xref: /freebsd/sys/dev/e1000/igb_txrx.c (revision dd41de95a84d979615a2ef11df6850622bf6184e)
1 /*-
2  * Copyright (c) 2016 Matthew Macy <mmacy@mattmacy.io>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /* $FreeBSD$ */
28 #include "if_em.h"
29 
30 #ifdef RSS
31 #include <net/rss_config.h>
32 #include <netinet/in_rss.h>
33 #endif
34 
35 #ifdef VERBOSE_DEBUG
36 #define DPRINTF device_printf
37 #else
38 #define DPRINTF(...)
39 #endif
40 
41 /*********************************************************************
42  *  Local Function prototypes
43  *********************************************************************/
44 static int igb_isc_txd_encap(void *arg, if_pkt_info_t pi);
45 static void igb_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx);
46 static int igb_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear);
47 
48 static void igb_isc_rxd_refill(void *arg, if_rxd_update_t iru);
49 
50 static void igb_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused, qidx_t pidx);
51 static int igb_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx, qidx_t budget);
52 
53 static int igb_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri);
54 
55 static int igb_tx_ctx_setup(struct tx_ring *txr, if_pkt_info_t pi, u32 *cmd_type_len, u32 *olinfo_status);
56 static int igb_tso_setup(struct tx_ring *txr, if_pkt_info_t pi, u32 *cmd_type_len, u32 *olinfo_status);
57 
58 static void igb_rx_checksum(u32 staterr, if_rxd_info_t ri, u32 ptype);
59 static int igb_determine_rsstype(u16 pkt_info);
60 
61 extern void igb_if_enable_intr(if_ctx_t ctx);
62 extern int em_intr(void *arg);
63 
64 struct if_txrx igb_txrx = {
65 	.ift_txd_encap = igb_isc_txd_encap,
66 	.ift_txd_flush = igb_isc_txd_flush,
67 	.ift_txd_credits_update = igb_isc_txd_credits_update,
68 	.ift_rxd_available = igb_isc_rxd_available,
69 	.ift_rxd_pkt_get = igb_isc_rxd_pkt_get,
70 	.ift_rxd_refill = igb_isc_rxd_refill,
71 	.ift_rxd_flush = igb_isc_rxd_flush,
72 	.ift_legacy_intr = em_intr
73 };
74 
75 /**********************************************************************
76  *
77  *  Setup work for hardware segmentation offload (TSO) on
78  *  adapters using advanced tx descriptors
79  *
80  **********************************************************************/
81 static int
82 igb_tso_setup(struct tx_ring *txr, if_pkt_info_t pi, u32 *cmd_type_len, u32 *olinfo_status)
83 {
84 	struct e1000_adv_tx_context_desc *TXD;
85 	struct adapter *adapter = txr->adapter;
86 	u32 type_tucmd_mlhl = 0, vlan_macip_lens = 0;
87 	u32 mss_l4len_idx = 0;
88 	u32 paylen;
89 
90 	switch(pi->ipi_etype) {
91 	case ETHERTYPE_IPV6:
92 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6;
93 		break;
94 	case ETHERTYPE_IP:
95 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
96 		/* Tell transmit desc to also do IPv4 checksum. */
97 		*olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
98 		break;
99 	default:
100 		panic("%s: CSUM_TSO but no supported IP version (0x%04x)",
101 		      __func__, ntohs(pi->ipi_etype));
102 		break;
103 	}
104 
105 	TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[pi->ipi_pidx];
106 
107 	/* This is used in the transmit desc in encap */
108 	paylen = pi->ipi_len - pi->ipi_ehdrlen - pi->ipi_ip_hlen - pi->ipi_tcp_hlen;
109 
110 	/* VLAN MACLEN IPLEN */
111 	if (pi->ipi_mflags & M_VLANTAG) {
112 		vlan_macip_lens |= (pi->ipi_vtag << E1000_ADVTXD_VLAN_SHIFT);
113 	}
114 
115 	vlan_macip_lens |= pi->ipi_ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
116 	vlan_macip_lens |= pi->ipi_ip_hlen;
117 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
118 
119 	/* ADV DTYPE TUCMD */
120 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
121 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
122 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
123 
124 	/* MSS L4LEN IDX */
125 	mss_l4len_idx |= (pi->ipi_tso_segsz << E1000_ADVTXD_MSS_SHIFT);
126 	mss_l4len_idx |= (pi->ipi_tcp_hlen << E1000_ADVTXD_L4LEN_SHIFT);
127 	/* 82575 needs the queue index added */
128 	if (adapter->hw.mac.type == e1000_82575)
129 		mss_l4len_idx |= txr->me << 4;
130 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
131 
132 	TXD->seqnum_seed = htole32(0);
133 	*cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
134 	*olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
135 	*olinfo_status |= paylen << E1000_ADVTXD_PAYLEN_SHIFT;
136 
137 	return (1);
138 }
139 
140 /*********************************************************************
141  *
142  *  Advanced Context Descriptor setup for VLAN, CSUM or TSO
143  *
144  **********************************************************************/
145 static int
146 igb_tx_ctx_setup(struct tx_ring *txr, if_pkt_info_t pi, u32 *cmd_type_len, u32 *olinfo_status)
147 {
148 	struct e1000_adv_tx_context_desc *TXD;
149 	struct adapter *adapter = txr->adapter;
150 	u32 vlan_macip_lens, type_tucmd_mlhl;
151 	u32 mss_l4len_idx;
152 	mss_l4len_idx = vlan_macip_lens = type_tucmd_mlhl = 0;
153 
154 	/* First check if TSO is to be used */
155 	if (pi->ipi_csum_flags & CSUM_TSO)
156 		return (igb_tso_setup(txr, pi, cmd_type_len, olinfo_status));
157 
158 	/* Indicate the whole packet as payload when not doing TSO */
159 	*olinfo_status |= pi->ipi_len << E1000_ADVTXD_PAYLEN_SHIFT;
160 
161 	/* Now ready a context descriptor */
162 	TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[pi->ipi_pidx];
163 
164 	/*
165 	** In advanced descriptors the vlan tag must
166 	** be placed into the context descriptor. Hence
167 	** we need to make one even if not doing offloads.
168 	*/
169 	if (pi->ipi_mflags & M_VLANTAG) {
170 		vlan_macip_lens |= (pi->ipi_vtag << E1000_ADVTXD_VLAN_SHIFT);
171 	} else if ((pi->ipi_csum_flags & IGB_CSUM_OFFLOAD) == 0) {
172 		return (0);
173 	}
174 
175 	/* Set the ether header length */
176 	vlan_macip_lens |= pi->ipi_ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
177 
178 	switch(pi->ipi_etype) {
179 	case ETHERTYPE_IP:
180 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
181 		break;
182 	case ETHERTYPE_IPV6:
183 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6;
184 		break;
185 	default:
186 		break;
187 	}
188 
189 	vlan_macip_lens |= pi->ipi_ip_hlen;
190 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
191 
192 	switch (pi->ipi_ipproto) {
193 	case IPPROTO_TCP:
194 		if (pi->ipi_csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP)) {
195 			type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
196 			*olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
197 		}
198 		break;
199 	case IPPROTO_UDP:
200 		if (pi->ipi_csum_flags & (CSUM_IP_UDP | CSUM_IP6_UDP)) {
201 			type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
202 			*olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
203 		}
204 		break;
205 	case IPPROTO_SCTP:
206 		if (pi->ipi_csum_flags & (CSUM_IP_SCTP | CSUM_IP6_SCTP)) {
207 			type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP;
208 			*olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
209 		}
210 		break;
211 	default:
212 		break;
213 	}
214 
215 	/* 82575 needs the queue index added */
216 	if (adapter->hw.mac.type == e1000_82575)
217 		mss_l4len_idx = txr->me << 4;
218 
219 	/* Now copy bits into descriptor */
220 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
221 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
222 	TXD->seqnum_seed = htole32(0);
223 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
224 
225 	return (1);
226 }
227 
228 static int
229 igb_isc_txd_encap(void *arg, if_pkt_info_t pi)
230 {
231 	struct adapter *sc = arg;
232 	if_softc_ctx_t scctx = sc->shared;
233 	struct em_tx_queue *que = &sc->tx_queues[pi->ipi_qsidx];
234 	struct tx_ring *txr = &que->txr;
235 	int nsegs = pi->ipi_nsegs;
236 	bus_dma_segment_t *segs = pi->ipi_segs;
237 	union e1000_adv_tx_desc *txd = NULL;
238 	int i, j, pidx_last;
239 	u32 olinfo_status, cmd_type_len, txd_flags;
240 	qidx_t ntxd;
241 
242 	pidx_last = olinfo_status = 0;
243 	/* Basic descriptor defines */
244 	cmd_type_len = (E1000_ADVTXD_DTYP_DATA |
245 			E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT);
246 
247 	if (pi->ipi_mflags & M_VLANTAG)
248 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
249 
250 	i = pi->ipi_pidx;
251 	ntxd = scctx->isc_ntxd[0];
252 	txd_flags = pi->ipi_flags & IPI_TX_INTR ? E1000_ADVTXD_DCMD_RS : 0;
253 	/* Consume the first descriptor */
254 	i += igb_tx_ctx_setup(txr, pi, &cmd_type_len, &olinfo_status);
255 	if (i == scctx->isc_ntxd[0])
256 		i = 0;
257 
258 	/* 82575 needs the queue index added */
259 	if (sc->hw.mac.type == e1000_82575)
260 		olinfo_status |= txr->me << 4;
261 
262 	for (j = 0; j < nsegs; j++) {
263 		bus_size_t seglen;
264 		bus_addr_t segaddr;
265 
266 		txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
267 		seglen = segs[j].ds_len;
268 		segaddr = htole64(segs[j].ds_addr);
269 
270 		txd->read.buffer_addr = segaddr;
271 		txd->read.cmd_type_len = htole32(E1000_TXD_CMD_IFCS |
272 		    cmd_type_len | seglen);
273 		txd->read.olinfo_status = htole32(olinfo_status);
274 		pidx_last = i;
275 		if (++i == scctx->isc_ntxd[0]) {
276 			i = 0;
277 		}
278 	}
279 	if (txd_flags) {
280 		txr->tx_rsq[txr->tx_rs_pidx] = pidx_last;
281 		txr->tx_rs_pidx = (txr->tx_rs_pidx+1) & (ntxd-1);
282 		MPASS(txr->tx_rs_pidx != txr->tx_rs_cidx);
283 	}
284 
285 	txd->read.cmd_type_len |= htole32(E1000_TXD_CMD_EOP | txd_flags);
286 	pi->ipi_new_pidx = i;
287 
288 	return (0);
289 }
290 
291 static void
292 igb_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx)
293 {
294 	struct adapter *adapter	= arg;
295 	struct em_tx_queue *que	= &adapter->tx_queues[txqid];
296 	struct tx_ring *txr	= &que->txr;
297 
298 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(txr->me), pidx);
299 }
300 
301 static int
302 igb_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear)
303 {
304 	struct adapter *adapter = arg;
305 	if_softc_ctx_t scctx = adapter->shared;
306 	struct em_tx_queue *que = &adapter->tx_queues[txqid];
307 	struct tx_ring *txr = &que->txr;
308 
309 	qidx_t processed = 0;
310 	int updated;
311 	qidx_t cur, prev, ntxd, rs_cidx;
312 	int32_t delta;
313 	uint8_t status;
314 
315 	rs_cidx = txr->tx_rs_cidx;
316 	if (rs_cidx == txr->tx_rs_pidx)
317 		return (0);
318 	cur = txr->tx_rsq[rs_cidx];
319 	status = ((union e1000_adv_tx_desc *)&txr->tx_base[cur])->wb.status;
320 	updated = !!(status & E1000_TXD_STAT_DD);
321 
322 	if (!updated)
323 		return (0);
324 
325 	/* If clear is false just let caller know that there
326 	 * are descriptors to reclaim */
327 	if (!clear)
328 		return (1);
329 
330 	prev = txr->tx_cidx_processed;
331 	ntxd = scctx->isc_ntxd[0];
332 	do {
333 		MPASS(prev != cur);
334 		delta = (int32_t)cur - (int32_t)prev;
335 		if (delta < 0)
336 			delta += ntxd;
337 		MPASS(delta > 0);
338 
339 		processed += delta;
340 		prev  = cur;
341 		rs_cidx = (rs_cidx + 1) & (ntxd-1);
342 		if (rs_cidx  == txr->tx_rs_pidx)
343 			break;
344 		cur = txr->tx_rsq[rs_cidx];
345 		status = ((union e1000_adv_tx_desc *)&txr->tx_base[cur])->wb.status;
346 	} while ((status & E1000_TXD_STAT_DD));
347 
348 	txr->tx_rs_cidx = rs_cidx;
349 	txr->tx_cidx_processed = prev;
350 	return (processed);
351 }
352 
353 static void
354 igb_isc_rxd_refill(void *arg, if_rxd_update_t iru)
355 {
356 	struct adapter *sc = arg;
357 	if_softc_ctx_t scctx = sc->shared;
358 	uint16_t rxqid = iru->iru_qsidx;
359 	struct em_rx_queue *que = &sc->rx_queues[rxqid];
360 	union e1000_adv_rx_desc *rxd;
361 	struct rx_ring *rxr = &que->rxr;
362 	uint64_t *paddrs;
363 	uint32_t next_pidx, pidx;
364 	uint16_t count;
365 	int i;
366 
367 	paddrs = iru->iru_paddrs;
368 	pidx = iru->iru_pidx;
369 	count = iru->iru_count;
370 
371 	for (i = 0, next_pidx = pidx; i < count; i++) {
372 		rxd = (union e1000_adv_rx_desc *)&rxr->rx_base[next_pidx];
373 
374 		rxd->read.pkt_addr = htole64(paddrs[i]);
375 		if (++next_pidx == scctx->isc_nrxd[0])
376 			next_pidx = 0;
377 	}
378 }
379 
380 static void
381 igb_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused, qidx_t pidx)
382 {
383 	struct adapter *sc = arg;
384 	struct em_rx_queue *que = &sc->rx_queues[rxqid];
385 	struct rx_ring *rxr = &que->rxr;
386 
387 	E1000_WRITE_REG(&sc->hw, E1000_RDT(rxr->me), pidx);
388 }
389 
390 static int
391 igb_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx, qidx_t budget)
392 {
393 	struct adapter *sc = arg;
394 	if_softc_ctx_t scctx = sc->shared;
395 	struct em_rx_queue *que = &sc->rx_queues[rxqid];
396 	struct rx_ring *rxr = &que->rxr;
397 	union e1000_adv_rx_desc *rxd;
398 	u32 staterr = 0;
399 	int cnt, i;
400 
401 	for (cnt = 0, i = idx; cnt < scctx->isc_nrxd[0] && cnt <= budget;) {
402 		rxd = (union e1000_adv_rx_desc *)&rxr->rx_base[i];
403 		staterr = le32toh(rxd->wb.upper.status_error);
404 
405 		if ((staterr & E1000_RXD_STAT_DD) == 0)
406 			break;
407 		if (++i == scctx->isc_nrxd[0])
408 			i = 0;
409 		if (staterr & E1000_RXD_STAT_EOP)
410 			cnt++;
411 	}
412 	return (cnt);
413 }
414 
415 /****************************************************************
416  * Routine sends data which has been dma'ed into host memory
417  * to upper layer. Initialize ri structure.
418  *
419  * Returns 0 upon success, errno on failure
420  ***************************************************************/
421 
422 static int
423 igb_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri)
424 {
425 	struct adapter *adapter = arg;
426 	if_softc_ctx_t scctx = adapter->shared;
427 	struct em_rx_queue *que = &adapter->rx_queues[ri->iri_qsidx];
428 	struct rx_ring *rxr = &que->rxr;
429 	struct ifnet *ifp = iflib_get_ifp(adapter->ctx);
430 	union e1000_adv_rx_desc *rxd;
431 
432 	u16 pkt_info, len;
433 	u16 vtag = 0;
434 	u32 ptype;
435 	u32 staterr = 0;
436 	bool eop;
437 	int i = 0;
438 	int cidx = ri->iri_cidx;
439 
440 	do {
441 		rxd = (union e1000_adv_rx_desc *)&rxr->rx_base[cidx];
442 		staterr = le32toh(rxd->wb.upper.status_error);
443 		pkt_info = le16toh(rxd->wb.lower.lo_dword.hs_rss.pkt_info);
444 
445 		MPASS ((staterr & E1000_RXD_STAT_DD) != 0);
446 
447 		len = le16toh(rxd->wb.upper.length);
448 		ptype = le32toh(rxd->wb.lower.lo_dword.data) &  IGB_PKTTYPE_MASK;
449 
450 		ri->iri_len += len;
451 		rxr->rx_bytes += ri->iri_len;
452 
453 		rxd->wb.upper.status_error = 0;
454 		eop = ((staterr & E1000_RXD_STAT_EOP) == E1000_RXD_STAT_EOP);
455 
456 		if (((adapter->hw.mac.type == e1000_i350) ||
457 		    (adapter->hw.mac.type == e1000_i354)) &&
458 		    (staterr & E1000_RXDEXT_STATERR_LB))
459 			vtag = be16toh(rxd->wb.upper.vlan);
460 		else
461 			vtag = le16toh(rxd->wb.upper.vlan);
462 
463 		/* Make sure bad packets are discarded */
464 		if (eop && ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) != 0)) {
465 			adapter->dropped_pkts++;
466 			++rxr->rx_discarded;
467 			return (EBADMSG);
468 		}
469 		ri->iri_frags[i].irf_flid = 0;
470 		ri->iri_frags[i].irf_idx = cidx;
471 		ri->iri_frags[i].irf_len = len;
472 
473 		if (++cidx == scctx->isc_nrxd[0])
474 			cidx = 0;
475 #ifdef notyet
476 		if (rxr->hdr_split == TRUE) {
477 			ri->iri_frags[i].irf_flid = 1;
478 			ri->iri_frags[i].irf_idx = cidx;
479 			if (++cidx == scctx->isc_nrxd[0])
480 				cidx = 0;
481 		}
482 #endif
483 		i++;
484 	} while (!eop);
485 
486 	rxr->rx_packets++;
487 
488 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
489 		igb_rx_checksum(staterr, ri, ptype);
490 
491 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
492 	    (staterr & E1000_RXD_STAT_VP) != 0) {
493 		ri->iri_vtag = vtag;
494 		ri->iri_flags |= M_VLANTAG;
495 	}
496 	ri->iri_flowid =
497 		le32toh(rxd->wb.lower.hi_dword.rss);
498 	ri->iri_rsstype = igb_determine_rsstype(pkt_info);
499 	ri->iri_nfrags = i;
500 
501 	return (0);
502 }
503 
504 /*********************************************************************
505  *
506  *  Verify that the hardware indicated that the checksum is valid.
507  *  Inform the stack about the status of checksum so that stack
508  *  doesn't spend time verifying the checksum.
509  *
510  *********************************************************************/
511 static void
512 igb_rx_checksum(u32 staterr, if_rxd_info_t ri, u32 ptype)
513 {
514 	u16 status = (u16)staterr;
515 	u8 errors = (u8) (staterr >> 24);
516 	bool sctp = FALSE;
517 
518 	/* Ignore Checksum bit is set */
519 	if (status & E1000_RXD_STAT_IXSM) {
520 		ri->iri_csum_flags = 0;
521 		return;
522 	}
523 
524 	if ((ptype & E1000_RXDADV_PKTTYPE_ETQF) == 0 &&
525 	    (ptype & E1000_RXDADV_PKTTYPE_SCTP) != 0)
526 		sctp = 1;
527 	else
528 		sctp = 0;
529 
530 	if (status & E1000_RXD_STAT_IPCS) {
531 		/* Did it pass? */
532 		if (!(errors & E1000_RXD_ERR_IPE)) {
533 			/* IP Checksum Good */
534 			ri->iri_csum_flags = CSUM_IP_CHECKED;
535 			ri->iri_csum_flags |= CSUM_IP_VALID;
536 		} else
537 			ri->iri_csum_flags = 0;
538 	}
539 
540 	if (status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
541 		u64 type = (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
542 		if (sctp) /* reassign */
543 			type = CSUM_SCTP_VALID;
544 		/* Did it pass? */
545 		if (!(errors & E1000_RXD_ERR_TCPE)) {
546 			ri->iri_csum_flags |= type;
547 			if (sctp == 0)
548 				ri->iri_csum_data = htons(0xffff);
549 		}
550 	}
551 	return;
552 }
553 
554 /********************************************************************
555  *
556  *  Parse the packet type to determine the appropriate hash
557  *
558  ******************************************************************/
559 static int
560 igb_determine_rsstype(u16 pkt_info)
561 {
562 	switch (pkt_info & E1000_RXDADV_RSSTYPE_MASK) {
563 	case E1000_RXDADV_RSSTYPE_IPV4_TCP:
564 		return M_HASHTYPE_RSS_TCP_IPV4;
565 	case E1000_RXDADV_RSSTYPE_IPV4:
566 		return M_HASHTYPE_RSS_IPV4;
567 	case E1000_RXDADV_RSSTYPE_IPV6_TCP:
568 		return M_HASHTYPE_RSS_TCP_IPV6;
569 	case E1000_RXDADV_RSSTYPE_IPV6_EX:
570 		return M_HASHTYPE_RSS_IPV6_EX;
571 	case E1000_RXDADV_RSSTYPE_IPV6:
572 		return M_HASHTYPE_RSS_IPV6;
573 	case E1000_RXDADV_RSSTYPE_IPV6_TCP_EX:
574 		return M_HASHTYPE_RSS_TCP_IPV6_EX;
575 	default:
576 		return M_HASHTYPE_OPAQUE;
577 	}
578 }
579