xref: /freebsd/sys/dev/e1000/igb_txrx.c (revision b4a58fbf640409a1e507d9f7b411c83a3f83a2f3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Matthew Macy <mmacy@mattmacy.io>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* $FreeBSD$ */
30 #include "if_em.h"
31 
32 #ifdef RSS
33 #include <net/rss_config.h>
34 #include <netinet/in_rss.h>
35 #endif
36 
37 #ifdef VERBOSE_DEBUG
38 #define DPRINTF device_printf
39 #else
40 #define DPRINTF(...)
41 #endif
42 
43 /*********************************************************************
44  *  Local Function prototypes
45  *********************************************************************/
46 static int igb_isc_txd_encap(void *arg, if_pkt_info_t pi);
47 static void igb_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx);
48 static int igb_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear);
49 
50 static void igb_isc_rxd_refill(void *arg, if_rxd_update_t iru);
51 
52 static void igb_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused,
53     qidx_t pidx);
54 static int igb_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx,
55     qidx_t budget);
56 
57 static int igb_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri);
58 
59 static int igb_tx_ctx_setup(struct tx_ring *txr, if_pkt_info_t pi,
60     uint32_t *cmd_type_len, uint32_t *olinfo_status);
61 static int igb_tso_setup(struct tx_ring *txr, if_pkt_info_t pi,
62     uint32_t *cmd_type_len, uint32_t *olinfo_status);
63 
64 static void igb_rx_checksum(uint32_t staterr, if_rxd_info_t ri, uint32_t ptype);
65 static int igb_determine_rsstype(uint16_t pkt_info);
66 
67 extern void igb_if_enable_intr(if_ctx_t ctx);
68 extern int em_intr(void *arg);
69 
70 struct if_txrx igb_txrx = {
71 	.ift_txd_encap = igb_isc_txd_encap,
72 	.ift_txd_flush = igb_isc_txd_flush,
73 	.ift_txd_credits_update = igb_isc_txd_credits_update,
74 	.ift_rxd_available = igb_isc_rxd_available,
75 	.ift_rxd_pkt_get = igb_isc_rxd_pkt_get,
76 	.ift_rxd_refill = igb_isc_rxd_refill,
77 	.ift_rxd_flush = igb_isc_rxd_flush,
78 	.ift_legacy_intr = em_intr
79 };
80 
81 /**********************************************************************
82  *
83  *  Setup work for hardware segmentation offload (TSO) on
84  *  adapters using advanced tx descriptors
85  *
86  **********************************************************************/
87 static int
88 igb_tso_setup(struct tx_ring *txr, if_pkt_info_t pi, uint32_t *cmd_type_len,
89     uint32_t *olinfo_status)
90 {
91 	struct e1000_adv_tx_context_desc *TXD;
92 	struct e1000_softc *sc = txr->sc;
93 	uint32_t type_tucmd_mlhl = 0, vlan_macip_lens = 0;
94 	uint32_t mss_l4len_idx = 0;
95 	uint32_t paylen;
96 
97 	switch(pi->ipi_etype) {
98 	case ETHERTYPE_IPV6:
99 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6;
100 		break;
101 	case ETHERTYPE_IP:
102 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
103 		/* Tell transmit desc to also do IPv4 checksum. */
104 		*olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
105 		break;
106 	default:
107 		panic("%s: CSUM_TSO but no supported IP version (0x%04x)",
108 		      __func__, ntohs(pi->ipi_etype));
109 		break;
110 	}
111 
112 	TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[pi->ipi_pidx];
113 
114 	/* This is used in the transmit desc in encap */
115 	paylen = pi->ipi_len - pi->ipi_ehdrlen - pi->ipi_ip_hlen - pi->ipi_tcp_hlen;
116 
117 	/* VLAN MACLEN IPLEN */
118 	if (pi->ipi_mflags & M_VLANTAG) {
119 		vlan_macip_lens |= (pi->ipi_vtag << E1000_ADVTXD_VLAN_SHIFT);
120 	}
121 
122 	vlan_macip_lens |= pi->ipi_ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
123 	vlan_macip_lens |= pi->ipi_ip_hlen;
124 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
125 
126 	/* ADV DTYPE TUCMD */
127 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
128 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
129 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
130 
131 	/* MSS L4LEN IDX */
132 	mss_l4len_idx |= (pi->ipi_tso_segsz << E1000_ADVTXD_MSS_SHIFT);
133 	mss_l4len_idx |= (pi->ipi_tcp_hlen << E1000_ADVTXD_L4LEN_SHIFT);
134 	/* 82575 needs the queue index added */
135 	if (sc->hw.mac.type == e1000_82575)
136 		mss_l4len_idx |= txr->me << 4;
137 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
138 
139 	TXD->u.seqnum_seed = htole32(0);
140 	*cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
141 	*olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
142 	*olinfo_status |= paylen << E1000_ADVTXD_PAYLEN_SHIFT;
143 
144 	return (1);
145 }
146 
147 /*********************************************************************
148  *
149  *  Advanced Context Descriptor setup for VLAN, CSUM or TSO
150  *
151  **********************************************************************/
152 static int
153 igb_tx_ctx_setup(struct tx_ring *txr, if_pkt_info_t pi, uint32_t *cmd_type_len,
154     uint32_t *olinfo_status)
155 {
156 	struct e1000_adv_tx_context_desc *TXD;
157 	struct e1000_softc *sc = txr->sc;
158 	uint32_t vlan_macip_lens, type_tucmd_mlhl;
159 	uint32_t mss_l4len_idx;
160 	mss_l4len_idx = vlan_macip_lens = type_tucmd_mlhl = 0;
161 
162 	/* First check if TSO is to be used */
163 	if (pi->ipi_csum_flags & CSUM_TSO)
164 		return (igb_tso_setup(txr, pi, cmd_type_len, olinfo_status));
165 
166 	/* Indicate the whole packet as payload when not doing TSO */
167 	*olinfo_status |= pi->ipi_len << E1000_ADVTXD_PAYLEN_SHIFT;
168 
169 	/* Now ready a context descriptor */
170 	TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[pi->ipi_pidx];
171 
172 	/*
173 	** In advanced descriptors the vlan tag must
174 	** be placed into the context descriptor. Hence
175 	** we need to make one even if not doing offloads.
176 	*/
177 	if (pi->ipi_mflags & M_VLANTAG) {
178 		vlan_macip_lens |= (pi->ipi_vtag << E1000_ADVTXD_VLAN_SHIFT);
179 	} else if ((pi->ipi_csum_flags & IGB_CSUM_OFFLOAD) == 0) {
180 		return (0);
181 	}
182 
183 	/* Set the ether header length */
184 	vlan_macip_lens |= pi->ipi_ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
185 
186 	switch(pi->ipi_etype) {
187 	case ETHERTYPE_IP:
188 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
189 		break;
190 	case ETHERTYPE_IPV6:
191 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6;
192 		break;
193 	default:
194 		break;
195 	}
196 
197 	vlan_macip_lens |= pi->ipi_ip_hlen;
198 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
199 
200 	switch (pi->ipi_ipproto) {
201 	case IPPROTO_TCP:
202 		if (pi->ipi_csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP)) {
203 			type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
204 			*olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
205 		}
206 		break;
207 	case IPPROTO_UDP:
208 		if (pi->ipi_csum_flags & (CSUM_IP_UDP | CSUM_IP6_UDP)) {
209 			type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
210 			*olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
211 		}
212 		break;
213 	case IPPROTO_SCTP:
214 		if (pi->ipi_csum_flags & (CSUM_IP_SCTP | CSUM_IP6_SCTP)) {
215 			type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP;
216 			*olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
217 		}
218 		break;
219 	default:
220 		break;
221 	}
222 
223 	/* 82575 needs the queue index added */
224 	if (sc->hw.mac.type == e1000_82575)
225 		mss_l4len_idx = txr->me << 4;
226 
227 	/* Now copy bits into descriptor */
228 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
229 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
230 	TXD->u.seqnum_seed = htole32(0);
231 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
232 
233 	return (1);
234 }
235 
236 static int
237 igb_isc_txd_encap(void *arg, if_pkt_info_t pi)
238 {
239 	struct e1000_softc *sc = arg;
240 	if_softc_ctx_t scctx = sc->shared;
241 	struct em_tx_queue *que = &sc->tx_queues[pi->ipi_qsidx];
242 	struct tx_ring *txr = &que->txr;
243 	int nsegs = pi->ipi_nsegs;
244 	bus_dma_segment_t *segs = pi->ipi_segs;
245 	union e1000_adv_tx_desc *txd = NULL;
246 	int i, j, pidx_last;
247 	uint32_t olinfo_status, cmd_type_len, txd_flags;
248 	qidx_t ntxd;
249 
250 	pidx_last = olinfo_status = 0;
251 	/* Basic descriptor defines */
252 	cmd_type_len = (E1000_ADVTXD_DTYP_DATA |
253 			E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT);
254 
255 	if (pi->ipi_mflags & M_VLANTAG)
256 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
257 
258 	i = pi->ipi_pidx;
259 	ntxd = scctx->isc_ntxd[0];
260 	txd_flags = pi->ipi_flags & IPI_TX_INTR ? E1000_ADVTXD_DCMD_RS : 0;
261 	/* Consume the first descriptor */
262 	i += igb_tx_ctx_setup(txr, pi, &cmd_type_len, &olinfo_status);
263 	if (i == scctx->isc_ntxd[0])
264 		i = 0;
265 
266 	/* 82575 needs the queue index added */
267 	if (sc->hw.mac.type == e1000_82575)
268 		olinfo_status |= txr->me << 4;
269 
270 	for (j = 0; j < nsegs; j++) {
271 		bus_size_t seglen;
272 		bus_addr_t segaddr;
273 
274 		txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
275 		seglen = segs[j].ds_len;
276 		segaddr = htole64(segs[j].ds_addr);
277 
278 		txd->read.buffer_addr = segaddr;
279 		txd->read.cmd_type_len = htole32(E1000_TXD_CMD_IFCS |
280 		    cmd_type_len | seglen);
281 		txd->read.olinfo_status = htole32(olinfo_status);
282 		pidx_last = i;
283 		if (++i == scctx->isc_ntxd[0]) {
284 			i = 0;
285 		}
286 	}
287 	if (txd_flags) {
288 		txr->tx_rsq[txr->tx_rs_pidx] = pidx_last;
289 		txr->tx_rs_pidx = (txr->tx_rs_pidx+1) & (ntxd-1);
290 		MPASS(txr->tx_rs_pidx != txr->tx_rs_cidx);
291 	}
292 
293 	txd->read.cmd_type_len |= htole32(E1000_TXD_CMD_EOP | txd_flags);
294 	pi->ipi_new_pidx = i;
295 
296 	return (0);
297 }
298 
299 static void
300 igb_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx)
301 {
302 	struct e1000_softc *sc	= arg;
303 	struct em_tx_queue *que	= &sc->tx_queues[txqid];
304 	struct tx_ring *txr	= &que->txr;
305 
306 	E1000_WRITE_REG(&sc->hw, E1000_TDT(txr->me), pidx);
307 }
308 
309 static int
310 igb_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear)
311 {
312 	struct e1000_softc *sc = arg;
313 	if_softc_ctx_t scctx = sc->shared;
314 	struct em_tx_queue *que = &sc->tx_queues[txqid];
315 	struct tx_ring *txr = &que->txr;
316 
317 	qidx_t processed = 0;
318 	int updated;
319 	qidx_t cur, prev, ntxd, rs_cidx;
320 	int32_t delta;
321 	uint8_t status;
322 
323 	rs_cidx = txr->tx_rs_cidx;
324 	if (rs_cidx == txr->tx_rs_pidx)
325 		return (0);
326 	cur = txr->tx_rsq[rs_cidx];
327 	status = ((union e1000_adv_tx_desc *)&txr->tx_base[cur])->wb.status;
328 	updated = !!(status & E1000_TXD_STAT_DD);
329 
330 	if (!updated)
331 		return (0);
332 
333 	/* If clear is false just let caller know that there
334 	 * are descriptors to reclaim */
335 	if (!clear)
336 		return (1);
337 
338 	prev = txr->tx_cidx_processed;
339 	ntxd = scctx->isc_ntxd[0];
340 	do {
341 		MPASS(prev != cur);
342 		delta = (int32_t)cur - (int32_t)prev;
343 		if (delta < 0)
344 			delta += ntxd;
345 		MPASS(delta > 0);
346 
347 		processed += delta;
348 		prev  = cur;
349 		rs_cidx = (rs_cidx + 1) & (ntxd-1);
350 		if (rs_cidx  == txr->tx_rs_pidx)
351 			break;
352 		cur = txr->tx_rsq[rs_cidx];
353 		status = ((union e1000_adv_tx_desc *)&txr->tx_base[cur])->wb.status;
354 	} while ((status & E1000_TXD_STAT_DD));
355 
356 	txr->tx_rs_cidx = rs_cidx;
357 	txr->tx_cidx_processed = prev;
358 	return (processed);
359 }
360 
361 static void
362 igb_isc_rxd_refill(void *arg, if_rxd_update_t iru)
363 {
364 	struct e1000_softc *sc = arg;
365 	if_softc_ctx_t scctx = sc->shared;
366 	uint16_t rxqid = iru->iru_qsidx;
367 	struct em_rx_queue *que = &sc->rx_queues[rxqid];
368 	union e1000_adv_rx_desc *rxd;
369 	struct rx_ring *rxr = &que->rxr;
370 	uint64_t *paddrs;
371 	uint32_t next_pidx, pidx;
372 	uint16_t count;
373 	int i;
374 
375 	paddrs = iru->iru_paddrs;
376 	pidx = iru->iru_pidx;
377 	count = iru->iru_count;
378 
379 	for (i = 0, next_pidx = pidx; i < count; i++) {
380 		rxd = (union e1000_adv_rx_desc *)&rxr->rx_base[next_pidx];
381 
382 		rxd->read.pkt_addr = htole64(paddrs[i]);
383 		if (++next_pidx == scctx->isc_nrxd[0])
384 			next_pidx = 0;
385 	}
386 }
387 
388 static void
389 igb_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused, qidx_t pidx)
390 {
391 	struct e1000_softc *sc = arg;
392 	struct em_rx_queue *que = &sc->rx_queues[rxqid];
393 	struct rx_ring *rxr = &que->rxr;
394 
395 	E1000_WRITE_REG(&sc->hw, E1000_RDT(rxr->me), pidx);
396 }
397 
398 static int
399 igb_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx, qidx_t budget)
400 {
401 	struct e1000_softc *sc = arg;
402 	if_softc_ctx_t scctx = sc->shared;
403 	struct em_rx_queue *que = &sc->rx_queues[rxqid];
404 	struct rx_ring *rxr = &que->rxr;
405 	union e1000_adv_rx_desc *rxd;
406 	uint32_t staterr = 0;
407 	int cnt, i;
408 
409 	for (cnt = 0, i = idx; cnt < scctx->isc_nrxd[0] && cnt <= budget;) {
410 		rxd = (union e1000_adv_rx_desc *)&rxr->rx_base[i];
411 		staterr = le32toh(rxd->wb.upper.status_error);
412 
413 		if ((staterr & E1000_RXD_STAT_DD) == 0)
414 			break;
415 		if (++i == scctx->isc_nrxd[0])
416 			i = 0;
417 		if (staterr & E1000_RXD_STAT_EOP)
418 			cnt++;
419 	}
420 	return (cnt);
421 }
422 
423 /****************************************************************
424  * Routine sends data which has been dma'ed into host memory
425  * to upper layer. Initialize ri structure.
426  *
427  * Returns 0 upon success, errno on failure
428  ***************************************************************/
429 
430 static int
431 igb_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri)
432 {
433 	struct e1000_softc *sc = arg;
434 	if_softc_ctx_t scctx = sc->shared;
435 	struct em_rx_queue *que = &sc->rx_queues[ri->iri_qsidx];
436 	struct rx_ring *rxr = &que->rxr;
437 	union e1000_adv_rx_desc *rxd;
438 
439 	uint16_t pkt_info, len, vtag;
440 	uint32_t ptype, staterr;
441 	int i, cidx;
442 	bool eop;
443 
444 	staterr = i = vtag = 0;
445 	cidx = ri->iri_cidx;
446 
447 	do {
448 		rxd = (union e1000_adv_rx_desc *)&rxr->rx_base[cidx];
449 		staterr = le32toh(rxd->wb.upper.status_error);
450 		pkt_info = le16toh(rxd->wb.lower.lo_dword.hs_rss.pkt_info);
451 
452 		MPASS ((staterr & E1000_RXD_STAT_DD) != 0);
453 
454 		len = le16toh(rxd->wb.upper.length);
455 		ptype = le32toh(rxd->wb.lower.lo_dword.data) &  IGB_PKTTYPE_MASK;
456 
457 		ri->iri_len += len;
458 		rxr->rx_bytes += ri->iri_len;
459 
460 		rxd->wb.upper.status_error = 0;
461 		eop = ((staterr & E1000_RXD_STAT_EOP) == E1000_RXD_STAT_EOP);
462 
463 		if (((sc->hw.mac.type == e1000_i350) ||
464 		    (sc->hw.mac.type == e1000_i354)) &&
465 		    (staterr & E1000_RXDEXT_STATERR_LB))
466 			vtag = be16toh(rxd->wb.upper.vlan);
467 		else
468 			vtag = le16toh(rxd->wb.upper.vlan);
469 
470 		/* Make sure bad packets are discarded */
471 		if (eop && ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) != 0)) {
472 			sc->dropped_pkts++;
473 			++rxr->rx_discarded;
474 			return (EBADMSG);
475 		}
476 		ri->iri_frags[i].irf_flid = 0;
477 		ri->iri_frags[i].irf_idx = cidx;
478 		ri->iri_frags[i].irf_len = len;
479 
480 		if (++cidx == scctx->isc_nrxd[0])
481 			cidx = 0;
482 #ifdef notyet
483 		if (rxr->hdr_split == true) {
484 			ri->iri_frags[i].irf_flid = 1;
485 			ri->iri_frags[i].irf_idx = cidx;
486 			if (++cidx == scctx->isc_nrxd[0])
487 				cidx = 0;
488 		}
489 #endif
490 		i++;
491 	} while (!eop);
492 
493 	rxr->rx_packets++;
494 
495 	if ((scctx->isc_capenable & IFCAP_RXCSUM) != 0)
496 		igb_rx_checksum(staterr, ri, ptype);
497 
498 	if ((scctx->isc_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
499 	    (staterr & E1000_RXD_STAT_VP) != 0) {
500 		ri->iri_vtag = vtag;
501 		ri->iri_flags |= M_VLANTAG;
502 	}
503 
504 	ri->iri_flowid =
505 		le32toh(rxd->wb.lower.hi_dword.rss);
506 	ri->iri_rsstype = igb_determine_rsstype(pkt_info);
507 	ri->iri_nfrags = i;
508 
509 	return (0);
510 }
511 
512 /*********************************************************************
513  *
514  *  Verify that the hardware indicated that the checksum is valid.
515  *  Inform the stack about the status of checksum so that stack
516  *  doesn't spend time verifying the checksum.
517  *
518  *********************************************************************/
519 static void
520 igb_rx_checksum(uint32_t staterr, if_rxd_info_t ri, uint32_t ptype)
521 {
522 	uint16_t status = (uint16_t)staterr;
523 	uint8_t errors = (uint8_t)(staterr >> 24);
524 
525 	if (__predict_false(status & E1000_RXD_STAT_IXSM))
526 		return;
527 
528 	/* If there is a layer 3 or 4 error we are done */
529 	if (__predict_false(errors & (E1000_RXD_ERR_IPE | E1000_RXD_ERR_TCPE)))
530 		return;
531 
532 	/* IP Checksum Good */
533 	if (status & E1000_RXD_STAT_IPCS)
534 		ri->iri_csum_flags = (CSUM_IP_CHECKED | CSUM_IP_VALID);
535 
536 	/* Valid L4E checksum */
537 	if (__predict_true(status &
538 	    (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) {
539 		/* SCTP header present */
540 		if (__predict_false((ptype & E1000_RXDADV_PKTTYPE_ETQF) == 0 &&
541 		    (ptype & E1000_RXDADV_PKTTYPE_SCTP) != 0)) {
542 			ri->iri_csum_flags |= CSUM_SCTP_VALID;
543 		} else {
544 			ri->iri_csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
545 			ri->iri_csum_data = htons(0xffff);
546 		}
547 	}
548 }
549 
550 /********************************************************************
551  *
552  *  Parse the packet type to determine the appropriate hash
553  *
554  ******************************************************************/
555 static int
556 igb_determine_rsstype(uint16_t pkt_info)
557 {
558 	switch (pkt_info & E1000_RXDADV_RSSTYPE_MASK) {
559 	case E1000_RXDADV_RSSTYPE_IPV4_TCP:
560 		return M_HASHTYPE_RSS_TCP_IPV4;
561 	case E1000_RXDADV_RSSTYPE_IPV4:
562 		return M_HASHTYPE_RSS_IPV4;
563 	case E1000_RXDADV_RSSTYPE_IPV6_TCP:
564 		return M_HASHTYPE_RSS_TCP_IPV6;
565 	case E1000_RXDADV_RSSTYPE_IPV6_EX:
566 		return M_HASHTYPE_RSS_IPV6_EX;
567 	case E1000_RXDADV_RSSTYPE_IPV6:
568 		return M_HASHTYPE_RSS_IPV6;
569 	case E1000_RXDADV_RSSTYPE_IPV6_TCP_EX:
570 		return M_HASHTYPE_RSS_TCP_IPV6_EX;
571 	default:
572 		return M_HASHTYPE_OPAQUE;
573 	}
574 }
575