xref: /freebsd/sys/dev/e1000/if_em.c (revision e9d419a05357036ea2fd37218d853d2c713d55cc)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* $FreeBSD$ */
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33 
34 #define em_mac_min e1000_82547
35 #define igb_mac_min e1000_82575
36 
37 /*********************************************************************
38  *  Driver version:
39  *********************************************************************/
40 char em_driver_version[] = "7.6.1-k";
41 
42 /*********************************************************************
43  *  PCI Device ID Table
44  *
45  *  Used by probe to select devices to load on
46  *  Last field stores an index into e1000_strings
47  *  Last entry must be all 0s
48  *
49  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
50  *********************************************************************/
51 
52 static pci_vendor_info_t em_vendor_info_array[] =
53 {
54 	/* Intel(R) PRO/1000 Network Connection - Legacy em*/
55 	PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) PRO/1000 Network Connection"),
56 	PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) PRO/1000 Network Connection"),
57 	PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) PRO/1000 Network Connection"),
58 	PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) PRO/1000 Network Connection"),
59 	PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) PRO/1000 Network Connection"),
60 
61 	PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) PRO/1000 Network Connection"),
62 	PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) PRO/1000 Network Connection"),
63 	PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) PRO/1000 Network Connection"),
64 	PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
65 	PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) PRO/1000 Network Connection"),
66 	PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) PRO/1000 Network Connection"),
67 	PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
68 
69 	PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) PRO/1000 Network Connection"),
70 
71 	PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) PRO/1000 Network Connection"),
72 	PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
73 
74 	PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
75 	PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
76 	PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
77 	PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) PRO/1000 Network Connection"),
78 
79 	PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) PRO/1000 Network Connection"),
80 	PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) PRO/1000 Network Connection"),
81 	PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) PRO/1000 Network Connection"),
82 	PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) PRO/1000 Network Connection"),
83 	PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) PRO/1000 Network Connection"),
84 
85 	PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
86 	PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
87 	PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
88 	PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) PRO/1000 Network Connection"),
89 	PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) PRO/1000 Network Connection"),
90 	PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) PRO/1000 Network Connection"),
91 	PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) PRO/1000 Network Connection"),
92 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
93 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) PRO/1000 Network Connection"),
94 
95 	PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) PRO/1000 Network Connection"),
96 	PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
97 	PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) PRO/1000 Network Connection"),
98 
99 	/* Intel(R) PRO/1000 Network Connection - em */
100 	PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
101 	PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
102 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 Network Connection"),
103 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 Network Connection"),
104 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 Network Connection"),
105 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
106 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 Network Connection"),
107 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 Network Connection"),
108 	PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
109 	PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 Network Connection"),
110 	PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
111 	PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
112 	PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 Network Connection"),
113 	PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 Network Connection"),
114 	PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 Network Connection"),
115 	PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 Network Connection"),
116 	PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) PRO/1000 Network Connection"),
117 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) PRO/1000 Network Connection"),
118 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) PRO/1000 Network Connection"),
119 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) PRO/1000 Network Connection"),
120 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) PRO/1000 Network Connection"),
121 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
122 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
123 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) PRO/1000 Network Connection"),
124 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) PRO/1000 Network Connection"),
125 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
126 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) PRO/1000 Network Connection"),
127 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) PRO/1000 Network Connection"),
128 	PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) PRO/1000 Network Connection"),
129 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
130 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
131 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) PRO/1000 Network Connection"),
132 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) PRO/1000 Network Connection"),
133 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) PRO/1000 Network Connection"),
134 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) PRO/1000 Network Connection"),
135 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
136 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) PRO/1000 Network Connection"),
137 	PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) PRO/1000 Network Connection"),
138 	PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) PRO/1000 Network Connection"),
139 	PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) PRO/1000 Network Connection"),
140 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) PRO/1000 Network Connection"),
141 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) PRO/1000 Network Connection"),
142 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) PRO/1000 Network Connection"),
143 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) PRO/1000 Network Connection"),
144 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) PRO/1000 Network Connection"),
145 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) PRO/1000 Network Connection"),
146 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) PRO/1000 Network Connection"),
147 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) PRO/1000 Network Connection"),
148 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) PRO/1000 Network Connection"),
149 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) PRO/1000 Network Connection"),
150 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) PRO/1000 Network Connection"),
151 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) PRO/1000 Network Connection"),
152 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) PRO/1000 Network Connection"),
153 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) PRO/1000 Network Connection"),
154 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) PRO/1000 Network Connection"),
155 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) PRO/1000 Network Connection"),
156 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) PRO/1000 Network Connection"),
157 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) PRO/1000 Network Connection"),
158 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) PRO/1000 Network Connection"),
159 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) PRO/1000 Network Connection"),
160 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) PRO/1000 Network Connection"),
161 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) PRO/1000 Network Connection"),
162 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) PRO/1000 Network Connection"),
163 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) PRO/1000 Network Connection"),
164 	PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) PRO/1000 Network Connection"),
165 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) PRO/1000 Network Connection"),
166 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) PRO/1000 Network Connection"),
167 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) PRO/1000 Network Connection"),
168 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) PRO/1000 Network Connection"),
169 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) PRO/1000 Network Connection"),
170 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) PRO/1000 Network Connection"),
171 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) PRO/1000 Network Connection"),
172 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) PRO/1000 Network Connection"),
173 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) PRO/1000 Network Connection"),
174 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) PRO/1000 Network Connection"),
175 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) PRO/1000 Network Connection"),
176 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) PRO/1000 Network Connection"),
177 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10, "Intel(R) PRO/1000 Network Connection"),
178 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10, "Intel(R) PRO/1000 Network Connection"),
179 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11, "Intel(R) PRO/1000 Network Connection"),
180 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11, "Intel(R) PRO/1000 Network Connection"),
181 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12, "Intel(R) PRO/1000 Network Connection"),
182 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12, "Intel(R) PRO/1000 Network Connection"),
183 	/* required last entry */
184 	PVID_END
185 };
186 
187 static pci_vendor_info_t igb_vendor_info_array[] =
188 {
189 	/* Intel(R) PRO/1000 Network Connection - igb */
190 	PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
191 	PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
192 	PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
193 	PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 PCI-Express Network Driver"),
194 	PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
195 	PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
196 	PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
197 	PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
198 	PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 PCI-Express Network Driver"),
199 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
200 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 PCI-Express Network Driver"),
201 	PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
202 	PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
203 	PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
204 	PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
205 	PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
206 	PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) PRO/1000 PCI-Express Network Driver"),
207 	PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
208 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
209 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
210 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) PRO/1000 PCI-Express Network Driver"),
211 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) PRO/1000 PCI-Express Network Driver"),
212 	PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
213 	PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
214 	PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
215 	PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
216 	PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
217 	PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
218 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) PRO/1000 PCI-Express Network Driver"),
219 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) PRO/1000 PCI-Express Network Driver"),
220 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
221 	PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
222 	PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
223 	PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
224 	PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
225 	PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
226 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
227 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
228 	PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
229 	/* required last entry */
230 	PVID_END
231 };
232 
233 /*********************************************************************
234  *  Function prototypes
235  *********************************************************************/
236 static void	*em_register(device_t dev);
237 static void	*igb_register(device_t dev);
238 static int	em_if_attach_pre(if_ctx_t ctx);
239 static int	em_if_attach_post(if_ctx_t ctx);
240 static int	em_if_detach(if_ctx_t ctx);
241 static int	em_if_shutdown(if_ctx_t ctx);
242 static int	em_if_suspend(if_ctx_t ctx);
243 static int	em_if_resume(if_ctx_t ctx);
244 
245 static int	em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets);
246 static int	em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets);
247 static void	em_if_queues_free(if_ctx_t ctx);
248 
249 static uint64_t	em_if_get_counter(if_ctx_t, ift_counter);
250 static void	em_if_init(if_ctx_t ctx);
251 static void	em_if_stop(if_ctx_t ctx);
252 static void	em_if_media_status(if_ctx_t, struct ifmediareq *);
253 static int	em_if_media_change(if_ctx_t ctx);
254 static int	em_if_mtu_set(if_ctx_t ctx, uint32_t mtu);
255 static void	em_if_timer(if_ctx_t ctx, uint16_t qid);
256 static void	em_if_vlan_register(if_ctx_t ctx, u16 vtag);
257 static void	em_if_vlan_unregister(if_ctx_t ctx, u16 vtag);
258 static void	em_if_watchdog_reset(if_ctx_t ctx);
259 static bool	em_if_needs_restart(if_ctx_t ctx, enum iflib_restart_event event);
260 
261 static void	em_identify_hardware(if_ctx_t ctx);
262 static int	em_allocate_pci_resources(if_ctx_t ctx);
263 static void	em_free_pci_resources(if_ctx_t ctx);
264 static void	em_reset(if_ctx_t ctx);
265 static int	em_setup_interface(if_ctx_t ctx);
266 static int	em_setup_msix(if_ctx_t ctx);
267 
268 static void	em_initialize_transmit_unit(if_ctx_t ctx);
269 static void	em_initialize_receive_unit(if_ctx_t ctx);
270 
271 static void	em_if_intr_enable(if_ctx_t ctx);
272 static void	em_if_intr_disable(if_ctx_t ctx);
273 static void	igb_if_intr_enable(if_ctx_t ctx);
274 static void	igb_if_intr_disable(if_ctx_t ctx);
275 static int	em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
276 static int	em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
277 static int	igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
278 static int	igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
279 static void	em_if_multi_set(if_ctx_t ctx);
280 static void	em_if_update_admin_status(if_ctx_t ctx);
281 static void	em_if_debug(if_ctx_t ctx);
282 static void	em_update_stats_counters(struct adapter *);
283 static void	em_add_hw_stats(struct adapter *adapter);
284 static int	em_if_set_promisc(if_ctx_t ctx, int flags);
285 static void	em_setup_vlan_hw_support(struct adapter *);
286 static int	em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
287 static void	em_print_nvm_info(struct adapter *);
288 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
289 static int	em_get_rs(SYSCTL_HANDLER_ARGS);
290 static void	em_print_debug_info(struct adapter *);
291 static int 	em_is_valid_ether_addr(u8 *);
292 static int	em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
293 static void	em_add_int_delay_sysctl(struct adapter *, const char *,
294 		    const char *, struct em_int_delay_info *, int, int);
295 /* Management and WOL Support */
296 static void	em_init_manageability(struct adapter *);
297 static void	em_release_manageability(struct adapter *);
298 static void	em_get_hw_control(struct adapter *);
299 static void	em_release_hw_control(struct adapter *);
300 static void	em_get_wakeup(if_ctx_t ctx);
301 static void	em_enable_wakeup(if_ctx_t ctx);
302 static int	em_enable_phy_wakeup(struct adapter *);
303 static void	em_disable_aspm(struct adapter *);
304 
305 int		em_intr(void *arg);
306 static void	em_disable_promisc(if_ctx_t ctx);
307 
308 /* MSI-X handlers */
309 static int	em_if_msix_intr_assign(if_ctx_t, int);
310 static int	em_msix_link(void *);
311 static void	em_handle_link(void *context);
312 
313 static void	em_enable_vectors_82574(if_ctx_t);
314 
315 static int	em_set_flowcntl(SYSCTL_HANDLER_ARGS);
316 static int	em_sysctl_eee(SYSCTL_HANDLER_ARGS);
317 static void	em_if_led_func(if_ctx_t ctx, int onoff);
318 
319 static int	em_get_regs(SYSCTL_HANDLER_ARGS);
320 
321 static void	lem_smartspeed(struct adapter *adapter);
322 static void	igb_configure_queues(struct adapter *adapter);
323 
324 
325 /*********************************************************************
326  *  FreeBSD Device Interface Entry Points
327  *********************************************************************/
328 static device_method_t em_methods[] = {
329 	/* Device interface */
330 	DEVMETHOD(device_register, em_register),
331 	DEVMETHOD(device_probe, iflib_device_probe),
332 	DEVMETHOD(device_attach, iflib_device_attach),
333 	DEVMETHOD(device_detach, iflib_device_detach),
334 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
335 	DEVMETHOD(device_suspend, iflib_device_suspend),
336 	DEVMETHOD(device_resume, iflib_device_resume),
337 	DEVMETHOD_END
338 };
339 
340 static device_method_t igb_methods[] = {
341 	/* Device interface */
342 	DEVMETHOD(device_register, igb_register),
343 	DEVMETHOD(device_probe, iflib_device_probe),
344 	DEVMETHOD(device_attach, iflib_device_attach),
345 	DEVMETHOD(device_detach, iflib_device_detach),
346 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
347 	DEVMETHOD(device_suspend, iflib_device_suspend),
348 	DEVMETHOD(device_resume, iflib_device_resume),
349 	DEVMETHOD_END
350 };
351 
352 
353 static driver_t em_driver = {
354 	"em", em_methods, sizeof(struct adapter),
355 };
356 
357 static devclass_t em_devclass;
358 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
359 
360 MODULE_DEPEND(em, pci, 1, 1, 1);
361 MODULE_DEPEND(em, ether, 1, 1, 1);
362 MODULE_DEPEND(em, iflib, 1, 1, 1);
363 
364 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
365 
366 static driver_t igb_driver = {
367 	"igb", igb_methods, sizeof(struct adapter),
368 };
369 
370 static devclass_t igb_devclass;
371 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
372 
373 MODULE_DEPEND(igb, pci, 1, 1, 1);
374 MODULE_DEPEND(igb, ether, 1, 1, 1);
375 MODULE_DEPEND(igb, iflib, 1, 1, 1);
376 
377 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
378 
379 static device_method_t em_if_methods[] = {
380 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
381 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
382 	DEVMETHOD(ifdi_detach, em_if_detach),
383 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
384 	DEVMETHOD(ifdi_suspend, em_if_suspend),
385 	DEVMETHOD(ifdi_resume, em_if_resume),
386 	DEVMETHOD(ifdi_init, em_if_init),
387 	DEVMETHOD(ifdi_stop, em_if_stop),
388 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
389 	DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
390 	DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
391 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
392 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
393 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
394 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
395 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
396 	DEVMETHOD(ifdi_media_status, em_if_media_status),
397 	DEVMETHOD(ifdi_media_change, em_if_media_change),
398 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
399 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
400 	DEVMETHOD(ifdi_timer, em_if_timer),
401 	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
402 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
403 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
404 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
405 	DEVMETHOD(ifdi_led_func, em_if_led_func),
406 	DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
407 	DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
408 	DEVMETHOD(ifdi_debug, em_if_debug),
409 	DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
410 	DEVMETHOD_END
411 };
412 
413 static driver_t em_if_driver = {
414 	"em_if", em_if_methods, sizeof(struct adapter)
415 };
416 
417 static device_method_t igb_if_methods[] = {
418 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
419 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
420 	DEVMETHOD(ifdi_detach, em_if_detach),
421 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
422 	DEVMETHOD(ifdi_suspend, em_if_suspend),
423 	DEVMETHOD(ifdi_resume, em_if_resume),
424 	DEVMETHOD(ifdi_init, em_if_init),
425 	DEVMETHOD(ifdi_stop, em_if_stop),
426 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
427 	DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
428 	DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
429 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
430 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
431 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
432 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
433 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
434 	DEVMETHOD(ifdi_media_status, em_if_media_status),
435 	DEVMETHOD(ifdi_media_change, em_if_media_change),
436 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
437 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
438 	DEVMETHOD(ifdi_timer, em_if_timer),
439 	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
440 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
441 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
442 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
443 	DEVMETHOD(ifdi_led_func, em_if_led_func),
444 	DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
445 	DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
446 	DEVMETHOD(ifdi_debug, em_if_debug),
447 	DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
448 	DEVMETHOD_END
449 };
450 
451 static driver_t igb_if_driver = {
452 	"igb_if", igb_if_methods, sizeof(struct adapter)
453 };
454 
455 /*********************************************************************
456  *  Tunable default values.
457  *********************************************************************/
458 
459 #define EM_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
460 #define EM_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
461 
462 #define MAX_INTS_PER_SEC	8000
463 #define DEFAULT_ITR		(1000000000/(MAX_INTS_PER_SEC * 256))
464 
465 /* Allow common code without TSO */
466 #ifndef CSUM_TSO
467 #define CSUM_TSO	0
468 #endif
469 
470 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
471     "EM driver parameters");
472 
473 static int em_disable_crc_stripping = 0;
474 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
475     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
476 
477 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
478 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
479 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
480     0, "Default transmit interrupt delay in usecs");
481 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
482     0, "Default receive interrupt delay in usecs");
483 
484 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
485 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
486 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
487     &em_tx_abs_int_delay_dflt, 0,
488     "Default transmit interrupt delay limit in usecs");
489 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
490     &em_rx_abs_int_delay_dflt, 0,
491     "Default receive interrupt delay limit in usecs");
492 
493 static int em_smart_pwr_down = FALSE;
494 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
495     0, "Set to true to leave smart power down enabled on newer adapters");
496 
497 /* Controls whether promiscuous also shows bad packets */
498 static int em_debug_sbp = TRUE;
499 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
500     "Show bad packets in promiscuous mode");
501 
502 /* How many packets rxeof tries to clean at a time */
503 static int em_rx_process_limit = 100;
504 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
505     &em_rx_process_limit, 0,
506     "Maximum number of received packets to process "
507     "at a time, -1 means unlimited");
508 
509 /* Energy efficient ethernet - default to OFF */
510 static int eee_setting = 1;
511 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
512     "Enable Energy Efficient Ethernet");
513 
514 /*
515 ** Tuneable Interrupt rate
516 */
517 static int em_max_interrupt_rate = 8000;
518 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
519     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
520 
521 
522 
523 /* Global used in WOL setup with multiport cards */
524 static int global_quad_port_a = 0;
525 
526 extern struct if_txrx igb_txrx;
527 extern struct if_txrx em_txrx;
528 extern struct if_txrx lem_txrx;
529 
530 static struct if_shared_ctx em_sctx_init = {
531 	.isc_magic = IFLIB_MAGIC,
532 	.isc_q_align = PAGE_SIZE,
533 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
534 	.isc_tx_maxsegsize = PAGE_SIZE,
535 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
536 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
537 	.isc_rx_maxsize = MJUM9BYTES,
538 	.isc_rx_nsegments = 1,
539 	.isc_rx_maxsegsize = MJUM9BYTES,
540 	.isc_nfl = 1,
541 	.isc_nrxqs = 1,
542 	.isc_ntxqs = 1,
543 	.isc_admin_intrcnt = 1,
544 	.isc_vendor_info = em_vendor_info_array,
545 	.isc_driver_version = em_driver_version,
546 	.isc_driver = &em_if_driver,
547 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
548 
549 	.isc_nrxd_min = {EM_MIN_RXD},
550 	.isc_ntxd_min = {EM_MIN_TXD},
551 	.isc_nrxd_max = {EM_MAX_RXD},
552 	.isc_ntxd_max = {EM_MAX_TXD},
553 	.isc_nrxd_default = {EM_DEFAULT_RXD},
554 	.isc_ntxd_default = {EM_DEFAULT_TXD},
555 };
556 
557 if_shared_ctx_t em_sctx = &em_sctx_init;
558 
559 static struct if_shared_ctx igb_sctx_init = {
560 	.isc_magic = IFLIB_MAGIC,
561 	.isc_q_align = PAGE_SIZE,
562 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
563 	.isc_tx_maxsegsize = PAGE_SIZE,
564 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
565 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
566 	.isc_rx_maxsize = MJUM9BYTES,
567 	.isc_rx_nsegments = 1,
568 	.isc_rx_maxsegsize = MJUM9BYTES,
569 	.isc_nfl = 1,
570 	.isc_nrxqs = 1,
571 	.isc_ntxqs = 1,
572 	.isc_admin_intrcnt = 1,
573 	.isc_vendor_info = igb_vendor_info_array,
574 	.isc_driver_version = em_driver_version,
575 	.isc_driver = &igb_if_driver,
576 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
577 
578 	.isc_nrxd_min = {EM_MIN_RXD},
579 	.isc_ntxd_min = {EM_MIN_TXD},
580 	.isc_nrxd_max = {IGB_MAX_RXD},
581 	.isc_ntxd_max = {IGB_MAX_TXD},
582 	.isc_nrxd_default = {EM_DEFAULT_RXD},
583 	.isc_ntxd_default = {EM_DEFAULT_TXD},
584 };
585 
586 if_shared_ctx_t igb_sctx = &igb_sctx_init;
587 
588 /*****************************************************************
589  *
590  * Dump Registers
591  *
592  ****************************************************************/
593 #define IGB_REGS_LEN 739
594 
595 static int em_get_regs(SYSCTL_HANDLER_ARGS)
596 {
597 	struct adapter *adapter = (struct adapter *)arg1;
598 	struct e1000_hw *hw = &adapter->hw;
599 	struct sbuf *sb;
600 	u32 *regs_buff;
601 	int rc;
602 
603 	regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
604 	memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
605 
606 	rc = sysctl_wire_old_buffer(req, 0);
607 	MPASS(rc == 0);
608 	if (rc != 0) {
609 		free(regs_buff, M_DEVBUF);
610 		return (rc);
611 	}
612 
613 	sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
614 	MPASS(sb != NULL);
615 	if (sb == NULL) {
616 		free(regs_buff, M_DEVBUF);
617 		return (ENOMEM);
618 	}
619 
620 	/* General Registers */
621 	regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
622 	regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
623 	regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
624 	regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
625 	regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
626 	regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
627 	regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
628 	regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
629 	regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
630 	regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
631 	regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
632 	regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
633 	regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
634 	regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
635 	regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
636 	regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
637 	regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
638 	regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
639 	regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
640 	regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
641 	regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
642 	regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
643 
644 	sbuf_printf(sb, "General Registers\n");
645 	sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
646 	sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
647 	sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]);
648 
649 	sbuf_printf(sb, "Interrupt Registers\n");
650 	sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
651 
652 	sbuf_printf(sb, "RX Registers\n");
653 	sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
654 	sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
655 	sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
656 	sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
657 	sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
658 	sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
659 	sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
660 
661 	sbuf_printf(sb, "TX Registers\n");
662 	sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
663 	sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
664 	sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
665 	sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
666 	sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
667 	sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
668 	sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
669 	sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
670 	sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
671 	sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
672 	sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
673 
674 	free(regs_buff, M_DEVBUF);
675 
676 #ifdef DUMP_DESCS
677 	{
678 		if_softc_ctx_t scctx = adapter->shared;
679 		struct rx_ring *rxr = &rx_que->rxr;
680 		struct tx_ring *txr = &tx_que->txr;
681 		int ntxd = scctx->isc_ntxd[0];
682 		int nrxd = scctx->isc_nrxd[0];
683 		int j;
684 
685 	for (j = 0; j < nrxd; j++) {
686 		u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
687 		u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
688 		sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
689 	}
690 
691 	for (j = 0; j < min(ntxd, 256); j++) {
692 		unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
693 
694 		sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
695 			    j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
696 			    buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
697 
698 	}
699 	}
700 #endif
701 
702 	rc = sbuf_finish(sb);
703 	sbuf_delete(sb);
704 	return(rc);
705 }
706 
707 static void *
708 em_register(device_t dev)
709 {
710 	return (em_sctx);
711 }
712 
713 static void *
714 igb_register(device_t dev)
715 {
716 	return (igb_sctx);
717 }
718 
719 static int
720 em_set_num_queues(if_ctx_t ctx)
721 {
722 	struct adapter *adapter = iflib_get_softc(ctx);
723 	int maxqueues;
724 
725 	/* Sanity check based on HW */
726 	switch (adapter->hw.mac.type) {
727 	case e1000_82576:
728 	case e1000_82580:
729 	case e1000_i350:
730 	case e1000_i354:
731 		maxqueues = 8;
732 		break;
733 	case e1000_i210:
734 	case e1000_82575:
735 		maxqueues = 4;
736 		break;
737 	case e1000_i211:
738 	case e1000_82574:
739 		maxqueues = 2;
740 		break;
741 	default:
742 		maxqueues = 1;
743 		break;
744 	}
745 
746 	return (maxqueues);
747 }
748 
749 #define	LEM_CAPS							\
750     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
751     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER
752 
753 #define	EM_CAPS								\
754     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
755     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |	\
756     IFCAP_LRO | IFCAP_VLAN_HWTSO
757 
758 #define	IGB_CAPS							\
759     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
760     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |	\
761     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 |\
762     IFCAP_TSO6
763 
764 /*********************************************************************
765  *  Device initialization routine
766  *
767  *  The attach entry point is called when the driver is being loaded.
768  *  This routine identifies the type of hardware, allocates all resources
769  *  and initializes the hardware.
770  *
771  *  return 0 on success, positive on failure
772  *********************************************************************/
773 static int
774 em_if_attach_pre(if_ctx_t ctx)
775 {
776 	struct adapter *adapter;
777 	if_softc_ctx_t scctx;
778 	device_t dev;
779 	struct e1000_hw *hw;
780 	int error = 0;
781 
782 	INIT_DEBUGOUT("em_if_attach_pre: begin");
783 	dev = iflib_get_dev(ctx);
784 	adapter = iflib_get_softc(ctx);
785 
786 	adapter->ctx = adapter->osdep.ctx = ctx;
787 	adapter->dev = adapter->osdep.dev = dev;
788 	scctx = adapter->shared = iflib_get_softc_ctx(ctx);
789 	adapter->media = iflib_get_media(ctx);
790 	hw = &adapter->hw;
791 
792 	adapter->tx_process_limit = scctx->isc_ntxd[0];
793 
794 	/* SYSCTL stuff */
795 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
796 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
797 	    OID_AUTO, "nvm", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
798 	    adapter, 0, em_sysctl_nvm_info, "I", "NVM Information");
799 
800 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
801 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
802 	    OID_AUTO, "debug", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
803 	    adapter, 0, em_sysctl_debug_info, "I", "Debug Information");
804 
805 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
806 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
807 	    OID_AUTO, "fc", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
808 	    adapter, 0, em_set_flowcntl, "I", "Flow Control");
809 
810 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
811 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
812 	    OID_AUTO, "reg_dump",
813 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter, 0,
814 	    em_get_regs, "A", "Dump Registers");
815 
816 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
817 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
818 	    OID_AUTO, "rs_dump",
819 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, adapter, 0,
820 	    em_get_rs, "I", "Dump RS indexes");
821 
822 	/* Determine hardware and mac info */
823 	em_identify_hardware(ctx);
824 
825 	scctx->isc_tx_nsegments = EM_MAX_SCATTER;
826 	scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
827 	if (bootverbose)
828 		device_printf(dev, "attach_pre capping queues at %d\n",
829 		    scctx->isc_ntxqsets_max);
830 
831 	if (hw->mac.type >= igb_mac_min) {
832 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
833 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
834 		scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
835 		scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
836 		scctx->isc_txrx = &igb_txrx;
837 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
838 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
839 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
840 		scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
841 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
842 		     CSUM_IP6_TCP | CSUM_IP6_UDP;
843 		if (hw->mac.type != e1000_82575)
844 			scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
845 		/*
846 		** Some new devices, as with ixgbe, now may
847 		** use a different BAR, so we need to keep
848 		** track of which is used.
849 		*/
850 		scctx->isc_msix_bar = pci_msix_table_bar(dev);
851 	} else if (hw->mac.type >= em_mac_min) {
852 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
853 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
854 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
855 		scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
856 		scctx->isc_txrx = &em_txrx;
857 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
858 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
859 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
860 		scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
861 		/*
862 		 * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO}
863 		 * by default as we don't have workarounds for all associated
864 		 * silicon errata.  E. g., with several MACs such as 82573E,
865 		 * TSO only works at Gigabit speed and otherwise can cause the
866 		 * hardware to hang (which also would be next to impossible to
867 		 * work around given that already queued TSO-using descriptors
868 		 * would need to be flushed and vlan(4) reconfigured at runtime
869 		 * in case of a link speed change).  Moreover, MACs like 82579
870 		 * still can hang at Gigabit even with all publicly documented
871 		 * TSO workarounds implemented.  Generally, the penality of
872 		 * these workarounds is rather high and may involve copying
873 		 * mbuf data around so advantages of TSO lapse.  Still, TSO may
874 		 * work for a few MACs of this class - at least when sticking
875 		 * with Gigabit - in which case users may enable TSO manually.
876 		 */
877 		scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
878 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
879 		/*
880 		 * We support MSI-X with 82574 only, but indicate to iflib(4)
881 		 * that it shall give MSI at least a try with other devices.
882 		 */
883 		if (hw->mac.type == e1000_82574) {
884 			scctx->isc_msix_bar = pci_msix_table_bar(dev);;
885 		} else {
886 			scctx->isc_msix_bar = -1;
887 			scctx->isc_disable_msix = 1;
888 		}
889 	} else {
890 		scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
891 		scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
892 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
893 		scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
894 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP;
895 		scctx->isc_txrx = &lem_txrx;
896 		scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
897 		if (hw->mac.type < e1000_82543)
898 			scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM);
899 		/* INTx only */
900 		scctx->isc_msix_bar = 0;
901 	}
902 
903 	/* Setup PCI resources */
904 	if (em_allocate_pci_resources(ctx)) {
905 		device_printf(dev, "Allocation of PCI resources failed\n");
906 		error = ENXIO;
907 		goto err_pci;
908 	}
909 
910 	/*
911 	** For ICH8 and family we need to
912 	** map the flash memory, and this
913 	** must happen after the MAC is
914 	** identified
915 	*/
916 	if ((hw->mac.type == e1000_ich8lan) ||
917 	    (hw->mac.type == e1000_ich9lan) ||
918 	    (hw->mac.type == e1000_ich10lan) ||
919 	    (hw->mac.type == e1000_pchlan) ||
920 	    (hw->mac.type == e1000_pch2lan) ||
921 	    (hw->mac.type == e1000_pch_lpt)) {
922 		int rid = EM_BAR_TYPE_FLASH;
923 		adapter->flash = bus_alloc_resource_any(dev,
924 		    SYS_RES_MEMORY, &rid, RF_ACTIVE);
925 		if (adapter->flash == NULL) {
926 			device_printf(dev, "Mapping of Flash failed\n");
927 			error = ENXIO;
928 			goto err_pci;
929 		}
930 		/* This is used in the shared code */
931 		hw->flash_address = (u8 *)adapter->flash;
932 		adapter->osdep.flash_bus_space_tag =
933 		    rman_get_bustag(adapter->flash);
934 		adapter->osdep.flash_bus_space_handle =
935 		    rman_get_bushandle(adapter->flash);
936 	}
937 	/*
938 	** In the new SPT device flash is not  a
939 	** separate BAR, rather it is also in BAR0,
940 	** so use the same tag and an offset handle for the
941 	** FLASH read/write macros in the shared code.
942 	*/
943 	else if (hw->mac.type >= e1000_pch_spt) {
944 		adapter->osdep.flash_bus_space_tag =
945 		    adapter->osdep.mem_bus_space_tag;
946 		adapter->osdep.flash_bus_space_handle =
947 		    adapter->osdep.mem_bus_space_handle
948 		    + E1000_FLASH_BASE_ADDR;
949 	}
950 
951 	/* Do Shared Code initialization */
952 	error = e1000_setup_init_funcs(hw, TRUE);
953 	if (error) {
954 		device_printf(dev, "Setup of Shared code failed, error %d\n",
955 		    error);
956 		error = ENXIO;
957 		goto err_pci;
958 	}
959 
960 	em_setup_msix(ctx);
961 	e1000_get_bus_info(hw);
962 
963 	/* Set up some sysctls for the tunable interrupt delays */
964 	em_add_int_delay_sysctl(adapter, "rx_int_delay",
965 	    "receive interrupt delay in usecs", &adapter->rx_int_delay,
966 	    E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
967 	em_add_int_delay_sysctl(adapter, "tx_int_delay",
968 	    "transmit interrupt delay in usecs", &adapter->tx_int_delay,
969 	    E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
970 	em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
971 	    "receive interrupt delay limit in usecs",
972 	    &adapter->rx_abs_int_delay,
973 	    E1000_REGISTER(hw, E1000_RADV),
974 	    em_rx_abs_int_delay_dflt);
975 	em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
976 	    "transmit interrupt delay limit in usecs",
977 	    &adapter->tx_abs_int_delay,
978 	    E1000_REGISTER(hw, E1000_TADV),
979 	    em_tx_abs_int_delay_dflt);
980 	em_add_int_delay_sysctl(adapter, "itr",
981 	    "interrupt delay limit in usecs/4",
982 	    &adapter->tx_itr,
983 	    E1000_REGISTER(hw, E1000_ITR),
984 	    DEFAULT_ITR);
985 
986 	hw->mac.autoneg = DO_AUTO_NEG;
987 	hw->phy.autoneg_wait_to_complete = FALSE;
988 	hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
989 
990 	if (hw->mac.type < em_mac_min) {
991 		e1000_init_script_state_82541(hw, TRUE);
992 		e1000_set_tbi_compatibility_82543(hw, TRUE);
993 	}
994 	/* Copper options */
995 	if (hw->phy.media_type == e1000_media_type_copper) {
996 		hw->phy.mdix = AUTO_ALL_MODES;
997 		hw->phy.disable_polarity_correction = FALSE;
998 		hw->phy.ms_type = EM_MASTER_SLAVE;
999 	}
1000 
1001 	/*
1002 	 * Set the frame limits assuming
1003 	 * standard ethernet sized frames.
1004 	 */
1005 	scctx->isc_max_frame_size = hw->mac.max_frame_size =
1006 	    ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
1007 
1008 	/*
1009 	 * This controls when hardware reports transmit completion
1010 	 * status.
1011 	 */
1012 	hw->mac.report_tx_early = 1;
1013 
1014 	/* Allocate multicast array memory. */
1015 	adapter->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
1016 	    MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1017 	if (adapter->mta == NULL) {
1018 		device_printf(dev, "Can not allocate multicast setup array\n");
1019 		error = ENOMEM;
1020 		goto err_late;
1021 	}
1022 
1023 	/* Check SOL/IDER usage */
1024 	if (e1000_check_reset_block(hw))
1025 		device_printf(dev, "PHY reset is blocked"
1026 			      " due to SOL/IDER session.\n");
1027 
1028 	/* Sysctl for setting Energy Efficient Ethernet */
1029 	hw->dev_spec.ich8lan.eee_disable = eee_setting;
1030 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1031 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1032 	    OID_AUTO, "eee_control",
1033 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1034 	    adapter, 0, em_sysctl_eee, "I",
1035 	    "Disable Energy Efficient Ethernet");
1036 
1037 	/*
1038 	** Start from a known state, this is
1039 	** important in reading the nvm and
1040 	** mac from that.
1041 	*/
1042 	e1000_reset_hw(hw);
1043 
1044 	/* Make sure we have a good EEPROM before we read from it */
1045 	if (e1000_validate_nvm_checksum(hw) < 0) {
1046 		/*
1047 		** Some PCI-E parts fail the first check due to
1048 		** the link being in sleep state, call it again,
1049 		** if it fails a second time its a real issue.
1050 		*/
1051 		if (e1000_validate_nvm_checksum(hw) < 0) {
1052 			device_printf(dev,
1053 			    "The EEPROM Checksum Is Not Valid\n");
1054 			error = EIO;
1055 			goto err_late;
1056 		}
1057 	}
1058 
1059 	/* Copy the permanent MAC address out of the EEPROM */
1060 	if (e1000_read_mac_addr(hw) < 0) {
1061 		device_printf(dev, "EEPROM read error while reading MAC"
1062 			      " address\n");
1063 		error = EIO;
1064 		goto err_late;
1065 	}
1066 
1067 	if (!em_is_valid_ether_addr(hw->mac.addr)) {
1068 		device_printf(dev, "Invalid MAC address\n");
1069 		error = EIO;
1070 		goto err_late;
1071 	}
1072 
1073 	/* Disable ULP support */
1074 	e1000_disable_ulp_lpt_lp(hw, TRUE);
1075 
1076 	/*
1077 	 * Get Wake-on-Lan and Management info for later use
1078 	 */
1079 	em_get_wakeup(ctx);
1080 
1081 	/* Enable only WOL MAGIC by default */
1082 	scctx->isc_capenable &= ~IFCAP_WOL;
1083 	if (adapter->wol != 0)
1084 		scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1085 
1086 	iflib_set_mac(ctx, hw->mac.addr);
1087 
1088 	return (0);
1089 
1090 err_late:
1091 	em_release_hw_control(adapter);
1092 err_pci:
1093 	em_free_pci_resources(ctx);
1094 	free(adapter->mta, M_DEVBUF);
1095 
1096 	return (error);
1097 }
1098 
1099 static int
1100 em_if_attach_post(if_ctx_t ctx)
1101 {
1102 	struct adapter *adapter = iflib_get_softc(ctx);
1103 	struct e1000_hw *hw = &adapter->hw;
1104 	int error = 0;
1105 
1106 	/* Setup OS specific network interface */
1107 	error = em_setup_interface(ctx);
1108 	if (error != 0) {
1109 		device_printf(adapter->dev, "Interface setup failed: %d\n", error);
1110 		goto err_late;
1111 	}
1112 
1113 	em_reset(ctx);
1114 
1115 	/* Initialize statistics */
1116 	em_update_stats_counters(adapter);
1117 	hw->mac.get_link_status = 1;
1118 	em_if_update_admin_status(ctx);
1119 	em_add_hw_stats(adapter);
1120 
1121 	/* Non-AMT based hardware can now take control from firmware */
1122 	if (adapter->has_manage && !adapter->has_amt)
1123 		em_get_hw_control(adapter);
1124 
1125 	INIT_DEBUGOUT("em_if_attach_post: end");
1126 
1127 	return (0);
1128 
1129 err_late:
1130 	/* upon attach_post() error, iflib calls _if_detach() to free resources. */
1131 	return (error);
1132 }
1133 
1134 /*********************************************************************
1135  *  Device removal routine
1136  *
1137  *  The detach entry point is called when the driver is being removed.
1138  *  This routine stops the adapter and deallocates all the resources
1139  *  that were allocated for driver operation.
1140  *
1141  *  return 0 on success, positive on failure
1142  *********************************************************************/
1143 static int
1144 em_if_detach(if_ctx_t ctx)
1145 {
1146 	struct adapter	*adapter = iflib_get_softc(ctx);
1147 
1148 	INIT_DEBUGOUT("em_if_detach: begin");
1149 
1150 	e1000_phy_hw_reset(&adapter->hw);
1151 
1152 	em_release_manageability(adapter);
1153 	em_release_hw_control(adapter);
1154 	em_free_pci_resources(ctx);
1155 	free(adapter->mta, M_DEVBUF);
1156 	adapter->mta = NULL;
1157 
1158 	return (0);
1159 }
1160 
1161 /*********************************************************************
1162  *
1163  *  Shutdown entry point
1164  *
1165  **********************************************************************/
1166 
1167 static int
1168 em_if_shutdown(if_ctx_t ctx)
1169 {
1170 	return em_if_suspend(ctx);
1171 }
1172 
1173 /*
1174  * Suspend/resume device methods.
1175  */
1176 static int
1177 em_if_suspend(if_ctx_t ctx)
1178 {
1179 	struct adapter *adapter = iflib_get_softc(ctx);
1180 
1181 	em_release_manageability(adapter);
1182 	em_release_hw_control(adapter);
1183 	em_enable_wakeup(ctx);
1184 	return (0);
1185 }
1186 
1187 static int
1188 em_if_resume(if_ctx_t ctx)
1189 {
1190 	struct adapter *adapter = iflib_get_softc(ctx);
1191 
1192 	if (adapter->hw.mac.type == e1000_pch2lan)
1193 		e1000_resume_workarounds_pchlan(&adapter->hw);
1194 	em_if_init(ctx);
1195 	em_init_manageability(adapter);
1196 
1197 	return(0);
1198 }
1199 
1200 static int
1201 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1202 {
1203 	int max_frame_size;
1204 	struct adapter *adapter = iflib_get_softc(ctx);
1205 	if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1206 
1207 	IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1208 
1209 	switch (adapter->hw.mac.type) {
1210 	case e1000_82571:
1211 	case e1000_82572:
1212 	case e1000_ich9lan:
1213 	case e1000_ich10lan:
1214 	case e1000_pch2lan:
1215 	case e1000_pch_lpt:
1216 	case e1000_pch_spt:
1217 	case e1000_pch_cnp:
1218 	case e1000_82574:
1219 	case e1000_82583:
1220 	case e1000_80003es2lan:
1221 		/* 9K Jumbo Frame size */
1222 		max_frame_size = 9234;
1223 		break;
1224 	case e1000_pchlan:
1225 		max_frame_size = 4096;
1226 		break;
1227 	case e1000_82542:
1228 	case e1000_ich8lan:
1229 		/* Adapters that do not support jumbo frames */
1230 		max_frame_size = ETHER_MAX_LEN;
1231 		break;
1232 	default:
1233 		if (adapter->hw.mac.type >= igb_mac_min)
1234 			max_frame_size = 9234;
1235 		else /* lem */
1236 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1237 	}
1238 	if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1239 		return (EINVAL);
1240 	}
1241 
1242 	scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
1243 	    mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1244 	return (0);
1245 }
1246 
1247 /*********************************************************************
1248  *  Init entry point
1249  *
1250  *  This routine is used in two ways. It is used by the stack as
1251  *  init entry point in network interface structure. It is also used
1252  *  by the driver as a hw/sw initialization routine to get to a
1253  *  consistent state.
1254  *
1255  **********************************************************************/
1256 static void
1257 em_if_init(if_ctx_t ctx)
1258 {
1259 	struct adapter *adapter = iflib_get_softc(ctx);
1260 	if_softc_ctx_t scctx = adapter->shared;
1261 	struct ifnet *ifp = iflib_get_ifp(ctx);
1262 	struct em_tx_queue *tx_que;
1263 	int i;
1264 
1265 	INIT_DEBUGOUT("em_if_init: begin");
1266 
1267 	/* Get the latest mac address, User can use a LAA */
1268 	bcopy(if_getlladdr(ifp), adapter->hw.mac.addr,
1269 	    ETHER_ADDR_LEN);
1270 
1271 	/* Put the address into the Receive Address Array */
1272 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1273 
1274 	/*
1275 	 * With the 82571 adapter, RAR[0] may be overwritten
1276 	 * when the other port is reset, we make a duplicate
1277 	 * in RAR[14] for that eventuality, this assures
1278 	 * the interface continues to function.
1279 	 */
1280 	if (adapter->hw.mac.type == e1000_82571) {
1281 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1282 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1283 		    E1000_RAR_ENTRIES - 1);
1284 	}
1285 
1286 
1287 	/* Initialize the hardware */
1288 	em_reset(ctx);
1289 	em_if_update_admin_status(ctx);
1290 
1291 	for (i = 0, tx_que = adapter->tx_queues; i < adapter->tx_num_queues; i++, tx_que++) {
1292 		struct tx_ring *txr = &tx_que->txr;
1293 
1294 		txr->tx_rs_cidx = txr->tx_rs_pidx;
1295 
1296 		/* Initialize the last processed descriptor to be the end of
1297 		 * the ring, rather than the start, so that we avoid an
1298 		 * off-by-one error when calculating how many descriptors are
1299 		 * done in the credits_update function.
1300 		 */
1301 		txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1302 	}
1303 
1304 	/* Setup VLAN support, basic and offload if available */
1305 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1306 
1307 	/* Clear bad data from Rx FIFOs */
1308 	if (adapter->hw.mac.type >= igb_mac_min)
1309 		e1000_rx_fifo_flush_82575(&adapter->hw);
1310 
1311 	/* Configure for OS presence */
1312 	em_init_manageability(adapter);
1313 
1314 	/* Prepare transmit descriptors and buffers */
1315 	em_initialize_transmit_unit(ctx);
1316 
1317 	/* Setup Multicast table */
1318 	em_if_multi_set(ctx);
1319 
1320 	adapter->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1321 	em_initialize_receive_unit(ctx);
1322 
1323 	/* Use real VLAN Filter support? */
1324 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
1325 		if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
1326 			/* Use real VLAN Filter support */
1327 			em_setup_vlan_hw_support(adapter);
1328 		else {
1329 			u32 ctrl;
1330 			ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1331 			ctrl |= E1000_CTRL_VME;
1332 			E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1333 		}
1334 	} else {
1335 		u32 ctrl;
1336 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1337 		ctrl &= ~E1000_CTRL_VME;
1338 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1339 	}
1340 
1341 	/* Don't lose promiscuous settings */
1342 	em_if_set_promisc(ctx, if_getflags(ifp));
1343 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1344 
1345 	/* MSI-X configuration for 82574 */
1346 	if (adapter->hw.mac.type == e1000_82574) {
1347 		int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1348 
1349 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1350 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1351 		/* Set the IVAR - interrupt vector routing. */
1352 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars);
1353 	} else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1354 		igb_configure_queues(adapter);
1355 
1356 	/* this clears any pending interrupts */
1357 	E1000_READ_REG(&adapter->hw, E1000_ICR);
1358 	E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
1359 
1360 	/* AMT based hardware can now take control from firmware */
1361 	if (adapter->has_manage && adapter->has_amt)
1362 		em_get_hw_control(adapter);
1363 
1364 	/* Set Energy Efficient Ethernet */
1365 	if (adapter->hw.mac.type >= igb_mac_min &&
1366 	    adapter->hw.phy.media_type == e1000_media_type_copper) {
1367 		if (adapter->hw.mac.type == e1000_i354)
1368 			e1000_set_eee_i354(&adapter->hw, TRUE, TRUE);
1369 		else
1370 			e1000_set_eee_i350(&adapter->hw, TRUE, TRUE);
1371 	}
1372 }
1373 
1374 /*********************************************************************
1375  *
1376  *  Fast Legacy/MSI Combined Interrupt Service routine
1377  *
1378  *********************************************************************/
1379 int
1380 em_intr(void *arg)
1381 {
1382 	struct adapter *adapter = arg;
1383 	if_ctx_t ctx = adapter->ctx;
1384 	u32 reg_icr;
1385 
1386 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1387 
1388 	/* Hot eject? */
1389 	if (reg_icr == 0xffffffff)
1390 		return FILTER_STRAY;
1391 
1392 	/* Definitely not our interrupt. */
1393 	if (reg_icr == 0x0)
1394 		return FILTER_STRAY;
1395 
1396 	/*
1397 	 * Starting with the 82571 chip, bit 31 should be used to
1398 	 * determine whether the interrupt belongs to us.
1399 	 */
1400 	if (adapter->hw.mac.type >= e1000_82571 &&
1401 	    (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1402 		return FILTER_STRAY;
1403 
1404 	/*
1405 	 * Only MSI-X interrupts have one-shot behavior by taking advantage
1406 	 * of the EIAC register.  Thus, explicitly disable interrupts.  This
1407 	 * also works around the MSI message reordering errata on certain
1408 	 * systems.
1409 	 */
1410 	IFDI_INTR_DISABLE(ctx);
1411 
1412 	/* Link status change */
1413 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1414 		em_handle_link(ctx);
1415 
1416 	if (reg_icr & E1000_ICR_RXO)
1417 		adapter->rx_overruns++;
1418 
1419 	return (FILTER_SCHEDULE_THREAD);
1420 }
1421 
1422 static int
1423 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1424 {
1425 	struct adapter *adapter = iflib_get_softc(ctx);
1426 	struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1427 
1428 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims);
1429 	return (0);
1430 }
1431 
1432 static int
1433 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1434 {
1435 	struct adapter *adapter = iflib_get_softc(ctx);
1436 	struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1437 
1438 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, txq->eims);
1439 	return (0);
1440 }
1441 
1442 static int
1443 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1444 {
1445 	struct adapter *adapter = iflib_get_softc(ctx);
1446 	struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1447 
1448 	E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims);
1449 	return (0);
1450 }
1451 
1452 static int
1453 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1454 {
1455 	struct adapter *adapter = iflib_get_softc(ctx);
1456 	struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1457 
1458 	E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txq->eims);
1459 	return (0);
1460 }
1461 
1462 /*********************************************************************
1463  *
1464  *  MSI-X RX Interrupt Service routine
1465  *
1466  **********************************************************************/
1467 static int
1468 em_msix_que(void *arg)
1469 {
1470 	struct em_rx_queue *que = arg;
1471 
1472 	++que->irqs;
1473 
1474 	return (FILTER_SCHEDULE_THREAD);
1475 }
1476 
1477 /*********************************************************************
1478  *
1479  *  MSI-X Link Fast Interrupt Service routine
1480  *
1481  **********************************************************************/
1482 static int
1483 em_msix_link(void *arg)
1484 {
1485 	struct adapter *adapter = arg;
1486 	u32 reg_icr;
1487 
1488 	++adapter->link_irq;
1489 	MPASS(adapter->hw.back != NULL);
1490 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1491 
1492 	if (reg_icr & E1000_ICR_RXO)
1493 		adapter->rx_overruns++;
1494 
1495 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1496 		em_handle_link(adapter->ctx);
1497 	} else if (adapter->hw.mac.type == e1000_82574) {
1498 		/* Only re-arm 82574 if em_if_update_admin_status() won't. */
1499 		E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK |
1500 		    E1000_IMS_LSC);
1501 	}
1502 
1503 	if (adapter->hw.mac.type == e1000_82574) {
1504 		/*
1505 		 * Because we must read the ICR for this interrupt it may
1506 		 * clear other causes using autoclear, for this reason we
1507 		 * simply create a soft interrupt for all these vectors.
1508 		 */
1509 		if (reg_icr)
1510 			E1000_WRITE_REG(&adapter->hw, E1000_ICS, adapter->ims);
1511 	} else {
1512 		/* Re-arm unconditionally */
1513 		E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC);
1514 		E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
1515 	}
1516 
1517 	return (FILTER_HANDLED);
1518 }
1519 
1520 static void
1521 em_handle_link(void *context)
1522 {
1523 	if_ctx_t ctx = context;
1524 	struct adapter *adapter = iflib_get_softc(ctx);
1525 
1526 	adapter->hw.mac.get_link_status = 1;
1527 	iflib_admin_intr_deferred(ctx);
1528 }
1529 
1530 /*********************************************************************
1531  *
1532  *  Media Ioctl callback
1533  *
1534  *  This routine is called whenever the user queries the status of
1535  *  the interface using ifconfig.
1536  *
1537  **********************************************************************/
1538 static void
1539 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1540 {
1541 	struct adapter *adapter = iflib_get_softc(ctx);
1542 	u_char fiber_type = IFM_1000_SX;
1543 
1544 	INIT_DEBUGOUT("em_if_media_status: begin");
1545 
1546 	iflib_admin_intr_deferred(ctx);
1547 
1548 	ifmr->ifm_status = IFM_AVALID;
1549 	ifmr->ifm_active = IFM_ETHER;
1550 
1551 	if (!adapter->link_active) {
1552 		return;
1553 	}
1554 
1555 	ifmr->ifm_status |= IFM_ACTIVE;
1556 
1557 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
1558 	    (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1559 		if (adapter->hw.mac.type == e1000_82545)
1560 			fiber_type = IFM_1000_LX;
1561 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1562 	} else {
1563 		switch (adapter->link_speed) {
1564 		case 10:
1565 			ifmr->ifm_active |= IFM_10_T;
1566 			break;
1567 		case 100:
1568 			ifmr->ifm_active |= IFM_100_TX;
1569 			break;
1570 		case 1000:
1571 			ifmr->ifm_active |= IFM_1000_T;
1572 			break;
1573 		}
1574 		if (adapter->link_duplex == FULL_DUPLEX)
1575 			ifmr->ifm_active |= IFM_FDX;
1576 		else
1577 			ifmr->ifm_active |= IFM_HDX;
1578 	}
1579 }
1580 
1581 /*********************************************************************
1582  *
1583  *  Media Ioctl callback
1584  *
1585  *  This routine is called when the user changes speed/duplex using
1586  *  media/mediopt option with ifconfig.
1587  *
1588  **********************************************************************/
1589 static int
1590 em_if_media_change(if_ctx_t ctx)
1591 {
1592 	struct adapter *adapter = iflib_get_softc(ctx);
1593 	struct ifmedia *ifm = iflib_get_media(ctx);
1594 
1595 	INIT_DEBUGOUT("em_if_media_change: begin");
1596 
1597 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1598 		return (EINVAL);
1599 
1600 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1601 	case IFM_AUTO:
1602 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1603 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1604 		break;
1605 	case IFM_1000_LX:
1606 	case IFM_1000_SX:
1607 	case IFM_1000_T:
1608 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1609 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1610 		break;
1611 	case IFM_100_TX:
1612 		adapter->hw.mac.autoneg = FALSE;
1613 		adapter->hw.phy.autoneg_advertised = 0;
1614 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1615 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1616 		else
1617 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1618 		break;
1619 	case IFM_10_T:
1620 		adapter->hw.mac.autoneg = FALSE;
1621 		adapter->hw.phy.autoneg_advertised = 0;
1622 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1623 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1624 		else
1625 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1626 		break;
1627 	default:
1628 		device_printf(adapter->dev, "Unsupported media type\n");
1629 	}
1630 
1631 	em_if_init(ctx);
1632 
1633 	return (0);
1634 }
1635 
1636 static int
1637 em_if_set_promisc(if_ctx_t ctx, int flags)
1638 {
1639 	struct adapter *adapter = iflib_get_softc(ctx);
1640 	u32 reg_rctl;
1641 
1642 	em_disable_promisc(ctx);
1643 
1644 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1645 
1646 	if (flags & IFF_PROMISC) {
1647 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1648 		/* Turn this on if you want to see bad packets */
1649 		if (em_debug_sbp)
1650 			reg_rctl |= E1000_RCTL_SBP;
1651 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1652 	} else if (flags & IFF_ALLMULTI) {
1653 		reg_rctl |= E1000_RCTL_MPE;
1654 		reg_rctl &= ~E1000_RCTL_UPE;
1655 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1656 	}
1657 	return (0);
1658 }
1659 
1660 static void
1661 em_disable_promisc(if_ctx_t ctx)
1662 {
1663 	struct adapter *adapter = iflib_get_softc(ctx);
1664 	struct ifnet *ifp = iflib_get_ifp(ctx);
1665 	u32 reg_rctl;
1666 	int mcnt = 0;
1667 
1668 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1669 	reg_rctl &= (~E1000_RCTL_UPE);
1670 	if (if_getflags(ifp) & IFF_ALLMULTI)
1671 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1672 	else
1673 		mcnt = if_llmaddr_count(ifp);
1674 	/* Don't disable if in MAX groups */
1675 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1676 		reg_rctl &=  (~E1000_RCTL_MPE);
1677 	reg_rctl &=  (~E1000_RCTL_SBP);
1678 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1679 }
1680 
1681 
1682 static u_int
1683 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1684 {
1685 	u8 *mta = arg;
1686 
1687 	if (cnt == MAX_NUM_MULTICAST_ADDRESSES)
1688 		return (1);
1689 
1690 	bcopy(LLADDR(sdl), &mta[cnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1691 
1692 	return (1);
1693 }
1694 
1695 /*********************************************************************
1696  *  Multicast Update
1697  *
1698  *  This routine is called whenever multicast address list is updated.
1699  *
1700  **********************************************************************/
1701 
1702 static void
1703 em_if_multi_set(if_ctx_t ctx)
1704 {
1705 	struct adapter *adapter = iflib_get_softc(ctx);
1706 	struct ifnet *ifp = iflib_get_ifp(ctx);
1707 	u32 reg_rctl = 0;
1708 	u8  *mta; /* Multicast array memory */
1709 	int mcnt = 0;
1710 
1711 	IOCTL_DEBUGOUT("em_set_multi: begin");
1712 
1713 	mta = adapter->mta;
1714 	bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1715 
1716 	if (adapter->hw.mac.type == e1000_82542 &&
1717 	    adapter->hw.revision_id == E1000_REVISION_2) {
1718 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1719 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1720 			e1000_pci_clear_mwi(&adapter->hw);
1721 		reg_rctl |= E1000_RCTL_RST;
1722 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1723 		msec_delay(5);
1724 	}
1725 
1726 	mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
1727 
1728 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1729 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1730 		reg_rctl |= E1000_RCTL_MPE;
1731 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1732 	} else
1733 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1734 
1735 	if (adapter->hw.mac.type == e1000_82542 &&
1736 	    adapter->hw.revision_id == E1000_REVISION_2) {
1737 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1738 		reg_rctl &= ~E1000_RCTL_RST;
1739 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1740 		msec_delay(5);
1741 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1742 			e1000_pci_set_mwi(&adapter->hw);
1743 	}
1744 }
1745 
1746 /*********************************************************************
1747  *  Timer routine
1748  *
1749  *  This routine schedules em_if_update_admin_status() to check for
1750  *  link status and to gather statistics as well as to perform some
1751  *  controller-specific hardware patting.
1752  *
1753  **********************************************************************/
1754 static void
1755 em_if_timer(if_ctx_t ctx, uint16_t qid)
1756 {
1757 
1758 	if (qid != 0)
1759 		return;
1760 
1761 	iflib_admin_intr_deferred(ctx);
1762 }
1763 
1764 static void
1765 em_if_update_admin_status(if_ctx_t ctx)
1766 {
1767 	struct adapter *adapter = iflib_get_softc(ctx);
1768 	struct e1000_hw *hw = &adapter->hw;
1769 	device_t dev = iflib_get_dev(ctx);
1770 	u32 link_check, thstat, ctrl;
1771 
1772 	link_check = thstat = ctrl = 0;
1773 	/* Get the cached link value or read phy for real */
1774 	switch (hw->phy.media_type) {
1775 	case e1000_media_type_copper:
1776 		if (hw->mac.get_link_status) {
1777 			if (hw->mac.type == e1000_pch_spt)
1778 				msec_delay(50);
1779 			/* Do the work to read phy */
1780 			e1000_check_for_link(hw);
1781 			link_check = !hw->mac.get_link_status;
1782 			if (link_check) /* ESB2 fix */
1783 				e1000_cfg_on_link_up(hw);
1784 		} else {
1785 			link_check = TRUE;
1786 		}
1787 		break;
1788 	case e1000_media_type_fiber:
1789 		e1000_check_for_link(hw);
1790 		link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1791 			    E1000_STATUS_LU);
1792 		break;
1793 	case e1000_media_type_internal_serdes:
1794 		e1000_check_for_link(hw);
1795 		link_check = hw->mac.serdes_has_link;
1796 		break;
1797 	/* VF device is type_unknown */
1798 	case e1000_media_type_unknown:
1799 		e1000_check_for_link(hw);
1800 		link_check = !hw->mac.get_link_status;
1801 		/* FALLTHROUGH */
1802 	default:
1803 		break;
1804 	}
1805 
1806 	/* Check for thermal downshift or shutdown */
1807 	if (hw->mac.type == e1000_i350) {
1808 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1809 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1810 	}
1811 
1812 	/* Now check for a transition */
1813 	if (link_check && (adapter->link_active == 0)) {
1814 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
1815 		    &adapter->link_duplex);
1816 		/* Check if we must disable SPEED_MODE bit on PCI-E */
1817 		if ((adapter->link_speed != SPEED_1000) &&
1818 		    ((hw->mac.type == e1000_82571) ||
1819 		    (hw->mac.type == e1000_82572))) {
1820 			int tarc0;
1821 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1822 			tarc0 &= ~TARC_SPEED_MODE_BIT;
1823 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1824 		}
1825 		if (bootverbose)
1826 			device_printf(dev, "Link is up %d Mbps %s\n",
1827 			    adapter->link_speed,
1828 			    ((adapter->link_duplex == FULL_DUPLEX) ?
1829 			    "Full Duplex" : "Half Duplex"));
1830 		adapter->link_active = 1;
1831 		adapter->smartspeed = 0;
1832 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
1833 		    E1000_CTRL_EXT_LINK_MODE_GMII &&
1834 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1835 			device_printf(dev, "Link: thermal downshift\n");
1836 		/* Delay Link Up for Phy update */
1837 		if (((hw->mac.type == e1000_i210) ||
1838 		    (hw->mac.type == e1000_i211)) &&
1839 		    (hw->phy.id == I210_I_PHY_ID))
1840 			msec_delay(I210_LINK_DELAY);
1841 		/* Reset if the media type changed. */
1842 		if (hw->dev_spec._82575.media_changed &&
1843 		    hw->mac.type >= igb_mac_min) {
1844 			hw->dev_spec._82575.media_changed = false;
1845 			adapter->flags |= IGB_MEDIA_RESET;
1846 			em_reset(ctx);
1847 		}
1848 		iflib_link_state_change(ctx, LINK_STATE_UP,
1849 		    IF_Mbps(adapter->link_speed));
1850 	} else if (!link_check && (adapter->link_active == 1)) {
1851 		adapter->link_speed = 0;
1852 		adapter->link_duplex = 0;
1853 		adapter->link_active = 0;
1854 		iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
1855 	}
1856 	em_update_stats_counters(adapter);
1857 
1858 	/* Reset LAA into RAR[0] on 82571 */
1859 	if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
1860 		e1000_rar_set(hw, hw->mac.addr, 0);
1861 
1862 	if (hw->mac.type < em_mac_min)
1863 		lem_smartspeed(adapter);
1864 	else if (hw->mac.type == e1000_82574 &&
1865 	    adapter->intr_type == IFLIB_INTR_MSIX)
1866 		E1000_WRITE_REG(hw, E1000_IMS, EM_MSIX_LINK | E1000_IMS_LSC);
1867 }
1868 
1869 static void
1870 em_if_watchdog_reset(if_ctx_t ctx)
1871 {
1872 	struct adapter *adapter = iflib_get_softc(ctx);
1873 
1874 	/*
1875 	 * Just count the event; iflib(4) will already trigger a
1876 	 * sufficient reset of the controller.
1877 	 */
1878 	adapter->watchdog_events++;
1879 }
1880 
1881 /*********************************************************************
1882  *
1883  *  This routine disables all traffic on the adapter by issuing a
1884  *  global reset on the MAC.
1885  *
1886  **********************************************************************/
1887 static void
1888 em_if_stop(if_ctx_t ctx)
1889 {
1890 	struct adapter *adapter = iflib_get_softc(ctx);
1891 
1892 	INIT_DEBUGOUT("em_if_stop: begin");
1893 
1894 	e1000_reset_hw(&adapter->hw);
1895 	if (adapter->hw.mac.type >= e1000_82544)
1896 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0);
1897 
1898 	e1000_led_off(&adapter->hw);
1899 	e1000_cleanup_led(&adapter->hw);
1900 }
1901 
1902 /*********************************************************************
1903  *
1904  *  Determine hardware revision.
1905  *
1906  **********************************************************************/
1907 static void
1908 em_identify_hardware(if_ctx_t ctx)
1909 {
1910 	device_t dev = iflib_get_dev(ctx);
1911 	struct adapter *adapter = iflib_get_softc(ctx);
1912 
1913 	/* Make sure our PCI config space has the necessary stuff set */
1914 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1915 
1916 	/* Save off the information about this board */
1917 	adapter->hw.vendor_id = pci_get_vendor(dev);
1918 	adapter->hw.device_id = pci_get_device(dev);
1919 	adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1920 	adapter->hw.subsystem_vendor_id =
1921 	    pci_read_config(dev, PCIR_SUBVEND_0, 2);
1922 	adapter->hw.subsystem_device_id =
1923 	    pci_read_config(dev, PCIR_SUBDEV_0, 2);
1924 
1925 	/* Do Shared Code Init and Setup */
1926 	if (e1000_set_mac_type(&adapter->hw)) {
1927 		device_printf(dev, "Setup init failure\n");
1928 		return;
1929 	}
1930 }
1931 
1932 static int
1933 em_allocate_pci_resources(if_ctx_t ctx)
1934 {
1935 	struct adapter *adapter = iflib_get_softc(ctx);
1936 	device_t dev = iflib_get_dev(ctx);
1937 	int rid, val;
1938 
1939 	rid = PCIR_BAR(0);
1940 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1941 	    &rid, RF_ACTIVE);
1942 	if (adapter->memory == NULL) {
1943 		device_printf(dev, "Unable to allocate bus resource: memory\n");
1944 		return (ENXIO);
1945 	}
1946 	adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->memory);
1947 	adapter->osdep.mem_bus_space_handle =
1948 	    rman_get_bushandle(adapter->memory);
1949 	adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
1950 
1951 	/* Only older adapters use IO mapping */
1952 	if (adapter->hw.mac.type < em_mac_min &&
1953 	    adapter->hw.mac.type > e1000_82543) {
1954 		/* Figure our where our IO BAR is ? */
1955 		for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1956 			val = pci_read_config(dev, rid, 4);
1957 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1958 				break;
1959 			}
1960 			rid += 4;
1961 			/* check for 64bit BAR */
1962 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1963 				rid += 4;
1964 		}
1965 		if (rid >= PCIR_CIS) {
1966 			device_printf(dev, "Unable to locate IO BAR\n");
1967 			return (ENXIO);
1968 		}
1969 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
1970 		    &rid, RF_ACTIVE);
1971 		if (adapter->ioport == NULL) {
1972 			device_printf(dev, "Unable to allocate bus resource: "
1973 			    "ioport\n");
1974 			return (ENXIO);
1975 		}
1976 		adapter->hw.io_base = 0;
1977 		adapter->osdep.io_bus_space_tag =
1978 		    rman_get_bustag(adapter->ioport);
1979 		adapter->osdep.io_bus_space_handle =
1980 		    rman_get_bushandle(adapter->ioport);
1981 	}
1982 
1983 	adapter->hw.back = &adapter->osdep;
1984 
1985 	return (0);
1986 }
1987 
1988 /*********************************************************************
1989  *
1990  *  Set up the MSI-X Interrupt handlers
1991  *
1992  **********************************************************************/
1993 static int
1994 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
1995 {
1996 	struct adapter *adapter = iflib_get_softc(ctx);
1997 	struct em_rx_queue *rx_que = adapter->rx_queues;
1998 	struct em_tx_queue *tx_que = adapter->tx_queues;
1999 	int error, rid, i, vector = 0, rx_vectors;
2000 	char buf[16];
2001 
2002 	/* First set up ring resources */
2003 	for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) {
2004 		rid = vector + 1;
2005 		snprintf(buf, sizeof(buf), "rxq%d", i);
2006 		error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
2007 		if (error) {
2008 			device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
2009 			adapter->rx_num_queues = i + 1;
2010 			goto fail;
2011 		}
2012 
2013 		rx_que->msix =  vector;
2014 
2015 		/*
2016 		 * Set the bit to enable interrupt
2017 		 * in E1000_IMS -- bits 20 and 21
2018 		 * are for RX0 and RX1, note this has
2019 		 * NOTHING to do with the MSI-X vector
2020 		 */
2021 		if (adapter->hw.mac.type == e1000_82574) {
2022 			rx_que->eims = 1 << (20 + i);
2023 			adapter->ims |= rx_que->eims;
2024 			adapter->ivars |= (8 | rx_que->msix) << (i * 4);
2025 		} else if (adapter->hw.mac.type == e1000_82575)
2026 			rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2027 		else
2028 			rx_que->eims = 1 << vector;
2029 	}
2030 	rx_vectors = vector;
2031 
2032 	vector = 0;
2033 	for (i = 0; i < adapter->tx_num_queues; i++, tx_que++, vector++) {
2034 		snprintf(buf, sizeof(buf), "txq%d", i);
2035 		tx_que = &adapter->tx_queues[i];
2036 		iflib_softirq_alloc_generic(ctx,
2037 		    &adapter->rx_queues[i % adapter->rx_num_queues].que_irq,
2038 		    IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2039 
2040 		tx_que->msix = (vector % adapter->rx_num_queues);
2041 
2042 		/*
2043 		 * Set the bit to enable interrupt
2044 		 * in E1000_IMS -- bits 22 and 23
2045 		 * are for TX0 and TX1, note this has
2046 		 * NOTHING to do with the MSI-X vector
2047 		 */
2048 		if (adapter->hw.mac.type == e1000_82574) {
2049 			tx_que->eims = 1 << (22 + i);
2050 			adapter->ims |= tx_que->eims;
2051 			adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2052 		} else if (adapter->hw.mac.type == e1000_82575) {
2053 			tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2054 		} else {
2055 			tx_que->eims = 1 << i;
2056 		}
2057 	}
2058 
2059 	/* Link interrupt */
2060 	rid = rx_vectors + 1;
2061 	error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq");
2062 
2063 	if (error) {
2064 		device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
2065 		goto fail;
2066 	}
2067 	adapter->linkvec = rx_vectors;
2068 	if (adapter->hw.mac.type < igb_mac_min) {
2069 		adapter->ivars |=  (8 | rx_vectors) << 16;
2070 		adapter->ivars |= 0x80000000;
2071 	}
2072 	return (0);
2073 fail:
2074 	iflib_irq_free(ctx, &adapter->irq);
2075 	rx_que = adapter->rx_queues;
2076 	for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++)
2077 		iflib_irq_free(ctx, &rx_que->que_irq);
2078 	return (error);
2079 }
2080 
2081 static void
2082 igb_configure_queues(struct adapter *adapter)
2083 {
2084 	struct e1000_hw *hw = &adapter->hw;
2085 	struct em_rx_queue *rx_que;
2086 	struct em_tx_queue *tx_que;
2087 	u32 tmp, ivar = 0, newitr = 0;
2088 
2089 	/* First turn on RSS capability */
2090 	if (hw->mac.type != e1000_82575)
2091 		E1000_WRITE_REG(hw, E1000_GPIE,
2092 		    E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2093 		    E1000_GPIE_PBA | E1000_GPIE_NSICR);
2094 
2095 	/* Turn on MSI-X */
2096 	switch (hw->mac.type) {
2097 	case e1000_82580:
2098 	case e1000_i350:
2099 	case e1000_i354:
2100 	case e1000_i210:
2101 	case e1000_i211:
2102 	case e1000_vfadapt:
2103 	case e1000_vfadapt_i350:
2104 		/* RX entries */
2105 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2106 			u32 index = i >> 1;
2107 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2108 			rx_que = &adapter->rx_queues[i];
2109 			if (i & 1) {
2110 				ivar &= 0xFF00FFFF;
2111 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2112 			} else {
2113 				ivar &= 0xFFFFFF00;
2114 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2115 			}
2116 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2117 		}
2118 		/* TX entries */
2119 		for (int i = 0; i < adapter->tx_num_queues; i++) {
2120 			u32 index = i >> 1;
2121 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2122 			tx_que = &adapter->tx_queues[i];
2123 			if (i & 1) {
2124 				ivar &= 0x00FFFFFF;
2125 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2126 			} else {
2127 				ivar &= 0xFFFF00FF;
2128 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2129 			}
2130 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2131 			adapter->que_mask |= tx_que->eims;
2132 		}
2133 
2134 		/* And for the link interrupt */
2135 		ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2136 		adapter->link_mask = 1 << adapter->linkvec;
2137 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2138 		break;
2139 	case e1000_82576:
2140 		/* RX entries */
2141 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2142 			u32 index = i & 0x7; /* Each IVAR has two entries */
2143 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2144 			rx_que = &adapter->rx_queues[i];
2145 			if (i < 8) {
2146 				ivar &= 0xFFFFFF00;
2147 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2148 			} else {
2149 				ivar &= 0xFF00FFFF;
2150 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2151 			}
2152 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2153 			adapter->que_mask |= rx_que->eims;
2154 		}
2155 		/* TX entries */
2156 		for (int i = 0; i < adapter->tx_num_queues; i++) {
2157 			u32 index = i & 0x7; /* Each IVAR has two entries */
2158 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2159 			tx_que = &adapter->tx_queues[i];
2160 			if (i < 8) {
2161 				ivar &= 0xFFFF00FF;
2162 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2163 			} else {
2164 				ivar &= 0x00FFFFFF;
2165 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2166 			}
2167 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2168 			adapter->que_mask |= tx_que->eims;
2169 		}
2170 
2171 		/* And for the link interrupt */
2172 		ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2173 		adapter->link_mask = 1 << adapter->linkvec;
2174 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2175 		break;
2176 
2177 	case e1000_82575:
2178 		/* enable MSI-X support*/
2179 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2180 		tmp |= E1000_CTRL_EXT_PBA_CLR;
2181 		/* Auto-Mask interrupts upon ICR read. */
2182 		tmp |= E1000_CTRL_EXT_EIAME;
2183 		tmp |= E1000_CTRL_EXT_IRCA;
2184 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2185 
2186 		/* Queues */
2187 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2188 			rx_que = &adapter->rx_queues[i];
2189 			tmp = E1000_EICR_RX_QUEUE0 << i;
2190 			tmp |= E1000_EICR_TX_QUEUE0 << i;
2191 			rx_que->eims = tmp;
2192 			E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2193 			    i, rx_que->eims);
2194 			adapter->que_mask |= rx_que->eims;
2195 		}
2196 
2197 		/* Link */
2198 		E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
2199 		    E1000_EIMS_OTHER);
2200 		adapter->link_mask |= E1000_EIMS_OTHER;
2201 	default:
2202 		break;
2203 	}
2204 
2205 	/* Set the starting interrupt rate */
2206 	if (em_max_interrupt_rate > 0)
2207 		newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2208 
2209 	if (hw->mac.type == e1000_82575)
2210 		newitr |= newitr << 16;
2211 	else
2212 		newitr |= E1000_EITR_CNT_IGNR;
2213 
2214 	for (int i = 0; i < adapter->rx_num_queues; i++) {
2215 		rx_que = &adapter->rx_queues[i];
2216 		E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2217 	}
2218 
2219 	return;
2220 }
2221 
2222 static void
2223 em_free_pci_resources(if_ctx_t ctx)
2224 {
2225 	struct adapter *adapter = iflib_get_softc(ctx);
2226 	struct em_rx_queue *que = adapter->rx_queues;
2227 	device_t dev = iflib_get_dev(ctx);
2228 
2229 	/* Release all MSI-X queue resources */
2230 	if (adapter->intr_type == IFLIB_INTR_MSIX)
2231 		iflib_irq_free(ctx, &adapter->irq);
2232 
2233 	if (que != NULL) {
2234 		for (int i = 0; i < adapter->rx_num_queues; i++, que++) {
2235 			iflib_irq_free(ctx, &que->que_irq);
2236 		}
2237 	}
2238 
2239 	if (adapter->memory != NULL) {
2240 		bus_release_resource(dev, SYS_RES_MEMORY,
2241 		    rman_get_rid(adapter->memory), adapter->memory);
2242 		adapter->memory = NULL;
2243 	}
2244 
2245 	if (adapter->flash != NULL) {
2246 		bus_release_resource(dev, SYS_RES_MEMORY,
2247 		    rman_get_rid(adapter->flash), adapter->flash);
2248 		adapter->flash = NULL;
2249 	}
2250 
2251 	if (adapter->ioport != NULL) {
2252 		bus_release_resource(dev, SYS_RES_IOPORT,
2253 		    rman_get_rid(adapter->ioport), adapter->ioport);
2254 		adapter->ioport = NULL;
2255 	}
2256 }
2257 
2258 /* Set up MSI or MSI-X */
2259 static int
2260 em_setup_msix(if_ctx_t ctx)
2261 {
2262 	struct adapter *adapter = iflib_get_softc(ctx);
2263 
2264 	if (adapter->hw.mac.type == e1000_82574) {
2265 		em_enable_vectors_82574(ctx);
2266 	}
2267 	return (0);
2268 }
2269 
2270 /*********************************************************************
2271  *
2272  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2273  *
2274  **********************************************************************/
2275 static void
2276 lem_smartspeed(struct adapter *adapter)
2277 {
2278 	u16 phy_tmp;
2279 
2280 	if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
2281 	    adapter->hw.mac.autoneg == 0 ||
2282 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2283 		return;
2284 
2285 	if (adapter->smartspeed == 0) {
2286 		/* If Master/Slave config fault is asserted twice,
2287 		 * we assume back-to-back */
2288 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2289 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2290 			return;
2291 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2292 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2293 			e1000_read_phy_reg(&adapter->hw,
2294 			    PHY_1000T_CTRL, &phy_tmp);
2295 			if(phy_tmp & CR_1000T_MS_ENABLE) {
2296 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2297 				e1000_write_phy_reg(&adapter->hw,
2298 				    PHY_1000T_CTRL, phy_tmp);
2299 				adapter->smartspeed++;
2300 				if(adapter->hw.mac.autoneg &&
2301 				   !e1000_copper_link_autoneg(&adapter->hw) &&
2302 				   !e1000_read_phy_reg(&adapter->hw,
2303 				    PHY_CONTROL, &phy_tmp)) {
2304 					phy_tmp |= (MII_CR_AUTO_NEG_EN |
2305 						    MII_CR_RESTART_AUTO_NEG);
2306 					e1000_write_phy_reg(&adapter->hw,
2307 					    PHY_CONTROL, phy_tmp);
2308 				}
2309 			}
2310 		}
2311 		return;
2312 	} else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2313 		/* If still no link, perhaps using 2/3 pair cable */
2314 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2315 		phy_tmp |= CR_1000T_MS_ENABLE;
2316 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2317 		if(adapter->hw.mac.autoneg &&
2318 		   !e1000_copper_link_autoneg(&adapter->hw) &&
2319 		   !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2320 			phy_tmp |= (MII_CR_AUTO_NEG_EN |
2321 				    MII_CR_RESTART_AUTO_NEG);
2322 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2323 		}
2324 	}
2325 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2326 	if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2327 		adapter->smartspeed = 0;
2328 }
2329 
2330 /*********************************************************************
2331  *
2332  *  Initialize the DMA Coalescing feature
2333  *
2334  **********************************************************************/
2335 static void
2336 igb_init_dmac(struct adapter *adapter, u32 pba)
2337 {
2338 	device_t	dev = adapter->dev;
2339 	struct e1000_hw *hw = &adapter->hw;
2340 	u32 		dmac, reg = ~E1000_DMACR_DMAC_EN;
2341 	u16		hwm;
2342 	u16		max_frame_size;
2343 
2344 	if (hw->mac.type == e1000_i211)
2345 		return;
2346 
2347 	max_frame_size = adapter->shared->isc_max_frame_size;
2348 	if (hw->mac.type > e1000_82580) {
2349 
2350 		if (adapter->dmac == 0) { /* Disabling it */
2351 			E1000_WRITE_REG(hw, E1000_DMACR, reg);
2352 			return;
2353 		} else
2354 			device_printf(dev, "DMA Coalescing enabled\n");
2355 
2356 		/* Set starting threshold */
2357 		E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2358 
2359 		hwm = 64 * pba - max_frame_size / 16;
2360 		if (hwm < 64 * (pba - 6))
2361 			hwm = 64 * (pba - 6);
2362 		reg = E1000_READ_REG(hw, E1000_FCRTC);
2363 		reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2364 		reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2365 		    & E1000_FCRTC_RTH_COAL_MASK);
2366 		E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2367 
2368 
2369 		dmac = pba - max_frame_size / 512;
2370 		if (dmac < pba - 10)
2371 			dmac = pba - 10;
2372 		reg = E1000_READ_REG(hw, E1000_DMACR);
2373 		reg &= ~E1000_DMACR_DMACTHR_MASK;
2374 		reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2375 		    & E1000_DMACR_DMACTHR_MASK);
2376 
2377 		/* transition to L0x or L1 if available..*/
2378 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2379 
2380 		/* Check if status is 2.5Gb backplane connection
2381 		* before configuration of watchdog timer, which is
2382 		* in msec values in 12.8usec intervals
2383 		* watchdog timer= msec values in 32usec intervals
2384 		* for non 2.5Gb connection
2385 		*/
2386 		if (hw->mac.type == e1000_i354) {
2387 			int status = E1000_READ_REG(hw, E1000_STATUS);
2388 			if ((status & E1000_STATUS_2P5_SKU) &&
2389 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2390 				reg |= ((adapter->dmac * 5) >> 6);
2391 			else
2392 				reg |= (adapter->dmac >> 5);
2393 		} else {
2394 			reg |= (adapter->dmac >> 5);
2395 		}
2396 
2397 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
2398 
2399 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2400 
2401 		/* Set the interval before transition */
2402 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
2403 		if (hw->mac.type == e1000_i350)
2404 			reg |= IGB_DMCTLX_DCFLUSH_DIS;
2405 		/*
2406 		** in 2.5Gb connection, TTLX unit is 0.4 usec
2407 		** which is 0x4*2 = 0xA. But delay is still 4 usec
2408 		*/
2409 		if (hw->mac.type == e1000_i354) {
2410 			int status = E1000_READ_REG(hw, E1000_STATUS);
2411 			if ((status & E1000_STATUS_2P5_SKU) &&
2412 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2413 				reg |= 0xA;
2414 			else
2415 				reg |= 0x4;
2416 		} else {
2417 			reg |= 0x4;
2418 		}
2419 
2420 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2421 
2422 		/* free space in tx packet buffer to wake from DMA coal */
2423 		E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2424 		    (2 * max_frame_size)) >> 6);
2425 
2426 		/* make low power state decision controlled by DMA coal */
2427 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2428 		reg &= ~E1000_PCIEMISC_LX_DECISION;
2429 		E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2430 
2431 	} else if (hw->mac.type == e1000_82580) {
2432 		u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2433 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
2434 		    reg & ~E1000_PCIEMISC_LX_DECISION);
2435 		E1000_WRITE_REG(hw, E1000_DMACR, 0);
2436 	}
2437 }
2438 
2439 /*********************************************************************
2440  *
2441  *  Initialize the hardware to a configuration as specified by the
2442  *  adapter structure.
2443  *
2444  **********************************************************************/
2445 static void
2446 em_reset(if_ctx_t ctx)
2447 {
2448 	device_t dev = iflib_get_dev(ctx);
2449 	struct adapter *adapter = iflib_get_softc(ctx);
2450 	struct ifnet *ifp = iflib_get_ifp(ctx);
2451 	struct e1000_hw *hw = &adapter->hw;
2452 	u16 rx_buffer_size;
2453 	u32 pba;
2454 
2455 	INIT_DEBUGOUT("em_reset: begin");
2456 	/* Let the firmware know the OS is in control */
2457 	em_get_hw_control(adapter);
2458 
2459 	/* Set up smart power down as default off on newer adapters. */
2460 	if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2461 	    hw->mac.type == e1000_82572)) {
2462 		u16 phy_tmp = 0;
2463 
2464 		/* Speed up time to link by disabling smart power down. */
2465 		e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2466 		phy_tmp &= ~IGP02E1000_PM_SPD;
2467 		e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2468 	}
2469 
2470 	/*
2471 	 * Packet Buffer Allocation (PBA)
2472 	 * Writing PBA sets the receive portion of the buffer
2473 	 * the remainder is used for the transmit buffer.
2474 	 */
2475 	switch (hw->mac.type) {
2476 	/* Total Packet Buffer on these is 48K */
2477 	case e1000_82571:
2478 	case e1000_82572:
2479 	case e1000_80003es2lan:
2480 			pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2481 		break;
2482 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2483 			pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2484 		break;
2485 	case e1000_82574:
2486 	case e1000_82583:
2487 			pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2488 		break;
2489 	case e1000_ich8lan:
2490 		pba = E1000_PBA_8K;
2491 		break;
2492 	case e1000_ich9lan:
2493 	case e1000_ich10lan:
2494 		/* Boost Receive side for jumbo frames */
2495 		if (hw->mac.max_frame_size > 4096)
2496 			pba = E1000_PBA_14K;
2497 		else
2498 			pba = E1000_PBA_10K;
2499 		break;
2500 	case e1000_pchlan:
2501 	case e1000_pch2lan:
2502 	case e1000_pch_lpt:
2503 	case e1000_pch_spt:
2504 	case e1000_pch_cnp:
2505 		pba = E1000_PBA_26K;
2506 		break;
2507 	case e1000_82575:
2508 		pba = E1000_PBA_32K;
2509 		break;
2510 	case e1000_82576:
2511 	case e1000_vfadapt:
2512 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2513 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2514 		break;
2515 	case e1000_82580:
2516 	case e1000_i350:
2517 	case e1000_i354:
2518 	case e1000_vfadapt_i350:
2519 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2520 		pba = e1000_rxpbs_adjust_82580(pba);
2521 		break;
2522 	case e1000_i210:
2523 	case e1000_i211:
2524 		pba = E1000_PBA_34K;
2525 		break;
2526 	default:
2527 		if (hw->mac.max_frame_size > 8192)
2528 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2529 		else
2530 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2531 	}
2532 
2533 	/* Special needs in case of Jumbo frames */
2534 	if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
2535 		u32 tx_space, min_tx, min_rx;
2536 		pba = E1000_READ_REG(hw, E1000_PBA);
2537 		tx_space = pba >> 16;
2538 		pba &= 0xffff;
2539 		min_tx = (hw->mac.max_frame_size +
2540 		    sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
2541 		min_tx = roundup2(min_tx, 1024);
2542 		min_tx >>= 10;
2543 		min_rx = hw->mac.max_frame_size;
2544 		min_rx = roundup2(min_rx, 1024);
2545 		min_rx >>= 10;
2546 		if (tx_space < min_tx &&
2547 		    ((min_tx - tx_space) < pba)) {
2548 			pba = pba - (min_tx - tx_space);
2549 			/*
2550 			 * if short on rx space, rx wins
2551 			 * and must trump tx adjustment
2552 			 */
2553 			if (pba < min_rx)
2554 				pba = min_rx;
2555 		}
2556 		E1000_WRITE_REG(hw, E1000_PBA, pba);
2557 	}
2558 
2559 	if (hw->mac.type < igb_mac_min)
2560 		E1000_WRITE_REG(hw, E1000_PBA, pba);
2561 
2562 	INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
2563 
2564 	/*
2565 	 * These parameters control the automatic generation (Tx) and
2566 	 * response (Rx) to Ethernet PAUSE frames.
2567 	 * - High water mark should allow for at least two frames to be
2568 	 *   received after sending an XOFF.
2569 	 * - Low water mark works best when it is very near the high water mark.
2570 	 *   This allows the receiver to restart by sending XON when it has
2571 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
2572 	 *   restart after one full frame is pulled from the buffer. There
2573 	 *   could be several smaller frames in the buffer and if so they will
2574 	 *   not trigger the XON until their total number reduces the buffer
2575 	 *   by 1500.
2576 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2577 	 */
2578 	rx_buffer_size = (pba & 0xffff) << 10;
2579 	hw->fc.high_water = rx_buffer_size -
2580 	    roundup2(hw->mac.max_frame_size, 1024);
2581 	hw->fc.low_water = hw->fc.high_water - 1500;
2582 
2583 	if (adapter->fc) /* locally set flow control value? */
2584 		hw->fc.requested_mode = adapter->fc;
2585 	else
2586 		hw->fc.requested_mode = e1000_fc_full;
2587 
2588 	if (hw->mac.type == e1000_80003es2lan)
2589 		hw->fc.pause_time = 0xFFFF;
2590 	else
2591 		hw->fc.pause_time = EM_FC_PAUSE_TIME;
2592 
2593 	hw->fc.send_xon = TRUE;
2594 
2595 	/* Device specific overrides/settings */
2596 	switch (hw->mac.type) {
2597 	case e1000_pchlan:
2598 		/* Workaround: no TX flow ctrl for PCH */
2599 		hw->fc.requested_mode = e1000_fc_rx_pause;
2600 		hw->fc.pause_time = 0xFFFF; /* override */
2601 		if (if_getmtu(ifp) > ETHERMTU) {
2602 			hw->fc.high_water = 0x3500;
2603 			hw->fc.low_water = 0x1500;
2604 		} else {
2605 			hw->fc.high_water = 0x5000;
2606 			hw->fc.low_water = 0x3000;
2607 		}
2608 		hw->fc.refresh_time = 0x1000;
2609 		break;
2610 	case e1000_pch2lan:
2611 	case e1000_pch_lpt:
2612 	case e1000_pch_spt:
2613 	case e1000_pch_cnp:
2614 		hw->fc.high_water = 0x5C20;
2615 		hw->fc.low_water = 0x5048;
2616 		hw->fc.pause_time = 0x0650;
2617 		hw->fc.refresh_time = 0x0400;
2618 		/* Jumbos need adjusted PBA */
2619 		if (if_getmtu(ifp) > ETHERMTU)
2620 			E1000_WRITE_REG(hw, E1000_PBA, 12);
2621 		else
2622 			E1000_WRITE_REG(hw, E1000_PBA, 26);
2623 		break;
2624 	case e1000_82575:
2625 	case e1000_82576:
2626 		/* 8-byte granularity */
2627 		hw->fc.low_water = hw->fc.high_water - 8;
2628 		break;
2629 	case e1000_82580:
2630 	case e1000_i350:
2631 	case e1000_i354:
2632 	case e1000_i210:
2633 	case e1000_i211:
2634 	case e1000_vfadapt:
2635 	case e1000_vfadapt_i350:
2636 		/* 16-byte granularity */
2637 		hw->fc.low_water = hw->fc.high_water - 16;
2638 		break;
2639 	case e1000_ich9lan:
2640 	case e1000_ich10lan:
2641 		if (if_getmtu(ifp) > ETHERMTU) {
2642 			hw->fc.high_water = 0x2800;
2643 			hw->fc.low_water = hw->fc.high_water - 8;
2644 			break;
2645 		}
2646 		/* FALLTHROUGH */
2647 	default:
2648 		if (hw->mac.type == e1000_80003es2lan)
2649 			hw->fc.pause_time = 0xFFFF;
2650 		break;
2651 	}
2652 
2653 	/* Issue a global reset */
2654 	e1000_reset_hw(hw);
2655 	if (hw->mac.type >= igb_mac_min) {
2656 		E1000_WRITE_REG(hw, E1000_WUC, 0);
2657 	} else {
2658 		E1000_WRITE_REG(hw, E1000_WUFC, 0);
2659 		em_disable_aspm(adapter);
2660 	}
2661 	if (adapter->flags & IGB_MEDIA_RESET) {
2662 		e1000_setup_init_funcs(hw, TRUE);
2663 		e1000_get_bus_info(hw);
2664 		adapter->flags &= ~IGB_MEDIA_RESET;
2665 	}
2666 	/* and a re-init */
2667 	if (e1000_init_hw(hw) < 0) {
2668 		device_printf(dev, "Hardware Initialization Failed\n");
2669 		return;
2670 	}
2671 	if (hw->mac.type >= igb_mac_min)
2672 		igb_init_dmac(adapter, pba);
2673 
2674 	E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2675 	e1000_get_phy_info(hw);
2676 	e1000_check_for_link(hw);
2677 }
2678 
2679 /*
2680  * Initialise the RSS mapping for NICs that support multiple transmit/
2681  * receive rings.
2682  */
2683 
2684 #define RSSKEYLEN 10
2685 static void
2686 em_initialize_rss_mapping(struct adapter *adapter)
2687 {
2688 	uint8_t  rss_key[4 * RSSKEYLEN];
2689 	uint32_t reta = 0;
2690 	struct e1000_hw	*hw = &adapter->hw;
2691 	int i;
2692 
2693 	/*
2694 	 * Configure RSS key
2695 	 */
2696 	arc4rand(rss_key, sizeof(rss_key), 0);
2697 	for (i = 0; i < RSSKEYLEN; ++i) {
2698 		uint32_t rssrk = 0;
2699 
2700 		rssrk = EM_RSSRK_VAL(rss_key, i);
2701 		E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2702 	}
2703 
2704 	/*
2705 	 * Configure RSS redirect table in following fashion:
2706 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2707 	 */
2708 	for (i = 0; i < sizeof(reta); ++i) {
2709 		uint32_t q;
2710 
2711 		q = (i % adapter->rx_num_queues) << 7;
2712 		reta |= q << (8 * i);
2713 	}
2714 
2715 	for (i = 0; i < 32; ++i)
2716 		E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2717 
2718 	E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
2719 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2720 			E1000_MRQC_RSS_FIELD_IPV4 |
2721 			E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2722 			E1000_MRQC_RSS_FIELD_IPV6_EX |
2723 			E1000_MRQC_RSS_FIELD_IPV6);
2724 }
2725 
2726 static void
2727 igb_initialize_rss_mapping(struct adapter *adapter)
2728 {
2729 	struct e1000_hw *hw = &adapter->hw;
2730 	int i;
2731 	int queue_id;
2732 	u32 reta;
2733 	u32 rss_key[10], mrqc, shift = 0;
2734 
2735 	/* XXX? */
2736 	if (hw->mac.type == e1000_82575)
2737 		shift = 6;
2738 
2739 	/*
2740 	 * The redirection table controls which destination
2741 	 * queue each bucket redirects traffic to.
2742 	 * Each DWORD represents four queues, with the LSB
2743 	 * being the first queue in the DWORD.
2744 	 *
2745 	 * This just allocates buckets to queues using round-robin
2746 	 * allocation.
2747 	 *
2748 	 * NOTE: It Just Happens to line up with the default
2749 	 * RSS allocation method.
2750 	 */
2751 
2752 	/* Warning FM follows */
2753 	reta = 0;
2754 	for (i = 0; i < 128; i++) {
2755 #ifdef RSS
2756 		queue_id = rss_get_indirection_to_bucket(i);
2757 		/*
2758 		 * If we have more queues than buckets, we'll
2759 		 * end up mapping buckets to a subset of the
2760 		 * queues.
2761 		 *
2762 		 * If we have more buckets than queues, we'll
2763 		 * end up instead assigning multiple buckets
2764 		 * to queues.
2765 		 *
2766 		 * Both are suboptimal, but we need to handle
2767 		 * the case so we don't go out of bounds
2768 		 * indexing arrays and such.
2769 		 */
2770 		queue_id = queue_id % adapter->rx_num_queues;
2771 #else
2772 		queue_id = (i % adapter->rx_num_queues);
2773 #endif
2774 		/* Adjust if required */
2775 		queue_id = queue_id << shift;
2776 
2777 		/*
2778 		 * The low 8 bits are for hash value (n+0);
2779 		 * The next 8 bits are for hash value (n+1), etc.
2780 		 */
2781 		reta = reta >> 8;
2782 		reta = reta | ( ((uint32_t) queue_id) << 24);
2783 		if ((i & 3) == 3) {
2784 			E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2785 			reta = 0;
2786 		}
2787 	}
2788 
2789 	/* Now fill in hash table */
2790 
2791 	/*
2792 	 * MRQC: Multiple Receive Queues Command
2793 	 * Set queuing to RSS control, number depends on the device.
2794 	 */
2795 	mrqc = E1000_MRQC_ENABLE_RSS_8Q;
2796 
2797 #ifdef RSS
2798 	/* XXX ew typecasting */
2799 	rss_getkey((uint8_t *) &rss_key);
2800 #else
2801 	arc4rand(&rss_key, sizeof(rss_key), 0);
2802 #endif
2803 	for (i = 0; i < 10; i++)
2804 		E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
2805 
2806 	/*
2807 	 * Configure the RSS fields to hash upon.
2808 	 */
2809 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2810 	    E1000_MRQC_RSS_FIELD_IPV4_TCP);
2811 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2812 	    E1000_MRQC_RSS_FIELD_IPV6_TCP);
2813 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2814 	    E1000_MRQC_RSS_FIELD_IPV6_UDP);
2815 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2816 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2817 
2818 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2819 }
2820 
2821 /*********************************************************************
2822  *
2823  *  Setup networking device structure and register interface media.
2824  *
2825  **********************************************************************/
2826 static int
2827 em_setup_interface(if_ctx_t ctx)
2828 {
2829 	struct ifnet *ifp = iflib_get_ifp(ctx);
2830 	struct adapter *adapter = iflib_get_softc(ctx);
2831 	if_softc_ctx_t scctx = adapter->shared;
2832 
2833 	INIT_DEBUGOUT("em_setup_interface: begin");
2834 
2835 	/* Single Queue */
2836 	if (adapter->tx_num_queues == 1) {
2837 		if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
2838 		if_setsendqready(ifp);
2839 	}
2840 
2841 	/*
2842 	 * Specify the media types supported by this adapter and register
2843 	 * callbacks to update media and link information
2844 	 */
2845 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2846 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2847 		u_char fiber_type = IFM_1000_SX;	/* default type */
2848 
2849 		if (adapter->hw.mac.type == e1000_82545)
2850 			fiber_type = IFM_1000_LX;
2851 		ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
2852 		ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2853 	} else {
2854 		ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2855 		ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
2856 		ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2857 		ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
2858 		if (adapter->hw.phy.type != e1000_phy_ife) {
2859 			ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2860 			ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2861 		}
2862 	}
2863 	ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2864 	ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO);
2865 	return (0);
2866 }
2867 
2868 static int
2869 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
2870 {
2871 	struct adapter *adapter = iflib_get_softc(ctx);
2872 	if_softc_ctx_t scctx = adapter->shared;
2873 	int error = E1000_SUCCESS;
2874 	struct em_tx_queue *que;
2875 	int i, j;
2876 
2877 	MPASS(adapter->tx_num_queues > 0);
2878 	MPASS(adapter->tx_num_queues == ntxqsets);
2879 
2880 	/* First allocate the top level queue structs */
2881 	if (!(adapter->tx_queues =
2882 	    (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
2883 	    adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2884 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2885 		return(ENOMEM);
2886 	}
2887 
2888 	for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) {
2889 		/* Set up some basics */
2890 
2891 		struct tx_ring *txr = &que->txr;
2892 		txr->adapter = que->adapter = adapter;
2893 		que->me = txr->me =  i;
2894 
2895 		/* Allocate report status array */
2896 		if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2897 			device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
2898 			error = ENOMEM;
2899 			goto fail;
2900 		}
2901 		for (j = 0; j < scctx->isc_ntxd[0]; j++)
2902 			txr->tx_rsq[j] = QIDX_INVALID;
2903 		/* get the virtual and physical address of the hardware queues */
2904 		txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
2905 		txr->tx_paddr = paddrs[i*ntxqs];
2906 	}
2907 
2908 	if (bootverbose)
2909 		device_printf(iflib_get_dev(ctx),
2910 		    "allocated for %d tx_queues\n", adapter->tx_num_queues);
2911 	return (0);
2912 fail:
2913 	em_if_queues_free(ctx);
2914 	return (error);
2915 }
2916 
2917 static int
2918 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
2919 {
2920 	struct adapter *adapter = iflib_get_softc(ctx);
2921 	int error = E1000_SUCCESS;
2922 	struct em_rx_queue *que;
2923 	int i;
2924 
2925 	MPASS(adapter->rx_num_queues > 0);
2926 	MPASS(adapter->rx_num_queues == nrxqsets);
2927 
2928 	/* First allocate the top level queue structs */
2929 	if (!(adapter->rx_queues =
2930 	    (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
2931 	    adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2932 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2933 		error = ENOMEM;
2934 		goto fail;
2935 	}
2936 
2937 	for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) {
2938 		/* Set up some basics */
2939 		struct rx_ring *rxr = &que->rxr;
2940 		rxr->adapter = que->adapter = adapter;
2941 		rxr->que = que;
2942 		que->me = rxr->me =  i;
2943 
2944 		/* get the virtual and physical address of the hardware queues */
2945 		rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
2946 		rxr->rx_paddr = paddrs[i*nrxqs];
2947 	}
2948 
2949 	if (bootverbose)
2950 		device_printf(iflib_get_dev(ctx),
2951 		    "allocated for %d rx_queues\n", adapter->rx_num_queues);
2952 
2953 	return (0);
2954 fail:
2955 	em_if_queues_free(ctx);
2956 	return (error);
2957 }
2958 
2959 static void
2960 em_if_queues_free(if_ctx_t ctx)
2961 {
2962 	struct adapter *adapter = iflib_get_softc(ctx);
2963 	struct em_tx_queue *tx_que = adapter->tx_queues;
2964 	struct em_rx_queue *rx_que = adapter->rx_queues;
2965 
2966 	if (tx_que != NULL) {
2967 		for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
2968 			struct tx_ring *txr = &tx_que->txr;
2969 			if (txr->tx_rsq == NULL)
2970 				break;
2971 
2972 			free(txr->tx_rsq, M_DEVBUF);
2973 			txr->tx_rsq = NULL;
2974 		}
2975 		free(adapter->tx_queues, M_DEVBUF);
2976 		adapter->tx_queues = NULL;
2977 	}
2978 
2979 	if (rx_que != NULL) {
2980 		free(adapter->rx_queues, M_DEVBUF);
2981 		adapter->rx_queues = NULL;
2982 	}
2983 }
2984 
2985 /*********************************************************************
2986  *
2987  *  Enable transmit unit.
2988  *
2989  **********************************************************************/
2990 static void
2991 em_initialize_transmit_unit(if_ctx_t ctx)
2992 {
2993 	struct adapter *adapter = iflib_get_softc(ctx);
2994 	if_softc_ctx_t scctx = adapter->shared;
2995 	struct em_tx_queue *que;
2996 	struct tx_ring	*txr;
2997 	struct e1000_hw	*hw = &adapter->hw;
2998 	u32 tctl, txdctl = 0, tarc, tipg = 0;
2999 
3000 	INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
3001 
3002 	for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
3003 		u64 bus_addr;
3004 		caddr_t offp, endp;
3005 
3006 		que = &adapter->tx_queues[i];
3007 		txr = &que->txr;
3008 		bus_addr = txr->tx_paddr;
3009 
3010 		/* Clear checksum offload context. */
3011 		offp = (caddr_t)&txr->csum_flags;
3012 		endp = (caddr_t)(txr + 1);
3013 		bzero(offp, endp - offp);
3014 
3015 		/* Base and Len of TX Ring */
3016 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
3017 		    scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
3018 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
3019 		    (u32)(bus_addr >> 32));
3020 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
3021 		    (u32)bus_addr);
3022 		/* Init the HEAD/TAIL indices */
3023 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3024 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3025 
3026 		HW_DEBUGOUT2("Base = %x, Length = %x\n",
3027 		    E1000_READ_REG(hw, E1000_TDBAL(i)),
3028 		    E1000_READ_REG(hw, E1000_TDLEN(i)));
3029 
3030 		txdctl = 0; /* clear txdctl */
3031 		txdctl |= 0x1f; /* PTHRESH */
3032 		txdctl |= 1 << 8; /* HTHRESH */
3033 		txdctl |= 1 << 16;/* WTHRESH */
3034 		txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3035 		txdctl |= E1000_TXDCTL_GRAN;
3036 		txdctl |= 1 << 25; /* LWTHRESH */
3037 
3038 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3039 	}
3040 
3041 	/* Set the default values for the Tx Inter Packet Gap timer */
3042 	switch (hw->mac.type) {
3043 	case e1000_80003es2lan:
3044 		tipg = DEFAULT_82543_TIPG_IPGR1;
3045 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3046 		    E1000_TIPG_IPGR2_SHIFT;
3047 		break;
3048 	case e1000_82542:
3049 		tipg = DEFAULT_82542_TIPG_IPGT;
3050 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3051 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3052 		break;
3053 	default:
3054 		if (hw->phy.media_type == e1000_media_type_fiber ||
3055 		    hw->phy.media_type == e1000_media_type_internal_serdes)
3056 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3057 		else
3058 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3059 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3060 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3061 	}
3062 
3063 	E1000_WRITE_REG(hw, E1000_TIPG, tipg);
3064 	E1000_WRITE_REG(hw, E1000_TIDV, adapter->tx_int_delay.value);
3065 
3066 	if(hw->mac.type >= e1000_82540)
3067 		E1000_WRITE_REG(hw, E1000_TADV,
3068 		    adapter->tx_abs_int_delay.value);
3069 
3070 	if (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572) {
3071 		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3072 		tarc |= TARC_SPEED_MODE_BIT;
3073 		E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3074 	} else if (hw->mac.type == e1000_80003es2lan) {
3075 		/* errata: program both queues to unweighted RR */
3076 		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3077 		tarc |= 1;
3078 		E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3079 		tarc = E1000_READ_REG(hw, E1000_TARC(1));
3080 		tarc |= 1;
3081 		E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3082 	} else if (hw->mac.type == e1000_82574) {
3083 		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3084 		tarc |= TARC_ERRATA_BIT;
3085 		if ( adapter->tx_num_queues > 1) {
3086 			tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3087 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3088 			E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3089 		} else
3090 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3091 	}
3092 
3093 	if (adapter->tx_int_delay.value > 0)
3094 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3095 
3096 	/* Program the Transmit Control Register */
3097 	tctl = E1000_READ_REG(hw, E1000_TCTL);
3098 	tctl &= ~E1000_TCTL_CT;
3099 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3100 		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3101 
3102 	if (hw->mac.type >= e1000_82571)
3103 		tctl |= E1000_TCTL_MULR;
3104 
3105 	/* This write will effectively turn on the transmit unit. */
3106 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
3107 
3108 	/* SPT and KBL errata workarounds */
3109 	if (hw->mac.type == e1000_pch_spt) {
3110 		u32 reg;
3111 		reg = E1000_READ_REG(hw, E1000_IOSFPC);
3112 		reg |= E1000_RCTL_RDMTS_HEX;
3113 		E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3114 		/* i218-i219 Specification Update 1.5.4.5 */
3115 		reg = E1000_READ_REG(hw, E1000_TARC(0));
3116 		reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3117 		reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3118 		E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3119 	}
3120 }
3121 
3122 /*********************************************************************
3123  *
3124  *  Enable receive unit.
3125  *
3126  **********************************************************************/
3127 
3128 static void
3129 em_initialize_receive_unit(if_ctx_t ctx)
3130 {
3131 	struct adapter *adapter = iflib_get_softc(ctx);
3132 	if_softc_ctx_t scctx = adapter->shared;
3133 	struct ifnet *ifp = iflib_get_ifp(ctx);
3134 	struct e1000_hw	*hw = &adapter->hw;
3135 	struct em_rx_queue *que;
3136 	int i;
3137 	u32 rctl, rxcsum, rfctl;
3138 
3139 	INIT_DEBUGOUT("em_initialize_receive_units: begin");
3140 
3141 	/*
3142 	 * Make sure receives are disabled while setting
3143 	 * up the descriptor ring
3144 	 */
3145 	rctl = E1000_READ_REG(hw, E1000_RCTL);
3146 	/* Do not disable if ever enabled on this hardware */
3147 	if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3148 		E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3149 
3150 	/* Setup the Receive Control Register */
3151 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3152 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3153 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3154 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3155 
3156 	/* Do not store bad packets */
3157 	rctl &= ~E1000_RCTL_SBP;
3158 
3159 	/* Enable Long Packet receive */
3160 	if (if_getmtu(ifp) > ETHERMTU)
3161 		rctl |= E1000_RCTL_LPE;
3162 	else
3163 		rctl &= ~E1000_RCTL_LPE;
3164 
3165 	/* Strip the CRC */
3166 	if (!em_disable_crc_stripping)
3167 		rctl |= E1000_RCTL_SECRC;
3168 
3169 	if (hw->mac.type >= e1000_82540) {
3170 		E1000_WRITE_REG(hw, E1000_RADV,
3171 		    adapter->rx_abs_int_delay.value);
3172 
3173 		/*
3174 		 * Set the interrupt throttling rate. Value is calculated
3175 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3176 		 */
3177 		E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
3178 	}
3179 	E1000_WRITE_REG(hw, E1000_RDTR, adapter->rx_int_delay.value);
3180 
3181 	/* Use extended rx descriptor formats */
3182 	rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3183 	rfctl |= E1000_RFCTL_EXTEN;
3184 	/*
3185 	 * When using MSI-X interrupts we need to throttle
3186 	 * using the EITR register (82574 only)
3187 	 */
3188 	if (hw->mac.type == e1000_82574) {
3189 		for (int i = 0; i < 4; i++)
3190 			E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3191 			    DEFAULT_ITR);
3192 		/* Disable accelerated acknowledge */
3193 		rfctl |= E1000_RFCTL_ACK_DIS;
3194 	}
3195 	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3196 
3197 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3198 	if (if_getcapenable(ifp) & IFCAP_RXCSUM &&
3199 	    hw->mac.type >= e1000_82543) {
3200 		if (adapter->tx_num_queues > 1) {
3201 			if (hw->mac.type >= igb_mac_min) {
3202 				rxcsum |= E1000_RXCSUM_PCSD;
3203 				if (hw->mac.type != e1000_82575)
3204 					rxcsum |= E1000_RXCSUM_CRCOFL;
3205 			} else
3206 				rxcsum |= E1000_RXCSUM_TUOFL |
3207 					E1000_RXCSUM_IPOFL |
3208 					E1000_RXCSUM_PCSD;
3209 		} else {
3210 			if (hw->mac.type >= igb_mac_min)
3211 				rxcsum |= E1000_RXCSUM_IPPCSE;
3212 			else
3213 				rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3214 			if (hw->mac.type > e1000_82575)
3215 				rxcsum |= E1000_RXCSUM_CRCOFL;
3216 		}
3217 	} else
3218 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3219 
3220 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3221 
3222 	if (adapter->rx_num_queues > 1) {
3223 		if (hw->mac.type >= igb_mac_min)
3224 			igb_initialize_rss_mapping(adapter);
3225 		else
3226 			em_initialize_rss_mapping(adapter);
3227 	}
3228 
3229 	/*
3230 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3231 	 * long latencies are observed, like Lenovo X60. This
3232 	 * change eliminates the problem, but since having positive
3233 	 * values in RDTR is a known source of problems on other
3234 	 * platforms another solution is being sought.
3235 	 */
3236 	if (hw->mac.type == e1000_82573)
3237 		E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3238 
3239 	for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3240 		struct rx_ring *rxr = &que->rxr;
3241 		/* Setup the Base and Length of the Rx Descriptor Ring */
3242 		u64 bus_addr = rxr->rx_paddr;
3243 #if 0
3244 		u32 rdt = adapter->rx_num_queues -1;  /* default */
3245 #endif
3246 
3247 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
3248 		    scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
3249 		E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3250 		E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3251 		/* Setup the Head and Tail Descriptor Pointers */
3252 		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3253 		E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3254 	}
3255 
3256 	/*
3257 	 * Set PTHRESH for improved jumbo performance
3258 	 * According to 10.2.5.11 of Intel 82574 Datasheet,
3259 	 * RXDCTL(1) is written whenever RXDCTL(0) is written.
3260 	 * Only write to RXDCTL(1) if there is a need for different
3261 	 * settings.
3262 	 */
3263 	if ((hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_pch2lan ||
3264 	    hw->mac.type == e1000_ich10lan) && if_getmtu(ifp) > ETHERMTU) {
3265 		u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3266 		E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3267 	} else if (hw->mac.type == e1000_82574) {
3268 		for (int i = 0; i < adapter->rx_num_queues; i++) {
3269 			u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3270 			rxdctl |= 0x20; /* PTHRESH */
3271 			rxdctl |= 4 << 8; /* HTHRESH */
3272 			rxdctl |= 4 << 16;/* WTHRESH */
3273 			rxdctl |= 1 << 24; /* Switch to granularity */
3274 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3275 		}
3276 	} else if (hw->mac.type >= igb_mac_min) {
3277 		u32 psize, srrctl = 0;
3278 
3279 		if (if_getmtu(ifp) > ETHERMTU) {
3280 			/* Set maximum packet len */
3281 			if (adapter->rx_mbuf_sz <= 4096) {
3282 				srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3283 				rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3284 			} else if (adapter->rx_mbuf_sz > 4096) {
3285 				srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3286 				rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3287 			}
3288 			psize = scctx->isc_max_frame_size;
3289 			/* are we on a vlan? */
3290 			if (ifp->if_vlantrunk != NULL)
3291 				psize += VLAN_TAG_SIZE;
3292 			E1000_WRITE_REG(hw, E1000_RLPML, psize);
3293 		} else {
3294 			srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3295 			rctl |= E1000_RCTL_SZ_2048;
3296 		}
3297 
3298 		/*
3299 		 * If TX flow control is disabled and there's >1 queue defined,
3300 		 * enable DROP.
3301 		 *
3302 		 * This drops frames rather than hanging the RX MAC for all queues.
3303 		 */
3304 		if ((adapter->rx_num_queues > 1) &&
3305 		    (adapter->fc == e1000_fc_none ||
3306 		     adapter->fc == e1000_fc_rx_pause)) {
3307 			srrctl |= E1000_SRRCTL_DROP_EN;
3308 		}
3309 			/* Setup the Base and Length of the Rx Descriptor Rings */
3310 		for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3311 			struct rx_ring *rxr = &que->rxr;
3312 			u64 bus_addr = rxr->rx_paddr;
3313 			u32 rxdctl;
3314 
3315 #ifdef notyet
3316 			/* Configure for header split? -- ignore for now */
3317 			rxr->hdr_split = igb_header_split;
3318 #else
3319 			srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3320 #endif
3321 
3322 			E1000_WRITE_REG(hw, E1000_RDLEN(i),
3323 					scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3324 			E1000_WRITE_REG(hw, E1000_RDBAH(i),
3325 					(uint32_t)(bus_addr >> 32));
3326 			E1000_WRITE_REG(hw, E1000_RDBAL(i),
3327 					(uint32_t)bus_addr);
3328 			E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3329 			/* Enable this Queue */
3330 			rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3331 			rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3332 			rxdctl &= 0xFFF00000;
3333 			rxdctl |= IGB_RX_PTHRESH;
3334 			rxdctl |= IGB_RX_HTHRESH << 8;
3335 			rxdctl |= IGB_RX_WTHRESH << 16;
3336 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3337 		}
3338 	} else if (hw->mac.type >= e1000_pch2lan) {
3339 		if (if_getmtu(ifp) > ETHERMTU)
3340 			e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
3341 		else
3342 			e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
3343 	}
3344 
3345 	/* Make sure VLAN Filters are off */
3346 	rctl &= ~E1000_RCTL_VFE;
3347 
3348 	if (hw->mac.type < igb_mac_min) {
3349 		if (adapter->rx_mbuf_sz == MCLBYTES)
3350 			rctl |= E1000_RCTL_SZ_2048;
3351 		else if (adapter->rx_mbuf_sz == MJUMPAGESIZE)
3352 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3353 		else if (adapter->rx_mbuf_sz > MJUMPAGESIZE)
3354 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3355 
3356 		/* ensure we clear use DTYPE of 00 here */
3357 		rctl &= ~0x00000C00;
3358 	}
3359 
3360 	/* Write out the settings */
3361 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3362 
3363 	return;
3364 }
3365 
3366 static void
3367 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3368 {
3369 	struct adapter *adapter = iflib_get_softc(ctx);
3370 	u32 index, bit;
3371 
3372 	index = (vtag >> 5) & 0x7F;
3373 	bit = vtag & 0x1F;
3374 	adapter->shadow_vfta[index] |= (1 << bit);
3375 	++adapter->num_vlans;
3376 }
3377 
3378 static void
3379 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3380 {
3381 	struct adapter *adapter = iflib_get_softc(ctx);
3382 	u32 index, bit;
3383 
3384 	index = (vtag >> 5) & 0x7F;
3385 	bit = vtag & 0x1F;
3386 	adapter->shadow_vfta[index] &= ~(1 << bit);
3387 	--adapter->num_vlans;
3388 }
3389 
3390 static void
3391 em_setup_vlan_hw_support(struct adapter *adapter)
3392 {
3393 	struct e1000_hw *hw = &adapter->hw;
3394 	u32 reg;
3395 
3396 	/*
3397 	 * We get here thru init_locked, meaning
3398 	 * a soft reset, this has already cleared
3399 	 * the VFTA and other state, so if there
3400 	 * have been no vlan's registered do nothing.
3401 	 */
3402 	if (adapter->num_vlans == 0)
3403 		return;
3404 
3405 	/*
3406 	 * A soft reset zero's out the VFTA, so
3407 	 * we need to repopulate it now.
3408 	 */
3409 	for (int i = 0; i < EM_VFTA_SIZE; i++)
3410 		if (adapter->shadow_vfta[i] != 0)
3411 			E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
3412 			    i, adapter->shadow_vfta[i]);
3413 
3414 	reg = E1000_READ_REG(hw, E1000_CTRL);
3415 	reg |= E1000_CTRL_VME;
3416 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
3417 
3418 	/* Enable the Filter Table */
3419 	reg = E1000_READ_REG(hw, E1000_RCTL);
3420 	reg &= ~E1000_RCTL_CFIEN;
3421 	reg |= E1000_RCTL_VFE;
3422 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
3423 }
3424 
3425 static void
3426 em_if_intr_enable(if_ctx_t ctx)
3427 {
3428 	struct adapter *adapter = iflib_get_softc(ctx);
3429 	struct e1000_hw *hw = &adapter->hw;
3430 	u32 ims_mask = IMS_ENABLE_MASK;
3431 
3432 	if (hw->mac.type == e1000_82574) {
3433 		E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK);
3434 		ims_mask |= adapter->ims;
3435 	}
3436 	E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3437 }
3438 
3439 static void
3440 em_if_intr_disable(if_ctx_t ctx)
3441 {
3442 	struct adapter *adapter = iflib_get_softc(ctx);
3443 	struct e1000_hw *hw = &adapter->hw;
3444 
3445 	if (hw->mac.type == e1000_82574)
3446 		E1000_WRITE_REG(hw, EM_EIAC, 0);
3447 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3448 }
3449 
3450 static void
3451 igb_if_intr_enable(if_ctx_t ctx)
3452 {
3453 	struct adapter *adapter = iflib_get_softc(ctx);
3454 	struct e1000_hw *hw = &adapter->hw;
3455 	u32 mask;
3456 
3457 	if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3458 		mask = (adapter->que_mask | adapter->link_mask);
3459 		E1000_WRITE_REG(hw, E1000_EIAC, mask);
3460 		E1000_WRITE_REG(hw, E1000_EIAM, mask);
3461 		E1000_WRITE_REG(hw, E1000_EIMS, mask);
3462 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3463 	} else
3464 		E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3465 	E1000_WRITE_FLUSH(hw);
3466 }
3467 
3468 static void
3469 igb_if_intr_disable(if_ctx_t ctx)
3470 {
3471 	struct adapter *adapter = iflib_get_softc(ctx);
3472 	struct e1000_hw *hw = &adapter->hw;
3473 
3474 	if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3475 		E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
3476 		E1000_WRITE_REG(hw, E1000_EIAC, 0);
3477 	}
3478 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3479 	E1000_WRITE_FLUSH(hw);
3480 }
3481 
3482 /*
3483  * Bit of a misnomer, what this really means is
3484  * to enable OS management of the system... aka
3485  * to disable special hardware management features
3486  */
3487 static void
3488 em_init_manageability(struct adapter *adapter)
3489 {
3490 	/* A shared code workaround */
3491 #define E1000_82542_MANC2H E1000_MANC2H
3492 	if (adapter->has_manage) {
3493 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3494 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3495 
3496 		/* disable hardware interception of ARP */
3497 		manc &= ~(E1000_MANC_ARP_EN);
3498 
3499 		/* enable receiving management packets to the host */
3500 		manc |= E1000_MANC_EN_MNG2HOST;
3501 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3502 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3503 		manc2h |= E1000_MNG2HOST_PORT_623;
3504 		manc2h |= E1000_MNG2HOST_PORT_664;
3505 		E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3506 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3507 	}
3508 }
3509 
3510 /*
3511  * Give control back to hardware management
3512  * controller if there is one.
3513  */
3514 static void
3515 em_release_manageability(struct adapter *adapter)
3516 {
3517 	if (adapter->has_manage) {
3518 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3519 
3520 		/* re-enable hardware interception of ARP */
3521 		manc |= E1000_MANC_ARP_EN;
3522 		manc &= ~E1000_MANC_EN_MNG2HOST;
3523 
3524 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3525 	}
3526 }
3527 
3528 /*
3529  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3530  * For ASF and Pass Through versions of f/w this means
3531  * that the driver is loaded. For AMT version type f/w
3532  * this means that the network i/f is open.
3533  */
3534 static void
3535 em_get_hw_control(struct adapter *adapter)
3536 {
3537 	u32 ctrl_ext, swsm;
3538 
3539 	if (adapter->vf_ifp)
3540 		return;
3541 
3542 	if (adapter->hw.mac.type == e1000_82573) {
3543 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3544 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3545 		    swsm | E1000_SWSM_DRV_LOAD);
3546 		return;
3547 	}
3548 	/* else */
3549 	ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3550 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3551 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3552 }
3553 
3554 /*
3555  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3556  * For ASF and Pass Through versions of f/w this means that
3557  * the driver is no longer loaded. For AMT versions of the
3558  * f/w this means that the network i/f is closed.
3559  */
3560 static void
3561 em_release_hw_control(struct adapter *adapter)
3562 {
3563 	u32 ctrl_ext, swsm;
3564 
3565 	if (!adapter->has_manage)
3566 		return;
3567 
3568 	if (adapter->hw.mac.type == e1000_82573) {
3569 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3570 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3571 		    swsm & ~E1000_SWSM_DRV_LOAD);
3572 		return;
3573 	}
3574 	/* else */
3575 	ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3576 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3577 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3578 	return;
3579 }
3580 
3581 static int
3582 em_is_valid_ether_addr(u8 *addr)
3583 {
3584 	char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3585 
3586 	if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3587 		return (FALSE);
3588 	}
3589 
3590 	return (TRUE);
3591 }
3592 
3593 /*
3594 ** Parse the interface capabilities with regard
3595 ** to both system management and wake-on-lan for
3596 ** later use.
3597 */
3598 static void
3599 em_get_wakeup(if_ctx_t ctx)
3600 {
3601 	struct adapter *adapter = iflib_get_softc(ctx);
3602 	device_t dev = iflib_get_dev(ctx);
3603 	u16 eeprom_data = 0, device_id, apme_mask;
3604 
3605 	adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
3606 	apme_mask = EM_EEPROM_APME;
3607 
3608 	switch (adapter->hw.mac.type) {
3609 	case e1000_82542:
3610 	case e1000_82543:
3611 		break;
3612 	case e1000_82544:
3613 		e1000_read_nvm(&adapter->hw,
3614 		    NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3615 		apme_mask = EM_82544_APME;
3616 		break;
3617 	case e1000_82546:
3618 	case e1000_82546_rev_3:
3619 		if (adapter->hw.bus.func == 1) {
3620 			e1000_read_nvm(&adapter->hw,
3621 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3622 			break;
3623 		} else
3624 			e1000_read_nvm(&adapter->hw,
3625 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3626 		break;
3627 	case e1000_82573:
3628 	case e1000_82583:
3629 		adapter->has_amt = TRUE;
3630 		/* FALLTHROUGH */
3631 	case e1000_82571:
3632 	case e1000_82572:
3633 	case e1000_80003es2lan:
3634 		if (adapter->hw.bus.func == 1) {
3635 			e1000_read_nvm(&adapter->hw,
3636 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3637 			break;
3638 		} else
3639 			e1000_read_nvm(&adapter->hw,
3640 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3641 		break;
3642 	case e1000_ich8lan:
3643 	case e1000_ich9lan:
3644 	case e1000_ich10lan:
3645 	case e1000_pchlan:
3646 	case e1000_pch2lan:
3647 	case e1000_pch_lpt:
3648 	case e1000_pch_spt:
3649 	case e1000_82575:	/* listing all igb devices */
3650 	case e1000_82576:
3651 	case e1000_82580:
3652 	case e1000_i350:
3653 	case e1000_i354:
3654 	case e1000_i210:
3655 	case e1000_i211:
3656 	case e1000_vfadapt:
3657 	case e1000_vfadapt_i350:
3658 		apme_mask = E1000_WUC_APME;
3659 		adapter->has_amt = TRUE;
3660 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
3661 		break;
3662 	default:
3663 		e1000_read_nvm(&adapter->hw,
3664 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3665 		break;
3666 	}
3667 	if (eeprom_data & apme_mask)
3668 		adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
3669 	/*
3670 	 * We have the eeprom settings, now apply the special cases
3671 	 * where the eeprom may be wrong or the board won't support
3672 	 * wake on lan on a particular port
3673 	 */
3674 	device_id = pci_get_device(dev);
3675 	switch (device_id) {
3676 	case E1000_DEV_ID_82546GB_PCIE:
3677 		adapter->wol = 0;
3678 		break;
3679 	case E1000_DEV_ID_82546EB_FIBER:
3680 	case E1000_DEV_ID_82546GB_FIBER:
3681 		/* Wake events only supported on port A for dual fiber
3682 		 * regardless of eeprom setting */
3683 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3684 		    E1000_STATUS_FUNC_1)
3685 			adapter->wol = 0;
3686 		break;
3687 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
3688 		/* if quad port adapter, disable WoL on all but port A */
3689 		if (global_quad_port_a != 0)
3690 			adapter->wol = 0;
3691 		/* Reset for multiple quad port adapters */
3692 		if (++global_quad_port_a == 4)
3693 			global_quad_port_a = 0;
3694 		break;
3695 	case E1000_DEV_ID_82571EB_FIBER:
3696 		/* Wake events only supported on port A for dual fiber
3697 		 * regardless of eeprom setting */
3698 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3699 		    E1000_STATUS_FUNC_1)
3700 			adapter->wol = 0;
3701 		break;
3702 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
3703 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
3704 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
3705 		/* if quad port adapter, disable WoL on all but port A */
3706 		if (global_quad_port_a != 0)
3707 			adapter->wol = 0;
3708 		/* Reset for multiple quad port adapters */
3709 		if (++global_quad_port_a == 4)
3710 			global_quad_port_a = 0;
3711 		break;
3712 	}
3713 	return;
3714 }
3715 
3716 
3717 /*
3718  * Enable PCI Wake On Lan capability
3719  */
3720 static void
3721 em_enable_wakeup(if_ctx_t ctx)
3722 {
3723 	struct adapter *adapter = iflib_get_softc(ctx);
3724 	device_t dev = iflib_get_dev(ctx);
3725 	if_t ifp = iflib_get_ifp(ctx);
3726 	int error = 0;
3727 	u32 pmc, ctrl, ctrl_ext, rctl;
3728 	u16 status;
3729 
3730 	if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
3731 		return;
3732 
3733 	/*
3734 	 * Determine type of Wakeup: note that wol
3735 	 * is set with all bits on by default.
3736 	 */
3737 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
3738 		adapter->wol &= ~E1000_WUFC_MAG;
3739 
3740 	if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
3741 		adapter->wol &= ~E1000_WUFC_EX;
3742 
3743 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
3744 		adapter->wol &= ~E1000_WUFC_MC;
3745 	else {
3746 		rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3747 		rctl |= E1000_RCTL_MPE;
3748 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3749 	}
3750 
3751 	if (!(adapter->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
3752 		goto pme;
3753 
3754 	/* Advertise the wakeup capability */
3755 	ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
3756 	ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
3757 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
3758 
3759 	/* Keep the laser running on Fiber adapters */
3760 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3761 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
3762 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3763 		ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
3764 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext);
3765 	}
3766 
3767 	if ((adapter->hw.mac.type == e1000_ich8lan) ||
3768 	    (adapter->hw.mac.type == e1000_pchlan) ||
3769 	    (adapter->hw.mac.type == e1000_ich9lan) ||
3770 	    (adapter->hw.mac.type == e1000_ich10lan))
3771 		e1000_suspend_workarounds_ich8lan(&adapter->hw);
3772 
3773 	if ( adapter->hw.mac.type >= e1000_pchlan) {
3774 		error = em_enable_phy_wakeup(adapter);
3775 		if (error)
3776 			goto pme;
3777 	} else {
3778 		/* Enable wakeup by the MAC */
3779 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
3780 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
3781 	}
3782 
3783 	if (adapter->hw.phy.type == e1000_phy_igp_3)
3784 		e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3785 
3786 pme:
3787 	status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
3788 	status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3789 	if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
3790 		status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3791 	pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
3792 
3793 	return;
3794 }
3795 
3796 /*
3797  * WOL in the newer chipset interfaces (pchlan)
3798  * require thing to be copied into the phy
3799  */
3800 static int
3801 em_enable_phy_wakeup(struct adapter *adapter)
3802 {
3803 	struct e1000_hw *hw = &adapter->hw;
3804 	u32 mreg, ret = 0;
3805 	u16 preg;
3806 
3807 	/* copy MAC RARs to PHY RARs */
3808 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
3809 
3810 	/* copy MAC MTA to PHY MTA */
3811 	for (int i = 0; i < hw->mac.mta_reg_count; i++) {
3812 		mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
3813 		e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
3814 		e1000_write_phy_reg(hw, BM_MTA(i) + 1,
3815 		    (u16)((mreg >> 16) & 0xFFFF));
3816 	}
3817 
3818 	/* configure PHY Rx Control register */
3819 	e1000_read_phy_reg(hw, BM_RCTL, &preg);
3820 	mreg = E1000_READ_REG(hw, E1000_RCTL);
3821 	if (mreg & E1000_RCTL_UPE)
3822 		preg |= BM_RCTL_UPE;
3823 	if (mreg & E1000_RCTL_MPE)
3824 		preg |= BM_RCTL_MPE;
3825 	preg &= ~(BM_RCTL_MO_MASK);
3826 	if (mreg & E1000_RCTL_MO_3)
3827 		preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
3828 				<< BM_RCTL_MO_SHIFT);
3829 	if (mreg & E1000_RCTL_BAM)
3830 		preg |= BM_RCTL_BAM;
3831 	if (mreg & E1000_RCTL_PMCF)
3832 		preg |= BM_RCTL_PMCF;
3833 	mreg = E1000_READ_REG(hw, E1000_CTRL);
3834 	if (mreg & E1000_CTRL_RFCE)
3835 		preg |= BM_RCTL_RFCE;
3836 	e1000_write_phy_reg(hw, BM_RCTL, preg);
3837 
3838 	/* enable PHY wakeup in MAC register */
3839 	E1000_WRITE_REG(hw, E1000_WUC,
3840 	    E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
3841 	E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol);
3842 
3843 	/* configure and enable PHY wakeup in PHY registers */
3844 	e1000_write_phy_reg(hw, BM_WUFC, adapter->wol);
3845 	e1000_write_phy_reg(hw, BM_WUC, E1000_WUC_PME_EN);
3846 
3847 	/* activate PHY wakeup */
3848 	ret = hw->phy.ops.acquire(hw);
3849 	if (ret) {
3850 		printf("Could not acquire PHY\n");
3851 		return ret;
3852 	}
3853 	e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3854 	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
3855 	ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
3856 	if (ret) {
3857 		printf("Could not read PHY page 769\n");
3858 		goto out;
3859 	}
3860 	preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
3861 	ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
3862 	if (ret)
3863 		printf("Could not set PHY Host Wakeup bit\n");
3864 out:
3865 	hw->phy.ops.release(hw);
3866 
3867 	return ret;
3868 }
3869 
3870 static void
3871 em_if_led_func(if_ctx_t ctx, int onoff)
3872 {
3873 	struct adapter *adapter = iflib_get_softc(ctx);
3874 
3875 	if (onoff) {
3876 		e1000_setup_led(&adapter->hw);
3877 		e1000_led_on(&adapter->hw);
3878 	} else {
3879 		e1000_led_off(&adapter->hw);
3880 		e1000_cleanup_led(&adapter->hw);
3881 	}
3882 }
3883 
3884 /*
3885  * Disable the L0S and L1 LINK states
3886  */
3887 static void
3888 em_disable_aspm(struct adapter *adapter)
3889 {
3890 	int base, reg;
3891 	u16 link_cap,link_ctrl;
3892 	device_t dev = adapter->dev;
3893 
3894 	switch (adapter->hw.mac.type) {
3895 	case e1000_82573:
3896 	case e1000_82574:
3897 	case e1000_82583:
3898 		break;
3899 	default:
3900 		return;
3901 	}
3902 	if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
3903 		return;
3904 	reg = base + PCIER_LINK_CAP;
3905 	link_cap = pci_read_config(dev, reg, 2);
3906 	if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
3907 		return;
3908 	reg = base + PCIER_LINK_CTL;
3909 	link_ctrl = pci_read_config(dev, reg, 2);
3910 	link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
3911 	pci_write_config(dev, reg, link_ctrl, 2);
3912 	return;
3913 }
3914 
3915 /**********************************************************************
3916  *
3917  *  Update the board statistics counters.
3918  *
3919  **********************************************************************/
3920 static void
3921 em_update_stats_counters(struct adapter *adapter)
3922 {
3923 	u64 prev_xoffrxc = adapter->stats.xoffrxc;
3924 
3925 	if(adapter->hw.phy.media_type == e1000_media_type_copper ||
3926 	   (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3927 		adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3928 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3929 	}
3930 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3931 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3932 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3933 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3934 
3935 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3936 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3937 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3938 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3939 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3940 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3941 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3942 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3943 	/*
3944 	 ** For watchdog management we need to know if we have been
3945 	 ** paused during the last interval, so capture that here.
3946 	*/
3947 	if (adapter->stats.xoffrxc != prev_xoffrxc)
3948 		adapter->shared->isc_pause_frames = 1;
3949 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3950 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3951 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3952 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3953 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3954 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3955 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3956 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3957 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3958 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3959 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3960 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3961 
3962 	/* For the 64-bit byte counters the low dword must be read first. */
3963 	/* Both registers clear on the read of the high dword */
3964 
3965 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) +
3966 	    ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32);
3967 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) +
3968 	    ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32);
3969 
3970 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3971 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3972 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3973 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3974 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3975 
3976 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3977 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3978 
3979 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3980 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3981 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3982 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3983 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3984 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3985 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3986 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3987 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3988 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3989 
3990 	/* Interrupt Counts */
3991 
3992 	adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC);
3993 	adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC);
3994 	adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC);
3995 	adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC);
3996 	adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC);
3997 	adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC);
3998 	adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC);
3999 	adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC);
4000 	adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC);
4001 
4002 	if (adapter->hw.mac.type >= e1000_82543) {
4003 		adapter->stats.algnerrc +=
4004 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
4005 		adapter->stats.rxerrc +=
4006 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
4007 		adapter->stats.tncrs +=
4008 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
4009 		adapter->stats.cexterr +=
4010 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
4011 		adapter->stats.tsctc +=
4012 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
4013 		adapter->stats.tsctfc +=
4014 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
4015 	}
4016 }
4017 
4018 static uint64_t
4019 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4020 {
4021 	struct adapter *adapter = iflib_get_softc(ctx);
4022 	struct ifnet *ifp = iflib_get_ifp(ctx);
4023 
4024 	switch (cnt) {
4025 	case IFCOUNTER_COLLISIONS:
4026 		return (adapter->stats.colc);
4027 	case IFCOUNTER_IERRORS:
4028 		return (adapter->dropped_pkts + adapter->stats.rxerrc +
4029 		    adapter->stats.crcerrs + adapter->stats.algnerrc +
4030 		    adapter->stats.ruc + adapter->stats.roc +
4031 		    adapter->stats.mpc + adapter->stats.cexterr);
4032 	case IFCOUNTER_OERRORS:
4033 		return (adapter->stats.ecol + adapter->stats.latecol +
4034 		    adapter->watchdog_events);
4035 	default:
4036 		return (if_get_counter_default(ifp, cnt));
4037 	}
4038 }
4039 
4040 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized
4041  * @ctx: iflib context
4042  * @event: event code to check
4043  *
4044  * Defaults to returning true for unknown events.
4045  *
4046  * @returns true if iflib needs to reinit the interface
4047  */
4048 static bool
4049 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
4050 {
4051 	switch (event) {
4052 	case IFLIB_RESTART_VLAN_CONFIG:
4053 	default:
4054 		return (true);
4055 	}
4056 }
4057 
4058 /* Export a single 32-bit register via a read-only sysctl. */
4059 static int
4060 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4061 {
4062 	struct adapter *adapter;
4063 	u_int val;
4064 
4065 	adapter = oidp->oid_arg1;
4066 	val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
4067 	return (sysctl_handle_int(oidp, &val, 0, req));
4068 }
4069 
4070 /*
4071  * Add sysctl variables, one per statistic, to the system.
4072  */
4073 static void
4074 em_add_hw_stats(struct adapter *adapter)
4075 {
4076 	device_t dev = iflib_get_dev(adapter->ctx);
4077 	struct em_tx_queue *tx_que = adapter->tx_queues;
4078 	struct em_rx_queue *rx_que = adapter->rx_queues;
4079 
4080 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4081 	struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4082 	struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4083 	struct e1000_hw_stats *stats = &adapter->stats;
4084 
4085 	struct sysctl_oid *stat_node, *queue_node, *int_node;
4086 	struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4087 
4088 #define QUEUE_NAME_LEN 32
4089 	char namebuf[QUEUE_NAME_LEN];
4090 
4091 	/* Driver Statistics */
4092 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4093 			CTLFLAG_RD, &adapter->dropped_pkts,
4094 			"Driver dropped packets");
4095 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4096 			CTLFLAG_RD, &adapter->link_irq,
4097 			"Link MSI-X IRQ Handled");
4098 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4099 			CTLFLAG_RD, &adapter->rx_overruns,
4100 			"RX overruns");
4101 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4102 			CTLFLAG_RD, &adapter->watchdog_events,
4103 			"Watchdog timeouts");
4104 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4105 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4106 	    adapter, E1000_CTRL, em_sysctl_reg_handler, "IU",
4107 	    "Device Control Register");
4108 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4109 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4110 	    adapter, E1000_RCTL, em_sysctl_reg_handler, "IU",
4111 	    "Receiver Control Register");
4112 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4113 			CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
4114 			"Flow Control High Watermark");
4115 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4116 			CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
4117 			"Flow Control Low Watermark");
4118 
4119 	for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
4120 		struct tx_ring *txr = &tx_que->txr;
4121 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4122 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4123 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
4124 		queue_list = SYSCTL_CHILDREN(queue_node);
4125 
4126 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4127 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4128 		    E1000_TDH(txr->me), em_sysctl_reg_handler, "IU",
4129 		    "Transmit Descriptor Head");
4130 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4131 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4132 		    E1000_TDT(txr->me), em_sysctl_reg_handler, "IU",
4133 		    "Transmit Descriptor Tail");
4134 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4135 				CTLFLAG_RD, &txr->tx_irq,
4136 				"Queue MSI-X Transmit Interrupts");
4137 	}
4138 
4139 	for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) {
4140 		struct rx_ring *rxr = &rx_que->rxr;
4141 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4142 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4143 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
4144 		queue_list = SYSCTL_CHILDREN(queue_node);
4145 
4146 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4147 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4148 		    E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU",
4149 		    "Receive Descriptor Head");
4150 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4151 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4152 		    E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU",
4153 		    "Receive Descriptor Tail");
4154 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
4155 				CTLFLAG_RD, &rxr->rx_irq,
4156 				"Queue MSI-X Receive Interrupts");
4157 	}
4158 
4159 	/* MAC stats get their own sub node */
4160 
4161 	stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
4162 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
4163 	stat_list = SYSCTL_CHILDREN(stat_node);
4164 
4165 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
4166 			CTLFLAG_RD, &stats->ecol,
4167 			"Excessive collisions");
4168 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
4169 			CTLFLAG_RD, &stats->scc,
4170 			"Single collisions");
4171 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
4172 			CTLFLAG_RD, &stats->mcc,
4173 			"Multiple collisions");
4174 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
4175 			CTLFLAG_RD, &stats->latecol,
4176 			"Late collisions");
4177 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
4178 			CTLFLAG_RD, &stats->colc,
4179 			"Collision Count");
4180 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
4181 			CTLFLAG_RD, &adapter->stats.symerrs,
4182 			"Symbol Errors");
4183 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
4184 			CTLFLAG_RD, &adapter->stats.sec,
4185 			"Sequence Errors");
4186 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
4187 			CTLFLAG_RD, &adapter->stats.dc,
4188 			"Defer Count");
4189 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
4190 			CTLFLAG_RD, &adapter->stats.mpc,
4191 			"Missed Packets");
4192 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
4193 			CTLFLAG_RD, &adapter->stats.rnbc,
4194 			"Receive No Buffers");
4195 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
4196 			CTLFLAG_RD, &adapter->stats.ruc,
4197 			"Receive Undersize");
4198 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
4199 			CTLFLAG_RD, &adapter->stats.rfc,
4200 			"Fragmented Packets Received ");
4201 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
4202 			CTLFLAG_RD, &adapter->stats.roc,
4203 			"Oversized Packets Received");
4204 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
4205 			CTLFLAG_RD, &adapter->stats.rjc,
4206 			"Recevied Jabber");
4207 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
4208 			CTLFLAG_RD, &adapter->stats.rxerrc,
4209 			"Receive Errors");
4210 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
4211 			CTLFLAG_RD, &adapter->stats.crcerrs,
4212 			"CRC errors");
4213 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
4214 			CTLFLAG_RD, &adapter->stats.algnerrc,
4215 			"Alignment Errors");
4216 	/* On 82575 these are collision counts */
4217 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
4218 			CTLFLAG_RD, &adapter->stats.cexterr,
4219 			"Collision/Carrier extension errors");
4220 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
4221 			CTLFLAG_RD, &adapter->stats.xonrxc,
4222 			"XON Received");
4223 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
4224 			CTLFLAG_RD, &adapter->stats.xontxc,
4225 			"XON Transmitted");
4226 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
4227 			CTLFLAG_RD, &adapter->stats.xoffrxc,
4228 			"XOFF Received");
4229 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
4230 			CTLFLAG_RD, &adapter->stats.xofftxc,
4231 			"XOFF Transmitted");
4232 
4233 	/* Packet Reception Stats */
4234 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
4235 			CTLFLAG_RD, &adapter->stats.tpr,
4236 			"Total Packets Received ");
4237 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
4238 			CTLFLAG_RD, &adapter->stats.gprc,
4239 			"Good Packets Received");
4240 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
4241 			CTLFLAG_RD, &adapter->stats.bprc,
4242 			"Broadcast Packets Received");
4243 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
4244 			CTLFLAG_RD, &adapter->stats.mprc,
4245 			"Multicast Packets Received");
4246 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
4247 			CTLFLAG_RD, &adapter->stats.prc64,
4248 			"64 byte frames received ");
4249 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
4250 			CTLFLAG_RD, &adapter->stats.prc127,
4251 			"65-127 byte frames received");
4252 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
4253 			CTLFLAG_RD, &adapter->stats.prc255,
4254 			"128-255 byte frames received");
4255 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
4256 			CTLFLAG_RD, &adapter->stats.prc511,
4257 			"256-511 byte frames received");
4258 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
4259 			CTLFLAG_RD, &adapter->stats.prc1023,
4260 			"512-1023 byte frames received");
4261 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
4262 			CTLFLAG_RD, &adapter->stats.prc1522,
4263 			"1023-1522 byte frames received");
4264 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
4265 			CTLFLAG_RD, &adapter->stats.gorc,
4266 			"Good Octets Received");
4267 
4268 	/* Packet Transmission Stats */
4269 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
4270 			CTLFLAG_RD, &adapter->stats.gotc,
4271 			"Good Octets Transmitted");
4272 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
4273 			CTLFLAG_RD, &adapter->stats.tpt,
4274 			"Total Packets Transmitted");
4275 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
4276 			CTLFLAG_RD, &adapter->stats.gptc,
4277 			"Good Packets Transmitted");
4278 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
4279 			CTLFLAG_RD, &adapter->stats.bptc,
4280 			"Broadcast Packets Transmitted");
4281 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
4282 			CTLFLAG_RD, &adapter->stats.mptc,
4283 			"Multicast Packets Transmitted");
4284 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
4285 			CTLFLAG_RD, &adapter->stats.ptc64,
4286 			"64 byte frames transmitted ");
4287 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
4288 			CTLFLAG_RD, &adapter->stats.ptc127,
4289 			"65-127 byte frames transmitted");
4290 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
4291 			CTLFLAG_RD, &adapter->stats.ptc255,
4292 			"128-255 byte frames transmitted");
4293 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
4294 			CTLFLAG_RD, &adapter->stats.ptc511,
4295 			"256-511 byte frames transmitted");
4296 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
4297 			CTLFLAG_RD, &adapter->stats.ptc1023,
4298 			"512-1023 byte frames transmitted");
4299 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
4300 			CTLFLAG_RD, &adapter->stats.ptc1522,
4301 			"1024-1522 byte frames transmitted");
4302 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
4303 			CTLFLAG_RD, &adapter->stats.tsctc,
4304 			"TSO Contexts Transmitted");
4305 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
4306 			CTLFLAG_RD, &adapter->stats.tsctfc,
4307 			"TSO Contexts Failed");
4308 
4309 
4310 	/* Interrupt Stats */
4311 
4312 	int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
4313 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
4314 	int_list = SYSCTL_CHILDREN(int_node);
4315 
4316 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
4317 			CTLFLAG_RD, &adapter->stats.iac,
4318 			"Interrupt Assertion Count");
4319 
4320 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
4321 			CTLFLAG_RD, &adapter->stats.icrxptc,
4322 			"Interrupt Cause Rx Pkt Timer Expire Count");
4323 
4324 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
4325 			CTLFLAG_RD, &adapter->stats.icrxatc,
4326 			"Interrupt Cause Rx Abs Timer Expire Count");
4327 
4328 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
4329 			CTLFLAG_RD, &adapter->stats.ictxptc,
4330 			"Interrupt Cause Tx Pkt Timer Expire Count");
4331 
4332 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
4333 			CTLFLAG_RD, &adapter->stats.ictxatc,
4334 			"Interrupt Cause Tx Abs Timer Expire Count");
4335 
4336 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
4337 			CTLFLAG_RD, &adapter->stats.ictxqec,
4338 			"Interrupt Cause Tx Queue Empty Count");
4339 
4340 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
4341 			CTLFLAG_RD, &adapter->stats.ictxqmtc,
4342 			"Interrupt Cause Tx Queue Min Thresh Count");
4343 
4344 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4345 			CTLFLAG_RD, &adapter->stats.icrxdmtc,
4346 			"Interrupt Cause Rx Desc Min Thresh Count");
4347 
4348 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4349 			CTLFLAG_RD, &adapter->stats.icrxoc,
4350 			"Interrupt Cause Receiver Overrun Count");
4351 }
4352 
4353 /**********************************************************************
4354  *
4355  *  This routine provides a way to dump out the adapter eeprom,
4356  *  often a useful debug/service tool. This only dumps the first
4357  *  32 words, stuff that matters is in that extent.
4358  *
4359  **********************************************************************/
4360 static int
4361 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4362 {
4363 	struct adapter *adapter = (struct adapter *)arg1;
4364 	int error;
4365 	int result;
4366 
4367 	result = -1;
4368 	error = sysctl_handle_int(oidp, &result, 0, req);
4369 
4370 	if (error || !req->newptr)
4371 		return (error);
4372 
4373 	/*
4374 	 * This value will cause a hex dump of the
4375 	 * first 32 16-bit words of the EEPROM to
4376 	 * the screen.
4377 	 */
4378 	if (result == 1)
4379 		em_print_nvm_info(adapter);
4380 
4381 	return (error);
4382 }
4383 
4384 static void
4385 em_print_nvm_info(struct adapter *adapter)
4386 {
4387 	u16 eeprom_data;
4388 	int i, j, row = 0;
4389 
4390 	/* Its a bit crude, but it gets the job done */
4391 	printf("\nInterface EEPROM Dump:\n");
4392 	printf("Offset\n0x0000  ");
4393 	for (i = 0, j = 0; i < 32; i++, j++) {
4394 		if (j == 8) { /* Make the offset block */
4395 			j = 0; ++row;
4396 			printf("\n0x00%x0  ",row);
4397 		}
4398 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4399 		printf("%04x ", eeprom_data);
4400 	}
4401 	printf("\n");
4402 }
4403 
4404 static int
4405 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4406 {
4407 	struct em_int_delay_info *info;
4408 	struct adapter *adapter;
4409 	u32 regval;
4410 	int error, usecs, ticks;
4411 
4412 	info = (struct em_int_delay_info *) arg1;
4413 	usecs = info->value;
4414 	error = sysctl_handle_int(oidp, &usecs, 0, req);
4415 	if (error != 0 || req->newptr == NULL)
4416 		return (error);
4417 	if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4418 		return (EINVAL);
4419 	info->value = usecs;
4420 	ticks = EM_USECS_TO_TICKS(usecs);
4421 	if (info->offset == E1000_ITR)	/* units are 256ns here */
4422 		ticks *= 4;
4423 
4424 	adapter = info->adapter;
4425 
4426 	regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
4427 	regval = (regval & ~0xffff) | (ticks & 0xffff);
4428 	/* Handle a few special cases. */
4429 	switch (info->offset) {
4430 	case E1000_RDTR:
4431 		break;
4432 	case E1000_TIDV:
4433 		if (ticks == 0) {
4434 			adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
4435 			/* Don't write 0 into the TIDV register. */
4436 			regval++;
4437 		} else
4438 			adapter->txd_cmd |= E1000_TXD_CMD_IDE;
4439 		break;
4440 	}
4441 	E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
4442 	return (0);
4443 }
4444 
4445 static void
4446 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
4447 	const char *description, struct em_int_delay_info *info,
4448 	int offset, int value)
4449 {
4450 	info->adapter = adapter;
4451 	info->offset = offset;
4452 	info->value = value;
4453 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
4454 	    SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
4455 	    OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
4456 	    info, 0, em_sysctl_int_delay, "I", description);
4457 }
4458 
4459 /*
4460  * Set flow control using sysctl:
4461  * Flow control values:
4462  *      0 - off
4463  *      1 - rx pause
4464  *      2 - tx pause
4465  *      3 - full
4466  */
4467 static int
4468 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4469 {
4470 	int error;
4471 	static int input = 3; /* default is full */
4472 	struct adapter	*adapter = (struct adapter *) arg1;
4473 
4474 	error = sysctl_handle_int(oidp, &input, 0, req);
4475 
4476 	if ((error) || (req->newptr == NULL))
4477 		return (error);
4478 
4479 	if (input == adapter->fc) /* no change? */
4480 		return (error);
4481 
4482 	switch (input) {
4483 	case e1000_fc_rx_pause:
4484 	case e1000_fc_tx_pause:
4485 	case e1000_fc_full:
4486 	case e1000_fc_none:
4487 		adapter->hw.fc.requested_mode = input;
4488 		adapter->fc = input;
4489 		break;
4490 	default:
4491 		/* Do nothing */
4492 		return (error);
4493 	}
4494 
4495 	adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
4496 	e1000_force_mac_fc(&adapter->hw);
4497 	return (error);
4498 }
4499 
4500 /*
4501  * Manage Energy Efficient Ethernet:
4502  * Control values:
4503  *     0/1 - enabled/disabled
4504  */
4505 static int
4506 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
4507 {
4508 	struct adapter *adapter = (struct adapter *) arg1;
4509 	int error, value;
4510 
4511 	value = adapter->hw.dev_spec.ich8lan.eee_disable;
4512 	error = sysctl_handle_int(oidp, &value, 0, req);
4513 	if (error || req->newptr == NULL)
4514 		return (error);
4515 	adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0);
4516 	em_if_init(adapter->ctx);
4517 
4518 	return (0);
4519 }
4520 
4521 static int
4522 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4523 {
4524 	struct adapter *adapter;
4525 	int error;
4526 	int result;
4527 
4528 	result = -1;
4529 	error = sysctl_handle_int(oidp, &result, 0, req);
4530 
4531 	if (error || !req->newptr)
4532 		return (error);
4533 
4534 	if (result == 1) {
4535 		adapter = (struct adapter *) arg1;
4536 		em_print_debug_info(adapter);
4537 	}
4538 
4539 	return (error);
4540 }
4541 
4542 static int
4543 em_get_rs(SYSCTL_HANDLER_ARGS)
4544 {
4545 	struct adapter *adapter = (struct adapter *) arg1;
4546 	int error;
4547 	int result;
4548 
4549 	result = 0;
4550 	error = sysctl_handle_int(oidp, &result, 0, req);
4551 
4552 	if (error || !req->newptr || result != 1)
4553 		return (error);
4554 	em_dump_rs(adapter);
4555 
4556 	return (error);
4557 }
4558 
4559 static void
4560 em_if_debug(if_ctx_t ctx)
4561 {
4562 	em_dump_rs(iflib_get_softc(ctx));
4563 }
4564 
4565 /*
4566  * This routine is meant to be fluid, add whatever is
4567  * needed for debugging a problem.  -jfv
4568  */
4569 static void
4570 em_print_debug_info(struct adapter *adapter)
4571 {
4572 	device_t dev = iflib_get_dev(adapter->ctx);
4573 	struct ifnet *ifp = iflib_get_ifp(adapter->ctx);
4574 	struct tx_ring *txr = &adapter->tx_queues->txr;
4575 	struct rx_ring *rxr = &adapter->rx_queues->rxr;
4576 
4577 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
4578 		printf("Interface is RUNNING ");
4579 	else
4580 		printf("Interface is NOT RUNNING\n");
4581 
4582 	if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
4583 		printf("and INACTIVE\n");
4584 	else
4585 		printf("and ACTIVE\n");
4586 
4587 	for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
4588 		device_printf(dev, "TX Queue %d ------\n", i);
4589 		device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4590 			E1000_READ_REG(&adapter->hw, E1000_TDH(i)),
4591 			E1000_READ_REG(&adapter->hw, E1000_TDT(i)));
4592 
4593 	}
4594 	for (int j=0; j < adapter->rx_num_queues; j++, rxr++) {
4595 		device_printf(dev, "RX Queue %d ------\n", j);
4596 		device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4597 			E1000_READ_REG(&adapter->hw, E1000_RDH(j)),
4598 			E1000_READ_REG(&adapter->hw, E1000_RDT(j)));
4599 	}
4600 }
4601 
4602 /*
4603  * 82574 only:
4604  * Write a new value to the EEPROM increasing the number of MSI-X
4605  * vectors from 3 to 5, for proper multiqueue support.
4606  */
4607 static void
4608 em_enable_vectors_82574(if_ctx_t ctx)
4609 {
4610 	struct adapter *adapter = iflib_get_softc(ctx);
4611 	struct e1000_hw *hw = &adapter->hw;
4612 	device_t dev = iflib_get_dev(ctx);
4613 	u16 edata;
4614 
4615 	e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4616 	if (bootverbose)
4617 		device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
4618 	if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
4619 		device_printf(dev, "Writing to eeprom: increasing "
4620 		    "reported MSI-X vectors from 3 to 5...\n");
4621 		edata &= ~(EM_NVM_MSIX_N_MASK);
4622 		edata |= 4 << EM_NVM_MSIX_N_SHIFT;
4623 		e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4624 		e1000_update_nvm_checksum(hw);
4625 		device_printf(dev, "Writing to eeprom: done\n");
4626 	}
4627 }
4628