xref: /freebsd/sys/dev/e1000/if_em.c (revision f2b7bf8afcfd630e0fbd8417f1ce974de79feaf0)
1 /*-
2  * Copyright (c) 2016 Matt Macy <mmacy@nextbsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /* $FreeBSD$ */
28 #include "if_em.h"
29 #include <sys/sbuf.h>
30 #include <machine/_inttypes.h>
31 
32 #define em_mac_min e1000_82547
33 #define igb_mac_min e1000_82575
34 
35 /*********************************************************************
36  *  Driver version:
37  *********************************************************************/
38 char em_driver_version[] = "7.6.1-k";
39 
40 /*********************************************************************
41  *  PCI Device ID Table
42  *
43  *  Used by probe to select devices to load on
44  *  Last field stores an index into e1000_strings
45  *  Last entry must be all 0s
46  *
47  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
48  *********************************************************************/
49 
50 static pci_vendor_info_t em_vendor_info_array[] =
51 {
52 	/* Intel(R) PRO/1000 Network Connection - Legacy em*/
53 	PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) PRO/1000 Network Connection"),
54 	PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) PRO/1000 Network Connection"),
55 	PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) PRO/1000 Network Connection"),
56 	PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) PRO/1000 Network Connection"),
57 	PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) PRO/1000 Network Connection"),
58 
59 	PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) PRO/1000 Network Connection"),
60 	PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) PRO/1000 Network Connection"),
61 	PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) PRO/1000 Network Connection"),
62 	PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
63 	PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) PRO/1000 Network Connection"),
64 	PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) PRO/1000 Network Connection"),
65 	PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
66 
67 	PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) PRO/1000 Network Connection"),
68 
69 	PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) PRO/1000 Network Connection"),
70 	PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
71 
72 	PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
73 	PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
74 	PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
75 	PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) PRO/1000 Network Connection"),
76 
77 	PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) PRO/1000 Network Connection"),
78 	PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) PRO/1000 Network Connection"),
79 	PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) PRO/1000 Network Connection"),
80 	PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) PRO/1000 Network Connection"),
81 	PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) PRO/1000 Network Connection"),
82 
83 	PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
84 	PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
85 	PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
86 	PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) PRO/1000 Network Connection"),
87 	PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) PRO/1000 Network Connection"),
88 	PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) PRO/1000 Network Connection"),
89 	PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) PRO/1000 Network Connection"),
90 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
91 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) PRO/1000 Network Connection"),
92 
93 	PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) PRO/1000 Network Connection"),
94 	PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
95 	PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) PRO/1000 Network Connection"),
96 
97 	/* Intel(R) PRO/1000 Network Connection - em */
98 	PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
99 	PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
100 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 Network Connection"),
101 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 Network Connection"),
102 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 Network Connection"),
103 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
104 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 Network Connection"),
105 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 Network Connection"),
106 	PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
107 	PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 Network Connection"),
108 	PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
109 	PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
110 	PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 Network Connection"),
111 	PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 Network Connection"),
112 	PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 Network Connection"),
113 	PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 Network Connection"),
114 	PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) PRO/1000 Network Connection"),
115 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) PRO/1000 Network Connection"),
116 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) PRO/1000 Network Connection"),
117 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) PRO/1000 Network Connection"),
118 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) PRO/1000 Network Connection"),
119 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
120 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
121 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) PRO/1000 Network Connection"),
122 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) PRO/1000 Network Connection"),
123 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
124 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) PRO/1000 Network Connection"),
125 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) PRO/1000 Network Connection"),
126 	PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) PRO/1000 Network Connection"),
127 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
128 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
129 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) PRO/1000 Network Connection"),
130 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) PRO/1000 Network Connection"),
131 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) PRO/1000 Network Connection"),
132 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) PRO/1000 Network Connection"),
133 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
134 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) PRO/1000 Network Connection"),
135 	PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) PRO/1000 Network Connection"),
136 	PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) PRO/1000 Network Connection"),
137 	PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) PRO/1000 Network Connection"),
138 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) PRO/1000 Network Connection"),
139 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) PRO/1000 Network Connection"),
140 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) PRO/1000 Network Connection"),
141 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) PRO/1000 Network Connection"),
142 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) PRO/1000 Network Connection"),
143 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) PRO/1000 Network Connection"),
144 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) PRO/1000 Network Connection"),
145 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) PRO/1000 Network Connection"),
146 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) PRO/1000 Network Connection"),
147 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) PRO/1000 Network Connection"),
148 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) PRO/1000 Network Connection"),
149 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) PRO/1000 Network Connection"),
150 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) PRO/1000 Network Connection"),
151 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) PRO/1000 Network Connection"),
152 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) PRO/1000 Network Connection"),
153 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) PRO/1000 Network Connection"),
154 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) PRO/1000 Network Connection"),
155 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) PRO/1000 Network Connection"),
156 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) PRO/1000 Network Connection"),
157 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) PRO/1000 Network Connection"),
158 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) PRO/1000 Network Connection"),
159 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) PRO/1000 Network Connection"),
160 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) PRO/1000 Network Connection"),
161 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) PRO/1000 Network Connection"),
162 	PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) PRO/1000 Network Connection"),
163 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) PRO/1000 Network Connection"),
164 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) PRO/1000 Network Connection"),
165 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) PRO/1000 Network Connection"),
166 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) PRO/1000 Network Connection"),
167 	/* required last entry */
168 	PVID_END
169 };
170 
171 static pci_vendor_info_t igb_vendor_info_array[] =
172 {
173 	/* Intel(R) PRO/1000 Network Connection - igb */
174 	PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
175 	PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
176 	PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
177 	PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 PCI-Express Network Driver"),
178 	PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
179 	PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
180 	PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
181 	PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
182 	PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 PCI-Express Network Driver"),
183 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
184 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 PCI-Express Network Driver"),
185 	PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
186 	PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
187 	PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
188 	PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
189 	PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
190 	PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) PRO/1000 PCI-Express Network Driver"),
191 	PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
192 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
193 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
194 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) PRO/1000 PCI-Express Network Driver"),
195 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) PRO/1000 PCI-Express Network Driver"),
196 	PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
197 	PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
198 	PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
199 	PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
200 	PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
201 	PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
202 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) PRO/1000 PCI-Express Network Driver"),
203 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) PRO/1000 PCI-Express Network Driver"),
204 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
205 	PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
206 	PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
207 	PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
208 	PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
209 	PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
210 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
211 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
212 	PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
213 	/* required last entry */
214 	PVID_END
215 };
216 
217 /*********************************************************************
218  *  Function prototypes
219  *********************************************************************/
220 static void	*em_register(device_t dev);
221 static void	*igb_register(device_t dev);
222 static int	em_if_attach_pre(if_ctx_t ctx);
223 static int	em_if_attach_post(if_ctx_t ctx);
224 static int	em_if_detach(if_ctx_t ctx);
225 static int	em_if_shutdown(if_ctx_t ctx);
226 static int	em_if_suspend(if_ctx_t ctx);
227 static int	em_if_resume(if_ctx_t ctx);
228 
229 static int	em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets);
230 static int	em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets);
231 static void	em_if_queues_free(if_ctx_t ctx);
232 
233 static uint64_t	em_if_get_counter(if_ctx_t, ift_counter);
234 static void	em_if_init(if_ctx_t ctx);
235 static void	em_if_stop(if_ctx_t ctx);
236 static void	em_if_media_status(if_ctx_t, struct ifmediareq *);
237 static int	em_if_media_change(if_ctx_t ctx);
238 static int	em_if_mtu_set(if_ctx_t ctx, uint32_t mtu);
239 static void	em_if_timer(if_ctx_t ctx, uint16_t qid);
240 static void	em_if_vlan_register(if_ctx_t ctx, u16 vtag);
241 static void	em_if_vlan_unregister(if_ctx_t ctx, u16 vtag);
242 
243 static void	em_identify_hardware(if_ctx_t ctx);
244 static int	em_allocate_pci_resources(if_ctx_t ctx);
245 static void	em_free_pci_resources(if_ctx_t ctx);
246 static void	em_reset(if_ctx_t ctx);
247 static int	em_setup_interface(if_ctx_t ctx);
248 static int	em_setup_msix(if_ctx_t ctx);
249 
250 static void	em_initialize_transmit_unit(if_ctx_t ctx);
251 static void	em_initialize_receive_unit(if_ctx_t ctx);
252 
253 static void	em_if_enable_intr(if_ctx_t ctx);
254 static void	em_if_disable_intr(if_ctx_t ctx);
255 static int	em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
256 static int	em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
257 static void	em_if_multi_set(if_ctx_t ctx);
258 static void	em_if_update_admin_status(if_ctx_t ctx);
259 static void	em_if_debug(if_ctx_t ctx);
260 static void	em_update_stats_counters(struct adapter *);
261 static void	em_add_hw_stats(struct adapter *adapter);
262 static int	em_if_set_promisc(if_ctx_t ctx, int flags);
263 static void	em_setup_vlan_hw_support(struct adapter *);
264 static int	em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
265 static void	em_print_nvm_info(struct adapter *);
266 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
267 static int	em_get_rs(SYSCTL_HANDLER_ARGS);
268 static void	em_print_debug_info(struct adapter *);
269 static int 	em_is_valid_ether_addr(u8 *);
270 static int	em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
271 static void	em_add_int_delay_sysctl(struct adapter *, const char *,
272 		    const char *, struct em_int_delay_info *, int, int);
273 /* Management and WOL Support */
274 static void	em_init_manageability(struct adapter *);
275 static void	em_release_manageability(struct adapter *);
276 static void	em_get_hw_control(struct adapter *);
277 static void	em_release_hw_control(struct adapter *);
278 static void	em_get_wakeup(if_ctx_t ctx);
279 static void	em_enable_wakeup(if_ctx_t ctx);
280 static int	em_enable_phy_wakeup(struct adapter *);
281 static void	em_disable_aspm(struct adapter *);
282 
283 int		em_intr(void *arg);
284 static void	em_disable_promisc(if_ctx_t ctx);
285 
286 /* MSIX handlers */
287 static int	em_if_msix_intr_assign(if_ctx_t, int);
288 static int	em_msix_link(void *);
289 static void	em_handle_link(void *context);
290 
291 static void	em_enable_vectors_82574(if_ctx_t);
292 
293 static int	em_set_flowcntl(SYSCTL_HANDLER_ARGS);
294 static int	em_sysctl_eee(SYSCTL_HANDLER_ARGS);
295 static void	em_if_led_func(if_ctx_t ctx, int onoff);
296 
297 static int	em_get_regs(SYSCTL_HANDLER_ARGS);
298 
299 static void	lem_smartspeed(struct adapter *adapter);
300 static void	igb_configure_queues(struct adapter *adapter);
301 
302 
303 /*********************************************************************
304  *  FreeBSD Device Interface Entry Points
305  *********************************************************************/
306 static device_method_t em_methods[] = {
307 	/* Device interface */
308 	DEVMETHOD(device_register, em_register),
309 	DEVMETHOD(device_probe, iflib_device_probe),
310 	DEVMETHOD(device_attach, iflib_device_attach),
311 	DEVMETHOD(device_detach, iflib_device_detach),
312 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
313 	DEVMETHOD(device_suspend, iflib_device_suspend),
314 	DEVMETHOD(device_resume, iflib_device_resume),
315 	DEVMETHOD_END
316 };
317 
318 static device_method_t igb_methods[] = {
319 	/* Device interface */
320 	DEVMETHOD(device_register, igb_register),
321 	DEVMETHOD(device_probe, iflib_device_probe),
322 	DEVMETHOD(device_attach, iflib_device_attach),
323 	DEVMETHOD(device_detach, iflib_device_detach),
324 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
325 	DEVMETHOD(device_suspend, iflib_device_suspend),
326 	DEVMETHOD(device_resume, iflib_device_resume),
327 	DEVMETHOD_END
328 };
329 
330 
331 static driver_t em_driver = {
332 	"em", em_methods, sizeof(struct adapter),
333 };
334 
335 static devclass_t em_devclass;
336 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
337 
338 MODULE_DEPEND(em, pci, 1, 1, 1);
339 MODULE_DEPEND(em, ether, 1, 1, 1);
340 MODULE_DEPEND(em, iflib, 1, 1, 1);
341 
342 static driver_t igb_driver = {
343 	"igb", igb_methods, sizeof(struct adapter),
344 };
345 
346 static devclass_t igb_devclass;
347 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
348 
349 MODULE_DEPEND(igb, pci, 1, 1, 1);
350 MODULE_DEPEND(igb, ether, 1, 1, 1);
351 MODULE_DEPEND(igb, iflib, 1, 1, 1);
352 
353 
354 static device_method_t em_if_methods[] = {
355 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
356 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
357 	DEVMETHOD(ifdi_detach, em_if_detach),
358 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
359 	DEVMETHOD(ifdi_suspend, em_if_suspend),
360 	DEVMETHOD(ifdi_resume, em_if_resume),
361 	DEVMETHOD(ifdi_init, em_if_init),
362 	DEVMETHOD(ifdi_stop, em_if_stop),
363 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
364 	DEVMETHOD(ifdi_intr_enable, em_if_enable_intr),
365 	DEVMETHOD(ifdi_intr_disable, em_if_disable_intr),
366 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
367 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
368 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
369 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
370 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
371 	DEVMETHOD(ifdi_media_status, em_if_media_status),
372 	DEVMETHOD(ifdi_media_change, em_if_media_change),
373 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
374 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
375 	DEVMETHOD(ifdi_timer, em_if_timer),
376 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
377 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
378 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
379 	DEVMETHOD(ifdi_led_func, em_if_led_func),
380 	DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
381 	DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
382 	DEVMETHOD(ifdi_debug, em_if_debug),
383 	DEVMETHOD_END
384 };
385 
386 /*
387  * note that if (adapter->msix_mem) is replaced by:
388  * if (adapter->intr_type == IFLIB_INTR_MSIX)
389  */
390 static driver_t em_if_driver = {
391 	"em_if", em_if_methods, sizeof(struct adapter)
392 };
393 
394 /*********************************************************************
395  *  Tunable default values.
396  *********************************************************************/
397 
398 #define EM_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
399 #define EM_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
400 #define M_TSO_LEN			66
401 
402 #define MAX_INTS_PER_SEC	8000
403 #define DEFAULT_ITR		(1000000000/(MAX_INTS_PER_SEC * 256))
404 
405 /* Allow common code without TSO */
406 #ifndef CSUM_TSO
407 #define CSUM_TSO	0
408 #endif
409 
410 #define TSO_WORKAROUND	4
411 
412 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD, 0, "EM driver parameters");
413 
414 static int em_disable_crc_stripping = 0;
415 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
416     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
417 
418 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
419 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
420 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
421     0, "Default transmit interrupt delay in usecs");
422 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
423     0, "Default receive interrupt delay in usecs");
424 
425 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
426 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
427 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
428     &em_tx_abs_int_delay_dflt, 0,
429     "Default transmit interrupt delay limit in usecs");
430 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
431     &em_rx_abs_int_delay_dflt, 0,
432     "Default receive interrupt delay limit in usecs");
433 
434 static int em_smart_pwr_down = FALSE;
435 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
436     0, "Set to true to leave smart power down enabled on newer adapters");
437 
438 /* Controls whether promiscuous also shows bad packets */
439 static int em_debug_sbp = TRUE;
440 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
441     "Show bad packets in promiscuous mode");
442 
443 /* How many packets rxeof tries to clean at a time */
444 static int em_rx_process_limit = 100;
445 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
446     &em_rx_process_limit, 0,
447     "Maximum number of received packets to process "
448     "at a time, -1 means unlimited");
449 
450 /* Energy efficient ethernet - default to OFF */
451 static int eee_setting = 1;
452 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
453     "Enable Energy Efficient Ethernet");
454 
455 /*
456 ** Tuneable Interrupt rate
457 */
458 static int em_max_interrupt_rate = 8000;
459 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
460     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
461 
462 
463 
464 /* Global used in WOL setup with multiport cards */
465 static int global_quad_port_a = 0;
466 
467 extern struct if_txrx igb_txrx;
468 extern struct if_txrx em_txrx;
469 extern struct if_txrx lem_txrx;
470 
471 static struct if_shared_ctx em_sctx_init = {
472 	.isc_magic = IFLIB_MAGIC,
473 	.isc_q_align = PAGE_SIZE,
474 	.isc_tx_maxsize = EM_TSO_SIZE,
475 	.isc_tx_maxsegsize = PAGE_SIZE,
476 	.isc_rx_maxsize = MJUM9BYTES,
477 	.isc_rx_nsegments = 1,
478 	.isc_rx_maxsegsize = MJUM9BYTES,
479 	.isc_nfl = 1,
480 	.isc_nrxqs = 1,
481 	.isc_ntxqs = 1,
482 	.isc_admin_intrcnt = 1,
483 	.isc_vendor_info = em_vendor_info_array,
484 	.isc_driver_version = em_driver_version,
485 	.isc_driver = &em_if_driver,
486 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP,
487 
488 	.isc_nrxd_min = {EM_MIN_RXD},
489 	.isc_ntxd_min = {EM_MIN_TXD},
490 	.isc_nrxd_max = {EM_MAX_RXD},
491 	.isc_ntxd_max = {EM_MAX_TXD},
492 	.isc_nrxd_default = {EM_DEFAULT_RXD},
493 	.isc_ntxd_default = {EM_DEFAULT_TXD},
494 };
495 
496 if_shared_ctx_t em_sctx = &em_sctx_init;
497 
498 
499 static struct if_shared_ctx igb_sctx_init = {
500 	.isc_magic = IFLIB_MAGIC,
501 	.isc_q_align = PAGE_SIZE,
502 	.isc_tx_maxsize = EM_TSO_SIZE,
503 	.isc_tx_maxsegsize = PAGE_SIZE,
504 	.isc_rx_maxsize = MJUM9BYTES,
505 	.isc_rx_nsegments = 1,
506 	.isc_rx_maxsegsize = MJUM9BYTES,
507 	.isc_nfl = 1,
508 	.isc_nrxqs = 1,
509 	.isc_ntxqs = 1,
510 	.isc_admin_intrcnt = 1,
511 	.isc_vendor_info = igb_vendor_info_array,
512 	.isc_driver_version = em_driver_version,
513 	.isc_driver = &em_if_driver,
514 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP,
515 
516 	.isc_nrxd_min = {EM_MIN_RXD},
517 	.isc_ntxd_min = {EM_MIN_TXD},
518 	.isc_nrxd_max = {EM_MAX_RXD},
519 	.isc_ntxd_max = {EM_MAX_TXD},
520 	.isc_nrxd_default = {EM_DEFAULT_RXD},
521 	.isc_ntxd_default = {EM_DEFAULT_TXD},
522 };
523 
524 if_shared_ctx_t igb_sctx = &igb_sctx_init;
525 
526 /*****************************************************************
527  *
528  * Dump Registers
529  *
530  ****************************************************************/
531 #define IGB_REGS_LEN 739
532 
533 static int em_get_regs(SYSCTL_HANDLER_ARGS)
534 {
535 	struct adapter *adapter = (struct adapter *)arg1;
536 	struct e1000_hw *hw = &adapter->hw;
537 
538 	struct sbuf *sb;
539 	u32 *regs_buff = (u32 *)malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_NOWAIT);
540 	int rc;
541 
542 	memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
543 
544 	rc = sysctl_wire_old_buffer(req, 0);
545 	MPASS(rc == 0);
546 	if (rc != 0)
547 		return (rc);
548 
549 	sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
550 	MPASS(sb != NULL);
551 	if (sb == NULL)
552 		return (ENOMEM);
553 
554 	/* General Registers */
555 	regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
556 	regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
557 	regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
558 	regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
559 	regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
560 	regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
561 	regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
562 	regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
563 	regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
564 	regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
565 	regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
566 	regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
567 	regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
568 	regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
569 	regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
570 	regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
571 	regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
572 	regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
573 	regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
574 	regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
575 	regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
576 	regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
577 
578 	sbuf_printf(sb, "General Registers\n");
579 	sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
580 	sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
581 	sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]);
582 
583 	sbuf_printf(sb, "Interrupt Registers\n");
584 	sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
585 
586 	sbuf_printf(sb, "RX Registers\n");
587 	sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
588 	sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
589 	sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
590 	sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
591 	sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
592 	sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
593 	sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
594 
595 	sbuf_printf(sb, "TX Registers\n");
596 	sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
597 	sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
598 	sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
599 	sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
600 	sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
601 	sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
602 	sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
603 	sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
604 	sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
605 	sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
606 	sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
607 
608 #ifdef DUMP_DESCS
609 	{
610 		if_softc_ctx_t scctx = adapter->shared;
611 		struct rx_ring *rxr = &rx_que->rxr;
612 		struct tx_ring *txr = &tx_que->txr;
613 		int ntxd = scctx->isc_ntxd[0];
614 		int nrxd = scctx->isc_nrxd[0];
615 		int j;
616 
617 	for (j = 0; j < nrxd; j++) {
618 		u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
619 		u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
620 		sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
621 	}
622 
623 	for (j = 0; j < min(ntxd, 256); j++) {
624 		unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
625 
626 		sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
627 			    j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
628 			    buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
629 
630 	}
631 	}
632 #endif
633 
634 	rc = sbuf_finish(sb);
635 	sbuf_delete(sb);
636 	return(rc);
637 }
638 
639 static void *
640 em_register(device_t dev)
641 {
642 	return (em_sctx);
643 }
644 
645 static void *
646 igb_register(device_t dev)
647 {
648 	return (igb_sctx);
649 }
650 
651 static int
652 em_set_num_queues(if_ctx_t ctx)
653 {
654 	struct adapter *adapter = iflib_get_softc(ctx);
655 	int maxqueues;
656 
657 	/* Sanity check based on HW */
658 	switch (adapter->hw.mac.type) {
659 	case e1000_82576:
660 	case e1000_82580:
661 	case e1000_i350:
662 	case e1000_i354:
663 		maxqueues = 8;
664 		break;
665 	case e1000_i210:
666 	case e1000_82575:
667 		maxqueues = 4;
668 		break;
669 	case e1000_i211:
670 	case e1000_82574:
671 		maxqueues = 2;
672 		break;
673 	default:
674 		maxqueues = 1;
675 		break;
676 	}
677 
678 	return (maxqueues);
679 }
680 
681 
682 #define EM_CAPS \
683 	IFCAP_TSO4 | IFCAP_TXCSUM | IFCAP_LRO | IFCAP_RXCSUM | IFCAP_VLAN_HWFILTER | IFCAP_WOL_MAGIC | \
684 	IFCAP_WOL_MCAST | IFCAP_WOL | IFCAP_VLAN_HWTSO | IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | \
685 	IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU;
686 
687 #define IGB_CAPS \
688 	IFCAP_TSO4 | IFCAP_TXCSUM | IFCAP_LRO | IFCAP_RXCSUM | IFCAP_VLAN_HWFILTER | IFCAP_WOL_MAGIC | \
689 	IFCAP_WOL_MCAST | IFCAP_WOL | IFCAP_VLAN_HWTSO | IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM | \
690 	IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU | IFCAP_TXCSUM_IPV6 | IFCAP_HWCSUM_IPV6 | IFCAP_JUMBO_MTU;
691 
692 /*********************************************************************
693  *  Device initialization routine
694  *
695  *  The attach entry point is called when the driver is being loaded.
696  *  This routine identifies the type of hardware, allocates all resources
697  *  and initializes the hardware.
698  *
699  *  return 0 on success, positive on failure
700  *********************************************************************/
701 
702 static int
703 em_if_attach_pre(if_ctx_t ctx)
704 {
705 	struct adapter *adapter;
706 	if_softc_ctx_t scctx;
707 	device_t dev;
708 	struct e1000_hw *hw;
709 	int error = 0;
710 
711 	INIT_DEBUGOUT("em_if_attach_pre begin");
712 	dev = iflib_get_dev(ctx);
713 	adapter = iflib_get_softc(ctx);
714 
715 	if (resource_disabled("em", device_get_unit(dev))) {
716 		device_printf(dev, "Disabled by device hint\n");
717 		return (ENXIO);
718 	}
719 
720 	adapter->ctx = ctx;
721 	adapter->dev = adapter->osdep.dev = dev;
722 	scctx = adapter->shared = iflib_get_softc_ctx(ctx);
723 	adapter->media = iflib_get_media(ctx);
724 	hw = &adapter->hw;
725 
726 	adapter->tx_process_limit = scctx->isc_ntxd[0];
727 
728 	/* SYSCTL stuff */
729 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
730 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
731 	    OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
732 	    em_sysctl_nvm_info, "I", "NVM Information");
733 
734 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
735 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
736 	    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
737 	    em_sysctl_debug_info, "I", "Debug Information");
738 
739 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
740 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
741 	    OID_AUTO, "fc", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
742 	    em_set_flowcntl, "I", "Flow Control");
743 
744 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
745 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
746 	    OID_AUTO, "reg_dump", CTLTYPE_STRING | CTLFLAG_RD, adapter, 0,
747 	    em_get_regs, "A", "Dump Registers");
748 
749 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
750 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
751 	    OID_AUTO, "rs_dump", CTLTYPE_INT | CTLFLAG_RW, adapter, 0,
752 	    em_get_rs, "I", "Dump RS indexes");
753 
754 	/* Determine hardware and mac info */
755 	em_identify_hardware(ctx);
756 
757 	/* Set isc_msix_bar */
758 	scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR);
759 	scctx->isc_tx_nsegments = EM_MAX_SCATTER;
760 	scctx->isc_tx_tso_segments_max = scctx->isc_tx_nsegments;
761 	scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
762 	scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
763 	scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
764 	device_printf(dev, "attach_pre capping queues at %d\n", scctx->isc_ntxqsets_max);
765 
766 	scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
767 
768 
769 	if (adapter->hw.mac.type >= igb_mac_min) {
770 		int try_second_bar;
771 
772 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
773 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
774 		scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
775 		scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
776 		scctx->isc_txrx = &igb_txrx;
777 		scctx->isc_capenable = IGB_CAPS;
778 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO | CSUM_IP6_TCP \
779 			| CSUM_IP6_UDP | CSUM_IP6_TCP;
780 		if (adapter->hw.mac.type != e1000_82575)
781 			scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
782 
783 		/*
784 		** Some new devices, as with ixgbe, now may
785 		** use a different BAR, so we need to keep
786 		** track of which is used.
787 		*/
788 		try_second_bar = pci_read_config(dev, scctx->isc_msix_bar, 4);
789 		if (try_second_bar == 0)
790 			scctx->isc_msix_bar += 4;
791 
792 	} else if (adapter->hw.mac.type >= em_mac_min) {
793 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
794 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
795 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
796 		scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
797 		scctx->isc_txrx = &em_txrx;
798 		scctx->isc_capenable = EM_CAPS;
799 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
800 	} else {
801 		scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
802 		scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
803 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
804 		scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
805 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
806 		scctx->isc_txrx = &lem_txrx;
807 		scctx->isc_capenable = EM_CAPS;
808 		if (adapter->hw.mac.type < e1000_82543)
809 			scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM);
810 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
811 		scctx->isc_msix_bar = 0;
812 	}
813 
814 	/* Setup PCI resources */
815 	if (em_allocate_pci_resources(ctx)) {
816 		device_printf(dev, "Allocation of PCI resources failed\n");
817 		error = ENXIO;
818 		goto err_pci;
819 	}
820 
821 	/*
822 	** For ICH8 and family we need to
823 	** map the flash memory, and this
824 	** must happen after the MAC is
825 	** identified
826 	*/
827 	if ((hw->mac.type == e1000_ich8lan) ||
828 	    (hw->mac.type == e1000_ich9lan) ||
829 	    (hw->mac.type == e1000_ich10lan) ||
830 	    (hw->mac.type == e1000_pchlan) ||
831 	    (hw->mac.type == e1000_pch2lan) ||
832 	    (hw->mac.type == e1000_pch_lpt)) {
833 		int rid = EM_BAR_TYPE_FLASH;
834 		adapter->flash = bus_alloc_resource_any(dev,
835 		    SYS_RES_MEMORY, &rid, RF_ACTIVE);
836 		if (adapter->flash == NULL) {
837 			device_printf(dev, "Mapping of Flash failed\n");
838 			error = ENXIO;
839 			goto err_pci;
840 		}
841 		/* This is used in the shared code */
842 		hw->flash_address = (u8 *)adapter->flash;
843 		adapter->osdep.flash_bus_space_tag =
844 		    rman_get_bustag(adapter->flash);
845 		adapter->osdep.flash_bus_space_handle =
846 		    rman_get_bushandle(adapter->flash);
847 	}
848 	/*
849 	** In the new SPT device flash is not  a
850 	** separate BAR, rather it is also in BAR0,
851 	** so use the same tag and an offset handle for the
852 	** FLASH read/write macros in the shared code.
853 	*/
854 	else if (hw->mac.type == e1000_pch_spt) {
855 		adapter->osdep.flash_bus_space_tag =
856 		    adapter->osdep.mem_bus_space_tag;
857 		adapter->osdep.flash_bus_space_handle =
858 		    adapter->osdep.mem_bus_space_handle
859 		    + E1000_FLASH_BASE_ADDR;
860 	}
861 
862 	/* Do Shared Code initialization */
863 	error = e1000_setup_init_funcs(hw, TRUE);
864 	if (error) {
865 		device_printf(dev, "Setup of Shared code failed, error %d\n",
866 		    error);
867 		error = ENXIO;
868 		goto err_pci;
869 	}
870 
871 	em_setup_msix(ctx);
872 	e1000_get_bus_info(hw);
873 
874 	/* Set up some sysctls for the tunable interrupt delays */
875 	em_add_int_delay_sysctl(adapter, "rx_int_delay",
876 	    "receive interrupt delay in usecs", &adapter->rx_int_delay,
877 	    E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
878 	em_add_int_delay_sysctl(adapter, "tx_int_delay",
879 	    "transmit interrupt delay in usecs", &adapter->tx_int_delay,
880 	    E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
881 	em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
882 	    "receive interrupt delay limit in usecs",
883 	    &adapter->rx_abs_int_delay,
884 	    E1000_REGISTER(hw, E1000_RADV),
885 	    em_rx_abs_int_delay_dflt);
886 	em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
887 	    "transmit interrupt delay limit in usecs",
888 	    &adapter->tx_abs_int_delay,
889 	    E1000_REGISTER(hw, E1000_TADV),
890 	    em_tx_abs_int_delay_dflt);
891 	em_add_int_delay_sysctl(adapter, "itr",
892 	    "interrupt delay limit in usecs/4",
893 	    &adapter->tx_itr,
894 	    E1000_REGISTER(hw, E1000_ITR),
895 	    DEFAULT_ITR);
896 
897 	hw->mac.autoneg = DO_AUTO_NEG;
898 	hw->phy.autoneg_wait_to_complete = FALSE;
899 	hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
900 
901 	if (adapter->hw.mac.type < em_mac_min) {
902 		e1000_init_script_state_82541(&adapter->hw, TRUE);
903 		e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
904 	}
905 	/* Copper options */
906 	if (hw->phy.media_type == e1000_media_type_copper) {
907 		hw->phy.mdix = AUTO_ALL_MODES;
908 		hw->phy.disable_polarity_correction = FALSE;
909 		hw->phy.ms_type = EM_MASTER_SLAVE;
910 	}
911 
912 	/*
913 	 * Set the frame limits assuming
914 	 * standard ethernet sized frames.
915 	 */
916 	scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
917 	    ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
918 
919 	/*
920 	 * This controls when hardware reports transmit completion
921 	 * status.
922 	 */
923 	hw->mac.report_tx_early = 1;
924 
925 	/* Allocate multicast array memory. */
926 	adapter->mta = malloc(sizeof(u8) * ETH_ADDR_LEN *
927 	    MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
928 	if (adapter->mta == NULL) {
929 		device_printf(dev, "Can not allocate multicast setup array\n");
930 		error = ENOMEM;
931 		goto err_late;
932 	}
933 
934 	/* Check SOL/IDER usage */
935 	if (e1000_check_reset_block(hw))
936 		device_printf(dev, "PHY reset is blocked"
937 			      " due to SOL/IDER session.\n");
938 
939 	/* Sysctl for setting Energy Efficient Ethernet */
940 	hw->dev_spec.ich8lan.eee_disable = eee_setting;
941 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
942 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
943 	    OID_AUTO, "eee_control", CTLTYPE_INT|CTLFLAG_RW,
944 	    adapter, 0, em_sysctl_eee, "I",
945 	    "Disable Energy Efficient Ethernet");
946 
947 	/*
948 	** Start from a known state, this is
949 	** important in reading the nvm and
950 	** mac from that.
951 	*/
952 	e1000_reset_hw(hw);
953 
954 	/* Make sure we have a good EEPROM before we read from it */
955 	if (e1000_validate_nvm_checksum(hw) < 0) {
956 		/*
957 		** Some PCI-E parts fail the first check due to
958 		** the link being in sleep state, call it again,
959 		** if it fails a second time its a real issue.
960 		*/
961 		if (e1000_validate_nvm_checksum(hw) < 0) {
962 			device_printf(dev,
963 			    "The EEPROM Checksum Is Not Valid\n");
964 			error = EIO;
965 			goto err_late;
966 		}
967 	}
968 
969 	/* Copy the permanent MAC address out of the EEPROM */
970 	if (e1000_read_mac_addr(hw) < 0) {
971 		device_printf(dev, "EEPROM read error while reading MAC"
972 			      " address\n");
973 		error = EIO;
974 		goto err_late;
975 	}
976 
977 	if (!em_is_valid_ether_addr(hw->mac.addr)) {
978 		device_printf(dev, "Invalid MAC address\n");
979 		error = EIO;
980 		goto err_late;
981 	}
982 
983 	/* Disable ULP support */
984 	e1000_disable_ulp_lpt_lp(hw, TRUE);
985 
986 	/*
987 	 * Get Wake-on-Lan and Management info for later use
988 	 */
989 	em_get_wakeup(ctx);
990 
991 	iflib_set_mac(ctx, hw->mac.addr);
992 
993 	return (0);
994 
995 err_late:
996 	em_release_hw_control(adapter);
997 err_pci:
998 	em_free_pci_resources(ctx);
999 	free(adapter->mta, M_DEVBUF);
1000 
1001 	return (error);
1002 }
1003 
1004 static int
1005 em_if_attach_post(if_ctx_t ctx)
1006 {
1007 	struct adapter *adapter = iflib_get_softc(ctx);
1008 	struct e1000_hw *hw = &adapter->hw;
1009 	int error = 0;
1010 
1011 	/* Setup OS specific network interface */
1012 	error = em_setup_interface(ctx);
1013 	if (error != 0) {
1014 		goto err_late;
1015 	}
1016 
1017 	em_reset(ctx);
1018 
1019 	/* Initialize statistics */
1020 	em_update_stats_counters(adapter);
1021 	hw->mac.get_link_status = 1;
1022 	em_if_update_admin_status(ctx);
1023 	em_add_hw_stats(adapter);
1024 
1025 	/* Non-AMT based hardware can now take control from firmware */
1026 	if (adapter->has_manage && !adapter->has_amt)
1027 		em_get_hw_control(adapter);
1028 
1029 	INIT_DEBUGOUT("em_if_attach_post: end");
1030 
1031 	return (error);
1032 
1033 err_late:
1034 	em_release_hw_control(adapter);
1035 	em_free_pci_resources(ctx);
1036 	em_if_queues_free(ctx);
1037 	free(adapter->mta, M_DEVBUF);
1038 
1039 	return (error);
1040 }
1041 
1042 /*********************************************************************
1043  *  Device removal routine
1044  *
1045  *  The detach entry point is called when the driver is being removed.
1046  *  This routine stops the adapter and deallocates all the resources
1047  *  that were allocated for driver operation.
1048  *
1049  *  return 0 on success, positive on failure
1050  *********************************************************************/
1051 
1052 static int
1053 em_if_detach(if_ctx_t ctx)
1054 {
1055 	struct adapter	*adapter = iflib_get_softc(ctx);
1056 
1057 	INIT_DEBUGOUT("em_detach: begin");
1058 
1059 	e1000_phy_hw_reset(&adapter->hw);
1060 
1061 	em_release_manageability(adapter);
1062 	em_release_hw_control(adapter);
1063 	em_free_pci_resources(ctx);
1064 
1065 	return (0);
1066 }
1067 
1068 /*********************************************************************
1069  *
1070  *  Shutdown entry point
1071  *
1072  **********************************************************************/
1073 
1074 static int
1075 em_if_shutdown(if_ctx_t ctx)
1076 {
1077 	return em_if_suspend(ctx);
1078 }
1079 
1080 /*
1081  * Suspend/resume device methods.
1082  */
1083 static int
1084 em_if_suspend(if_ctx_t ctx)
1085 {
1086 	struct adapter *adapter = iflib_get_softc(ctx);
1087 
1088 	em_release_manageability(adapter);
1089 	em_release_hw_control(adapter);
1090 	em_enable_wakeup(ctx);
1091 	return (0);
1092 }
1093 
1094 static int
1095 em_if_resume(if_ctx_t ctx)
1096 {
1097 	struct adapter *adapter = iflib_get_softc(ctx);
1098 
1099 	if (adapter->hw.mac.type == e1000_pch2lan)
1100 		e1000_resume_workarounds_pchlan(&adapter->hw);
1101 	em_if_init(ctx);
1102 	em_init_manageability(adapter);
1103 
1104 	return(0);
1105 }
1106 
1107 static int
1108 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1109 {
1110 	int max_frame_size;
1111 	struct adapter *adapter = iflib_get_softc(ctx);
1112 	if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1113 
1114 	 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1115 
1116 	switch (adapter->hw.mac.type) {
1117 	case e1000_82571:
1118 	case e1000_82572:
1119 	case e1000_ich9lan:
1120 	case e1000_ich10lan:
1121 	case e1000_pch2lan:
1122 	case e1000_pch_lpt:
1123 	case e1000_pch_spt:
1124 	case e1000_82574:
1125 	case e1000_82583:
1126 	case e1000_80003es2lan:
1127 		/* 9K Jumbo Frame size */
1128 		max_frame_size = 9234;
1129 		break;
1130 	case e1000_pchlan:
1131 		max_frame_size = 4096;
1132 		break;
1133 	case e1000_82542:
1134 	case e1000_ich8lan:
1135 		/* Adapters that do not support jumbo frames */
1136 		max_frame_size = ETHER_MAX_LEN;
1137 		break;
1138 	default:
1139 		if (adapter->hw.mac.type >= igb_mac_min)
1140 			max_frame_size = 9234;
1141 		else /* lem */
1142 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1143 	}
1144 	if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1145 		return (EINVAL);
1146 	}
1147 
1148 	scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
1149 	    mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1150 	return (0);
1151 }
1152 
1153 /*********************************************************************
1154  *  Init entry point
1155  *
1156  *  This routine is used in two ways. It is used by the stack as
1157  *  init entry point in network interface structure. It is also used
1158  *  by the driver as a hw/sw initialization routine to get to a
1159  *  consistent state.
1160  *
1161  *  return 0 on success, positive on failure
1162  **********************************************************************/
1163 
1164 static void
1165 em_if_init(if_ctx_t ctx)
1166 {
1167 	struct adapter *adapter = iflib_get_softc(ctx);
1168 	struct ifnet *ifp = iflib_get_ifp(ctx);
1169 	struct em_tx_queue *tx_que;
1170 	int i;
1171 	INIT_DEBUGOUT("em_if_init: begin");
1172 
1173 	/* Get the latest mac address, User can use a LAA */
1174 	bcopy(if_getlladdr(ifp), adapter->hw.mac.addr,
1175 	    ETHER_ADDR_LEN);
1176 
1177 	/* Put the address into the Receive Address Array */
1178 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1179 
1180 	/*
1181 	 * With the 82571 adapter, RAR[0] may be overwritten
1182 	 * when the other port is reset, we make a duplicate
1183 	 * in RAR[14] for that eventuality, this assures
1184 	 * the interface continues to function.
1185 	 */
1186 	if (adapter->hw.mac.type == e1000_82571) {
1187 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1188 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1189 		    E1000_RAR_ENTRIES - 1);
1190 	}
1191 
1192 
1193 	/* Initialize the hardware */
1194 	em_reset(ctx);
1195 	em_if_update_admin_status(ctx);
1196 
1197 	for (i = 0, tx_que = adapter->tx_queues; i < adapter->tx_num_queues; i++, tx_que++) {
1198 		struct tx_ring *txr = &tx_que->txr;
1199 
1200 		txr->tx_rs_cidx = txr->tx_rs_pidx = txr->tx_cidx_processed = 0;
1201 	}
1202 
1203 	/* Setup VLAN support, basic and offload if available */
1204 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1205 
1206 	/* Clear bad data from Rx FIFOs */
1207 	if (adapter->hw.mac.type >= igb_mac_min)
1208 		e1000_rx_fifo_flush_82575(&adapter->hw);
1209 
1210 	/* Configure for OS presence */
1211 	em_init_manageability(adapter);
1212 
1213 	/* Prepare transmit descriptors and buffers */
1214 	em_initialize_transmit_unit(ctx);
1215 
1216 	/* Setup Multicast table */
1217 	em_if_multi_set(ctx);
1218 
1219 	/*
1220 	 * Figure out the desired mbuf
1221 	 * pool for doing jumbos
1222 	 */
1223 	if (adapter->hw.mac.max_frame_size <= 2048)
1224 		adapter->rx_mbuf_sz = MCLBYTES;
1225 #ifndef CONTIGMALLOC_WORKS
1226 	else
1227 		adapter->rx_mbuf_sz = MJUMPAGESIZE;
1228 #else
1229 	else if (adapter->hw.mac.max_frame_size <= 4096)
1230 		adapter->rx_mbuf_sz = MJUMPAGESIZE;
1231 	else
1232 		adapter->rx_mbuf_sz = MJUM9BYTES;
1233 #endif
1234 	em_initialize_receive_unit(ctx);
1235 
1236 	/* Use real VLAN Filter support? */
1237 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
1238 		if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
1239 			/* Use real VLAN Filter support */
1240 			em_setup_vlan_hw_support(adapter);
1241 		else {
1242 			u32 ctrl;
1243 			ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1244 			ctrl |= E1000_CTRL_VME;
1245 			E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1246 		}
1247 	}
1248 
1249 	/* Don't lose promiscuous settings */
1250 	em_if_set_promisc(ctx, IFF_PROMISC);
1251 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1252 
1253 	/* MSI/X configuration for 82574 */
1254 	if (adapter->hw.mac.type == e1000_82574) {
1255 		int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1256 
1257 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1258 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1259 		/* Set the IVAR - interrupt vector routing. */
1260 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars);
1261 	} else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1262 		igb_configure_queues(adapter);
1263 
1264 	/* this clears any pending interrupts */
1265 	E1000_READ_REG(&adapter->hw, E1000_ICR);
1266 	E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
1267 
1268 	/* AMT based hardware can now take control from firmware */
1269 	if (adapter->has_manage && adapter->has_amt)
1270 		em_get_hw_control(adapter);
1271 
1272 	/* Set Energy Efficient Ethernet */
1273 	if (adapter->hw.mac.type >= igb_mac_min &&
1274 	    adapter->hw.phy.media_type == e1000_media_type_copper) {
1275 		if (adapter->hw.mac.type == e1000_i354)
1276 			e1000_set_eee_i354(&adapter->hw, TRUE, TRUE);
1277 		else
1278 			e1000_set_eee_i350(&adapter->hw, TRUE, TRUE);
1279 	}
1280 }
1281 
1282 /*********************************************************************
1283  *
1284  *  Fast Legacy/MSI Combined Interrupt Service routine
1285  *
1286  *********************************************************************/
1287 int
1288 em_intr(void *arg)
1289 {
1290 	struct adapter *adapter = arg;
1291 	if_ctx_t ctx = adapter->ctx;
1292 	u32 reg_icr;
1293 
1294 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1295 
1296 	if (adapter->intr_type != IFLIB_INTR_LEGACY)
1297 		goto skip_stray;
1298 	/* Hot eject? */
1299 	if (reg_icr == 0xffffffff)
1300 		return FILTER_STRAY;
1301 
1302 	/* Definitely not our interrupt. */
1303 	if (reg_icr == 0x0)
1304 		return FILTER_STRAY;
1305 
1306 	/*
1307 	 * Starting with the 82571 chip, bit 31 should be used to
1308 	 * determine whether the interrupt belongs to us.
1309 	 */
1310 	if (adapter->hw.mac.type >= e1000_82571 &&
1311 	    (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1312 		return FILTER_STRAY;
1313 
1314 skip_stray:
1315 	/* Link status change */
1316 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1317 		adapter->hw.mac.get_link_status = 1;
1318 		iflib_admin_intr_deferred(ctx);
1319 	}
1320 
1321 	if (reg_icr & E1000_ICR_RXO)
1322 		adapter->rx_overruns++;
1323 
1324 	return (FILTER_SCHEDULE_THREAD);
1325 }
1326 
1327 static void
1328 igb_rx_enable_queue(struct adapter *adapter, struct em_rx_queue *rxq)
1329 {
1330 	E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims);
1331 }
1332 
1333 static void
1334 em_rx_enable_queue(struct adapter *adapter, struct em_rx_queue *rxq)
1335 {
1336 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims);
1337 }
1338 
1339 static void
1340 igb_tx_enable_queue(struct adapter *adapter, struct em_tx_queue *txq)
1341 {
1342 	E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txq->eims);
1343 }
1344 
1345 static void
1346 em_tx_enable_queue(struct adapter *adapter, struct em_tx_queue *txq)
1347 {
1348 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, txq->eims);
1349 }
1350 
1351 static int
1352 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1353 {
1354 	struct adapter *adapter = iflib_get_softc(ctx);
1355 	struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1356 
1357 	if (adapter->hw.mac.type >= igb_mac_min)
1358 		igb_rx_enable_queue(adapter, rxq);
1359 	else
1360 		em_rx_enable_queue(adapter, rxq);
1361 	return (0);
1362 }
1363 
1364 static int
1365 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1366 {
1367 	struct adapter *adapter = iflib_get_softc(ctx);
1368 	struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1369 
1370 	if (adapter->hw.mac.type >= igb_mac_min)
1371 		igb_tx_enable_queue(adapter, txq);
1372 	else
1373 		em_tx_enable_queue(adapter, txq);
1374 	return (0);
1375 }
1376 
1377 /*********************************************************************
1378  *
1379  *  MSIX RX Interrupt Service routine
1380  *
1381  **********************************************************************/
1382 static int
1383 em_msix_que(void *arg)
1384 {
1385 	struct em_rx_queue *que = arg;
1386 
1387 	++que->irqs;
1388 
1389 	return (FILTER_SCHEDULE_THREAD);
1390 }
1391 
1392 /*********************************************************************
1393  *
1394  *  MSIX Link Fast Interrupt Service routine
1395  *
1396  **********************************************************************/
1397 static int
1398 em_msix_link(void *arg)
1399 {
1400 	struct adapter *adapter = arg;
1401 	u32 reg_icr;
1402 
1403 	++adapter->link_irq;
1404 	MPASS(adapter->hw.back != NULL);
1405 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1406 
1407 	if (reg_icr & E1000_ICR_RXO)
1408 		adapter->rx_overruns++;
1409 
1410 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1411 		em_handle_link(adapter->ctx);
1412 	} else {
1413 		E1000_WRITE_REG(&adapter->hw, E1000_IMS,
1414 				EM_MSIX_LINK | E1000_IMS_LSC);
1415 		if (adapter->hw.mac.type >= igb_mac_min)
1416 			E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
1417 	}
1418 
1419 	/*
1420 	 * Because we must read the ICR for this interrupt
1421 	 * it may clear other causes using autoclear, for
1422 	 * this reason we simply create a soft interrupt
1423 	 * for all these vectors.
1424 	 */
1425 	if (reg_icr && adapter->hw.mac.type < igb_mac_min) {
1426 		E1000_WRITE_REG(&adapter->hw,
1427 			E1000_ICS, adapter->ims);
1428 	}
1429 
1430 	return (FILTER_HANDLED);
1431 }
1432 
1433 static void
1434 em_handle_link(void *context)
1435 {
1436 	if_ctx_t ctx = context;
1437 	struct adapter *adapter = iflib_get_softc(ctx);
1438 
1439 	adapter->hw.mac.get_link_status = 1;
1440 	iflib_admin_intr_deferred(ctx);
1441 }
1442 
1443 
1444 /*********************************************************************
1445  *
1446  *  Media Ioctl callback
1447  *
1448  *  This routine is called whenever the user queries the status of
1449  *  the interface using ifconfig.
1450  *
1451  **********************************************************************/
1452 static void
1453 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1454 {
1455 	struct adapter *adapter = iflib_get_softc(ctx);
1456 	u_char fiber_type = IFM_1000_SX;
1457 
1458 	INIT_DEBUGOUT("em_if_media_status: begin");
1459 
1460 	iflib_admin_intr_deferred(ctx);
1461 
1462 	ifmr->ifm_status = IFM_AVALID;
1463 	ifmr->ifm_active = IFM_ETHER;
1464 
1465 	if (!adapter->link_active) {
1466 		return;
1467 	}
1468 
1469 	ifmr->ifm_status |= IFM_ACTIVE;
1470 
1471 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
1472 	    (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1473 		if (adapter->hw.mac.type == e1000_82545)
1474 			fiber_type = IFM_1000_LX;
1475 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1476 	} else {
1477 		switch (adapter->link_speed) {
1478 		case 10:
1479 			ifmr->ifm_active |= IFM_10_T;
1480 			break;
1481 		case 100:
1482 			ifmr->ifm_active |= IFM_100_TX;
1483 			break;
1484 		case 1000:
1485 			ifmr->ifm_active |= IFM_1000_T;
1486 			break;
1487 		}
1488 		if (adapter->link_duplex == FULL_DUPLEX)
1489 			ifmr->ifm_active |= IFM_FDX;
1490 		else
1491 			ifmr->ifm_active |= IFM_HDX;
1492 	}
1493 }
1494 
1495 /*********************************************************************
1496  *
1497  *  Media Ioctl callback
1498  *
1499  *  This routine is called when the user changes speed/duplex using
1500  *  media/mediopt option with ifconfig.
1501  *
1502  **********************************************************************/
1503 static int
1504 em_if_media_change(if_ctx_t ctx)
1505 {
1506 	struct adapter *adapter = iflib_get_softc(ctx);
1507 	struct ifmedia *ifm = iflib_get_media(ctx);
1508 
1509 	INIT_DEBUGOUT("em_if_media_change: begin");
1510 
1511 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1512 		return (EINVAL);
1513 
1514 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1515 	case IFM_AUTO:
1516 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1517 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1518 		break;
1519 	case IFM_1000_LX:
1520 	case IFM_1000_SX:
1521 	case IFM_1000_T:
1522 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1523 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1524 		break;
1525 	case IFM_100_TX:
1526 		adapter->hw.mac.autoneg = FALSE;
1527 		adapter->hw.phy.autoneg_advertised = 0;
1528 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1529 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1530 		else
1531 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1532 		break;
1533 	case IFM_10_T:
1534 		adapter->hw.mac.autoneg = FALSE;
1535 		adapter->hw.phy.autoneg_advertised = 0;
1536 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1537 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1538 		else
1539 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1540 		break;
1541 	default:
1542 		device_printf(adapter->dev, "Unsupported media type\n");
1543 	}
1544 
1545 	em_if_init(ctx);
1546 
1547 	return (0);
1548 }
1549 
1550 static int
1551 em_if_set_promisc(if_ctx_t ctx, int flags)
1552 {
1553 	struct adapter *adapter = iflib_get_softc(ctx);
1554 	u32 reg_rctl;
1555 
1556 	em_disable_promisc(ctx);
1557 
1558 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1559 
1560 	if (flags & IFF_PROMISC) {
1561 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1562 		/* Turn this on if you want to see bad packets */
1563 		if (em_debug_sbp)
1564 			reg_rctl |= E1000_RCTL_SBP;
1565 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1566 	} else if (flags & IFF_ALLMULTI) {
1567 		reg_rctl |= E1000_RCTL_MPE;
1568 		reg_rctl &= ~E1000_RCTL_UPE;
1569 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1570 	}
1571 	return (0);
1572 }
1573 
1574 static void
1575 em_disable_promisc(if_ctx_t ctx)
1576 {
1577 	struct adapter *adapter = iflib_get_softc(ctx);
1578 	struct ifnet *ifp = iflib_get_ifp(ctx);
1579 	u32 reg_rctl;
1580 	int mcnt = 0;
1581 
1582 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1583 	reg_rctl &= (~E1000_RCTL_UPE);
1584 	if (if_getflags(ifp) & IFF_ALLMULTI)
1585 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1586 	else
1587 		mcnt = if_multiaddr_count(ifp, MAX_NUM_MULTICAST_ADDRESSES);
1588 	/* Don't disable if in MAX groups */
1589 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1590 		reg_rctl &=  (~E1000_RCTL_MPE);
1591 	reg_rctl &=  (~E1000_RCTL_SBP);
1592 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1593 }
1594 
1595 
1596 /*********************************************************************
1597  *  Multicast Update
1598  *
1599  *  This routine is called whenever multicast address list is updated.
1600  *
1601  **********************************************************************/
1602 
1603 static void
1604 em_if_multi_set(if_ctx_t ctx)
1605 {
1606 	struct adapter *adapter = iflib_get_softc(ctx);
1607 	struct ifnet *ifp = iflib_get_ifp(ctx);
1608 	u32 reg_rctl = 0;
1609 	u8  *mta; /* Multicast array memory */
1610 	int mcnt = 0;
1611 
1612 	IOCTL_DEBUGOUT("em_set_multi: begin");
1613 
1614 	mta = adapter->mta;
1615 	bzero(mta, sizeof(u8) * ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1616 
1617 	if (adapter->hw.mac.type == e1000_82542 &&
1618 	    adapter->hw.revision_id == E1000_REVISION_2) {
1619 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1620 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1621 			e1000_pci_clear_mwi(&adapter->hw);
1622 		reg_rctl |= E1000_RCTL_RST;
1623 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1624 		msec_delay(5);
1625 	}
1626 
1627 	if_multiaddr_array(ifp, mta, &mcnt, MAX_NUM_MULTICAST_ADDRESSES);
1628 
1629 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1630 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1631 		reg_rctl |= E1000_RCTL_MPE;
1632 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1633 	} else
1634 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1635 
1636 	if (adapter->hw.mac.type == e1000_82542 &&
1637 	    adapter->hw.revision_id == E1000_REVISION_2) {
1638 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1639 		reg_rctl &= ~E1000_RCTL_RST;
1640 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1641 		msec_delay(5);
1642 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1643 			e1000_pci_set_mwi(&adapter->hw);
1644 	}
1645 }
1646 
1647 
1648 /*********************************************************************
1649  *  Timer routine
1650  *
1651  *  This routine checks for link status and updates statistics.
1652  *
1653  **********************************************************************/
1654 
1655 static void
1656 em_if_timer(if_ctx_t ctx, uint16_t qid)
1657 {
1658 	struct adapter *adapter = iflib_get_softc(ctx);
1659 	struct em_rx_queue *que;
1660 	int i;
1661 	int trigger = 0;
1662 
1663 	if (qid != 0)
1664 		return;
1665 
1666 	em_if_update_admin_status(ctx);
1667 	em_update_stats_counters(adapter);
1668 
1669 	/* Reset LAA into RAR[0] on 82571 */
1670 	if ((adapter->hw.mac.type == e1000_82571) &&
1671 	    e1000_get_laa_state_82571(&adapter->hw))
1672 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1673 
1674 	if (adapter->hw.mac.type < em_mac_min)
1675 		lem_smartspeed(adapter);
1676 
1677 	/* Mask to use in the irq trigger */
1678 	if (adapter->intr_type == IFLIB_INTR_MSIX) {
1679 		for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++)
1680 			trigger |= que->eims;
1681 	} else {
1682 		trigger = E1000_ICS_RXDMT0;
1683 	}
1684 }
1685 
1686 
1687 static void
1688 em_if_update_admin_status(if_ctx_t ctx)
1689 {
1690 	struct adapter *adapter = iflib_get_softc(ctx);
1691 	struct e1000_hw *hw = &adapter->hw;
1692 	struct ifnet *ifp = iflib_get_ifp(ctx);
1693 	device_t dev = iflib_get_dev(ctx);
1694 	u32 link_check = 0;
1695 
1696 	/* Get the cached link value or read phy for real */
1697 	switch (hw->phy.media_type) {
1698 	case e1000_media_type_copper:
1699 		if (hw->mac.get_link_status) {
1700 			if (hw->mac.type == e1000_pch_spt)
1701 				msec_delay(50);
1702 			/* Do the work to read phy */
1703 			e1000_check_for_link(hw);
1704 			link_check = !hw->mac.get_link_status;
1705 			if (link_check) /* ESB2 fix */
1706 				e1000_cfg_on_link_up(hw);
1707 		} else {
1708 			link_check = TRUE;
1709 		}
1710 		break;
1711 	case e1000_media_type_fiber:
1712 		e1000_check_for_link(hw);
1713 		link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1714 			    E1000_STATUS_LU);
1715 		break;
1716 	case e1000_media_type_internal_serdes:
1717 		e1000_check_for_link(hw);
1718 		link_check = adapter->hw.mac.serdes_has_link;
1719 		break;
1720 	default:
1721 	case e1000_media_type_unknown:
1722 		break;
1723 	}
1724 
1725 	/* Now check for a transition */
1726 	if (link_check && (adapter->link_active == 0)) {
1727 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
1728 		    &adapter->link_duplex);
1729 		/* Check if we must disable SPEED_MODE bit on PCI-E */
1730 		if ((adapter->link_speed != SPEED_1000) &&
1731 		    ((hw->mac.type == e1000_82571) ||
1732 		    (hw->mac.type == e1000_82572))) {
1733 			int tarc0;
1734 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1735 			tarc0 &= ~TARC_SPEED_MODE_BIT;
1736 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1737 		}
1738 		if (bootverbose)
1739 			device_printf(dev, "Link is up %d Mbps %s\n",
1740 			    adapter->link_speed,
1741 			    ((adapter->link_duplex == FULL_DUPLEX) ?
1742 			    "Full Duplex" : "Half Duplex"));
1743 		adapter->link_active = 1;
1744 		adapter->smartspeed = 0;
1745 		if_setbaudrate(ifp, adapter->link_speed * 1000000);
1746 		iflib_link_state_change(ctx, LINK_STATE_UP, ifp->if_baudrate);
1747 		printf("Link state changed to up\n");
1748 	} else if (!link_check && (adapter->link_active == 1)) {
1749 		if_setbaudrate(ifp, 0);
1750 		adapter->link_speed = 0;
1751 		adapter->link_duplex = 0;
1752 		if (bootverbose)
1753 			device_printf(dev, "Link is Down\n");
1754 		adapter->link_active = 0;
1755 		iflib_link_state_change(ctx, LINK_STATE_DOWN, ifp->if_baudrate);
1756 		printf("link state changed to down\n");
1757 	}
1758 
1759 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK | E1000_IMS_LSC);
1760 }
1761 
1762 /*********************************************************************
1763  *
1764  *  This routine disables all traffic on the adapter by issuing a
1765  *  global reset on the MAC and deallocates TX/RX buffers.
1766  *
1767  *  This routine should always be called with BOTH the CORE
1768  *  and TX locks.
1769  **********************************************************************/
1770 
1771 static void
1772 em_if_stop(if_ctx_t ctx)
1773 {
1774 	struct adapter *adapter = iflib_get_softc(ctx);
1775 
1776 	INIT_DEBUGOUT("em_stop: begin");
1777 
1778 	e1000_reset_hw(&adapter->hw);
1779 	if (adapter->hw.mac.type >= e1000_82544)
1780 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0);
1781 
1782 	e1000_led_off(&adapter->hw);
1783 	e1000_cleanup_led(&adapter->hw);
1784 }
1785 
1786 
1787 /*********************************************************************
1788  *
1789  *  Determine hardware revision.
1790  *
1791  **********************************************************************/
1792 static void
1793 em_identify_hardware(if_ctx_t ctx)
1794 {
1795 	device_t dev = iflib_get_dev(ctx);
1796 	struct adapter *adapter = iflib_get_softc(ctx);
1797 
1798 	/* Make sure our PCI config space has the necessary stuff set */
1799 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1800 
1801 	/* Save off the information about this board */
1802 	adapter->hw.vendor_id = pci_get_vendor(dev);
1803 	adapter->hw.device_id = pci_get_device(dev);
1804 	adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1805 	adapter->hw.subsystem_vendor_id =
1806 	    pci_read_config(dev, PCIR_SUBVEND_0, 2);
1807 	adapter->hw.subsystem_device_id =
1808 	    pci_read_config(dev, PCIR_SUBDEV_0, 2);
1809 
1810 	/* Do Shared Code Init and Setup */
1811 	if (e1000_set_mac_type(&adapter->hw)) {
1812 		device_printf(dev, "Setup init failure\n");
1813 		return;
1814 	}
1815 }
1816 
1817 static int
1818 em_allocate_pci_resources(if_ctx_t ctx)
1819 {
1820 	struct adapter *adapter = iflib_get_softc(ctx);
1821 	device_t dev = iflib_get_dev(ctx);
1822 	int rid, val;
1823 
1824 	rid = PCIR_BAR(0);
1825 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1826 	    &rid, RF_ACTIVE);
1827 	if (adapter->memory == NULL) {
1828 		device_printf(dev, "Unable to allocate bus resource: memory\n");
1829 		return (ENXIO);
1830 	}
1831 	adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->memory);
1832 	adapter->osdep.mem_bus_space_handle =
1833 	    rman_get_bushandle(adapter->memory);
1834 	adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
1835 
1836 	/* Only older adapters use IO mapping */
1837 	if (adapter->hw.mac.type < em_mac_min &&
1838 	    adapter->hw.mac.type > e1000_82543) {
1839 		/* Figure our where our IO BAR is ? */
1840 		for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1841 			val = pci_read_config(dev, rid, 4);
1842 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1843 				adapter->io_rid = rid;
1844 				break;
1845 			}
1846 			rid += 4;
1847 			/* check for 64bit BAR */
1848 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1849 				rid += 4;
1850 		}
1851 		if (rid >= PCIR_CIS) {
1852 			device_printf(dev, "Unable to locate IO BAR\n");
1853 			return (ENXIO);
1854 		}
1855 		adapter->ioport = bus_alloc_resource_any(dev,
1856 		    SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE);
1857 		if (adapter->ioport == NULL) {
1858 			device_printf(dev, "Unable to allocate bus resource: "
1859 			    "ioport\n");
1860 			return (ENXIO);
1861 		}
1862 		adapter->hw.io_base = 0;
1863 		adapter->osdep.io_bus_space_tag =
1864 		    rman_get_bustag(adapter->ioport);
1865 		adapter->osdep.io_bus_space_handle =
1866 		    rman_get_bushandle(adapter->ioport);
1867 	}
1868 
1869 	adapter->hw.back = &adapter->osdep;
1870 
1871 	return (0);
1872 }
1873 
1874 /*********************************************************************
1875  *
1876  *  Setup the MSIX Interrupt handlers
1877  *
1878  **********************************************************************/
1879 static int
1880 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
1881 {
1882 	struct adapter *adapter = iflib_get_softc(ctx);
1883 	struct em_rx_queue *rx_que = adapter->rx_queues;
1884 	struct em_tx_queue *tx_que = adapter->tx_queues;
1885 	int error, rid, i, vector = 0, rx_vectors;
1886 	char buf[16];
1887 
1888 	/* First set up ring resources */
1889 	for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) {
1890 		rid = vector + 1;
1891 		snprintf(buf, sizeof(buf), "rxq%d", i);
1892 		error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
1893 		if (error) {
1894 			device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
1895 			adapter->rx_num_queues = i + 1;
1896 			goto fail;
1897 		}
1898 
1899 		rx_que->msix =  vector;
1900 
1901 		/*
1902 		 * Set the bit to enable interrupt
1903 		 * in E1000_IMS -- bits 20 and 21
1904 		 * are for RX0 and RX1, note this has
1905 		 * NOTHING to do with the MSIX vector
1906 		 */
1907 		if (adapter->hw.mac.type == e1000_82574) {
1908 			rx_que->eims = 1 << (20 + i);
1909 			adapter->ims |= rx_que->eims;
1910 			adapter->ivars |= (8 | rx_que->msix) << (i * 4);
1911 		} else if (adapter->hw.mac.type == e1000_82575)
1912 			rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
1913 		else
1914 			rx_que->eims = 1 << vector;
1915 	}
1916 	rx_vectors = vector;
1917 
1918 	vector = 0;
1919 	for (i = 0; i < adapter->tx_num_queues; i++, tx_que++, vector++) {
1920 		rid = vector + 1;
1921 		snprintf(buf, sizeof(buf), "txq%d", i);
1922 		tx_que = &adapter->tx_queues[i];
1923 		iflib_softirq_alloc_generic(ctx, rid, IFLIB_INTR_TX, tx_que, tx_que->me, buf);
1924 
1925 		tx_que->msix = (vector % adapter->tx_num_queues);
1926 
1927 		/*
1928 		 * Set the bit to enable interrupt
1929 		 * in E1000_IMS -- bits 22 and 23
1930 		 * are for TX0 and TX1, note this has
1931 		 * NOTHING to do with the MSIX vector
1932 		 */
1933 		if (adapter->hw.mac.type == e1000_82574) {
1934 			tx_que->eims = 1 << (22 + i);
1935 			adapter->ims |= tx_que->eims;
1936 			adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
1937 		} else if (adapter->hw.mac.type == e1000_82575) {
1938 			tx_que->eims = E1000_EICR_TX_QUEUE0 << (i %  adapter->tx_num_queues);
1939 		} else {
1940 			tx_que->eims = 1 << (i %  adapter->tx_num_queues);
1941 		}
1942 	}
1943 
1944 	/* Link interrupt */
1945 	rid = rx_vectors + 1;
1946 	error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq");
1947 
1948 	if (error) {
1949 		device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
1950 		goto fail;
1951 	}
1952 	adapter->linkvec = rx_vectors;
1953 	if (adapter->hw.mac.type < igb_mac_min) {
1954 		adapter->ivars |=  (8 | rx_vectors) << 16;
1955 		adapter->ivars |= 0x80000000;
1956 	}
1957 	return (0);
1958 fail:
1959 	iflib_irq_free(ctx, &adapter->irq);
1960 	rx_que = adapter->rx_queues;
1961 	for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++)
1962 		iflib_irq_free(ctx, &rx_que->que_irq);
1963 	return (error);
1964 }
1965 
1966 static void
1967 igb_configure_queues(struct adapter *adapter)
1968 {
1969 	struct e1000_hw *hw = &adapter->hw;
1970 	struct em_rx_queue *rx_que;
1971 	struct em_tx_queue *tx_que;
1972 	u32 tmp, ivar = 0, newitr = 0;
1973 
1974 	/* First turn on RSS capability */
1975 	if (adapter->hw.mac.type != e1000_82575)
1976 		E1000_WRITE_REG(hw, E1000_GPIE,
1977 		    E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
1978 		    E1000_GPIE_PBA | E1000_GPIE_NSICR);
1979 
1980 	/* Turn on MSIX */
1981 	switch (adapter->hw.mac.type) {
1982 	case e1000_82580:
1983 	case e1000_i350:
1984 	case e1000_i354:
1985 	case e1000_i210:
1986 	case e1000_i211:
1987 	case e1000_vfadapt:
1988 	case e1000_vfadapt_i350:
1989 		/* RX entries */
1990 		for (int i = 0; i < adapter->rx_num_queues; i++) {
1991 			u32 index = i >> 1;
1992 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
1993 			rx_que = &adapter->rx_queues[i];
1994 			if (i & 1) {
1995 				ivar &= 0xFF00FFFF;
1996 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
1997 			} else {
1998 				ivar &= 0xFFFFFF00;
1999 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2000 			}
2001 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2002 		}
2003 		/* TX entries */
2004 		for (int i = 0; i < adapter->tx_num_queues; i++) {
2005 			u32 index = i >> 1;
2006 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2007 			tx_que = &adapter->tx_queues[i];
2008 			if (i & 1) {
2009 				ivar &= 0x00FFFFFF;
2010 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2011 			} else {
2012 				ivar &= 0xFFFF00FF;
2013 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2014 			}
2015 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2016 			adapter->que_mask |= tx_que->eims;
2017 		}
2018 
2019 		/* And for the link interrupt */
2020 		ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2021 		adapter->link_mask = 1 << adapter->linkvec;
2022 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2023 		break;
2024 	case e1000_82576:
2025 		/* RX entries */
2026 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2027 			u32 index = i & 0x7; /* Each IVAR has two entries */
2028 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2029 			rx_que = &adapter->rx_queues[i];
2030 			if (i < 8) {
2031 				ivar &= 0xFFFFFF00;
2032 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2033 			} else {
2034 				ivar &= 0xFF00FFFF;
2035 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2036 			}
2037 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2038 			adapter->que_mask |= rx_que->eims;
2039 		}
2040 		/* TX entries */
2041 		for (int i = 0; i < adapter->tx_num_queues; i++) {
2042 			u32 index = i & 0x7; /* Each IVAR has two entries */
2043 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2044 			tx_que = &adapter->tx_queues[i];
2045 			if (i < 8) {
2046 				ivar &= 0xFFFF00FF;
2047 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2048 			} else {
2049 				ivar &= 0x00FFFFFF;
2050 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2051 			}
2052 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2053 			adapter->que_mask |= tx_que->eims;
2054 		}
2055 
2056 		/* And for the link interrupt */
2057 		ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2058 		adapter->link_mask = 1 << adapter->linkvec;
2059 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2060 		break;
2061 
2062 	case e1000_82575:
2063 		/* enable MSI-X support*/
2064 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2065 		tmp |= E1000_CTRL_EXT_PBA_CLR;
2066 		/* Auto-Mask interrupts upon ICR read. */
2067 		tmp |= E1000_CTRL_EXT_EIAME;
2068 		tmp |= E1000_CTRL_EXT_IRCA;
2069 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2070 
2071 		/* Queues */
2072 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2073 			rx_que = &adapter->rx_queues[i];
2074 			tmp = E1000_EICR_RX_QUEUE0 << i;
2075 			tmp |= E1000_EICR_TX_QUEUE0 << i;
2076 			rx_que->eims = tmp;
2077 			E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2078 			    i, rx_que->eims);
2079 			adapter->que_mask |= rx_que->eims;
2080 		}
2081 
2082 		/* Link */
2083 		E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
2084 		    E1000_EIMS_OTHER);
2085 		adapter->link_mask |= E1000_EIMS_OTHER;
2086 	default:
2087 		break;
2088 	}
2089 
2090 	/* Set the starting interrupt rate */
2091 	if (em_max_interrupt_rate > 0)
2092 		newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2093 
2094 	if (hw->mac.type == e1000_82575)
2095 		newitr |= newitr << 16;
2096 	else
2097 		newitr |= E1000_EITR_CNT_IGNR;
2098 
2099 	for (int i = 0; i < adapter->rx_num_queues; i++) {
2100 		rx_que = &adapter->rx_queues[i];
2101 		E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2102 	}
2103 
2104 	return;
2105 }
2106 
2107 static void
2108 em_free_pci_resources(if_ctx_t ctx)
2109 {
2110 	struct adapter *adapter = iflib_get_softc(ctx);
2111 	struct em_rx_queue *que = adapter->rx_queues;
2112 	device_t dev = iflib_get_dev(ctx);
2113 
2114 	/* Release all msix queue resources */
2115 	if (adapter->intr_type == IFLIB_INTR_MSIX)
2116 		iflib_irq_free(ctx, &adapter->irq);
2117 
2118 	for (int i = 0; i < adapter->rx_num_queues; i++, que++) {
2119 		iflib_irq_free(ctx, &que->que_irq);
2120 	}
2121 
2122 	/* First release all the interrupt resources */
2123 	if (adapter->memory != NULL) {
2124 		bus_release_resource(dev, SYS_RES_MEMORY,
2125 				     PCIR_BAR(0), adapter->memory);
2126 		adapter->memory = NULL;
2127 	}
2128 
2129 	if (adapter->flash != NULL) {
2130 		bus_release_resource(dev, SYS_RES_MEMORY,
2131 				     EM_FLASH, adapter->flash);
2132 		adapter->flash = NULL;
2133 	}
2134 	if (adapter->ioport != NULL)
2135 		bus_release_resource(dev, SYS_RES_IOPORT,
2136 		    adapter->io_rid, adapter->ioport);
2137 }
2138 
2139 /* Setup MSI or MSI/X */
2140 static int
2141 em_setup_msix(if_ctx_t ctx)
2142 {
2143 	struct adapter *adapter = iflib_get_softc(ctx);
2144 
2145 	if (adapter->hw.mac.type == e1000_82574) {
2146 		em_enable_vectors_82574(ctx);
2147 	}
2148 	return (0);
2149 }
2150 
2151 /*********************************************************************
2152  *
2153  *  Initialize the hardware to a configuration
2154  *  as specified by the adapter structure.
2155  *
2156  **********************************************************************/
2157 
2158 static void
2159 lem_smartspeed(struct adapter *adapter)
2160 {
2161 	u16 phy_tmp;
2162 
2163 	if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
2164 	    adapter->hw.mac.autoneg == 0 ||
2165 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2166 		return;
2167 
2168 	if (adapter->smartspeed == 0) {
2169 		/* If Master/Slave config fault is asserted twice,
2170 		 * we assume back-to-back */
2171 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2172 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2173 			return;
2174 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2175 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2176 			e1000_read_phy_reg(&adapter->hw,
2177 			    PHY_1000T_CTRL, &phy_tmp);
2178 			if(phy_tmp & CR_1000T_MS_ENABLE) {
2179 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2180 				e1000_write_phy_reg(&adapter->hw,
2181 				    PHY_1000T_CTRL, phy_tmp);
2182 				adapter->smartspeed++;
2183 				if(adapter->hw.mac.autoneg &&
2184 				   !e1000_copper_link_autoneg(&adapter->hw) &&
2185 				   !e1000_read_phy_reg(&adapter->hw,
2186 				    PHY_CONTROL, &phy_tmp)) {
2187 					phy_tmp |= (MII_CR_AUTO_NEG_EN |
2188 						    MII_CR_RESTART_AUTO_NEG);
2189 					e1000_write_phy_reg(&adapter->hw,
2190 					    PHY_CONTROL, phy_tmp);
2191 				}
2192 			}
2193 		}
2194 		return;
2195 	} else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2196 		/* If still no link, perhaps using 2/3 pair cable */
2197 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2198 		phy_tmp |= CR_1000T_MS_ENABLE;
2199 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2200 		if(adapter->hw.mac.autoneg &&
2201 		   !e1000_copper_link_autoneg(&adapter->hw) &&
2202 		   !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2203 			phy_tmp |= (MII_CR_AUTO_NEG_EN |
2204 				    MII_CR_RESTART_AUTO_NEG);
2205 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2206 		}
2207 	}
2208 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2209 	if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2210 		adapter->smartspeed = 0;
2211 }
2212 
2213 
2214 static void
2215 em_reset(if_ctx_t ctx)
2216 {
2217 	device_t dev = iflib_get_dev(ctx);
2218 	struct adapter *adapter = iflib_get_softc(ctx);
2219 	struct ifnet *ifp = iflib_get_ifp(ctx);
2220 	struct e1000_hw *hw = &adapter->hw;
2221 	u16 rx_buffer_size;
2222 	u32 pba;
2223 
2224 	INIT_DEBUGOUT("em_reset: begin");
2225 
2226 	/* Set up smart power down as default off on newer adapters. */
2227 	if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2228 	    hw->mac.type == e1000_82572)) {
2229 		u16 phy_tmp = 0;
2230 
2231 		/* Speed up time to link by disabling smart power down. */
2232 		e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2233 		phy_tmp &= ~IGP02E1000_PM_SPD;
2234 		e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2235 	}
2236 
2237 	/*
2238 	 * Packet Buffer Allocation (PBA)
2239 	 * Writing PBA sets the receive portion of the buffer
2240 	 * the remainder is used for the transmit buffer.
2241 	 */
2242 	switch (hw->mac.type) {
2243 	/* Total Packet Buffer on these is 48K */
2244 	case e1000_82571:
2245 	case e1000_82572:
2246 	case e1000_80003es2lan:
2247 			pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2248 		break;
2249 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2250 			pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2251 		break;
2252 	case e1000_82574:
2253 	case e1000_82583:
2254 			pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2255 		break;
2256 	case e1000_ich8lan:
2257 		pba = E1000_PBA_8K;
2258 		break;
2259 	case e1000_ich9lan:
2260 	case e1000_ich10lan:
2261 		/* Boost Receive side for jumbo frames */
2262 		if (adapter->hw.mac.max_frame_size > 4096)
2263 			pba = E1000_PBA_14K;
2264 		else
2265 			pba = E1000_PBA_10K;
2266 		break;
2267 	case e1000_pchlan:
2268 	case e1000_pch2lan:
2269 	case e1000_pch_lpt:
2270 	case e1000_pch_spt:
2271 		pba = E1000_PBA_26K;
2272 		break;
2273 	case e1000_82575:
2274 		pba = E1000_PBA_32K;
2275 		break;
2276 	case e1000_82576:
2277 	case e1000_vfadapt:
2278 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2279 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2280 		break;
2281 	case e1000_82580:
2282 	case e1000_i350:
2283 	case e1000_i354:
2284 	case e1000_vfadapt_i350:
2285 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2286 		pba = e1000_rxpbs_adjust_82580(pba);
2287 		break;
2288 	case e1000_i210:
2289 	case e1000_i211:
2290 		pba = E1000_PBA_34K;
2291 		break;
2292 	default:
2293 		if (adapter->hw.mac.max_frame_size > 8192)
2294 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2295 		else
2296 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2297 	}
2298 
2299 	/* Special needs in case of Jumbo frames */
2300 	if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
2301 		u32 tx_space, min_tx, min_rx;
2302 		pba = E1000_READ_REG(hw, E1000_PBA);
2303 		tx_space = pba >> 16;
2304 		pba &= 0xffff;
2305 		min_tx = (adapter->hw.mac.max_frame_size +
2306 		    sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
2307 		min_tx = roundup2(min_tx, 1024);
2308 		min_tx >>= 10;
2309 		min_rx = adapter->hw.mac.max_frame_size;
2310 		min_rx = roundup2(min_rx, 1024);
2311 		min_rx >>= 10;
2312 		if (tx_space < min_tx &&
2313 		    ((min_tx - tx_space) < pba)) {
2314 			pba = pba - (min_tx - tx_space);
2315 			/*
2316 			 * if short on rx space, rx wins
2317 			 * and must trump tx adjustment
2318 			 */
2319 			if (pba < min_rx)
2320 				pba = min_rx;
2321 		}
2322 		E1000_WRITE_REG(hw, E1000_PBA, pba);
2323 	}
2324 
2325 	if (hw->mac.type < igb_mac_min)
2326 		E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2327 
2328 	INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
2329 
2330 	/*
2331 	 * These parameters control the automatic generation (Tx) and
2332 	 * response (Rx) to Ethernet PAUSE frames.
2333 	 * - High water mark should allow for at least two frames to be
2334 	 *   received after sending an XOFF.
2335 	 * - Low water mark works best when it is very near the high water mark.
2336 	 *   This allows the receiver to restart by sending XON when it has
2337 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
2338 	 *   restart after one full frame is pulled from the buffer. There
2339 	 *   could be several smaller frames in the buffer and if so they will
2340 	 *   not trigger the XON until their total number reduces the buffer
2341 	 *   by 1500.
2342 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2343 	 */
2344 	rx_buffer_size = (pba & 0xffff) << 10;
2345 	hw->fc.high_water = rx_buffer_size -
2346 	    roundup2(adapter->hw.mac.max_frame_size, 1024);
2347 	hw->fc.low_water = hw->fc.high_water - 1500;
2348 
2349 	if (adapter->fc) /* locally set flow control value? */
2350 		hw->fc.requested_mode = adapter->fc;
2351 	else
2352 		hw->fc.requested_mode = e1000_fc_full;
2353 
2354 	if (hw->mac.type == e1000_80003es2lan)
2355 		hw->fc.pause_time = 0xFFFF;
2356 	else
2357 		hw->fc.pause_time = EM_FC_PAUSE_TIME;
2358 
2359 	hw->fc.send_xon = TRUE;
2360 
2361 	/* Device specific overrides/settings */
2362 	switch (hw->mac.type) {
2363 	case e1000_pchlan:
2364 		/* Workaround: no TX flow ctrl for PCH */
2365 		hw->fc.requested_mode = e1000_fc_rx_pause;
2366 		hw->fc.pause_time = 0xFFFF; /* override */
2367 		if (if_getmtu(ifp) > ETHERMTU) {
2368 			hw->fc.high_water = 0x3500;
2369 			hw->fc.low_water = 0x1500;
2370 		} else {
2371 			hw->fc.high_water = 0x5000;
2372 			hw->fc.low_water = 0x3000;
2373 		}
2374 		hw->fc.refresh_time = 0x1000;
2375 		break;
2376 	case e1000_pch2lan:
2377 	case e1000_pch_lpt:
2378 	case e1000_pch_spt:
2379 		hw->fc.high_water = 0x5C20;
2380 		hw->fc.low_water = 0x5048;
2381 		hw->fc.pause_time = 0x0650;
2382 		hw->fc.refresh_time = 0x0400;
2383 		/* Jumbos need adjusted PBA */
2384 		if (if_getmtu(ifp) > ETHERMTU)
2385 			E1000_WRITE_REG(hw, E1000_PBA, 12);
2386 		else
2387 			E1000_WRITE_REG(hw, E1000_PBA, 26);
2388 		break;
2389 	case e1000_82575:
2390 	case e1000_82576:
2391 		/* 8-byte granularity */
2392 		hw->fc.low_water = hw->fc.high_water - 8;
2393 		break;
2394 	case e1000_82580:
2395 	case e1000_i350:
2396 	case e1000_i354:
2397 	case e1000_i210:
2398 	case e1000_i211:
2399 	case e1000_vfadapt:
2400 	case e1000_vfadapt_i350:
2401 		/* 16-byte granularity */
2402 		hw->fc.low_water = hw->fc.high_water - 16;
2403 		break;
2404         case e1000_ich9lan:
2405         case e1000_ich10lan:
2406 		if (if_getmtu(ifp) > ETHERMTU) {
2407 			hw->fc.high_water = 0x2800;
2408 			hw->fc.low_water = hw->fc.high_water - 8;
2409 			break;
2410 		}
2411 		/* else fall thru */
2412 	default:
2413 		if (hw->mac.type == e1000_80003es2lan)
2414 			hw->fc.pause_time = 0xFFFF;
2415 		break;
2416 	}
2417 
2418 	/* Issue a global reset */
2419 	e1000_reset_hw(hw);
2420 	E1000_WRITE_REG(hw, E1000_WUFC, 0);
2421 	em_disable_aspm(adapter);
2422 	/* and a re-init */
2423 	if (e1000_init_hw(hw) < 0) {
2424 		device_printf(dev, "Hardware Initialization Failed\n");
2425 		return;
2426 	}
2427 
2428 	E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2429 	e1000_get_phy_info(hw);
2430 	e1000_check_for_link(hw);
2431 }
2432 
2433 #define RSSKEYLEN 10
2434 static void
2435 em_initialize_rss_mapping(struct adapter *adapter)
2436 {
2437 	uint8_t  rss_key[4 * RSSKEYLEN];
2438 	uint32_t reta = 0;
2439 	struct e1000_hw	*hw = &adapter->hw;
2440 	int i;
2441 
2442 	/*
2443 	 * Configure RSS key
2444 	 */
2445 	arc4rand(rss_key, sizeof(rss_key), 0);
2446 	for (i = 0; i < RSSKEYLEN; ++i) {
2447 		uint32_t rssrk = 0;
2448 
2449 		rssrk = EM_RSSRK_VAL(rss_key, i);
2450 		E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2451 	}
2452 
2453 	/*
2454 	 * Configure RSS redirect table in following fashion:
2455 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2456 	 */
2457 	for (i = 0; i < sizeof(reta); ++i) {
2458 		uint32_t q;
2459 
2460 		q = (i % adapter->rx_num_queues) << 7;
2461 		reta |= q << (8 * i);
2462 	}
2463 
2464 	for (i = 0; i < 32; ++i)
2465 		E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2466 
2467 	E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
2468 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2469 			E1000_MRQC_RSS_FIELD_IPV4 |
2470 			E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2471 			E1000_MRQC_RSS_FIELD_IPV6_EX |
2472 			E1000_MRQC_RSS_FIELD_IPV6);
2473 
2474 }
2475 
2476 static void
2477 igb_initialize_rss_mapping(struct adapter *adapter)
2478 {
2479 	struct e1000_hw *hw = &adapter->hw;
2480 	int i;
2481 	int queue_id;
2482 	u32 reta;
2483 	u32 rss_key[10], mrqc, shift = 0;
2484 
2485 	/* XXX? */
2486 	if (adapter->hw.mac.type == e1000_82575)
2487 		shift = 6;
2488 
2489 	/*
2490 	 * The redirection table controls which destination
2491 	 * queue each bucket redirects traffic to.
2492 	 * Each DWORD represents four queues, with the LSB
2493 	 * being the first queue in the DWORD.
2494 	 *
2495 	 * This just allocates buckets to queues using round-robin
2496 	 * allocation.
2497 	 *
2498 	 * NOTE: It Just Happens to line up with the default
2499 	 * RSS allocation method.
2500 	 */
2501 
2502 	/* Warning FM follows */
2503 	reta = 0;
2504 	for (i = 0; i < 128; i++) {
2505 #ifdef RSS
2506 		queue_id = rss_get_indirection_to_bucket(i);
2507 		/*
2508 		 * If we have more queues than buckets, we'll
2509 		 * end up mapping buckets to a subset of the
2510 		 * queues.
2511 		 *
2512 		 * If we have more buckets than queues, we'll
2513 		 * end up instead assigning multiple buckets
2514 		 * to queues.
2515 		 *
2516 		 * Both are suboptimal, but we need to handle
2517 		 * the case so we don't go out of bounds
2518 		 * indexing arrays and such.
2519 		 */
2520 		queue_id = queue_id % adapter->rx_num_queues;
2521 #else
2522 		queue_id = (i % adapter->rx_num_queues);
2523 #endif
2524 		/* Adjust if required */
2525 		queue_id = queue_id << shift;
2526 
2527 		/*
2528 		 * The low 8 bits are for hash value (n+0);
2529 		 * The next 8 bits are for hash value (n+1), etc.
2530 		 */
2531 		reta = reta >> 8;
2532 		reta = reta | ( ((uint32_t) queue_id) << 24);
2533 		if ((i & 3) == 3) {
2534 			E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2535 			reta = 0;
2536 		}
2537 	}
2538 
2539 	/* Now fill in hash table */
2540 
2541 	/*
2542 	 * MRQC: Multiple Receive Queues Command
2543 	 * Set queuing to RSS control, number depends on the device.
2544 	 */
2545 	mrqc = E1000_MRQC_ENABLE_RSS_8Q;
2546 
2547 #ifdef RSS
2548 	/* XXX ew typecasting */
2549 	rss_getkey((uint8_t *) &rss_key);
2550 #else
2551 	arc4rand(&rss_key, sizeof(rss_key), 0);
2552 #endif
2553 	for (i = 0; i < 10; i++)
2554 		E1000_WRITE_REG_ARRAY(hw,
2555 		    E1000_RSSRK(0), i, rss_key[i]);
2556 
2557 	/*
2558 	 * Configure the RSS fields to hash upon.
2559 	 */
2560 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2561 	    E1000_MRQC_RSS_FIELD_IPV4_TCP);
2562 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2563 	    E1000_MRQC_RSS_FIELD_IPV6_TCP);
2564 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2565 	    E1000_MRQC_RSS_FIELD_IPV6_UDP);
2566 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2567 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2568 
2569 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2570 }
2571 
2572 /*********************************************************************
2573  *
2574  *  Setup networking device structure and register an interface.
2575  *
2576  **********************************************************************/
2577 static int
2578 em_setup_interface(if_ctx_t ctx)
2579 {
2580 	struct ifnet *ifp = iflib_get_ifp(ctx);
2581 	struct adapter *adapter = iflib_get_softc(ctx);
2582 	if_softc_ctx_t scctx = adapter->shared;
2583 	uint64_t cap = 0;
2584 
2585 	INIT_DEBUGOUT("em_setup_interface: begin");
2586 
2587 	/* TSO parameters */
2588 	if_sethwtsomax(ifp, IP_MAXPACKET);
2589 	/* Take m_pullup(9)'s in em_xmit() w/ TSO into acount. */
2590 	if_sethwtsomaxsegcount(ifp, EM_MAX_SCATTER - 5);
2591 	if_sethwtsomaxsegsize(ifp, EM_TSO_SEG_SIZE);
2592 
2593 	/* Single Queue */
2594 	if (adapter->tx_num_queues == 1) {
2595 		if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
2596 		if_setsendqready(ifp);
2597 	}
2598 
2599 	cap = IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM | IFCAP_TSO4;
2600 	cap |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU;
2601 
2602 	/*
2603 	 * Tell the upper layer(s) we
2604 	 * support full VLAN capability
2605 	 */
2606 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
2607 	if_setcapabilitiesbit(ifp, cap, 0);
2608 
2609 	/*
2610 	 * Don't turn this on by default, if vlans are
2611 	 * created on another pseudo device (eg. lagg)
2612 	 * then vlan events are not passed thru, breaking
2613 	 * operation, but with HW FILTER off it works. If
2614 	 * using vlans directly on the em driver you can
2615 	 * enable this and get full hardware tag filtering.
2616 	 */
2617 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWFILTER,0);
2618 
2619 	/* Enable only WOL MAGIC by default */
2620 	if (adapter->wol) {
2621 		if_setcapenablebit(ifp, IFCAP_WOL_MAGIC,
2622 			     IFCAP_WOL_MCAST| IFCAP_WOL_UCAST);
2623 	} else {
2624 		if_setcapenablebit(ifp, 0, IFCAP_WOL_MAGIC |
2625 			     IFCAP_WOL_MCAST| IFCAP_WOL_UCAST);
2626 	}
2627 
2628 	/*
2629 	 * Specify the media types supported by this adapter and register
2630 	 * callbacks to update media and link information
2631 	 */
2632 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
2633 	    (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
2634 		u_char fiber_type = IFM_1000_SX;	/* default type */
2635 
2636 		if (adapter->hw.mac.type == e1000_82545)
2637 			fiber_type = IFM_1000_LX;
2638 		ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
2639 		ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2640 	} else {
2641 		ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2642 		ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
2643 		ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2644 		ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
2645 		if (adapter->hw.phy.type != e1000_phy_ife) {
2646 			ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2647 			ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2648 		}
2649 	}
2650 	ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2651 	ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO);
2652 	return (0);
2653 }
2654 
2655 static int
2656 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
2657 {
2658 	struct adapter *adapter = iflib_get_softc(ctx);
2659 	if_softc_ctx_t scctx = adapter->shared;
2660 	int error = E1000_SUCCESS;
2661 	struct em_tx_queue *que;
2662 	int i, j;
2663 
2664 	MPASS(adapter->tx_num_queues > 0);
2665 	MPASS(adapter->tx_num_queues == ntxqsets);
2666 
2667 	/* First allocate the top level queue structs */
2668 	if (!(adapter->tx_queues =
2669 	    (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
2670 	    adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2671 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2672 		return(ENOMEM);
2673 	}
2674 
2675 	for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) {
2676 		/* Set up some basics */
2677 
2678 		struct tx_ring *txr = &que->txr;
2679 		txr->adapter = que->adapter = adapter;
2680 		que->me = txr->me =  i;
2681 
2682 		/* Allocate report status array */
2683 		if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2684 			device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
2685 			error = ENOMEM;
2686 			goto fail;
2687 		}
2688 		for (j = 0; j < scctx->isc_ntxd[0]; j++)
2689 			txr->tx_rsq[j] = QIDX_INVALID;
2690 		/* get the virtual and physical address of the hardware queues */
2691 		txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
2692 		txr->tx_paddr = paddrs[i*ntxqs];
2693 	}
2694 
2695 	device_printf(iflib_get_dev(ctx), "allocated for %d tx_queues\n", adapter->tx_num_queues);
2696 	return (0);
2697 fail:
2698 	em_if_queues_free(ctx);
2699 	return (error);
2700 }
2701 
2702 static int
2703 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
2704 {
2705 	struct adapter *adapter = iflib_get_softc(ctx);
2706 	int error = E1000_SUCCESS;
2707 	struct em_rx_queue *que;
2708 	int i;
2709 
2710 	MPASS(adapter->rx_num_queues > 0);
2711 	MPASS(adapter->rx_num_queues == nrxqsets);
2712 
2713 	/* First allocate the top level queue structs */
2714 	if (!(adapter->rx_queues =
2715 	    (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
2716 	    adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2717 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2718 		error = ENOMEM;
2719 		goto fail;
2720 	}
2721 
2722 	for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) {
2723 		/* Set up some basics */
2724 		struct rx_ring *rxr = &que->rxr;
2725 		rxr->adapter = que->adapter = adapter;
2726 		rxr->que = que;
2727 		que->me = rxr->me =  i;
2728 
2729 		/* get the virtual and physical address of the hardware queues */
2730 		rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
2731 		rxr->rx_paddr = paddrs[i*nrxqs];
2732 	}
2733 
2734 	device_printf(iflib_get_dev(ctx), "allocated for %d rx_queues\n", adapter->rx_num_queues);
2735 
2736 	return (0);
2737 fail:
2738 	em_if_queues_free(ctx);
2739 	return (error);
2740 }
2741 
2742 static void
2743 em_if_queues_free(if_ctx_t ctx)
2744 {
2745 	struct adapter *adapter = iflib_get_softc(ctx);
2746 	struct em_tx_queue *tx_que = adapter->tx_queues;
2747 	struct em_rx_queue *rx_que = adapter->rx_queues;
2748 
2749 	if (tx_que != NULL) {
2750 		for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
2751 			struct tx_ring *txr = &tx_que->txr;
2752 			if (txr->tx_rsq == NULL)
2753 				break;
2754 
2755 			free(txr->tx_rsq, M_DEVBUF);
2756 			txr->tx_rsq = NULL;
2757 		}
2758 		free(adapter->tx_queues, M_DEVBUF);
2759 		adapter->tx_queues = NULL;
2760 	}
2761 
2762 	if (rx_que != NULL) {
2763 		free(adapter->rx_queues, M_DEVBUF);
2764 		adapter->rx_queues = NULL;
2765 	}
2766 
2767 	em_release_hw_control(adapter);
2768 
2769 	if (adapter->mta != NULL) {
2770 		free(adapter->mta, M_DEVBUF);
2771 	}
2772 }
2773 
2774 /*********************************************************************
2775  *
2776  *  Enable transmit unit.
2777  *
2778  **********************************************************************/
2779 static void
2780 em_initialize_transmit_unit(if_ctx_t ctx)
2781 {
2782 	struct adapter *adapter = iflib_get_softc(ctx);
2783 	if_softc_ctx_t scctx = adapter->shared;
2784 	struct em_tx_queue *que;
2785 	struct tx_ring	*txr;
2786 	struct e1000_hw	*hw = &adapter->hw;
2787 	u32 tctl, txdctl = 0, tarc, tipg = 0;
2788 
2789 	INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
2790 
2791 	for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
2792 		u64 bus_addr;
2793 		caddr_t offp, endp;
2794 
2795 		que = &adapter->tx_queues[i];
2796 		txr = &que->txr;
2797 		bus_addr = txr->tx_paddr;
2798 
2799 		/* Clear checksum offload context. */
2800 		offp = (caddr_t)&txr->csum_flags;
2801 		endp = (caddr_t)(txr + 1);
2802 		bzero(offp, endp - offp);
2803 
2804 		/* Base and Len of TX Ring */
2805 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
2806 		    scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
2807 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
2808 		    (u32)(bus_addr >> 32));
2809 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
2810 		    (u32)bus_addr);
2811 		/* Init the HEAD/TAIL indices */
2812 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
2813 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
2814 
2815 		HW_DEBUGOUT2("Base = %x, Length = %x\n",
2816 		    E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)),
2817 		    E1000_READ_REG(&adapter->hw, E1000_TDLEN(i)));
2818 
2819 		txdctl = 0; /* clear txdctl */
2820 		txdctl |= 0x1f; /* PTHRESH */
2821 		txdctl |= 1 << 8; /* HTHRESH */
2822 		txdctl |= 1 << 16;/* WTHRESH */
2823 		txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
2824 		txdctl |= E1000_TXDCTL_GRAN;
2825 		txdctl |= 1 << 25; /* LWTHRESH */
2826 
2827 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
2828 	}
2829 
2830 	/* Set the default values for the Tx Inter Packet Gap timer */
2831 	switch (adapter->hw.mac.type) {
2832 	case e1000_80003es2lan:
2833 		tipg = DEFAULT_82543_TIPG_IPGR1;
2834 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2835 		    E1000_TIPG_IPGR2_SHIFT;
2836 		break;
2837 	case e1000_82542:
2838 		tipg = DEFAULT_82542_TIPG_IPGT;
2839 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2840 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2841 		break;
2842 	default:
2843 		if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
2844 		    (adapter->hw.phy.media_type ==
2845 		    e1000_media_type_internal_serdes))
2846 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2847 		else
2848 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2849 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2850 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2851 	}
2852 
2853 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2854 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value);
2855 
2856 	if(adapter->hw.mac.type >= e1000_82540)
2857 		E1000_WRITE_REG(&adapter->hw, E1000_TADV,
2858 		    adapter->tx_abs_int_delay.value);
2859 
2860 	if ((adapter->hw.mac.type == e1000_82571) ||
2861 	    (adapter->hw.mac.type == e1000_82572)) {
2862 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2863 		tarc |= TARC_SPEED_MODE_BIT;
2864 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2865 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2866 		/* errata: program both queues to unweighted RR */
2867 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2868 		tarc |= 1;
2869 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2870 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2871 		tarc |= 1;
2872 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2873 	} else if (adapter->hw.mac.type == e1000_82574) {
2874 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2875 		tarc |= TARC_ERRATA_BIT;
2876 		if ( adapter->tx_num_queues > 1) {
2877 			tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
2878 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2879 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2880 		} else
2881 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2882 	}
2883 
2884 	if (adapter->tx_int_delay.value > 0)
2885 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2886 
2887 	/* Program the Transmit Control Register */
2888 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2889 	tctl &= ~E1000_TCTL_CT;
2890 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2891 		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2892 
2893 	if (adapter->hw.mac.type >= e1000_82571)
2894 		tctl |= E1000_TCTL_MULR;
2895 
2896 	/* This write will effectively turn on the transmit unit. */
2897 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2898 
2899 	if (hw->mac.type == e1000_pch_spt) {
2900 		u32 reg;
2901 		reg = E1000_READ_REG(hw, E1000_IOSFPC);
2902 		reg |= E1000_RCTL_RDMTS_HEX;
2903 		E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
2904 		reg = E1000_READ_REG(hw, E1000_TARC(0));
2905 		reg |= E1000_TARC0_CB_MULTIQ_3_REQ;
2906 		E1000_WRITE_REG(hw, E1000_TARC(0), reg);
2907 	}
2908 }
2909 
2910 /*********************************************************************
2911  *
2912  *  Enable receive unit.
2913  *
2914  **********************************************************************/
2915 
2916 static void
2917 em_initialize_receive_unit(if_ctx_t ctx)
2918 {
2919 	struct adapter *adapter = iflib_get_softc(ctx);
2920 	if_softc_ctx_t scctx = adapter->shared;
2921 	struct ifnet *ifp = iflib_get_ifp(ctx);
2922 	struct e1000_hw	*hw = &adapter->hw;
2923 	struct em_rx_queue *que;
2924 	int i;
2925 	u32 rctl, rxcsum, rfctl;
2926 
2927 	INIT_DEBUGOUT("em_initialize_receive_units: begin");
2928 
2929 	/*
2930 	 * Make sure receives are disabled while setting
2931 	 * up the descriptor ring
2932 	 */
2933 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2934 	/* Do not disable if ever enabled on this hardware */
2935 	if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
2936 		E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2937 
2938 	/* Setup the Receive Control Register */
2939 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2940 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2941 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2942 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2943 
2944 	/* Do not store bad packets */
2945 	rctl &= ~E1000_RCTL_SBP;
2946 
2947 	/* Enable Long Packet receive */
2948 	if (if_getmtu(ifp) > ETHERMTU)
2949 		rctl |= E1000_RCTL_LPE;
2950 	else
2951 		rctl &= ~E1000_RCTL_LPE;
2952 
2953 	/* Strip the CRC */
2954 	if (!em_disable_crc_stripping)
2955 		rctl |= E1000_RCTL_SECRC;
2956 
2957 	if (adapter->hw.mac.type >= e1000_82540) {
2958 		E1000_WRITE_REG(&adapter->hw, E1000_RADV,
2959 			    adapter->rx_abs_int_delay.value);
2960 
2961 		/*
2962 		 * Set the interrupt throttling rate. Value is calculated
2963 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
2964 		 */
2965 		E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
2966 	}
2967 	E1000_WRITE_REG(&adapter->hw, E1000_RDTR,
2968 	    adapter->rx_int_delay.value);
2969 
2970 	/* Use extended rx descriptor formats */
2971 	rfctl = E1000_READ_REG(hw, E1000_RFCTL);
2972 	rfctl |= E1000_RFCTL_EXTEN;
2973 	/*
2974 	 * When using MSIX interrupts we need to throttle
2975 	 * using the EITR register (82574 only)
2976 	 */
2977 	if (hw->mac.type == e1000_82574) {
2978 		for (int i = 0; i < 4; i++)
2979 			E1000_WRITE_REG(hw, E1000_EITR_82574(i),
2980 			    DEFAULT_ITR);
2981 		/* Disable accelerated acknowledge */
2982 		rfctl |= E1000_RFCTL_ACK_DIS;
2983 	}
2984 	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
2985 
2986 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2987 	if (if_getcapenable(ifp) & IFCAP_RXCSUM &&
2988 	    adapter->hw.mac.type >= e1000_82543) {
2989 		if (adapter->tx_num_queues > 1) {
2990 			if (adapter->hw.mac.type >= igb_mac_min) {
2991 				rxcsum |= E1000_RXCSUM_PCSD;
2992 				if (hw->mac.type != e1000_82575)
2993 					rxcsum |= E1000_RXCSUM_CRCOFL;
2994 			} else
2995 				rxcsum |= E1000_RXCSUM_TUOFL |
2996 					E1000_RXCSUM_IPOFL |
2997 					E1000_RXCSUM_PCSD;
2998 		} else {
2999 			if (adapter->hw.mac.type >= igb_mac_min)
3000 				rxcsum |= E1000_RXCSUM_IPPCSE;
3001 			else
3002 				rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3003 			if (adapter->hw.mac.type > e1000_82575)
3004 				rxcsum |= E1000_RXCSUM_CRCOFL;
3005 		}
3006 	} else
3007 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3008 
3009 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3010 
3011 	if (adapter->rx_num_queues > 1) {
3012 		if (adapter->hw.mac.type >= igb_mac_min)
3013 			igb_initialize_rss_mapping(adapter);
3014 		else
3015 			em_initialize_rss_mapping(adapter);
3016 	}
3017 
3018 	/*
3019 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3020 	 * long latencies are observed, like Lenovo X60. This
3021 	 * change eliminates the problem, but since having positive
3022 	 * values in RDTR is a known source of problems on other
3023 	 * platforms another solution is being sought.
3024 	 */
3025 	if (hw->mac.type == e1000_82573)
3026 		E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3027 
3028 	for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3029 		struct rx_ring *rxr = &que->rxr;
3030 		/* Setup the Base and Length of the Rx Descriptor Ring */
3031 		u64 bus_addr = rxr->rx_paddr;
3032 #if 0
3033 		u32 rdt = adapter->rx_num_queues -1;  /* default */
3034 #endif
3035 
3036 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
3037 		    scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
3038 		E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3039 		E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3040 		/* Setup the Head and Tail Descriptor Pointers */
3041 		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3042 		E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3043 	}
3044 
3045 	/*
3046 	 * Set PTHRESH for improved jumbo performance
3047 	 * According to 10.2.5.11 of Intel 82574 Datasheet,
3048 	 * RXDCTL(1) is written whenever RXDCTL(0) is written.
3049 	 * Only write to RXDCTL(1) if there is a need for different
3050 	 * settings.
3051 	 */
3052 
3053 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3054 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3055 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3056 	    (if_getmtu(ifp) > ETHERMTU)) {
3057 		u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3058 		E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3059 	} else if (adapter->hw.mac.type == e1000_82574) {
3060 		for (int i = 0; i < adapter->rx_num_queues; i++) {
3061 			u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3062 			rxdctl |= 0x20; /* PTHRESH */
3063 			rxdctl |= 4 << 8; /* HTHRESH */
3064 			rxdctl |= 4 << 16;/* WTHRESH */
3065 			rxdctl |= 1 << 24; /* Switch to granularity */
3066 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3067 		}
3068 	} else if (adapter->hw.mac.type >= igb_mac_min) {
3069 		u32 psize, srrctl = 0;
3070 
3071 		if (if_getmtu(ifp) > ETHERMTU) {
3072 			/* Set maximum packet len */
3073 			if (adapter->rx_mbuf_sz <= 4096) {
3074 				srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3075 				rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3076 			} else if (adapter->rx_mbuf_sz > 4096) {
3077 				srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3078 				rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3079 			}
3080 			psize = scctx->isc_max_frame_size;
3081 			/* are we on a vlan? */
3082 			if (ifp->if_vlantrunk != NULL)
3083 				psize += VLAN_TAG_SIZE;
3084 			E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
3085 		} else {
3086 			srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3087 			rctl |= E1000_RCTL_SZ_2048;
3088 		}
3089 
3090 		/*
3091 		 * If TX flow control is disabled and there's >1 queue defined,
3092 		 * enable DROP.
3093 		 *
3094 		 * This drops frames rather than hanging the RX MAC for all queues.
3095 		 */
3096 		if ((adapter->rx_num_queues > 1) &&
3097 		    (adapter->fc == e1000_fc_none ||
3098 		     adapter->fc == e1000_fc_rx_pause)) {
3099 			srrctl |= E1000_SRRCTL_DROP_EN;
3100 		}
3101 			/* Setup the Base and Length of the Rx Descriptor Rings */
3102 		for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3103 			struct rx_ring *rxr = &que->rxr;
3104 			u64 bus_addr = rxr->rx_paddr;
3105 			u32 rxdctl;
3106 
3107 #ifdef notyet
3108 			/* Configure for header split? -- ignore for now */
3109 			rxr->hdr_split = igb_header_split;
3110 #else
3111 			srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3112 #endif
3113 
3114 			E1000_WRITE_REG(hw, E1000_RDLEN(i),
3115 					scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3116 			E1000_WRITE_REG(hw, E1000_RDBAH(i),
3117 					(uint32_t)(bus_addr >> 32));
3118 			E1000_WRITE_REG(hw, E1000_RDBAL(i),
3119 					(uint32_t)bus_addr);
3120 			E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3121 			/* Enable this Queue */
3122 			rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3123 			rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3124 			rxdctl &= 0xFFF00000;
3125 			rxdctl |= IGB_RX_PTHRESH;
3126 			rxdctl |= IGB_RX_HTHRESH << 8;
3127 			rxdctl |= IGB_RX_WTHRESH << 16;
3128 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3129 		}
3130 	} else if (adapter->hw.mac.type >= e1000_pch2lan) {
3131 		if (if_getmtu(ifp) > ETHERMTU)
3132 			e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
3133 		else
3134 			e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
3135 	}
3136 
3137 	/* Make sure VLAN Filters are off */
3138 	rctl &= ~E1000_RCTL_VFE;
3139 
3140 	if (adapter->hw.mac.type < igb_mac_min) {
3141 		if (adapter->rx_mbuf_sz == MCLBYTES)
3142 			rctl |= E1000_RCTL_SZ_2048;
3143 		else if (adapter->rx_mbuf_sz == MJUMPAGESIZE)
3144 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3145 		else if (adapter->rx_mbuf_sz > MJUMPAGESIZE)
3146 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3147 
3148 		/* ensure we clear use DTYPE of 00 here */
3149 		rctl &= ~0x00000C00;
3150 	}
3151 
3152 	/* Write out the settings */
3153 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3154 
3155 	return;
3156 }
3157 
3158 static void
3159 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3160 {
3161 	struct adapter *adapter = iflib_get_softc(ctx);
3162 	u32 index, bit;
3163 
3164 	index = (vtag >> 5) & 0x7F;
3165 	bit = vtag & 0x1F;
3166 	adapter->shadow_vfta[index] |= (1 << bit);
3167 	++adapter->num_vlans;
3168 }
3169 
3170 static void
3171 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3172 {
3173 	struct adapter *adapter = iflib_get_softc(ctx);
3174 	u32 index, bit;
3175 
3176 	index = (vtag >> 5) & 0x7F;
3177 	bit = vtag & 0x1F;
3178 	adapter->shadow_vfta[index] &= ~(1 << bit);
3179 	--adapter->num_vlans;
3180 }
3181 
3182 static void
3183 em_setup_vlan_hw_support(struct adapter *adapter)
3184 {
3185 	struct e1000_hw *hw = &adapter->hw;
3186 	u32 reg;
3187 
3188 	/*
3189 	 * We get here thru init_locked, meaning
3190 	 * a soft reset, this has already cleared
3191 	 * the VFTA and other state, so if there
3192 	 * have been no vlan's registered do nothing.
3193 	 */
3194 	if (adapter->num_vlans == 0)
3195 		return;
3196 
3197 	/*
3198 	 * A soft reset zero's out the VFTA, so
3199 	 * we need to repopulate it now.
3200 	 */
3201 	for (int i = 0; i < EM_VFTA_SIZE; i++)
3202 		if (adapter->shadow_vfta[i] != 0)
3203 			E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
3204 			    i, adapter->shadow_vfta[i]);
3205 
3206 	reg = E1000_READ_REG(hw, E1000_CTRL);
3207 	reg |= E1000_CTRL_VME;
3208 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
3209 
3210 	/* Enable the Filter Table */
3211 	reg = E1000_READ_REG(hw, E1000_RCTL);
3212 	reg &= ~E1000_RCTL_CFIEN;
3213 	reg |= E1000_RCTL_VFE;
3214 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
3215 }
3216 
3217 static void
3218 em_if_enable_intr(if_ctx_t ctx)
3219 {
3220 	struct adapter *adapter = iflib_get_softc(ctx);
3221 	struct e1000_hw *hw = &adapter->hw;
3222 	u32 ims_mask = IMS_ENABLE_MASK;
3223 
3224 	if (hw->mac.type == e1000_82574) {
3225 		E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK);
3226 		ims_mask |= adapter->ims;
3227 	} else if (adapter->intr_type == IFLIB_INTR_MSIX && hw->mac.type >= igb_mac_min)  {
3228 		u32 mask = (adapter->que_mask | adapter->link_mask);
3229 
3230 		E1000_WRITE_REG(&adapter->hw, E1000_EIAC, mask);
3231 		E1000_WRITE_REG(&adapter->hw, E1000_EIAM, mask);
3232 		E1000_WRITE_REG(&adapter->hw, E1000_EIMS, mask);
3233 		ims_mask = E1000_IMS_LSC;
3234 	}
3235 
3236 	E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3237 }
3238 
3239 static void
3240 em_if_disable_intr(if_ctx_t ctx)
3241 {
3242 	struct adapter *adapter = iflib_get_softc(ctx);
3243 	struct e1000_hw *hw = &adapter->hw;
3244 
3245 	if (adapter->intr_type == IFLIB_INTR_MSIX) {
3246 		if (hw->mac.type >= igb_mac_min)
3247 			E1000_WRITE_REG(&adapter->hw, E1000_EIMC, ~0);
3248 		E1000_WRITE_REG(&adapter->hw, E1000_EIAC, 0);
3249 	}
3250 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
3251 }
3252 
3253 /*
3254  * Bit of a misnomer, what this really means is
3255  * to enable OS management of the system... aka
3256  * to disable special hardware management features
3257  */
3258 static void
3259 em_init_manageability(struct adapter *adapter)
3260 {
3261 	/* A shared code workaround */
3262 #define E1000_82542_MANC2H E1000_MANC2H
3263 	if (adapter->has_manage) {
3264 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3265 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3266 
3267 		/* disable hardware interception of ARP */
3268 		manc &= ~(E1000_MANC_ARP_EN);
3269 
3270 		/* enable receiving management packets to the host */
3271 		manc |= E1000_MANC_EN_MNG2HOST;
3272 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3273 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3274 		manc2h |= E1000_MNG2HOST_PORT_623;
3275 		manc2h |= E1000_MNG2HOST_PORT_664;
3276 		E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3277 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3278 	}
3279 }
3280 
3281 /*
3282  * Give control back to hardware management
3283  * controller if there is one.
3284  */
3285 static void
3286 em_release_manageability(struct adapter *adapter)
3287 {
3288 	if (adapter->has_manage) {
3289 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3290 
3291 		/* re-enable hardware interception of ARP */
3292 		manc |= E1000_MANC_ARP_EN;
3293 		manc &= ~E1000_MANC_EN_MNG2HOST;
3294 
3295 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3296 	}
3297 }
3298 
3299 /*
3300  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3301  * For ASF and Pass Through versions of f/w this means
3302  * that the driver is loaded. For AMT version type f/w
3303  * this means that the network i/f is open.
3304  */
3305 static void
3306 em_get_hw_control(struct adapter *adapter)
3307 {
3308 	u32 ctrl_ext, swsm;
3309 
3310 	if (adapter->hw.mac.type == e1000_82573) {
3311 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3312 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3313 		    swsm | E1000_SWSM_DRV_LOAD);
3314 		return;
3315 	}
3316 	/* else */
3317 	ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3318 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3319 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3320 	return;
3321 }
3322 
3323 /*
3324  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3325  * For ASF and Pass Through versions of f/w this means that
3326  * the driver is no longer loaded. For AMT versions of the
3327  * f/w this means that the network i/f is closed.
3328  */
3329 static void
3330 em_release_hw_control(struct adapter *adapter)
3331 {
3332 	u32 ctrl_ext, swsm;
3333 
3334 	if (!adapter->has_manage)
3335 		return;
3336 
3337 	if (adapter->hw.mac.type == e1000_82573) {
3338 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3339 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3340 		    swsm & ~E1000_SWSM_DRV_LOAD);
3341 		return;
3342 	}
3343 	/* else */
3344 	ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3345 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3346 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3347 	return;
3348 }
3349 
3350 static int
3351 em_is_valid_ether_addr(u8 *addr)
3352 {
3353 	char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3354 
3355 	if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3356 		return (FALSE);
3357 	}
3358 
3359 	return (TRUE);
3360 }
3361 
3362 /*
3363 ** Parse the interface capabilities with regard
3364 ** to both system management and wake-on-lan for
3365 ** later use.
3366 */
3367 static void
3368 em_get_wakeup(if_ctx_t ctx)
3369 {
3370 	struct adapter *adapter = iflib_get_softc(ctx);
3371 	device_t dev = iflib_get_dev(ctx);
3372 	u16 eeprom_data = 0, device_id, apme_mask;
3373 
3374 	adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
3375 	apme_mask = EM_EEPROM_APME;
3376 
3377 	switch (adapter->hw.mac.type) {
3378 	case e1000_82542:
3379 	case e1000_82543:
3380 		break;
3381 	case e1000_82544:
3382 		e1000_read_nvm(&adapter->hw,
3383 		    NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3384 		apme_mask = EM_82544_APME;
3385 		break;
3386 	case e1000_82546:
3387 	case e1000_82546_rev_3:
3388 		if (adapter->hw.bus.func == 1) {
3389 			e1000_read_nvm(&adapter->hw,
3390 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3391 			break;
3392 		} else
3393 			e1000_read_nvm(&adapter->hw,
3394 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3395 		break;
3396 	case e1000_82573:
3397 	case e1000_82583:
3398 		adapter->has_amt = TRUE;
3399 		/* FALLTHROUGH */
3400 	case e1000_82571:
3401 	case e1000_82572:
3402 	case e1000_80003es2lan:
3403 		if (adapter->hw.bus.func == 1) {
3404 			e1000_read_nvm(&adapter->hw,
3405 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3406 			break;
3407 		} else
3408 			e1000_read_nvm(&adapter->hw,
3409 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3410 		break;
3411 	case e1000_ich8lan:
3412 	case e1000_ich9lan:
3413 	case e1000_ich10lan:
3414 	case e1000_pchlan:
3415 	case e1000_pch2lan:
3416 	case e1000_pch_lpt:
3417 	case e1000_pch_spt:
3418 	case e1000_82575:	/* listing all igb devices */
3419 	case e1000_82576:
3420 	case e1000_82580:
3421 	case e1000_i350:
3422 	case e1000_i354:
3423 	case e1000_i210:
3424 	case e1000_i211:
3425 	case e1000_vfadapt:
3426 	case e1000_vfadapt_i350:
3427 		apme_mask = E1000_WUC_APME;
3428 		adapter->has_amt = TRUE;
3429 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
3430 		break;
3431 	default:
3432 		e1000_read_nvm(&adapter->hw,
3433 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3434 		break;
3435 	}
3436 	if (eeprom_data & apme_mask)
3437 		adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
3438 	/*
3439 	 * We have the eeprom settings, now apply the special cases
3440 	 * where the eeprom may be wrong or the board won't support
3441 	 * wake on lan on a particular port
3442 	 */
3443 	device_id = pci_get_device(dev);
3444 	switch (device_id) {
3445 	case E1000_DEV_ID_82546GB_PCIE:
3446 		adapter->wol = 0;
3447 		break;
3448 	case E1000_DEV_ID_82546EB_FIBER:
3449 	case E1000_DEV_ID_82546GB_FIBER:
3450 		/* Wake events only supported on port A for dual fiber
3451 		 * regardless of eeprom setting */
3452 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3453 		    E1000_STATUS_FUNC_1)
3454 			adapter->wol = 0;
3455 		break;
3456 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
3457 		/* if quad port adapter, disable WoL on all but port A */
3458 		if (global_quad_port_a != 0)
3459 			adapter->wol = 0;
3460 		/* Reset for multiple quad port adapters */
3461 		if (++global_quad_port_a == 4)
3462 			global_quad_port_a = 0;
3463 		break;
3464 	case E1000_DEV_ID_82571EB_FIBER:
3465 		/* Wake events only supported on port A for dual fiber
3466 		 * regardless of eeprom setting */
3467 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3468 		    E1000_STATUS_FUNC_1)
3469 			adapter->wol = 0;
3470 		break;
3471 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
3472 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
3473 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
3474 		/* if quad port adapter, disable WoL on all but port A */
3475 		if (global_quad_port_a != 0)
3476 			adapter->wol = 0;
3477 		/* Reset for multiple quad port adapters */
3478 		if (++global_quad_port_a == 4)
3479 			global_quad_port_a = 0;
3480 		break;
3481 	}
3482 	return;
3483 }
3484 
3485 
3486 /*
3487  * Enable PCI Wake On Lan capability
3488  */
3489 static void
3490 em_enable_wakeup(if_ctx_t ctx)
3491 {
3492 	struct adapter *adapter = iflib_get_softc(ctx);
3493 	device_t dev = iflib_get_dev(ctx);
3494 	if_t ifp = iflib_get_ifp(ctx);
3495 	u32 pmc, ctrl, ctrl_ext, rctl, wuc;
3496 	u16 status;
3497 
3498 	if ((pci_find_cap(dev, PCIY_PMG, &pmc) != 0))
3499 		return;
3500 
3501 	/* Advertise the wakeup capability */
3502 	ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
3503 	ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
3504 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
3505 	wuc = E1000_READ_REG(&adapter->hw, E1000_WUC);
3506 	wuc |= (E1000_WUC_PME_EN | E1000_WUC_APME);
3507 	E1000_WRITE_REG(&adapter->hw, E1000_WUC, wuc);
3508 
3509 	if ((adapter->hw.mac.type == e1000_ich8lan) ||
3510 	    (adapter->hw.mac.type == e1000_pchlan) ||
3511 	    (adapter->hw.mac.type == e1000_ich9lan) ||
3512 	    (adapter->hw.mac.type == e1000_ich10lan))
3513 		e1000_suspend_workarounds_ich8lan(&adapter->hw);
3514 
3515 	/* Keep the laser running on Fiber adapters */
3516 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3517 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
3518 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3519 		ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
3520 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext);
3521 	}
3522 
3523 	/*
3524 	 * Determine type of Wakeup: note that wol
3525 	 * is set with all bits on by default.
3526 	 */
3527 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
3528 		adapter->wol &= ~E1000_WUFC_MAG;
3529 
3530 	if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
3531 		adapter->wol &= ~E1000_WUFC_EX;
3532 
3533 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
3534 		adapter->wol &= ~E1000_WUFC_MC;
3535 	else {
3536 		rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3537 		rctl |= E1000_RCTL_MPE;
3538 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3539 	}
3540 
3541 	if ( adapter->hw.mac.type >= e1000_pchlan) {
3542 		if (em_enable_phy_wakeup(adapter))
3543 			return;
3544 	} else {
3545 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
3546 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
3547 	}
3548 
3549 	if (adapter->hw.phy.type == e1000_phy_igp_3)
3550 		e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3551 
3552 	/* Request PME */
3553 	status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
3554 	status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3555 	if (if_getcapenable(ifp) & IFCAP_WOL)
3556 		status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3557 	pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
3558 
3559 	return;
3560 }
3561 
3562 /*
3563  * WOL in the newer chipset interfaces (pchlan)
3564  * require thing to be copied into the phy
3565  */
3566 static int
3567 em_enable_phy_wakeup(struct adapter *adapter)
3568 {
3569 	struct e1000_hw *hw = &adapter->hw;
3570 	u32 mreg, ret = 0;
3571 	u16 preg;
3572 
3573 	/* copy MAC RARs to PHY RARs */
3574 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
3575 
3576 	/* copy MAC MTA to PHY MTA */
3577 	for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
3578 		mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
3579 		e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
3580 		e1000_write_phy_reg(hw, BM_MTA(i) + 1,
3581 		    (u16)((mreg >> 16) & 0xFFFF));
3582 	}
3583 
3584 	/* configure PHY Rx Control register */
3585 	e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg);
3586 	mreg = E1000_READ_REG(hw, E1000_RCTL);
3587 	if (mreg & E1000_RCTL_UPE)
3588 		preg |= BM_RCTL_UPE;
3589 	if (mreg & E1000_RCTL_MPE)
3590 		preg |= BM_RCTL_MPE;
3591 	preg &= ~(BM_RCTL_MO_MASK);
3592 	if (mreg & E1000_RCTL_MO_3)
3593 		preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
3594 				<< BM_RCTL_MO_SHIFT);
3595 	if (mreg & E1000_RCTL_BAM)
3596 		preg |= BM_RCTL_BAM;
3597 	if (mreg & E1000_RCTL_PMCF)
3598 		preg |= BM_RCTL_PMCF;
3599 	mreg = E1000_READ_REG(hw, E1000_CTRL);
3600 	if (mreg & E1000_CTRL_RFCE)
3601 		preg |= BM_RCTL_RFCE;
3602 	e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg);
3603 
3604 	/* enable PHY wakeup in MAC register */
3605 	E1000_WRITE_REG(hw, E1000_WUC,
3606 	    E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
3607 	E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol);
3608 
3609 	/* configure and enable PHY wakeup in PHY registers */
3610 	e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol);
3611 	e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
3612 
3613 	/* activate PHY wakeup */
3614 	ret = hw->phy.ops.acquire(hw);
3615 	if (ret) {
3616 		printf("Could not acquire PHY\n");
3617 		return ret;
3618 	}
3619 	e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3620 	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
3621 	ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
3622 	if (ret) {
3623 		printf("Could not read PHY page 769\n");
3624 		goto out;
3625 	}
3626 	preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
3627 	ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
3628 	if (ret)
3629 		printf("Could not set PHY Host Wakeup bit\n");
3630 out:
3631 	hw->phy.ops.release(hw);
3632 
3633 	return ret;
3634 }
3635 
3636 static void
3637 em_if_led_func(if_ctx_t ctx, int onoff)
3638 {
3639 	struct adapter *adapter = iflib_get_softc(ctx);
3640 
3641 	if (onoff) {
3642 		e1000_setup_led(&adapter->hw);
3643 		e1000_led_on(&adapter->hw);
3644 	} else {
3645 		e1000_led_off(&adapter->hw);
3646 		e1000_cleanup_led(&adapter->hw);
3647 	}
3648 }
3649 
3650 /*
3651  * Disable the L0S and L1 LINK states
3652  */
3653 static void
3654 em_disable_aspm(struct adapter *adapter)
3655 {
3656 	int base, reg;
3657 	u16 link_cap,link_ctrl;
3658 	device_t dev = adapter->dev;
3659 
3660 	switch (adapter->hw.mac.type) {
3661 	case e1000_82573:
3662 	case e1000_82574:
3663 	case e1000_82583:
3664 		break;
3665 	default:
3666 		return;
3667 	}
3668 	if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
3669 		return;
3670 	reg = base + PCIER_LINK_CAP;
3671 	link_cap = pci_read_config(dev, reg, 2);
3672 	if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
3673 		return;
3674 	reg = base + PCIER_LINK_CTL;
3675 	link_ctrl = pci_read_config(dev, reg, 2);
3676 	link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
3677 	pci_write_config(dev, reg, link_ctrl, 2);
3678 	return;
3679 }
3680 
3681 /**********************************************************************
3682  *
3683  *  Update the board statistics counters.
3684  *
3685  **********************************************************************/
3686 static void
3687 em_update_stats_counters(struct adapter *adapter)
3688 {
3689 
3690 	if(adapter->hw.phy.media_type == e1000_media_type_copper ||
3691 	   (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3692 		adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3693 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3694 	}
3695 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3696 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3697 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3698 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3699 
3700 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3701 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3702 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3703 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3704 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3705 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3706 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3707 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3708 	/*
3709 	 ** For watchdog management we need to know if we have been
3710 	 ** paused during the last interval, so capture that here.
3711 	*/
3712 	adapter->shared->isc_pause_frames = adapter->stats.xoffrxc;
3713 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3714 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3715 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3716 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3717 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3718 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3719 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3720 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3721 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3722 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3723 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3724 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3725 
3726 	/* For the 64-bit byte counters the low dword must be read first. */
3727 	/* Both registers clear on the read of the high dword */
3728 
3729 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) +
3730 	    ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32);
3731 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) +
3732 	    ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32);
3733 
3734 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3735 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3736 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3737 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3738 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3739 
3740 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3741 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3742 
3743 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3744 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3745 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3746 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3747 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3748 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3749 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3750 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3751 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3752 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3753 
3754 	/* Interrupt Counts */
3755 
3756 	adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC);
3757 	adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC);
3758 	adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC);
3759 	adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC);
3760 	adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC);
3761 	adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC);
3762 	adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC);
3763 	adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC);
3764 	adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC);
3765 
3766 	if (adapter->hw.mac.type >= e1000_82543) {
3767 		adapter->stats.algnerrc +=
3768 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3769 		adapter->stats.rxerrc +=
3770 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3771 		adapter->stats.tncrs +=
3772 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3773 		adapter->stats.cexterr +=
3774 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3775 		adapter->stats.tsctc +=
3776 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3777 		adapter->stats.tsctfc +=
3778 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3779 	}
3780 }
3781 
3782 static uint64_t
3783 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
3784 {
3785 	struct adapter *adapter = iflib_get_softc(ctx);
3786 	struct ifnet *ifp = iflib_get_ifp(ctx);
3787 
3788 	switch (cnt) {
3789 	case IFCOUNTER_COLLISIONS:
3790 		return (adapter->stats.colc);
3791 	case IFCOUNTER_IERRORS:
3792 		return (adapter->dropped_pkts + adapter->stats.rxerrc +
3793 		    adapter->stats.crcerrs + adapter->stats.algnerrc +
3794 		    adapter->stats.ruc + adapter->stats.roc +
3795 		    adapter->stats.mpc + adapter->stats.cexterr);
3796 	case IFCOUNTER_OERRORS:
3797 		return (adapter->stats.ecol + adapter->stats.latecol +
3798 		    adapter->watchdog_events);
3799 	default:
3800 		return (if_get_counter_default(ifp, cnt));
3801 	}
3802 }
3803 
3804 /* Export a single 32-bit register via a read-only sysctl. */
3805 static int
3806 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
3807 {
3808 	struct adapter *adapter;
3809 	u_int val;
3810 
3811 	adapter = oidp->oid_arg1;
3812 	val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
3813 	return (sysctl_handle_int(oidp, &val, 0, req));
3814 }
3815 
3816 /*
3817  * Add sysctl variables, one per statistic, to the system.
3818  */
3819 static void
3820 em_add_hw_stats(struct adapter *adapter)
3821 {
3822 	device_t dev = iflib_get_dev(adapter->ctx);
3823         struct em_tx_queue *tx_que = adapter->tx_queues;
3824 	struct em_rx_queue *rx_que = adapter->rx_queues;
3825 
3826 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
3827 	struct sysctl_oid *tree = device_get_sysctl_tree(dev);
3828 	struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
3829 	struct e1000_hw_stats *stats = &adapter->stats;
3830 
3831 	struct sysctl_oid *stat_node, *queue_node, *int_node;
3832 	struct sysctl_oid_list *stat_list, *queue_list, *int_list;
3833 
3834 #define QUEUE_NAME_LEN 32
3835 	char namebuf[QUEUE_NAME_LEN];
3836 
3837 	/* Driver Statistics */
3838 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
3839 			CTLFLAG_RD, &adapter->dropped_pkts,
3840 			"Driver dropped packets");
3841 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
3842 			CTLFLAG_RD, &adapter->link_irq,
3843 			"Link MSIX IRQ Handled");
3844 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "mbuf_defrag_fail",
3845 			 CTLFLAG_RD, &adapter->mbuf_defrag_failed,
3846 			 "Defragmenting mbuf chain failed");
3847 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_dma_fail",
3848 			CTLFLAG_RD, &adapter->no_tx_dma_setup,
3849 			"Driver tx dma failure in xmit");
3850 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
3851 			CTLFLAG_RD, &adapter->rx_overruns,
3852 			"RX overruns");
3853 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
3854 			CTLFLAG_RD, &adapter->watchdog_events,
3855 			"Watchdog timeouts");
3856 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
3857 			CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_CTRL,
3858 			em_sysctl_reg_handler, "IU",
3859 			"Device Control Register");
3860 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
3861 			CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_RCTL,
3862 			em_sysctl_reg_handler, "IU",
3863 			"Receiver Control Register");
3864 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
3865 			CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
3866 			"Flow Control High Watermark");
3867 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
3868 			CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
3869 			"Flow Control Low Watermark");
3870 
3871 	for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
3872 		struct tx_ring *txr = &tx_que->txr;
3873 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
3874 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
3875 					    CTLFLAG_RD, NULL, "TX Queue Name");
3876 		queue_list = SYSCTL_CHILDREN(queue_node);
3877 
3878 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
3879 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
3880 				E1000_TDH(txr->me),
3881 				em_sysctl_reg_handler, "IU",
3882 				"Transmit Descriptor Head");
3883 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
3884 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
3885 				E1000_TDT(txr->me),
3886 				em_sysctl_reg_handler, "IU",
3887 				"Transmit Descriptor Tail");
3888 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
3889 				CTLFLAG_RD, &txr->tx_irq,
3890 				"Queue MSI-X Transmit Interrupts");
3891 	}
3892 
3893 	for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) {
3894 		struct rx_ring *rxr = &rx_que->rxr;
3895 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
3896 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
3897 					    CTLFLAG_RD, NULL, "RX Queue Name");
3898 		queue_list = SYSCTL_CHILDREN(queue_node);
3899 
3900 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
3901 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
3902 				E1000_RDH(rxr->me),
3903 				em_sysctl_reg_handler, "IU",
3904 				"Receive Descriptor Head");
3905 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
3906 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
3907 				E1000_RDT(rxr->me),
3908 				em_sysctl_reg_handler, "IU",
3909 				"Receive Descriptor Tail");
3910 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
3911 				CTLFLAG_RD, &rxr->rx_irq,
3912 				"Queue MSI-X Receive Interrupts");
3913 	}
3914 
3915 	/* MAC stats get their own sub node */
3916 
3917 	stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
3918 				    CTLFLAG_RD, NULL, "Statistics");
3919 	stat_list = SYSCTL_CHILDREN(stat_node);
3920 
3921 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
3922 			CTLFLAG_RD, &stats->ecol,
3923 			"Excessive collisions");
3924 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
3925 			CTLFLAG_RD, &stats->scc,
3926 			"Single collisions");
3927 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
3928 			CTLFLAG_RD, &stats->mcc,
3929 			"Multiple collisions");
3930 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
3931 			CTLFLAG_RD, &stats->latecol,
3932 			"Late collisions");
3933 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
3934 			CTLFLAG_RD, &stats->colc,
3935 			"Collision Count");
3936 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
3937 			CTLFLAG_RD, &adapter->stats.symerrs,
3938 			"Symbol Errors");
3939 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
3940 			CTLFLAG_RD, &adapter->stats.sec,
3941 			"Sequence Errors");
3942 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
3943 			CTLFLAG_RD, &adapter->stats.dc,
3944 			"Defer Count");
3945 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
3946 			CTLFLAG_RD, &adapter->stats.mpc,
3947 			"Missed Packets");
3948 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
3949 			CTLFLAG_RD, &adapter->stats.rnbc,
3950 			"Receive No Buffers");
3951 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
3952 			CTLFLAG_RD, &adapter->stats.ruc,
3953 			"Receive Undersize");
3954 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
3955 			CTLFLAG_RD, &adapter->stats.rfc,
3956 			"Fragmented Packets Received ");
3957 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
3958 			CTLFLAG_RD, &adapter->stats.roc,
3959 			"Oversized Packets Received");
3960 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
3961 			CTLFLAG_RD, &adapter->stats.rjc,
3962 			"Recevied Jabber");
3963 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
3964 			CTLFLAG_RD, &adapter->stats.rxerrc,
3965 			"Receive Errors");
3966 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
3967 			CTLFLAG_RD, &adapter->stats.crcerrs,
3968 			"CRC errors");
3969 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
3970 			CTLFLAG_RD, &adapter->stats.algnerrc,
3971 			"Alignment Errors");
3972 	/* On 82575 these are collision counts */
3973 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
3974 			CTLFLAG_RD, &adapter->stats.cexterr,
3975 			"Collision/Carrier extension errors");
3976 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
3977 			CTLFLAG_RD, &adapter->stats.xonrxc,
3978 			"XON Received");
3979 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
3980 			CTLFLAG_RD, &adapter->stats.xontxc,
3981 			"XON Transmitted");
3982 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
3983 			CTLFLAG_RD, &adapter->stats.xoffrxc,
3984 			"XOFF Received");
3985 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
3986 			CTLFLAG_RD, &adapter->stats.xofftxc,
3987 			"XOFF Transmitted");
3988 
3989 	/* Packet Reception Stats */
3990 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
3991 			CTLFLAG_RD, &adapter->stats.tpr,
3992 			"Total Packets Received ");
3993 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
3994 			CTLFLAG_RD, &adapter->stats.gprc,
3995 			"Good Packets Received");
3996 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
3997 			CTLFLAG_RD, &adapter->stats.bprc,
3998 			"Broadcast Packets Received");
3999 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
4000 			CTLFLAG_RD, &adapter->stats.mprc,
4001 			"Multicast Packets Received");
4002 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
4003 			CTLFLAG_RD, &adapter->stats.prc64,
4004 			"64 byte frames received ");
4005 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
4006 			CTLFLAG_RD, &adapter->stats.prc127,
4007 			"65-127 byte frames received");
4008 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
4009 			CTLFLAG_RD, &adapter->stats.prc255,
4010 			"128-255 byte frames received");
4011 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
4012 			CTLFLAG_RD, &adapter->stats.prc511,
4013 			"256-511 byte frames received");
4014 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
4015 			CTLFLAG_RD, &adapter->stats.prc1023,
4016 			"512-1023 byte frames received");
4017 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
4018 			CTLFLAG_RD, &adapter->stats.prc1522,
4019 			"1023-1522 byte frames received");
4020 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
4021 			CTLFLAG_RD, &adapter->stats.gorc,
4022 			"Good Octets Received");
4023 
4024 	/* Packet Transmission Stats */
4025 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
4026 			CTLFLAG_RD, &adapter->stats.gotc,
4027 			"Good Octets Transmitted");
4028 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
4029 			CTLFLAG_RD, &adapter->stats.tpt,
4030 			"Total Packets Transmitted");
4031 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
4032 			CTLFLAG_RD, &adapter->stats.gptc,
4033 			"Good Packets Transmitted");
4034 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
4035 			CTLFLAG_RD, &adapter->stats.bptc,
4036 			"Broadcast Packets Transmitted");
4037 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
4038 			CTLFLAG_RD, &adapter->stats.mptc,
4039 			"Multicast Packets Transmitted");
4040 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
4041 			CTLFLAG_RD, &adapter->stats.ptc64,
4042 			"64 byte frames transmitted ");
4043 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
4044 			CTLFLAG_RD, &adapter->stats.ptc127,
4045 			"65-127 byte frames transmitted");
4046 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
4047 			CTLFLAG_RD, &adapter->stats.ptc255,
4048 			"128-255 byte frames transmitted");
4049 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
4050 			CTLFLAG_RD, &adapter->stats.ptc511,
4051 			"256-511 byte frames transmitted");
4052 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
4053 			CTLFLAG_RD, &adapter->stats.ptc1023,
4054 			"512-1023 byte frames transmitted");
4055 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
4056 			CTLFLAG_RD, &adapter->stats.ptc1522,
4057 			"1024-1522 byte frames transmitted");
4058 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
4059 			CTLFLAG_RD, &adapter->stats.tsctc,
4060 			"TSO Contexts Transmitted");
4061 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
4062 			CTLFLAG_RD, &adapter->stats.tsctfc,
4063 			"TSO Contexts Failed");
4064 
4065 
4066 	/* Interrupt Stats */
4067 
4068 	int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
4069 				    CTLFLAG_RD, NULL, "Interrupt Statistics");
4070 	int_list = SYSCTL_CHILDREN(int_node);
4071 
4072 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
4073 			CTLFLAG_RD, &adapter->stats.iac,
4074 			"Interrupt Assertion Count");
4075 
4076 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
4077 			CTLFLAG_RD, &adapter->stats.icrxptc,
4078 			"Interrupt Cause Rx Pkt Timer Expire Count");
4079 
4080 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
4081 			CTLFLAG_RD, &adapter->stats.icrxatc,
4082 			"Interrupt Cause Rx Abs Timer Expire Count");
4083 
4084 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
4085 			CTLFLAG_RD, &adapter->stats.ictxptc,
4086 			"Interrupt Cause Tx Pkt Timer Expire Count");
4087 
4088 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
4089 			CTLFLAG_RD, &adapter->stats.ictxatc,
4090 			"Interrupt Cause Tx Abs Timer Expire Count");
4091 
4092 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
4093 			CTLFLAG_RD, &adapter->stats.ictxqec,
4094 			"Interrupt Cause Tx Queue Empty Count");
4095 
4096 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
4097 			CTLFLAG_RD, &adapter->stats.ictxqmtc,
4098 			"Interrupt Cause Tx Queue Min Thresh Count");
4099 
4100 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4101 			CTLFLAG_RD, &adapter->stats.icrxdmtc,
4102 			"Interrupt Cause Rx Desc Min Thresh Count");
4103 
4104 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4105 			CTLFLAG_RD, &adapter->stats.icrxoc,
4106 			"Interrupt Cause Receiver Overrun Count");
4107 }
4108 
4109 /**********************************************************************
4110  *
4111  *  This routine provides a way to dump out the adapter eeprom,
4112  *  often a useful debug/service tool. This only dumps the first
4113  *  32 words, stuff that matters is in that extent.
4114  *
4115  **********************************************************************/
4116 static int
4117 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4118 {
4119 	struct adapter *adapter = (struct adapter *)arg1;
4120 	int error;
4121 	int result;
4122 
4123 	result = -1;
4124 	error = sysctl_handle_int(oidp, &result, 0, req);
4125 
4126 	if (error || !req->newptr)
4127 		return (error);
4128 
4129 	/*
4130 	 * This value will cause a hex dump of the
4131 	 * first 32 16-bit words of the EEPROM to
4132 	 * the screen.
4133 	 */
4134 	if (result == 1)
4135 		em_print_nvm_info(adapter);
4136 
4137 	return (error);
4138 }
4139 
4140 static void
4141 em_print_nvm_info(struct adapter *adapter)
4142 {
4143 	u16 eeprom_data;
4144 	int i, j, row = 0;
4145 
4146 	/* Its a bit crude, but it gets the job done */
4147 	printf("\nInterface EEPROM Dump:\n");
4148 	printf("Offset\n0x0000  ");
4149 	for (i = 0, j = 0; i < 32; i++, j++) {
4150 		if (j == 8) { /* Make the offset block */
4151 			j = 0; ++row;
4152 			printf("\n0x00%x0  ",row);
4153 		}
4154 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4155 		printf("%04x ", eeprom_data);
4156 	}
4157 	printf("\n");
4158 }
4159 
4160 static int
4161 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4162 {
4163 	struct em_int_delay_info *info;
4164 	struct adapter *adapter;
4165 	u32 regval;
4166 	int error, usecs, ticks;
4167 
4168 	info = (struct em_int_delay_info *) arg1;
4169 	usecs = info->value;
4170 	error = sysctl_handle_int(oidp, &usecs, 0, req);
4171 	if (error != 0 || req->newptr == NULL)
4172 		return (error);
4173 	if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4174 		return (EINVAL);
4175 	info->value = usecs;
4176 	ticks = EM_USECS_TO_TICKS(usecs);
4177 	if (info->offset == E1000_ITR)	/* units are 256ns here */
4178 		ticks *= 4;
4179 
4180 	adapter = info->adapter;
4181 
4182 	regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
4183 	regval = (regval & ~0xffff) | (ticks & 0xffff);
4184 	/* Handle a few special cases. */
4185 	switch (info->offset) {
4186 	case E1000_RDTR:
4187 		break;
4188 	case E1000_TIDV:
4189 		if (ticks == 0) {
4190 			adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
4191 			/* Don't write 0 into the TIDV register. */
4192 			regval++;
4193 		} else
4194 			adapter->txd_cmd |= E1000_TXD_CMD_IDE;
4195 		break;
4196 	}
4197 	E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
4198 	return (0);
4199 }
4200 
4201 static void
4202 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
4203 	const char *description, struct em_int_delay_info *info,
4204 	int offset, int value)
4205 {
4206 	info->adapter = adapter;
4207 	info->offset = offset;
4208 	info->value = value;
4209 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
4210 	    SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
4211 	    OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
4212 	    info, 0, em_sysctl_int_delay, "I", description);
4213 }
4214 
4215 /*
4216  * Set flow control using sysctl:
4217  * Flow control values:
4218  *      0 - off
4219  *      1 - rx pause
4220  *      2 - tx pause
4221  *      3 - full
4222  */
4223 static int
4224 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4225 {
4226 	int error;
4227 	static int input = 3; /* default is full */
4228 	struct adapter	*adapter = (struct adapter *) arg1;
4229 
4230 	error = sysctl_handle_int(oidp, &input, 0, req);
4231 
4232 	if ((error) || (req->newptr == NULL))
4233 		return (error);
4234 
4235 	if (input == adapter->fc) /* no change? */
4236 		return (error);
4237 
4238 	switch (input) {
4239 	case e1000_fc_rx_pause:
4240 	case e1000_fc_tx_pause:
4241 	case e1000_fc_full:
4242 	case e1000_fc_none:
4243 		adapter->hw.fc.requested_mode = input;
4244 		adapter->fc = input;
4245                 break;
4246 	default:
4247 		/* Do nothing */
4248 		return (error);
4249 	}
4250 
4251 	adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
4252 	e1000_force_mac_fc(&adapter->hw);
4253 	return (error);
4254 }
4255 
4256 /*
4257  * Manage Energy Efficient Ethernet:
4258  * Control values:
4259  *     0/1 - enabled/disabled
4260  */
4261 static int
4262 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
4263 {
4264 	struct adapter *adapter = (struct adapter *) arg1;
4265 	int error, value;
4266 
4267 	value = adapter->hw.dev_spec.ich8lan.eee_disable;
4268 	error = sysctl_handle_int(oidp, &value, 0, req);
4269 	if (error || req->newptr == NULL)
4270 		return (error);
4271 	adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0);
4272 	em_if_init(adapter->ctx);
4273 
4274 	return (0);
4275 }
4276 
4277 static int
4278 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4279 {
4280 	struct adapter *adapter;
4281 	int error;
4282 	int result;
4283 
4284 	result = -1;
4285 	error = sysctl_handle_int(oidp, &result, 0, req);
4286 
4287 	if (error || !req->newptr)
4288 		return (error);
4289 
4290 	if (result == 1) {
4291 		adapter = (struct adapter *) arg1;
4292 		em_print_debug_info(adapter);
4293         }
4294 
4295 	return (error);
4296 }
4297 
4298 static int
4299 em_get_rs(SYSCTL_HANDLER_ARGS)
4300 {
4301 	struct adapter *adapter = (struct adapter *) arg1;
4302 	int error;
4303 	int result;
4304 
4305 	result = 0;
4306 	error = sysctl_handle_int(oidp, &result, 0, req);
4307 
4308 	if (error || !req->newptr || result != 1)
4309 		return (error);
4310 	em_dump_rs(adapter);
4311 
4312 	return (error);
4313 }
4314 
4315 static void
4316 em_if_debug(if_ctx_t ctx)
4317 {
4318 	em_dump_rs(iflib_get_softc(ctx));
4319 }
4320 
4321 /*
4322  * This routine is meant to be fluid, add whatever is
4323  * needed for debugging a problem.  -jfv
4324  */
4325 static void
4326 em_print_debug_info(struct adapter *adapter)
4327 {
4328 	device_t dev = iflib_get_dev(adapter->ctx);
4329 	struct ifnet *ifp = iflib_get_ifp(adapter->ctx);
4330 	struct tx_ring *txr = &adapter->tx_queues->txr;
4331 	struct rx_ring *rxr = &adapter->rx_queues->rxr;
4332 
4333 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
4334 		printf("Interface is RUNNING ");
4335 	else
4336 		printf("Interface is NOT RUNNING\n");
4337 
4338 	if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
4339 		printf("and INACTIVE\n");
4340 	else
4341 		printf("and ACTIVE\n");
4342 
4343 	for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
4344 		device_printf(dev, "TX Queue %d ------\n", i);
4345 		device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4346 			E1000_READ_REG(&adapter->hw, E1000_TDH(i)),
4347 			E1000_READ_REG(&adapter->hw, E1000_TDT(i)));
4348 
4349 	}
4350 	for (int j=0; j < adapter->rx_num_queues; j++, rxr++) {
4351 		device_printf(dev, "RX Queue %d ------\n", j);
4352 		device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4353 			E1000_READ_REG(&adapter->hw, E1000_RDH(j)),
4354 			E1000_READ_REG(&adapter->hw, E1000_RDT(j)));
4355 	}
4356 }
4357 
4358 /*
4359  * 82574 only:
4360  * Write a new value to the EEPROM increasing the number of MSIX
4361  * vectors from 3 to 5, for proper multiqueue support.
4362  */
4363 static void
4364 em_enable_vectors_82574(if_ctx_t ctx)
4365 {
4366 	struct adapter *adapter = iflib_get_softc(ctx);
4367 	struct e1000_hw *hw = &adapter->hw;
4368 	device_t dev = iflib_get_dev(ctx);
4369 	u16 edata;
4370 
4371 	e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4372 	printf("Current cap: %#06x\n", edata);
4373 	if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
4374 		device_printf(dev, "Writing to eeprom: increasing "
4375 		    "reported MSIX vectors from 3 to 5...\n");
4376 		edata &= ~(EM_NVM_MSIX_N_MASK);
4377 		edata |= 4 << EM_NVM_MSIX_N_SHIFT;
4378 		e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4379 		e1000_update_nvm_checksum(hw);
4380 		device_printf(dev, "Writing to eeprom: done\n");
4381 	}
4382 }
4383