xref: /freebsd/sys/dev/e1000/igb_txrx.c (revision 28f4385e45a2681c14bd04b83fe1796eaefe8265)
1 /*-
2  * Copyright (c) 2016 Matthew Macy <mmacy@mattmacy.io>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /* $FreeBSD$ */
28 #include "if_em.h"
29 
30 #ifdef RSS
31 #include <net/rss_config.h>
32 #include <netinet/in_rss.h>
33 #endif
34 
35 #ifdef VERBOSE_DEBUG
36 #define DPRINTF device_printf
37 #else
38 #define DPRINTF(...)
39 #endif
40 
41 /*********************************************************************
42  *  Local Function prototypes
43  *********************************************************************/
44 static int igb_isc_txd_encap(void *arg, if_pkt_info_t pi);
45 static void igb_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx);
46 static int igb_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear);
47 
48 static void igb_isc_rxd_refill(void *arg, if_rxd_update_t iru);
49 
50 static void igb_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused, qidx_t pidx);
51 static int igb_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx, qidx_t budget);
52 
53 static int igb_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri);
54 
55 static int igb_tx_ctx_setup(struct tx_ring *txr, if_pkt_info_t pi, u32 *cmd_type_len, u32 *olinfo_status);
56 static int igb_tso_setup(struct tx_ring *txr, if_pkt_info_t pi, u32 *cmd_type_len, u32 *olinfo_status);
57 
58 static void igb_rx_checksum(u32 staterr, if_rxd_info_t ri, u32 ptype);
59 static int igb_determine_rsstype(u16 pkt_info);
60 
61 extern void igb_if_enable_intr(if_ctx_t ctx);
62 extern int em_intr(void *arg);
63 
64 struct if_txrx igb_txrx = {
65 	.ift_txd_encap = igb_isc_txd_encap,
66 	.ift_txd_flush = igb_isc_txd_flush,
67 	.ift_txd_credits_update = igb_isc_txd_credits_update,
68 	.ift_rxd_available = igb_isc_rxd_available,
69 	.ift_rxd_pkt_get = igb_isc_rxd_pkt_get,
70 	.ift_rxd_refill = igb_isc_rxd_refill,
71 	.ift_rxd_flush = igb_isc_rxd_flush,
72 	.ift_legacy_intr = em_intr
73 };
74 
75 extern if_shared_ctx_t em_sctx;
76 
77 /**********************************************************************
78  *
79  *  Setup work for hardware segmentation offload (TSO) on
80  *  adapters using advanced tx descriptors
81  *
82  **********************************************************************/
83 static int
84 igb_tso_setup(struct tx_ring *txr, if_pkt_info_t pi, u32 *cmd_type_len, u32 *olinfo_status)
85 {
86 	struct e1000_adv_tx_context_desc *TXD;
87 	struct adapter *adapter = txr->adapter;
88 	u32 type_tucmd_mlhl = 0, vlan_macip_lens = 0;
89 	u32 mss_l4len_idx = 0;
90 	u32 paylen;
91 
92 	switch(pi->ipi_etype) {
93 	case ETHERTYPE_IPV6:
94 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6;
95 		break;
96 	case ETHERTYPE_IP:
97 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
98 		/* Tell transmit desc to also do IPv4 checksum. */
99 		*olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
100 		break;
101 	default:
102 		panic("%s: CSUM_TSO but no supported IP version (0x%04x)",
103 		      __func__, ntohs(pi->ipi_etype));
104 		break;
105 	}
106 
107 	TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[pi->ipi_pidx];
108 
109 	/* This is used in the transmit desc in encap */
110 	paylen = pi->ipi_len - pi->ipi_ehdrlen - pi->ipi_ip_hlen - pi->ipi_tcp_hlen;
111 
112 	/* VLAN MACLEN IPLEN */
113 	if (pi->ipi_mflags & M_VLANTAG) {
114 		vlan_macip_lens |= (pi->ipi_vtag << E1000_ADVTXD_VLAN_SHIFT);
115 	}
116 
117 	vlan_macip_lens |= pi->ipi_ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
118 	vlan_macip_lens |= pi->ipi_ip_hlen;
119 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
120 
121 	/* ADV DTYPE TUCMD */
122 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
123 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
124 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
125 
126 	/* MSS L4LEN IDX */
127 	mss_l4len_idx |= (pi->ipi_tso_segsz << E1000_ADVTXD_MSS_SHIFT);
128 	mss_l4len_idx |= (pi->ipi_tcp_hlen << E1000_ADVTXD_L4LEN_SHIFT);
129 	/* 82575 needs the queue index added */
130 	if (adapter->hw.mac.type == e1000_82575)
131 		mss_l4len_idx |= txr->me << 4;
132 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
133 
134 	TXD->seqnum_seed = htole32(0);
135 	*cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
136 	*olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
137 	*olinfo_status |= paylen << E1000_ADVTXD_PAYLEN_SHIFT;
138 
139 	return (1);
140 }
141 
142 /*********************************************************************
143  *
144  *  Advanced Context Descriptor setup for VLAN, CSUM or TSO
145  *
146  **********************************************************************/
147 static int
148 igb_tx_ctx_setup(struct tx_ring *txr, if_pkt_info_t pi, u32 *cmd_type_len, u32 *olinfo_status)
149 {
150 	struct e1000_adv_tx_context_desc *TXD;
151 	struct adapter *adapter = txr->adapter;
152 	u32 vlan_macip_lens, type_tucmd_mlhl;
153 	u32 mss_l4len_idx;
154 	mss_l4len_idx = vlan_macip_lens = type_tucmd_mlhl = 0;
155 
156 	/* First check if TSO is to be used */
157 	if (pi->ipi_csum_flags & CSUM_TSO)
158 		return (igb_tso_setup(txr, pi, cmd_type_len, olinfo_status));
159 
160 	/* Indicate the whole packet as payload when not doing TSO */
161 	*olinfo_status |= pi->ipi_len << E1000_ADVTXD_PAYLEN_SHIFT;
162 
163 	/* Now ready a context descriptor */
164 	TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[pi->ipi_pidx];
165 
166 	/*
167 	** In advanced descriptors the vlan tag must
168 	** be placed into the context descriptor. Hence
169 	** we need to make one even if not doing offloads.
170 	*/
171 	if (pi->ipi_mflags & M_VLANTAG) {
172 		vlan_macip_lens |= (pi->ipi_vtag << E1000_ADVTXD_VLAN_SHIFT);
173 	} else if ((pi->ipi_csum_flags & IGB_CSUM_OFFLOAD) == 0) {
174 		return (0);
175 	}
176 
177 	/* Set the ether header length */
178 	vlan_macip_lens |= pi->ipi_ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
179 
180 	switch(pi->ipi_etype) {
181 	case ETHERTYPE_IP:
182 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
183 		break;
184 	case ETHERTYPE_IPV6:
185 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6;
186 		break;
187 	default:
188 		break;
189 	}
190 
191 	vlan_macip_lens |= pi->ipi_ip_hlen;
192 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
193 
194 	switch (pi->ipi_ipproto) {
195 	case IPPROTO_TCP:
196 		if (pi->ipi_csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP)) {
197 			type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
198 			*olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
199 		}
200 		break;
201 	case IPPROTO_UDP:
202 		if (pi->ipi_csum_flags & (CSUM_IP_UDP | CSUM_IP6_UDP)) {
203 			type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
204 			*olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
205 		}
206 		break;
207 	case IPPROTO_SCTP:
208 		if (pi->ipi_csum_flags & (CSUM_IP_SCTP | CSUM_IP6_SCTP)) {
209 			type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP;
210 			*olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
211 		}
212 		break;
213 	default:
214 		break;
215 	}
216 
217 	/* 82575 needs the queue index added */
218 	if (adapter->hw.mac.type == e1000_82575)
219 		mss_l4len_idx = txr->me << 4;
220 
221 	/* Now copy bits into descriptor */
222 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
223 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
224 	TXD->seqnum_seed = htole32(0);
225 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
226 
227 	return (1);
228 }
229 
230 static int
231 igb_isc_txd_encap(void *arg, if_pkt_info_t pi)
232 {
233 	struct adapter *sc = arg;
234 	if_softc_ctx_t scctx = sc->shared;
235 	struct em_tx_queue *que = &sc->tx_queues[pi->ipi_qsidx];
236 	struct tx_ring *txr = &que->txr;
237 	int nsegs = pi->ipi_nsegs;
238 	bus_dma_segment_t *segs = pi->ipi_segs;
239 	union e1000_adv_tx_desc *txd = NULL;
240 	int i, j, pidx_last;
241 	u32 olinfo_status, cmd_type_len, txd_flags;
242 	qidx_t ntxd;
243 
244 	pidx_last = olinfo_status = 0;
245 	/* Basic descriptor defines */
246 	cmd_type_len = (E1000_ADVTXD_DTYP_DATA |
247 			E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT);
248 
249 	if (pi->ipi_mflags & M_VLANTAG)
250 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
251 
252 	i = pi->ipi_pidx;
253 	ntxd = scctx->isc_ntxd[0];
254 	txd_flags = pi->ipi_flags & IPI_TX_INTR ? E1000_ADVTXD_DCMD_RS : 0;
255 	/* Consume the first descriptor */
256 	i += igb_tx_ctx_setup(txr, pi, &cmd_type_len, &olinfo_status);
257 	if (i == scctx->isc_ntxd[0])
258 		i = 0;
259 
260 	/* 82575 needs the queue index added */
261 	if (sc->hw.mac.type == e1000_82575)
262 		olinfo_status |= txr->me << 4;
263 
264 	for (j = 0; j < nsegs; j++) {
265 		bus_size_t seglen;
266 		bus_addr_t segaddr;
267 
268 		txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
269 		seglen = segs[j].ds_len;
270 		segaddr = htole64(segs[j].ds_addr);
271 
272 		txd->read.buffer_addr = segaddr;
273 		txd->read.cmd_type_len = htole32(E1000_TXD_CMD_IFCS |
274 		    cmd_type_len | seglen);
275 		txd->read.olinfo_status = htole32(olinfo_status);
276 		pidx_last = i;
277 		if (++i == scctx->isc_ntxd[0]) {
278 			i = 0;
279 		}
280 	}
281 	if (txd_flags) {
282 		txr->tx_rsq[txr->tx_rs_pidx] = pidx_last;
283 		txr->tx_rs_pidx = (txr->tx_rs_pidx+1) & (ntxd-1);
284 		MPASS(txr->tx_rs_pidx != txr->tx_rs_cidx);
285 	}
286 
287 	txd->read.cmd_type_len |= htole32(E1000_TXD_CMD_EOP | txd_flags);
288 	pi->ipi_new_pidx = i;
289 
290 	return (0);
291 }
292 
293 static void
294 igb_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx)
295 {
296 	struct adapter *adapter	= arg;
297 	struct em_tx_queue *que	= &adapter->tx_queues[txqid];
298 	struct tx_ring *txr	= &que->txr;
299 
300 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(txr->me), pidx);
301 }
302 
303 static int
304 igb_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear)
305 {
306 	struct adapter *adapter = arg;
307 	if_softc_ctx_t scctx = adapter->shared;
308 	struct em_tx_queue *que = &adapter->tx_queues[txqid];
309 	struct tx_ring *txr = &que->txr;
310 
311 	qidx_t processed = 0;
312 	int updated;
313 	qidx_t cur, prev, ntxd, rs_cidx;
314 	int32_t delta;
315 	uint8_t status;
316 
317 	rs_cidx = txr->tx_rs_cidx;
318 	if (rs_cidx == txr->tx_rs_pidx)
319 		return (0);
320 	cur = txr->tx_rsq[rs_cidx];
321 	status = ((union e1000_adv_tx_desc *)&txr->tx_base[cur])->wb.status;
322 	updated = !!(status & E1000_TXD_STAT_DD);
323 
324 	if (!updated)
325 		return (0);
326 
327 	/* If clear is false just let caller know that there
328 	 * are descriptors to reclaim */
329 	if (!clear)
330 		return (1);
331 
332 	prev = txr->tx_cidx_processed;
333 	ntxd = scctx->isc_ntxd[0];
334 	do {
335 		MPASS(prev != cur);
336 		delta = (int32_t)cur - (int32_t)prev;
337 		if (delta < 0)
338 			delta += ntxd;
339 		MPASS(delta > 0);
340 
341 		processed += delta;
342 		prev  = cur;
343 		rs_cidx = (rs_cidx + 1) & (ntxd-1);
344 		if (rs_cidx  == txr->tx_rs_pidx)
345 			break;
346 		cur = txr->tx_rsq[rs_cidx];
347 		status = ((union e1000_adv_tx_desc *)&txr->tx_base[cur])->wb.status;
348 	} while ((status & E1000_TXD_STAT_DD));
349 
350 	txr->tx_rs_cidx = rs_cidx;
351 	txr->tx_cidx_processed = prev;
352 	return (processed);
353 }
354 
355 static void
356 igb_isc_rxd_refill(void *arg, if_rxd_update_t iru)
357 {
358 	struct adapter *sc = arg;
359 	if_softc_ctx_t scctx = sc->shared;
360 	uint16_t rxqid = iru->iru_qsidx;
361 	struct em_rx_queue *que = &sc->rx_queues[rxqid];
362 	union e1000_adv_rx_desc *rxd;
363 	struct rx_ring *rxr = &que->rxr;
364 	uint64_t *paddrs;
365 	uint32_t next_pidx, pidx;
366 	uint16_t count;
367 	int i;
368 
369 	paddrs = iru->iru_paddrs;
370 	pidx = iru->iru_pidx;
371 	count = iru->iru_count;
372 
373 	for (i = 0, next_pidx = pidx; i < count; i++) {
374 		rxd = (union e1000_adv_rx_desc *)&rxr->rx_base[next_pidx];
375 
376 		rxd->read.pkt_addr = htole64(paddrs[i]);
377 		if (++next_pidx == scctx->isc_nrxd[0])
378 			next_pidx = 0;
379 	}
380 }
381 
382 static void
383 igb_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused, qidx_t pidx)
384 {
385 	struct adapter *sc = arg;
386 	struct em_rx_queue *que = &sc->rx_queues[rxqid];
387 	struct rx_ring *rxr = &que->rxr;
388 
389 	E1000_WRITE_REG(&sc->hw, E1000_RDT(rxr->me), pidx);
390 }
391 
392 static int
393 igb_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx, qidx_t budget)
394 {
395 	struct adapter *sc = arg;
396 	if_softc_ctx_t scctx = sc->shared;
397 	struct em_rx_queue *que = &sc->rx_queues[rxqid];
398 	struct rx_ring *rxr = &que->rxr;
399 	union e1000_adv_rx_desc *rxd;
400 	u32 staterr = 0;
401 	int cnt, i;
402 
403 	for (cnt = 0, i = idx; cnt < scctx->isc_nrxd[0] && cnt <= budget;) {
404 		rxd = (union e1000_adv_rx_desc *)&rxr->rx_base[i];
405 		staterr = le32toh(rxd->wb.upper.status_error);
406 
407 		if ((staterr & E1000_RXD_STAT_DD) == 0)
408 			break;
409 		if (++i == scctx->isc_nrxd[0])
410 			i = 0;
411 		if (staterr & E1000_RXD_STAT_EOP)
412 			cnt++;
413 	}
414 	return (cnt);
415 }
416 
417 /****************************************************************
418  * Routine sends data which has been dma'ed into host memory
419  * to upper layer. Initialize ri structure.
420  *
421  * Returns 0 upon success, errno on failure
422  ***************************************************************/
423 
424 static int
425 igb_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri)
426 {
427 	struct adapter *adapter = arg;
428 	if_softc_ctx_t scctx = adapter->shared;
429 	struct em_rx_queue *que = &adapter->rx_queues[ri->iri_qsidx];
430 	struct rx_ring *rxr = &que->rxr;
431 	struct ifnet *ifp = iflib_get_ifp(adapter->ctx);
432 	union e1000_adv_rx_desc *rxd;
433 
434 	u16 pkt_info, len;
435 	u16 vtag = 0;
436 	u32 ptype;
437 	u32 staterr = 0;
438 	bool eop;
439 	int i = 0;
440 	int cidx = ri->iri_cidx;
441 
442 	do {
443 		rxd = (union e1000_adv_rx_desc *)&rxr->rx_base[cidx];
444 		staterr = le32toh(rxd->wb.upper.status_error);
445 		pkt_info = le16toh(rxd->wb.lower.lo_dword.hs_rss.pkt_info);
446 
447 		MPASS ((staterr & E1000_RXD_STAT_DD) != 0);
448 
449 		len = le16toh(rxd->wb.upper.length);
450 		ptype = le32toh(rxd->wb.lower.lo_dword.data) &  IGB_PKTTYPE_MASK;
451 
452 		ri->iri_len += len;
453 		rxr->rx_bytes += ri->iri_len;
454 
455 		rxd->wb.upper.status_error = 0;
456 		eop = ((staterr & E1000_RXD_STAT_EOP) == E1000_RXD_STAT_EOP);
457 
458 		if (((adapter->hw.mac.type == e1000_i350) ||
459 		    (adapter->hw.mac.type == e1000_i354)) &&
460 		    (staterr & E1000_RXDEXT_STATERR_LB))
461 			vtag = be16toh(rxd->wb.upper.vlan);
462 		else
463 			vtag = le16toh(rxd->wb.upper.vlan);
464 
465 		/* Make sure bad packets are discarded */
466 		if (eop && ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) != 0)) {
467 			adapter->dropped_pkts++;
468 			++rxr->rx_discarded;
469 			return (EBADMSG);
470 		}
471 		ri->iri_frags[i].irf_flid = 0;
472 		ri->iri_frags[i].irf_idx = cidx;
473 		ri->iri_frags[i].irf_len = len;
474 
475 		if (++cidx == scctx->isc_nrxd[0])
476 			cidx = 0;
477 #ifdef notyet
478 		if (rxr->hdr_split == TRUE) {
479 			ri->iri_frags[i].irf_flid = 1;
480 			ri->iri_frags[i].irf_idx = cidx;
481 			if (++cidx == scctx->isc_nrxd[0])
482 				cidx = 0;
483 		}
484 #endif
485 		i++;
486 	} while (!eop);
487 
488 	rxr->rx_packets++;
489 
490 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
491 		igb_rx_checksum(staterr, ri, ptype);
492 
493 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
494 	    (staterr & E1000_RXD_STAT_VP) != 0) {
495 		ri->iri_vtag = vtag;
496 		ri->iri_flags |= M_VLANTAG;
497 	}
498 	ri->iri_flowid =
499 		le32toh(rxd->wb.lower.hi_dword.rss);
500 	ri->iri_rsstype = igb_determine_rsstype(pkt_info);
501 	ri->iri_nfrags = i;
502 
503 	return (0);
504 }
505 
506 /*********************************************************************
507  *
508  *  Verify that the hardware indicated that the checksum is valid.
509  *  Inform the stack about the status of checksum so that stack
510  *  doesn't spend time verifying the checksum.
511  *
512  *********************************************************************/
513 static void
514 igb_rx_checksum(u32 staterr, if_rxd_info_t ri, u32 ptype)
515 {
516 	u16 status = (u16)staterr;
517 	u8 errors = (u8) (staterr >> 24);
518 	bool sctp = FALSE;
519 
520 	/* Ignore Checksum bit is set */
521 	if (status & E1000_RXD_STAT_IXSM) {
522 		ri->iri_csum_flags = 0;
523 		return;
524 	}
525 
526 	if ((ptype & E1000_RXDADV_PKTTYPE_ETQF) == 0 &&
527 	    (ptype & E1000_RXDADV_PKTTYPE_SCTP) != 0)
528 		sctp = 1;
529 	else
530 		sctp = 0;
531 
532 	if (status & E1000_RXD_STAT_IPCS) {
533 		/* Did it pass? */
534 		if (!(errors & E1000_RXD_ERR_IPE)) {
535 			/* IP Checksum Good */
536 			ri->iri_csum_flags = CSUM_IP_CHECKED;
537 			ri->iri_csum_flags |= CSUM_IP_VALID;
538 		} else
539 			ri->iri_csum_flags = 0;
540 	}
541 
542 	if (status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
543 		u64 type = (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
544 		if (sctp) /* reassign */
545 			type = CSUM_SCTP_VALID;
546 		/* Did it pass? */
547 		if (!(errors & E1000_RXD_ERR_TCPE)) {
548 			ri->iri_csum_flags |= type;
549 			if (sctp == 0)
550 				ri->iri_csum_data = htons(0xffff);
551 		}
552 	}
553 	return;
554 }
555 
556 /********************************************************************
557  *
558  *  Parse the packet type to determine the appropriate hash
559  *
560  ******************************************************************/
561 static int
562 igb_determine_rsstype(u16 pkt_info)
563 {
564 	switch (pkt_info & E1000_RXDADV_RSSTYPE_MASK) {
565 	case E1000_RXDADV_RSSTYPE_IPV4_TCP:
566 		return M_HASHTYPE_RSS_TCP_IPV4;
567 	case E1000_RXDADV_RSSTYPE_IPV4:
568 		return M_HASHTYPE_RSS_IPV4;
569 	case E1000_RXDADV_RSSTYPE_IPV6_TCP:
570 		return M_HASHTYPE_RSS_TCP_IPV6;
571 	case E1000_RXDADV_RSSTYPE_IPV6_EX:
572 		return M_HASHTYPE_RSS_IPV6_EX;
573 	case E1000_RXDADV_RSSTYPE_IPV6:
574 		return M_HASHTYPE_RSS_IPV6;
575 	case E1000_RXDADV_RSSTYPE_IPV6_TCP_EX:
576 		return M_HASHTYPE_RSS_TCP_IPV6_EX;
577 	default:
578 		return M_HASHTYPE_OPAQUE;
579 	}
580 }
581