1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* $FreeBSD$ */ 30 #include "if_em.h" 31 #include <sys/sbuf.h> 32 #include <machine/_inttypes.h> 33 34 #define em_mac_min e1000_82547 35 #define igb_mac_min e1000_82575 36 37 /********************************************************************* 38 * Driver version: 39 *********************************************************************/ 40 char em_driver_version[] = "7.6.1-k"; 41 42 /********************************************************************* 43 * PCI Device ID Table 44 * 45 * Used by probe to select devices to load on 46 * Last field stores an index into e1000_strings 47 * Last entry must be all 0s 48 * 49 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index } 50 *********************************************************************/ 51 52 static pci_vendor_info_t em_vendor_info_array[] = 53 { 54 /* Intel(R) PRO/1000 Network Connection - Legacy em*/ 55 PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) PRO/1000 Network Connection"), 56 PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) PRO/1000 Network Connection"), 57 PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) PRO/1000 Network Connection"), 58 PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) PRO/1000 Network Connection"), 59 PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) PRO/1000 Network Connection"), 60 61 PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) PRO/1000 Network Connection"), 62 PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) PRO/1000 Network Connection"), 63 PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) PRO/1000 Network Connection"), 64 PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) PRO/1000 Network Connection"), 65 PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) PRO/1000 Network Connection"), 66 PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) PRO/1000 Network Connection"), 67 PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) PRO/1000 Network Connection"), 68 69 PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) PRO/1000 Network Connection"), 70 71 PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) PRO/1000 Network Connection"), 72 PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) PRO/1000 Network Connection"), 73 74 PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) PRO/1000 Network Connection"), 75 PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) PRO/1000 Network Connection"), 76 PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) PRO/1000 Network Connection"), 77 PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) PRO/1000 Network Connection"), 78 79 PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) PRO/1000 Network Connection"), 80 PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) PRO/1000 Network Connection"), 81 PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) PRO/1000 Network Connection"), 82 PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) PRO/1000 Network Connection"), 83 PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) PRO/1000 Network Connection"), 84 85 PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) PRO/1000 Network Connection"), 86 PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) PRO/1000 Network Connection"), 87 PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), 88 PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) PRO/1000 Network Connection"), 89 PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) PRO/1000 Network Connection"), 90 PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) PRO/1000 Network Connection"), 91 PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) PRO/1000 Network Connection"), 92 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), 93 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) PRO/1000 Network Connection"), 94 95 PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) PRO/1000 Network Connection"), 96 PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) PRO/1000 Network Connection"), 97 PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) PRO/1000 Network Connection"), 98 99 /* Intel(R) PRO/1000 Network Connection - em */ 100 PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 Network Connection"), 101 PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 Network Connection"), 102 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 Network Connection"), 103 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 Network Connection"), 104 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 Network Connection"), 105 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), 106 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 Network Connection"), 107 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 Network Connection"), 108 PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), 109 PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 Network Connection"), 110 PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 Network Connection"), 111 PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 Network Connection"), 112 PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 Network Connection"), 113 PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 Network Connection"), 114 PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 Network Connection"), 115 PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 Network Connection"), 116 PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) PRO/1000 Network Connection"), 117 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) PRO/1000 Network Connection"), 118 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) PRO/1000 Network Connection"), 119 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) PRO/1000 Network Connection"), 120 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) PRO/1000 Network Connection"), 121 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"), 122 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) PRO/1000 Network Connection"), 123 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) PRO/1000 Network Connection"), 124 PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) PRO/1000 Network Connection"), 125 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) PRO/1000 Network Connection"), 126 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) PRO/1000 Network Connection"), 127 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) PRO/1000 Network Connection"), 128 PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) PRO/1000 Network Connection"), 129 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"), 130 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) PRO/1000 Network Connection"), 131 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) PRO/1000 Network Connection"), 132 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) PRO/1000 Network Connection"), 133 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) PRO/1000 Network Connection"), 134 PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) PRO/1000 Network Connection"), 135 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) PRO/1000 Network Connection"), 136 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) PRO/1000 Network Connection"), 137 PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) PRO/1000 Network Connection"), 138 PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) PRO/1000 Network Connection"), 139 PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) PRO/1000 Network Connection"), 140 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) PRO/1000 Network Connection"), 141 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) PRO/1000 Network Connection"), 142 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) PRO/1000 Network Connection"), 143 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) PRO/1000 Network Connection"), 144 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) PRO/1000 Network Connection"), 145 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) PRO/1000 Network Connection"), 146 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) PRO/1000 Network Connection"), 147 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) PRO/1000 Network Connection"), 148 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) PRO/1000 Network Connection"), 149 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) PRO/1000 Network Connection"), 150 PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) PRO/1000 Network Connection"), 151 PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) PRO/1000 Network Connection"), 152 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) PRO/1000 Network Connection"), 153 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) PRO/1000 Network Connection"), 154 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) PRO/1000 Network Connection"), 155 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) PRO/1000 Network Connection"), 156 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) PRO/1000 Network Connection"), 157 PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) PRO/1000 Network Connection"), 158 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) PRO/1000 Network Connection"), 159 PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) PRO/1000 Network Connection"), 160 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) PRO/1000 Network Connection"), 161 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) PRO/1000 Network Connection"), 162 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) PRO/1000 Network Connection"), 163 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) PRO/1000 Network Connection"), 164 PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) PRO/1000 Network Connection"), 165 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) PRO/1000 Network Connection"), 166 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) PRO/1000 Network Connection"), 167 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) PRO/1000 Network Connection"), 168 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) PRO/1000 Network Connection"), 169 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) PRO/1000 Network Connection"), 170 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) PRO/1000 Network Connection"), 171 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) PRO/1000 Network Connection"), 172 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) PRO/1000 Network Connection"), 173 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) PRO/1000 Network Connection"), 174 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) PRO/1000 Network Connection"), 175 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) PRO/1000 Network Connection"), 176 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) PRO/1000 Network Connection"), 177 /* required last entry */ 178 PVID_END 179 }; 180 181 static pci_vendor_info_t igb_vendor_info_array[] = 182 { 183 /* Intel(R) PRO/1000 Network Connection - igb */ 184 PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 185 PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 186 PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 187 PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 PCI-Express Network Driver"), 188 PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 189 PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 190 PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 191 PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 192 PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 PCI-Express Network Driver"), 193 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 194 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 PCI-Express Network Driver"), 195 PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"), 196 PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 197 PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 198 PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 199 PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 200 PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) PRO/1000 PCI-Express Network Driver"), 201 PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 202 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 203 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 204 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) PRO/1000 PCI-Express Network Driver"), 205 PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) PRO/1000 PCI-Express Network Driver"), 206 PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 207 PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 208 PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 209 PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 210 PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"), 211 PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 212 PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) PRO/1000 PCI-Express Network Driver"), 213 PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) PRO/1000 PCI-Express Network Driver"), 214 PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 215 PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 216 PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 217 PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 218 PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 219 PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 220 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 221 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 222 PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 223 /* required last entry */ 224 PVID_END 225 }; 226 227 /********************************************************************* 228 * Function prototypes 229 *********************************************************************/ 230 static void *em_register(device_t dev); 231 static void *igb_register(device_t dev); 232 static int em_if_attach_pre(if_ctx_t ctx); 233 static int em_if_attach_post(if_ctx_t ctx); 234 static int em_if_detach(if_ctx_t ctx); 235 static int em_if_shutdown(if_ctx_t ctx); 236 static int em_if_suspend(if_ctx_t ctx); 237 static int em_if_resume(if_ctx_t ctx); 238 239 static int em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets); 240 static int em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets); 241 static void em_if_queues_free(if_ctx_t ctx); 242 243 static uint64_t em_if_get_counter(if_ctx_t, ift_counter); 244 static void em_if_init(if_ctx_t ctx); 245 static void em_if_stop(if_ctx_t ctx); 246 static void em_if_media_status(if_ctx_t, struct ifmediareq *); 247 static int em_if_media_change(if_ctx_t ctx); 248 static int em_if_mtu_set(if_ctx_t ctx, uint32_t mtu); 249 static void em_if_timer(if_ctx_t ctx, uint16_t qid); 250 static void em_if_vlan_register(if_ctx_t ctx, u16 vtag); 251 static void em_if_vlan_unregister(if_ctx_t ctx, u16 vtag); 252 static void em_if_watchdog_reset(if_ctx_t ctx); 253 254 static void em_identify_hardware(if_ctx_t ctx); 255 static int em_allocate_pci_resources(if_ctx_t ctx); 256 static void em_free_pci_resources(if_ctx_t ctx); 257 static void em_reset(if_ctx_t ctx); 258 static int em_setup_interface(if_ctx_t ctx); 259 static int em_setup_msix(if_ctx_t ctx); 260 261 static void em_initialize_transmit_unit(if_ctx_t ctx); 262 static void em_initialize_receive_unit(if_ctx_t ctx); 263 264 static void em_if_intr_enable(if_ctx_t ctx); 265 static void em_if_intr_disable(if_ctx_t ctx); 266 static void igb_if_intr_enable(if_ctx_t ctx); 267 static void igb_if_intr_disable(if_ctx_t ctx); 268 static int em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid); 269 static int em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid); 270 static int igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid); 271 static int igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid); 272 static void em_if_multi_set(if_ctx_t ctx); 273 static void em_if_update_admin_status(if_ctx_t ctx); 274 static void em_if_debug(if_ctx_t ctx); 275 static void em_update_stats_counters(struct adapter *); 276 static void em_add_hw_stats(struct adapter *adapter); 277 static int em_if_set_promisc(if_ctx_t ctx, int flags); 278 static void em_setup_vlan_hw_support(struct adapter *); 279 static int em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS); 280 static void em_print_nvm_info(struct adapter *); 281 static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS); 282 static int em_get_rs(SYSCTL_HANDLER_ARGS); 283 static void em_print_debug_info(struct adapter *); 284 static int em_is_valid_ether_addr(u8 *); 285 static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS); 286 static void em_add_int_delay_sysctl(struct adapter *, const char *, 287 const char *, struct em_int_delay_info *, int, int); 288 /* Management and WOL Support */ 289 static void em_init_manageability(struct adapter *); 290 static void em_release_manageability(struct adapter *); 291 static void em_get_hw_control(struct adapter *); 292 static void em_release_hw_control(struct adapter *); 293 static void em_get_wakeup(if_ctx_t ctx); 294 static void em_enable_wakeup(if_ctx_t ctx); 295 static int em_enable_phy_wakeup(struct adapter *); 296 static void em_disable_aspm(struct adapter *); 297 298 int em_intr(void *arg); 299 static void em_disable_promisc(if_ctx_t ctx); 300 301 /* MSI-X handlers */ 302 static int em_if_msix_intr_assign(if_ctx_t, int); 303 static int em_msix_link(void *); 304 static void em_handle_link(void *context); 305 306 static void em_enable_vectors_82574(if_ctx_t); 307 308 static int em_set_flowcntl(SYSCTL_HANDLER_ARGS); 309 static int em_sysctl_eee(SYSCTL_HANDLER_ARGS); 310 static void em_if_led_func(if_ctx_t ctx, int onoff); 311 312 static int em_get_regs(SYSCTL_HANDLER_ARGS); 313 314 static void lem_smartspeed(struct adapter *adapter); 315 static void igb_configure_queues(struct adapter *adapter); 316 317 318 /********************************************************************* 319 * FreeBSD Device Interface Entry Points 320 *********************************************************************/ 321 static device_method_t em_methods[] = { 322 /* Device interface */ 323 DEVMETHOD(device_register, em_register), 324 DEVMETHOD(device_probe, iflib_device_probe), 325 DEVMETHOD(device_attach, iflib_device_attach), 326 DEVMETHOD(device_detach, iflib_device_detach), 327 DEVMETHOD(device_shutdown, iflib_device_shutdown), 328 DEVMETHOD(device_suspend, iflib_device_suspend), 329 DEVMETHOD(device_resume, iflib_device_resume), 330 DEVMETHOD_END 331 }; 332 333 static device_method_t igb_methods[] = { 334 /* Device interface */ 335 DEVMETHOD(device_register, igb_register), 336 DEVMETHOD(device_probe, iflib_device_probe), 337 DEVMETHOD(device_attach, iflib_device_attach), 338 DEVMETHOD(device_detach, iflib_device_detach), 339 DEVMETHOD(device_shutdown, iflib_device_shutdown), 340 DEVMETHOD(device_suspend, iflib_device_suspend), 341 DEVMETHOD(device_resume, iflib_device_resume), 342 DEVMETHOD_END 343 }; 344 345 346 static driver_t em_driver = { 347 "em", em_methods, sizeof(struct adapter), 348 }; 349 350 static devclass_t em_devclass; 351 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0); 352 353 MODULE_DEPEND(em, pci, 1, 1, 1); 354 MODULE_DEPEND(em, ether, 1, 1, 1); 355 MODULE_DEPEND(em, iflib, 1, 1, 1); 356 357 IFLIB_PNP_INFO(pci, em, em_vendor_info_array); 358 359 static driver_t igb_driver = { 360 "igb", igb_methods, sizeof(struct adapter), 361 }; 362 363 static devclass_t igb_devclass; 364 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0); 365 366 MODULE_DEPEND(igb, pci, 1, 1, 1); 367 MODULE_DEPEND(igb, ether, 1, 1, 1); 368 MODULE_DEPEND(igb, iflib, 1, 1, 1); 369 370 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array); 371 372 static device_method_t em_if_methods[] = { 373 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre), 374 DEVMETHOD(ifdi_attach_post, em_if_attach_post), 375 DEVMETHOD(ifdi_detach, em_if_detach), 376 DEVMETHOD(ifdi_shutdown, em_if_shutdown), 377 DEVMETHOD(ifdi_suspend, em_if_suspend), 378 DEVMETHOD(ifdi_resume, em_if_resume), 379 DEVMETHOD(ifdi_init, em_if_init), 380 DEVMETHOD(ifdi_stop, em_if_stop), 381 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign), 382 DEVMETHOD(ifdi_intr_enable, em_if_intr_enable), 383 DEVMETHOD(ifdi_intr_disable, em_if_intr_disable), 384 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc), 385 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc), 386 DEVMETHOD(ifdi_queues_free, em_if_queues_free), 387 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status), 388 DEVMETHOD(ifdi_multi_set, em_if_multi_set), 389 DEVMETHOD(ifdi_media_status, em_if_media_status), 390 DEVMETHOD(ifdi_media_change, em_if_media_change), 391 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set), 392 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc), 393 DEVMETHOD(ifdi_timer, em_if_timer), 394 DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset), 395 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register), 396 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister), 397 DEVMETHOD(ifdi_get_counter, em_if_get_counter), 398 DEVMETHOD(ifdi_led_func, em_if_led_func), 399 DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable), 400 DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable), 401 DEVMETHOD(ifdi_debug, em_if_debug), 402 DEVMETHOD_END 403 }; 404 405 static driver_t em_if_driver = { 406 "em_if", em_if_methods, sizeof(struct adapter) 407 }; 408 409 static device_method_t igb_if_methods[] = { 410 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre), 411 DEVMETHOD(ifdi_attach_post, em_if_attach_post), 412 DEVMETHOD(ifdi_detach, em_if_detach), 413 DEVMETHOD(ifdi_shutdown, em_if_shutdown), 414 DEVMETHOD(ifdi_suspend, em_if_suspend), 415 DEVMETHOD(ifdi_resume, em_if_resume), 416 DEVMETHOD(ifdi_init, em_if_init), 417 DEVMETHOD(ifdi_stop, em_if_stop), 418 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign), 419 DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable), 420 DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable), 421 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc), 422 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc), 423 DEVMETHOD(ifdi_queues_free, em_if_queues_free), 424 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status), 425 DEVMETHOD(ifdi_multi_set, em_if_multi_set), 426 DEVMETHOD(ifdi_media_status, em_if_media_status), 427 DEVMETHOD(ifdi_media_change, em_if_media_change), 428 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set), 429 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc), 430 DEVMETHOD(ifdi_timer, em_if_timer), 431 DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset), 432 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register), 433 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister), 434 DEVMETHOD(ifdi_get_counter, em_if_get_counter), 435 DEVMETHOD(ifdi_led_func, em_if_led_func), 436 DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable), 437 DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable), 438 DEVMETHOD(ifdi_debug, em_if_debug), 439 DEVMETHOD_END 440 }; 441 442 static driver_t igb_if_driver = { 443 "igb_if", igb_if_methods, sizeof(struct adapter) 444 }; 445 446 /********************************************************************* 447 * Tunable default values. 448 *********************************************************************/ 449 450 #define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000) 451 #define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024) 452 453 #define MAX_INTS_PER_SEC 8000 454 #define DEFAULT_ITR (1000000000/(MAX_INTS_PER_SEC * 256)) 455 456 /* Allow common code without TSO */ 457 #ifndef CSUM_TSO 458 #define CSUM_TSO 0 459 #endif 460 461 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD, 0, "EM driver parameters"); 462 463 static int em_disable_crc_stripping = 0; 464 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN, 465 &em_disable_crc_stripping, 0, "Disable CRC Stripping"); 466 467 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV); 468 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR); 469 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt, 470 0, "Default transmit interrupt delay in usecs"); 471 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt, 472 0, "Default receive interrupt delay in usecs"); 473 474 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV); 475 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV); 476 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN, 477 &em_tx_abs_int_delay_dflt, 0, 478 "Default transmit interrupt delay limit in usecs"); 479 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN, 480 &em_rx_abs_int_delay_dflt, 0, 481 "Default receive interrupt delay limit in usecs"); 482 483 static int em_smart_pwr_down = FALSE; 484 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down, 485 0, "Set to true to leave smart power down enabled on newer adapters"); 486 487 /* Controls whether promiscuous also shows bad packets */ 488 static int em_debug_sbp = TRUE; 489 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0, 490 "Show bad packets in promiscuous mode"); 491 492 /* How many packets rxeof tries to clean at a time */ 493 static int em_rx_process_limit = 100; 494 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN, 495 &em_rx_process_limit, 0, 496 "Maximum number of received packets to process " 497 "at a time, -1 means unlimited"); 498 499 /* Energy efficient ethernet - default to OFF */ 500 static int eee_setting = 1; 501 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0, 502 "Enable Energy Efficient Ethernet"); 503 504 /* 505 ** Tuneable Interrupt rate 506 */ 507 static int em_max_interrupt_rate = 8000; 508 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN, 509 &em_max_interrupt_rate, 0, "Maximum interrupts per second"); 510 511 512 513 /* Global used in WOL setup with multiport cards */ 514 static int global_quad_port_a = 0; 515 516 extern struct if_txrx igb_txrx; 517 extern struct if_txrx em_txrx; 518 extern struct if_txrx lem_txrx; 519 520 static struct if_shared_ctx em_sctx_init = { 521 .isc_magic = IFLIB_MAGIC, 522 .isc_q_align = PAGE_SIZE, 523 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 524 .isc_tx_maxsegsize = PAGE_SIZE, 525 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 526 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE, 527 .isc_rx_maxsize = MJUM9BYTES, 528 .isc_rx_nsegments = 1, 529 .isc_rx_maxsegsize = MJUM9BYTES, 530 .isc_nfl = 1, 531 .isc_nrxqs = 1, 532 .isc_ntxqs = 1, 533 .isc_admin_intrcnt = 1, 534 .isc_vendor_info = em_vendor_info_array, 535 .isc_driver_version = em_driver_version, 536 .isc_driver = &em_if_driver, 537 .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM, 538 539 .isc_nrxd_min = {EM_MIN_RXD}, 540 .isc_ntxd_min = {EM_MIN_TXD}, 541 .isc_nrxd_max = {EM_MAX_RXD}, 542 .isc_ntxd_max = {EM_MAX_TXD}, 543 .isc_nrxd_default = {EM_DEFAULT_RXD}, 544 .isc_ntxd_default = {EM_DEFAULT_TXD}, 545 }; 546 547 if_shared_ctx_t em_sctx = &em_sctx_init; 548 549 static struct if_shared_ctx igb_sctx_init = { 550 .isc_magic = IFLIB_MAGIC, 551 .isc_q_align = PAGE_SIZE, 552 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 553 .isc_tx_maxsegsize = PAGE_SIZE, 554 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 555 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE, 556 .isc_rx_maxsize = MJUM9BYTES, 557 .isc_rx_nsegments = 1, 558 .isc_rx_maxsegsize = MJUM9BYTES, 559 .isc_nfl = 1, 560 .isc_nrxqs = 1, 561 .isc_ntxqs = 1, 562 .isc_admin_intrcnt = 1, 563 .isc_vendor_info = igb_vendor_info_array, 564 .isc_driver_version = em_driver_version, 565 .isc_driver = &igb_if_driver, 566 .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM, 567 568 .isc_nrxd_min = {EM_MIN_RXD}, 569 .isc_ntxd_min = {EM_MIN_TXD}, 570 .isc_nrxd_max = {IGB_MAX_RXD}, 571 .isc_ntxd_max = {IGB_MAX_TXD}, 572 .isc_nrxd_default = {EM_DEFAULT_RXD}, 573 .isc_ntxd_default = {EM_DEFAULT_TXD}, 574 }; 575 576 if_shared_ctx_t igb_sctx = &igb_sctx_init; 577 578 /***************************************************************** 579 * 580 * Dump Registers 581 * 582 ****************************************************************/ 583 #define IGB_REGS_LEN 739 584 585 static int em_get_regs(SYSCTL_HANDLER_ARGS) 586 { 587 struct adapter *adapter = (struct adapter *)arg1; 588 struct e1000_hw *hw = &adapter->hw; 589 struct sbuf *sb; 590 u32 *regs_buff; 591 int rc; 592 593 regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK); 594 memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32)); 595 596 rc = sysctl_wire_old_buffer(req, 0); 597 MPASS(rc == 0); 598 if (rc != 0) { 599 free(regs_buff, M_DEVBUF); 600 return (rc); 601 } 602 603 sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req); 604 MPASS(sb != NULL); 605 if (sb == NULL) { 606 free(regs_buff, M_DEVBUF); 607 return (ENOMEM); 608 } 609 610 /* General Registers */ 611 regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL); 612 regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS); 613 regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT); 614 regs_buff[3] = E1000_READ_REG(hw, E1000_ICR); 615 regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL); 616 regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0)); 617 regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0)); 618 regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0)); 619 regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0)); 620 regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0)); 621 regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0)); 622 regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL); 623 regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0)); 624 regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0)); 625 regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0)); 626 regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0)); 627 regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0)); 628 regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0)); 629 regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH); 630 regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT); 631 regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS); 632 regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC); 633 634 sbuf_printf(sb, "General Registers\n"); 635 sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]); 636 sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]); 637 sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]); 638 639 sbuf_printf(sb, "Interrupt Registers\n"); 640 sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]); 641 642 sbuf_printf(sb, "RX Registers\n"); 643 sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]); 644 sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]); 645 sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]); 646 sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]); 647 sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]); 648 sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]); 649 sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]); 650 651 sbuf_printf(sb, "TX Registers\n"); 652 sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]); 653 sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]); 654 sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]); 655 sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]); 656 sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]); 657 sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]); 658 sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]); 659 sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]); 660 sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]); 661 sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]); 662 sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]); 663 664 free(regs_buff, M_DEVBUF); 665 666 #ifdef DUMP_DESCS 667 { 668 if_softc_ctx_t scctx = adapter->shared; 669 struct rx_ring *rxr = &rx_que->rxr; 670 struct tx_ring *txr = &tx_que->txr; 671 int ntxd = scctx->isc_ntxd[0]; 672 int nrxd = scctx->isc_nrxd[0]; 673 int j; 674 675 for (j = 0; j < nrxd; j++) { 676 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error); 677 u32 length = le32toh(rxr->rx_base[j].wb.upper.length); 678 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 " Error:%d Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length); 679 } 680 681 for (j = 0; j < min(ntxd, 256); j++) { 682 unsigned int *ptr = (unsigned int *)&txr->tx_base[j]; 683 684 sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x eop: %d DD=%d\n", 685 j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop, 686 buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0); 687 688 } 689 } 690 #endif 691 692 rc = sbuf_finish(sb); 693 sbuf_delete(sb); 694 return(rc); 695 } 696 697 static void * 698 em_register(device_t dev) 699 { 700 return (em_sctx); 701 } 702 703 static void * 704 igb_register(device_t dev) 705 { 706 return (igb_sctx); 707 } 708 709 static int 710 em_set_num_queues(if_ctx_t ctx) 711 { 712 struct adapter *adapter = iflib_get_softc(ctx); 713 int maxqueues; 714 715 /* Sanity check based on HW */ 716 switch (adapter->hw.mac.type) { 717 case e1000_82576: 718 case e1000_82580: 719 case e1000_i350: 720 case e1000_i354: 721 maxqueues = 8; 722 break; 723 case e1000_i210: 724 case e1000_82575: 725 maxqueues = 4; 726 break; 727 case e1000_i211: 728 case e1000_82574: 729 maxqueues = 2; 730 break; 731 default: 732 maxqueues = 1; 733 break; 734 } 735 736 return (maxqueues); 737 } 738 739 #define LEM_CAPS \ 740 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ 741 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER 742 743 #define EM_CAPS \ 744 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ 745 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \ 746 IFCAP_LRO | IFCAP_VLAN_HWTSO 747 748 #define IGB_CAPS \ 749 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ 750 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \ 751 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 |\ 752 IFCAP_TSO6 753 754 /********************************************************************* 755 * Device initialization routine 756 * 757 * The attach entry point is called when the driver is being loaded. 758 * This routine identifies the type of hardware, allocates all resources 759 * and initializes the hardware. 760 * 761 * return 0 on success, positive on failure 762 *********************************************************************/ 763 static int 764 em_if_attach_pre(if_ctx_t ctx) 765 { 766 struct adapter *adapter; 767 if_softc_ctx_t scctx; 768 device_t dev; 769 struct e1000_hw *hw; 770 int error = 0; 771 772 INIT_DEBUGOUT("em_if_attach_pre: begin"); 773 dev = iflib_get_dev(ctx); 774 adapter = iflib_get_softc(ctx); 775 776 adapter->ctx = adapter->osdep.ctx = ctx; 777 adapter->dev = adapter->osdep.dev = dev; 778 scctx = adapter->shared = iflib_get_softc_ctx(ctx); 779 adapter->media = iflib_get_media(ctx); 780 hw = &adapter->hw; 781 782 adapter->tx_process_limit = scctx->isc_ntxd[0]; 783 784 /* SYSCTL stuff */ 785 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 786 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 787 OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, 788 em_sysctl_nvm_info, "I", "NVM Information"); 789 790 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 791 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 792 OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, 793 em_sysctl_debug_info, "I", "Debug Information"); 794 795 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 796 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 797 OID_AUTO, "fc", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, 798 em_set_flowcntl, "I", "Flow Control"); 799 800 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 801 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 802 OID_AUTO, "reg_dump", CTLTYPE_STRING | CTLFLAG_RD, adapter, 0, 803 em_get_regs, "A", "Dump Registers"); 804 805 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 806 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 807 OID_AUTO, "rs_dump", CTLTYPE_INT | CTLFLAG_RW, adapter, 0, 808 em_get_rs, "I", "Dump RS indexes"); 809 810 /* Determine hardware and mac info */ 811 em_identify_hardware(ctx); 812 813 scctx->isc_tx_nsegments = EM_MAX_SCATTER; 814 scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx); 815 if (bootverbose) 816 device_printf(dev, "attach_pre capping queues at %d\n", 817 scctx->isc_ntxqsets_max); 818 819 if (adapter->hw.mac.type >= igb_mac_min) { 820 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN); 821 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN); 822 scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc); 823 scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc); 824 scctx->isc_txrx = &igb_txrx; 825 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER; 826 scctx->isc_tx_tso_size_max = EM_TSO_SIZE; 827 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE; 828 scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS; 829 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO | 830 CSUM_IP6_TCP | CSUM_IP6_UDP; 831 if (adapter->hw.mac.type != e1000_82575) 832 scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP; 833 /* 834 ** Some new devices, as with ixgbe, now may 835 ** use a different BAR, so we need to keep 836 ** track of which is used. 837 */ 838 scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR); 839 if (pci_read_config(dev, scctx->isc_msix_bar, 4) == 0) 840 scctx->isc_msix_bar += 4; 841 } else if (adapter->hw.mac.type >= em_mac_min) { 842 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN); 843 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN); 844 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc); 845 scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended); 846 scctx->isc_txrx = &em_txrx; 847 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER; 848 scctx->isc_tx_tso_size_max = EM_TSO_SIZE; 849 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE; 850 scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS; 851 /* 852 * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO} 853 * by default as we don't have workarounds for all associated 854 * silicon errata. E. g., with several MACs such as 82573E, 855 * TSO only works at Gigabit speed and otherwise can cause the 856 * hardware to hang (which also would be next to impossible to 857 * work around given that already queued TSO-using descriptors 858 * would need to be flushed and vlan(4) reconfigured at runtime 859 * in case of a link speed change). Moreover, MACs like 82579 860 * still can hang at Gigabit even with all publicly documented 861 * TSO workarounds implemented. Generally, the penality of 862 * these workarounds is rather high and may involve copying 863 * mbuf data around so advantages of TSO lapse. Still, TSO may 864 * work for a few MACs of this class - at least when sticking 865 * with Gigabit - in which case users may enable TSO manually. 866 */ 867 scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO); 868 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO; 869 /* 870 * We support MSI-X with 82574 only, but indicate to iflib(4) 871 * that it shall give MSI at least a try with other devices. 872 */ 873 if (adapter->hw.mac.type == e1000_82574) { 874 scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR); 875 } else { 876 scctx->isc_msix_bar = -1; 877 scctx->isc_disable_msix = 1; 878 } 879 } else { 880 scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN); 881 scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN); 882 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc); 883 scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc); 884 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP; 885 scctx->isc_txrx = &lem_txrx; 886 scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS; 887 if (adapter->hw.mac.type < e1000_82543) 888 scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM); 889 /* INTx only */ 890 scctx->isc_msix_bar = 0; 891 } 892 893 /* Setup PCI resources */ 894 if (em_allocate_pci_resources(ctx)) { 895 device_printf(dev, "Allocation of PCI resources failed\n"); 896 error = ENXIO; 897 goto err_pci; 898 } 899 900 /* 901 ** For ICH8 and family we need to 902 ** map the flash memory, and this 903 ** must happen after the MAC is 904 ** identified 905 */ 906 if ((hw->mac.type == e1000_ich8lan) || 907 (hw->mac.type == e1000_ich9lan) || 908 (hw->mac.type == e1000_ich10lan) || 909 (hw->mac.type == e1000_pchlan) || 910 (hw->mac.type == e1000_pch2lan) || 911 (hw->mac.type == e1000_pch_lpt)) { 912 int rid = EM_BAR_TYPE_FLASH; 913 adapter->flash = bus_alloc_resource_any(dev, 914 SYS_RES_MEMORY, &rid, RF_ACTIVE); 915 if (adapter->flash == NULL) { 916 device_printf(dev, "Mapping of Flash failed\n"); 917 error = ENXIO; 918 goto err_pci; 919 } 920 /* This is used in the shared code */ 921 hw->flash_address = (u8 *)adapter->flash; 922 adapter->osdep.flash_bus_space_tag = 923 rman_get_bustag(adapter->flash); 924 adapter->osdep.flash_bus_space_handle = 925 rman_get_bushandle(adapter->flash); 926 } 927 /* 928 ** In the new SPT device flash is not a 929 ** separate BAR, rather it is also in BAR0, 930 ** so use the same tag and an offset handle for the 931 ** FLASH read/write macros in the shared code. 932 */ 933 else if (hw->mac.type >= e1000_pch_spt) { 934 adapter->osdep.flash_bus_space_tag = 935 adapter->osdep.mem_bus_space_tag; 936 adapter->osdep.flash_bus_space_handle = 937 adapter->osdep.mem_bus_space_handle 938 + E1000_FLASH_BASE_ADDR; 939 } 940 941 /* Do Shared Code initialization */ 942 error = e1000_setup_init_funcs(hw, TRUE); 943 if (error) { 944 device_printf(dev, "Setup of Shared code failed, error %d\n", 945 error); 946 error = ENXIO; 947 goto err_pci; 948 } 949 950 em_setup_msix(ctx); 951 e1000_get_bus_info(hw); 952 953 /* Set up some sysctls for the tunable interrupt delays */ 954 em_add_int_delay_sysctl(adapter, "rx_int_delay", 955 "receive interrupt delay in usecs", &adapter->rx_int_delay, 956 E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt); 957 em_add_int_delay_sysctl(adapter, "tx_int_delay", 958 "transmit interrupt delay in usecs", &adapter->tx_int_delay, 959 E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt); 960 em_add_int_delay_sysctl(adapter, "rx_abs_int_delay", 961 "receive interrupt delay limit in usecs", 962 &adapter->rx_abs_int_delay, 963 E1000_REGISTER(hw, E1000_RADV), 964 em_rx_abs_int_delay_dflt); 965 em_add_int_delay_sysctl(adapter, "tx_abs_int_delay", 966 "transmit interrupt delay limit in usecs", 967 &adapter->tx_abs_int_delay, 968 E1000_REGISTER(hw, E1000_TADV), 969 em_tx_abs_int_delay_dflt); 970 em_add_int_delay_sysctl(adapter, "itr", 971 "interrupt delay limit in usecs/4", 972 &adapter->tx_itr, 973 E1000_REGISTER(hw, E1000_ITR), 974 DEFAULT_ITR); 975 976 hw->mac.autoneg = DO_AUTO_NEG; 977 hw->phy.autoneg_wait_to_complete = FALSE; 978 hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; 979 980 if (adapter->hw.mac.type < em_mac_min) { 981 e1000_init_script_state_82541(&adapter->hw, TRUE); 982 e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE); 983 } 984 /* Copper options */ 985 if (hw->phy.media_type == e1000_media_type_copper) { 986 hw->phy.mdix = AUTO_ALL_MODES; 987 hw->phy.disable_polarity_correction = FALSE; 988 hw->phy.ms_type = EM_MASTER_SLAVE; 989 } 990 991 /* 992 * Set the frame limits assuming 993 * standard ethernet sized frames. 994 */ 995 scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size = 996 ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE; 997 998 /* 999 * This controls when hardware reports transmit completion 1000 * status. 1001 */ 1002 hw->mac.report_tx_early = 1; 1003 1004 /* Allocate multicast array memory. */ 1005 adapter->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN * 1006 MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT); 1007 if (adapter->mta == NULL) { 1008 device_printf(dev, "Can not allocate multicast setup array\n"); 1009 error = ENOMEM; 1010 goto err_late; 1011 } 1012 1013 /* Check SOL/IDER usage */ 1014 if (e1000_check_reset_block(hw)) 1015 device_printf(dev, "PHY reset is blocked" 1016 " due to SOL/IDER session.\n"); 1017 1018 /* Sysctl for setting Energy Efficient Ethernet */ 1019 hw->dev_spec.ich8lan.eee_disable = eee_setting; 1020 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 1021 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 1022 OID_AUTO, "eee_control", CTLTYPE_INT|CTLFLAG_RW, 1023 adapter, 0, em_sysctl_eee, "I", 1024 "Disable Energy Efficient Ethernet"); 1025 1026 /* 1027 ** Start from a known state, this is 1028 ** important in reading the nvm and 1029 ** mac from that. 1030 */ 1031 e1000_reset_hw(hw); 1032 1033 /* Make sure we have a good EEPROM before we read from it */ 1034 if (e1000_validate_nvm_checksum(hw) < 0) { 1035 /* 1036 ** Some PCI-E parts fail the first check due to 1037 ** the link being in sleep state, call it again, 1038 ** if it fails a second time its a real issue. 1039 */ 1040 if (e1000_validate_nvm_checksum(hw) < 0) { 1041 device_printf(dev, 1042 "The EEPROM Checksum Is Not Valid\n"); 1043 error = EIO; 1044 goto err_late; 1045 } 1046 } 1047 1048 /* Copy the permanent MAC address out of the EEPROM */ 1049 if (e1000_read_mac_addr(hw) < 0) { 1050 device_printf(dev, "EEPROM read error while reading MAC" 1051 " address\n"); 1052 error = EIO; 1053 goto err_late; 1054 } 1055 1056 if (!em_is_valid_ether_addr(hw->mac.addr)) { 1057 device_printf(dev, "Invalid MAC address\n"); 1058 error = EIO; 1059 goto err_late; 1060 } 1061 1062 /* Disable ULP support */ 1063 e1000_disable_ulp_lpt_lp(hw, TRUE); 1064 1065 /* 1066 * Get Wake-on-Lan and Management info for later use 1067 */ 1068 em_get_wakeup(ctx); 1069 1070 /* Enable only WOL MAGIC by default */ 1071 scctx->isc_capenable &= ~IFCAP_WOL; 1072 if (adapter->wol != 0) 1073 scctx->isc_capenable |= IFCAP_WOL_MAGIC; 1074 1075 iflib_set_mac(ctx, hw->mac.addr); 1076 1077 return (0); 1078 1079 err_late: 1080 em_release_hw_control(adapter); 1081 err_pci: 1082 em_free_pci_resources(ctx); 1083 free(adapter->mta, M_DEVBUF); 1084 1085 return (error); 1086 } 1087 1088 static int 1089 em_if_attach_post(if_ctx_t ctx) 1090 { 1091 struct adapter *adapter = iflib_get_softc(ctx); 1092 struct e1000_hw *hw = &adapter->hw; 1093 int error = 0; 1094 1095 /* Setup OS specific network interface */ 1096 error = em_setup_interface(ctx); 1097 if (error != 0) { 1098 goto err_late; 1099 } 1100 1101 em_reset(ctx); 1102 1103 /* Initialize statistics */ 1104 em_update_stats_counters(adapter); 1105 hw->mac.get_link_status = 1; 1106 em_if_update_admin_status(ctx); 1107 em_add_hw_stats(adapter); 1108 1109 /* Non-AMT based hardware can now take control from firmware */ 1110 if (adapter->has_manage && !adapter->has_amt) 1111 em_get_hw_control(adapter); 1112 1113 INIT_DEBUGOUT("em_if_attach_post: end"); 1114 1115 return (error); 1116 1117 err_late: 1118 em_release_hw_control(adapter); 1119 em_free_pci_resources(ctx); 1120 em_if_queues_free(ctx); 1121 free(adapter->mta, M_DEVBUF); 1122 1123 return (error); 1124 } 1125 1126 /********************************************************************* 1127 * Device removal routine 1128 * 1129 * The detach entry point is called when the driver is being removed. 1130 * This routine stops the adapter and deallocates all the resources 1131 * that were allocated for driver operation. 1132 * 1133 * return 0 on success, positive on failure 1134 *********************************************************************/ 1135 static int 1136 em_if_detach(if_ctx_t ctx) 1137 { 1138 struct adapter *adapter = iflib_get_softc(ctx); 1139 1140 INIT_DEBUGOUT("em_if_detach: begin"); 1141 1142 e1000_phy_hw_reset(&adapter->hw); 1143 1144 em_release_manageability(adapter); 1145 em_release_hw_control(adapter); 1146 em_free_pci_resources(ctx); 1147 1148 return (0); 1149 } 1150 1151 /********************************************************************* 1152 * 1153 * Shutdown entry point 1154 * 1155 **********************************************************************/ 1156 1157 static int 1158 em_if_shutdown(if_ctx_t ctx) 1159 { 1160 return em_if_suspend(ctx); 1161 } 1162 1163 /* 1164 * Suspend/resume device methods. 1165 */ 1166 static int 1167 em_if_suspend(if_ctx_t ctx) 1168 { 1169 struct adapter *adapter = iflib_get_softc(ctx); 1170 1171 em_release_manageability(adapter); 1172 em_release_hw_control(adapter); 1173 em_enable_wakeup(ctx); 1174 return (0); 1175 } 1176 1177 static int 1178 em_if_resume(if_ctx_t ctx) 1179 { 1180 struct adapter *adapter = iflib_get_softc(ctx); 1181 1182 if (adapter->hw.mac.type == e1000_pch2lan) 1183 e1000_resume_workarounds_pchlan(&adapter->hw); 1184 em_if_init(ctx); 1185 em_init_manageability(adapter); 1186 1187 return(0); 1188 } 1189 1190 static int 1191 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu) 1192 { 1193 int max_frame_size; 1194 struct adapter *adapter = iflib_get_softc(ctx); 1195 if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx); 1196 1197 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)"); 1198 1199 switch (adapter->hw.mac.type) { 1200 case e1000_82571: 1201 case e1000_82572: 1202 case e1000_ich9lan: 1203 case e1000_ich10lan: 1204 case e1000_pch2lan: 1205 case e1000_pch_lpt: 1206 case e1000_pch_spt: 1207 case e1000_pch_cnp: 1208 case e1000_82574: 1209 case e1000_82583: 1210 case e1000_80003es2lan: 1211 /* 9K Jumbo Frame size */ 1212 max_frame_size = 9234; 1213 break; 1214 case e1000_pchlan: 1215 max_frame_size = 4096; 1216 break; 1217 case e1000_82542: 1218 case e1000_ich8lan: 1219 /* Adapters that do not support jumbo frames */ 1220 max_frame_size = ETHER_MAX_LEN; 1221 break; 1222 default: 1223 if (adapter->hw.mac.type >= igb_mac_min) 1224 max_frame_size = 9234; 1225 else /* lem */ 1226 max_frame_size = MAX_JUMBO_FRAME_SIZE; 1227 } 1228 if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) { 1229 return (EINVAL); 1230 } 1231 1232 scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size = 1233 mtu + ETHER_HDR_LEN + ETHER_CRC_LEN; 1234 return (0); 1235 } 1236 1237 /********************************************************************* 1238 * Init entry point 1239 * 1240 * This routine is used in two ways. It is used by the stack as 1241 * init entry point in network interface structure. It is also used 1242 * by the driver as a hw/sw initialization routine to get to a 1243 * consistent state. 1244 * 1245 **********************************************************************/ 1246 static void 1247 em_if_init(if_ctx_t ctx) 1248 { 1249 struct adapter *adapter = iflib_get_softc(ctx); 1250 if_softc_ctx_t scctx = adapter->shared; 1251 struct ifnet *ifp = iflib_get_ifp(ctx); 1252 struct em_tx_queue *tx_que; 1253 int i; 1254 1255 INIT_DEBUGOUT("em_if_init: begin"); 1256 1257 /* Get the latest mac address, User can use a LAA */ 1258 bcopy(if_getlladdr(ifp), adapter->hw.mac.addr, 1259 ETHER_ADDR_LEN); 1260 1261 /* Put the address into the Receive Address Array */ 1262 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); 1263 1264 /* 1265 * With the 82571 adapter, RAR[0] may be overwritten 1266 * when the other port is reset, we make a duplicate 1267 * in RAR[14] for that eventuality, this assures 1268 * the interface continues to function. 1269 */ 1270 if (adapter->hw.mac.type == e1000_82571) { 1271 e1000_set_laa_state_82571(&adapter->hw, TRUE); 1272 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 1273 E1000_RAR_ENTRIES - 1); 1274 } 1275 1276 1277 /* Initialize the hardware */ 1278 em_reset(ctx); 1279 em_if_update_admin_status(ctx); 1280 1281 for (i = 0, tx_que = adapter->tx_queues; i < adapter->tx_num_queues; i++, tx_que++) { 1282 struct tx_ring *txr = &tx_que->txr; 1283 1284 txr->tx_rs_cidx = txr->tx_rs_pidx; 1285 1286 /* Initialize the last processed descriptor to be the end of 1287 * the ring, rather than the start, so that we avoid an 1288 * off-by-one error when calculating how many descriptors are 1289 * done in the credits_update function. 1290 */ 1291 txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1; 1292 } 1293 1294 /* Setup VLAN support, basic and offload if available */ 1295 E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN); 1296 1297 /* Clear bad data from Rx FIFOs */ 1298 if (adapter->hw.mac.type >= igb_mac_min) 1299 e1000_rx_fifo_flush_82575(&adapter->hw); 1300 1301 /* Configure for OS presence */ 1302 em_init_manageability(adapter); 1303 1304 /* Prepare transmit descriptors and buffers */ 1305 em_initialize_transmit_unit(ctx); 1306 1307 /* Setup Multicast table */ 1308 em_if_multi_set(ctx); 1309 1310 adapter->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx); 1311 em_initialize_receive_unit(ctx); 1312 1313 /* Use real VLAN Filter support? */ 1314 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) { 1315 if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) 1316 /* Use real VLAN Filter support */ 1317 em_setup_vlan_hw_support(adapter); 1318 else { 1319 u32 ctrl; 1320 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL); 1321 ctrl |= E1000_CTRL_VME; 1322 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl); 1323 } 1324 } 1325 1326 /* Don't lose promiscuous settings */ 1327 em_if_set_promisc(ctx, IFF_PROMISC); 1328 e1000_clear_hw_cntrs_base_generic(&adapter->hw); 1329 1330 /* MSI-X configuration for 82574 */ 1331 if (adapter->hw.mac.type == e1000_82574) { 1332 int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); 1333 1334 tmp |= E1000_CTRL_EXT_PBA_CLR; 1335 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp); 1336 /* Set the IVAR - interrupt vector routing. */ 1337 E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars); 1338 } else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */ 1339 igb_configure_queues(adapter); 1340 1341 /* this clears any pending interrupts */ 1342 E1000_READ_REG(&adapter->hw, E1000_ICR); 1343 E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC); 1344 1345 /* AMT based hardware can now take control from firmware */ 1346 if (adapter->has_manage && adapter->has_amt) 1347 em_get_hw_control(adapter); 1348 1349 /* Set Energy Efficient Ethernet */ 1350 if (adapter->hw.mac.type >= igb_mac_min && 1351 adapter->hw.phy.media_type == e1000_media_type_copper) { 1352 if (adapter->hw.mac.type == e1000_i354) 1353 e1000_set_eee_i354(&adapter->hw, TRUE, TRUE); 1354 else 1355 e1000_set_eee_i350(&adapter->hw, TRUE, TRUE); 1356 } 1357 } 1358 1359 /********************************************************************* 1360 * 1361 * Fast Legacy/MSI Combined Interrupt Service routine 1362 * 1363 *********************************************************************/ 1364 int 1365 em_intr(void *arg) 1366 { 1367 struct adapter *adapter = arg; 1368 if_ctx_t ctx = adapter->ctx; 1369 u32 reg_icr; 1370 1371 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR); 1372 1373 /* Hot eject? */ 1374 if (reg_icr == 0xffffffff) 1375 return FILTER_STRAY; 1376 1377 /* Definitely not our interrupt. */ 1378 if (reg_icr == 0x0) 1379 return FILTER_STRAY; 1380 1381 /* 1382 * Starting with the 82571 chip, bit 31 should be used to 1383 * determine whether the interrupt belongs to us. 1384 */ 1385 if (adapter->hw.mac.type >= e1000_82571 && 1386 (reg_icr & E1000_ICR_INT_ASSERTED) == 0) 1387 return FILTER_STRAY; 1388 1389 /* 1390 * Only MSI-X interrupts have one-shot behavior by taking advantage 1391 * of the EIAC register. Thus, explicitly disable interrupts. This 1392 * also works around the MSI message reordering errata on certain 1393 * systems. 1394 */ 1395 IFDI_INTR_DISABLE(ctx); 1396 1397 /* Link status change */ 1398 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) 1399 em_handle_link(ctx); 1400 1401 if (reg_icr & E1000_ICR_RXO) 1402 adapter->rx_overruns++; 1403 1404 return (FILTER_SCHEDULE_THREAD); 1405 } 1406 1407 static int 1408 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid) 1409 { 1410 struct adapter *adapter = iflib_get_softc(ctx); 1411 struct em_rx_queue *rxq = &adapter->rx_queues[rxqid]; 1412 1413 E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims); 1414 return (0); 1415 } 1416 1417 static int 1418 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid) 1419 { 1420 struct adapter *adapter = iflib_get_softc(ctx); 1421 struct em_tx_queue *txq = &adapter->tx_queues[txqid]; 1422 1423 E1000_WRITE_REG(&adapter->hw, E1000_IMS, txq->eims); 1424 return (0); 1425 } 1426 1427 static int 1428 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid) 1429 { 1430 struct adapter *adapter = iflib_get_softc(ctx); 1431 struct em_rx_queue *rxq = &adapter->rx_queues[rxqid]; 1432 1433 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims); 1434 return (0); 1435 } 1436 1437 static int 1438 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid) 1439 { 1440 struct adapter *adapter = iflib_get_softc(ctx); 1441 struct em_tx_queue *txq = &adapter->tx_queues[txqid]; 1442 1443 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txq->eims); 1444 return (0); 1445 } 1446 1447 /********************************************************************* 1448 * 1449 * MSI-X RX Interrupt Service routine 1450 * 1451 **********************************************************************/ 1452 static int 1453 em_msix_que(void *arg) 1454 { 1455 struct em_rx_queue *que = arg; 1456 1457 ++que->irqs; 1458 1459 return (FILTER_SCHEDULE_THREAD); 1460 } 1461 1462 /********************************************************************* 1463 * 1464 * MSI-X Link Fast Interrupt Service routine 1465 * 1466 **********************************************************************/ 1467 static int 1468 em_msix_link(void *arg) 1469 { 1470 struct adapter *adapter = arg; 1471 u32 reg_icr; 1472 1473 ++adapter->link_irq; 1474 MPASS(adapter->hw.back != NULL); 1475 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR); 1476 1477 if (reg_icr & E1000_ICR_RXO) 1478 adapter->rx_overruns++; 1479 1480 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 1481 em_handle_link(adapter->ctx); 1482 } else if (adapter->hw.mac.type == e1000_82574) { 1483 /* Only re-arm 82574 if em_if_update_admin_status() won't. */ 1484 E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK | 1485 E1000_IMS_LSC); 1486 } 1487 1488 if (adapter->hw.mac.type == e1000_82574) { 1489 /* 1490 * Because we must read the ICR for this interrupt it may 1491 * clear other causes using autoclear, for this reason we 1492 * simply create a soft interrupt for all these vectors. 1493 */ 1494 if (reg_icr) 1495 E1000_WRITE_REG(&adapter->hw, E1000_ICS, adapter->ims); 1496 } else { 1497 /* Re-arm unconditionally */ 1498 E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC); 1499 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask); 1500 } 1501 1502 return (FILTER_HANDLED); 1503 } 1504 1505 static void 1506 em_handle_link(void *context) 1507 { 1508 if_ctx_t ctx = context; 1509 struct adapter *adapter = iflib_get_softc(ctx); 1510 1511 adapter->hw.mac.get_link_status = 1; 1512 iflib_admin_intr_deferred(ctx); 1513 } 1514 1515 /********************************************************************* 1516 * 1517 * Media Ioctl callback 1518 * 1519 * This routine is called whenever the user queries the status of 1520 * the interface using ifconfig. 1521 * 1522 **********************************************************************/ 1523 static void 1524 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr) 1525 { 1526 struct adapter *adapter = iflib_get_softc(ctx); 1527 u_char fiber_type = IFM_1000_SX; 1528 1529 INIT_DEBUGOUT("em_if_media_status: begin"); 1530 1531 iflib_admin_intr_deferred(ctx); 1532 1533 ifmr->ifm_status = IFM_AVALID; 1534 ifmr->ifm_active = IFM_ETHER; 1535 1536 if (!adapter->link_active) { 1537 return; 1538 } 1539 1540 ifmr->ifm_status |= IFM_ACTIVE; 1541 1542 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || 1543 (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) { 1544 if (adapter->hw.mac.type == e1000_82545) 1545 fiber_type = IFM_1000_LX; 1546 ifmr->ifm_active |= fiber_type | IFM_FDX; 1547 } else { 1548 switch (adapter->link_speed) { 1549 case 10: 1550 ifmr->ifm_active |= IFM_10_T; 1551 break; 1552 case 100: 1553 ifmr->ifm_active |= IFM_100_TX; 1554 break; 1555 case 1000: 1556 ifmr->ifm_active |= IFM_1000_T; 1557 break; 1558 } 1559 if (adapter->link_duplex == FULL_DUPLEX) 1560 ifmr->ifm_active |= IFM_FDX; 1561 else 1562 ifmr->ifm_active |= IFM_HDX; 1563 } 1564 } 1565 1566 /********************************************************************* 1567 * 1568 * Media Ioctl callback 1569 * 1570 * This routine is called when the user changes speed/duplex using 1571 * media/mediopt option with ifconfig. 1572 * 1573 **********************************************************************/ 1574 static int 1575 em_if_media_change(if_ctx_t ctx) 1576 { 1577 struct adapter *adapter = iflib_get_softc(ctx); 1578 struct ifmedia *ifm = iflib_get_media(ctx); 1579 1580 INIT_DEBUGOUT("em_if_media_change: begin"); 1581 1582 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 1583 return (EINVAL); 1584 1585 switch (IFM_SUBTYPE(ifm->ifm_media)) { 1586 case IFM_AUTO: 1587 adapter->hw.mac.autoneg = DO_AUTO_NEG; 1588 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; 1589 break; 1590 case IFM_1000_LX: 1591 case IFM_1000_SX: 1592 case IFM_1000_T: 1593 adapter->hw.mac.autoneg = DO_AUTO_NEG; 1594 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 1595 break; 1596 case IFM_100_TX: 1597 adapter->hw.mac.autoneg = FALSE; 1598 adapter->hw.phy.autoneg_advertised = 0; 1599 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) 1600 adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL; 1601 else 1602 adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF; 1603 break; 1604 case IFM_10_T: 1605 adapter->hw.mac.autoneg = FALSE; 1606 adapter->hw.phy.autoneg_advertised = 0; 1607 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) 1608 adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL; 1609 else 1610 adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF; 1611 break; 1612 default: 1613 device_printf(adapter->dev, "Unsupported media type\n"); 1614 } 1615 1616 em_if_init(ctx); 1617 1618 return (0); 1619 } 1620 1621 static int 1622 em_if_set_promisc(if_ctx_t ctx, int flags) 1623 { 1624 struct adapter *adapter = iflib_get_softc(ctx); 1625 u32 reg_rctl; 1626 1627 em_disable_promisc(ctx); 1628 1629 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1630 1631 if (flags & IFF_PROMISC) { 1632 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 1633 /* Turn this on if you want to see bad packets */ 1634 if (em_debug_sbp) 1635 reg_rctl |= E1000_RCTL_SBP; 1636 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1637 } else if (flags & IFF_ALLMULTI) { 1638 reg_rctl |= E1000_RCTL_MPE; 1639 reg_rctl &= ~E1000_RCTL_UPE; 1640 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1641 } 1642 return (0); 1643 } 1644 1645 static void 1646 em_disable_promisc(if_ctx_t ctx) 1647 { 1648 struct adapter *adapter = iflib_get_softc(ctx); 1649 struct ifnet *ifp = iflib_get_ifp(ctx); 1650 u32 reg_rctl; 1651 int mcnt = 0; 1652 1653 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1654 reg_rctl &= (~E1000_RCTL_UPE); 1655 if (if_getflags(ifp) & IFF_ALLMULTI) 1656 mcnt = MAX_NUM_MULTICAST_ADDRESSES; 1657 else 1658 mcnt = if_llmaddr_count(ifp); 1659 /* Don't disable if in MAX groups */ 1660 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES) 1661 reg_rctl &= (~E1000_RCTL_MPE); 1662 reg_rctl &= (~E1000_RCTL_SBP); 1663 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1664 } 1665 1666 1667 static u_int 1668 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 1669 { 1670 u8 *mta = arg; 1671 1672 if (cnt == MAX_NUM_MULTICAST_ADDRESSES) 1673 return (1); 1674 1675 bcopy(LLADDR(sdl), &mta[cnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN); 1676 1677 return (1); 1678 } 1679 1680 /********************************************************************* 1681 * Multicast Update 1682 * 1683 * This routine is called whenever multicast address list is updated. 1684 * 1685 **********************************************************************/ 1686 1687 static void 1688 em_if_multi_set(if_ctx_t ctx) 1689 { 1690 struct adapter *adapter = iflib_get_softc(ctx); 1691 struct ifnet *ifp = iflib_get_ifp(ctx); 1692 u32 reg_rctl = 0; 1693 u8 *mta; /* Multicast array memory */ 1694 int mcnt = 0; 1695 1696 IOCTL_DEBUGOUT("em_set_multi: begin"); 1697 1698 mta = adapter->mta; 1699 bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES); 1700 1701 if (adapter->hw.mac.type == e1000_82542 && 1702 adapter->hw.revision_id == E1000_REVISION_2) { 1703 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1704 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) 1705 e1000_pci_clear_mwi(&adapter->hw); 1706 reg_rctl |= E1000_RCTL_RST; 1707 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1708 msec_delay(5); 1709 } 1710 1711 mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta); 1712 1713 if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) { 1714 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1715 reg_rctl |= E1000_RCTL_MPE; 1716 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1717 } else 1718 e1000_update_mc_addr_list(&adapter->hw, mta, mcnt); 1719 1720 if (adapter->hw.mac.type == e1000_82542 && 1721 adapter->hw.revision_id == E1000_REVISION_2) { 1722 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1723 reg_rctl &= ~E1000_RCTL_RST; 1724 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1725 msec_delay(5); 1726 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) 1727 e1000_pci_set_mwi(&adapter->hw); 1728 } 1729 } 1730 1731 /********************************************************************* 1732 * Timer routine 1733 * 1734 * This routine schedules em_if_update_admin_status() to check for 1735 * link status and to gather statistics as well as to perform some 1736 * controller-specific hardware patting. 1737 * 1738 **********************************************************************/ 1739 static void 1740 em_if_timer(if_ctx_t ctx, uint16_t qid) 1741 { 1742 1743 if (qid != 0) 1744 return; 1745 1746 iflib_admin_intr_deferred(ctx); 1747 } 1748 1749 static void 1750 em_if_update_admin_status(if_ctx_t ctx) 1751 { 1752 struct adapter *adapter = iflib_get_softc(ctx); 1753 struct e1000_hw *hw = &adapter->hw; 1754 device_t dev = iflib_get_dev(ctx); 1755 u32 link_check, thstat, ctrl; 1756 1757 link_check = thstat = ctrl = 0; 1758 /* Get the cached link value or read phy for real */ 1759 switch (hw->phy.media_type) { 1760 case e1000_media_type_copper: 1761 if (hw->mac.get_link_status) { 1762 if (hw->mac.type == e1000_pch_spt) 1763 msec_delay(50); 1764 /* Do the work to read phy */ 1765 e1000_check_for_link(hw); 1766 link_check = !hw->mac.get_link_status; 1767 if (link_check) /* ESB2 fix */ 1768 e1000_cfg_on_link_up(hw); 1769 } else { 1770 link_check = TRUE; 1771 } 1772 break; 1773 case e1000_media_type_fiber: 1774 e1000_check_for_link(hw); 1775 link_check = (E1000_READ_REG(hw, E1000_STATUS) & 1776 E1000_STATUS_LU); 1777 break; 1778 case e1000_media_type_internal_serdes: 1779 e1000_check_for_link(hw); 1780 link_check = adapter->hw.mac.serdes_has_link; 1781 break; 1782 /* VF device is type_unknown */ 1783 case e1000_media_type_unknown: 1784 e1000_check_for_link(hw); 1785 link_check = !hw->mac.get_link_status; 1786 /* FALLTHROUGH */ 1787 default: 1788 break; 1789 } 1790 1791 /* Check for thermal downshift or shutdown */ 1792 if (hw->mac.type == e1000_i350) { 1793 thstat = E1000_READ_REG(hw, E1000_THSTAT); 1794 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT); 1795 } 1796 1797 /* Now check for a transition */ 1798 if (link_check && (adapter->link_active == 0)) { 1799 e1000_get_speed_and_duplex(hw, &adapter->link_speed, 1800 &adapter->link_duplex); 1801 /* Check if we must disable SPEED_MODE bit on PCI-E */ 1802 if ((adapter->link_speed != SPEED_1000) && 1803 ((hw->mac.type == e1000_82571) || 1804 (hw->mac.type == e1000_82572))) { 1805 int tarc0; 1806 tarc0 = E1000_READ_REG(hw, E1000_TARC(0)); 1807 tarc0 &= ~TARC_SPEED_MODE_BIT; 1808 E1000_WRITE_REG(hw, E1000_TARC(0), tarc0); 1809 } 1810 if (bootverbose) 1811 device_printf(dev, "Link is up %d Mbps %s\n", 1812 adapter->link_speed, 1813 ((adapter->link_duplex == FULL_DUPLEX) ? 1814 "Full Duplex" : "Half Duplex")); 1815 adapter->link_active = 1; 1816 adapter->smartspeed = 0; 1817 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) == 1818 E1000_CTRL_EXT_LINK_MODE_GMII && 1819 (thstat & E1000_THSTAT_LINK_THROTTLE)) 1820 device_printf(dev, "Link: thermal downshift\n"); 1821 /* Delay Link Up for Phy update */ 1822 if (((hw->mac.type == e1000_i210) || 1823 (hw->mac.type == e1000_i211)) && 1824 (hw->phy.id == I210_I_PHY_ID)) 1825 msec_delay(I210_LINK_DELAY); 1826 /* Reset if the media type changed. */ 1827 if ((hw->dev_spec._82575.media_changed) && 1828 (adapter->hw.mac.type >= igb_mac_min)) { 1829 hw->dev_spec._82575.media_changed = false; 1830 adapter->flags |= IGB_MEDIA_RESET; 1831 em_reset(ctx); 1832 } 1833 iflib_link_state_change(ctx, LINK_STATE_UP, 1834 IF_Mbps(adapter->link_speed)); 1835 } else if (!link_check && (adapter->link_active == 1)) { 1836 adapter->link_speed = 0; 1837 adapter->link_duplex = 0; 1838 adapter->link_active = 0; 1839 iflib_link_state_change(ctx, LINK_STATE_DOWN, 0); 1840 } 1841 em_update_stats_counters(adapter); 1842 1843 /* Reset LAA into RAR[0] on 82571 */ 1844 if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw)) 1845 e1000_rar_set(hw, hw->mac.addr, 0); 1846 1847 if (hw->mac.type < em_mac_min) 1848 lem_smartspeed(adapter); 1849 else if (hw->mac.type == e1000_82574 && 1850 adapter->intr_type == IFLIB_INTR_MSIX) 1851 E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK | 1852 E1000_IMS_LSC); 1853 } 1854 1855 static void 1856 em_if_watchdog_reset(if_ctx_t ctx) 1857 { 1858 struct adapter *adapter = iflib_get_softc(ctx); 1859 1860 /* 1861 * Just count the event; iflib(4) will already trigger a 1862 * sufficient reset of the controller. 1863 */ 1864 adapter->watchdog_events++; 1865 } 1866 1867 /********************************************************************* 1868 * 1869 * This routine disables all traffic on the adapter by issuing a 1870 * global reset on the MAC. 1871 * 1872 **********************************************************************/ 1873 static void 1874 em_if_stop(if_ctx_t ctx) 1875 { 1876 struct adapter *adapter = iflib_get_softc(ctx); 1877 1878 INIT_DEBUGOUT("em_if_stop: begin"); 1879 1880 e1000_reset_hw(&adapter->hw); 1881 if (adapter->hw.mac.type >= e1000_82544) 1882 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0); 1883 1884 e1000_led_off(&adapter->hw); 1885 e1000_cleanup_led(&adapter->hw); 1886 } 1887 1888 /********************************************************************* 1889 * 1890 * Determine hardware revision. 1891 * 1892 **********************************************************************/ 1893 static void 1894 em_identify_hardware(if_ctx_t ctx) 1895 { 1896 device_t dev = iflib_get_dev(ctx); 1897 struct adapter *adapter = iflib_get_softc(ctx); 1898 1899 /* Make sure our PCI config space has the necessary stuff set */ 1900 adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2); 1901 1902 /* Save off the information about this board */ 1903 adapter->hw.vendor_id = pci_get_vendor(dev); 1904 adapter->hw.device_id = pci_get_device(dev); 1905 adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1); 1906 adapter->hw.subsystem_vendor_id = 1907 pci_read_config(dev, PCIR_SUBVEND_0, 2); 1908 adapter->hw.subsystem_device_id = 1909 pci_read_config(dev, PCIR_SUBDEV_0, 2); 1910 1911 /* Do Shared Code Init and Setup */ 1912 if (e1000_set_mac_type(&adapter->hw)) { 1913 device_printf(dev, "Setup init failure\n"); 1914 return; 1915 } 1916 } 1917 1918 static int 1919 em_allocate_pci_resources(if_ctx_t ctx) 1920 { 1921 struct adapter *adapter = iflib_get_softc(ctx); 1922 device_t dev = iflib_get_dev(ctx); 1923 int rid, val; 1924 1925 rid = PCIR_BAR(0); 1926 adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 1927 &rid, RF_ACTIVE); 1928 if (adapter->memory == NULL) { 1929 device_printf(dev, "Unable to allocate bus resource: memory\n"); 1930 return (ENXIO); 1931 } 1932 adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->memory); 1933 adapter->osdep.mem_bus_space_handle = 1934 rman_get_bushandle(adapter->memory); 1935 adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle; 1936 1937 /* Only older adapters use IO mapping */ 1938 if (adapter->hw.mac.type < em_mac_min && 1939 adapter->hw.mac.type > e1000_82543) { 1940 /* Figure our where our IO BAR is ? */ 1941 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) { 1942 val = pci_read_config(dev, rid, 4); 1943 if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) { 1944 break; 1945 } 1946 rid += 4; 1947 /* check for 64bit BAR */ 1948 if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT) 1949 rid += 4; 1950 } 1951 if (rid >= PCIR_CIS) { 1952 device_printf(dev, "Unable to locate IO BAR\n"); 1953 return (ENXIO); 1954 } 1955 adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT, 1956 &rid, RF_ACTIVE); 1957 if (adapter->ioport == NULL) { 1958 device_printf(dev, "Unable to allocate bus resource: " 1959 "ioport\n"); 1960 return (ENXIO); 1961 } 1962 adapter->hw.io_base = 0; 1963 adapter->osdep.io_bus_space_tag = 1964 rman_get_bustag(adapter->ioport); 1965 adapter->osdep.io_bus_space_handle = 1966 rman_get_bushandle(adapter->ioport); 1967 } 1968 1969 adapter->hw.back = &adapter->osdep; 1970 1971 return (0); 1972 } 1973 1974 /********************************************************************* 1975 * 1976 * Set up the MSI-X Interrupt handlers 1977 * 1978 **********************************************************************/ 1979 static int 1980 em_if_msix_intr_assign(if_ctx_t ctx, int msix) 1981 { 1982 struct adapter *adapter = iflib_get_softc(ctx); 1983 struct em_rx_queue *rx_que = adapter->rx_queues; 1984 struct em_tx_queue *tx_que = adapter->tx_queues; 1985 int error, rid, i, vector = 0, rx_vectors; 1986 char buf[16]; 1987 1988 /* First set up ring resources */ 1989 for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) { 1990 rid = vector + 1; 1991 snprintf(buf, sizeof(buf), "rxq%d", i); 1992 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf); 1993 if (error) { 1994 device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error); 1995 adapter->rx_num_queues = i + 1; 1996 goto fail; 1997 } 1998 1999 rx_que->msix = vector; 2000 2001 /* 2002 * Set the bit to enable interrupt 2003 * in E1000_IMS -- bits 20 and 21 2004 * are for RX0 and RX1, note this has 2005 * NOTHING to do with the MSI-X vector 2006 */ 2007 if (adapter->hw.mac.type == e1000_82574) { 2008 rx_que->eims = 1 << (20 + i); 2009 adapter->ims |= rx_que->eims; 2010 adapter->ivars |= (8 | rx_que->msix) << (i * 4); 2011 } else if (adapter->hw.mac.type == e1000_82575) 2012 rx_que->eims = E1000_EICR_TX_QUEUE0 << vector; 2013 else 2014 rx_que->eims = 1 << vector; 2015 } 2016 rx_vectors = vector; 2017 2018 vector = 0; 2019 for (i = 0; i < adapter->tx_num_queues; i++, tx_que++, vector++) { 2020 snprintf(buf, sizeof(buf), "txq%d", i); 2021 tx_que = &adapter->tx_queues[i]; 2022 iflib_softirq_alloc_generic(ctx, 2023 &adapter->rx_queues[i % adapter->rx_num_queues].que_irq, 2024 IFLIB_INTR_TX, tx_que, tx_que->me, buf); 2025 2026 tx_que->msix = (vector % adapter->rx_num_queues); 2027 2028 /* 2029 * Set the bit to enable interrupt 2030 * in E1000_IMS -- bits 22 and 23 2031 * are for TX0 and TX1, note this has 2032 * NOTHING to do with the MSI-X vector 2033 */ 2034 if (adapter->hw.mac.type == e1000_82574) { 2035 tx_que->eims = 1 << (22 + i); 2036 adapter->ims |= tx_que->eims; 2037 adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4)); 2038 } else if (adapter->hw.mac.type == e1000_82575) { 2039 tx_que->eims = E1000_EICR_TX_QUEUE0 << i; 2040 } else { 2041 tx_que->eims = 1 << i; 2042 } 2043 } 2044 2045 /* Link interrupt */ 2046 rid = rx_vectors + 1; 2047 error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq"); 2048 2049 if (error) { 2050 device_printf(iflib_get_dev(ctx), "Failed to register admin handler"); 2051 goto fail; 2052 } 2053 adapter->linkvec = rx_vectors; 2054 if (adapter->hw.mac.type < igb_mac_min) { 2055 adapter->ivars |= (8 | rx_vectors) << 16; 2056 adapter->ivars |= 0x80000000; 2057 } 2058 return (0); 2059 fail: 2060 iflib_irq_free(ctx, &adapter->irq); 2061 rx_que = adapter->rx_queues; 2062 for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++) 2063 iflib_irq_free(ctx, &rx_que->que_irq); 2064 return (error); 2065 } 2066 2067 static void 2068 igb_configure_queues(struct adapter *adapter) 2069 { 2070 struct e1000_hw *hw = &adapter->hw; 2071 struct em_rx_queue *rx_que; 2072 struct em_tx_queue *tx_que; 2073 u32 tmp, ivar = 0, newitr = 0; 2074 2075 /* First turn on RSS capability */ 2076 if (adapter->hw.mac.type != e1000_82575) 2077 E1000_WRITE_REG(hw, E1000_GPIE, 2078 E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME | 2079 E1000_GPIE_PBA | E1000_GPIE_NSICR); 2080 2081 /* Turn on MSI-X */ 2082 switch (adapter->hw.mac.type) { 2083 case e1000_82580: 2084 case e1000_i350: 2085 case e1000_i354: 2086 case e1000_i210: 2087 case e1000_i211: 2088 case e1000_vfadapt: 2089 case e1000_vfadapt_i350: 2090 /* RX entries */ 2091 for (int i = 0; i < adapter->rx_num_queues; i++) { 2092 u32 index = i >> 1; 2093 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2094 rx_que = &adapter->rx_queues[i]; 2095 if (i & 1) { 2096 ivar &= 0xFF00FFFF; 2097 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16; 2098 } else { 2099 ivar &= 0xFFFFFF00; 2100 ivar |= rx_que->msix | E1000_IVAR_VALID; 2101 } 2102 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2103 } 2104 /* TX entries */ 2105 for (int i = 0; i < adapter->tx_num_queues; i++) { 2106 u32 index = i >> 1; 2107 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2108 tx_que = &adapter->tx_queues[i]; 2109 if (i & 1) { 2110 ivar &= 0x00FFFFFF; 2111 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24; 2112 } else { 2113 ivar &= 0xFFFF00FF; 2114 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8; 2115 } 2116 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2117 adapter->que_mask |= tx_que->eims; 2118 } 2119 2120 /* And for the link interrupt */ 2121 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8; 2122 adapter->link_mask = 1 << adapter->linkvec; 2123 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); 2124 break; 2125 case e1000_82576: 2126 /* RX entries */ 2127 for (int i = 0; i < adapter->rx_num_queues; i++) { 2128 u32 index = i & 0x7; /* Each IVAR has two entries */ 2129 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2130 rx_que = &adapter->rx_queues[i]; 2131 if (i < 8) { 2132 ivar &= 0xFFFFFF00; 2133 ivar |= rx_que->msix | E1000_IVAR_VALID; 2134 } else { 2135 ivar &= 0xFF00FFFF; 2136 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16; 2137 } 2138 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2139 adapter->que_mask |= rx_que->eims; 2140 } 2141 /* TX entries */ 2142 for (int i = 0; i < adapter->tx_num_queues; i++) { 2143 u32 index = i & 0x7; /* Each IVAR has two entries */ 2144 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2145 tx_que = &adapter->tx_queues[i]; 2146 if (i < 8) { 2147 ivar &= 0xFFFF00FF; 2148 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8; 2149 } else { 2150 ivar &= 0x00FFFFFF; 2151 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24; 2152 } 2153 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2154 adapter->que_mask |= tx_que->eims; 2155 } 2156 2157 /* And for the link interrupt */ 2158 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8; 2159 adapter->link_mask = 1 << adapter->linkvec; 2160 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); 2161 break; 2162 2163 case e1000_82575: 2164 /* enable MSI-X support*/ 2165 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT); 2166 tmp |= E1000_CTRL_EXT_PBA_CLR; 2167 /* Auto-Mask interrupts upon ICR read. */ 2168 tmp |= E1000_CTRL_EXT_EIAME; 2169 tmp |= E1000_CTRL_EXT_IRCA; 2170 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp); 2171 2172 /* Queues */ 2173 for (int i = 0; i < adapter->rx_num_queues; i++) { 2174 rx_que = &adapter->rx_queues[i]; 2175 tmp = E1000_EICR_RX_QUEUE0 << i; 2176 tmp |= E1000_EICR_TX_QUEUE0 << i; 2177 rx_que->eims = tmp; 2178 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 2179 i, rx_que->eims); 2180 adapter->que_mask |= rx_que->eims; 2181 } 2182 2183 /* Link */ 2184 E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec), 2185 E1000_EIMS_OTHER); 2186 adapter->link_mask |= E1000_EIMS_OTHER; 2187 default: 2188 break; 2189 } 2190 2191 /* Set the starting interrupt rate */ 2192 if (em_max_interrupt_rate > 0) 2193 newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC; 2194 2195 if (hw->mac.type == e1000_82575) 2196 newitr |= newitr << 16; 2197 else 2198 newitr |= E1000_EITR_CNT_IGNR; 2199 2200 for (int i = 0; i < adapter->rx_num_queues; i++) { 2201 rx_que = &adapter->rx_queues[i]; 2202 E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr); 2203 } 2204 2205 return; 2206 } 2207 2208 static void 2209 em_free_pci_resources(if_ctx_t ctx) 2210 { 2211 struct adapter *adapter = iflib_get_softc(ctx); 2212 struct em_rx_queue *que = adapter->rx_queues; 2213 device_t dev = iflib_get_dev(ctx); 2214 2215 /* Release all MSI-X queue resources */ 2216 if (adapter->intr_type == IFLIB_INTR_MSIX) 2217 iflib_irq_free(ctx, &adapter->irq); 2218 2219 for (int i = 0; i < adapter->rx_num_queues; i++, que++) { 2220 iflib_irq_free(ctx, &que->que_irq); 2221 } 2222 2223 if (adapter->memory != NULL) { 2224 bus_release_resource(dev, SYS_RES_MEMORY, 2225 rman_get_rid(adapter->memory), adapter->memory); 2226 adapter->memory = NULL; 2227 } 2228 2229 if (adapter->flash != NULL) { 2230 bus_release_resource(dev, SYS_RES_MEMORY, 2231 rman_get_rid(adapter->flash), adapter->flash); 2232 adapter->flash = NULL; 2233 } 2234 2235 if (adapter->ioport != NULL) { 2236 bus_release_resource(dev, SYS_RES_IOPORT, 2237 rman_get_rid(adapter->ioport), adapter->ioport); 2238 adapter->ioport = NULL; 2239 } 2240 } 2241 2242 /* Set up MSI or MSI-X */ 2243 static int 2244 em_setup_msix(if_ctx_t ctx) 2245 { 2246 struct adapter *adapter = iflib_get_softc(ctx); 2247 2248 if (adapter->hw.mac.type == e1000_82574) { 2249 em_enable_vectors_82574(ctx); 2250 } 2251 return (0); 2252 } 2253 2254 /********************************************************************* 2255 * 2256 * Workaround for SmartSpeed on 82541 and 82547 controllers 2257 * 2258 **********************************************************************/ 2259 static void 2260 lem_smartspeed(struct adapter *adapter) 2261 { 2262 u16 phy_tmp; 2263 2264 if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) || 2265 adapter->hw.mac.autoneg == 0 || 2266 (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0) 2267 return; 2268 2269 if (adapter->smartspeed == 0) { 2270 /* If Master/Slave config fault is asserted twice, 2271 * we assume back-to-back */ 2272 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp); 2273 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT)) 2274 return; 2275 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp); 2276 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) { 2277 e1000_read_phy_reg(&adapter->hw, 2278 PHY_1000T_CTRL, &phy_tmp); 2279 if(phy_tmp & CR_1000T_MS_ENABLE) { 2280 phy_tmp &= ~CR_1000T_MS_ENABLE; 2281 e1000_write_phy_reg(&adapter->hw, 2282 PHY_1000T_CTRL, phy_tmp); 2283 adapter->smartspeed++; 2284 if(adapter->hw.mac.autoneg && 2285 !e1000_copper_link_autoneg(&adapter->hw) && 2286 !e1000_read_phy_reg(&adapter->hw, 2287 PHY_CONTROL, &phy_tmp)) { 2288 phy_tmp |= (MII_CR_AUTO_NEG_EN | 2289 MII_CR_RESTART_AUTO_NEG); 2290 e1000_write_phy_reg(&adapter->hw, 2291 PHY_CONTROL, phy_tmp); 2292 } 2293 } 2294 } 2295 return; 2296 } else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) { 2297 /* If still no link, perhaps using 2/3 pair cable */ 2298 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp); 2299 phy_tmp |= CR_1000T_MS_ENABLE; 2300 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp); 2301 if(adapter->hw.mac.autoneg && 2302 !e1000_copper_link_autoneg(&adapter->hw) && 2303 !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) { 2304 phy_tmp |= (MII_CR_AUTO_NEG_EN | 2305 MII_CR_RESTART_AUTO_NEG); 2306 e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp); 2307 } 2308 } 2309 /* Restart process after EM_SMARTSPEED_MAX iterations */ 2310 if(adapter->smartspeed++ == EM_SMARTSPEED_MAX) 2311 adapter->smartspeed = 0; 2312 } 2313 2314 /********************************************************************* 2315 * 2316 * Initialize the DMA Coalescing feature 2317 * 2318 **********************************************************************/ 2319 static void 2320 igb_init_dmac(struct adapter *adapter, u32 pba) 2321 { 2322 device_t dev = adapter->dev; 2323 struct e1000_hw *hw = &adapter->hw; 2324 u32 dmac, reg = ~E1000_DMACR_DMAC_EN; 2325 u16 hwm; 2326 u16 max_frame_size; 2327 2328 if (hw->mac.type == e1000_i211) 2329 return; 2330 2331 max_frame_size = adapter->shared->isc_max_frame_size; 2332 if (hw->mac.type > e1000_82580) { 2333 2334 if (adapter->dmac == 0) { /* Disabling it */ 2335 E1000_WRITE_REG(hw, E1000_DMACR, reg); 2336 return; 2337 } else 2338 device_printf(dev, "DMA Coalescing enabled\n"); 2339 2340 /* Set starting threshold */ 2341 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0); 2342 2343 hwm = 64 * pba - max_frame_size / 16; 2344 if (hwm < 64 * (pba - 6)) 2345 hwm = 64 * (pba - 6); 2346 reg = E1000_READ_REG(hw, E1000_FCRTC); 2347 reg &= ~E1000_FCRTC_RTH_COAL_MASK; 2348 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) 2349 & E1000_FCRTC_RTH_COAL_MASK); 2350 E1000_WRITE_REG(hw, E1000_FCRTC, reg); 2351 2352 2353 dmac = pba - max_frame_size / 512; 2354 if (dmac < pba - 10) 2355 dmac = pba - 10; 2356 reg = E1000_READ_REG(hw, E1000_DMACR); 2357 reg &= ~E1000_DMACR_DMACTHR_MASK; 2358 reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT) 2359 & E1000_DMACR_DMACTHR_MASK); 2360 2361 /* transition to L0x or L1 if available..*/ 2362 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); 2363 2364 /* Check if status is 2.5Gb backplane connection 2365 * before configuration of watchdog timer, which is 2366 * in msec values in 12.8usec intervals 2367 * watchdog timer= msec values in 32usec intervals 2368 * for non 2.5Gb connection 2369 */ 2370 if (hw->mac.type == e1000_i354) { 2371 int status = E1000_READ_REG(hw, E1000_STATUS); 2372 if ((status & E1000_STATUS_2P5_SKU) && 2373 (!(status & E1000_STATUS_2P5_SKU_OVER))) 2374 reg |= ((adapter->dmac * 5) >> 6); 2375 else 2376 reg |= (adapter->dmac >> 5); 2377 } else { 2378 reg |= (adapter->dmac >> 5); 2379 } 2380 2381 E1000_WRITE_REG(hw, E1000_DMACR, reg); 2382 2383 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0); 2384 2385 /* Set the interval before transition */ 2386 reg = E1000_READ_REG(hw, E1000_DMCTLX); 2387 if (hw->mac.type == e1000_i350) 2388 reg |= IGB_DMCTLX_DCFLUSH_DIS; 2389 /* 2390 ** in 2.5Gb connection, TTLX unit is 0.4 usec 2391 ** which is 0x4*2 = 0xA. But delay is still 4 usec 2392 */ 2393 if (hw->mac.type == e1000_i354) { 2394 int status = E1000_READ_REG(hw, E1000_STATUS); 2395 if ((status & E1000_STATUS_2P5_SKU) && 2396 (!(status & E1000_STATUS_2P5_SKU_OVER))) 2397 reg |= 0xA; 2398 else 2399 reg |= 0x4; 2400 } else { 2401 reg |= 0x4; 2402 } 2403 2404 E1000_WRITE_REG(hw, E1000_DMCTLX, reg); 2405 2406 /* free space in tx packet buffer to wake from DMA coal */ 2407 E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE - 2408 (2 * max_frame_size)) >> 6); 2409 2410 /* make low power state decision controlled by DMA coal */ 2411 reg = E1000_READ_REG(hw, E1000_PCIEMISC); 2412 reg &= ~E1000_PCIEMISC_LX_DECISION; 2413 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg); 2414 2415 } else if (hw->mac.type == e1000_82580) { 2416 u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC); 2417 E1000_WRITE_REG(hw, E1000_PCIEMISC, 2418 reg & ~E1000_PCIEMISC_LX_DECISION); 2419 E1000_WRITE_REG(hw, E1000_DMACR, 0); 2420 } 2421 } 2422 2423 /********************************************************************* 2424 * 2425 * Initialize the hardware to a configuration as specified by the 2426 * adapter structure. 2427 * 2428 **********************************************************************/ 2429 static void 2430 em_reset(if_ctx_t ctx) 2431 { 2432 device_t dev = iflib_get_dev(ctx); 2433 struct adapter *adapter = iflib_get_softc(ctx); 2434 struct ifnet *ifp = iflib_get_ifp(ctx); 2435 struct e1000_hw *hw = &adapter->hw; 2436 u16 rx_buffer_size; 2437 u32 pba; 2438 2439 INIT_DEBUGOUT("em_reset: begin"); 2440 /* Let the firmware know the OS is in control */ 2441 em_get_hw_control(adapter); 2442 2443 /* Set up smart power down as default off on newer adapters. */ 2444 if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 || 2445 hw->mac.type == e1000_82572)) { 2446 u16 phy_tmp = 0; 2447 2448 /* Speed up time to link by disabling smart power down. */ 2449 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp); 2450 phy_tmp &= ~IGP02E1000_PM_SPD; 2451 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp); 2452 } 2453 2454 /* 2455 * Packet Buffer Allocation (PBA) 2456 * Writing PBA sets the receive portion of the buffer 2457 * the remainder is used for the transmit buffer. 2458 */ 2459 switch (hw->mac.type) { 2460 /* Total Packet Buffer on these is 48K */ 2461 case e1000_82571: 2462 case e1000_82572: 2463 case e1000_80003es2lan: 2464 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */ 2465 break; 2466 case e1000_82573: /* 82573: Total Packet Buffer is 32K */ 2467 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */ 2468 break; 2469 case e1000_82574: 2470 case e1000_82583: 2471 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */ 2472 break; 2473 case e1000_ich8lan: 2474 pba = E1000_PBA_8K; 2475 break; 2476 case e1000_ich9lan: 2477 case e1000_ich10lan: 2478 /* Boost Receive side for jumbo frames */ 2479 if (adapter->hw.mac.max_frame_size > 4096) 2480 pba = E1000_PBA_14K; 2481 else 2482 pba = E1000_PBA_10K; 2483 break; 2484 case e1000_pchlan: 2485 case e1000_pch2lan: 2486 case e1000_pch_lpt: 2487 case e1000_pch_spt: 2488 case e1000_pch_cnp: 2489 pba = E1000_PBA_26K; 2490 break; 2491 case e1000_82575: 2492 pba = E1000_PBA_32K; 2493 break; 2494 case e1000_82576: 2495 case e1000_vfadapt: 2496 pba = E1000_READ_REG(hw, E1000_RXPBS); 2497 pba &= E1000_RXPBS_SIZE_MASK_82576; 2498 break; 2499 case e1000_82580: 2500 case e1000_i350: 2501 case e1000_i354: 2502 case e1000_vfadapt_i350: 2503 pba = E1000_READ_REG(hw, E1000_RXPBS); 2504 pba = e1000_rxpbs_adjust_82580(pba); 2505 break; 2506 case e1000_i210: 2507 case e1000_i211: 2508 pba = E1000_PBA_34K; 2509 break; 2510 default: 2511 if (adapter->hw.mac.max_frame_size > 8192) 2512 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */ 2513 else 2514 pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */ 2515 } 2516 2517 /* Special needs in case of Jumbo frames */ 2518 if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) { 2519 u32 tx_space, min_tx, min_rx; 2520 pba = E1000_READ_REG(hw, E1000_PBA); 2521 tx_space = pba >> 16; 2522 pba &= 0xffff; 2523 min_tx = (adapter->hw.mac.max_frame_size + 2524 sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2; 2525 min_tx = roundup2(min_tx, 1024); 2526 min_tx >>= 10; 2527 min_rx = adapter->hw.mac.max_frame_size; 2528 min_rx = roundup2(min_rx, 1024); 2529 min_rx >>= 10; 2530 if (tx_space < min_tx && 2531 ((min_tx - tx_space) < pba)) { 2532 pba = pba - (min_tx - tx_space); 2533 /* 2534 * if short on rx space, rx wins 2535 * and must trump tx adjustment 2536 */ 2537 if (pba < min_rx) 2538 pba = min_rx; 2539 } 2540 E1000_WRITE_REG(hw, E1000_PBA, pba); 2541 } 2542 2543 if (hw->mac.type < igb_mac_min) 2544 E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba); 2545 2546 INIT_DEBUGOUT1("em_reset: pba=%dK",pba); 2547 2548 /* 2549 * These parameters control the automatic generation (Tx) and 2550 * response (Rx) to Ethernet PAUSE frames. 2551 * - High water mark should allow for at least two frames to be 2552 * received after sending an XOFF. 2553 * - Low water mark works best when it is very near the high water mark. 2554 * This allows the receiver to restart by sending XON when it has 2555 * drained a bit. Here we use an arbitrary value of 1500 which will 2556 * restart after one full frame is pulled from the buffer. There 2557 * could be several smaller frames in the buffer and if so they will 2558 * not trigger the XON until their total number reduces the buffer 2559 * by 1500. 2560 * - The pause time is fairly large at 1000 x 512ns = 512 usec. 2561 */ 2562 rx_buffer_size = (pba & 0xffff) << 10; 2563 hw->fc.high_water = rx_buffer_size - 2564 roundup2(adapter->hw.mac.max_frame_size, 1024); 2565 hw->fc.low_water = hw->fc.high_water - 1500; 2566 2567 if (adapter->fc) /* locally set flow control value? */ 2568 hw->fc.requested_mode = adapter->fc; 2569 else 2570 hw->fc.requested_mode = e1000_fc_full; 2571 2572 if (hw->mac.type == e1000_80003es2lan) 2573 hw->fc.pause_time = 0xFFFF; 2574 else 2575 hw->fc.pause_time = EM_FC_PAUSE_TIME; 2576 2577 hw->fc.send_xon = TRUE; 2578 2579 /* Device specific overrides/settings */ 2580 switch (hw->mac.type) { 2581 case e1000_pchlan: 2582 /* Workaround: no TX flow ctrl for PCH */ 2583 hw->fc.requested_mode = e1000_fc_rx_pause; 2584 hw->fc.pause_time = 0xFFFF; /* override */ 2585 if (if_getmtu(ifp) > ETHERMTU) { 2586 hw->fc.high_water = 0x3500; 2587 hw->fc.low_water = 0x1500; 2588 } else { 2589 hw->fc.high_water = 0x5000; 2590 hw->fc.low_water = 0x3000; 2591 } 2592 hw->fc.refresh_time = 0x1000; 2593 break; 2594 case e1000_pch2lan: 2595 case e1000_pch_lpt: 2596 case e1000_pch_spt: 2597 case e1000_pch_cnp: 2598 hw->fc.high_water = 0x5C20; 2599 hw->fc.low_water = 0x5048; 2600 hw->fc.pause_time = 0x0650; 2601 hw->fc.refresh_time = 0x0400; 2602 /* Jumbos need adjusted PBA */ 2603 if (if_getmtu(ifp) > ETHERMTU) 2604 E1000_WRITE_REG(hw, E1000_PBA, 12); 2605 else 2606 E1000_WRITE_REG(hw, E1000_PBA, 26); 2607 break; 2608 case e1000_82575: 2609 case e1000_82576: 2610 /* 8-byte granularity */ 2611 hw->fc.low_water = hw->fc.high_water - 8; 2612 break; 2613 case e1000_82580: 2614 case e1000_i350: 2615 case e1000_i354: 2616 case e1000_i210: 2617 case e1000_i211: 2618 case e1000_vfadapt: 2619 case e1000_vfadapt_i350: 2620 /* 16-byte granularity */ 2621 hw->fc.low_water = hw->fc.high_water - 16; 2622 break; 2623 case e1000_ich9lan: 2624 case e1000_ich10lan: 2625 if (if_getmtu(ifp) > ETHERMTU) { 2626 hw->fc.high_water = 0x2800; 2627 hw->fc.low_water = hw->fc.high_water - 8; 2628 break; 2629 } 2630 /* FALLTHROUGH */ 2631 default: 2632 if (hw->mac.type == e1000_80003es2lan) 2633 hw->fc.pause_time = 0xFFFF; 2634 break; 2635 } 2636 2637 /* Issue a global reset */ 2638 e1000_reset_hw(hw); 2639 if (adapter->hw.mac.type >= igb_mac_min) { 2640 E1000_WRITE_REG(hw, E1000_WUC, 0); 2641 } else { 2642 E1000_WRITE_REG(hw, E1000_WUFC, 0); 2643 em_disable_aspm(adapter); 2644 } 2645 if (adapter->flags & IGB_MEDIA_RESET) { 2646 e1000_setup_init_funcs(hw, TRUE); 2647 e1000_get_bus_info(hw); 2648 adapter->flags &= ~IGB_MEDIA_RESET; 2649 } 2650 /* and a re-init */ 2651 if (e1000_init_hw(hw) < 0) { 2652 device_printf(dev, "Hardware Initialization Failed\n"); 2653 return; 2654 } 2655 if (adapter->hw.mac.type >= igb_mac_min) 2656 igb_init_dmac(adapter, pba); 2657 2658 E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN); 2659 e1000_get_phy_info(hw); 2660 e1000_check_for_link(hw); 2661 } 2662 2663 /* 2664 * Initialise the RSS mapping for NICs that support multiple transmit/ 2665 * receive rings. 2666 */ 2667 2668 #define RSSKEYLEN 10 2669 static void 2670 em_initialize_rss_mapping(struct adapter *adapter) 2671 { 2672 uint8_t rss_key[4 * RSSKEYLEN]; 2673 uint32_t reta = 0; 2674 struct e1000_hw *hw = &adapter->hw; 2675 int i; 2676 2677 /* 2678 * Configure RSS key 2679 */ 2680 arc4rand(rss_key, sizeof(rss_key), 0); 2681 for (i = 0; i < RSSKEYLEN; ++i) { 2682 uint32_t rssrk = 0; 2683 2684 rssrk = EM_RSSRK_VAL(rss_key, i); 2685 E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk); 2686 } 2687 2688 /* 2689 * Configure RSS redirect table in following fashion: 2690 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)] 2691 */ 2692 for (i = 0; i < sizeof(reta); ++i) { 2693 uint32_t q; 2694 2695 q = (i % adapter->rx_num_queues) << 7; 2696 reta |= q << (8 * i); 2697 } 2698 2699 for (i = 0; i < 32; ++i) 2700 E1000_WRITE_REG(hw, E1000_RETA(i), reta); 2701 2702 E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q | 2703 E1000_MRQC_RSS_FIELD_IPV4_TCP | 2704 E1000_MRQC_RSS_FIELD_IPV4 | 2705 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX | 2706 E1000_MRQC_RSS_FIELD_IPV6_EX | 2707 E1000_MRQC_RSS_FIELD_IPV6); 2708 } 2709 2710 static void 2711 igb_initialize_rss_mapping(struct adapter *adapter) 2712 { 2713 struct e1000_hw *hw = &adapter->hw; 2714 int i; 2715 int queue_id; 2716 u32 reta; 2717 u32 rss_key[10], mrqc, shift = 0; 2718 2719 /* XXX? */ 2720 if (adapter->hw.mac.type == e1000_82575) 2721 shift = 6; 2722 2723 /* 2724 * The redirection table controls which destination 2725 * queue each bucket redirects traffic to. 2726 * Each DWORD represents four queues, with the LSB 2727 * being the first queue in the DWORD. 2728 * 2729 * This just allocates buckets to queues using round-robin 2730 * allocation. 2731 * 2732 * NOTE: It Just Happens to line up with the default 2733 * RSS allocation method. 2734 */ 2735 2736 /* Warning FM follows */ 2737 reta = 0; 2738 for (i = 0; i < 128; i++) { 2739 #ifdef RSS 2740 queue_id = rss_get_indirection_to_bucket(i); 2741 /* 2742 * If we have more queues than buckets, we'll 2743 * end up mapping buckets to a subset of the 2744 * queues. 2745 * 2746 * If we have more buckets than queues, we'll 2747 * end up instead assigning multiple buckets 2748 * to queues. 2749 * 2750 * Both are suboptimal, but we need to handle 2751 * the case so we don't go out of bounds 2752 * indexing arrays and such. 2753 */ 2754 queue_id = queue_id % adapter->rx_num_queues; 2755 #else 2756 queue_id = (i % adapter->rx_num_queues); 2757 #endif 2758 /* Adjust if required */ 2759 queue_id = queue_id << shift; 2760 2761 /* 2762 * The low 8 bits are for hash value (n+0); 2763 * The next 8 bits are for hash value (n+1), etc. 2764 */ 2765 reta = reta >> 8; 2766 reta = reta | ( ((uint32_t) queue_id) << 24); 2767 if ((i & 3) == 3) { 2768 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta); 2769 reta = 0; 2770 } 2771 } 2772 2773 /* Now fill in hash table */ 2774 2775 /* 2776 * MRQC: Multiple Receive Queues Command 2777 * Set queuing to RSS control, number depends on the device. 2778 */ 2779 mrqc = E1000_MRQC_ENABLE_RSS_8Q; 2780 2781 #ifdef RSS 2782 /* XXX ew typecasting */ 2783 rss_getkey((uint8_t *) &rss_key); 2784 #else 2785 arc4rand(&rss_key, sizeof(rss_key), 0); 2786 #endif 2787 for (i = 0; i < 10; i++) 2788 E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]); 2789 2790 /* 2791 * Configure the RSS fields to hash upon. 2792 */ 2793 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 | 2794 E1000_MRQC_RSS_FIELD_IPV4_TCP); 2795 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 | 2796 E1000_MRQC_RSS_FIELD_IPV6_TCP); 2797 mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP | 2798 E1000_MRQC_RSS_FIELD_IPV6_UDP); 2799 mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX | 2800 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); 2801 2802 E1000_WRITE_REG(hw, E1000_MRQC, mrqc); 2803 } 2804 2805 /********************************************************************* 2806 * 2807 * Setup networking device structure and register interface media. 2808 * 2809 **********************************************************************/ 2810 static int 2811 em_setup_interface(if_ctx_t ctx) 2812 { 2813 struct ifnet *ifp = iflib_get_ifp(ctx); 2814 struct adapter *adapter = iflib_get_softc(ctx); 2815 if_softc_ctx_t scctx = adapter->shared; 2816 2817 INIT_DEBUGOUT("em_setup_interface: begin"); 2818 2819 /* Single Queue */ 2820 if (adapter->tx_num_queues == 1) { 2821 if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1); 2822 if_setsendqready(ifp); 2823 } 2824 2825 /* 2826 * Specify the media types supported by this adapter and register 2827 * callbacks to update media and link information 2828 */ 2829 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || 2830 (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) { 2831 u_char fiber_type = IFM_1000_SX; /* default type */ 2832 2833 if (adapter->hw.mac.type == e1000_82545) 2834 fiber_type = IFM_1000_LX; 2835 ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL); 2836 ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL); 2837 } else { 2838 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL); 2839 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL); 2840 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL); 2841 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); 2842 if (adapter->hw.phy.type != e1000_phy_ife) { 2843 ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); 2844 ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL); 2845 } 2846 } 2847 ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL); 2848 ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO); 2849 return (0); 2850 } 2851 2852 static int 2853 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets) 2854 { 2855 struct adapter *adapter = iflib_get_softc(ctx); 2856 if_softc_ctx_t scctx = adapter->shared; 2857 int error = E1000_SUCCESS; 2858 struct em_tx_queue *que; 2859 int i, j; 2860 2861 MPASS(adapter->tx_num_queues > 0); 2862 MPASS(adapter->tx_num_queues == ntxqsets); 2863 2864 /* First allocate the top level queue structs */ 2865 if (!(adapter->tx_queues = 2866 (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) * 2867 adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { 2868 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n"); 2869 return(ENOMEM); 2870 } 2871 2872 for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) { 2873 /* Set up some basics */ 2874 2875 struct tx_ring *txr = &que->txr; 2876 txr->adapter = que->adapter = adapter; 2877 que->me = txr->me = i; 2878 2879 /* Allocate report status array */ 2880 if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) { 2881 device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n"); 2882 error = ENOMEM; 2883 goto fail; 2884 } 2885 for (j = 0; j < scctx->isc_ntxd[0]; j++) 2886 txr->tx_rsq[j] = QIDX_INVALID; 2887 /* get the virtual and physical address of the hardware queues */ 2888 txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs]; 2889 txr->tx_paddr = paddrs[i*ntxqs]; 2890 } 2891 2892 if (bootverbose) 2893 device_printf(iflib_get_dev(ctx), 2894 "allocated for %d tx_queues\n", adapter->tx_num_queues); 2895 return (0); 2896 fail: 2897 em_if_queues_free(ctx); 2898 return (error); 2899 } 2900 2901 static int 2902 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets) 2903 { 2904 struct adapter *adapter = iflib_get_softc(ctx); 2905 int error = E1000_SUCCESS; 2906 struct em_rx_queue *que; 2907 int i; 2908 2909 MPASS(adapter->rx_num_queues > 0); 2910 MPASS(adapter->rx_num_queues == nrxqsets); 2911 2912 /* First allocate the top level queue structs */ 2913 if (!(adapter->rx_queues = 2914 (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) * 2915 adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { 2916 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n"); 2917 error = ENOMEM; 2918 goto fail; 2919 } 2920 2921 for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) { 2922 /* Set up some basics */ 2923 struct rx_ring *rxr = &que->rxr; 2924 rxr->adapter = que->adapter = adapter; 2925 rxr->que = que; 2926 que->me = rxr->me = i; 2927 2928 /* get the virtual and physical address of the hardware queues */ 2929 rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs]; 2930 rxr->rx_paddr = paddrs[i*nrxqs]; 2931 } 2932 2933 if (bootverbose) 2934 device_printf(iflib_get_dev(ctx), 2935 "allocated for %d rx_queues\n", adapter->rx_num_queues); 2936 2937 return (0); 2938 fail: 2939 em_if_queues_free(ctx); 2940 return (error); 2941 } 2942 2943 static void 2944 em_if_queues_free(if_ctx_t ctx) 2945 { 2946 struct adapter *adapter = iflib_get_softc(ctx); 2947 struct em_tx_queue *tx_que = adapter->tx_queues; 2948 struct em_rx_queue *rx_que = adapter->rx_queues; 2949 2950 if (tx_que != NULL) { 2951 for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) { 2952 struct tx_ring *txr = &tx_que->txr; 2953 if (txr->tx_rsq == NULL) 2954 break; 2955 2956 free(txr->tx_rsq, M_DEVBUF); 2957 txr->tx_rsq = NULL; 2958 } 2959 free(adapter->tx_queues, M_DEVBUF); 2960 adapter->tx_queues = NULL; 2961 } 2962 2963 if (rx_que != NULL) { 2964 free(adapter->rx_queues, M_DEVBUF); 2965 adapter->rx_queues = NULL; 2966 } 2967 2968 em_release_hw_control(adapter); 2969 2970 if (adapter->mta != NULL) { 2971 free(adapter->mta, M_DEVBUF); 2972 } 2973 } 2974 2975 /********************************************************************* 2976 * 2977 * Enable transmit unit. 2978 * 2979 **********************************************************************/ 2980 static void 2981 em_initialize_transmit_unit(if_ctx_t ctx) 2982 { 2983 struct adapter *adapter = iflib_get_softc(ctx); 2984 if_softc_ctx_t scctx = adapter->shared; 2985 struct em_tx_queue *que; 2986 struct tx_ring *txr; 2987 struct e1000_hw *hw = &adapter->hw; 2988 u32 tctl, txdctl = 0, tarc, tipg = 0; 2989 2990 INIT_DEBUGOUT("em_initialize_transmit_unit: begin"); 2991 2992 for (int i = 0; i < adapter->tx_num_queues; i++, txr++) { 2993 u64 bus_addr; 2994 caddr_t offp, endp; 2995 2996 que = &adapter->tx_queues[i]; 2997 txr = &que->txr; 2998 bus_addr = txr->tx_paddr; 2999 3000 /* Clear checksum offload context. */ 3001 offp = (caddr_t)&txr->csum_flags; 3002 endp = (caddr_t)(txr + 1); 3003 bzero(offp, endp - offp); 3004 3005 /* Base and Len of TX Ring */ 3006 E1000_WRITE_REG(hw, E1000_TDLEN(i), 3007 scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc)); 3008 E1000_WRITE_REG(hw, E1000_TDBAH(i), 3009 (u32)(bus_addr >> 32)); 3010 E1000_WRITE_REG(hw, E1000_TDBAL(i), 3011 (u32)bus_addr); 3012 /* Init the HEAD/TAIL indices */ 3013 E1000_WRITE_REG(hw, E1000_TDT(i), 0); 3014 E1000_WRITE_REG(hw, E1000_TDH(i), 0); 3015 3016 HW_DEBUGOUT2("Base = %x, Length = %x\n", 3017 E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)), 3018 E1000_READ_REG(&adapter->hw, E1000_TDLEN(i))); 3019 3020 txdctl = 0; /* clear txdctl */ 3021 txdctl |= 0x1f; /* PTHRESH */ 3022 txdctl |= 1 << 8; /* HTHRESH */ 3023 txdctl |= 1 << 16;/* WTHRESH */ 3024 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */ 3025 txdctl |= E1000_TXDCTL_GRAN; 3026 txdctl |= 1 << 25; /* LWTHRESH */ 3027 3028 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl); 3029 } 3030 3031 /* Set the default values for the Tx Inter Packet Gap timer */ 3032 switch (adapter->hw.mac.type) { 3033 case e1000_80003es2lan: 3034 tipg = DEFAULT_82543_TIPG_IPGR1; 3035 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 << 3036 E1000_TIPG_IPGR2_SHIFT; 3037 break; 3038 case e1000_82542: 3039 tipg = DEFAULT_82542_TIPG_IPGT; 3040 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; 3041 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; 3042 break; 3043 default: 3044 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || 3045 (adapter->hw.phy.media_type == 3046 e1000_media_type_internal_serdes)) 3047 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 3048 else 3049 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 3050 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; 3051 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; 3052 } 3053 3054 E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg); 3055 E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value); 3056 3057 if(adapter->hw.mac.type >= e1000_82540) 3058 E1000_WRITE_REG(&adapter->hw, E1000_TADV, 3059 adapter->tx_abs_int_delay.value); 3060 3061 if ((adapter->hw.mac.type == e1000_82571) || 3062 (adapter->hw.mac.type == e1000_82572)) { 3063 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0)); 3064 tarc |= TARC_SPEED_MODE_BIT; 3065 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); 3066 } else if (adapter->hw.mac.type == e1000_80003es2lan) { 3067 /* errata: program both queues to unweighted RR */ 3068 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0)); 3069 tarc |= 1; 3070 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); 3071 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1)); 3072 tarc |= 1; 3073 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc); 3074 } else if (adapter->hw.mac.type == e1000_82574) { 3075 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0)); 3076 tarc |= TARC_ERRATA_BIT; 3077 if ( adapter->tx_num_queues > 1) { 3078 tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX); 3079 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); 3080 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc); 3081 } else 3082 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); 3083 } 3084 3085 if (adapter->tx_int_delay.value > 0) 3086 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 3087 3088 /* Program the Transmit Control Register */ 3089 tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL); 3090 tctl &= ~E1000_TCTL_CT; 3091 tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN | 3092 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT)); 3093 3094 if (adapter->hw.mac.type >= e1000_82571) 3095 tctl |= E1000_TCTL_MULR; 3096 3097 /* This write will effectively turn on the transmit unit. */ 3098 E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl); 3099 3100 /* SPT and KBL errata workarounds */ 3101 if (hw->mac.type == e1000_pch_spt) { 3102 u32 reg; 3103 reg = E1000_READ_REG(hw, E1000_IOSFPC); 3104 reg |= E1000_RCTL_RDMTS_HEX; 3105 E1000_WRITE_REG(hw, E1000_IOSFPC, reg); 3106 /* i218-i219 Specification Update 1.5.4.5 */ 3107 reg = E1000_READ_REG(hw, E1000_TARC(0)); 3108 reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ; 3109 reg |= E1000_TARC0_CB_MULTIQ_2_REQ; 3110 E1000_WRITE_REG(hw, E1000_TARC(0), reg); 3111 } 3112 } 3113 3114 /********************************************************************* 3115 * 3116 * Enable receive unit. 3117 * 3118 **********************************************************************/ 3119 3120 static void 3121 em_initialize_receive_unit(if_ctx_t ctx) 3122 { 3123 struct adapter *adapter = iflib_get_softc(ctx); 3124 if_softc_ctx_t scctx = adapter->shared; 3125 struct ifnet *ifp = iflib_get_ifp(ctx); 3126 struct e1000_hw *hw = &adapter->hw; 3127 struct em_rx_queue *que; 3128 int i; 3129 u32 rctl, rxcsum, rfctl; 3130 3131 INIT_DEBUGOUT("em_initialize_receive_units: begin"); 3132 3133 /* 3134 * Make sure receives are disabled while setting 3135 * up the descriptor ring 3136 */ 3137 rctl = E1000_READ_REG(hw, E1000_RCTL); 3138 /* Do not disable if ever enabled on this hardware */ 3139 if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583)) 3140 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); 3141 3142 /* Setup the Receive Control Register */ 3143 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 3144 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | 3145 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 3146 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 3147 3148 /* Do not store bad packets */ 3149 rctl &= ~E1000_RCTL_SBP; 3150 3151 /* Enable Long Packet receive */ 3152 if (if_getmtu(ifp) > ETHERMTU) 3153 rctl |= E1000_RCTL_LPE; 3154 else 3155 rctl &= ~E1000_RCTL_LPE; 3156 3157 /* Strip the CRC */ 3158 if (!em_disable_crc_stripping) 3159 rctl |= E1000_RCTL_SECRC; 3160 3161 if (adapter->hw.mac.type >= e1000_82540) { 3162 E1000_WRITE_REG(&adapter->hw, E1000_RADV, 3163 adapter->rx_abs_int_delay.value); 3164 3165 /* 3166 * Set the interrupt throttling rate. Value is calculated 3167 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) 3168 */ 3169 E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR); 3170 } 3171 E1000_WRITE_REG(&adapter->hw, E1000_RDTR, 3172 adapter->rx_int_delay.value); 3173 3174 /* Use extended rx descriptor formats */ 3175 rfctl = E1000_READ_REG(hw, E1000_RFCTL); 3176 rfctl |= E1000_RFCTL_EXTEN; 3177 /* 3178 * When using MSI-X interrupts we need to throttle 3179 * using the EITR register (82574 only) 3180 */ 3181 if (hw->mac.type == e1000_82574) { 3182 for (int i = 0; i < 4; i++) 3183 E1000_WRITE_REG(hw, E1000_EITR_82574(i), 3184 DEFAULT_ITR); 3185 /* Disable accelerated acknowledge */ 3186 rfctl |= E1000_RFCTL_ACK_DIS; 3187 } 3188 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); 3189 3190 rxcsum = E1000_READ_REG(hw, E1000_RXCSUM); 3191 if (if_getcapenable(ifp) & IFCAP_RXCSUM && 3192 adapter->hw.mac.type >= e1000_82543) { 3193 if (adapter->tx_num_queues > 1) { 3194 if (adapter->hw.mac.type >= igb_mac_min) { 3195 rxcsum |= E1000_RXCSUM_PCSD; 3196 if (hw->mac.type != e1000_82575) 3197 rxcsum |= E1000_RXCSUM_CRCOFL; 3198 } else 3199 rxcsum |= E1000_RXCSUM_TUOFL | 3200 E1000_RXCSUM_IPOFL | 3201 E1000_RXCSUM_PCSD; 3202 } else { 3203 if (adapter->hw.mac.type >= igb_mac_min) 3204 rxcsum |= E1000_RXCSUM_IPPCSE; 3205 else 3206 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL; 3207 if (adapter->hw.mac.type > e1000_82575) 3208 rxcsum |= E1000_RXCSUM_CRCOFL; 3209 } 3210 } else 3211 rxcsum &= ~E1000_RXCSUM_TUOFL; 3212 3213 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum); 3214 3215 if (adapter->rx_num_queues > 1) { 3216 if (adapter->hw.mac.type >= igb_mac_min) 3217 igb_initialize_rss_mapping(adapter); 3218 else 3219 em_initialize_rss_mapping(adapter); 3220 } 3221 3222 /* 3223 * XXX TEMPORARY WORKAROUND: on some systems with 82573 3224 * long latencies are observed, like Lenovo X60. This 3225 * change eliminates the problem, but since having positive 3226 * values in RDTR is a known source of problems on other 3227 * platforms another solution is being sought. 3228 */ 3229 if (hw->mac.type == e1000_82573) 3230 E1000_WRITE_REG(hw, E1000_RDTR, 0x20); 3231 3232 for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) { 3233 struct rx_ring *rxr = &que->rxr; 3234 /* Setup the Base and Length of the Rx Descriptor Ring */ 3235 u64 bus_addr = rxr->rx_paddr; 3236 #if 0 3237 u32 rdt = adapter->rx_num_queues -1; /* default */ 3238 #endif 3239 3240 E1000_WRITE_REG(hw, E1000_RDLEN(i), 3241 scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended)); 3242 E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32)); 3243 E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr); 3244 /* Setup the Head and Tail Descriptor Pointers */ 3245 E1000_WRITE_REG(hw, E1000_RDH(i), 0); 3246 E1000_WRITE_REG(hw, E1000_RDT(i), 0); 3247 } 3248 3249 /* 3250 * Set PTHRESH for improved jumbo performance 3251 * According to 10.2.5.11 of Intel 82574 Datasheet, 3252 * RXDCTL(1) is written whenever RXDCTL(0) is written. 3253 * Only write to RXDCTL(1) if there is a need for different 3254 * settings. 3255 */ 3256 3257 if (((adapter->hw.mac.type == e1000_ich9lan) || 3258 (adapter->hw.mac.type == e1000_pch2lan) || 3259 (adapter->hw.mac.type == e1000_ich10lan)) && 3260 (if_getmtu(ifp) > ETHERMTU)) { 3261 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0)); 3262 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3); 3263 } else if (adapter->hw.mac.type == e1000_82574) { 3264 for (int i = 0; i < adapter->rx_num_queues; i++) { 3265 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i)); 3266 rxdctl |= 0x20; /* PTHRESH */ 3267 rxdctl |= 4 << 8; /* HTHRESH */ 3268 rxdctl |= 4 << 16;/* WTHRESH */ 3269 rxdctl |= 1 << 24; /* Switch to granularity */ 3270 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); 3271 } 3272 } else if (adapter->hw.mac.type >= igb_mac_min) { 3273 u32 psize, srrctl = 0; 3274 3275 if (if_getmtu(ifp) > ETHERMTU) { 3276 /* Set maximum packet len */ 3277 if (adapter->rx_mbuf_sz <= 4096) { 3278 srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 3279 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX; 3280 } else if (adapter->rx_mbuf_sz > 4096) { 3281 srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 3282 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX; 3283 } 3284 psize = scctx->isc_max_frame_size; 3285 /* are we on a vlan? */ 3286 if (ifp->if_vlantrunk != NULL) 3287 psize += VLAN_TAG_SIZE; 3288 E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize); 3289 } else { 3290 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 3291 rctl |= E1000_RCTL_SZ_2048; 3292 } 3293 3294 /* 3295 * If TX flow control is disabled and there's >1 queue defined, 3296 * enable DROP. 3297 * 3298 * This drops frames rather than hanging the RX MAC for all queues. 3299 */ 3300 if ((adapter->rx_num_queues > 1) && 3301 (adapter->fc == e1000_fc_none || 3302 adapter->fc == e1000_fc_rx_pause)) { 3303 srrctl |= E1000_SRRCTL_DROP_EN; 3304 } 3305 /* Setup the Base and Length of the Rx Descriptor Rings */ 3306 for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) { 3307 struct rx_ring *rxr = &que->rxr; 3308 u64 bus_addr = rxr->rx_paddr; 3309 u32 rxdctl; 3310 3311 #ifdef notyet 3312 /* Configure for header split? -- ignore for now */ 3313 rxr->hdr_split = igb_header_split; 3314 #else 3315 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 3316 #endif 3317 3318 E1000_WRITE_REG(hw, E1000_RDLEN(i), 3319 scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc)); 3320 E1000_WRITE_REG(hw, E1000_RDBAH(i), 3321 (uint32_t)(bus_addr >> 32)); 3322 E1000_WRITE_REG(hw, E1000_RDBAL(i), 3323 (uint32_t)bus_addr); 3324 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl); 3325 /* Enable this Queue */ 3326 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i)); 3327 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 3328 rxdctl &= 0xFFF00000; 3329 rxdctl |= IGB_RX_PTHRESH; 3330 rxdctl |= IGB_RX_HTHRESH << 8; 3331 rxdctl |= IGB_RX_WTHRESH << 16; 3332 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); 3333 } 3334 } else if (adapter->hw.mac.type >= e1000_pch2lan) { 3335 if (if_getmtu(ifp) > ETHERMTU) 3336 e1000_lv_jumbo_workaround_ich8lan(hw, TRUE); 3337 else 3338 e1000_lv_jumbo_workaround_ich8lan(hw, FALSE); 3339 } 3340 3341 /* Make sure VLAN Filters are off */ 3342 rctl &= ~E1000_RCTL_VFE; 3343 3344 if (adapter->hw.mac.type < igb_mac_min) { 3345 if (adapter->rx_mbuf_sz == MCLBYTES) 3346 rctl |= E1000_RCTL_SZ_2048; 3347 else if (adapter->rx_mbuf_sz == MJUMPAGESIZE) 3348 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX; 3349 else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) 3350 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX; 3351 3352 /* ensure we clear use DTYPE of 00 here */ 3353 rctl &= ~0x00000C00; 3354 } 3355 3356 /* Write out the settings */ 3357 E1000_WRITE_REG(hw, E1000_RCTL, rctl); 3358 3359 return; 3360 } 3361 3362 static void 3363 em_if_vlan_register(if_ctx_t ctx, u16 vtag) 3364 { 3365 struct adapter *adapter = iflib_get_softc(ctx); 3366 u32 index, bit; 3367 3368 index = (vtag >> 5) & 0x7F; 3369 bit = vtag & 0x1F; 3370 adapter->shadow_vfta[index] |= (1 << bit); 3371 ++adapter->num_vlans; 3372 } 3373 3374 static void 3375 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag) 3376 { 3377 struct adapter *adapter = iflib_get_softc(ctx); 3378 u32 index, bit; 3379 3380 index = (vtag >> 5) & 0x7F; 3381 bit = vtag & 0x1F; 3382 adapter->shadow_vfta[index] &= ~(1 << bit); 3383 --adapter->num_vlans; 3384 } 3385 3386 static void 3387 em_setup_vlan_hw_support(struct adapter *adapter) 3388 { 3389 struct e1000_hw *hw = &adapter->hw; 3390 u32 reg; 3391 3392 /* 3393 * We get here thru init_locked, meaning 3394 * a soft reset, this has already cleared 3395 * the VFTA and other state, so if there 3396 * have been no vlan's registered do nothing. 3397 */ 3398 if (adapter->num_vlans == 0) 3399 return; 3400 3401 /* 3402 * A soft reset zero's out the VFTA, so 3403 * we need to repopulate it now. 3404 */ 3405 for (int i = 0; i < EM_VFTA_SIZE; i++) 3406 if (adapter->shadow_vfta[i] != 0) 3407 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, 3408 i, adapter->shadow_vfta[i]); 3409 3410 reg = E1000_READ_REG(hw, E1000_CTRL); 3411 reg |= E1000_CTRL_VME; 3412 E1000_WRITE_REG(hw, E1000_CTRL, reg); 3413 3414 /* Enable the Filter Table */ 3415 reg = E1000_READ_REG(hw, E1000_RCTL); 3416 reg &= ~E1000_RCTL_CFIEN; 3417 reg |= E1000_RCTL_VFE; 3418 E1000_WRITE_REG(hw, E1000_RCTL, reg); 3419 } 3420 3421 static void 3422 em_if_intr_enable(if_ctx_t ctx) 3423 { 3424 struct adapter *adapter = iflib_get_softc(ctx); 3425 struct e1000_hw *hw = &adapter->hw; 3426 u32 ims_mask = IMS_ENABLE_MASK; 3427 3428 if (hw->mac.type == e1000_82574) { 3429 E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK); 3430 ims_mask |= adapter->ims; 3431 } 3432 E1000_WRITE_REG(hw, E1000_IMS, ims_mask); 3433 } 3434 3435 static void 3436 em_if_intr_disable(if_ctx_t ctx) 3437 { 3438 struct adapter *adapter = iflib_get_softc(ctx); 3439 struct e1000_hw *hw = &adapter->hw; 3440 3441 if (hw->mac.type == e1000_82574) 3442 E1000_WRITE_REG(hw, EM_EIAC, 0); 3443 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); 3444 } 3445 3446 static void 3447 igb_if_intr_enable(if_ctx_t ctx) 3448 { 3449 struct adapter *adapter = iflib_get_softc(ctx); 3450 struct e1000_hw *hw = &adapter->hw; 3451 u32 mask; 3452 3453 if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) { 3454 mask = (adapter->que_mask | adapter->link_mask); 3455 E1000_WRITE_REG(hw, E1000_EIAC, mask); 3456 E1000_WRITE_REG(hw, E1000_EIAM, mask); 3457 E1000_WRITE_REG(hw, E1000_EIMS, mask); 3458 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC); 3459 } else 3460 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK); 3461 E1000_WRITE_FLUSH(hw); 3462 } 3463 3464 static void 3465 igb_if_intr_disable(if_ctx_t ctx) 3466 { 3467 struct adapter *adapter = iflib_get_softc(ctx); 3468 struct e1000_hw *hw = &adapter->hw; 3469 3470 if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) { 3471 E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff); 3472 E1000_WRITE_REG(hw, E1000_EIAC, 0); 3473 } 3474 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); 3475 E1000_WRITE_FLUSH(hw); 3476 } 3477 3478 /* 3479 * Bit of a misnomer, what this really means is 3480 * to enable OS management of the system... aka 3481 * to disable special hardware management features 3482 */ 3483 static void 3484 em_init_manageability(struct adapter *adapter) 3485 { 3486 /* A shared code workaround */ 3487 #define E1000_82542_MANC2H E1000_MANC2H 3488 if (adapter->has_manage) { 3489 int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H); 3490 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC); 3491 3492 /* disable hardware interception of ARP */ 3493 manc &= ~(E1000_MANC_ARP_EN); 3494 3495 /* enable receiving management packets to the host */ 3496 manc |= E1000_MANC_EN_MNG2HOST; 3497 #define E1000_MNG2HOST_PORT_623 (1 << 5) 3498 #define E1000_MNG2HOST_PORT_664 (1 << 6) 3499 manc2h |= E1000_MNG2HOST_PORT_623; 3500 manc2h |= E1000_MNG2HOST_PORT_664; 3501 E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h); 3502 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc); 3503 } 3504 } 3505 3506 /* 3507 * Give control back to hardware management 3508 * controller if there is one. 3509 */ 3510 static void 3511 em_release_manageability(struct adapter *adapter) 3512 { 3513 if (adapter->has_manage) { 3514 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC); 3515 3516 /* re-enable hardware interception of ARP */ 3517 manc |= E1000_MANC_ARP_EN; 3518 manc &= ~E1000_MANC_EN_MNG2HOST; 3519 3520 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc); 3521 } 3522 } 3523 3524 /* 3525 * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit. 3526 * For ASF and Pass Through versions of f/w this means 3527 * that the driver is loaded. For AMT version type f/w 3528 * this means that the network i/f is open. 3529 */ 3530 static void 3531 em_get_hw_control(struct adapter *adapter) 3532 { 3533 u32 ctrl_ext, swsm; 3534 3535 if (adapter->vf_ifp) 3536 return; 3537 3538 if (adapter->hw.mac.type == e1000_82573) { 3539 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM); 3540 E1000_WRITE_REG(&adapter->hw, E1000_SWSM, 3541 swsm | E1000_SWSM_DRV_LOAD); 3542 return; 3543 } 3544 /* else */ 3545 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); 3546 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, 3547 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 3548 } 3549 3550 /* 3551 * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. 3552 * For ASF and Pass Through versions of f/w this means that 3553 * the driver is no longer loaded. For AMT versions of the 3554 * f/w this means that the network i/f is closed. 3555 */ 3556 static void 3557 em_release_hw_control(struct adapter *adapter) 3558 { 3559 u32 ctrl_ext, swsm; 3560 3561 if (!adapter->has_manage) 3562 return; 3563 3564 if (adapter->hw.mac.type == e1000_82573) { 3565 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM); 3566 E1000_WRITE_REG(&adapter->hw, E1000_SWSM, 3567 swsm & ~E1000_SWSM_DRV_LOAD); 3568 return; 3569 } 3570 /* else */ 3571 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); 3572 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, 3573 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 3574 return; 3575 } 3576 3577 static int 3578 em_is_valid_ether_addr(u8 *addr) 3579 { 3580 char zero_addr[6] = { 0, 0, 0, 0, 0, 0 }; 3581 3582 if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) { 3583 return (FALSE); 3584 } 3585 3586 return (TRUE); 3587 } 3588 3589 /* 3590 ** Parse the interface capabilities with regard 3591 ** to both system management and wake-on-lan for 3592 ** later use. 3593 */ 3594 static void 3595 em_get_wakeup(if_ctx_t ctx) 3596 { 3597 struct adapter *adapter = iflib_get_softc(ctx); 3598 device_t dev = iflib_get_dev(ctx); 3599 u16 eeprom_data = 0, device_id, apme_mask; 3600 3601 adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw); 3602 apme_mask = EM_EEPROM_APME; 3603 3604 switch (adapter->hw.mac.type) { 3605 case e1000_82542: 3606 case e1000_82543: 3607 break; 3608 case e1000_82544: 3609 e1000_read_nvm(&adapter->hw, 3610 NVM_INIT_CONTROL2_REG, 1, &eeprom_data); 3611 apme_mask = EM_82544_APME; 3612 break; 3613 case e1000_82546: 3614 case e1000_82546_rev_3: 3615 if (adapter->hw.bus.func == 1) { 3616 e1000_read_nvm(&adapter->hw, 3617 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 3618 break; 3619 } else 3620 e1000_read_nvm(&adapter->hw, 3621 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3622 break; 3623 case e1000_82573: 3624 case e1000_82583: 3625 adapter->has_amt = TRUE; 3626 /* FALLTHROUGH */ 3627 case e1000_82571: 3628 case e1000_82572: 3629 case e1000_80003es2lan: 3630 if (adapter->hw.bus.func == 1) { 3631 e1000_read_nvm(&adapter->hw, 3632 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 3633 break; 3634 } else 3635 e1000_read_nvm(&adapter->hw, 3636 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3637 break; 3638 case e1000_ich8lan: 3639 case e1000_ich9lan: 3640 case e1000_ich10lan: 3641 case e1000_pchlan: 3642 case e1000_pch2lan: 3643 case e1000_pch_lpt: 3644 case e1000_pch_spt: 3645 case e1000_82575: /* listing all igb devices */ 3646 case e1000_82576: 3647 case e1000_82580: 3648 case e1000_i350: 3649 case e1000_i354: 3650 case e1000_i210: 3651 case e1000_i211: 3652 case e1000_vfadapt: 3653 case e1000_vfadapt_i350: 3654 apme_mask = E1000_WUC_APME; 3655 adapter->has_amt = TRUE; 3656 eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC); 3657 break; 3658 default: 3659 e1000_read_nvm(&adapter->hw, 3660 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3661 break; 3662 } 3663 if (eeprom_data & apme_mask) 3664 adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC); 3665 /* 3666 * We have the eeprom settings, now apply the special cases 3667 * where the eeprom may be wrong or the board won't support 3668 * wake on lan on a particular port 3669 */ 3670 device_id = pci_get_device(dev); 3671 switch (device_id) { 3672 case E1000_DEV_ID_82546GB_PCIE: 3673 adapter->wol = 0; 3674 break; 3675 case E1000_DEV_ID_82546EB_FIBER: 3676 case E1000_DEV_ID_82546GB_FIBER: 3677 /* Wake events only supported on port A for dual fiber 3678 * regardless of eeprom setting */ 3679 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) & 3680 E1000_STATUS_FUNC_1) 3681 adapter->wol = 0; 3682 break; 3683 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 3684 /* if quad port adapter, disable WoL on all but port A */ 3685 if (global_quad_port_a != 0) 3686 adapter->wol = 0; 3687 /* Reset for multiple quad port adapters */ 3688 if (++global_quad_port_a == 4) 3689 global_quad_port_a = 0; 3690 break; 3691 case E1000_DEV_ID_82571EB_FIBER: 3692 /* Wake events only supported on port A for dual fiber 3693 * regardless of eeprom setting */ 3694 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) & 3695 E1000_STATUS_FUNC_1) 3696 adapter->wol = 0; 3697 break; 3698 case E1000_DEV_ID_82571EB_QUAD_COPPER: 3699 case E1000_DEV_ID_82571EB_QUAD_FIBER: 3700 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 3701 /* if quad port adapter, disable WoL on all but port A */ 3702 if (global_quad_port_a != 0) 3703 adapter->wol = 0; 3704 /* Reset for multiple quad port adapters */ 3705 if (++global_quad_port_a == 4) 3706 global_quad_port_a = 0; 3707 break; 3708 } 3709 return; 3710 } 3711 3712 3713 /* 3714 * Enable PCI Wake On Lan capability 3715 */ 3716 static void 3717 em_enable_wakeup(if_ctx_t ctx) 3718 { 3719 struct adapter *adapter = iflib_get_softc(ctx); 3720 device_t dev = iflib_get_dev(ctx); 3721 if_t ifp = iflib_get_ifp(ctx); 3722 int error = 0; 3723 u32 pmc, ctrl, ctrl_ext, rctl; 3724 u16 status; 3725 3726 if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0) 3727 return; 3728 3729 /* 3730 * Determine type of Wakeup: note that wol 3731 * is set with all bits on by default. 3732 */ 3733 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0) 3734 adapter->wol &= ~E1000_WUFC_MAG; 3735 3736 if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0) 3737 adapter->wol &= ~E1000_WUFC_EX; 3738 3739 if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0) 3740 adapter->wol &= ~E1000_WUFC_MC; 3741 else { 3742 rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 3743 rctl |= E1000_RCTL_MPE; 3744 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl); 3745 } 3746 3747 if (!(adapter->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC))) 3748 goto pme; 3749 3750 /* Advertise the wakeup capability */ 3751 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL); 3752 ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3); 3753 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl); 3754 3755 /* Keep the laser running on Fiber adapters */ 3756 if (adapter->hw.phy.media_type == e1000_media_type_fiber || 3757 adapter->hw.phy.media_type == e1000_media_type_internal_serdes) { 3758 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); 3759 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; 3760 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext); 3761 } 3762 3763 if ((adapter->hw.mac.type == e1000_ich8lan) || 3764 (adapter->hw.mac.type == e1000_pchlan) || 3765 (adapter->hw.mac.type == e1000_ich9lan) || 3766 (adapter->hw.mac.type == e1000_ich10lan)) 3767 e1000_suspend_workarounds_ich8lan(&adapter->hw); 3768 3769 if ( adapter->hw.mac.type >= e1000_pchlan) { 3770 error = em_enable_phy_wakeup(adapter); 3771 if (error) 3772 goto pme; 3773 } else { 3774 /* Enable wakeup by the MAC */ 3775 E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN); 3776 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol); 3777 } 3778 3779 if (adapter->hw.phy.type == e1000_phy_igp_3) 3780 e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); 3781 3782 pme: 3783 status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2); 3784 status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 3785 if (!error && (if_getcapenable(ifp) & IFCAP_WOL)) 3786 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 3787 pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2); 3788 3789 return; 3790 } 3791 3792 /* 3793 * WOL in the newer chipset interfaces (pchlan) 3794 * require thing to be copied into the phy 3795 */ 3796 static int 3797 em_enable_phy_wakeup(struct adapter *adapter) 3798 { 3799 struct e1000_hw *hw = &adapter->hw; 3800 u32 mreg, ret = 0; 3801 u16 preg; 3802 3803 /* copy MAC RARs to PHY RARs */ 3804 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 3805 3806 /* copy MAC MTA to PHY MTA */ 3807 for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) { 3808 mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); 3809 e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF)); 3810 e1000_write_phy_reg(hw, BM_MTA(i) + 1, 3811 (u16)((mreg >> 16) & 0xFFFF)); 3812 } 3813 3814 /* configure PHY Rx Control register */ 3815 e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg); 3816 mreg = E1000_READ_REG(hw, E1000_RCTL); 3817 if (mreg & E1000_RCTL_UPE) 3818 preg |= BM_RCTL_UPE; 3819 if (mreg & E1000_RCTL_MPE) 3820 preg |= BM_RCTL_MPE; 3821 preg &= ~(BM_RCTL_MO_MASK); 3822 if (mreg & E1000_RCTL_MO_3) 3823 preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) 3824 << BM_RCTL_MO_SHIFT); 3825 if (mreg & E1000_RCTL_BAM) 3826 preg |= BM_RCTL_BAM; 3827 if (mreg & E1000_RCTL_PMCF) 3828 preg |= BM_RCTL_PMCF; 3829 mreg = E1000_READ_REG(hw, E1000_CTRL); 3830 if (mreg & E1000_CTRL_RFCE) 3831 preg |= BM_RCTL_RFCE; 3832 e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg); 3833 3834 /* enable PHY wakeup in MAC register */ 3835 E1000_WRITE_REG(hw, E1000_WUC, 3836 E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME); 3837 E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol); 3838 3839 /* configure and enable PHY wakeup in PHY registers */ 3840 e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol); 3841 e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN); 3842 3843 /* activate PHY wakeup */ 3844 ret = hw->phy.ops.acquire(hw); 3845 if (ret) { 3846 printf("Could not acquire PHY\n"); 3847 return ret; 3848 } 3849 e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 3850 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT)); 3851 ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg); 3852 if (ret) { 3853 printf("Could not read PHY page 769\n"); 3854 goto out; 3855 } 3856 preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; 3857 ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg); 3858 if (ret) 3859 printf("Could not set PHY Host Wakeup bit\n"); 3860 out: 3861 hw->phy.ops.release(hw); 3862 3863 return ret; 3864 } 3865 3866 static void 3867 em_if_led_func(if_ctx_t ctx, int onoff) 3868 { 3869 struct adapter *adapter = iflib_get_softc(ctx); 3870 3871 if (onoff) { 3872 e1000_setup_led(&adapter->hw); 3873 e1000_led_on(&adapter->hw); 3874 } else { 3875 e1000_led_off(&adapter->hw); 3876 e1000_cleanup_led(&adapter->hw); 3877 } 3878 } 3879 3880 /* 3881 * Disable the L0S and L1 LINK states 3882 */ 3883 static void 3884 em_disable_aspm(struct adapter *adapter) 3885 { 3886 int base, reg; 3887 u16 link_cap,link_ctrl; 3888 device_t dev = adapter->dev; 3889 3890 switch (adapter->hw.mac.type) { 3891 case e1000_82573: 3892 case e1000_82574: 3893 case e1000_82583: 3894 break; 3895 default: 3896 return; 3897 } 3898 if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0) 3899 return; 3900 reg = base + PCIER_LINK_CAP; 3901 link_cap = pci_read_config(dev, reg, 2); 3902 if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0) 3903 return; 3904 reg = base + PCIER_LINK_CTL; 3905 link_ctrl = pci_read_config(dev, reg, 2); 3906 link_ctrl &= ~PCIEM_LINK_CTL_ASPMC; 3907 pci_write_config(dev, reg, link_ctrl, 2); 3908 return; 3909 } 3910 3911 /********************************************************************** 3912 * 3913 * Update the board statistics counters. 3914 * 3915 **********************************************************************/ 3916 static void 3917 em_update_stats_counters(struct adapter *adapter) 3918 { 3919 u64 prev_xoffrxc = adapter->stats.xoffrxc; 3920 3921 if(adapter->hw.phy.media_type == e1000_media_type_copper || 3922 (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) { 3923 adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS); 3924 adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC); 3925 } 3926 adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS); 3927 adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC); 3928 adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC); 3929 adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL); 3930 3931 adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC); 3932 adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL); 3933 adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC); 3934 adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC); 3935 adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC); 3936 adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC); 3937 adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC); 3938 adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC); 3939 /* 3940 ** For watchdog management we need to know if we have been 3941 ** paused during the last interval, so capture that here. 3942 */ 3943 if (adapter->stats.xoffrxc != prev_xoffrxc) 3944 adapter->shared->isc_pause_frames = 1; 3945 adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC); 3946 adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC); 3947 adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64); 3948 adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127); 3949 adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255); 3950 adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511); 3951 adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023); 3952 adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522); 3953 adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC); 3954 adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC); 3955 adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC); 3956 adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC); 3957 3958 /* For the 64-bit byte counters the low dword must be read first. */ 3959 /* Both registers clear on the read of the high dword */ 3960 3961 adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) + 3962 ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32); 3963 adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) + 3964 ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32); 3965 3966 adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC); 3967 adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC); 3968 adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC); 3969 adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC); 3970 adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC); 3971 3972 adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH); 3973 adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH); 3974 3975 adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR); 3976 adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT); 3977 adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64); 3978 adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127); 3979 adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255); 3980 adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511); 3981 adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023); 3982 adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522); 3983 adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC); 3984 adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC); 3985 3986 /* Interrupt Counts */ 3987 3988 adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC); 3989 adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC); 3990 adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC); 3991 adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC); 3992 adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC); 3993 adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC); 3994 adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC); 3995 adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC); 3996 adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC); 3997 3998 if (adapter->hw.mac.type >= e1000_82543) { 3999 adapter->stats.algnerrc += 4000 E1000_READ_REG(&adapter->hw, E1000_ALGNERRC); 4001 adapter->stats.rxerrc += 4002 E1000_READ_REG(&adapter->hw, E1000_RXERRC); 4003 adapter->stats.tncrs += 4004 E1000_READ_REG(&adapter->hw, E1000_TNCRS); 4005 adapter->stats.cexterr += 4006 E1000_READ_REG(&adapter->hw, E1000_CEXTERR); 4007 adapter->stats.tsctc += 4008 E1000_READ_REG(&adapter->hw, E1000_TSCTC); 4009 adapter->stats.tsctfc += 4010 E1000_READ_REG(&adapter->hw, E1000_TSCTFC); 4011 } 4012 } 4013 4014 static uint64_t 4015 em_if_get_counter(if_ctx_t ctx, ift_counter cnt) 4016 { 4017 struct adapter *adapter = iflib_get_softc(ctx); 4018 struct ifnet *ifp = iflib_get_ifp(ctx); 4019 4020 switch (cnt) { 4021 case IFCOUNTER_COLLISIONS: 4022 return (adapter->stats.colc); 4023 case IFCOUNTER_IERRORS: 4024 return (adapter->dropped_pkts + adapter->stats.rxerrc + 4025 adapter->stats.crcerrs + adapter->stats.algnerrc + 4026 adapter->stats.ruc + adapter->stats.roc + 4027 adapter->stats.mpc + adapter->stats.cexterr); 4028 case IFCOUNTER_OERRORS: 4029 return (adapter->stats.ecol + adapter->stats.latecol + 4030 adapter->watchdog_events); 4031 default: 4032 return (if_get_counter_default(ifp, cnt)); 4033 } 4034 } 4035 4036 /* Export a single 32-bit register via a read-only sysctl. */ 4037 static int 4038 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS) 4039 { 4040 struct adapter *adapter; 4041 u_int val; 4042 4043 adapter = oidp->oid_arg1; 4044 val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2); 4045 return (sysctl_handle_int(oidp, &val, 0, req)); 4046 } 4047 4048 /* 4049 * Add sysctl variables, one per statistic, to the system. 4050 */ 4051 static void 4052 em_add_hw_stats(struct adapter *adapter) 4053 { 4054 device_t dev = iflib_get_dev(adapter->ctx); 4055 struct em_tx_queue *tx_que = adapter->tx_queues; 4056 struct em_rx_queue *rx_que = adapter->rx_queues; 4057 4058 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev); 4059 struct sysctl_oid *tree = device_get_sysctl_tree(dev); 4060 struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree); 4061 struct e1000_hw_stats *stats = &adapter->stats; 4062 4063 struct sysctl_oid *stat_node, *queue_node, *int_node; 4064 struct sysctl_oid_list *stat_list, *queue_list, *int_list; 4065 4066 #define QUEUE_NAME_LEN 32 4067 char namebuf[QUEUE_NAME_LEN]; 4068 4069 /* Driver Statistics */ 4070 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped", 4071 CTLFLAG_RD, &adapter->dropped_pkts, 4072 "Driver dropped packets"); 4073 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq", 4074 CTLFLAG_RD, &adapter->link_irq, 4075 "Link MSI-X IRQ Handled"); 4076 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns", 4077 CTLFLAG_RD, &adapter->rx_overruns, 4078 "RX overruns"); 4079 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts", 4080 CTLFLAG_RD, &adapter->watchdog_events, 4081 "Watchdog timeouts"); 4082 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control", 4083 CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_CTRL, 4084 em_sysctl_reg_handler, "IU", 4085 "Device Control Register"); 4086 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control", 4087 CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_RCTL, 4088 em_sysctl_reg_handler, "IU", 4089 "Receiver Control Register"); 4090 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water", 4091 CTLFLAG_RD, &adapter->hw.fc.high_water, 0, 4092 "Flow Control High Watermark"); 4093 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water", 4094 CTLFLAG_RD, &adapter->hw.fc.low_water, 0, 4095 "Flow Control Low Watermark"); 4096 4097 for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) { 4098 struct tx_ring *txr = &tx_que->txr; 4099 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i); 4100 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, 4101 CTLFLAG_RD, NULL, "TX Queue Name"); 4102 queue_list = SYSCTL_CHILDREN(queue_node); 4103 4104 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head", 4105 CTLTYPE_UINT | CTLFLAG_RD, adapter, 4106 E1000_TDH(txr->me), 4107 em_sysctl_reg_handler, "IU", 4108 "Transmit Descriptor Head"); 4109 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail", 4110 CTLTYPE_UINT | CTLFLAG_RD, adapter, 4111 E1000_TDT(txr->me), 4112 em_sysctl_reg_handler, "IU", 4113 "Transmit Descriptor Tail"); 4114 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq", 4115 CTLFLAG_RD, &txr->tx_irq, 4116 "Queue MSI-X Transmit Interrupts"); 4117 } 4118 4119 for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) { 4120 struct rx_ring *rxr = &rx_que->rxr; 4121 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j); 4122 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, 4123 CTLFLAG_RD, NULL, "RX Queue Name"); 4124 queue_list = SYSCTL_CHILDREN(queue_node); 4125 4126 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head", 4127 CTLTYPE_UINT | CTLFLAG_RD, adapter, 4128 E1000_RDH(rxr->me), 4129 em_sysctl_reg_handler, "IU", 4130 "Receive Descriptor Head"); 4131 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail", 4132 CTLTYPE_UINT | CTLFLAG_RD, adapter, 4133 E1000_RDT(rxr->me), 4134 em_sysctl_reg_handler, "IU", 4135 "Receive Descriptor Tail"); 4136 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq", 4137 CTLFLAG_RD, &rxr->rx_irq, 4138 "Queue MSI-X Receive Interrupts"); 4139 } 4140 4141 /* MAC stats get their own sub node */ 4142 4143 stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats", 4144 CTLFLAG_RD, NULL, "Statistics"); 4145 stat_list = SYSCTL_CHILDREN(stat_node); 4146 4147 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll", 4148 CTLFLAG_RD, &stats->ecol, 4149 "Excessive collisions"); 4150 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll", 4151 CTLFLAG_RD, &stats->scc, 4152 "Single collisions"); 4153 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll", 4154 CTLFLAG_RD, &stats->mcc, 4155 "Multiple collisions"); 4156 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll", 4157 CTLFLAG_RD, &stats->latecol, 4158 "Late collisions"); 4159 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count", 4160 CTLFLAG_RD, &stats->colc, 4161 "Collision Count"); 4162 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors", 4163 CTLFLAG_RD, &adapter->stats.symerrs, 4164 "Symbol Errors"); 4165 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors", 4166 CTLFLAG_RD, &adapter->stats.sec, 4167 "Sequence Errors"); 4168 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count", 4169 CTLFLAG_RD, &adapter->stats.dc, 4170 "Defer Count"); 4171 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets", 4172 CTLFLAG_RD, &adapter->stats.mpc, 4173 "Missed Packets"); 4174 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff", 4175 CTLFLAG_RD, &adapter->stats.rnbc, 4176 "Receive No Buffers"); 4177 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize", 4178 CTLFLAG_RD, &adapter->stats.ruc, 4179 "Receive Undersize"); 4180 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented", 4181 CTLFLAG_RD, &adapter->stats.rfc, 4182 "Fragmented Packets Received "); 4183 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize", 4184 CTLFLAG_RD, &adapter->stats.roc, 4185 "Oversized Packets Received"); 4186 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber", 4187 CTLFLAG_RD, &adapter->stats.rjc, 4188 "Recevied Jabber"); 4189 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs", 4190 CTLFLAG_RD, &adapter->stats.rxerrc, 4191 "Receive Errors"); 4192 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs", 4193 CTLFLAG_RD, &adapter->stats.crcerrs, 4194 "CRC errors"); 4195 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs", 4196 CTLFLAG_RD, &adapter->stats.algnerrc, 4197 "Alignment Errors"); 4198 /* On 82575 these are collision counts */ 4199 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs", 4200 CTLFLAG_RD, &adapter->stats.cexterr, 4201 "Collision/Carrier extension errors"); 4202 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd", 4203 CTLFLAG_RD, &adapter->stats.xonrxc, 4204 "XON Received"); 4205 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd", 4206 CTLFLAG_RD, &adapter->stats.xontxc, 4207 "XON Transmitted"); 4208 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd", 4209 CTLFLAG_RD, &adapter->stats.xoffrxc, 4210 "XOFF Received"); 4211 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd", 4212 CTLFLAG_RD, &adapter->stats.xofftxc, 4213 "XOFF Transmitted"); 4214 4215 /* Packet Reception Stats */ 4216 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd", 4217 CTLFLAG_RD, &adapter->stats.tpr, 4218 "Total Packets Received "); 4219 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd", 4220 CTLFLAG_RD, &adapter->stats.gprc, 4221 "Good Packets Received"); 4222 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd", 4223 CTLFLAG_RD, &adapter->stats.bprc, 4224 "Broadcast Packets Received"); 4225 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd", 4226 CTLFLAG_RD, &adapter->stats.mprc, 4227 "Multicast Packets Received"); 4228 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64", 4229 CTLFLAG_RD, &adapter->stats.prc64, 4230 "64 byte frames received "); 4231 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127", 4232 CTLFLAG_RD, &adapter->stats.prc127, 4233 "65-127 byte frames received"); 4234 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255", 4235 CTLFLAG_RD, &adapter->stats.prc255, 4236 "128-255 byte frames received"); 4237 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511", 4238 CTLFLAG_RD, &adapter->stats.prc511, 4239 "256-511 byte frames received"); 4240 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023", 4241 CTLFLAG_RD, &adapter->stats.prc1023, 4242 "512-1023 byte frames received"); 4243 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522", 4244 CTLFLAG_RD, &adapter->stats.prc1522, 4245 "1023-1522 byte frames received"); 4246 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd", 4247 CTLFLAG_RD, &adapter->stats.gorc, 4248 "Good Octets Received"); 4249 4250 /* Packet Transmission Stats */ 4251 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd", 4252 CTLFLAG_RD, &adapter->stats.gotc, 4253 "Good Octets Transmitted"); 4254 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd", 4255 CTLFLAG_RD, &adapter->stats.tpt, 4256 "Total Packets Transmitted"); 4257 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd", 4258 CTLFLAG_RD, &adapter->stats.gptc, 4259 "Good Packets Transmitted"); 4260 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd", 4261 CTLFLAG_RD, &adapter->stats.bptc, 4262 "Broadcast Packets Transmitted"); 4263 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd", 4264 CTLFLAG_RD, &adapter->stats.mptc, 4265 "Multicast Packets Transmitted"); 4266 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64", 4267 CTLFLAG_RD, &adapter->stats.ptc64, 4268 "64 byte frames transmitted "); 4269 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127", 4270 CTLFLAG_RD, &adapter->stats.ptc127, 4271 "65-127 byte frames transmitted"); 4272 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255", 4273 CTLFLAG_RD, &adapter->stats.ptc255, 4274 "128-255 byte frames transmitted"); 4275 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511", 4276 CTLFLAG_RD, &adapter->stats.ptc511, 4277 "256-511 byte frames transmitted"); 4278 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023", 4279 CTLFLAG_RD, &adapter->stats.ptc1023, 4280 "512-1023 byte frames transmitted"); 4281 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522", 4282 CTLFLAG_RD, &adapter->stats.ptc1522, 4283 "1024-1522 byte frames transmitted"); 4284 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd", 4285 CTLFLAG_RD, &adapter->stats.tsctc, 4286 "TSO Contexts Transmitted"); 4287 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail", 4288 CTLFLAG_RD, &adapter->stats.tsctfc, 4289 "TSO Contexts Failed"); 4290 4291 4292 /* Interrupt Stats */ 4293 4294 int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts", 4295 CTLFLAG_RD, NULL, "Interrupt Statistics"); 4296 int_list = SYSCTL_CHILDREN(int_node); 4297 4298 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts", 4299 CTLFLAG_RD, &adapter->stats.iac, 4300 "Interrupt Assertion Count"); 4301 4302 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer", 4303 CTLFLAG_RD, &adapter->stats.icrxptc, 4304 "Interrupt Cause Rx Pkt Timer Expire Count"); 4305 4306 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer", 4307 CTLFLAG_RD, &adapter->stats.icrxatc, 4308 "Interrupt Cause Rx Abs Timer Expire Count"); 4309 4310 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer", 4311 CTLFLAG_RD, &adapter->stats.ictxptc, 4312 "Interrupt Cause Tx Pkt Timer Expire Count"); 4313 4314 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer", 4315 CTLFLAG_RD, &adapter->stats.ictxatc, 4316 "Interrupt Cause Tx Abs Timer Expire Count"); 4317 4318 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty", 4319 CTLFLAG_RD, &adapter->stats.ictxqec, 4320 "Interrupt Cause Tx Queue Empty Count"); 4321 4322 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh", 4323 CTLFLAG_RD, &adapter->stats.ictxqmtc, 4324 "Interrupt Cause Tx Queue Min Thresh Count"); 4325 4326 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh", 4327 CTLFLAG_RD, &adapter->stats.icrxdmtc, 4328 "Interrupt Cause Rx Desc Min Thresh Count"); 4329 4330 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun", 4331 CTLFLAG_RD, &adapter->stats.icrxoc, 4332 "Interrupt Cause Receiver Overrun Count"); 4333 } 4334 4335 /********************************************************************** 4336 * 4337 * This routine provides a way to dump out the adapter eeprom, 4338 * often a useful debug/service tool. This only dumps the first 4339 * 32 words, stuff that matters is in that extent. 4340 * 4341 **********************************************************************/ 4342 static int 4343 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS) 4344 { 4345 struct adapter *adapter = (struct adapter *)arg1; 4346 int error; 4347 int result; 4348 4349 result = -1; 4350 error = sysctl_handle_int(oidp, &result, 0, req); 4351 4352 if (error || !req->newptr) 4353 return (error); 4354 4355 /* 4356 * This value will cause a hex dump of the 4357 * first 32 16-bit words of the EEPROM to 4358 * the screen. 4359 */ 4360 if (result == 1) 4361 em_print_nvm_info(adapter); 4362 4363 return (error); 4364 } 4365 4366 static void 4367 em_print_nvm_info(struct adapter *adapter) 4368 { 4369 u16 eeprom_data; 4370 int i, j, row = 0; 4371 4372 /* Its a bit crude, but it gets the job done */ 4373 printf("\nInterface EEPROM Dump:\n"); 4374 printf("Offset\n0x0000 "); 4375 for (i = 0, j = 0; i < 32; i++, j++) { 4376 if (j == 8) { /* Make the offset block */ 4377 j = 0; ++row; 4378 printf("\n0x00%x0 ",row); 4379 } 4380 e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data); 4381 printf("%04x ", eeprom_data); 4382 } 4383 printf("\n"); 4384 } 4385 4386 static int 4387 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS) 4388 { 4389 struct em_int_delay_info *info; 4390 struct adapter *adapter; 4391 u32 regval; 4392 int error, usecs, ticks; 4393 4394 info = (struct em_int_delay_info *) arg1; 4395 usecs = info->value; 4396 error = sysctl_handle_int(oidp, &usecs, 0, req); 4397 if (error != 0 || req->newptr == NULL) 4398 return (error); 4399 if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535)) 4400 return (EINVAL); 4401 info->value = usecs; 4402 ticks = EM_USECS_TO_TICKS(usecs); 4403 if (info->offset == E1000_ITR) /* units are 256ns here */ 4404 ticks *= 4; 4405 4406 adapter = info->adapter; 4407 4408 regval = E1000_READ_OFFSET(&adapter->hw, info->offset); 4409 regval = (regval & ~0xffff) | (ticks & 0xffff); 4410 /* Handle a few special cases. */ 4411 switch (info->offset) { 4412 case E1000_RDTR: 4413 break; 4414 case E1000_TIDV: 4415 if (ticks == 0) { 4416 adapter->txd_cmd &= ~E1000_TXD_CMD_IDE; 4417 /* Don't write 0 into the TIDV register. */ 4418 regval++; 4419 } else 4420 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 4421 break; 4422 } 4423 E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval); 4424 return (0); 4425 } 4426 4427 static void 4428 em_add_int_delay_sysctl(struct adapter *adapter, const char *name, 4429 const char *description, struct em_int_delay_info *info, 4430 int offset, int value) 4431 { 4432 info->adapter = adapter; 4433 info->offset = offset; 4434 info->value = value; 4435 SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev), 4436 SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)), 4437 OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, 4438 info, 0, em_sysctl_int_delay, "I", description); 4439 } 4440 4441 /* 4442 * Set flow control using sysctl: 4443 * Flow control values: 4444 * 0 - off 4445 * 1 - rx pause 4446 * 2 - tx pause 4447 * 3 - full 4448 */ 4449 static int 4450 em_set_flowcntl(SYSCTL_HANDLER_ARGS) 4451 { 4452 int error; 4453 static int input = 3; /* default is full */ 4454 struct adapter *adapter = (struct adapter *) arg1; 4455 4456 error = sysctl_handle_int(oidp, &input, 0, req); 4457 4458 if ((error) || (req->newptr == NULL)) 4459 return (error); 4460 4461 if (input == adapter->fc) /* no change? */ 4462 return (error); 4463 4464 switch (input) { 4465 case e1000_fc_rx_pause: 4466 case e1000_fc_tx_pause: 4467 case e1000_fc_full: 4468 case e1000_fc_none: 4469 adapter->hw.fc.requested_mode = input; 4470 adapter->fc = input; 4471 break; 4472 default: 4473 /* Do nothing */ 4474 return (error); 4475 } 4476 4477 adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode; 4478 e1000_force_mac_fc(&adapter->hw); 4479 return (error); 4480 } 4481 4482 /* 4483 * Manage Energy Efficient Ethernet: 4484 * Control values: 4485 * 0/1 - enabled/disabled 4486 */ 4487 static int 4488 em_sysctl_eee(SYSCTL_HANDLER_ARGS) 4489 { 4490 struct adapter *adapter = (struct adapter *) arg1; 4491 int error, value; 4492 4493 value = adapter->hw.dev_spec.ich8lan.eee_disable; 4494 error = sysctl_handle_int(oidp, &value, 0, req); 4495 if (error || req->newptr == NULL) 4496 return (error); 4497 adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0); 4498 em_if_init(adapter->ctx); 4499 4500 return (0); 4501 } 4502 4503 static int 4504 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS) 4505 { 4506 struct adapter *adapter; 4507 int error; 4508 int result; 4509 4510 result = -1; 4511 error = sysctl_handle_int(oidp, &result, 0, req); 4512 4513 if (error || !req->newptr) 4514 return (error); 4515 4516 if (result == 1) { 4517 adapter = (struct adapter *) arg1; 4518 em_print_debug_info(adapter); 4519 } 4520 4521 return (error); 4522 } 4523 4524 static int 4525 em_get_rs(SYSCTL_HANDLER_ARGS) 4526 { 4527 struct adapter *adapter = (struct adapter *) arg1; 4528 int error; 4529 int result; 4530 4531 result = 0; 4532 error = sysctl_handle_int(oidp, &result, 0, req); 4533 4534 if (error || !req->newptr || result != 1) 4535 return (error); 4536 em_dump_rs(adapter); 4537 4538 return (error); 4539 } 4540 4541 static void 4542 em_if_debug(if_ctx_t ctx) 4543 { 4544 em_dump_rs(iflib_get_softc(ctx)); 4545 } 4546 4547 /* 4548 * This routine is meant to be fluid, add whatever is 4549 * needed for debugging a problem. -jfv 4550 */ 4551 static void 4552 em_print_debug_info(struct adapter *adapter) 4553 { 4554 device_t dev = iflib_get_dev(adapter->ctx); 4555 struct ifnet *ifp = iflib_get_ifp(adapter->ctx); 4556 struct tx_ring *txr = &adapter->tx_queues->txr; 4557 struct rx_ring *rxr = &adapter->rx_queues->rxr; 4558 4559 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 4560 printf("Interface is RUNNING "); 4561 else 4562 printf("Interface is NOT RUNNING\n"); 4563 4564 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) 4565 printf("and INACTIVE\n"); 4566 else 4567 printf("and ACTIVE\n"); 4568 4569 for (int i = 0; i < adapter->tx_num_queues; i++, txr++) { 4570 device_printf(dev, "TX Queue %d ------\n", i); 4571 device_printf(dev, "hw tdh = %d, hw tdt = %d\n", 4572 E1000_READ_REG(&adapter->hw, E1000_TDH(i)), 4573 E1000_READ_REG(&adapter->hw, E1000_TDT(i))); 4574 4575 } 4576 for (int j=0; j < adapter->rx_num_queues; j++, rxr++) { 4577 device_printf(dev, "RX Queue %d ------\n", j); 4578 device_printf(dev, "hw rdh = %d, hw rdt = %d\n", 4579 E1000_READ_REG(&adapter->hw, E1000_RDH(j)), 4580 E1000_READ_REG(&adapter->hw, E1000_RDT(j))); 4581 } 4582 } 4583 4584 /* 4585 * 82574 only: 4586 * Write a new value to the EEPROM increasing the number of MSI-X 4587 * vectors from 3 to 5, for proper multiqueue support. 4588 */ 4589 static void 4590 em_enable_vectors_82574(if_ctx_t ctx) 4591 { 4592 struct adapter *adapter = iflib_get_softc(ctx); 4593 struct e1000_hw *hw = &adapter->hw; 4594 device_t dev = iflib_get_dev(ctx); 4595 u16 edata; 4596 4597 e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata); 4598 if (bootverbose) 4599 device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata); 4600 if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) { 4601 device_printf(dev, "Writing to eeprom: increasing " 4602 "reported MSI-X vectors from 3 to 5...\n"); 4603 edata &= ~(EM_NVM_MSIX_N_MASK); 4604 edata |= 4 << EM_NVM_MSIX_N_SHIFT; 4605 e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata); 4606 e1000_update_nvm_checksum(hw); 4607 device_printf(dev, "Writing to eeprom: done\n"); 4608 } 4609 } 4610