xref: /freebsd/sys/dev/e1000/igb_txrx.c (revision 63d1fd5970ec814904aa0f4580b10a0d302d08b2)
1 /*-
2  * Copyright (c) 2016 Matt Macy <mmacy@nextbsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /* $FreeBSD$ */
28 #include "if_em.h"
29 
30 #ifdef	RSS
31 #include <net/rss_config.h>
32 #include <netinet/in_rss.h>
33 #endif
34 
35 #ifdef VERBOSE_DEBUG
36 #define DPRINTF device_printf
37 #else
38 #define DPRINTF(...)
39 #endif
40 
41 /*********************************************************************
42  *  Local Function prototypes
43  *********************************************************************/
44 static int igb_isc_txd_encap(void *arg, if_pkt_info_t pi);
45 static void igb_isc_txd_flush(void *arg, uint16_t txqid, uint32_t pidx);
46 static int igb_isc_txd_credits_update(void *arg, uint16_t txqid, uint32_t cidx, bool clear);
47 
48 static void igb_isc_rxd_refill(void *arg, uint16_t rxqid, uint8_t flid __unused,
49 			       uint32_t pidx, uint64_t *paddrs, caddr_t *vaddrs __unused, uint16_t count, uint16_t buf_len __unused);
50 static void igb_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused, uint32_t pidx);
51 static int igb_isc_rxd_available(void *arg, uint16_t rxqid, uint32_t idx,
52 				 int budget);
53 static int igb_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri);
54 
55 static int igb_tx_ctx_setup(struct tx_ring *txr, if_pkt_info_t pi, u32 *cmd_type_len, u32 *olinfo_status);
56 static int igb_tso_setup(struct tx_ring *txr, if_pkt_info_t pi, u32 *cmd_type_len, u32 *olinfo_status);
57 
58 static void igb_rx_checksum(u32 staterr, if_rxd_info_t ri, u32 ptype);
59 static int igb_determine_rsstype(u16 pkt_info);
60 
61 extern void igb_if_enable_intr(if_ctx_t ctx);
62 extern int em_intr(void *arg);
63 
64 struct if_txrx igb_txrx  = {
65 	igb_isc_txd_encap,
66 	igb_isc_txd_flush,
67 	igb_isc_txd_credits_update,
68 	igb_isc_rxd_available,
69 	igb_isc_rxd_pkt_get,
70 	igb_isc_rxd_refill,
71 	igb_isc_rxd_flush,
72 	em_intr
73 };
74 
75 extern if_shared_ctx_t em_sctx;
76 
77 /**********************************************************************
78  *
79  *  Setup work for hardware segmentation offload (TSO) on
80  *  adapters using advanced tx descriptors
81  *
82  **********************************************************************/
83 static int
84 igb_tso_setup(struct tx_ring *txr, if_pkt_info_t pi, u32 *cmd_type_len, u32 *olinfo_status)
85 {
86 	struct e1000_adv_tx_context_desc *TXD;
87 	struct adapter *adapter = txr->adapter;
88        u32 type_tucmd_mlhl = 0, vlan_macip_lens = 0;
89        u32 mss_l4len_idx = 0;
90        u32 paylen;
91 
92        switch(pi->ipi_etype) {
93          case ETHERTYPE_IPV6:
94             type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6;
95             break;
96          case ETHERTYPE_IP:
97             type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
98             /* Tell transmit desc to also do IPv4 checksum. */
99             *olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
100             break;
101          default:
102             panic("%s: CSUM_TSO but no supported IP version (0x%04x)",
103 	         __func__, ntohs(pi->ipi_etype));
104             break;
105         }
106 
107         TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[pi->ipi_pidx];
108 
109         /* This is used in the transmit desc in encap */
110         paylen = pi->ipi_len - pi->ipi_ehdrlen - pi->ipi_ip_hlen - pi->ipi_tcp_hlen;
111 
112   	/* VLAN MACLEN IPLEN */
113 	if (pi->ipi_mflags & M_VLANTAG) {
114                 vlan_macip_lens |= (pi->ipi_vtag << E1000_ADVTXD_VLAN_SHIFT);
115 	}
116 
117 	vlan_macip_lens |= pi->ipi_ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
118 	vlan_macip_lens |= pi->ipi_ip_hlen;
119 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
120 
121 	/* ADV DTYPE TUCMD */
122 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
123 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
124 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
125 
126 	/* MSS L4LEN IDX */
127 	mss_l4len_idx |= (pi->ipi_tso_segsz << E1000_ADVTXD_MSS_SHIFT);
128 	mss_l4len_idx |= (pi->ipi_tcp_hlen << E1000_ADVTXD_L4LEN_SHIFT);
129 	/* 82575 needs the queue index added */
130 	if (adapter->hw.mac.type == e1000_82575)
131 		mss_l4len_idx |= txr->me << 4;
132 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
133 
134 	TXD->seqnum_seed = htole32(0);
135         *cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
136 	*olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
137 	*olinfo_status |= paylen << E1000_ADVTXD_PAYLEN_SHIFT;
138 
139         return (1);
140 }
141 
142 /*********************************************************************
143  *
144  *  Advanced Context Descriptor setup for VLAN, CSUM or TSO
145  *
146  **********************************************************************/
147 static int
148 igb_tx_ctx_setup(struct tx_ring *txr, if_pkt_info_t pi, u32 *cmd_type_len, u32 *olinfo_status)
149 {
150         struct e1000_adv_tx_context_desc *TXD;
151 	struct adapter *adapter = txr->adapter;
152         u32 vlan_macip_lens, type_tucmd_mlhl;
153 	u32 mss_l4len_idx;
154 	mss_l4len_idx = vlan_macip_lens = type_tucmd_mlhl = 0;
155 	int offload = TRUE;
156 
157         /* First check if TSO is to be used */
158 	if (pi->ipi_csum_flags & CSUM_TSO)
159 		return (igb_tso_setup(txr, pi, cmd_type_len, olinfo_status));
160 
161         /* Indicate the whole packet as payload when not doing TSO */
162        	*olinfo_status |= pi->ipi_len << E1000_ADVTXD_PAYLEN_SHIFT;
163 
164 	/* Now ready a context descriptor */
165 	TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[pi->ipi_pidx];
166 
167         /*
168 	** In advanced descriptors the vlan tag must
169 	** be placed into the context descriptor. Hence
170 	** we need to make one even if not doing offloads.
171 	*/
172         if (pi->ipi_mflags & M_VLANTAG) {
173 		vlan_macip_lens |= (pi->ipi_vtag << E1000_ADVTXD_VLAN_SHIFT);
174 	} else if ((pi->ipi_csum_flags & IGB_CSUM_OFFLOAD) == 0) {
175 		return (0);
176 	}
177 
178 	/* Set the ether header length */
179 	vlan_macip_lens |= pi->ipi_ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
180 
181 	switch(pi->ipi_etype) {
182 	    case ETHERTYPE_IP:
183 	         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
184                  break;
185 	    case ETHERTYPE_IPV6:
186                  type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6;
187                  break;
188             default:
189 	         offload = FALSE;
190                  break;
191 	}
192 
193         vlan_macip_lens |= pi->ipi_ip_hlen;
194 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
195 
196 	switch (pi->ipi_ipproto) {
197 	       case IPPROTO_TCP:
198                 #if __FreeBSD_version >= 1000000
199 			if (pi->ipi_csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP))
200 #else
201 			if (pi->ipi_csum_flags & CSUM_TCP)
202 #endif
203 				type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
204 			break;
205 		case IPPROTO_UDP:
206 #if __FreeBSD_version >= 1000000
207 			if (pi->ipi_csum_flags & (CSUM_IP_UDP | CSUM_IP6_UDP))
208 #else
209 			if (pi->ipi_csum_flags & CSUM_UDP)
210 #endif
211 				type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
212 			break;
213 
214 #if __FreeBSD_version >= 800000
215 		case IPPROTO_SCTP:
216 #if __FreeBSD_version >= 1000000
217 			if (pi->ipi_csum_flags & (CSUM_IP_SCTP | CSUM_IP6_SCTP))
218 #else
219 			if (pi->ipi_csum_flags & CSUM_SCTP)
220 #endif
221 				type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP;
222 			break;
223 #endif
224 		default:
225 			offload = FALSE;
226 			break;
227 	}
228 
229 	if (offload) /* For the TX descriptor setup */
230 	  *olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
231 
232 	/* 82575 needs the queue index added */
233 	if (adapter->hw.mac.type == e1000_82575)
234 		mss_l4len_idx = txr->me << 4;
235 
236 	/* Now copy bits into descriptor */
237 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
238 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
239 	TXD->seqnum_seed = htole32(0);
240 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
241 
242 	return (1);
243 }
244 
245 static int
246 igb_isc_txd_encap(void *arg, if_pkt_info_t pi)
247 {
248 	struct adapter *sc        = arg;
249 	if_softc_ctx_t scctx      = sc->shared;
250 	struct em_tx_queue *que  = &sc->tx_queues[pi->ipi_qsidx];
251 	struct tx_ring *txr       = &que->txr;
252 	int nsegs                 = pi->ipi_nsegs;
253 	bus_dma_segment_t *segs   = pi->ipi_segs;
254 	struct em_txbuffer *txbuf;
255 	union e1000_adv_tx_desc *txd = NULL;
256 
257 	int                    i, j, first, pidx_last;
258 	u32                    olinfo_status, cmd_type_len;
259 
260 	pidx_last = olinfo_status = 0;
261 	/* Basic descriptor defines */
262 	cmd_type_len = (E1000_ADVTXD_DTYP_DATA |
263 					E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT);
264 
265 	if (pi->ipi_mflags & M_VLANTAG)
266 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
267 
268 	first = i = pi->ipi_pidx;
269 
270 	/* Consume the first descriptor */
271         i += igb_tx_ctx_setup(txr, pi, &cmd_type_len, &olinfo_status);
272         if (i == scctx->isc_ntxd[0])
273 		i = 0;
274 
275 	/* 82575 needs the queue index added */
276 	if (sc->hw.mac.type == e1000_82575)
277 		olinfo_status |= txr->me << 4;
278 
279 	for (j = 0; j < nsegs; j++) {
280 		bus_size_t seglen;
281 		bus_addr_t segaddr;
282 
283 		txbuf = &txr->tx_buffers[i];
284 		txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
285 		seglen = segs[j].ds_len;
286 		segaddr = htole64(segs[j].ds_addr);
287 
288 		txd->read.buffer_addr = segaddr;
289 		txd->read.cmd_type_len = htole32(E1000_TXD_CMD_IFCS |
290 		    cmd_type_len | seglen);
291 		txd->read.olinfo_status = htole32(olinfo_status);
292 		pidx_last = i;
293 		if (++i == scctx->isc_ntxd[0]) {
294 			i = 0;
295 		}
296 	}
297 
298 	txd->read.cmd_type_len |=
299 	    htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
300 
301 	/* Set the EOP descriptor that will be marked done */
302 	txbuf = &txr->tx_buffers[first];
303 	txbuf->eop = pidx_last;
304 
305 	pi->ipi_new_pidx = i;
306 
307 	return (0);
308 }
309 
310 static void
311 igb_isc_txd_flush(void *arg, uint16_t txqid, uint32_t pidx)
312 {
313        struct adapter *adapter      = arg;
314        struct em_tx_queue *que     = &adapter->tx_queues[txqid];
315        struct tx_ring *txr          = &que->txr;
316 
317        E1000_WRITE_REG(&adapter->hw, E1000_TDT(txr->me), pidx);
318 }
319 
320 static int
321 igb_isc_txd_credits_update(void *arg, uint16_t txqid, uint32_t cidx_init, bool clear)
322 {
323 	struct adapter      *adapter = arg;
324 	if_softc_ctx_t      scctx = adapter->shared;
325 	struct em_tx_queue *que = &adapter->tx_queues[txqid];
326 	struct tx_ring      *txr = &que->txr;
327 
328 	u32       cidx, ntxd, processed = 0;
329 
330 	struct em_txbuffer *buf;
331 	union e1000_adv_tx_desc *txd, *eop;
332         int limit;
333 
334 	cidx = cidx_init;
335 
336 	buf = &txr->tx_buffers[cidx];
337 	txd = (union e1000_adv_tx_desc *)&txr->tx_base[cidx];
338 	ntxd = scctx->isc_ntxd[0];
339 	limit = adapter->tx_process_limit;
340 
341 	do {
342 		if (buf->eop == -1) /* No work */
343 			break;
344 
345 		eop = (union e1000_adv_tx_desc *)&txr->tx_base[buf->eop];
346 		if ((eop->wb.status & E1000_TXD_STAT_DD) == 0)
347 			break;	/* I/O not complete */
348 
349 		if (clear)
350 			buf->eop = -1; /* clear indicate processed */
351 
352                 /* We clean the range if multi segment */
353 		while (txd != eop) {
354 			++txd;
355 			++buf;
356 			/* wrap the ring? */
357 			if (++cidx == scctx->isc_ntxd[0]) {
358 				cidx = 0;
359 				buf = txr->tx_buffers;
360 				txd = (union e1000_adv_tx_desc *)txr->tx_base;
361 			}
362 
363 			buf = &txr->tx_buffers[cidx];
364 			if (clear)
365 				buf->eop = -1;
366 			processed++;
367 		}
368 		processed++;
369 
370 		/* Try the next packet */
371 		txd++;
372 		buf++;
373 
374 		/* reset with a wrap */
375 		if (++cidx == scctx->isc_ntxd[0]) {
376 			cidx = 0;
377 			buf = txr->tx_buffers;
378 			txd = (union e1000_adv_tx_desc *)txr->tx_base;
379 		}
380 		prefetch(txd);
381 		prefetch(txd+1);
382 	} while (__predict_true(--limit) && cidx != cidx_init);
383 
384 	return (processed);
385 }
386 
387 static void
388 igb_isc_rxd_refill(void *arg, uint16_t rxqid, uint8_t flid __unused,
389 		   uint32_t pidx, uint64_t *paddrs, caddr_t *vaddrs __unused,
390 		   uint16_t count, uint16_t buf_len __unused)
391 {
392 	struct adapter *sc           = arg;
393 	if_softc_ctx_t scctx         = sc->shared;
394 	struct em_rx_queue *que     = &sc->rx_queues[rxqid];
395 	union e1000_adv_rx_desc *rxd;
396 	struct rx_ring *rxr          = &que->rxr;
397 	int			     i;
398 	uint32_t next_pidx;
399 
400 	for (i = 0, next_pidx = pidx; i < count; i++) {
401 		rxd = (union e1000_adv_rx_desc *)&rxr->rx_base[next_pidx];
402 
403 		rxd->read.pkt_addr = htole64(paddrs[i]);
404 		if (++next_pidx == scctx->isc_nrxd[0])
405 			next_pidx = 0;
406 	}
407 }
408 
409 static void
410 igb_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused, uint32_t pidx)
411 {
412 	struct adapter *sc           = arg;
413 	struct em_rx_queue *que     = &sc->rx_queues[rxqid];
414 	struct rx_ring *rxr          = &que->rxr;
415 
416 	E1000_WRITE_REG(&sc->hw, E1000_RDT(rxr->me), pidx);
417 }
418 
419 static int
420 igb_isc_rxd_available(void *arg, uint16_t rxqid, uint32_t idx, int budget)
421 {
422 	struct adapter *sc           = arg;
423 	if_softc_ctx_t scctx         = sc->shared;
424 	struct em_rx_queue *que     = &sc->rx_queues[rxqid];
425 	struct rx_ring *rxr      = &que->rxr;
426 	union e1000_adv_rx_desc *rxd;
427 	u32                      staterr = 0;
428 	int                      cnt, i, iter;
429 
430 	for (iter = cnt = 0, i = idx; iter < scctx->isc_nrxd[0] && iter <= budget;) {
431 		rxd = (union e1000_adv_rx_desc *)&rxr->rx_base[i];
432 		staterr = le32toh(rxd->wb.upper.status_error);
433 
434 		if ((staterr & E1000_RXD_STAT_DD) == 0)
435 			break;
436 
437 		if (++i == scctx->isc_nrxd[0]) {
438 			i = 0;
439 		}
440 
441 		if (staterr & E1000_RXD_STAT_EOP)
442 			cnt++;
443 		iter++;
444 	}
445 	{
446 		struct e1000_hw *hw = &sc->hw;
447 		int rdt, rdh;
448 		rdt = E1000_READ_REG(hw, E1000_RDT(rxr->me));
449 		rdh = E1000_READ_REG(hw, E1000_RDH(rxr->me));
450 		DPRINTF(iflib_get_dev(sc->ctx), "sidx:%d eidx:%d iter=%d pktcnt=%d RDT=%d RDH=%d\n", idx, i, iter, cnt, rdt, rdh);
451 	}
452 	return (cnt);
453 }
454 
455 /****************************************************************
456  * Routine sends data which has been dma'ed into host memory
457  * to upper layer. Initialize ri structure.
458  *
459  * Returns 0 upon success, errno on failure
460  ***************************************************************/
461 
462 static int
463 igb_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri)
464 {
465 	struct adapter           *adapter = arg;
466 	if_softc_ctx_t           scctx = adapter->shared;
467 	struct em_rx_queue      *que = &adapter->rx_queues[ri->iri_qsidx];
468 	struct rx_ring           *rxr = &que->rxr;
469 	struct ifnet             *ifp = iflib_get_ifp(adapter->ctx);
470 	union e1000_adv_rx_desc  *rxd;
471 
472 	u16                      pkt_info, len;
473 	u16                      vtag = 0;
474 	u32                      ptype;
475 	u32                      staterr = 0;
476 	bool                     eop;
477 	int                      i = 0;
478 	int                      cidx = ri->iri_cidx;
479 
480 	do {
481 		rxd = (union e1000_adv_rx_desc *)&rxr->rx_base[cidx];
482 		staterr = le32toh(rxd->wb.upper.status_error);
483 		pkt_info = le16toh(rxd->wb.lower.lo_dword.hs_rss.pkt_info);
484 
485 		MPASS ((staterr & E1000_RXD_STAT_DD) != 0);
486 
487 		len = le16toh(rxd->wb.upper.length);
488 		ptype = le32toh(rxd->wb.lower.lo_dword.data) &  IGB_PKTTYPE_MASK;
489 
490 		ri->iri_len += len;
491 		rxr->rx_bytes += ri->iri_len;
492 
493 		rxd->wb.upper.status_error = 0;
494 		eop = ((staterr & E1000_RXD_STAT_EOP) == E1000_RXD_STAT_EOP);
495 
496 		if (((adapter->hw.mac.type == e1000_i350) ||
497 		     (adapter->hw.mac.type == e1000_i354)) &&
498 		    (staterr & E1000_RXDEXT_STATERR_LB))
499 			vtag = be16toh(rxd->wb.upper.vlan);
500 		else
501 			vtag = le16toh(rxd->wb.upper.vlan);
502 
503 		/* Make sure bad packets are discarded */
504 		if (eop && ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) != 0)) {
505 			adapter->dropped_pkts++;
506 			++rxr->rx_discarded;
507 			return (EBADMSG);
508 		}
509 		ri->iri_frags[i].irf_flid = 0;
510 		ri->iri_frags[i].irf_idx = cidx;
511 		ri->iri_frags[i].irf_len = len;
512 
513 		if (++cidx == scctx->isc_nrxd[0])
514 			cidx = 0;
515 #ifdef notyet
516 		if (rxr->hdr_split == TRUE) {
517 			ri->iri_frags[i].irf_flid = 1;
518 			ri->iri_frags[i].irf_idx = cidx;
519 			if (++cidx == scctx->isc_nrxd[0])
520 				cidx = 0;
521 		}
522 #endif
523 		i++;
524 	} while (!eop);
525 
526 	rxr->rx_packets++;
527 
528 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
529 		igb_rx_checksum(staterr, ri, ptype);
530 
531 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
532 	    (staterr & E1000_RXD_STAT_VP) != 0) {
533 		ri->iri_vtag = vtag;
534 		ri->iri_flags |= M_VLANTAG;
535 	}
536 	ri->iri_flowid =
537 		le32toh(rxd->wb.lower.hi_dword.rss);
538 	ri->iri_rsstype = igb_determine_rsstype(pkt_info);
539 	ri->iri_nfrags = i;
540 
541 	return (0);
542 }
543 
544 /*********************************************************************
545  *
546  *  Verify that the hardware indicated that the checksum is valid.
547  *  Inform the stack about the status of checksum so that stack
548  *  doesn't spend time verifying the checksum.
549  *
550  *********************************************************************/
551 static void
552 igb_rx_checksum(u32 staterr, if_rxd_info_t ri, u32 ptype)
553 {
554 	u16 status = (u16)staterr;
555 	u8  errors = (u8) (staterr >> 24);
556 	bool sctp = FALSE;
557 
558 	/* Ignore Checksum bit is set */
559 	if (status & E1000_RXD_STAT_IXSM) {
560 		ri->iri_csum_flags = 0;
561 		return;
562 	}
563 
564 	if ((ptype & E1000_RXDADV_PKTTYPE_ETQF) == 0 &&
565 	    (ptype & E1000_RXDADV_PKTTYPE_SCTP) != 0)
566 		sctp = 1;
567 	else
568 		sctp = 0;
569 
570 	if (status & E1000_RXD_STAT_IPCS) {
571 		/* Did it pass? */
572 		if (!(errors & E1000_RXD_ERR_IPE)) {
573 			/* IP Checksum Good */
574 			ri->iri_csum_flags = CSUM_IP_CHECKED;
575 			ri->iri_csum_flags |= CSUM_IP_VALID;
576 		} else
577 			ri->iri_csum_flags = 0;
578 	}
579 
580 	if (status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
581 		u64 type = (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
582 #if __FreeBSD_version >= 800000
583 		if (sctp) /* reassign */
584 			type = CSUM_SCTP_VALID;
585 #endif
586 		/* Did it pass? */
587 		if (!(errors & E1000_RXD_ERR_TCPE)) {
588 			ri->iri_csum_flags |= type;
589 			if (sctp == 0)
590 				ri->iri_csum_data = htons(0xffff);
591 		}
592 	}
593 	return;
594 }
595 
596 /********************************************************************
597  *
598  *  Parse the packet type to determine the appropriate hash
599  *
600  ******************************************************************/
601 static int
602 igb_determine_rsstype(u16 pkt_info)
603 {
604    	switch (pkt_info & E1000_RXDADV_RSSTYPE_MASK) {
605 	case E1000_RXDADV_RSSTYPE_IPV4_TCP:
606 		return M_HASHTYPE_RSS_TCP_IPV4;
607 	case E1000_RXDADV_RSSTYPE_IPV4:
608 		return M_HASHTYPE_RSS_IPV4;
609 	case E1000_RXDADV_RSSTYPE_IPV6_TCP:
610 		return M_HASHTYPE_RSS_TCP_IPV6;
611 	case E1000_RXDADV_RSSTYPE_IPV6_EX:
612 		return M_HASHTYPE_RSS_IPV6_EX;
613 	case E1000_RXDADV_RSSTYPE_IPV6:
614 		return M_HASHTYPE_RSS_IPV6;
615 	case E1000_RXDADV_RSSTYPE_IPV6_TCP_EX:
616 		return M_HASHTYPE_RSS_TCP_IPV6_EX;
617 	default:
618 		return M_HASHTYPE_OPAQUE;
619 	}
620 }
621