xref: /freebsd/sys/dev/e1000/if_em.c (revision d8ffc21c5ca6f7d4f2d9a65dc6308699af0b6a01)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* $FreeBSD$ */
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33 
34 #define em_mac_min e1000_82547
35 #define igb_mac_min e1000_82575
36 
37 /*********************************************************************
38  *  Driver version:
39  *********************************************************************/
40 char em_driver_version[] = "7.6.1-k";
41 
42 /*********************************************************************
43  *  PCI Device ID Table
44  *
45  *  Used by probe to select devices to load on
46  *  Last field stores an index into e1000_strings
47  *  Last entry must be all 0s
48  *
49  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
50  *********************************************************************/
51 
52 static pci_vendor_info_t em_vendor_info_array[] =
53 {
54 	/* Intel(R) PRO/1000 Network Connection - Legacy em*/
55 	PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) PRO/1000 Network Connection"),
56 	PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) PRO/1000 Network Connection"),
57 	PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) PRO/1000 Network Connection"),
58 	PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) PRO/1000 Network Connection"),
59 	PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) PRO/1000 Network Connection"),
60 
61 	PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) PRO/1000 Network Connection"),
62 	PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) PRO/1000 Network Connection"),
63 	PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) PRO/1000 Network Connection"),
64 	PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
65 	PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) PRO/1000 Network Connection"),
66 	PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) PRO/1000 Network Connection"),
67 	PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
68 
69 	PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) PRO/1000 Network Connection"),
70 
71 	PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) PRO/1000 Network Connection"),
72 	PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
73 
74 	PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
75 	PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
76 	PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
77 	PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) PRO/1000 Network Connection"),
78 
79 	PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) PRO/1000 Network Connection"),
80 	PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) PRO/1000 Network Connection"),
81 	PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) PRO/1000 Network Connection"),
82 	PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) PRO/1000 Network Connection"),
83 	PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) PRO/1000 Network Connection"),
84 
85 	PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
86 	PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
87 	PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
88 	PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) PRO/1000 Network Connection"),
89 	PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) PRO/1000 Network Connection"),
90 	PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) PRO/1000 Network Connection"),
91 	PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) PRO/1000 Network Connection"),
92 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
93 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) PRO/1000 Network Connection"),
94 
95 	PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) PRO/1000 Network Connection"),
96 	PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
97 	PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) PRO/1000 Network Connection"),
98 
99 	/* Intel(R) PRO/1000 Network Connection - em */
100 	PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
101 	PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
102 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 Network Connection"),
103 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 Network Connection"),
104 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 Network Connection"),
105 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
106 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 Network Connection"),
107 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 Network Connection"),
108 	PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
109 	PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 Network Connection"),
110 	PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
111 	PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
112 	PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 Network Connection"),
113 	PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 Network Connection"),
114 	PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 Network Connection"),
115 	PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 Network Connection"),
116 	PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) PRO/1000 Network Connection"),
117 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) PRO/1000 Network Connection"),
118 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) PRO/1000 Network Connection"),
119 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) PRO/1000 Network Connection"),
120 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) PRO/1000 Network Connection"),
121 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
122 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
123 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) PRO/1000 Network Connection"),
124 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) PRO/1000 Network Connection"),
125 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
126 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) PRO/1000 Network Connection"),
127 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) PRO/1000 Network Connection"),
128 	PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) PRO/1000 Network Connection"),
129 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
130 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
131 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) PRO/1000 Network Connection"),
132 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) PRO/1000 Network Connection"),
133 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) PRO/1000 Network Connection"),
134 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) PRO/1000 Network Connection"),
135 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
136 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) PRO/1000 Network Connection"),
137 	PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) PRO/1000 Network Connection"),
138 	PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) PRO/1000 Network Connection"),
139 	PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) PRO/1000 Network Connection"),
140 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) PRO/1000 Network Connection"),
141 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) PRO/1000 Network Connection"),
142 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) PRO/1000 Network Connection"),
143 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) PRO/1000 Network Connection"),
144 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) PRO/1000 Network Connection"),
145 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) PRO/1000 Network Connection"),
146 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) PRO/1000 Network Connection"),
147 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) PRO/1000 Network Connection"),
148 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) PRO/1000 Network Connection"),
149 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) PRO/1000 Network Connection"),
150 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) PRO/1000 Network Connection"),
151 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) PRO/1000 Network Connection"),
152 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) PRO/1000 Network Connection"),
153 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) PRO/1000 Network Connection"),
154 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) PRO/1000 Network Connection"),
155 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) PRO/1000 Network Connection"),
156 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) PRO/1000 Network Connection"),
157 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) PRO/1000 Network Connection"),
158 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) PRO/1000 Network Connection"),
159 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) PRO/1000 Network Connection"),
160 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) PRO/1000 Network Connection"),
161 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) PRO/1000 Network Connection"),
162 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) PRO/1000 Network Connection"),
163 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) PRO/1000 Network Connection"),
164 	PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) PRO/1000 Network Connection"),
165 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) PRO/1000 Network Connection"),
166 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) PRO/1000 Network Connection"),
167 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) PRO/1000 Network Connection"),
168 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) PRO/1000 Network Connection"),
169 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) PRO/1000 Network Connection"),
170 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) PRO/1000 Network Connection"),
171 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) PRO/1000 Network Connection"),
172 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) PRO/1000 Network Connection"),
173 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) PRO/1000 Network Connection"),
174 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) PRO/1000 Network Connection"),
175 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) PRO/1000 Network Connection"),
176 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) PRO/1000 Network Connection"),
177 	/* required last entry */
178 	PVID_END
179 };
180 
181 static pci_vendor_info_t igb_vendor_info_array[] =
182 {
183 	/* Intel(R) PRO/1000 Network Connection - igb */
184 	PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
185 	PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
186 	PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
187 	PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 PCI-Express Network Driver"),
188 	PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
189 	PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
190 	PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
191 	PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
192 	PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 PCI-Express Network Driver"),
193 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
194 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 PCI-Express Network Driver"),
195 	PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
196 	PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
197 	PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
198 	PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
199 	PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
200 	PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) PRO/1000 PCI-Express Network Driver"),
201 	PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
202 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
203 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
204 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) PRO/1000 PCI-Express Network Driver"),
205 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) PRO/1000 PCI-Express Network Driver"),
206 	PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
207 	PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
208 	PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
209 	PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
210 	PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
211 	PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
212 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) PRO/1000 PCI-Express Network Driver"),
213 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) PRO/1000 PCI-Express Network Driver"),
214 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
215 	PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
216 	PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
217 	PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
218 	PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
219 	PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
220 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
221 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
222 	PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
223 	/* required last entry */
224 	PVID_END
225 };
226 
227 /*********************************************************************
228  *  Function prototypes
229  *********************************************************************/
230 static void	*em_register(device_t dev);
231 static void	*igb_register(device_t dev);
232 static int	em_if_attach_pre(if_ctx_t ctx);
233 static int	em_if_attach_post(if_ctx_t ctx);
234 static int	em_if_detach(if_ctx_t ctx);
235 static int	em_if_shutdown(if_ctx_t ctx);
236 static int	em_if_suspend(if_ctx_t ctx);
237 static int	em_if_resume(if_ctx_t ctx);
238 
239 static int	em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets);
240 static int	em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets);
241 static void	em_if_queues_free(if_ctx_t ctx);
242 
243 static uint64_t	em_if_get_counter(if_ctx_t, ift_counter);
244 static void	em_if_init(if_ctx_t ctx);
245 static void	em_if_stop(if_ctx_t ctx);
246 static void	em_if_media_status(if_ctx_t, struct ifmediareq *);
247 static int	em_if_media_change(if_ctx_t ctx);
248 static int	em_if_mtu_set(if_ctx_t ctx, uint32_t mtu);
249 static void	em_if_timer(if_ctx_t ctx, uint16_t qid);
250 static void	em_if_vlan_register(if_ctx_t ctx, u16 vtag);
251 static void	em_if_vlan_unregister(if_ctx_t ctx, u16 vtag);
252 static void	em_if_watchdog_reset(if_ctx_t ctx);
253 
254 static void	em_identify_hardware(if_ctx_t ctx);
255 static int	em_allocate_pci_resources(if_ctx_t ctx);
256 static void	em_free_pci_resources(if_ctx_t ctx);
257 static void	em_reset(if_ctx_t ctx);
258 static int	em_setup_interface(if_ctx_t ctx);
259 static int	em_setup_msix(if_ctx_t ctx);
260 
261 static void	em_initialize_transmit_unit(if_ctx_t ctx);
262 static void	em_initialize_receive_unit(if_ctx_t ctx);
263 
264 static void	em_if_intr_enable(if_ctx_t ctx);
265 static void	em_if_intr_disable(if_ctx_t ctx);
266 static void	igb_if_intr_enable(if_ctx_t ctx);
267 static void	igb_if_intr_disable(if_ctx_t ctx);
268 static int	em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
269 static int	em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
270 static int	igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
271 static int	igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
272 static void	em_if_multi_set(if_ctx_t ctx);
273 static void	em_if_update_admin_status(if_ctx_t ctx);
274 static void	em_if_debug(if_ctx_t ctx);
275 static void	em_update_stats_counters(struct adapter *);
276 static void	em_add_hw_stats(struct adapter *adapter);
277 static int	em_if_set_promisc(if_ctx_t ctx, int flags);
278 static void	em_setup_vlan_hw_support(struct adapter *);
279 static int	em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
280 static void	em_print_nvm_info(struct adapter *);
281 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
282 static int	em_get_rs(SYSCTL_HANDLER_ARGS);
283 static void	em_print_debug_info(struct adapter *);
284 static int 	em_is_valid_ether_addr(u8 *);
285 static int	em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
286 static void	em_add_int_delay_sysctl(struct adapter *, const char *,
287 		    const char *, struct em_int_delay_info *, int, int);
288 /* Management and WOL Support */
289 static void	em_init_manageability(struct adapter *);
290 static void	em_release_manageability(struct adapter *);
291 static void	em_get_hw_control(struct adapter *);
292 static void	em_release_hw_control(struct adapter *);
293 static void	em_get_wakeup(if_ctx_t ctx);
294 static void	em_enable_wakeup(if_ctx_t ctx);
295 static int	em_enable_phy_wakeup(struct adapter *);
296 static void	em_disable_aspm(struct adapter *);
297 
298 int		em_intr(void *arg);
299 static void	em_disable_promisc(if_ctx_t ctx);
300 
301 /* MSI-X handlers */
302 static int	em_if_msix_intr_assign(if_ctx_t, int);
303 static int	em_msix_link(void *);
304 static void	em_handle_link(void *context);
305 
306 static void	em_enable_vectors_82574(if_ctx_t);
307 
308 static int	em_set_flowcntl(SYSCTL_HANDLER_ARGS);
309 static int	em_sysctl_eee(SYSCTL_HANDLER_ARGS);
310 static void	em_if_led_func(if_ctx_t ctx, int onoff);
311 
312 static int	em_get_regs(SYSCTL_HANDLER_ARGS);
313 
314 static void	lem_smartspeed(struct adapter *adapter);
315 static void	igb_configure_queues(struct adapter *adapter);
316 
317 
318 /*********************************************************************
319  *  FreeBSD Device Interface Entry Points
320  *********************************************************************/
321 static device_method_t em_methods[] = {
322 	/* Device interface */
323 	DEVMETHOD(device_register, em_register),
324 	DEVMETHOD(device_probe, iflib_device_probe),
325 	DEVMETHOD(device_attach, iflib_device_attach),
326 	DEVMETHOD(device_detach, iflib_device_detach),
327 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
328 	DEVMETHOD(device_suspend, iflib_device_suspend),
329 	DEVMETHOD(device_resume, iflib_device_resume),
330 	DEVMETHOD_END
331 };
332 
333 static device_method_t igb_methods[] = {
334 	/* Device interface */
335 	DEVMETHOD(device_register, igb_register),
336 	DEVMETHOD(device_probe, iflib_device_probe),
337 	DEVMETHOD(device_attach, iflib_device_attach),
338 	DEVMETHOD(device_detach, iflib_device_detach),
339 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
340 	DEVMETHOD(device_suspend, iflib_device_suspend),
341 	DEVMETHOD(device_resume, iflib_device_resume),
342 	DEVMETHOD_END
343 };
344 
345 
346 static driver_t em_driver = {
347 	"em", em_methods, sizeof(struct adapter),
348 };
349 
350 static devclass_t em_devclass;
351 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
352 
353 MODULE_DEPEND(em, pci, 1, 1, 1);
354 MODULE_DEPEND(em, ether, 1, 1, 1);
355 MODULE_DEPEND(em, iflib, 1, 1, 1);
356 
357 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
358 
359 static driver_t igb_driver = {
360 	"igb", igb_methods, sizeof(struct adapter),
361 };
362 
363 static devclass_t igb_devclass;
364 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
365 
366 MODULE_DEPEND(igb, pci, 1, 1, 1);
367 MODULE_DEPEND(igb, ether, 1, 1, 1);
368 MODULE_DEPEND(igb, iflib, 1, 1, 1);
369 
370 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
371 
372 static device_method_t em_if_methods[] = {
373 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
374 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
375 	DEVMETHOD(ifdi_detach, em_if_detach),
376 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
377 	DEVMETHOD(ifdi_suspend, em_if_suspend),
378 	DEVMETHOD(ifdi_resume, em_if_resume),
379 	DEVMETHOD(ifdi_init, em_if_init),
380 	DEVMETHOD(ifdi_stop, em_if_stop),
381 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
382 	DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
383 	DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
384 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
385 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
386 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
387 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
388 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
389 	DEVMETHOD(ifdi_media_status, em_if_media_status),
390 	DEVMETHOD(ifdi_media_change, em_if_media_change),
391 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
392 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
393 	DEVMETHOD(ifdi_timer, em_if_timer),
394 	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
395 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
396 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
397 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
398 	DEVMETHOD(ifdi_led_func, em_if_led_func),
399 	DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
400 	DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
401 	DEVMETHOD(ifdi_debug, em_if_debug),
402 	DEVMETHOD_END
403 };
404 
405 static driver_t em_if_driver = {
406 	"em_if", em_if_methods, sizeof(struct adapter)
407 };
408 
409 static device_method_t igb_if_methods[] = {
410 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
411 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
412 	DEVMETHOD(ifdi_detach, em_if_detach),
413 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
414 	DEVMETHOD(ifdi_suspend, em_if_suspend),
415 	DEVMETHOD(ifdi_resume, em_if_resume),
416 	DEVMETHOD(ifdi_init, em_if_init),
417 	DEVMETHOD(ifdi_stop, em_if_stop),
418 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
419 	DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
420 	DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
421 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
422 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
423 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
424 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
425 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
426 	DEVMETHOD(ifdi_media_status, em_if_media_status),
427 	DEVMETHOD(ifdi_media_change, em_if_media_change),
428 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
429 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
430 	DEVMETHOD(ifdi_timer, em_if_timer),
431 	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
432 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
433 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
434 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
435 	DEVMETHOD(ifdi_led_func, em_if_led_func),
436 	DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
437 	DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
438 	DEVMETHOD(ifdi_debug, em_if_debug),
439 	DEVMETHOD_END
440 };
441 
442 static driver_t igb_if_driver = {
443 	"igb_if", igb_if_methods, sizeof(struct adapter)
444 };
445 
446 /*********************************************************************
447  *  Tunable default values.
448  *********************************************************************/
449 
450 #define EM_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
451 #define EM_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
452 
453 #define MAX_INTS_PER_SEC	8000
454 #define DEFAULT_ITR		(1000000000/(MAX_INTS_PER_SEC * 256))
455 
456 /* Allow common code without TSO */
457 #ifndef CSUM_TSO
458 #define CSUM_TSO	0
459 #endif
460 
461 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD, 0, "EM driver parameters");
462 
463 static int em_disable_crc_stripping = 0;
464 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
465     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
466 
467 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
468 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
469 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
470     0, "Default transmit interrupt delay in usecs");
471 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
472     0, "Default receive interrupt delay in usecs");
473 
474 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
475 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
476 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
477     &em_tx_abs_int_delay_dflt, 0,
478     "Default transmit interrupt delay limit in usecs");
479 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
480     &em_rx_abs_int_delay_dflt, 0,
481     "Default receive interrupt delay limit in usecs");
482 
483 static int em_smart_pwr_down = FALSE;
484 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
485     0, "Set to true to leave smart power down enabled on newer adapters");
486 
487 /* Controls whether promiscuous also shows bad packets */
488 static int em_debug_sbp = TRUE;
489 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
490     "Show bad packets in promiscuous mode");
491 
492 /* How many packets rxeof tries to clean at a time */
493 static int em_rx_process_limit = 100;
494 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
495     &em_rx_process_limit, 0,
496     "Maximum number of received packets to process "
497     "at a time, -1 means unlimited");
498 
499 /* Energy efficient ethernet - default to OFF */
500 static int eee_setting = 1;
501 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
502     "Enable Energy Efficient Ethernet");
503 
504 /*
505 ** Tuneable Interrupt rate
506 */
507 static int em_max_interrupt_rate = 8000;
508 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
509     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
510 
511 
512 
513 /* Global used in WOL setup with multiport cards */
514 static int global_quad_port_a = 0;
515 
516 extern struct if_txrx igb_txrx;
517 extern struct if_txrx em_txrx;
518 extern struct if_txrx lem_txrx;
519 
520 static struct if_shared_ctx em_sctx_init = {
521 	.isc_magic = IFLIB_MAGIC,
522 	.isc_q_align = PAGE_SIZE,
523 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
524 	.isc_tx_maxsegsize = PAGE_SIZE,
525 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
526 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
527 	.isc_rx_maxsize = MJUM9BYTES,
528 	.isc_rx_nsegments = 1,
529 	.isc_rx_maxsegsize = MJUM9BYTES,
530 	.isc_nfl = 1,
531 	.isc_nrxqs = 1,
532 	.isc_ntxqs = 1,
533 	.isc_admin_intrcnt = 1,
534 	.isc_vendor_info = em_vendor_info_array,
535 	.isc_driver_version = em_driver_version,
536 	.isc_driver = &em_if_driver,
537 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
538 
539 	.isc_nrxd_min = {EM_MIN_RXD},
540 	.isc_ntxd_min = {EM_MIN_TXD},
541 	.isc_nrxd_max = {EM_MAX_RXD},
542 	.isc_ntxd_max = {EM_MAX_TXD},
543 	.isc_nrxd_default = {EM_DEFAULT_RXD},
544 	.isc_ntxd_default = {EM_DEFAULT_TXD},
545 };
546 
547 if_shared_ctx_t em_sctx = &em_sctx_init;
548 
549 static struct if_shared_ctx igb_sctx_init = {
550 	.isc_magic = IFLIB_MAGIC,
551 	.isc_q_align = PAGE_SIZE,
552 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
553 	.isc_tx_maxsegsize = PAGE_SIZE,
554 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
555 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
556 	.isc_rx_maxsize = MJUM9BYTES,
557 	.isc_rx_nsegments = 1,
558 	.isc_rx_maxsegsize = MJUM9BYTES,
559 	.isc_nfl = 1,
560 	.isc_nrxqs = 1,
561 	.isc_ntxqs = 1,
562 	.isc_admin_intrcnt = 1,
563 	.isc_vendor_info = igb_vendor_info_array,
564 	.isc_driver_version = em_driver_version,
565 	.isc_driver = &igb_if_driver,
566 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
567 
568 	.isc_nrxd_min = {EM_MIN_RXD},
569 	.isc_ntxd_min = {EM_MIN_TXD},
570 	.isc_nrxd_max = {IGB_MAX_RXD},
571 	.isc_ntxd_max = {IGB_MAX_TXD},
572 	.isc_nrxd_default = {EM_DEFAULT_RXD},
573 	.isc_ntxd_default = {EM_DEFAULT_TXD},
574 };
575 
576 if_shared_ctx_t igb_sctx = &igb_sctx_init;
577 
578 /*****************************************************************
579  *
580  * Dump Registers
581  *
582  ****************************************************************/
583 #define IGB_REGS_LEN 739
584 
585 static int em_get_regs(SYSCTL_HANDLER_ARGS)
586 {
587 	struct adapter *adapter = (struct adapter *)arg1;
588 	struct e1000_hw *hw = &adapter->hw;
589 	struct sbuf *sb;
590 	u32 *regs_buff;
591 	int rc;
592 
593 	regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
594 	memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
595 
596 	rc = sysctl_wire_old_buffer(req, 0);
597 	MPASS(rc == 0);
598 	if (rc != 0) {
599 		free(regs_buff, M_DEVBUF);
600 		return (rc);
601 	}
602 
603 	sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
604 	MPASS(sb != NULL);
605 	if (sb == NULL) {
606 		free(regs_buff, M_DEVBUF);
607 		return (ENOMEM);
608 	}
609 
610 	/* General Registers */
611 	regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
612 	regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
613 	regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
614 	regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
615 	regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
616 	regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
617 	regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
618 	regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
619 	regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
620 	regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
621 	regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
622 	regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
623 	regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
624 	regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
625 	regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
626 	regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
627 	regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
628 	regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
629 	regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
630 	regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
631 	regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
632 	regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
633 
634 	sbuf_printf(sb, "General Registers\n");
635 	sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
636 	sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
637 	sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]);
638 
639 	sbuf_printf(sb, "Interrupt Registers\n");
640 	sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
641 
642 	sbuf_printf(sb, "RX Registers\n");
643 	sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
644 	sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
645 	sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
646 	sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
647 	sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
648 	sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
649 	sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
650 
651 	sbuf_printf(sb, "TX Registers\n");
652 	sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
653 	sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
654 	sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
655 	sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
656 	sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
657 	sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
658 	sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
659 	sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
660 	sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
661 	sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
662 	sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
663 
664 	free(regs_buff, M_DEVBUF);
665 
666 #ifdef DUMP_DESCS
667 	{
668 		if_softc_ctx_t scctx = adapter->shared;
669 		struct rx_ring *rxr = &rx_que->rxr;
670 		struct tx_ring *txr = &tx_que->txr;
671 		int ntxd = scctx->isc_ntxd[0];
672 		int nrxd = scctx->isc_nrxd[0];
673 		int j;
674 
675 	for (j = 0; j < nrxd; j++) {
676 		u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
677 		u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
678 		sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
679 	}
680 
681 	for (j = 0; j < min(ntxd, 256); j++) {
682 		unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
683 
684 		sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
685 			    j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
686 			    buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
687 
688 	}
689 	}
690 #endif
691 
692 	rc = sbuf_finish(sb);
693 	sbuf_delete(sb);
694 	return(rc);
695 }
696 
697 static void *
698 em_register(device_t dev)
699 {
700 	return (em_sctx);
701 }
702 
703 static void *
704 igb_register(device_t dev)
705 {
706 	return (igb_sctx);
707 }
708 
709 static int
710 em_set_num_queues(if_ctx_t ctx)
711 {
712 	struct adapter *adapter = iflib_get_softc(ctx);
713 	int maxqueues;
714 
715 	/* Sanity check based on HW */
716 	switch (adapter->hw.mac.type) {
717 	case e1000_82576:
718 	case e1000_82580:
719 	case e1000_i350:
720 	case e1000_i354:
721 		maxqueues = 8;
722 		break;
723 	case e1000_i210:
724 	case e1000_82575:
725 		maxqueues = 4;
726 		break;
727 	case e1000_i211:
728 	case e1000_82574:
729 		maxqueues = 2;
730 		break;
731 	default:
732 		maxqueues = 1;
733 		break;
734 	}
735 
736 	return (maxqueues);
737 }
738 
739 #define	LEM_CAPS							\
740     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
741     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER
742 
743 #define	EM_CAPS								\
744     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
745     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |	\
746     IFCAP_LRO | IFCAP_VLAN_HWTSO
747 
748 #define	IGB_CAPS							\
749     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
750     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |	\
751     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 |\
752     IFCAP_TSO6
753 
754 /*********************************************************************
755  *  Device initialization routine
756  *
757  *  The attach entry point is called when the driver is being loaded.
758  *  This routine identifies the type of hardware, allocates all resources
759  *  and initializes the hardware.
760  *
761  *  return 0 on success, positive on failure
762  *********************************************************************/
763 static int
764 em_if_attach_pre(if_ctx_t ctx)
765 {
766 	struct adapter *adapter;
767 	if_softc_ctx_t scctx;
768 	device_t dev;
769 	struct e1000_hw *hw;
770 	int error = 0;
771 
772 	INIT_DEBUGOUT("em_if_attach_pre: begin");
773 	dev = iflib_get_dev(ctx);
774 	adapter = iflib_get_softc(ctx);
775 
776 	adapter->ctx = adapter->osdep.ctx = ctx;
777 	adapter->dev = adapter->osdep.dev = dev;
778 	scctx = adapter->shared = iflib_get_softc_ctx(ctx);
779 	adapter->media = iflib_get_media(ctx);
780 	hw = &adapter->hw;
781 
782 	adapter->tx_process_limit = scctx->isc_ntxd[0];
783 
784 	/* SYSCTL stuff */
785 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
786 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
787 	    OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
788 	    em_sysctl_nvm_info, "I", "NVM Information");
789 
790 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
791 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
792 	    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
793 	    em_sysctl_debug_info, "I", "Debug Information");
794 
795 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
796 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
797 	    OID_AUTO, "fc", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
798 	    em_set_flowcntl, "I", "Flow Control");
799 
800 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
801 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
802 	    OID_AUTO, "reg_dump", CTLTYPE_STRING | CTLFLAG_RD, adapter, 0,
803 	    em_get_regs, "A", "Dump Registers");
804 
805 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
806 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
807 	    OID_AUTO, "rs_dump", CTLTYPE_INT | CTLFLAG_RW, adapter, 0,
808 	    em_get_rs, "I", "Dump RS indexes");
809 
810 	/* Determine hardware and mac info */
811 	em_identify_hardware(ctx);
812 
813 	scctx->isc_tx_nsegments = EM_MAX_SCATTER;
814 	scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
815 	if (bootverbose)
816 		device_printf(dev, "attach_pre capping queues at %d\n",
817 		    scctx->isc_ntxqsets_max);
818 
819 	if (adapter->hw.mac.type >= igb_mac_min) {
820 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
821 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
822 		scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
823 		scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
824 		scctx->isc_txrx = &igb_txrx;
825 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
826 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
827 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
828 		scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
829 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
830 		     CSUM_IP6_TCP | CSUM_IP6_UDP;
831 		if (adapter->hw.mac.type != e1000_82575)
832 			scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
833 		/*
834 		** Some new devices, as with ixgbe, now may
835 		** use a different BAR, so we need to keep
836 		** track of which is used.
837 		*/
838 		scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR);
839 		if (pci_read_config(dev, scctx->isc_msix_bar, 4) == 0)
840 			scctx->isc_msix_bar += 4;
841 	} else if (adapter->hw.mac.type >= em_mac_min) {
842 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
843 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
844 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
845 		scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
846 		scctx->isc_txrx = &em_txrx;
847 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
848 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
849 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
850 		scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
851 		/*
852 		 * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO}
853 		 * by default as we don't have workarounds for all associated
854 		 * silicon errata.  E. g., with several MACs such as 82573E,
855 		 * TSO only works at Gigabit speed and otherwise can cause the
856 		 * hardware to hang (which also would be next to impossible to
857 		 * work around given that already queued TSO-using descriptors
858 		 * would need to be flushed and vlan(4) reconfigured at runtime
859 		 * in case of a link speed change).  Moreover, MACs like 82579
860 		 * still can hang at Gigabit even with all publicly documented
861 		 * TSO workarounds implemented.  Generally, the penality of
862 		 * these workarounds is rather high and may involve copying
863 		 * mbuf data around so advantages of TSO lapse.  Still, TSO may
864 		 * work for a few MACs of this class - at least when sticking
865 		 * with Gigabit - in which case users may enable TSO manually.
866 		 */
867 		scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
868 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
869 		/*
870 		 * We support MSI-X with 82574 only, but indicate to iflib(4)
871 		 * that it shall give MSI at least a try with other devices.
872 		 */
873 		if (adapter->hw.mac.type == e1000_82574) {
874 			scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR);
875 		} else {
876 			scctx->isc_msix_bar = -1;
877 			scctx->isc_disable_msix = 1;
878 		}
879 	} else {
880 		scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
881 		scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
882 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
883 		scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
884 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP;
885 		scctx->isc_txrx = &lem_txrx;
886 		scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
887 		if (adapter->hw.mac.type < e1000_82543)
888 			scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM);
889 		/* INTx only */
890 		scctx->isc_msix_bar = 0;
891 	}
892 
893 	/* Setup PCI resources */
894 	if (em_allocate_pci_resources(ctx)) {
895 		device_printf(dev, "Allocation of PCI resources failed\n");
896 		error = ENXIO;
897 		goto err_pci;
898 	}
899 
900 	/*
901 	** For ICH8 and family we need to
902 	** map the flash memory, and this
903 	** must happen after the MAC is
904 	** identified
905 	*/
906 	if ((hw->mac.type == e1000_ich8lan) ||
907 	    (hw->mac.type == e1000_ich9lan) ||
908 	    (hw->mac.type == e1000_ich10lan) ||
909 	    (hw->mac.type == e1000_pchlan) ||
910 	    (hw->mac.type == e1000_pch2lan) ||
911 	    (hw->mac.type == e1000_pch_lpt)) {
912 		int rid = EM_BAR_TYPE_FLASH;
913 		adapter->flash = bus_alloc_resource_any(dev,
914 		    SYS_RES_MEMORY, &rid, RF_ACTIVE);
915 		if (adapter->flash == NULL) {
916 			device_printf(dev, "Mapping of Flash failed\n");
917 			error = ENXIO;
918 			goto err_pci;
919 		}
920 		/* This is used in the shared code */
921 		hw->flash_address = (u8 *)adapter->flash;
922 		adapter->osdep.flash_bus_space_tag =
923 		    rman_get_bustag(adapter->flash);
924 		adapter->osdep.flash_bus_space_handle =
925 		    rman_get_bushandle(adapter->flash);
926 	}
927 	/*
928 	** In the new SPT device flash is not  a
929 	** separate BAR, rather it is also in BAR0,
930 	** so use the same tag and an offset handle for the
931 	** FLASH read/write macros in the shared code.
932 	*/
933 	else if (hw->mac.type >= e1000_pch_spt) {
934 		adapter->osdep.flash_bus_space_tag =
935 		    adapter->osdep.mem_bus_space_tag;
936 		adapter->osdep.flash_bus_space_handle =
937 		    adapter->osdep.mem_bus_space_handle
938 		    + E1000_FLASH_BASE_ADDR;
939 	}
940 
941 	/* Do Shared Code initialization */
942 	error = e1000_setup_init_funcs(hw, TRUE);
943 	if (error) {
944 		device_printf(dev, "Setup of Shared code failed, error %d\n",
945 		    error);
946 		error = ENXIO;
947 		goto err_pci;
948 	}
949 
950 	em_setup_msix(ctx);
951 	e1000_get_bus_info(hw);
952 
953 	/* Set up some sysctls for the tunable interrupt delays */
954 	em_add_int_delay_sysctl(adapter, "rx_int_delay",
955 	    "receive interrupt delay in usecs", &adapter->rx_int_delay,
956 	    E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
957 	em_add_int_delay_sysctl(adapter, "tx_int_delay",
958 	    "transmit interrupt delay in usecs", &adapter->tx_int_delay,
959 	    E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
960 	em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
961 	    "receive interrupt delay limit in usecs",
962 	    &adapter->rx_abs_int_delay,
963 	    E1000_REGISTER(hw, E1000_RADV),
964 	    em_rx_abs_int_delay_dflt);
965 	em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
966 	    "transmit interrupt delay limit in usecs",
967 	    &adapter->tx_abs_int_delay,
968 	    E1000_REGISTER(hw, E1000_TADV),
969 	    em_tx_abs_int_delay_dflt);
970 	em_add_int_delay_sysctl(adapter, "itr",
971 	    "interrupt delay limit in usecs/4",
972 	    &adapter->tx_itr,
973 	    E1000_REGISTER(hw, E1000_ITR),
974 	    DEFAULT_ITR);
975 
976 	hw->mac.autoneg = DO_AUTO_NEG;
977 	hw->phy.autoneg_wait_to_complete = FALSE;
978 	hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
979 
980 	if (adapter->hw.mac.type < em_mac_min) {
981 		e1000_init_script_state_82541(&adapter->hw, TRUE);
982 		e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
983 	}
984 	/* Copper options */
985 	if (hw->phy.media_type == e1000_media_type_copper) {
986 		hw->phy.mdix = AUTO_ALL_MODES;
987 		hw->phy.disable_polarity_correction = FALSE;
988 		hw->phy.ms_type = EM_MASTER_SLAVE;
989 	}
990 
991 	/*
992 	 * Set the frame limits assuming
993 	 * standard ethernet sized frames.
994 	 */
995 	scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
996 	    ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
997 
998 	/*
999 	 * This controls when hardware reports transmit completion
1000 	 * status.
1001 	 */
1002 	hw->mac.report_tx_early = 1;
1003 
1004 	/* Allocate multicast array memory. */
1005 	adapter->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
1006 	    MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1007 	if (adapter->mta == NULL) {
1008 		device_printf(dev, "Can not allocate multicast setup array\n");
1009 		error = ENOMEM;
1010 		goto err_late;
1011 	}
1012 
1013 	/* Check SOL/IDER usage */
1014 	if (e1000_check_reset_block(hw))
1015 		device_printf(dev, "PHY reset is blocked"
1016 			      " due to SOL/IDER session.\n");
1017 
1018 	/* Sysctl for setting Energy Efficient Ethernet */
1019 	hw->dev_spec.ich8lan.eee_disable = eee_setting;
1020 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1021 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1022 	    OID_AUTO, "eee_control", CTLTYPE_INT|CTLFLAG_RW,
1023 	    adapter, 0, em_sysctl_eee, "I",
1024 	    "Disable Energy Efficient Ethernet");
1025 
1026 	/*
1027 	** Start from a known state, this is
1028 	** important in reading the nvm and
1029 	** mac from that.
1030 	*/
1031 	e1000_reset_hw(hw);
1032 
1033 	/* Make sure we have a good EEPROM before we read from it */
1034 	if (e1000_validate_nvm_checksum(hw) < 0) {
1035 		/*
1036 		** Some PCI-E parts fail the first check due to
1037 		** the link being in sleep state, call it again,
1038 		** if it fails a second time its a real issue.
1039 		*/
1040 		if (e1000_validate_nvm_checksum(hw) < 0) {
1041 			device_printf(dev,
1042 			    "The EEPROM Checksum Is Not Valid\n");
1043 			error = EIO;
1044 			goto err_late;
1045 		}
1046 	}
1047 
1048 	/* Copy the permanent MAC address out of the EEPROM */
1049 	if (e1000_read_mac_addr(hw) < 0) {
1050 		device_printf(dev, "EEPROM read error while reading MAC"
1051 			      " address\n");
1052 		error = EIO;
1053 		goto err_late;
1054 	}
1055 
1056 	if (!em_is_valid_ether_addr(hw->mac.addr)) {
1057 		device_printf(dev, "Invalid MAC address\n");
1058 		error = EIO;
1059 		goto err_late;
1060 	}
1061 
1062 	/* Disable ULP support */
1063 	e1000_disable_ulp_lpt_lp(hw, TRUE);
1064 
1065 	/*
1066 	 * Get Wake-on-Lan and Management info for later use
1067 	 */
1068 	em_get_wakeup(ctx);
1069 
1070 	/* Enable only WOL MAGIC by default */
1071 	scctx->isc_capenable &= ~IFCAP_WOL;
1072 	if (adapter->wol != 0)
1073 		scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1074 
1075 	iflib_set_mac(ctx, hw->mac.addr);
1076 
1077 	return (0);
1078 
1079 err_late:
1080 	em_release_hw_control(adapter);
1081 err_pci:
1082 	em_free_pci_resources(ctx);
1083 	free(adapter->mta, M_DEVBUF);
1084 
1085 	return (error);
1086 }
1087 
1088 static int
1089 em_if_attach_post(if_ctx_t ctx)
1090 {
1091 	struct adapter *adapter = iflib_get_softc(ctx);
1092 	struct e1000_hw *hw = &adapter->hw;
1093 	int error = 0;
1094 
1095 	/* Setup OS specific network interface */
1096 	error = em_setup_interface(ctx);
1097 	if (error != 0) {
1098 		goto err_late;
1099 	}
1100 
1101 	em_reset(ctx);
1102 
1103 	/* Initialize statistics */
1104 	em_update_stats_counters(adapter);
1105 	hw->mac.get_link_status = 1;
1106 	em_if_update_admin_status(ctx);
1107 	em_add_hw_stats(adapter);
1108 
1109 	/* Non-AMT based hardware can now take control from firmware */
1110 	if (adapter->has_manage && !adapter->has_amt)
1111 		em_get_hw_control(adapter);
1112 
1113 	INIT_DEBUGOUT("em_if_attach_post: end");
1114 
1115 	return (error);
1116 
1117 err_late:
1118 	em_release_hw_control(adapter);
1119 	em_free_pci_resources(ctx);
1120 	em_if_queues_free(ctx);
1121 	free(adapter->mta, M_DEVBUF);
1122 
1123 	return (error);
1124 }
1125 
1126 /*********************************************************************
1127  *  Device removal routine
1128  *
1129  *  The detach entry point is called when the driver is being removed.
1130  *  This routine stops the adapter and deallocates all the resources
1131  *  that were allocated for driver operation.
1132  *
1133  *  return 0 on success, positive on failure
1134  *********************************************************************/
1135 static int
1136 em_if_detach(if_ctx_t ctx)
1137 {
1138 	struct adapter	*adapter = iflib_get_softc(ctx);
1139 
1140 	INIT_DEBUGOUT("em_if_detach: begin");
1141 
1142 	e1000_phy_hw_reset(&adapter->hw);
1143 
1144 	em_release_manageability(adapter);
1145 	em_release_hw_control(adapter);
1146 	em_free_pci_resources(ctx);
1147 
1148 	return (0);
1149 }
1150 
1151 /*********************************************************************
1152  *
1153  *  Shutdown entry point
1154  *
1155  **********************************************************************/
1156 
1157 static int
1158 em_if_shutdown(if_ctx_t ctx)
1159 {
1160 	return em_if_suspend(ctx);
1161 }
1162 
1163 /*
1164  * Suspend/resume device methods.
1165  */
1166 static int
1167 em_if_suspend(if_ctx_t ctx)
1168 {
1169 	struct adapter *adapter = iflib_get_softc(ctx);
1170 
1171 	em_release_manageability(adapter);
1172 	em_release_hw_control(adapter);
1173 	em_enable_wakeup(ctx);
1174 	return (0);
1175 }
1176 
1177 static int
1178 em_if_resume(if_ctx_t ctx)
1179 {
1180 	struct adapter *adapter = iflib_get_softc(ctx);
1181 
1182 	if (adapter->hw.mac.type == e1000_pch2lan)
1183 		e1000_resume_workarounds_pchlan(&adapter->hw);
1184 	em_if_init(ctx);
1185 	em_init_manageability(adapter);
1186 
1187 	return(0);
1188 }
1189 
1190 static int
1191 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1192 {
1193 	int max_frame_size;
1194 	struct adapter *adapter = iflib_get_softc(ctx);
1195 	if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1196 
1197 	 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1198 
1199 	switch (adapter->hw.mac.type) {
1200 	case e1000_82571:
1201 	case e1000_82572:
1202 	case e1000_ich9lan:
1203 	case e1000_ich10lan:
1204 	case e1000_pch2lan:
1205 	case e1000_pch_lpt:
1206 	case e1000_pch_spt:
1207 	case e1000_pch_cnp:
1208 	case e1000_82574:
1209 	case e1000_82583:
1210 	case e1000_80003es2lan:
1211 		/* 9K Jumbo Frame size */
1212 		max_frame_size = 9234;
1213 		break;
1214 	case e1000_pchlan:
1215 		max_frame_size = 4096;
1216 		break;
1217 	case e1000_82542:
1218 	case e1000_ich8lan:
1219 		/* Adapters that do not support jumbo frames */
1220 		max_frame_size = ETHER_MAX_LEN;
1221 		break;
1222 	default:
1223 		if (adapter->hw.mac.type >= igb_mac_min)
1224 			max_frame_size = 9234;
1225 		else /* lem */
1226 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1227 	}
1228 	if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1229 		return (EINVAL);
1230 	}
1231 
1232 	scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
1233 	    mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1234 	return (0);
1235 }
1236 
1237 /*********************************************************************
1238  *  Init entry point
1239  *
1240  *  This routine is used in two ways. It is used by the stack as
1241  *  init entry point in network interface structure. It is also used
1242  *  by the driver as a hw/sw initialization routine to get to a
1243  *  consistent state.
1244  *
1245  **********************************************************************/
1246 static void
1247 em_if_init(if_ctx_t ctx)
1248 {
1249 	struct adapter *adapter = iflib_get_softc(ctx);
1250 	if_softc_ctx_t scctx = adapter->shared;
1251 	struct ifnet *ifp = iflib_get_ifp(ctx);
1252 	struct em_tx_queue *tx_que;
1253 	int i;
1254 
1255 	INIT_DEBUGOUT("em_if_init: begin");
1256 
1257 	/* Get the latest mac address, User can use a LAA */
1258 	bcopy(if_getlladdr(ifp), adapter->hw.mac.addr,
1259 	    ETHER_ADDR_LEN);
1260 
1261 	/* Put the address into the Receive Address Array */
1262 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1263 
1264 	/*
1265 	 * With the 82571 adapter, RAR[0] may be overwritten
1266 	 * when the other port is reset, we make a duplicate
1267 	 * in RAR[14] for that eventuality, this assures
1268 	 * the interface continues to function.
1269 	 */
1270 	if (adapter->hw.mac.type == e1000_82571) {
1271 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1272 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1273 		    E1000_RAR_ENTRIES - 1);
1274 	}
1275 
1276 
1277 	/* Initialize the hardware */
1278 	em_reset(ctx);
1279 	em_if_update_admin_status(ctx);
1280 
1281 	for (i = 0, tx_que = adapter->tx_queues; i < adapter->tx_num_queues; i++, tx_que++) {
1282 		struct tx_ring *txr = &tx_que->txr;
1283 
1284 		txr->tx_rs_cidx = txr->tx_rs_pidx;
1285 
1286 		/* Initialize the last processed descriptor to be the end of
1287 		 * the ring, rather than the start, so that we avoid an
1288 		 * off-by-one error when calculating how many descriptors are
1289 		 * done in the credits_update function.
1290 		 */
1291 		txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1292 	}
1293 
1294 	/* Setup VLAN support, basic and offload if available */
1295 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1296 
1297 	/* Clear bad data from Rx FIFOs */
1298 	if (adapter->hw.mac.type >= igb_mac_min)
1299 		e1000_rx_fifo_flush_82575(&adapter->hw);
1300 
1301 	/* Configure for OS presence */
1302 	em_init_manageability(adapter);
1303 
1304 	/* Prepare transmit descriptors and buffers */
1305 	em_initialize_transmit_unit(ctx);
1306 
1307 	/* Setup Multicast table */
1308 	em_if_multi_set(ctx);
1309 
1310 	adapter->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1311 	em_initialize_receive_unit(ctx);
1312 
1313 	/* Use real VLAN Filter support? */
1314 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
1315 		if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
1316 			/* Use real VLAN Filter support */
1317 			em_setup_vlan_hw_support(adapter);
1318 		else {
1319 			u32 ctrl;
1320 			ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1321 			ctrl |= E1000_CTRL_VME;
1322 			E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1323 		}
1324 	}
1325 
1326 	/* Don't lose promiscuous settings */
1327 	em_if_set_promisc(ctx, IFF_PROMISC);
1328 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1329 
1330 	/* MSI-X configuration for 82574 */
1331 	if (adapter->hw.mac.type == e1000_82574) {
1332 		int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1333 
1334 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1335 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1336 		/* Set the IVAR - interrupt vector routing. */
1337 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars);
1338 	} else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1339 		igb_configure_queues(adapter);
1340 
1341 	/* this clears any pending interrupts */
1342 	E1000_READ_REG(&adapter->hw, E1000_ICR);
1343 	E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
1344 
1345 	/* AMT based hardware can now take control from firmware */
1346 	if (adapter->has_manage && adapter->has_amt)
1347 		em_get_hw_control(adapter);
1348 
1349 	/* Set Energy Efficient Ethernet */
1350 	if (adapter->hw.mac.type >= igb_mac_min &&
1351 	    adapter->hw.phy.media_type == e1000_media_type_copper) {
1352 		if (adapter->hw.mac.type == e1000_i354)
1353 			e1000_set_eee_i354(&adapter->hw, TRUE, TRUE);
1354 		else
1355 			e1000_set_eee_i350(&adapter->hw, TRUE, TRUE);
1356 	}
1357 }
1358 
1359 /*********************************************************************
1360  *
1361  *  Fast Legacy/MSI Combined Interrupt Service routine
1362  *
1363  *********************************************************************/
1364 int
1365 em_intr(void *arg)
1366 {
1367 	struct adapter *adapter = arg;
1368 	if_ctx_t ctx = adapter->ctx;
1369 	u32 reg_icr;
1370 
1371 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1372 
1373 	/* Hot eject? */
1374 	if (reg_icr == 0xffffffff)
1375 		return FILTER_STRAY;
1376 
1377 	/* Definitely not our interrupt. */
1378 	if (reg_icr == 0x0)
1379 		return FILTER_STRAY;
1380 
1381 	/*
1382 	 * Starting with the 82571 chip, bit 31 should be used to
1383 	 * determine whether the interrupt belongs to us.
1384 	 */
1385 	if (adapter->hw.mac.type >= e1000_82571 &&
1386 	    (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1387 		return FILTER_STRAY;
1388 
1389 	/*
1390 	 * Only MSI-X interrupts have one-shot behavior by taking advantage
1391 	 * of the EIAC register.  Thus, explicitly disable interrupts.  This
1392 	 * also works around the MSI message reordering errata on certain
1393 	 * systems.
1394 	 */
1395 	IFDI_INTR_DISABLE(ctx);
1396 
1397 	/* Link status change */
1398 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1399 		em_handle_link(ctx);
1400 
1401 	if (reg_icr & E1000_ICR_RXO)
1402 		adapter->rx_overruns++;
1403 
1404 	return (FILTER_SCHEDULE_THREAD);
1405 }
1406 
1407 static int
1408 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1409 {
1410 	struct adapter *adapter = iflib_get_softc(ctx);
1411 	struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1412 
1413 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims);
1414 	return (0);
1415 }
1416 
1417 static int
1418 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1419 {
1420 	struct adapter *adapter = iflib_get_softc(ctx);
1421 	struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1422 
1423 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, txq->eims);
1424 	return (0);
1425 }
1426 
1427 static int
1428 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1429 {
1430 	struct adapter *adapter = iflib_get_softc(ctx);
1431 	struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1432 
1433 	E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims);
1434 	return (0);
1435 }
1436 
1437 static int
1438 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1439 {
1440 	struct adapter *adapter = iflib_get_softc(ctx);
1441 	struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1442 
1443 	E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txq->eims);
1444 	return (0);
1445 }
1446 
1447 /*********************************************************************
1448  *
1449  *  MSI-X RX Interrupt Service routine
1450  *
1451  **********************************************************************/
1452 static int
1453 em_msix_que(void *arg)
1454 {
1455 	struct em_rx_queue *que = arg;
1456 
1457 	++que->irqs;
1458 
1459 	return (FILTER_SCHEDULE_THREAD);
1460 }
1461 
1462 /*********************************************************************
1463  *
1464  *  MSI-X Link Fast Interrupt Service routine
1465  *
1466  **********************************************************************/
1467 static int
1468 em_msix_link(void *arg)
1469 {
1470 	struct adapter *adapter = arg;
1471 	u32 reg_icr;
1472 
1473 	++adapter->link_irq;
1474 	MPASS(adapter->hw.back != NULL);
1475 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1476 
1477 	if (reg_icr & E1000_ICR_RXO)
1478 		adapter->rx_overruns++;
1479 
1480 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1481 		em_handle_link(adapter->ctx);
1482 	} else if (adapter->hw.mac.type == e1000_82574) {
1483 		/* Only re-arm 82574 if em_if_update_admin_status() won't. */
1484 		E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK |
1485 		    E1000_IMS_LSC);
1486 	}
1487 
1488 	if (adapter->hw.mac.type == e1000_82574) {
1489 		/*
1490 		 * Because we must read the ICR for this interrupt it may
1491 		 * clear other causes using autoclear, for this reason we
1492 		 * simply create a soft interrupt for all these vectors.
1493 		 */
1494 		if (reg_icr)
1495 			E1000_WRITE_REG(&adapter->hw, E1000_ICS, adapter->ims);
1496 	} else {
1497 		/* Re-arm unconditionally */
1498 		E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC);
1499 		E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
1500 	}
1501 
1502 	return (FILTER_HANDLED);
1503 }
1504 
1505 static void
1506 em_handle_link(void *context)
1507 {
1508 	if_ctx_t ctx = context;
1509 	struct adapter *adapter = iflib_get_softc(ctx);
1510 
1511 	adapter->hw.mac.get_link_status = 1;
1512 	iflib_admin_intr_deferred(ctx);
1513 }
1514 
1515 /*********************************************************************
1516  *
1517  *  Media Ioctl callback
1518  *
1519  *  This routine is called whenever the user queries the status of
1520  *  the interface using ifconfig.
1521  *
1522  **********************************************************************/
1523 static void
1524 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1525 {
1526 	struct adapter *adapter = iflib_get_softc(ctx);
1527 	u_char fiber_type = IFM_1000_SX;
1528 
1529 	INIT_DEBUGOUT("em_if_media_status: begin");
1530 
1531 	iflib_admin_intr_deferred(ctx);
1532 
1533 	ifmr->ifm_status = IFM_AVALID;
1534 	ifmr->ifm_active = IFM_ETHER;
1535 
1536 	if (!adapter->link_active) {
1537 		return;
1538 	}
1539 
1540 	ifmr->ifm_status |= IFM_ACTIVE;
1541 
1542 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
1543 	    (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1544 		if (adapter->hw.mac.type == e1000_82545)
1545 			fiber_type = IFM_1000_LX;
1546 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1547 	} else {
1548 		switch (adapter->link_speed) {
1549 		case 10:
1550 			ifmr->ifm_active |= IFM_10_T;
1551 			break;
1552 		case 100:
1553 			ifmr->ifm_active |= IFM_100_TX;
1554 			break;
1555 		case 1000:
1556 			ifmr->ifm_active |= IFM_1000_T;
1557 			break;
1558 		}
1559 		if (adapter->link_duplex == FULL_DUPLEX)
1560 			ifmr->ifm_active |= IFM_FDX;
1561 		else
1562 			ifmr->ifm_active |= IFM_HDX;
1563 	}
1564 }
1565 
1566 /*********************************************************************
1567  *
1568  *  Media Ioctl callback
1569  *
1570  *  This routine is called when the user changes speed/duplex using
1571  *  media/mediopt option with ifconfig.
1572  *
1573  **********************************************************************/
1574 static int
1575 em_if_media_change(if_ctx_t ctx)
1576 {
1577 	struct adapter *adapter = iflib_get_softc(ctx);
1578 	struct ifmedia *ifm = iflib_get_media(ctx);
1579 
1580 	INIT_DEBUGOUT("em_if_media_change: begin");
1581 
1582 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1583 		return (EINVAL);
1584 
1585 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1586 	case IFM_AUTO:
1587 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1588 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1589 		break;
1590 	case IFM_1000_LX:
1591 	case IFM_1000_SX:
1592 	case IFM_1000_T:
1593 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1594 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1595 		break;
1596 	case IFM_100_TX:
1597 		adapter->hw.mac.autoneg = FALSE;
1598 		adapter->hw.phy.autoneg_advertised = 0;
1599 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1600 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1601 		else
1602 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1603 		break;
1604 	case IFM_10_T:
1605 		adapter->hw.mac.autoneg = FALSE;
1606 		adapter->hw.phy.autoneg_advertised = 0;
1607 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1608 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1609 		else
1610 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1611 		break;
1612 	default:
1613 		device_printf(adapter->dev, "Unsupported media type\n");
1614 	}
1615 
1616 	em_if_init(ctx);
1617 
1618 	return (0);
1619 }
1620 
1621 static int
1622 em_if_set_promisc(if_ctx_t ctx, int flags)
1623 {
1624 	struct adapter *adapter = iflib_get_softc(ctx);
1625 	u32 reg_rctl;
1626 
1627 	em_disable_promisc(ctx);
1628 
1629 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1630 
1631 	if (flags & IFF_PROMISC) {
1632 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1633 		/* Turn this on if you want to see bad packets */
1634 		if (em_debug_sbp)
1635 			reg_rctl |= E1000_RCTL_SBP;
1636 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1637 	} else if (flags & IFF_ALLMULTI) {
1638 		reg_rctl |= E1000_RCTL_MPE;
1639 		reg_rctl &= ~E1000_RCTL_UPE;
1640 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1641 	}
1642 	return (0);
1643 }
1644 
1645 static void
1646 em_disable_promisc(if_ctx_t ctx)
1647 {
1648 	struct adapter *adapter = iflib_get_softc(ctx);
1649 	struct ifnet *ifp = iflib_get_ifp(ctx);
1650 	u32 reg_rctl;
1651 	int mcnt = 0;
1652 
1653 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1654 	reg_rctl &= (~E1000_RCTL_UPE);
1655 	if (if_getflags(ifp) & IFF_ALLMULTI)
1656 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1657 	else
1658 		mcnt = if_llmaddr_count(ifp);
1659 	/* Don't disable if in MAX groups */
1660 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1661 		reg_rctl &=  (~E1000_RCTL_MPE);
1662 	reg_rctl &=  (~E1000_RCTL_SBP);
1663 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1664 }
1665 
1666 
1667 static u_int
1668 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1669 {
1670 	u8 *mta = arg;
1671 
1672 	if (cnt == MAX_NUM_MULTICAST_ADDRESSES)
1673 		return (1);
1674 
1675 	bcopy(LLADDR(sdl), &mta[cnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1676 
1677 	return (1);
1678 }
1679 
1680 /*********************************************************************
1681  *  Multicast Update
1682  *
1683  *  This routine is called whenever multicast address list is updated.
1684  *
1685  **********************************************************************/
1686 
1687 static void
1688 em_if_multi_set(if_ctx_t ctx)
1689 {
1690 	struct adapter *adapter = iflib_get_softc(ctx);
1691 	struct ifnet *ifp = iflib_get_ifp(ctx);
1692 	u32 reg_rctl = 0;
1693 	u8  *mta; /* Multicast array memory */
1694 	int mcnt = 0;
1695 
1696 	IOCTL_DEBUGOUT("em_set_multi: begin");
1697 
1698 	mta = adapter->mta;
1699 	bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1700 
1701 	if (adapter->hw.mac.type == e1000_82542 &&
1702 	    adapter->hw.revision_id == E1000_REVISION_2) {
1703 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1704 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1705 			e1000_pci_clear_mwi(&adapter->hw);
1706 		reg_rctl |= E1000_RCTL_RST;
1707 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1708 		msec_delay(5);
1709 	}
1710 
1711 	mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
1712 
1713 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1714 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1715 		reg_rctl |= E1000_RCTL_MPE;
1716 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1717 	} else
1718 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1719 
1720 	if (adapter->hw.mac.type == e1000_82542 &&
1721 	    adapter->hw.revision_id == E1000_REVISION_2) {
1722 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1723 		reg_rctl &= ~E1000_RCTL_RST;
1724 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1725 		msec_delay(5);
1726 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1727 			e1000_pci_set_mwi(&adapter->hw);
1728 	}
1729 }
1730 
1731 /*********************************************************************
1732  *  Timer routine
1733  *
1734  *  This routine schedules em_if_update_admin_status() to check for
1735  *  link status and to gather statistics as well as to perform some
1736  *  controller-specific hardware patting.
1737  *
1738  **********************************************************************/
1739 static void
1740 em_if_timer(if_ctx_t ctx, uint16_t qid)
1741 {
1742 
1743 	if (qid != 0)
1744 		return;
1745 
1746 	iflib_admin_intr_deferred(ctx);
1747 }
1748 
1749 static void
1750 em_if_update_admin_status(if_ctx_t ctx)
1751 {
1752 	struct adapter *adapter = iflib_get_softc(ctx);
1753 	struct e1000_hw *hw = &adapter->hw;
1754 	device_t dev = iflib_get_dev(ctx);
1755 	u32 link_check, thstat, ctrl;
1756 
1757 	link_check = thstat = ctrl = 0;
1758 	/* Get the cached link value or read phy for real */
1759 	switch (hw->phy.media_type) {
1760 	case e1000_media_type_copper:
1761 		if (hw->mac.get_link_status) {
1762 			if (hw->mac.type == e1000_pch_spt)
1763 				msec_delay(50);
1764 			/* Do the work to read phy */
1765 			e1000_check_for_link(hw);
1766 			link_check = !hw->mac.get_link_status;
1767 			if (link_check) /* ESB2 fix */
1768 				e1000_cfg_on_link_up(hw);
1769 		} else {
1770 			link_check = TRUE;
1771 		}
1772 		break;
1773 	case e1000_media_type_fiber:
1774 		e1000_check_for_link(hw);
1775 		link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1776 			    E1000_STATUS_LU);
1777 		break;
1778 	case e1000_media_type_internal_serdes:
1779 		e1000_check_for_link(hw);
1780 		link_check = adapter->hw.mac.serdes_has_link;
1781 		break;
1782 	/* VF device is type_unknown */
1783 	case e1000_media_type_unknown:
1784 		e1000_check_for_link(hw);
1785 		link_check = !hw->mac.get_link_status;
1786 		/* FALLTHROUGH */
1787 	default:
1788 		break;
1789 	}
1790 
1791 	/* Check for thermal downshift or shutdown */
1792 	if (hw->mac.type == e1000_i350) {
1793 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1794 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1795 	}
1796 
1797 	/* Now check for a transition */
1798 	if (link_check && (adapter->link_active == 0)) {
1799 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
1800 		    &adapter->link_duplex);
1801 		/* Check if we must disable SPEED_MODE bit on PCI-E */
1802 		if ((adapter->link_speed != SPEED_1000) &&
1803 		    ((hw->mac.type == e1000_82571) ||
1804 		    (hw->mac.type == e1000_82572))) {
1805 			int tarc0;
1806 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1807 			tarc0 &= ~TARC_SPEED_MODE_BIT;
1808 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1809 		}
1810 		if (bootverbose)
1811 			device_printf(dev, "Link is up %d Mbps %s\n",
1812 			    adapter->link_speed,
1813 			    ((adapter->link_duplex == FULL_DUPLEX) ?
1814 			    "Full Duplex" : "Half Duplex"));
1815 		adapter->link_active = 1;
1816 		adapter->smartspeed = 0;
1817 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
1818 		    E1000_CTRL_EXT_LINK_MODE_GMII &&
1819 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1820 			device_printf(dev, "Link: thermal downshift\n");
1821 		/* Delay Link Up for Phy update */
1822 		if (((hw->mac.type == e1000_i210) ||
1823 		    (hw->mac.type == e1000_i211)) &&
1824 		    (hw->phy.id == I210_I_PHY_ID))
1825 			msec_delay(I210_LINK_DELAY);
1826 		/* Reset if the media type changed. */
1827 		if ((hw->dev_spec._82575.media_changed) &&
1828 			(adapter->hw.mac.type >= igb_mac_min)) {
1829 			hw->dev_spec._82575.media_changed = false;
1830 			adapter->flags |= IGB_MEDIA_RESET;
1831 			em_reset(ctx);
1832 		}
1833 		iflib_link_state_change(ctx, LINK_STATE_UP,
1834 		    IF_Mbps(adapter->link_speed));
1835 	} else if (!link_check && (adapter->link_active == 1)) {
1836 		adapter->link_speed = 0;
1837 		adapter->link_duplex = 0;
1838 		adapter->link_active = 0;
1839 		iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
1840 	}
1841 	em_update_stats_counters(adapter);
1842 
1843 	/* Reset LAA into RAR[0] on 82571 */
1844 	if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
1845 		e1000_rar_set(hw, hw->mac.addr, 0);
1846 
1847 	if (hw->mac.type < em_mac_min)
1848 		lem_smartspeed(adapter);
1849 	else if (hw->mac.type == e1000_82574 &&
1850 	    adapter->intr_type == IFLIB_INTR_MSIX)
1851 		E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK |
1852 		    E1000_IMS_LSC);
1853 }
1854 
1855 static void
1856 em_if_watchdog_reset(if_ctx_t ctx)
1857 {
1858 	struct adapter *adapter = iflib_get_softc(ctx);
1859 
1860 	/*
1861 	 * Just count the event; iflib(4) will already trigger a
1862 	 * sufficient reset of the controller.
1863 	 */
1864 	adapter->watchdog_events++;
1865 }
1866 
1867 /*********************************************************************
1868  *
1869  *  This routine disables all traffic on the adapter by issuing a
1870  *  global reset on the MAC.
1871  *
1872  **********************************************************************/
1873 static void
1874 em_if_stop(if_ctx_t ctx)
1875 {
1876 	struct adapter *adapter = iflib_get_softc(ctx);
1877 
1878 	INIT_DEBUGOUT("em_if_stop: begin");
1879 
1880 	e1000_reset_hw(&adapter->hw);
1881 	if (adapter->hw.mac.type >= e1000_82544)
1882 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0);
1883 
1884 	e1000_led_off(&adapter->hw);
1885 	e1000_cleanup_led(&adapter->hw);
1886 }
1887 
1888 /*********************************************************************
1889  *
1890  *  Determine hardware revision.
1891  *
1892  **********************************************************************/
1893 static void
1894 em_identify_hardware(if_ctx_t ctx)
1895 {
1896 	device_t dev = iflib_get_dev(ctx);
1897 	struct adapter *adapter = iflib_get_softc(ctx);
1898 
1899 	/* Make sure our PCI config space has the necessary stuff set */
1900 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1901 
1902 	/* Save off the information about this board */
1903 	adapter->hw.vendor_id = pci_get_vendor(dev);
1904 	adapter->hw.device_id = pci_get_device(dev);
1905 	adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1906 	adapter->hw.subsystem_vendor_id =
1907 	    pci_read_config(dev, PCIR_SUBVEND_0, 2);
1908 	adapter->hw.subsystem_device_id =
1909 	    pci_read_config(dev, PCIR_SUBDEV_0, 2);
1910 
1911 	/* Do Shared Code Init and Setup */
1912 	if (e1000_set_mac_type(&adapter->hw)) {
1913 		device_printf(dev, "Setup init failure\n");
1914 		return;
1915 	}
1916 }
1917 
1918 static int
1919 em_allocate_pci_resources(if_ctx_t ctx)
1920 {
1921 	struct adapter *adapter = iflib_get_softc(ctx);
1922 	device_t dev = iflib_get_dev(ctx);
1923 	int rid, val;
1924 
1925 	rid = PCIR_BAR(0);
1926 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1927 	    &rid, RF_ACTIVE);
1928 	if (adapter->memory == NULL) {
1929 		device_printf(dev, "Unable to allocate bus resource: memory\n");
1930 		return (ENXIO);
1931 	}
1932 	adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->memory);
1933 	adapter->osdep.mem_bus_space_handle =
1934 	    rman_get_bushandle(adapter->memory);
1935 	adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
1936 
1937 	/* Only older adapters use IO mapping */
1938 	if (adapter->hw.mac.type < em_mac_min &&
1939 	    adapter->hw.mac.type > e1000_82543) {
1940 		/* Figure our where our IO BAR is ? */
1941 		for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1942 			val = pci_read_config(dev, rid, 4);
1943 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1944 				break;
1945 			}
1946 			rid += 4;
1947 			/* check for 64bit BAR */
1948 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1949 				rid += 4;
1950 		}
1951 		if (rid >= PCIR_CIS) {
1952 			device_printf(dev, "Unable to locate IO BAR\n");
1953 			return (ENXIO);
1954 		}
1955 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
1956 		    &rid, RF_ACTIVE);
1957 		if (adapter->ioport == NULL) {
1958 			device_printf(dev, "Unable to allocate bus resource: "
1959 			    "ioport\n");
1960 			return (ENXIO);
1961 		}
1962 		adapter->hw.io_base = 0;
1963 		adapter->osdep.io_bus_space_tag =
1964 		    rman_get_bustag(adapter->ioport);
1965 		adapter->osdep.io_bus_space_handle =
1966 		    rman_get_bushandle(adapter->ioport);
1967 	}
1968 
1969 	adapter->hw.back = &adapter->osdep;
1970 
1971 	return (0);
1972 }
1973 
1974 /*********************************************************************
1975  *
1976  *  Set up the MSI-X Interrupt handlers
1977  *
1978  **********************************************************************/
1979 static int
1980 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
1981 {
1982 	struct adapter *adapter = iflib_get_softc(ctx);
1983 	struct em_rx_queue *rx_que = adapter->rx_queues;
1984 	struct em_tx_queue *tx_que = adapter->tx_queues;
1985 	int error, rid, i, vector = 0, rx_vectors;
1986 	char buf[16];
1987 
1988 	/* First set up ring resources */
1989 	for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) {
1990 		rid = vector + 1;
1991 		snprintf(buf, sizeof(buf), "rxq%d", i);
1992 		error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
1993 		if (error) {
1994 			device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
1995 			adapter->rx_num_queues = i + 1;
1996 			goto fail;
1997 		}
1998 
1999 		rx_que->msix =  vector;
2000 
2001 		/*
2002 		 * Set the bit to enable interrupt
2003 		 * in E1000_IMS -- bits 20 and 21
2004 		 * are for RX0 and RX1, note this has
2005 		 * NOTHING to do with the MSI-X vector
2006 		 */
2007 		if (adapter->hw.mac.type == e1000_82574) {
2008 			rx_que->eims = 1 << (20 + i);
2009 			adapter->ims |= rx_que->eims;
2010 			adapter->ivars |= (8 | rx_que->msix) << (i * 4);
2011 		} else if (adapter->hw.mac.type == e1000_82575)
2012 			rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2013 		else
2014 			rx_que->eims = 1 << vector;
2015 	}
2016 	rx_vectors = vector;
2017 
2018 	vector = 0;
2019 	for (i = 0; i < adapter->tx_num_queues; i++, tx_que++, vector++) {
2020 		snprintf(buf, sizeof(buf), "txq%d", i);
2021 		tx_que = &adapter->tx_queues[i];
2022 		iflib_softirq_alloc_generic(ctx,
2023 		    &adapter->rx_queues[i % adapter->rx_num_queues].que_irq,
2024 		    IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2025 
2026 		tx_que->msix = (vector % adapter->rx_num_queues);
2027 
2028 		/*
2029 		 * Set the bit to enable interrupt
2030 		 * in E1000_IMS -- bits 22 and 23
2031 		 * are for TX0 and TX1, note this has
2032 		 * NOTHING to do with the MSI-X vector
2033 		 */
2034 		if (adapter->hw.mac.type == e1000_82574) {
2035 			tx_que->eims = 1 << (22 + i);
2036 			adapter->ims |= tx_que->eims;
2037 			adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2038 		} else if (adapter->hw.mac.type == e1000_82575) {
2039 			tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2040 		} else {
2041 			tx_que->eims = 1 << i;
2042 		}
2043 	}
2044 
2045 	/* Link interrupt */
2046 	rid = rx_vectors + 1;
2047 	error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq");
2048 
2049 	if (error) {
2050 		device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
2051 		goto fail;
2052 	}
2053 	adapter->linkvec = rx_vectors;
2054 	if (adapter->hw.mac.type < igb_mac_min) {
2055 		adapter->ivars |=  (8 | rx_vectors) << 16;
2056 		adapter->ivars |= 0x80000000;
2057 	}
2058 	return (0);
2059 fail:
2060 	iflib_irq_free(ctx, &adapter->irq);
2061 	rx_que = adapter->rx_queues;
2062 	for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++)
2063 		iflib_irq_free(ctx, &rx_que->que_irq);
2064 	return (error);
2065 }
2066 
2067 static void
2068 igb_configure_queues(struct adapter *adapter)
2069 {
2070 	struct e1000_hw *hw = &adapter->hw;
2071 	struct em_rx_queue *rx_que;
2072 	struct em_tx_queue *tx_que;
2073 	u32 tmp, ivar = 0, newitr = 0;
2074 
2075 	/* First turn on RSS capability */
2076 	if (adapter->hw.mac.type != e1000_82575)
2077 		E1000_WRITE_REG(hw, E1000_GPIE,
2078 		    E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2079 		    E1000_GPIE_PBA | E1000_GPIE_NSICR);
2080 
2081 	/* Turn on MSI-X */
2082 	switch (adapter->hw.mac.type) {
2083 	case e1000_82580:
2084 	case e1000_i350:
2085 	case e1000_i354:
2086 	case e1000_i210:
2087 	case e1000_i211:
2088 	case e1000_vfadapt:
2089 	case e1000_vfadapt_i350:
2090 		/* RX entries */
2091 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2092 			u32 index = i >> 1;
2093 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2094 			rx_que = &adapter->rx_queues[i];
2095 			if (i & 1) {
2096 				ivar &= 0xFF00FFFF;
2097 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2098 			} else {
2099 				ivar &= 0xFFFFFF00;
2100 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2101 			}
2102 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2103 		}
2104 		/* TX entries */
2105 		for (int i = 0; i < adapter->tx_num_queues; i++) {
2106 			u32 index = i >> 1;
2107 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2108 			tx_que = &adapter->tx_queues[i];
2109 			if (i & 1) {
2110 				ivar &= 0x00FFFFFF;
2111 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2112 			} else {
2113 				ivar &= 0xFFFF00FF;
2114 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2115 			}
2116 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2117 			adapter->que_mask |= tx_que->eims;
2118 		}
2119 
2120 		/* And for the link interrupt */
2121 		ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2122 		adapter->link_mask = 1 << adapter->linkvec;
2123 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2124 		break;
2125 	case e1000_82576:
2126 		/* RX entries */
2127 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2128 			u32 index = i & 0x7; /* Each IVAR has two entries */
2129 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2130 			rx_que = &adapter->rx_queues[i];
2131 			if (i < 8) {
2132 				ivar &= 0xFFFFFF00;
2133 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2134 			} else {
2135 				ivar &= 0xFF00FFFF;
2136 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2137 			}
2138 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2139 			adapter->que_mask |= rx_que->eims;
2140 		}
2141 		/* TX entries */
2142 		for (int i = 0; i < adapter->tx_num_queues; i++) {
2143 			u32 index = i & 0x7; /* Each IVAR has two entries */
2144 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2145 			tx_que = &adapter->tx_queues[i];
2146 			if (i < 8) {
2147 				ivar &= 0xFFFF00FF;
2148 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2149 			} else {
2150 				ivar &= 0x00FFFFFF;
2151 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2152 			}
2153 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2154 			adapter->que_mask |= tx_que->eims;
2155 		}
2156 
2157 		/* And for the link interrupt */
2158 		ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2159 		adapter->link_mask = 1 << adapter->linkvec;
2160 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2161 		break;
2162 
2163 	case e1000_82575:
2164 		/* enable MSI-X support*/
2165 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2166 		tmp |= E1000_CTRL_EXT_PBA_CLR;
2167 		/* Auto-Mask interrupts upon ICR read. */
2168 		tmp |= E1000_CTRL_EXT_EIAME;
2169 		tmp |= E1000_CTRL_EXT_IRCA;
2170 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2171 
2172 		/* Queues */
2173 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2174 			rx_que = &adapter->rx_queues[i];
2175 			tmp = E1000_EICR_RX_QUEUE0 << i;
2176 			tmp |= E1000_EICR_TX_QUEUE0 << i;
2177 			rx_que->eims = tmp;
2178 			E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2179 			    i, rx_que->eims);
2180 			adapter->que_mask |= rx_que->eims;
2181 		}
2182 
2183 		/* Link */
2184 		E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
2185 		    E1000_EIMS_OTHER);
2186 		adapter->link_mask |= E1000_EIMS_OTHER;
2187 	default:
2188 		break;
2189 	}
2190 
2191 	/* Set the starting interrupt rate */
2192 	if (em_max_interrupt_rate > 0)
2193 		newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2194 
2195 	if (hw->mac.type == e1000_82575)
2196 		newitr |= newitr << 16;
2197 	else
2198 		newitr |= E1000_EITR_CNT_IGNR;
2199 
2200 	for (int i = 0; i < adapter->rx_num_queues; i++) {
2201 		rx_que = &adapter->rx_queues[i];
2202 		E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2203 	}
2204 
2205 	return;
2206 }
2207 
2208 static void
2209 em_free_pci_resources(if_ctx_t ctx)
2210 {
2211 	struct adapter *adapter = iflib_get_softc(ctx);
2212 	struct em_rx_queue *que = adapter->rx_queues;
2213 	device_t dev = iflib_get_dev(ctx);
2214 
2215 	/* Release all MSI-X queue resources */
2216 	if (adapter->intr_type == IFLIB_INTR_MSIX)
2217 		iflib_irq_free(ctx, &adapter->irq);
2218 
2219 	for (int i = 0; i < adapter->rx_num_queues; i++, que++) {
2220 		iflib_irq_free(ctx, &que->que_irq);
2221 	}
2222 
2223 	if (adapter->memory != NULL) {
2224 		bus_release_resource(dev, SYS_RES_MEMORY,
2225 		    rman_get_rid(adapter->memory), adapter->memory);
2226 		adapter->memory = NULL;
2227 	}
2228 
2229 	if (adapter->flash != NULL) {
2230 		bus_release_resource(dev, SYS_RES_MEMORY,
2231 		    rman_get_rid(adapter->flash), adapter->flash);
2232 		adapter->flash = NULL;
2233 	}
2234 
2235 	if (adapter->ioport != NULL) {
2236 		bus_release_resource(dev, SYS_RES_IOPORT,
2237 		    rman_get_rid(adapter->ioport), adapter->ioport);
2238 		adapter->ioport = NULL;
2239 	}
2240 }
2241 
2242 /* Set up MSI or MSI-X */
2243 static int
2244 em_setup_msix(if_ctx_t ctx)
2245 {
2246 	struct adapter *adapter = iflib_get_softc(ctx);
2247 
2248 	if (adapter->hw.mac.type == e1000_82574) {
2249 		em_enable_vectors_82574(ctx);
2250 	}
2251 	return (0);
2252 }
2253 
2254 /*********************************************************************
2255  *
2256  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2257  *
2258  **********************************************************************/
2259 static void
2260 lem_smartspeed(struct adapter *adapter)
2261 {
2262 	u16 phy_tmp;
2263 
2264 	if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
2265 	    adapter->hw.mac.autoneg == 0 ||
2266 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2267 		return;
2268 
2269 	if (adapter->smartspeed == 0) {
2270 		/* If Master/Slave config fault is asserted twice,
2271 		 * we assume back-to-back */
2272 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2273 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2274 			return;
2275 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2276 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2277 			e1000_read_phy_reg(&adapter->hw,
2278 			    PHY_1000T_CTRL, &phy_tmp);
2279 			if(phy_tmp & CR_1000T_MS_ENABLE) {
2280 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2281 				e1000_write_phy_reg(&adapter->hw,
2282 				    PHY_1000T_CTRL, phy_tmp);
2283 				adapter->smartspeed++;
2284 				if(adapter->hw.mac.autoneg &&
2285 				   !e1000_copper_link_autoneg(&adapter->hw) &&
2286 				   !e1000_read_phy_reg(&adapter->hw,
2287 				    PHY_CONTROL, &phy_tmp)) {
2288 					phy_tmp |= (MII_CR_AUTO_NEG_EN |
2289 						    MII_CR_RESTART_AUTO_NEG);
2290 					e1000_write_phy_reg(&adapter->hw,
2291 					    PHY_CONTROL, phy_tmp);
2292 				}
2293 			}
2294 		}
2295 		return;
2296 	} else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2297 		/* If still no link, perhaps using 2/3 pair cable */
2298 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2299 		phy_tmp |= CR_1000T_MS_ENABLE;
2300 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2301 		if(adapter->hw.mac.autoneg &&
2302 		   !e1000_copper_link_autoneg(&adapter->hw) &&
2303 		   !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2304 			phy_tmp |= (MII_CR_AUTO_NEG_EN |
2305 				    MII_CR_RESTART_AUTO_NEG);
2306 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2307 		}
2308 	}
2309 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2310 	if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2311 		adapter->smartspeed = 0;
2312 }
2313 
2314 /*********************************************************************
2315  *
2316  *  Initialize the DMA Coalescing feature
2317  *
2318  **********************************************************************/
2319 static void
2320 igb_init_dmac(struct adapter *adapter, u32 pba)
2321 {
2322 	device_t	dev = adapter->dev;
2323 	struct e1000_hw *hw = &adapter->hw;
2324 	u32 		dmac, reg = ~E1000_DMACR_DMAC_EN;
2325 	u16		hwm;
2326 	u16		max_frame_size;
2327 
2328 	if (hw->mac.type == e1000_i211)
2329 		return;
2330 
2331 	max_frame_size = adapter->shared->isc_max_frame_size;
2332 	if (hw->mac.type > e1000_82580) {
2333 
2334 		if (adapter->dmac == 0) { /* Disabling it */
2335 			E1000_WRITE_REG(hw, E1000_DMACR, reg);
2336 			return;
2337 		} else
2338 			device_printf(dev, "DMA Coalescing enabled\n");
2339 
2340 		/* Set starting threshold */
2341 		E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2342 
2343 		hwm = 64 * pba - max_frame_size / 16;
2344 		if (hwm < 64 * (pba - 6))
2345 			hwm = 64 * (pba - 6);
2346 		reg = E1000_READ_REG(hw, E1000_FCRTC);
2347 		reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2348 		reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2349 		    & E1000_FCRTC_RTH_COAL_MASK);
2350 		E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2351 
2352 
2353 		dmac = pba - max_frame_size / 512;
2354 		if (dmac < pba - 10)
2355 			dmac = pba - 10;
2356 		reg = E1000_READ_REG(hw, E1000_DMACR);
2357 		reg &= ~E1000_DMACR_DMACTHR_MASK;
2358 		reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2359 		    & E1000_DMACR_DMACTHR_MASK);
2360 
2361 		/* transition to L0x or L1 if available..*/
2362 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2363 
2364 		/* Check if status is 2.5Gb backplane connection
2365 		* before configuration of watchdog timer, which is
2366 		* in msec values in 12.8usec intervals
2367 		* watchdog timer= msec values in 32usec intervals
2368 		* for non 2.5Gb connection
2369 		*/
2370 		if (hw->mac.type == e1000_i354) {
2371 			int status = E1000_READ_REG(hw, E1000_STATUS);
2372 			if ((status & E1000_STATUS_2P5_SKU) &&
2373 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2374 				reg |= ((adapter->dmac * 5) >> 6);
2375 			else
2376 				reg |= (adapter->dmac >> 5);
2377 		} else {
2378 			reg |= (adapter->dmac >> 5);
2379 		}
2380 
2381 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
2382 
2383 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2384 
2385 		/* Set the interval before transition */
2386 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
2387 		if (hw->mac.type == e1000_i350)
2388 			reg |= IGB_DMCTLX_DCFLUSH_DIS;
2389 		/*
2390 		** in 2.5Gb connection, TTLX unit is 0.4 usec
2391 		** which is 0x4*2 = 0xA. But delay is still 4 usec
2392 		*/
2393 		if (hw->mac.type == e1000_i354) {
2394 			int status = E1000_READ_REG(hw, E1000_STATUS);
2395 			if ((status & E1000_STATUS_2P5_SKU) &&
2396 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2397 				reg |= 0xA;
2398 			else
2399 				reg |= 0x4;
2400 		} else {
2401 			reg |= 0x4;
2402 		}
2403 
2404 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2405 
2406 		/* free space in tx packet buffer to wake from DMA coal */
2407 		E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2408 		    (2 * max_frame_size)) >> 6);
2409 
2410 		/* make low power state decision controlled by DMA coal */
2411 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2412 		reg &= ~E1000_PCIEMISC_LX_DECISION;
2413 		E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2414 
2415 	} else if (hw->mac.type == e1000_82580) {
2416 		u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2417 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
2418 		    reg & ~E1000_PCIEMISC_LX_DECISION);
2419 		E1000_WRITE_REG(hw, E1000_DMACR, 0);
2420 	}
2421 }
2422 
2423 /*********************************************************************
2424  *
2425  *  Initialize the hardware to a configuration as specified by the
2426  *  adapter structure.
2427  *
2428  **********************************************************************/
2429 static void
2430 em_reset(if_ctx_t ctx)
2431 {
2432 	device_t dev = iflib_get_dev(ctx);
2433 	struct adapter *adapter = iflib_get_softc(ctx);
2434 	struct ifnet *ifp = iflib_get_ifp(ctx);
2435 	struct e1000_hw *hw = &adapter->hw;
2436 	u16 rx_buffer_size;
2437 	u32 pba;
2438 
2439 	INIT_DEBUGOUT("em_reset: begin");
2440 	/* Let the firmware know the OS is in control */
2441 	em_get_hw_control(adapter);
2442 
2443 	/* Set up smart power down as default off on newer adapters. */
2444 	if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2445 	    hw->mac.type == e1000_82572)) {
2446 		u16 phy_tmp = 0;
2447 
2448 		/* Speed up time to link by disabling smart power down. */
2449 		e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2450 		phy_tmp &= ~IGP02E1000_PM_SPD;
2451 		e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2452 	}
2453 
2454 	/*
2455 	 * Packet Buffer Allocation (PBA)
2456 	 * Writing PBA sets the receive portion of the buffer
2457 	 * the remainder is used for the transmit buffer.
2458 	 */
2459 	switch (hw->mac.type) {
2460 	/* Total Packet Buffer on these is 48K */
2461 	case e1000_82571:
2462 	case e1000_82572:
2463 	case e1000_80003es2lan:
2464 			pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2465 		break;
2466 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2467 			pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2468 		break;
2469 	case e1000_82574:
2470 	case e1000_82583:
2471 			pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2472 		break;
2473 	case e1000_ich8lan:
2474 		pba = E1000_PBA_8K;
2475 		break;
2476 	case e1000_ich9lan:
2477 	case e1000_ich10lan:
2478 		/* Boost Receive side for jumbo frames */
2479 		if (adapter->hw.mac.max_frame_size > 4096)
2480 			pba = E1000_PBA_14K;
2481 		else
2482 			pba = E1000_PBA_10K;
2483 		break;
2484 	case e1000_pchlan:
2485 	case e1000_pch2lan:
2486 	case e1000_pch_lpt:
2487 	case e1000_pch_spt:
2488 	case e1000_pch_cnp:
2489 		pba = E1000_PBA_26K;
2490 		break;
2491 	case e1000_82575:
2492 		pba = E1000_PBA_32K;
2493 		break;
2494 	case e1000_82576:
2495 	case e1000_vfadapt:
2496 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2497 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2498 		break;
2499 	case e1000_82580:
2500 	case e1000_i350:
2501 	case e1000_i354:
2502 	case e1000_vfadapt_i350:
2503 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2504 		pba = e1000_rxpbs_adjust_82580(pba);
2505 		break;
2506 	case e1000_i210:
2507 	case e1000_i211:
2508 		pba = E1000_PBA_34K;
2509 		break;
2510 	default:
2511 		if (adapter->hw.mac.max_frame_size > 8192)
2512 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2513 		else
2514 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2515 	}
2516 
2517 	/* Special needs in case of Jumbo frames */
2518 	if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
2519 		u32 tx_space, min_tx, min_rx;
2520 		pba = E1000_READ_REG(hw, E1000_PBA);
2521 		tx_space = pba >> 16;
2522 		pba &= 0xffff;
2523 		min_tx = (adapter->hw.mac.max_frame_size +
2524 		    sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
2525 		min_tx = roundup2(min_tx, 1024);
2526 		min_tx >>= 10;
2527 		min_rx = adapter->hw.mac.max_frame_size;
2528 		min_rx = roundup2(min_rx, 1024);
2529 		min_rx >>= 10;
2530 		if (tx_space < min_tx &&
2531 		    ((min_tx - tx_space) < pba)) {
2532 			pba = pba - (min_tx - tx_space);
2533 			/*
2534 			 * if short on rx space, rx wins
2535 			 * and must trump tx adjustment
2536 			 */
2537 			if (pba < min_rx)
2538 				pba = min_rx;
2539 		}
2540 		E1000_WRITE_REG(hw, E1000_PBA, pba);
2541 	}
2542 
2543 	if (hw->mac.type < igb_mac_min)
2544 		E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2545 
2546 	INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
2547 
2548 	/*
2549 	 * These parameters control the automatic generation (Tx) and
2550 	 * response (Rx) to Ethernet PAUSE frames.
2551 	 * - High water mark should allow for at least two frames to be
2552 	 *   received after sending an XOFF.
2553 	 * - Low water mark works best when it is very near the high water mark.
2554 	 *   This allows the receiver to restart by sending XON when it has
2555 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
2556 	 *   restart after one full frame is pulled from the buffer. There
2557 	 *   could be several smaller frames in the buffer and if so they will
2558 	 *   not trigger the XON until their total number reduces the buffer
2559 	 *   by 1500.
2560 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2561 	 */
2562 	rx_buffer_size = (pba & 0xffff) << 10;
2563 	hw->fc.high_water = rx_buffer_size -
2564 	    roundup2(adapter->hw.mac.max_frame_size, 1024);
2565 	hw->fc.low_water = hw->fc.high_water - 1500;
2566 
2567 	if (adapter->fc) /* locally set flow control value? */
2568 		hw->fc.requested_mode = adapter->fc;
2569 	else
2570 		hw->fc.requested_mode = e1000_fc_full;
2571 
2572 	if (hw->mac.type == e1000_80003es2lan)
2573 		hw->fc.pause_time = 0xFFFF;
2574 	else
2575 		hw->fc.pause_time = EM_FC_PAUSE_TIME;
2576 
2577 	hw->fc.send_xon = TRUE;
2578 
2579 	/* Device specific overrides/settings */
2580 	switch (hw->mac.type) {
2581 	case e1000_pchlan:
2582 		/* Workaround: no TX flow ctrl for PCH */
2583 		hw->fc.requested_mode = e1000_fc_rx_pause;
2584 		hw->fc.pause_time = 0xFFFF; /* override */
2585 		if (if_getmtu(ifp) > ETHERMTU) {
2586 			hw->fc.high_water = 0x3500;
2587 			hw->fc.low_water = 0x1500;
2588 		} else {
2589 			hw->fc.high_water = 0x5000;
2590 			hw->fc.low_water = 0x3000;
2591 		}
2592 		hw->fc.refresh_time = 0x1000;
2593 		break;
2594 	case e1000_pch2lan:
2595 	case e1000_pch_lpt:
2596 	case e1000_pch_spt:
2597 	case e1000_pch_cnp:
2598 		hw->fc.high_water = 0x5C20;
2599 		hw->fc.low_water = 0x5048;
2600 		hw->fc.pause_time = 0x0650;
2601 		hw->fc.refresh_time = 0x0400;
2602 		/* Jumbos need adjusted PBA */
2603 		if (if_getmtu(ifp) > ETHERMTU)
2604 			E1000_WRITE_REG(hw, E1000_PBA, 12);
2605 		else
2606 			E1000_WRITE_REG(hw, E1000_PBA, 26);
2607 		break;
2608 	case e1000_82575:
2609 	case e1000_82576:
2610 		/* 8-byte granularity */
2611 		hw->fc.low_water = hw->fc.high_water - 8;
2612 		break;
2613 	case e1000_82580:
2614 	case e1000_i350:
2615 	case e1000_i354:
2616 	case e1000_i210:
2617 	case e1000_i211:
2618 	case e1000_vfadapt:
2619 	case e1000_vfadapt_i350:
2620 		/* 16-byte granularity */
2621 		hw->fc.low_water = hw->fc.high_water - 16;
2622 		break;
2623 	case e1000_ich9lan:
2624 	case e1000_ich10lan:
2625 		if (if_getmtu(ifp) > ETHERMTU) {
2626 			hw->fc.high_water = 0x2800;
2627 			hw->fc.low_water = hw->fc.high_water - 8;
2628 			break;
2629 		}
2630 		/* FALLTHROUGH */
2631 	default:
2632 		if (hw->mac.type == e1000_80003es2lan)
2633 			hw->fc.pause_time = 0xFFFF;
2634 		break;
2635 	}
2636 
2637 	/* Issue a global reset */
2638 	e1000_reset_hw(hw);
2639 	if (adapter->hw.mac.type >= igb_mac_min) {
2640 		E1000_WRITE_REG(hw, E1000_WUC, 0);
2641 	} else {
2642 		E1000_WRITE_REG(hw, E1000_WUFC, 0);
2643 		em_disable_aspm(adapter);
2644 	}
2645 	if (adapter->flags & IGB_MEDIA_RESET) {
2646 		e1000_setup_init_funcs(hw, TRUE);
2647 		e1000_get_bus_info(hw);
2648 		adapter->flags &= ~IGB_MEDIA_RESET;
2649 	}
2650 	/* and a re-init */
2651 	if (e1000_init_hw(hw) < 0) {
2652 		device_printf(dev, "Hardware Initialization Failed\n");
2653 		return;
2654 	}
2655 	if (adapter->hw.mac.type >= igb_mac_min)
2656 		igb_init_dmac(adapter, pba);
2657 
2658 	E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2659 	e1000_get_phy_info(hw);
2660 	e1000_check_for_link(hw);
2661 }
2662 
2663 /*
2664  * Initialise the RSS mapping for NICs that support multiple transmit/
2665  * receive rings.
2666  */
2667 
2668 #define RSSKEYLEN 10
2669 static void
2670 em_initialize_rss_mapping(struct adapter *adapter)
2671 {
2672 	uint8_t  rss_key[4 * RSSKEYLEN];
2673 	uint32_t reta = 0;
2674 	struct e1000_hw	*hw = &adapter->hw;
2675 	int i;
2676 
2677 	/*
2678 	 * Configure RSS key
2679 	 */
2680 	arc4rand(rss_key, sizeof(rss_key), 0);
2681 	for (i = 0; i < RSSKEYLEN; ++i) {
2682 		uint32_t rssrk = 0;
2683 
2684 		rssrk = EM_RSSRK_VAL(rss_key, i);
2685 		E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2686 	}
2687 
2688 	/*
2689 	 * Configure RSS redirect table in following fashion:
2690 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2691 	 */
2692 	for (i = 0; i < sizeof(reta); ++i) {
2693 		uint32_t q;
2694 
2695 		q = (i % adapter->rx_num_queues) << 7;
2696 		reta |= q << (8 * i);
2697 	}
2698 
2699 	for (i = 0; i < 32; ++i)
2700 		E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2701 
2702 	E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
2703 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2704 			E1000_MRQC_RSS_FIELD_IPV4 |
2705 			E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2706 			E1000_MRQC_RSS_FIELD_IPV6_EX |
2707 			E1000_MRQC_RSS_FIELD_IPV6);
2708 }
2709 
2710 static void
2711 igb_initialize_rss_mapping(struct adapter *adapter)
2712 {
2713 	struct e1000_hw *hw = &adapter->hw;
2714 	int i;
2715 	int queue_id;
2716 	u32 reta;
2717 	u32 rss_key[10], mrqc, shift = 0;
2718 
2719 	/* XXX? */
2720 	if (adapter->hw.mac.type == e1000_82575)
2721 		shift = 6;
2722 
2723 	/*
2724 	 * The redirection table controls which destination
2725 	 * queue each bucket redirects traffic to.
2726 	 * Each DWORD represents four queues, with the LSB
2727 	 * being the first queue in the DWORD.
2728 	 *
2729 	 * This just allocates buckets to queues using round-robin
2730 	 * allocation.
2731 	 *
2732 	 * NOTE: It Just Happens to line up with the default
2733 	 * RSS allocation method.
2734 	 */
2735 
2736 	/* Warning FM follows */
2737 	reta = 0;
2738 	for (i = 0; i < 128; i++) {
2739 #ifdef RSS
2740 		queue_id = rss_get_indirection_to_bucket(i);
2741 		/*
2742 		 * If we have more queues than buckets, we'll
2743 		 * end up mapping buckets to a subset of the
2744 		 * queues.
2745 		 *
2746 		 * If we have more buckets than queues, we'll
2747 		 * end up instead assigning multiple buckets
2748 		 * to queues.
2749 		 *
2750 		 * Both are suboptimal, but we need to handle
2751 		 * the case so we don't go out of bounds
2752 		 * indexing arrays and such.
2753 		 */
2754 		queue_id = queue_id % adapter->rx_num_queues;
2755 #else
2756 		queue_id = (i % adapter->rx_num_queues);
2757 #endif
2758 		/* Adjust if required */
2759 		queue_id = queue_id << shift;
2760 
2761 		/*
2762 		 * The low 8 bits are for hash value (n+0);
2763 		 * The next 8 bits are for hash value (n+1), etc.
2764 		 */
2765 		reta = reta >> 8;
2766 		reta = reta | ( ((uint32_t) queue_id) << 24);
2767 		if ((i & 3) == 3) {
2768 			E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2769 			reta = 0;
2770 		}
2771 	}
2772 
2773 	/* Now fill in hash table */
2774 
2775 	/*
2776 	 * MRQC: Multiple Receive Queues Command
2777 	 * Set queuing to RSS control, number depends on the device.
2778 	 */
2779 	mrqc = E1000_MRQC_ENABLE_RSS_8Q;
2780 
2781 #ifdef RSS
2782 	/* XXX ew typecasting */
2783 	rss_getkey((uint8_t *) &rss_key);
2784 #else
2785 	arc4rand(&rss_key, sizeof(rss_key), 0);
2786 #endif
2787 	for (i = 0; i < 10; i++)
2788 		E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
2789 
2790 	/*
2791 	 * Configure the RSS fields to hash upon.
2792 	 */
2793 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2794 	    E1000_MRQC_RSS_FIELD_IPV4_TCP);
2795 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2796 	    E1000_MRQC_RSS_FIELD_IPV6_TCP);
2797 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2798 	    E1000_MRQC_RSS_FIELD_IPV6_UDP);
2799 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2800 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2801 
2802 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2803 }
2804 
2805 /*********************************************************************
2806  *
2807  *  Setup networking device structure and register interface media.
2808  *
2809  **********************************************************************/
2810 static int
2811 em_setup_interface(if_ctx_t ctx)
2812 {
2813 	struct ifnet *ifp = iflib_get_ifp(ctx);
2814 	struct adapter *adapter = iflib_get_softc(ctx);
2815 	if_softc_ctx_t scctx = adapter->shared;
2816 
2817 	INIT_DEBUGOUT("em_setup_interface: begin");
2818 
2819 	/* Single Queue */
2820 	if (adapter->tx_num_queues == 1) {
2821 		if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
2822 		if_setsendqready(ifp);
2823 	}
2824 
2825 	/*
2826 	 * Specify the media types supported by this adapter and register
2827 	 * callbacks to update media and link information
2828 	 */
2829 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
2830 	    (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
2831 		u_char fiber_type = IFM_1000_SX;	/* default type */
2832 
2833 		if (adapter->hw.mac.type == e1000_82545)
2834 			fiber_type = IFM_1000_LX;
2835 		ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
2836 		ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2837 	} else {
2838 		ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2839 		ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
2840 		ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2841 		ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
2842 		if (adapter->hw.phy.type != e1000_phy_ife) {
2843 			ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2844 			ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2845 		}
2846 	}
2847 	ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2848 	ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO);
2849 	return (0);
2850 }
2851 
2852 static int
2853 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
2854 {
2855 	struct adapter *adapter = iflib_get_softc(ctx);
2856 	if_softc_ctx_t scctx = adapter->shared;
2857 	int error = E1000_SUCCESS;
2858 	struct em_tx_queue *que;
2859 	int i, j;
2860 
2861 	MPASS(adapter->tx_num_queues > 0);
2862 	MPASS(adapter->tx_num_queues == ntxqsets);
2863 
2864 	/* First allocate the top level queue structs */
2865 	if (!(adapter->tx_queues =
2866 	    (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
2867 	    adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2868 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2869 		return(ENOMEM);
2870 	}
2871 
2872 	for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) {
2873 		/* Set up some basics */
2874 
2875 		struct tx_ring *txr = &que->txr;
2876 		txr->adapter = que->adapter = adapter;
2877 		que->me = txr->me =  i;
2878 
2879 		/* Allocate report status array */
2880 		if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2881 			device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
2882 			error = ENOMEM;
2883 			goto fail;
2884 		}
2885 		for (j = 0; j < scctx->isc_ntxd[0]; j++)
2886 			txr->tx_rsq[j] = QIDX_INVALID;
2887 		/* get the virtual and physical address of the hardware queues */
2888 		txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
2889 		txr->tx_paddr = paddrs[i*ntxqs];
2890 	}
2891 
2892 	if (bootverbose)
2893 		device_printf(iflib_get_dev(ctx),
2894 		    "allocated for %d tx_queues\n", adapter->tx_num_queues);
2895 	return (0);
2896 fail:
2897 	em_if_queues_free(ctx);
2898 	return (error);
2899 }
2900 
2901 static int
2902 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
2903 {
2904 	struct adapter *adapter = iflib_get_softc(ctx);
2905 	int error = E1000_SUCCESS;
2906 	struct em_rx_queue *que;
2907 	int i;
2908 
2909 	MPASS(adapter->rx_num_queues > 0);
2910 	MPASS(adapter->rx_num_queues == nrxqsets);
2911 
2912 	/* First allocate the top level queue structs */
2913 	if (!(adapter->rx_queues =
2914 	    (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
2915 	    adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2916 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2917 		error = ENOMEM;
2918 		goto fail;
2919 	}
2920 
2921 	for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) {
2922 		/* Set up some basics */
2923 		struct rx_ring *rxr = &que->rxr;
2924 		rxr->adapter = que->adapter = adapter;
2925 		rxr->que = que;
2926 		que->me = rxr->me =  i;
2927 
2928 		/* get the virtual and physical address of the hardware queues */
2929 		rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
2930 		rxr->rx_paddr = paddrs[i*nrxqs];
2931 	}
2932 
2933 	if (bootverbose)
2934 		device_printf(iflib_get_dev(ctx),
2935 		    "allocated for %d rx_queues\n", adapter->rx_num_queues);
2936 
2937 	return (0);
2938 fail:
2939 	em_if_queues_free(ctx);
2940 	return (error);
2941 }
2942 
2943 static void
2944 em_if_queues_free(if_ctx_t ctx)
2945 {
2946 	struct adapter *adapter = iflib_get_softc(ctx);
2947 	struct em_tx_queue *tx_que = adapter->tx_queues;
2948 	struct em_rx_queue *rx_que = adapter->rx_queues;
2949 
2950 	if (tx_que != NULL) {
2951 		for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
2952 			struct tx_ring *txr = &tx_que->txr;
2953 			if (txr->tx_rsq == NULL)
2954 				break;
2955 
2956 			free(txr->tx_rsq, M_DEVBUF);
2957 			txr->tx_rsq = NULL;
2958 		}
2959 		free(adapter->tx_queues, M_DEVBUF);
2960 		adapter->tx_queues = NULL;
2961 	}
2962 
2963 	if (rx_que != NULL) {
2964 		free(adapter->rx_queues, M_DEVBUF);
2965 		adapter->rx_queues = NULL;
2966 	}
2967 
2968 	em_release_hw_control(adapter);
2969 
2970 	if (adapter->mta != NULL) {
2971 		free(adapter->mta, M_DEVBUF);
2972 	}
2973 }
2974 
2975 /*********************************************************************
2976  *
2977  *  Enable transmit unit.
2978  *
2979  **********************************************************************/
2980 static void
2981 em_initialize_transmit_unit(if_ctx_t ctx)
2982 {
2983 	struct adapter *adapter = iflib_get_softc(ctx);
2984 	if_softc_ctx_t scctx = adapter->shared;
2985 	struct em_tx_queue *que;
2986 	struct tx_ring	*txr;
2987 	struct e1000_hw	*hw = &adapter->hw;
2988 	u32 tctl, txdctl = 0, tarc, tipg = 0;
2989 
2990 	INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
2991 
2992 	for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
2993 		u64 bus_addr;
2994 		caddr_t offp, endp;
2995 
2996 		que = &adapter->tx_queues[i];
2997 		txr = &que->txr;
2998 		bus_addr = txr->tx_paddr;
2999 
3000 		/* Clear checksum offload context. */
3001 		offp = (caddr_t)&txr->csum_flags;
3002 		endp = (caddr_t)(txr + 1);
3003 		bzero(offp, endp - offp);
3004 
3005 		/* Base and Len of TX Ring */
3006 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
3007 		    scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
3008 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
3009 		    (u32)(bus_addr >> 32));
3010 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
3011 		    (u32)bus_addr);
3012 		/* Init the HEAD/TAIL indices */
3013 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3014 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3015 
3016 		HW_DEBUGOUT2("Base = %x, Length = %x\n",
3017 		    E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)),
3018 		    E1000_READ_REG(&adapter->hw, E1000_TDLEN(i)));
3019 
3020 		txdctl = 0; /* clear txdctl */
3021 		txdctl |= 0x1f; /* PTHRESH */
3022 		txdctl |= 1 << 8; /* HTHRESH */
3023 		txdctl |= 1 << 16;/* WTHRESH */
3024 		txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3025 		txdctl |= E1000_TXDCTL_GRAN;
3026 		txdctl |= 1 << 25; /* LWTHRESH */
3027 
3028 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3029 	}
3030 
3031 	/* Set the default values for the Tx Inter Packet Gap timer */
3032 	switch (adapter->hw.mac.type) {
3033 	case e1000_80003es2lan:
3034 		tipg = DEFAULT_82543_TIPG_IPGR1;
3035 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3036 		    E1000_TIPG_IPGR2_SHIFT;
3037 		break;
3038 	case e1000_82542:
3039 		tipg = DEFAULT_82542_TIPG_IPGT;
3040 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3041 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3042 		break;
3043 	default:
3044 		if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
3045 		    (adapter->hw.phy.media_type ==
3046 		    e1000_media_type_internal_serdes))
3047 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3048 		else
3049 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3050 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3051 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3052 	}
3053 
3054 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
3055 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value);
3056 
3057 	if(adapter->hw.mac.type >= e1000_82540)
3058 		E1000_WRITE_REG(&adapter->hw, E1000_TADV,
3059 		    adapter->tx_abs_int_delay.value);
3060 
3061 	if ((adapter->hw.mac.type == e1000_82571) ||
3062 	    (adapter->hw.mac.type == e1000_82572)) {
3063 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3064 		tarc |= TARC_SPEED_MODE_BIT;
3065 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3066 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
3067 		/* errata: program both queues to unweighted RR */
3068 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3069 		tarc |= 1;
3070 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3071 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
3072 		tarc |= 1;
3073 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3074 	} else if (adapter->hw.mac.type == e1000_82574) {
3075 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3076 		tarc |= TARC_ERRATA_BIT;
3077 		if ( adapter->tx_num_queues > 1) {
3078 			tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3079 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3080 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3081 		} else
3082 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3083 	}
3084 
3085 	if (adapter->tx_int_delay.value > 0)
3086 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3087 
3088 	/* Program the Transmit Control Register */
3089 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
3090 	tctl &= ~E1000_TCTL_CT;
3091 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3092 		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3093 
3094 	if (adapter->hw.mac.type >= e1000_82571)
3095 		tctl |= E1000_TCTL_MULR;
3096 
3097 	/* This write will effectively turn on the transmit unit. */
3098 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
3099 
3100 	/* SPT and KBL errata workarounds */
3101 	if (hw->mac.type == e1000_pch_spt) {
3102 		u32 reg;
3103 		reg = E1000_READ_REG(hw, E1000_IOSFPC);
3104 		reg |= E1000_RCTL_RDMTS_HEX;
3105 		E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3106 		/* i218-i219 Specification Update 1.5.4.5 */
3107 		reg = E1000_READ_REG(hw, E1000_TARC(0));
3108 		reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3109 		reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3110 		E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3111 	}
3112 }
3113 
3114 /*********************************************************************
3115  *
3116  *  Enable receive unit.
3117  *
3118  **********************************************************************/
3119 
3120 static void
3121 em_initialize_receive_unit(if_ctx_t ctx)
3122 {
3123 	struct adapter *adapter = iflib_get_softc(ctx);
3124 	if_softc_ctx_t scctx = adapter->shared;
3125 	struct ifnet *ifp = iflib_get_ifp(ctx);
3126 	struct e1000_hw	*hw = &adapter->hw;
3127 	struct em_rx_queue *que;
3128 	int i;
3129 	u32 rctl, rxcsum, rfctl;
3130 
3131 	INIT_DEBUGOUT("em_initialize_receive_units: begin");
3132 
3133 	/*
3134 	 * Make sure receives are disabled while setting
3135 	 * up the descriptor ring
3136 	 */
3137 	rctl = E1000_READ_REG(hw, E1000_RCTL);
3138 	/* Do not disable if ever enabled on this hardware */
3139 	if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3140 		E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3141 
3142 	/* Setup the Receive Control Register */
3143 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3144 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3145 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3146 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3147 
3148 	/* Do not store bad packets */
3149 	rctl &= ~E1000_RCTL_SBP;
3150 
3151 	/* Enable Long Packet receive */
3152 	if (if_getmtu(ifp) > ETHERMTU)
3153 		rctl |= E1000_RCTL_LPE;
3154 	else
3155 		rctl &= ~E1000_RCTL_LPE;
3156 
3157 	/* Strip the CRC */
3158 	if (!em_disable_crc_stripping)
3159 		rctl |= E1000_RCTL_SECRC;
3160 
3161 	if (adapter->hw.mac.type >= e1000_82540) {
3162 		E1000_WRITE_REG(&adapter->hw, E1000_RADV,
3163 			    adapter->rx_abs_int_delay.value);
3164 
3165 		/*
3166 		 * Set the interrupt throttling rate. Value is calculated
3167 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3168 		 */
3169 		E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
3170 	}
3171 	E1000_WRITE_REG(&adapter->hw, E1000_RDTR,
3172 	    adapter->rx_int_delay.value);
3173 
3174 	/* Use extended rx descriptor formats */
3175 	rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3176 	rfctl |= E1000_RFCTL_EXTEN;
3177 	/*
3178 	 * When using MSI-X interrupts we need to throttle
3179 	 * using the EITR register (82574 only)
3180 	 */
3181 	if (hw->mac.type == e1000_82574) {
3182 		for (int i = 0; i < 4; i++)
3183 			E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3184 			    DEFAULT_ITR);
3185 		/* Disable accelerated acknowledge */
3186 		rfctl |= E1000_RFCTL_ACK_DIS;
3187 	}
3188 	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3189 
3190 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3191 	if (if_getcapenable(ifp) & IFCAP_RXCSUM &&
3192 	    adapter->hw.mac.type >= e1000_82543) {
3193 		if (adapter->tx_num_queues > 1) {
3194 			if (adapter->hw.mac.type >= igb_mac_min) {
3195 				rxcsum |= E1000_RXCSUM_PCSD;
3196 				if (hw->mac.type != e1000_82575)
3197 					rxcsum |= E1000_RXCSUM_CRCOFL;
3198 			} else
3199 				rxcsum |= E1000_RXCSUM_TUOFL |
3200 					E1000_RXCSUM_IPOFL |
3201 					E1000_RXCSUM_PCSD;
3202 		} else {
3203 			if (adapter->hw.mac.type >= igb_mac_min)
3204 				rxcsum |= E1000_RXCSUM_IPPCSE;
3205 			else
3206 				rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3207 			if (adapter->hw.mac.type > e1000_82575)
3208 				rxcsum |= E1000_RXCSUM_CRCOFL;
3209 		}
3210 	} else
3211 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3212 
3213 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3214 
3215 	if (adapter->rx_num_queues > 1) {
3216 		if (adapter->hw.mac.type >= igb_mac_min)
3217 			igb_initialize_rss_mapping(adapter);
3218 		else
3219 			em_initialize_rss_mapping(adapter);
3220 	}
3221 
3222 	/*
3223 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3224 	 * long latencies are observed, like Lenovo X60. This
3225 	 * change eliminates the problem, but since having positive
3226 	 * values in RDTR is a known source of problems on other
3227 	 * platforms another solution is being sought.
3228 	 */
3229 	if (hw->mac.type == e1000_82573)
3230 		E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3231 
3232 	for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3233 		struct rx_ring *rxr = &que->rxr;
3234 		/* Setup the Base and Length of the Rx Descriptor Ring */
3235 		u64 bus_addr = rxr->rx_paddr;
3236 #if 0
3237 		u32 rdt = adapter->rx_num_queues -1;  /* default */
3238 #endif
3239 
3240 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
3241 		    scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
3242 		E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3243 		E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3244 		/* Setup the Head and Tail Descriptor Pointers */
3245 		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3246 		E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3247 	}
3248 
3249 	/*
3250 	 * Set PTHRESH for improved jumbo performance
3251 	 * According to 10.2.5.11 of Intel 82574 Datasheet,
3252 	 * RXDCTL(1) is written whenever RXDCTL(0) is written.
3253 	 * Only write to RXDCTL(1) if there is a need for different
3254 	 * settings.
3255 	 */
3256 
3257 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3258 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3259 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3260 	    (if_getmtu(ifp) > ETHERMTU)) {
3261 		u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3262 		E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3263 	} else if (adapter->hw.mac.type == e1000_82574) {
3264 		for (int i = 0; i < adapter->rx_num_queues; i++) {
3265 			u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3266 			rxdctl |= 0x20; /* PTHRESH */
3267 			rxdctl |= 4 << 8; /* HTHRESH */
3268 			rxdctl |= 4 << 16;/* WTHRESH */
3269 			rxdctl |= 1 << 24; /* Switch to granularity */
3270 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3271 		}
3272 	} else if (adapter->hw.mac.type >= igb_mac_min) {
3273 		u32 psize, srrctl = 0;
3274 
3275 		if (if_getmtu(ifp) > ETHERMTU) {
3276 			/* Set maximum packet len */
3277 			if (adapter->rx_mbuf_sz <= 4096) {
3278 				srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3279 				rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3280 			} else if (adapter->rx_mbuf_sz > 4096) {
3281 				srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3282 				rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3283 			}
3284 			psize = scctx->isc_max_frame_size;
3285 			/* are we on a vlan? */
3286 			if (ifp->if_vlantrunk != NULL)
3287 				psize += VLAN_TAG_SIZE;
3288 			E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
3289 		} else {
3290 			srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3291 			rctl |= E1000_RCTL_SZ_2048;
3292 		}
3293 
3294 		/*
3295 		 * If TX flow control is disabled and there's >1 queue defined,
3296 		 * enable DROP.
3297 		 *
3298 		 * This drops frames rather than hanging the RX MAC for all queues.
3299 		 */
3300 		if ((adapter->rx_num_queues > 1) &&
3301 		    (adapter->fc == e1000_fc_none ||
3302 		     adapter->fc == e1000_fc_rx_pause)) {
3303 			srrctl |= E1000_SRRCTL_DROP_EN;
3304 		}
3305 			/* Setup the Base and Length of the Rx Descriptor Rings */
3306 		for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3307 			struct rx_ring *rxr = &que->rxr;
3308 			u64 bus_addr = rxr->rx_paddr;
3309 			u32 rxdctl;
3310 
3311 #ifdef notyet
3312 			/* Configure for header split? -- ignore for now */
3313 			rxr->hdr_split = igb_header_split;
3314 #else
3315 			srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3316 #endif
3317 
3318 			E1000_WRITE_REG(hw, E1000_RDLEN(i),
3319 					scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3320 			E1000_WRITE_REG(hw, E1000_RDBAH(i),
3321 					(uint32_t)(bus_addr >> 32));
3322 			E1000_WRITE_REG(hw, E1000_RDBAL(i),
3323 					(uint32_t)bus_addr);
3324 			E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3325 			/* Enable this Queue */
3326 			rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3327 			rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3328 			rxdctl &= 0xFFF00000;
3329 			rxdctl |= IGB_RX_PTHRESH;
3330 			rxdctl |= IGB_RX_HTHRESH << 8;
3331 			rxdctl |= IGB_RX_WTHRESH << 16;
3332 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3333 		}
3334 	} else if (adapter->hw.mac.type >= e1000_pch2lan) {
3335 		if (if_getmtu(ifp) > ETHERMTU)
3336 			e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
3337 		else
3338 			e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
3339 	}
3340 
3341 	/* Make sure VLAN Filters are off */
3342 	rctl &= ~E1000_RCTL_VFE;
3343 
3344 	if (adapter->hw.mac.type < igb_mac_min) {
3345 		if (adapter->rx_mbuf_sz == MCLBYTES)
3346 			rctl |= E1000_RCTL_SZ_2048;
3347 		else if (adapter->rx_mbuf_sz == MJUMPAGESIZE)
3348 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3349 		else if (adapter->rx_mbuf_sz > MJUMPAGESIZE)
3350 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3351 
3352 		/* ensure we clear use DTYPE of 00 here */
3353 		rctl &= ~0x00000C00;
3354 	}
3355 
3356 	/* Write out the settings */
3357 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3358 
3359 	return;
3360 }
3361 
3362 static void
3363 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3364 {
3365 	struct adapter *adapter = iflib_get_softc(ctx);
3366 	u32 index, bit;
3367 
3368 	index = (vtag >> 5) & 0x7F;
3369 	bit = vtag & 0x1F;
3370 	adapter->shadow_vfta[index] |= (1 << bit);
3371 	++adapter->num_vlans;
3372 }
3373 
3374 static void
3375 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3376 {
3377 	struct adapter *adapter = iflib_get_softc(ctx);
3378 	u32 index, bit;
3379 
3380 	index = (vtag >> 5) & 0x7F;
3381 	bit = vtag & 0x1F;
3382 	adapter->shadow_vfta[index] &= ~(1 << bit);
3383 	--adapter->num_vlans;
3384 }
3385 
3386 static void
3387 em_setup_vlan_hw_support(struct adapter *adapter)
3388 {
3389 	struct e1000_hw *hw = &adapter->hw;
3390 	u32 reg;
3391 
3392 	/*
3393 	 * We get here thru init_locked, meaning
3394 	 * a soft reset, this has already cleared
3395 	 * the VFTA and other state, so if there
3396 	 * have been no vlan's registered do nothing.
3397 	 */
3398 	if (adapter->num_vlans == 0)
3399 		return;
3400 
3401 	/*
3402 	 * A soft reset zero's out the VFTA, so
3403 	 * we need to repopulate it now.
3404 	 */
3405 	for (int i = 0; i < EM_VFTA_SIZE; i++)
3406 		if (adapter->shadow_vfta[i] != 0)
3407 			E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
3408 			    i, adapter->shadow_vfta[i]);
3409 
3410 	reg = E1000_READ_REG(hw, E1000_CTRL);
3411 	reg |= E1000_CTRL_VME;
3412 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
3413 
3414 	/* Enable the Filter Table */
3415 	reg = E1000_READ_REG(hw, E1000_RCTL);
3416 	reg &= ~E1000_RCTL_CFIEN;
3417 	reg |= E1000_RCTL_VFE;
3418 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
3419 }
3420 
3421 static void
3422 em_if_intr_enable(if_ctx_t ctx)
3423 {
3424 	struct adapter *adapter = iflib_get_softc(ctx);
3425 	struct e1000_hw *hw = &adapter->hw;
3426 	u32 ims_mask = IMS_ENABLE_MASK;
3427 
3428 	if (hw->mac.type == e1000_82574) {
3429 		E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK);
3430 		ims_mask |= adapter->ims;
3431 	}
3432 	E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3433 }
3434 
3435 static void
3436 em_if_intr_disable(if_ctx_t ctx)
3437 {
3438 	struct adapter *adapter = iflib_get_softc(ctx);
3439 	struct e1000_hw *hw = &adapter->hw;
3440 
3441 	if (hw->mac.type == e1000_82574)
3442 		E1000_WRITE_REG(hw, EM_EIAC, 0);
3443 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3444 }
3445 
3446 static void
3447 igb_if_intr_enable(if_ctx_t ctx)
3448 {
3449 	struct adapter *adapter = iflib_get_softc(ctx);
3450 	struct e1000_hw *hw = &adapter->hw;
3451 	u32 mask;
3452 
3453 	if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3454 		mask = (adapter->que_mask | adapter->link_mask);
3455 		E1000_WRITE_REG(hw, E1000_EIAC, mask);
3456 		E1000_WRITE_REG(hw, E1000_EIAM, mask);
3457 		E1000_WRITE_REG(hw, E1000_EIMS, mask);
3458 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3459 	} else
3460 		E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3461 	E1000_WRITE_FLUSH(hw);
3462 }
3463 
3464 static void
3465 igb_if_intr_disable(if_ctx_t ctx)
3466 {
3467 	struct adapter *adapter = iflib_get_softc(ctx);
3468 	struct e1000_hw *hw = &adapter->hw;
3469 
3470 	if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3471 		E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
3472 		E1000_WRITE_REG(hw, E1000_EIAC, 0);
3473 	}
3474 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3475 	E1000_WRITE_FLUSH(hw);
3476 }
3477 
3478 /*
3479  * Bit of a misnomer, what this really means is
3480  * to enable OS management of the system... aka
3481  * to disable special hardware management features
3482  */
3483 static void
3484 em_init_manageability(struct adapter *adapter)
3485 {
3486 	/* A shared code workaround */
3487 #define E1000_82542_MANC2H E1000_MANC2H
3488 	if (adapter->has_manage) {
3489 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3490 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3491 
3492 		/* disable hardware interception of ARP */
3493 		manc &= ~(E1000_MANC_ARP_EN);
3494 
3495 		/* enable receiving management packets to the host */
3496 		manc |= E1000_MANC_EN_MNG2HOST;
3497 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3498 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3499 		manc2h |= E1000_MNG2HOST_PORT_623;
3500 		manc2h |= E1000_MNG2HOST_PORT_664;
3501 		E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3502 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3503 	}
3504 }
3505 
3506 /*
3507  * Give control back to hardware management
3508  * controller if there is one.
3509  */
3510 static void
3511 em_release_manageability(struct adapter *adapter)
3512 {
3513 	if (adapter->has_manage) {
3514 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3515 
3516 		/* re-enable hardware interception of ARP */
3517 		manc |= E1000_MANC_ARP_EN;
3518 		manc &= ~E1000_MANC_EN_MNG2HOST;
3519 
3520 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3521 	}
3522 }
3523 
3524 /*
3525  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3526  * For ASF and Pass Through versions of f/w this means
3527  * that the driver is loaded. For AMT version type f/w
3528  * this means that the network i/f is open.
3529  */
3530 static void
3531 em_get_hw_control(struct adapter *adapter)
3532 {
3533 	u32 ctrl_ext, swsm;
3534 
3535 	if (adapter->vf_ifp)
3536 		return;
3537 
3538 	if (adapter->hw.mac.type == e1000_82573) {
3539 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3540 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3541 		    swsm | E1000_SWSM_DRV_LOAD);
3542 		return;
3543 	}
3544 	/* else */
3545 	ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3546 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3547 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3548 }
3549 
3550 /*
3551  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3552  * For ASF and Pass Through versions of f/w this means that
3553  * the driver is no longer loaded. For AMT versions of the
3554  * f/w this means that the network i/f is closed.
3555  */
3556 static void
3557 em_release_hw_control(struct adapter *adapter)
3558 {
3559 	u32 ctrl_ext, swsm;
3560 
3561 	if (!adapter->has_manage)
3562 		return;
3563 
3564 	if (adapter->hw.mac.type == e1000_82573) {
3565 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3566 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3567 		    swsm & ~E1000_SWSM_DRV_LOAD);
3568 		return;
3569 	}
3570 	/* else */
3571 	ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3572 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3573 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3574 	return;
3575 }
3576 
3577 static int
3578 em_is_valid_ether_addr(u8 *addr)
3579 {
3580 	char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3581 
3582 	if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3583 		return (FALSE);
3584 	}
3585 
3586 	return (TRUE);
3587 }
3588 
3589 /*
3590 ** Parse the interface capabilities with regard
3591 ** to both system management and wake-on-lan for
3592 ** later use.
3593 */
3594 static void
3595 em_get_wakeup(if_ctx_t ctx)
3596 {
3597 	struct adapter *adapter = iflib_get_softc(ctx);
3598 	device_t dev = iflib_get_dev(ctx);
3599 	u16 eeprom_data = 0, device_id, apme_mask;
3600 
3601 	adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
3602 	apme_mask = EM_EEPROM_APME;
3603 
3604 	switch (adapter->hw.mac.type) {
3605 	case e1000_82542:
3606 	case e1000_82543:
3607 		break;
3608 	case e1000_82544:
3609 		e1000_read_nvm(&adapter->hw,
3610 		    NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3611 		apme_mask = EM_82544_APME;
3612 		break;
3613 	case e1000_82546:
3614 	case e1000_82546_rev_3:
3615 		if (adapter->hw.bus.func == 1) {
3616 			e1000_read_nvm(&adapter->hw,
3617 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3618 			break;
3619 		} else
3620 			e1000_read_nvm(&adapter->hw,
3621 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3622 		break;
3623 	case e1000_82573:
3624 	case e1000_82583:
3625 		adapter->has_amt = TRUE;
3626 		/* FALLTHROUGH */
3627 	case e1000_82571:
3628 	case e1000_82572:
3629 	case e1000_80003es2lan:
3630 		if (adapter->hw.bus.func == 1) {
3631 			e1000_read_nvm(&adapter->hw,
3632 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3633 			break;
3634 		} else
3635 			e1000_read_nvm(&adapter->hw,
3636 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3637 		break;
3638 	case e1000_ich8lan:
3639 	case e1000_ich9lan:
3640 	case e1000_ich10lan:
3641 	case e1000_pchlan:
3642 	case e1000_pch2lan:
3643 	case e1000_pch_lpt:
3644 	case e1000_pch_spt:
3645 	case e1000_82575:	/* listing all igb devices */
3646 	case e1000_82576:
3647 	case e1000_82580:
3648 	case e1000_i350:
3649 	case e1000_i354:
3650 	case e1000_i210:
3651 	case e1000_i211:
3652 	case e1000_vfadapt:
3653 	case e1000_vfadapt_i350:
3654 		apme_mask = E1000_WUC_APME;
3655 		adapter->has_amt = TRUE;
3656 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
3657 		break;
3658 	default:
3659 		e1000_read_nvm(&adapter->hw,
3660 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3661 		break;
3662 	}
3663 	if (eeprom_data & apme_mask)
3664 		adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
3665 	/*
3666 	 * We have the eeprom settings, now apply the special cases
3667 	 * where the eeprom may be wrong or the board won't support
3668 	 * wake on lan on a particular port
3669 	 */
3670 	device_id = pci_get_device(dev);
3671 	switch (device_id) {
3672 	case E1000_DEV_ID_82546GB_PCIE:
3673 		adapter->wol = 0;
3674 		break;
3675 	case E1000_DEV_ID_82546EB_FIBER:
3676 	case E1000_DEV_ID_82546GB_FIBER:
3677 		/* Wake events only supported on port A for dual fiber
3678 		 * regardless of eeprom setting */
3679 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3680 		    E1000_STATUS_FUNC_1)
3681 			adapter->wol = 0;
3682 		break;
3683 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
3684 		/* if quad port adapter, disable WoL on all but port A */
3685 		if (global_quad_port_a != 0)
3686 			adapter->wol = 0;
3687 		/* Reset for multiple quad port adapters */
3688 		if (++global_quad_port_a == 4)
3689 			global_quad_port_a = 0;
3690 		break;
3691 	case E1000_DEV_ID_82571EB_FIBER:
3692 		/* Wake events only supported on port A for dual fiber
3693 		 * regardless of eeprom setting */
3694 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3695 		    E1000_STATUS_FUNC_1)
3696 			adapter->wol = 0;
3697 		break;
3698 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
3699 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
3700 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
3701 		/* if quad port adapter, disable WoL on all but port A */
3702 		if (global_quad_port_a != 0)
3703 			adapter->wol = 0;
3704 		/* Reset for multiple quad port adapters */
3705 		if (++global_quad_port_a == 4)
3706 			global_quad_port_a = 0;
3707 		break;
3708 	}
3709 	return;
3710 }
3711 
3712 
3713 /*
3714  * Enable PCI Wake On Lan capability
3715  */
3716 static void
3717 em_enable_wakeup(if_ctx_t ctx)
3718 {
3719 	struct adapter *adapter = iflib_get_softc(ctx);
3720 	device_t dev = iflib_get_dev(ctx);
3721 	if_t ifp = iflib_get_ifp(ctx);
3722 	int error = 0;
3723 	u32 pmc, ctrl, ctrl_ext, rctl;
3724 	u16 status;
3725 
3726 	if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
3727 		return;
3728 
3729 	/*
3730 	 * Determine type of Wakeup: note that wol
3731 	 * is set with all bits on by default.
3732 	 */
3733 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
3734 		adapter->wol &= ~E1000_WUFC_MAG;
3735 
3736 	if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
3737 		adapter->wol &= ~E1000_WUFC_EX;
3738 
3739 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
3740 		adapter->wol &= ~E1000_WUFC_MC;
3741 	else {
3742 		rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3743 		rctl |= E1000_RCTL_MPE;
3744 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3745 	}
3746 
3747 	if (!(adapter->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
3748 		goto pme;
3749 
3750 	/* Advertise the wakeup capability */
3751 	ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
3752 	ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
3753 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
3754 
3755 	/* Keep the laser running on Fiber adapters */
3756 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3757 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
3758 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3759 		ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
3760 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext);
3761 	}
3762 
3763 	if ((adapter->hw.mac.type == e1000_ich8lan) ||
3764 	    (adapter->hw.mac.type == e1000_pchlan) ||
3765 	    (adapter->hw.mac.type == e1000_ich9lan) ||
3766 	    (adapter->hw.mac.type == e1000_ich10lan))
3767 		e1000_suspend_workarounds_ich8lan(&adapter->hw);
3768 
3769 	if ( adapter->hw.mac.type >= e1000_pchlan) {
3770 		error = em_enable_phy_wakeup(adapter);
3771 		if (error)
3772 			goto pme;
3773 	} else {
3774 		/* Enable wakeup by the MAC */
3775 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
3776 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
3777 	}
3778 
3779 	if (adapter->hw.phy.type == e1000_phy_igp_3)
3780 		e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3781 
3782 pme:
3783 	status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
3784 	status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3785 	if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
3786 		status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3787 	pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
3788 
3789 	return;
3790 }
3791 
3792 /*
3793  * WOL in the newer chipset interfaces (pchlan)
3794  * require thing to be copied into the phy
3795  */
3796 static int
3797 em_enable_phy_wakeup(struct adapter *adapter)
3798 {
3799 	struct e1000_hw *hw = &adapter->hw;
3800 	u32 mreg, ret = 0;
3801 	u16 preg;
3802 
3803 	/* copy MAC RARs to PHY RARs */
3804 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
3805 
3806 	/* copy MAC MTA to PHY MTA */
3807 	for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
3808 		mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
3809 		e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
3810 		e1000_write_phy_reg(hw, BM_MTA(i) + 1,
3811 		    (u16)((mreg >> 16) & 0xFFFF));
3812 	}
3813 
3814 	/* configure PHY Rx Control register */
3815 	e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg);
3816 	mreg = E1000_READ_REG(hw, E1000_RCTL);
3817 	if (mreg & E1000_RCTL_UPE)
3818 		preg |= BM_RCTL_UPE;
3819 	if (mreg & E1000_RCTL_MPE)
3820 		preg |= BM_RCTL_MPE;
3821 	preg &= ~(BM_RCTL_MO_MASK);
3822 	if (mreg & E1000_RCTL_MO_3)
3823 		preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
3824 				<< BM_RCTL_MO_SHIFT);
3825 	if (mreg & E1000_RCTL_BAM)
3826 		preg |= BM_RCTL_BAM;
3827 	if (mreg & E1000_RCTL_PMCF)
3828 		preg |= BM_RCTL_PMCF;
3829 	mreg = E1000_READ_REG(hw, E1000_CTRL);
3830 	if (mreg & E1000_CTRL_RFCE)
3831 		preg |= BM_RCTL_RFCE;
3832 	e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg);
3833 
3834 	/* enable PHY wakeup in MAC register */
3835 	E1000_WRITE_REG(hw, E1000_WUC,
3836 	    E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
3837 	E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol);
3838 
3839 	/* configure and enable PHY wakeup in PHY registers */
3840 	e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol);
3841 	e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
3842 
3843 	/* activate PHY wakeup */
3844 	ret = hw->phy.ops.acquire(hw);
3845 	if (ret) {
3846 		printf("Could not acquire PHY\n");
3847 		return ret;
3848 	}
3849 	e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3850 	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
3851 	ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
3852 	if (ret) {
3853 		printf("Could not read PHY page 769\n");
3854 		goto out;
3855 	}
3856 	preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
3857 	ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
3858 	if (ret)
3859 		printf("Could not set PHY Host Wakeup bit\n");
3860 out:
3861 	hw->phy.ops.release(hw);
3862 
3863 	return ret;
3864 }
3865 
3866 static void
3867 em_if_led_func(if_ctx_t ctx, int onoff)
3868 {
3869 	struct adapter *adapter = iflib_get_softc(ctx);
3870 
3871 	if (onoff) {
3872 		e1000_setup_led(&adapter->hw);
3873 		e1000_led_on(&adapter->hw);
3874 	} else {
3875 		e1000_led_off(&adapter->hw);
3876 		e1000_cleanup_led(&adapter->hw);
3877 	}
3878 }
3879 
3880 /*
3881  * Disable the L0S and L1 LINK states
3882  */
3883 static void
3884 em_disable_aspm(struct adapter *adapter)
3885 {
3886 	int base, reg;
3887 	u16 link_cap,link_ctrl;
3888 	device_t dev = adapter->dev;
3889 
3890 	switch (adapter->hw.mac.type) {
3891 	case e1000_82573:
3892 	case e1000_82574:
3893 	case e1000_82583:
3894 		break;
3895 	default:
3896 		return;
3897 	}
3898 	if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
3899 		return;
3900 	reg = base + PCIER_LINK_CAP;
3901 	link_cap = pci_read_config(dev, reg, 2);
3902 	if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
3903 		return;
3904 	reg = base + PCIER_LINK_CTL;
3905 	link_ctrl = pci_read_config(dev, reg, 2);
3906 	link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
3907 	pci_write_config(dev, reg, link_ctrl, 2);
3908 	return;
3909 }
3910 
3911 /**********************************************************************
3912  *
3913  *  Update the board statistics counters.
3914  *
3915  **********************************************************************/
3916 static void
3917 em_update_stats_counters(struct adapter *adapter)
3918 {
3919 	u64 prev_xoffrxc = adapter->stats.xoffrxc;
3920 
3921 	if(adapter->hw.phy.media_type == e1000_media_type_copper ||
3922 	   (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3923 		adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3924 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3925 	}
3926 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3927 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3928 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3929 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3930 
3931 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3932 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3933 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3934 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3935 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3936 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3937 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3938 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3939 	/*
3940 	 ** For watchdog management we need to know if we have been
3941 	 ** paused during the last interval, so capture that here.
3942 	*/
3943 	if (adapter->stats.xoffrxc != prev_xoffrxc)
3944 		adapter->shared->isc_pause_frames = 1;
3945 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3946 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3947 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3948 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3949 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3950 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3951 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3952 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3953 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3954 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3955 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3956 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3957 
3958 	/* For the 64-bit byte counters the low dword must be read first. */
3959 	/* Both registers clear on the read of the high dword */
3960 
3961 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) +
3962 	    ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32);
3963 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) +
3964 	    ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32);
3965 
3966 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3967 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3968 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3969 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3970 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3971 
3972 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3973 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3974 
3975 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3976 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3977 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3978 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3979 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3980 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3981 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3982 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3983 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3984 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3985 
3986 	/* Interrupt Counts */
3987 
3988 	adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC);
3989 	adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC);
3990 	adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC);
3991 	adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC);
3992 	adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC);
3993 	adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC);
3994 	adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC);
3995 	adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC);
3996 	adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC);
3997 
3998 	if (adapter->hw.mac.type >= e1000_82543) {
3999 		adapter->stats.algnerrc +=
4000 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
4001 		adapter->stats.rxerrc +=
4002 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
4003 		adapter->stats.tncrs +=
4004 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
4005 		adapter->stats.cexterr +=
4006 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
4007 		adapter->stats.tsctc +=
4008 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
4009 		adapter->stats.tsctfc +=
4010 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
4011 	}
4012 }
4013 
4014 static uint64_t
4015 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4016 {
4017 	struct adapter *adapter = iflib_get_softc(ctx);
4018 	struct ifnet *ifp = iflib_get_ifp(ctx);
4019 
4020 	switch (cnt) {
4021 	case IFCOUNTER_COLLISIONS:
4022 		return (adapter->stats.colc);
4023 	case IFCOUNTER_IERRORS:
4024 		return (adapter->dropped_pkts + adapter->stats.rxerrc +
4025 		    adapter->stats.crcerrs + adapter->stats.algnerrc +
4026 		    adapter->stats.ruc + adapter->stats.roc +
4027 		    adapter->stats.mpc + adapter->stats.cexterr);
4028 	case IFCOUNTER_OERRORS:
4029 		return (adapter->stats.ecol + adapter->stats.latecol +
4030 		    adapter->watchdog_events);
4031 	default:
4032 		return (if_get_counter_default(ifp, cnt));
4033 	}
4034 }
4035 
4036 /* Export a single 32-bit register via a read-only sysctl. */
4037 static int
4038 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4039 {
4040 	struct adapter *adapter;
4041 	u_int val;
4042 
4043 	adapter = oidp->oid_arg1;
4044 	val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
4045 	return (sysctl_handle_int(oidp, &val, 0, req));
4046 }
4047 
4048 /*
4049  * Add sysctl variables, one per statistic, to the system.
4050  */
4051 static void
4052 em_add_hw_stats(struct adapter *adapter)
4053 {
4054 	device_t dev = iflib_get_dev(adapter->ctx);
4055 	struct em_tx_queue *tx_que = adapter->tx_queues;
4056 	struct em_rx_queue *rx_que = adapter->rx_queues;
4057 
4058 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4059 	struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4060 	struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4061 	struct e1000_hw_stats *stats = &adapter->stats;
4062 
4063 	struct sysctl_oid *stat_node, *queue_node, *int_node;
4064 	struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4065 
4066 #define QUEUE_NAME_LEN 32
4067 	char namebuf[QUEUE_NAME_LEN];
4068 
4069 	/* Driver Statistics */
4070 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4071 			CTLFLAG_RD, &adapter->dropped_pkts,
4072 			"Driver dropped packets");
4073 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4074 			CTLFLAG_RD, &adapter->link_irq,
4075 			"Link MSI-X IRQ Handled");
4076 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4077 			CTLFLAG_RD, &adapter->rx_overruns,
4078 			"RX overruns");
4079 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4080 			CTLFLAG_RD, &adapter->watchdog_events,
4081 			"Watchdog timeouts");
4082 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4083 			CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_CTRL,
4084 			em_sysctl_reg_handler, "IU",
4085 			"Device Control Register");
4086 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4087 			CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_RCTL,
4088 			em_sysctl_reg_handler, "IU",
4089 			"Receiver Control Register");
4090 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4091 			CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
4092 			"Flow Control High Watermark");
4093 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4094 			CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
4095 			"Flow Control Low Watermark");
4096 
4097 	for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
4098 		struct tx_ring *txr = &tx_que->txr;
4099 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4100 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4101 					    CTLFLAG_RD, NULL, "TX Queue Name");
4102 		queue_list = SYSCTL_CHILDREN(queue_node);
4103 
4104 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4105 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
4106 				E1000_TDH(txr->me),
4107 				em_sysctl_reg_handler, "IU",
4108 				"Transmit Descriptor Head");
4109 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4110 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
4111 				E1000_TDT(txr->me),
4112 				em_sysctl_reg_handler, "IU",
4113 				"Transmit Descriptor Tail");
4114 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4115 				CTLFLAG_RD, &txr->tx_irq,
4116 				"Queue MSI-X Transmit Interrupts");
4117 	}
4118 
4119 	for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) {
4120 		struct rx_ring *rxr = &rx_que->rxr;
4121 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4122 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4123 					    CTLFLAG_RD, NULL, "RX Queue Name");
4124 		queue_list = SYSCTL_CHILDREN(queue_node);
4125 
4126 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4127 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
4128 				E1000_RDH(rxr->me),
4129 				em_sysctl_reg_handler, "IU",
4130 				"Receive Descriptor Head");
4131 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4132 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
4133 				E1000_RDT(rxr->me),
4134 				em_sysctl_reg_handler, "IU",
4135 				"Receive Descriptor Tail");
4136 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
4137 				CTLFLAG_RD, &rxr->rx_irq,
4138 				"Queue MSI-X Receive Interrupts");
4139 	}
4140 
4141 	/* MAC stats get their own sub node */
4142 
4143 	stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
4144 				    CTLFLAG_RD, NULL, "Statistics");
4145 	stat_list = SYSCTL_CHILDREN(stat_node);
4146 
4147 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
4148 			CTLFLAG_RD, &stats->ecol,
4149 			"Excessive collisions");
4150 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
4151 			CTLFLAG_RD, &stats->scc,
4152 			"Single collisions");
4153 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
4154 			CTLFLAG_RD, &stats->mcc,
4155 			"Multiple collisions");
4156 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
4157 			CTLFLAG_RD, &stats->latecol,
4158 			"Late collisions");
4159 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
4160 			CTLFLAG_RD, &stats->colc,
4161 			"Collision Count");
4162 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
4163 			CTLFLAG_RD, &adapter->stats.symerrs,
4164 			"Symbol Errors");
4165 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
4166 			CTLFLAG_RD, &adapter->stats.sec,
4167 			"Sequence Errors");
4168 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
4169 			CTLFLAG_RD, &adapter->stats.dc,
4170 			"Defer Count");
4171 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
4172 			CTLFLAG_RD, &adapter->stats.mpc,
4173 			"Missed Packets");
4174 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
4175 			CTLFLAG_RD, &adapter->stats.rnbc,
4176 			"Receive No Buffers");
4177 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
4178 			CTLFLAG_RD, &adapter->stats.ruc,
4179 			"Receive Undersize");
4180 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
4181 			CTLFLAG_RD, &adapter->stats.rfc,
4182 			"Fragmented Packets Received ");
4183 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
4184 			CTLFLAG_RD, &adapter->stats.roc,
4185 			"Oversized Packets Received");
4186 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
4187 			CTLFLAG_RD, &adapter->stats.rjc,
4188 			"Recevied Jabber");
4189 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
4190 			CTLFLAG_RD, &adapter->stats.rxerrc,
4191 			"Receive Errors");
4192 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
4193 			CTLFLAG_RD, &adapter->stats.crcerrs,
4194 			"CRC errors");
4195 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
4196 			CTLFLAG_RD, &adapter->stats.algnerrc,
4197 			"Alignment Errors");
4198 	/* On 82575 these are collision counts */
4199 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
4200 			CTLFLAG_RD, &adapter->stats.cexterr,
4201 			"Collision/Carrier extension errors");
4202 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
4203 			CTLFLAG_RD, &adapter->stats.xonrxc,
4204 			"XON Received");
4205 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
4206 			CTLFLAG_RD, &adapter->stats.xontxc,
4207 			"XON Transmitted");
4208 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
4209 			CTLFLAG_RD, &adapter->stats.xoffrxc,
4210 			"XOFF Received");
4211 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
4212 			CTLFLAG_RD, &adapter->stats.xofftxc,
4213 			"XOFF Transmitted");
4214 
4215 	/* Packet Reception Stats */
4216 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
4217 			CTLFLAG_RD, &adapter->stats.tpr,
4218 			"Total Packets Received ");
4219 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
4220 			CTLFLAG_RD, &adapter->stats.gprc,
4221 			"Good Packets Received");
4222 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
4223 			CTLFLAG_RD, &adapter->stats.bprc,
4224 			"Broadcast Packets Received");
4225 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
4226 			CTLFLAG_RD, &adapter->stats.mprc,
4227 			"Multicast Packets Received");
4228 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
4229 			CTLFLAG_RD, &adapter->stats.prc64,
4230 			"64 byte frames received ");
4231 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
4232 			CTLFLAG_RD, &adapter->stats.prc127,
4233 			"65-127 byte frames received");
4234 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
4235 			CTLFLAG_RD, &adapter->stats.prc255,
4236 			"128-255 byte frames received");
4237 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
4238 			CTLFLAG_RD, &adapter->stats.prc511,
4239 			"256-511 byte frames received");
4240 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
4241 			CTLFLAG_RD, &adapter->stats.prc1023,
4242 			"512-1023 byte frames received");
4243 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
4244 			CTLFLAG_RD, &adapter->stats.prc1522,
4245 			"1023-1522 byte frames received");
4246 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
4247 			CTLFLAG_RD, &adapter->stats.gorc,
4248 			"Good Octets Received");
4249 
4250 	/* Packet Transmission Stats */
4251 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
4252 			CTLFLAG_RD, &adapter->stats.gotc,
4253 			"Good Octets Transmitted");
4254 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
4255 			CTLFLAG_RD, &adapter->stats.tpt,
4256 			"Total Packets Transmitted");
4257 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
4258 			CTLFLAG_RD, &adapter->stats.gptc,
4259 			"Good Packets Transmitted");
4260 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
4261 			CTLFLAG_RD, &adapter->stats.bptc,
4262 			"Broadcast Packets Transmitted");
4263 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
4264 			CTLFLAG_RD, &adapter->stats.mptc,
4265 			"Multicast Packets Transmitted");
4266 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
4267 			CTLFLAG_RD, &adapter->stats.ptc64,
4268 			"64 byte frames transmitted ");
4269 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
4270 			CTLFLAG_RD, &adapter->stats.ptc127,
4271 			"65-127 byte frames transmitted");
4272 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
4273 			CTLFLAG_RD, &adapter->stats.ptc255,
4274 			"128-255 byte frames transmitted");
4275 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
4276 			CTLFLAG_RD, &adapter->stats.ptc511,
4277 			"256-511 byte frames transmitted");
4278 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
4279 			CTLFLAG_RD, &adapter->stats.ptc1023,
4280 			"512-1023 byte frames transmitted");
4281 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
4282 			CTLFLAG_RD, &adapter->stats.ptc1522,
4283 			"1024-1522 byte frames transmitted");
4284 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
4285 			CTLFLAG_RD, &adapter->stats.tsctc,
4286 			"TSO Contexts Transmitted");
4287 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
4288 			CTLFLAG_RD, &adapter->stats.tsctfc,
4289 			"TSO Contexts Failed");
4290 
4291 
4292 	/* Interrupt Stats */
4293 
4294 	int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
4295 				    CTLFLAG_RD, NULL, "Interrupt Statistics");
4296 	int_list = SYSCTL_CHILDREN(int_node);
4297 
4298 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
4299 			CTLFLAG_RD, &adapter->stats.iac,
4300 			"Interrupt Assertion Count");
4301 
4302 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
4303 			CTLFLAG_RD, &adapter->stats.icrxptc,
4304 			"Interrupt Cause Rx Pkt Timer Expire Count");
4305 
4306 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
4307 			CTLFLAG_RD, &adapter->stats.icrxatc,
4308 			"Interrupt Cause Rx Abs Timer Expire Count");
4309 
4310 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
4311 			CTLFLAG_RD, &adapter->stats.ictxptc,
4312 			"Interrupt Cause Tx Pkt Timer Expire Count");
4313 
4314 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
4315 			CTLFLAG_RD, &adapter->stats.ictxatc,
4316 			"Interrupt Cause Tx Abs Timer Expire Count");
4317 
4318 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
4319 			CTLFLAG_RD, &adapter->stats.ictxqec,
4320 			"Interrupt Cause Tx Queue Empty Count");
4321 
4322 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
4323 			CTLFLAG_RD, &adapter->stats.ictxqmtc,
4324 			"Interrupt Cause Tx Queue Min Thresh Count");
4325 
4326 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4327 			CTLFLAG_RD, &adapter->stats.icrxdmtc,
4328 			"Interrupt Cause Rx Desc Min Thresh Count");
4329 
4330 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4331 			CTLFLAG_RD, &adapter->stats.icrxoc,
4332 			"Interrupt Cause Receiver Overrun Count");
4333 }
4334 
4335 /**********************************************************************
4336  *
4337  *  This routine provides a way to dump out the adapter eeprom,
4338  *  often a useful debug/service tool. This only dumps the first
4339  *  32 words, stuff that matters is in that extent.
4340  *
4341  **********************************************************************/
4342 static int
4343 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4344 {
4345 	struct adapter *adapter = (struct adapter *)arg1;
4346 	int error;
4347 	int result;
4348 
4349 	result = -1;
4350 	error = sysctl_handle_int(oidp, &result, 0, req);
4351 
4352 	if (error || !req->newptr)
4353 		return (error);
4354 
4355 	/*
4356 	 * This value will cause a hex dump of the
4357 	 * first 32 16-bit words of the EEPROM to
4358 	 * the screen.
4359 	 */
4360 	if (result == 1)
4361 		em_print_nvm_info(adapter);
4362 
4363 	return (error);
4364 }
4365 
4366 static void
4367 em_print_nvm_info(struct adapter *adapter)
4368 {
4369 	u16 eeprom_data;
4370 	int i, j, row = 0;
4371 
4372 	/* Its a bit crude, but it gets the job done */
4373 	printf("\nInterface EEPROM Dump:\n");
4374 	printf("Offset\n0x0000  ");
4375 	for (i = 0, j = 0; i < 32; i++, j++) {
4376 		if (j == 8) { /* Make the offset block */
4377 			j = 0; ++row;
4378 			printf("\n0x00%x0  ",row);
4379 		}
4380 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4381 		printf("%04x ", eeprom_data);
4382 	}
4383 	printf("\n");
4384 }
4385 
4386 static int
4387 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4388 {
4389 	struct em_int_delay_info *info;
4390 	struct adapter *adapter;
4391 	u32 regval;
4392 	int error, usecs, ticks;
4393 
4394 	info = (struct em_int_delay_info *) arg1;
4395 	usecs = info->value;
4396 	error = sysctl_handle_int(oidp, &usecs, 0, req);
4397 	if (error != 0 || req->newptr == NULL)
4398 		return (error);
4399 	if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4400 		return (EINVAL);
4401 	info->value = usecs;
4402 	ticks = EM_USECS_TO_TICKS(usecs);
4403 	if (info->offset == E1000_ITR)	/* units are 256ns here */
4404 		ticks *= 4;
4405 
4406 	adapter = info->adapter;
4407 
4408 	regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
4409 	regval = (regval & ~0xffff) | (ticks & 0xffff);
4410 	/* Handle a few special cases. */
4411 	switch (info->offset) {
4412 	case E1000_RDTR:
4413 		break;
4414 	case E1000_TIDV:
4415 		if (ticks == 0) {
4416 			adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
4417 			/* Don't write 0 into the TIDV register. */
4418 			regval++;
4419 		} else
4420 			adapter->txd_cmd |= E1000_TXD_CMD_IDE;
4421 		break;
4422 	}
4423 	E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
4424 	return (0);
4425 }
4426 
4427 static void
4428 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
4429 	const char *description, struct em_int_delay_info *info,
4430 	int offset, int value)
4431 {
4432 	info->adapter = adapter;
4433 	info->offset = offset;
4434 	info->value = value;
4435 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
4436 	    SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
4437 	    OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
4438 	    info, 0, em_sysctl_int_delay, "I", description);
4439 }
4440 
4441 /*
4442  * Set flow control using sysctl:
4443  * Flow control values:
4444  *      0 - off
4445  *      1 - rx pause
4446  *      2 - tx pause
4447  *      3 - full
4448  */
4449 static int
4450 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4451 {
4452 	int error;
4453 	static int input = 3; /* default is full */
4454 	struct adapter	*adapter = (struct adapter *) arg1;
4455 
4456 	error = sysctl_handle_int(oidp, &input, 0, req);
4457 
4458 	if ((error) || (req->newptr == NULL))
4459 		return (error);
4460 
4461 	if (input == adapter->fc) /* no change? */
4462 		return (error);
4463 
4464 	switch (input) {
4465 	case e1000_fc_rx_pause:
4466 	case e1000_fc_tx_pause:
4467 	case e1000_fc_full:
4468 	case e1000_fc_none:
4469 		adapter->hw.fc.requested_mode = input;
4470 		adapter->fc = input;
4471 		break;
4472 	default:
4473 		/* Do nothing */
4474 		return (error);
4475 	}
4476 
4477 	adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
4478 	e1000_force_mac_fc(&adapter->hw);
4479 	return (error);
4480 }
4481 
4482 /*
4483  * Manage Energy Efficient Ethernet:
4484  * Control values:
4485  *     0/1 - enabled/disabled
4486  */
4487 static int
4488 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
4489 {
4490 	struct adapter *adapter = (struct adapter *) arg1;
4491 	int error, value;
4492 
4493 	value = adapter->hw.dev_spec.ich8lan.eee_disable;
4494 	error = sysctl_handle_int(oidp, &value, 0, req);
4495 	if (error || req->newptr == NULL)
4496 		return (error);
4497 	adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0);
4498 	em_if_init(adapter->ctx);
4499 
4500 	return (0);
4501 }
4502 
4503 static int
4504 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4505 {
4506 	struct adapter *adapter;
4507 	int error;
4508 	int result;
4509 
4510 	result = -1;
4511 	error = sysctl_handle_int(oidp, &result, 0, req);
4512 
4513 	if (error || !req->newptr)
4514 		return (error);
4515 
4516 	if (result == 1) {
4517 		adapter = (struct adapter *) arg1;
4518 		em_print_debug_info(adapter);
4519 	}
4520 
4521 	return (error);
4522 }
4523 
4524 static int
4525 em_get_rs(SYSCTL_HANDLER_ARGS)
4526 {
4527 	struct adapter *adapter = (struct adapter *) arg1;
4528 	int error;
4529 	int result;
4530 
4531 	result = 0;
4532 	error = sysctl_handle_int(oidp, &result, 0, req);
4533 
4534 	if (error || !req->newptr || result != 1)
4535 		return (error);
4536 	em_dump_rs(adapter);
4537 
4538 	return (error);
4539 }
4540 
4541 static void
4542 em_if_debug(if_ctx_t ctx)
4543 {
4544 	em_dump_rs(iflib_get_softc(ctx));
4545 }
4546 
4547 /*
4548  * This routine is meant to be fluid, add whatever is
4549  * needed for debugging a problem.  -jfv
4550  */
4551 static void
4552 em_print_debug_info(struct adapter *adapter)
4553 {
4554 	device_t dev = iflib_get_dev(adapter->ctx);
4555 	struct ifnet *ifp = iflib_get_ifp(adapter->ctx);
4556 	struct tx_ring *txr = &adapter->tx_queues->txr;
4557 	struct rx_ring *rxr = &adapter->rx_queues->rxr;
4558 
4559 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
4560 		printf("Interface is RUNNING ");
4561 	else
4562 		printf("Interface is NOT RUNNING\n");
4563 
4564 	if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
4565 		printf("and INACTIVE\n");
4566 	else
4567 		printf("and ACTIVE\n");
4568 
4569 	for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
4570 		device_printf(dev, "TX Queue %d ------\n", i);
4571 		device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4572 			E1000_READ_REG(&adapter->hw, E1000_TDH(i)),
4573 			E1000_READ_REG(&adapter->hw, E1000_TDT(i)));
4574 
4575 	}
4576 	for (int j=0; j < adapter->rx_num_queues; j++, rxr++) {
4577 		device_printf(dev, "RX Queue %d ------\n", j);
4578 		device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4579 			E1000_READ_REG(&adapter->hw, E1000_RDH(j)),
4580 			E1000_READ_REG(&adapter->hw, E1000_RDT(j)));
4581 	}
4582 }
4583 
4584 /*
4585  * 82574 only:
4586  * Write a new value to the EEPROM increasing the number of MSI-X
4587  * vectors from 3 to 5, for proper multiqueue support.
4588  */
4589 static void
4590 em_enable_vectors_82574(if_ctx_t ctx)
4591 {
4592 	struct adapter *adapter = iflib_get_softc(ctx);
4593 	struct e1000_hw *hw = &adapter->hw;
4594 	device_t dev = iflib_get_dev(ctx);
4595 	u16 edata;
4596 
4597 	e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4598 	if (bootverbose)
4599 		device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
4600 	if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
4601 		device_printf(dev, "Writing to eeprom: increasing "
4602 		    "reported MSI-X vectors from 3 to 5...\n");
4603 		edata &= ~(EM_NVM_MSIX_N_MASK);
4604 		edata |= 4 << EM_NVM_MSIX_N_SHIFT;
4605 		e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4606 		e1000_update_nvm_checksum(hw);
4607 		device_printf(dev, "Writing to eeprom: done\n");
4608 	}
4609 }
4610