_hw_desc; 2824 getbinuptime(&tx_info->timestamp); 2825 tx_info->print_once = true; 2826 2827 tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use, 2828 tx_ring->ring_size); 2829 2830 bus_dmamap_sync(adapter->tx_buf_tag, tx_info->map, 2831 BUS_DMASYNC_PREWRITE); 2832 2833 return (0); 2834 2835 dma_error: 2836 tx_info->mbuf = NULL; 2837 bus_dmamap_unload(adapter->tx_buf_tag, tx_info->map); 2838 2839 return (rc); 2840 } 2841 2842 static void 2843 ena_start_xmit(struct ena_ring *tx_ring) 2844 { 2845 struct mbuf *mbuf; 2846 struct ena_adapter *adapter = tx_ring->adapter; 2847 struct ena_com_io_sq* io_sq; 2848 int ena_qid; 2849 int acum_pkts = 0; 2850 int ret = 0; 2851 2852 if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0)) 2853 return; 2854 2855 if (unlikely(!adapter->link_status)) 2856 return; 2857 2858 ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id); 2859 io_sq = &adapter->ena_dev->io_sq_queues[ena_qid]; 2860 2861 while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) { 2862 ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and" 2863 " header csum flags %#jx", 2864 mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags); 2865 2866 if (unlikely(!ena_com_sq_have_enough_space(io_sq, 2867 ENA_TX_CLEANUP_THRESHOLD))) 2868 ena_tx_cleanup(tx_ring); 2869 2870 if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) { 2871 if (ret == ENA_COM_NO_MEM) { 2872 drbr_putback(adapter->ifp, tx_ring->br, mbuf); 2873 } else if (ret == ENA_COM_NO_SPACE) { 2874 drbr_putback(adapter->ifp, tx_ring->br, mbuf); 2875 } else { 2876 m_freem(mbuf); 2877 drbr_advance(adapter->ifp, tx_ring->br); 2878 } 2879 2880 break; 2881 } 2882 2883 drbr_advance(adapter->ifp, tx_ring->br); 2884 2885 if (unlikely((if_getdrvflags(adapter->ifp) & 2886 IFF_DRV_RUNNING) == 0)) 2887 return; 2888 2889 acum_pkts++; 2890 2891 BPF_MTAP(adapter->ifp, mbuf); 2892 2893 if (unlikely(acum_pkts == DB_THRESHOLD)) { 2894 acum_pkts = 0; 2895 wmb(); 2896 /* Trigger the dma engine */ 2897 ena_com_write_sq_doorbell(io_sq); 2898 counter_u64_add(tx_ring->tx_stats.doorbells, 1); 2899 } 2900 2901 } 2902 2903 if (likely(acum_pkts != 0)) { 2904 wmb(); 2905 /* Trigger the dma engine */ 2906 ena_com_write_sq_doorbell(io_sq); 2907 counter_u64_add(tx_ring->tx_stats.doorbells, 1); 2908 } 2909 2910 if (!ena_com_sq_have_enough_space(io_sq, ENA_TX_CLEANUP_THRESHOLD)) 2911 ena_tx_cleanup(tx_ring); 2912 } 2913 2914 static void 2915 ena_deferred_mq_start(void *arg, int pending) 2916 { 2917 struct ena_ring *tx_ring = (struct ena_ring *)arg; 2918 struct ifnet *ifp = tx_ring->adapter->ifp; 2919 2920 while (!drbr_empty(ifp, tx_ring->br) && 2921 (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 2922 ENA_RING_MTX_LOCK(tx_ring); 2923 ena_start_xmit(tx_ring); 2924 ENA_RING_MTX_UNLOCK(tx_ring); 2925 } 2926 } 2927 2928 static int 2929 ena_mq_start(if_t ifp, struct mbuf *m) 2930 { 2931 struct ena_adapter *adapter = ifp->if_softc; 2932 struct ena_ring *tx_ring; 2933 int ret, is_drbr_empty; 2934 uint32_t i; 2935 2936 if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0)) 2937 return (ENODEV); 2938 2939 /* Which queue to use */ 2940 /* 2941 * If everything is setup correctly, it should be the 2942 * same bucket that the current CPU we're on is. 2943 * It should improve performance. 2944 */ 2945 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) { 2946 #ifdef RSS 2947 if (rss_hash2bucket(m->m_pkthdr.flowid, 2948 M_HASHTYPE_GET(m), &i) == 0) { 2949 i = i % adapter->num_queues; 2950 2951 } else 2952 #endif 2953 { 2954 i = m->m_pkthdr.flowid % adapter->num_queues; 2955 } 2956 } else { 2957 i = curcpu % adapter->num_queues; 2958 } 2959 tx_ring = &adapter->tx_ring[i]; 2960 2961 /* Check if drbr is empty before putting packet */ 2962 is_drbr_empty = drbr_empty(ifp, tx_ring->br); 2963 ret = drbr_enqueue(ifp, tx_ring->br, m); 2964 if (unlikely(ret != 0)) { 2965 taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task); 2966 return (ret); 2967 } 2968 2969 if ((is_drbr_empty != 0) && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) { 2970 ena_start_xmit(tx_ring); 2971 ENA_RING_MTX_UNLOCK(tx_ring); 2972 } else { 2973 taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task); 2974 } 2975 2976 return (0); 2977 } 2978 2979 static void 2980 ena_qflush(if_t ifp) 2981 { 2982 struct ena_adapter *adapter = ifp->if_softc; 2983 struct ena_ring *tx_ring = adapter->tx_ring; 2984 int i; 2985 2986 for(i = 0; i < adapter->num_queues; ++i, ++tx_ring) 2987 if (!drbr_empty(ifp, tx_ring->br)) { 2988 ENA_RING_MTX_LOCK(tx_ring); 2989 drbr_flush(ifp, tx_ring->br); 2990 ENA_RING_MTX_UNLOCK(tx_ring); 2991 } 2992 2993 if_qflush(ifp); 2994 } 2995 2996 static int 2997 ena_calc_io_queue_num(struct ena_adapter *adapter, 2998 struct ena_com_dev_get_features_ctx *get_feat_ctx) 2999 { 3000 int io_sq_num, io_cq_num, io_queue_num; 3001 3002 io_sq_num = get_feat_ctx->max_queues.max_sq_num; 3003 io_cq_num = get_feat_ctx->max_queues.max_cq_num; 3004 3005 io_queue_num = min_t(int, mp_ncpus, ENA_MAX_NUM_IO_QUEUES); 3006 io_queue_num = min_t(int, io_queue_num, io_sq_num); 3007 io_queue_num = min_t(int, io_queue_num, io_cq_num); 3008 /* 1 IRQ for for mgmnt and 1 IRQ for each TX/RX pair */ 3009 io_queue_num = min_t(int, io_queue_num, 3010 pci_msix_count(adapter->pdev) - 1); 3011 #ifdef RSS 3012 io_queue_num = min_t(int, io_queue_num, rss_getnumbuckets()); 3013 #endif 3014 3015 return (io_queue_num); 3016 } 3017 3018 static int 3019 ena_calc_queue_size(struct ena_adapter *adapter, uint16_t *max_tx_sgl_size, 3020 uint16_t *max_rx_sgl_size, struct ena_com_dev_get_features_ctx *feat) 3021 { 3022 uint32_t queue_size = ENA_DEFAULT_RING_SIZE; 3023 uint32_t v; 3024 uint32_t q; 3025 3026 queue_size = min_t(uint32_t, queue_size, 3027 feat->max_queues.max_cq_depth); 3028 queue_size = min_t(uint32_t, queue_size, 3029 feat->max_queues.max_sq_depth); 3030 3031 /* round down to the nearest power of 2 */ 3032 v = queue_size; 3033 while (v != 0) { 3034 if (powerof2(queue_size) != 0) 3035 break; 3036 v /= 2; 3037 q = rounddown2(queue_size, v); 3038 if (q != 0) { 3039 queue_size = q; 3040 break; 3041 } 3042 } 3043 3044 if (unlikely(queue_size == 0)) { 3045 device_printf(adapter->pdev, "Invalid queue size\n"); 3046 return (ENA_COM_FAULT); 3047 } 3048 3049 *max_tx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS, 3050 feat->max_queues.max_packet_tx_descs); 3051 *max_rx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS, 3052 feat->max_queues.max_packet_rx_descs); 3053 3054 return (queue_size); 3055 } 3056 3057 static int 3058 ena_rss_init_default(struct ena_adapter *adapter) 3059 { 3060 struct ena_com_dev *ena_dev = adapter->ena_dev; 3061 device_t dev = adapter->pdev; 3062 int qid, rc, i; 3063 3064 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE); 3065 if (unlikely(rc != 0)) { 3066 device_printf(dev, "Cannot init indirect table\n"); 3067 return (rc); 3068 } 3069 3070 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) { 3071 #ifdef RSS 3072 qid = rss_get_indirection_to_bucket(i); 3073 qid = qid % adapter->num_queues; 3074 #else 3075 qid = i % adapter->num_queues; 3076 #endif 3077 rc = ena_com_indirect_table_fill_entry(ena_dev, i, 3078 ENA_IO_RXQ_IDX(qid)); 3079 if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) { 3080 device_printf(dev, "Cannot fill indirect table\n"); 3081 goto err_rss_destroy; 3082 } 3083 } 3084 3085 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL, 3086 ENA_HASH_KEY_SIZE, 0xFFFFFFFF); 3087 if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) { 3088 device_printf(dev, "Cannot fill hash function\n"); 3089 goto err_rss_destroy; 3090 } 3091 3092 rc = ena_com_set_default_hash_ctrl(ena_dev); 3093 if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) { 3094 device_printf(dev, "Cannot fill hash control\n"); 3095 goto err_rss_destroy; 3096 } 3097 3098 return (0); 3099 3100 err_rss_destroy: 3101 ena_com_rss_destroy(ena_dev); 3102 return (rc); 3103 } 3104 3105 static void 3106 ena_rss_init_default_deferred(void *arg) 3107 { 3108 struct ena_adapter *adapter; 3109 devclass_t dc; 3110 int max; 3111 int rc; 3112 3113 dc = devclass_find("ena"); 3114 if (unlikely(dc == NULL)) { 3115 ena_trace(ENA_ALERT, "No devclass ena\n"); 3116 return; 3117 } 3118 3119 max = devclass_get_maxunit(dc); 3120 while (max-- >= 0) { 3121 adapter = devclass_get_softc(dc, max); 3122 if (adapter != NULL) { 3123 rc = ena_rss_init_default(adapter); 3124 adapter->rss_support = true; 3125 if (unlikely(rc != 0)) { 3126 device_printf(adapter->pdev, 3127 "WARNING: RSS was not properly initialized," 3128 " it will affect bandwidth\n"); 3129 adapter->rss_support = false; 3130 } 3131 } 3132 } 3133 } 3134 SYSINIT(ena_rss_init, SI_SUB_KICK_SCHEDULER, SI_ORDER_SECOND, ena_rss_init_default_deferred, NULL); 3135 3136 static void 3137 ena_config_host_info(struct ena_com_dev *ena_dev) 3138 { 3139 struct ena_admin_host_info *host_info; 3140 int rc; 3141 3142 /* Allocate only the host info */ 3143 rc = ena_com_allocate_host_info(ena_dev); 3144 if (unlikely(rc != 0)) { 3145 ena_trace(ENA_ALERT, "Cannot allocate host info\n"); 3146 return; 3147 } 3148 3149 host_info = ena_dev->host_attr.host_info; 3150 3151 host_info->os_type = ENA_ADMIN_OS_FREEBSD; 3152 host_info->kernel_ver = osreldate; 3153 3154 sprintf(host_info->kernel_ver_str, "%d", osreldate); 3155 host_info->os_dist = 0; 3156 strncpy(host_info->os_dist_str, osrelease, 3157 sizeof(host_info->os_dist_str) - 1); 3158 3159 host_info->driver_version = 3160 (DRV_MODULE_VER_MAJOR) | 3161 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) | 3162 (DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT); 3163 3164 rc = ena_com_set_host_attributes(ena_dev); 3165 if (unlikely(rc != 0)) { 3166 if (rc == EOPNOTSUPP) 3167 ena_trace(ENA_WARNING, "Cannot set host attributes\n"); 3168 else 3169 ena_trace(ENA_ALERT, "Cannot set host attributes\n"); 3170 3171 goto err; 3172 } 3173 3174 return; 3175 3176 err: 3177 ena_com_delete_host_info(ena_dev); 3178 } 3179 3180 static int 3181 ena_device_init(struct ena_adapter *adapter, device_t pdev, 3182 struct ena_com_dev_get_features_ctx *get_feat_ctx, int *wd_active) 3183 { 3184 struct ena_com_dev* ena_dev = adapter->ena_dev; 3185 bool readless_supported; 3186 uint32_t aenq_groups; 3187 int dma_width; 3188 int rc; 3189 3190 rc = ena_com_mmio_reg_read_request_init(ena_dev); 3191 if (unlikely(rc != 0)) { 3192 device_printf(pdev, "failed to init mmio read less\n"); 3193 return (rc); 3194 } 3195 3196 /* 3197 * The PCIe configuration space revision id indicate if mmio reg 3198 * read is disabled 3199 */ 3200 readless_supported = !(pci_get_revid(pdev) & ENA_MMIO_DISABLE_REG_READ); 3201 ena_com_set_mmio_read_mode(ena_dev, readless_supported); 3202 3203 rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL); 3204 if (unlikely(rc != 0)) { 3205 device_printf(pdev, "Can not reset device\n"); 3206 goto err_mmio_read_less; 3207 } 3208 3209 rc = ena_com_validate_version(ena_dev); 3210 if (unlikely(rc != 0)) { 3211 device_printf(pdev, "device version is too low\n"); 3212 goto err_mmio_read_less; 3213 } 3214 3215 dma_width = ena_com_get_dma_width(ena_dev); 3216 if (unlikely(dma_width < 0)) { 3217 device_printf(pdev, "Invalid dma width value %d", dma_width); 3218 rc = dma_width; 3219 goto err_mmio_read_less; 3220 } 3221 adapter->dma_width = dma_width; 3222 3223 /* ENA admin level init */ 3224 rc = ena_com_admin_init(ena_dev, &aenq_handlers, true); 3225 if (unlikely(rc != 0)) { 3226 device_printf(pdev, 3227 "Can not initialize ena admin queue with device\n"); 3228 goto err_mmio_read_less; 3229 } 3230 3231 /* 3232 * To enable the msix interrupts the driver needs to know the number 3233 * of queues. So the driver uses polling mode to retrieve this 3234 * information 3235 */ 3236 ena_com_set_admin_polling_mode(ena_dev, true); 3237 3238 ena_config_host_info(ena_dev); 3239 3240 /* Get Device Attributes */ 3241 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx); 3242 if (unlikely(rc != 0)) { 3243 device_printf(pdev, 3244 "Cannot get attribute for ena device rc: %d\n", rc); 3245 goto err_admin_init; 3246 } 3247 3248 aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | BIT(ENA_ADMIN_KEEP_ALIVE); 3249 3250 aenq_groups &= get_feat_ctx->aenq.supported_groups; 3251 rc = ena_com_set_aenq_config(ena_dev, aenq_groups); 3252 if (unlikely(rc != 0)) { 3253 device_printf(pdev, "Cannot configure aenq groups rc: %d\n", rc); 3254 goto err_admin_init; 3255 } 3256 3257 *wd_active = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)); 3258 3259 return (0); 3260 3261 err_admin_init: 3262 ena_com_delete_host_info(ena_dev); 3263 ena_com_admin_destroy(ena_dev); 3264 err_mmio_read_less: 3265 ena_com_mmio_reg_read_request_destroy(ena_dev); 3266 3267 return (rc); 3268 } 3269 3270 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter, 3271 int io_vectors) 3272 { 3273 struct ena_com_dev *ena_dev = adapter->ena_dev; 3274 int rc; 3275 3276 rc = ena_enable_msix(adapter); 3277 if (unlikely(rc != 0)) { 3278 device_printf(adapter->pdev, "Error with MSI-X enablement\n"); 3279 return (rc); 3280 } 3281 3282 ena_setup_mgmnt_intr(adapter); 3283 3284 rc = ena_request_mgmnt_irq(adapter); 3285 if (unlikely(rc != 0)) { 3286 device_printf(adapter->pdev, "Cannot setup mgmnt queue intr\n"); 3287 goto err_disable_msix; 3288 } 3289 3290 ena_com_set_admin_polling_mode(ena_dev, false); 3291 3292 ena_com_admin_aenq_enable(ena_dev); 3293 3294 return (0); 3295 3296 err_disable_msix: 3297 ena_disable_msix(adapter); 3298 3299 return (rc); 3300 } 3301 3302 /* Function called on ENA_ADMIN_KEEP_ALIVE event */ 3303 static void ena_keep_alive_wd(void *adapter_data, 3304 struct ena_admin_aenq_entry *aenq_e) 3305 { 3306 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 3307 struct ena_admin_aenq_keep_alive_desc *desc; 3308 sbintime_t stime; 3309 uint64_t rx_drops; 3310 3311 desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e; 3312 3313 rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low; 3314 counter_u64_zero(adapter->hw_stats.rx_drops); 3315 counter_u64_add(adapter->hw_stats.rx_drops, rx_drops); 3316 3317 stime = getsbinuptime(); 3318 atomic_store_rel_64(&adapter->keep_alive_timestamp, stime); 3319 } 3320 3321 /* Check for keep alive expiration */ 3322 static void check_for_missing_keep_alive(struct ena_adapter *adapter) 3323 { 3324 sbintime_t timestamp, time; 3325 3326 if (adapter->wd_active == 0) 3327 return; 3328 3329 if (likely(adapter->keep_alive_timeout == 0)) 3330 return; 3331 3332 timestamp = atomic_load_acq_64(&adapter->keep_alive_timestamp); 3333 time = getsbinuptime() - timestamp; 3334 if (unlikely(time > adapter->keep_alive_timeout)) { 3335 device_printf(adapter->pdev, 3336 "Keep alive watchdog timeout.\n"); 3337 counter_u64_add(adapter->dev_stats.wd_expired, 1); 3338 adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO; 3339 adapter->trigger_reset = true; 3340 } 3341 } 3342 3343 /* Check if admin queue is enabled */ 3344 static void check_for_admin_com_state(struct ena_adapter *adapter) 3345 { 3346 if (unlikely(ena_com_get_admin_running_state(adapter->ena_dev) == 3347 false)) { 3348 device_printf(adapter->pdev, 3349 "ENA admin queue is not in running state!\n"); 3350 counter_u64_add(adapter->dev_stats.admin_q_pause, 1); 3351 adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO; 3352 adapter->trigger_reset = true; 3353 } 3354 } 3355 3356 static int 3357 check_missing_comp_in_queue(struct ena_adapter *adapter, 3358 struct ena_ring *tx_ring) 3359 { 3360 struct bintime curtime, time; 3361 struct ena_tx_buffer *tx_buf; 3362 uint32_t missed_tx = 0; 3363 int i; 3364 3365 getbinuptime(&curtime); 3366 3367 for (i = 0; i < tx_ring->ring_size; i++) { 3368 tx_buf = &tx_ring->tx_buffer_info[i]; 3369 3370 if (bintime_isset(&tx_buf->timestamp) == 0) 3371 continue; 3372 3373 time = curtime; 3374 bintime_sub(&time, &tx_buf->timestamp); 3375 3376 /* Check again if packet is still waiting */ 3377 if (unlikely(bttosbt(time) > adapter->missing_tx_timeout)) { 3378 3379 if (!tx_buf->print_once) 3380 ena_trace(ENA_WARNING, "Found a Tx that wasn't " 3381 "completed on time, qid %d, index %d.\n", 3382 tx_ring->qid, i); 3383 3384 tx_buf->print_once = true; 3385 missed_tx++; 3386 counter_u64_add(tx_ring->tx_stats.missing_tx_comp, 1); 3387 3388 if (unlikely(missed_tx > 3389 adapter->missing_tx_threshold)) { 3390 device_printf(adapter->pdev, 3391 "The number of lost tx completion " 3392 "is above the threshold (%d > %d). " 3393 "Reset the device\n", 3394 missed_tx, adapter->missing_tx_threshold); 3395 adapter->reset_reason = 3396 ENA_REGS_RESET_MISS_TX_CMPL; 3397 adapter->trigger_reset = true; 3398 return (EIO); 3399 } 3400 } 3401 } 3402 3403 return (0); 3404 } 3405 3406 /* 3407 * Check for TX which were not completed on time. 3408 * Timeout is defined by "missing_tx_timeout". 3409 * Reset will be performed if number of incompleted 3410 * transactions exceeds "missing_tx_threshold". 3411 */ 3412 static void 3413 check_for_missing_tx_completions(struct ena_adapter *adapter) 3414 { 3415 struct ena_ring *tx_ring; 3416 int i, budget, rc; 3417 3418 /* Make sure the driver doesn't turn the device in other process */ 3419 rmb(); 3420 3421 if (!adapter->up) 3422 return; 3423 3424 if (adapter->trigger_reset) 3425 return; 3426 3427 if (adapter->missing_tx_timeout == 0) 3428 return; 3429 3430 budget = adapter->missing_tx_max_queues; 3431 3432 for (i = adapter->next_monitored_tx_qid; i < adapter->num_queues; i++) { 3433 tx_ring = &adapter->tx_ring[i]; 3434 3435 rc = check_missing_comp_in_queue(adapter, tx_ring); 3436 if (unlikely(rc != 0)) 3437 return; 3438 3439 budget--; 3440 if (budget == 0) { 3441 i++; 3442 break; 3443 } 3444 } 3445 3446 adapter->next_monitored_tx_qid = i % adapter->num_queues; 3447 } 3448 3449 /* trigger deferred rx cleanup after 2 consecutive detections */ 3450 #define EMPTY_RX_REFILL 2 3451 /* For the rare case where the device runs out of Rx descriptors and the 3452 * msix handler failed to refill new Rx descriptors (due to a lack of memory 3453 * for example). 3454 * This case will lead to a deadlock: 3455 * The device won't send interrupts since all the new Rx packets will be dropped 3456 * The msix handler won't allocate new Rx descriptors so the device won't be 3457 * able to send new packets. 3458 * 3459 * When such a situation is detected - execute rx cleanup task in another thread 3460 */ 3461 static void 3462 check_for_empty_rx_ring(struct ena_adapter *adapter) 3463 { 3464 struct ena_ring *rx_ring; 3465 int i, refill_required; 3466 3467 if (!adapter->up) 3468 return; 3469 3470 if (adapter->trigger_reset) 3471 return; 3472 3473 for (i = 0; i < adapter->num_queues; i++) { 3474 rx_ring = &adapter->rx_ring[i]; 3475 3476 refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq); 3477 if (unlikely(refill_required == (rx_ring->ring_size - 1))) { 3478 rx_ring->empty_rx_queue++; 3479 3480 if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) { 3481 counter_u64_add(rx_ring->rx_stats.empty_rx_ring, 3482 1); 3483 3484 device_printf(adapter->pdev, 3485 "trigger refill for ring %d\n", i); 3486 3487 taskqueue_enqueue(rx_ring->cmpl_tq, 3488 &rx_ring->cmpl_task); 3489 rx_ring->empty_rx_queue = 0; 3490 } 3491 } else { 3492 rx_ring->empty_rx_queue = 0; 3493 } 3494 } 3495 } 3496 3497 static void 3498 ena_timer_service(void *data) 3499 { 3500 struct ena_adapter *adapter = (struct ena_adapter *)data; 3501 struct ena_admin_host_info *host_info = 3502 adapter->ena_dev->host_attr.host_info; 3503 3504 check_for_missing_keep_alive(adapter); 3505 3506 check_for_admin_com_state(adapter); 3507 3508 check_for_missing_tx_completions(adapter); 3509 3510 check_for_empty_rx_ring(adapter); 3511 3512 if (host_info != NULL) 3513 ena_update_host_info(host_info, adapter->ifp); 3514 3515 if (unlikely(adapter->trigger_reset)) { 3516 device_printf(adapter->pdev, "Trigger reset is on\n"); 3517 taskqueue_enqueue(adapter->reset_tq, &adapter->reset_task); 3518 return; 3519 } 3520 3521 /* 3522 * Schedule another timeout one second from now. 3523 */ 3524 callout_schedule_sbt(&adapter->timer_service, SBT_1S, SBT_1S, 0); 3525 } 3526 3527 static void 3528 ena_reset_task(void *arg, int pending) 3529 { 3530 struct ena_com_dev_get_features_ctx get_feat_ctx; 3531 struct ena_adapter *adapter = (struct ena_adapter *)arg; 3532 struct ena_com_dev *ena_dev = adapter->ena_dev; 3533 bool dev_up; 3534 int rc; 3535 3536 if (unlikely(!adapter->trigger_reset)) { 3537 device_printf(adapter->pdev, 3538 "device reset scheduled but trigger_reset is off\n"); 3539 return; 3540 } 3541 3542 sx_xlock(&adapter->ioctl_sx); 3543 3544 callout_drain(&adapter->timer_service); 3545 3546 dev_up = adapter->up; 3547 3548 ena_com_set_admin_running_state(ena_dev, false); 3549 ena_down(adapter); 3550 ena_free_mgmnt_irq(adapter); 3551 ena_disable_msix(adapter); 3552 ena_com_abort_admin_commands(ena_dev); 3553 ena_com_wait_for_abort_completion(ena_dev); 3554 ena_com_admin_destroy(ena_dev); 3555 ena_com_mmio_reg_read_request_destroy(ena_dev); 3556 3557 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 3558 adapter->trigger_reset = false; 3559 3560 /* Finished destroy part. Restart the device */ 3561 rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx, 3562 &adapter->wd_active); 3563 if (unlikely(rc != 0)) { 3564 device_printf(adapter->pdev, 3565 "ENA device init failed! (err: %d)\n", rc); 3566 goto err_dev_free; 3567 } 3568 3569 rc = ena_enable_msix_and_set_admin_interrupts(adapter, 3570 adapter->num_queues); 3571 if (unlikely(rc != 0)) { 3572 device_printf(adapter->pdev, "Enable MSI-X failed\n"); 3573 goto err_com_free; 3574 } 3575 3576 /* If the interface was up before the reset bring it up */ 3577 if (dev_up) { 3578 rc = ena_up(adapter); 3579 if (unlikely(rc != 0)) { 3580 device_printf(adapter->pdev, 3581 "Failed to create I/O queues\n"); 3582 goto err_msix_free; 3583 } 3584 } 3585 3586 callout_reset_sbt(&adapter->timer_service, SBT_1S, SBT_1S, 3587 ena_timer_service, (void *)adapter, 0); 3588 3589 sx_unlock(&adapter->ioctl_sx); 3590 3591 return; 3592 3593 err_msix_free: 3594 ena_free_mgmnt_irq(adapter); 3595 ena_disable_msix(adapter); 3596 err_com_free: 3597 ena_com_admin_destroy(ena_dev); 3598 err_dev_free: 3599 device_printf(adapter->pdev, "ENA reset failed!\n"); 3600 adapter->running = false; 3601 sx_unlock(&adapter->ioctl_sx); 3602 } 3603 3604 /** 3605 * ena_attach - Device Initialization Routine 3606 * @pdev: device information struct 3607 * 3608 * Returns 0 on success, otherwise on failure. 3609 * 3610 * ena_attach initializes an adapter identified by a device structure. 3611 * The OS initialization, configuring of the adapter private structure, 3612 * and a hardware reset occur. 3613 **/ 3614 static int 3615 ena_attach(device_t pdev) 3616 { 3617 struct ena_com_dev_get_features_ctx get_feat_ctx; 3618 static int version_printed; 3619 struct ena_adapter *adapter; 3620 struct ena_com_dev *ena_dev = NULL; 3621 uint16_t tx_sgl_size = 0; 3622 uint16_t rx_sgl_size = 0; 3623 int io_queue_num; 3624 int queue_size; 3625 int rc; 3626 adapter = device_get_softc(pdev); 3627 adapter->pdev = pdev; 3628 3629 mtx_init(&adapter->global_mtx, "ENA global mtx", NULL, MTX_DEF); 3630 sx_init(&adapter->ioctl_sx, "ENA ioctl sx"); 3631 3632 /* Set up the timer service */ 3633 callout_init_mtx(&adapter->timer_service, &adapter->global_mtx, 0); 3634 adapter->keep_alive_timeout = DEFAULT_KEEP_ALIVE_TO; 3635 adapter->missing_tx_timeout = DEFAULT_TX_CMP_TO; 3636 adapter->missing_tx_max_queues = DEFAULT_TX_MONITORED_QUEUES; 3637 adapter->missing_tx_threshold = DEFAULT_TX_CMP_THRESHOLD; 3638 3639 if (version_printed++ == 0) 3640 device_printf(pdev, "%s\n", ena_version); 3641 3642 rc = ena_allocate_pci_resources(adapter); 3643 if (unlikely(rc != 0)) { 3644 device_printf(pdev, "PCI resource allocation failed!\n"); 3645 ena_free_pci_resources(adapter); 3646 return (rc); 3647 } 3648 3649 /* Allocate memory for ena_dev structure */ 3650 ena_dev = malloc(sizeof(struct ena_com_dev), M_DEVBUF, 3651 M_WAITOK | M_ZERO); 3652 3653 adapter->ena_dev = ena_dev; 3654 ena_dev->dmadev = pdev; 3655 ena_dev->bus = malloc(sizeof(struct ena_bus), M_DEVBUF, 3656 M_WAITOK | M_ZERO); 3657 3658 /* Store register resources */ 3659 ((struct ena_bus*)(ena_dev->bus))->reg_bar_t = 3660 rman_get_bustag(adapter->registers); 3661 ((struct ena_bus*)(ena_dev->bus))->reg_bar_h = 3662 rman_get_bushandle(adapter->registers); 3663 3664 if (unlikely(((struct ena_bus*)(ena_dev->bus))->reg_bar_h == 0)) { 3665 device_printf(pdev, "failed to pmap registers bar\n"); 3666 rc = ENXIO; 3667 goto err_bus_free; 3668 } 3669 3670 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3671 3672 /* Device initialization */ 3673 rc = ena_device_init(adapter, pdev, &get_feat_ctx, &adapter->wd_active); 3674 if (unlikely(rc != 0)) { 3675 device_printf(pdev, "ENA device init failed! (err: %d)\n", rc); 3676 rc = ENXIO; 3677 goto err_bus_free; 3678 } 3679 3680 adapter->keep_alive_timestamp = getsbinuptime(); 3681 3682 adapter->tx_offload_cap = get_feat_ctx.offload.tx; 3683 3684 /* Set for sure that interface is not up */ 3685 adapter->up = false; 3686 3687 memcpy(adapter->mac_addr, get_feat_ctx.dev_attr.mac_addr, 3688 ETHER_ADDR_LEN); 3689 3690 /* calculate IO queue number to create */ 3691 io_queue_num = ena_calc_io_queue_num(adapter, &get_feat_ctx); 3692 3693 ENA_ASSERT(io_queue_num > 0, "Invalid queue number: %d\n", 3694 io_queue_num); 3695 adapter->num_queues = io_queue_num; 3696 3697 adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu; 3698 3699 /* calculatre ring sizes */ 3700 queue_size = ena_calc_queue_size(adapter,&tx_sgl_size, 3701 &rx_sgl_size, &get_feat_ctx); 3702 if (unlikely((queue_size <= 0) || (io_queue_num <= 0))) { 3703 rc = ENA_COM_FAULT; 3704 goto err_com_free; 3705 } 3706 3707 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 3708 3709 adapter->tx_ring_size = queue_size; 3710 adapter->rx_ring_size = queue_size; 3711 3712 adapter->max_tx_sgl_size = tx_sgl_size; 3713 adapter->max_rx_sgl_size = rx_sgl_size; 3714 3715 /* set up dma tags for rx and tx buffers */ 3716 rc = ena_setup_tx_dma_tag(adapter); 3717 if (unlikely(rc != 0)) { 3718 device_printf(pdev, "Failed to create TX DMA tag\n"); 3719 goto err_com_free; 3720 } 3721 3722 rc = ena_setup_rx_dma_tag(adapter); 3723 if (unlikely(rc != 0)) { 3724 device_printf(pdev, "Failed to create RX DMA tag\n"); 3725 goto err_tx_tag_free; 3726 } 3727 3728 /* initialize rings basic information */ 3729 device_printf(pdev, "initalize %d io queues\n", io_queue_num); 3730 ena_init_io_rings(adapter); 3731 3732 /* setup network interface */ 3733 rc = ena_setup_ifnet(pdev, adapter, &get_feat_ctx); 3734 if (unlikely(rc != 0)) { 3735 device_printf(pdev, "Error with network interface setup\n"); 3736 goto err_io_free; 3737 } 3738 3739 rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num); 3740 if (unlikely(rc != 0)) { 3741 device_printf(pdev, 3742 "Failed to enable and set the admin interrupts\n"); 3743 goto err_ifp_free; 3744 } 3745 3746 /* Initialize reset task queue */ 3747 TASK_INIT(&adapter->reset_task, 0, ena_reset_task, adapter); 3748 adapter->reset_tq = taskqueue_create("ena_reset_enqueue", 3749 M_WAITOK | M_ZERO, taskqueue_thread_enqueue, &adapter->reset_tq); 3750 taskqueue_start_threads(&adapter->reset_tq, 1, PI_NET, 3751 "%s rstq", device_get_nameunit(adapter->pdev)); 3752 3753 /* Initialize statistics */ 3754 ena_alloc_counters((counter_u64_t *)&adapter->dev_stats, 3755 sizeof(struct ena_stats_dev)); 3756 ena_alloc_counters((counter_u64_t *)&adapter->hw_stats, 3757 sizeof(struct ena_hw_stats)); 3758 ena_sysctl_add_nodes(adapter); 3759 3760 /* Tell the stack that the interface is not active */ 3761 if_setdrvflagbits(adapter->ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING); 3762 3763 adapter->running = true; 3764 return (0); 3765 3766 err_ifp_free: 3767 if_detach(adapter->ifp); 3768 if_free(adapter->ifp); 3769 err_io_free: 3770 ena_free_all_io_rings_resources(adapter); 3771 ena_free_rx_dma_tag(adapter); 3772 err_tx_tag_free: 3773 ena_free_tx_dma_tag(adapter); 3774 err_com_free: 3775 ena_com_admin_destroy(ena_dev); 3776 ena_com_delete_host_info(ena_dev); 3777 ena_com_mmio_reg_read_request_destroy(ena_dev); 3778 err_bus_free: 3779 free(ena_dev->bus, M_DEVBUF); 3780 free(ena_dev, M_DEVBUF); 3781 ena_free_pci_resources(adapter); 3782 3783 return (rc); 3784 } 3785 3786 /** 3787 * ena_detach - Device Removal Routine 3788 * @pdev: device information struct 3789 * 3790 * ena_detach is called by the device subsystem to alert the driver 3791 * that it should release a PCI device. 3792 **/ 3793 static int 3794 ena_detach(device_t pdev) 3795 { 3796 struct ena_adapter *adapter = device_get_softc(pdev); 3797 struct ena_com_dev *ena_dev = adapter->ena_dev; 3798 int rc; 3799 3800 /* Make sure VLANS are not using driver */ 3801 if (adapter->ifp->if_vlantrunk != NULL) { 3802 device_printf(adapter->pdev ,"VLAN is in use, detach first\n"); 3803 return (EBUSY); 3804 } 3805 3806 /* Free reset task and callout */ 3807 callout_drain(&adapter->timer_service); 3808 while (taskqueue_cancel(adapter->reset_tq, &adapter->reset_task, NULL)) 3809 taskqueue_drain(adapter->reset_tq, &adapter->reset_task); 3810 taskqueue_free(adapter->reset_tq); 3811 3812 sx_xlock(&adapter->ioctl_sx); 3813 ena_down(adapter); 3814 sx_unlock(&adapter->ioctl_sx); 3815 3816 if (adapter->ifp != NULL) { 3817 ether_ifdetach(adapter->ifp); 3818 if_free(adapter->ifp); 3819 } 3820 3821 ena_free_all_io_rings_resources(adapter); 3822 3823 ena_free_counters((counter_u64_t *)&adapter->hw_stats, 3824 sizeof(struct ena_hw_stats)); 3825 ena_free_counters((counter_u64_t *)&adapter->dev_stats, 3826 sizeof(struct ena_stats_dev)); 3827 3828 if (likely(adapter->rss_support)) 3829 ena_com_rss_destroy(ena_dev); 3830 3831 rc = ena_free_rx_dma_tag(adapter); 3832 if (unlikely(rc != 0)) 3833 device_printf(adapter->pdev, 3834 "Unmapped RX DMA tag associations\n"); 3835 3836 rc = ena_free_tx_dma_tag(adapter); 3837 if (unlikely(rc != 0)) 3838 device_printf(adapter->pdev, 3839 "Unmapped TX DMA tag associations\n"); 3840 3841 /* Reset the device only if the device is running. */ 3842 if (adapter->running) 3843 ena_com_dev_reset(ena_dev, adapter->reset_reason); 3844 3845 ena_com_delete_host_info(ena_dev); 3846 3847 ena_free_irqs(adapter); 3848 3849 ena_com_abort_admin_commands(ena_dev); 3850 3851 ena_com_wait_for_abort_completion(ena_dev); 3852 3853 ena_com_admin_destroy(ena_dev); 3854 3855 ena_com_mmio_reg_read_request_destroy(ena_dev); 3856 3857 ena_free_pci_resources(adapter); 3858 3859 mtx_destroy(&adapter->global_mtx); 3860 sx_destroy(&adapter->ioctl_sx); 3861 3862 if (ena_dev->bus != NULL) 3863 free(ena_dev->bus, M_DEVBUF); 3864 3865 if (ena_dev != NULL) 3866 free(ena_dev, M_DEVBUF); 3867 3868 return (bus_generic_detach(pdev)); 3869 } 3870 3871 /****************************************************************************** 3872 ******************************** AENQ Handlers ******************************* 3873 *****************************************************************************/ 3874 /** 3875 * ena_update_on_link_change: 3876 * Notify the network interface about the change in link status 3877 **/ 3878 static void 3879 ena_update_on_link_change(void *adapter_data, 3880 struct ena_admin_aenq_entry *aenq_e) 3881 { 3882 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 3883 struct ena_admin_aenq_link_change_desc *aenq_desc; 3884 int status; 3885 if_t ifp; 3886 3887 aenq_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e; 3888 ifp = adapter->ifp; 3889 status = aenq_desc->flags & 3890 ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK; 3891 3892 if (status != 0) { 3893 device_printf(adapter->pdev, "link is UP\n"); 3894 if_link_state_change(ifp, LINK_STATE_UP); 3895 } else if (status == 0) { 3896 device_printf(adapter->pdev, "link is DOWN\n"); 3897 if_link_state_change(ifp, LINK_STATE_DOWN); 3898 } else { 3899 device_printf(adapter->pdev, "invalid value recvd\n"); 3900 BUG(); 3901 } 3902 3903 adapter->link_status = status; 3904 } 3905 3906 /** 3907 * This handler will called for unknown event group or unimplemented handlers 3908 **/ 3909 static void 3910 unimplemented_aenq_handler(void *data, 3911 struct ena_admin_aenq_entry *aenq_e) 3912 { 3913 return; 3914 } 3915 3916 static struct ena_aenq_handlers aenq_handlers = { 3917 .handlers = { 3918 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change, 3919 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd, 3920 }, 3921 .unimplemented_handler = unimplemented_aenq_handler 3922 }; 3923 3924 /********************************************************************* 3925 * FreeBSD Device Interface Entry Points 3926 *********************************************************************/ 3927 3928 static device_method_t ena_methods[] = { 3929 /* Device interface */ 3930 DEVMETHOD(device_probe, ena_probe), 3931 DEVMETHOD(device_attach, ena_attach), 3932 DEVMETHOD(device_detach, ena_detach), 3933 DEVMETHOD_END 3934 }; 3935 3936 static driver_t ena_driver = { 3937 "ena", ena_methods, sizeof(struct ena_adapter), 3938 }; 3939 3940 devclass_t ena_devclass; 3941 DRIVER_MODULE(ena, pci, ena_driver, ena_devclass, 0, 0); 3942 MODULE_DEPEND(ena, pci, 1, 1, 1); 3943 MODULE_DEPEND(ena, ether, 1, 1, 1); 3944 3945 /*********************************************************************/ 3946