xref: /freebsd/sys/dev/e1000/if_em.c (revision d65cd7a57bf0600b722afc770838a5d0c1c3a8e1)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* $FreeBSD$ */
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33 
34 #define em_mac_min e1000_82547
35 #define igb_mac_min e1000_82575
36 
37 /*********************************************************************
38  *  Driver version:
39  *********************************************************************/
40 char em_driver_version[] = "7.6.1-k";
41 
42 /*********************************************************************
43  *  PCI Device ID Table
44  *
45  *  Used by probe to select devices to load on
46  *  Last field stores an index into e1000_strings
47  *  Last entry must be all 0s
48  *
49  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
50  *********************************************************************/
51 
52 static pci_vendor_info_t em_vendor_info_array[] =
53 {
54 	/* Intel(R) PRO/1000 Network Connection - Legacy em*/
55 	PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) PRO/1000 Network Connection"),
56 	PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) PRO/1000 Network Connection"),
57 	PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) PRO/1000 Network Connection"),
58 	PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) PRO/1000 Network Connection"),
59 	PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) PRO/1000 Network Connection"),
60 
61 	PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) PRO/1000 Network Connection"),
62 	PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) PRO/1000 Network Connection"),
63 	PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) PRO/1000 Network Connection"),
64 	PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
65 	PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) PRO/1000 Network Connection"),
66 	PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) PRO/1000 Network Connection"),
67 	PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
68 
69 	PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) PRO/1000 Network Connection"),
70 
71 	PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) PRO/1000 Network Connection"),
72 	PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
73 
74 	PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
75 	PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
76 	PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
77 	PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) PRO/1000 Network Connection"),
78 
79 	PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) PRO/1000 Network Connection"),
80 	PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) PRO/1000 Network Connection"),
81 	PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) PRO/1000 Network Connection"),
82 	PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) PRO/1000 Network Connection"),
83 	PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) PRO/1000 Network Connection"),
84 
85 	PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
86 	PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
87 	PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
88 	PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) PRO/1000 Network Connection"),
89 	PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) PRO/1000 Network Connection"),
90 	PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) PRO/1000 Network Connection"),
91 	PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) PRO/1000 Network Connection"),
92 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
93 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) PRO/1000 Network Connection"),
94 
95 	PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) PRO/1000 Network Connection"),
96 	PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
97 	PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) PRO/1000 Network Connection"),
98 
99 	/* Intel(R) PRO/1000 Network Connection - em */
100 	PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
101 	PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
102 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 Network Connection"),
103 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 Network Connection"),
104 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 Network Connection"),
105 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
106 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 Network Connection"),
107 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 Network Connection"),
108 	PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
109 	PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 Network Connection"),
110 	PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
111 	PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
112 	PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 Network Connection"),
113 	PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 Network Connection"),
114 	PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 Network Connection"),
115 	PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 Network Connection"),
116 	PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) PRO/1000 Network Connection"),
117 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) PRO/1000 Network Connection"),
118 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) PRO/1000 Network Connection"),
119 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) PRO/1000 Network Connection"),
120 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) PRO/1000 Network Connection"),
121 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
122 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
123 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) PRO/1000 Network Connection"),
124 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) PRO/1000 Network Connection"),
125 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
126 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) PRO/1000 Network Connection"),
127 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) PRO/1000 Network Connection"),
128 	PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) PRO/1000 Network Connection"),
129 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
130 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
131 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) PRO/1000 Network Connection"),
132 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) PRO/1000 Network Connection"),
133 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) PRO/1000 Network Connection"),
134 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) PRO/1000 Network Connection"),
135 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
136 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) PRO/1000 Network Connection"),
137 	PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) PRO/1000 Network Connection"),
138 	PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) PRO/1000 Network Connection"),
139 	PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) PRO/1000 Network Connection"),
140 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) PRO/1000 Network Connection"),
141 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) PRO/1000 Network Connection"),
142 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) PRO/1000 Network Connection"),
143 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) PRO/1000 Network Connection"),
144 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) PRO/1000 Network Connection"),
145 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) PRO/1000 Network Connection"),
146 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) PRO/1000 Network Connection"),
147 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) PRO/1000 Network Connection"),
148 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) PRO/1000 Network Connection"),
149 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) PRO/1000 Network Connection"),
150 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) PRO/1000 Network Connection"),
151 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) PRO/1000 Network Connection"),
152 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) PRO/1000 Network Connection"),
153 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) PRO/1000 Network Connection"),
154 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) PRO/1000 Network Connection"),
155 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) PRO/1000 Network Connection"),
156 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) PRO/1000 Network Connection"),
157 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) PRO/1000 Network Connection"),
158 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) PRO/1000 Network Connection"),
159 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) PRO/1000 Network Connection"),
160 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) PRO/1000 Network Connection"),
161 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) PRO/1000 Network Connection"),
162 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) PRO/1000 Network Connection"),
163 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) PRO/1000 Network Connection"),
164 	PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) PRO/1000 Network Connection"),
165 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) PRO/1000 Network Connection"),
166 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) PRO/1000 Network Connection"),
167 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) PRO/1000 Network Connection"),
168 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) PRO/1000 Network Connection"),
169 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) PRO/1000 Network Connection"),
170 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) PRO/1000 Network Connection"),
171 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) PRO/1000 Network Connection"),
172 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) PRO/1000 Network Connection"),
173 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) PRO/1000 Network Connection"),
174 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) PRO/1000 Network Connection"),
175 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) PRO/1000 Network Connection"),
176 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) PRO/1000 Network Connection"),
177 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V10, "Intel(R) PRO/1000 Network Connection"),
178 	/* required last entry */
179 	PVID_END
180 };
181 
182 static pci_vendor_info_t igb_vendor_info_array[] =
183 {
184 	/* Intel(R) PRO/1000 Network Connection - igb */
185 	PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
186 	PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
187 	PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
188 	PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 PCI-Express Network Driver"),
189 	PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
190 	PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
191 	PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
192 	PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
193 	PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 PCI-Express Network Driver"),
194 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
195 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 PCI-Express Network Driver"),
196 	PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
197 	PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
198 	PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
199 	PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
200 	PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
201 	PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) PRO/1000 PCI-Express Network Driver"),
202 	PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
203 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
204 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
205 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) PRO/1000 PCI-Express Network Driver"),
206 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) PRO/1000 PCI-Express Network Driver"),
207 	PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
208 	PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
209 	PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
210 	PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
211 	PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
212 	PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
213 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) PRO/1000 PCI-Express Network Driver"),
214 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) PRO/1000 PCI-Express Network Driver"),
215 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
216 	PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
217 	PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
218 	PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
219 	PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
220 	PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
221 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
222 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
223 	PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
224 	/* required last entry */
225 	PVID_END
226 };
227 
228 /*********************************************************************
229  *  Function prototypes
230  *********************************************************************/
231 static void	*em_register(device_t dev);
232 static void	*igb_register(device_t dev);
233 static int	em_if_attach_pre(if_ctx_t ctx);
234 static int	em_if_attach_post(if_ctx_t ctx);
235 static int	em_if_detach(if_ctx_t ctx);
236 static int	em_if_shutdown(if_ctx_t ctx);
237 static int	em_if_suspend(if_ctx_t ctx);
238 static int	em_if_resume(if_ctx_t ctx);
239 
240 static int	em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets);
241 static int	em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets);
242 static void	em_if_queues_free(if_ctx_t ctx);
243 
244 static uint64_t	em_if_get_counter(if_ctx_t, ift_counter);
245 static void	em_if_init(if_ctx_t ctx);
246 static void	em_if_stop(if_ctx_t ctx);
247 static void	em_if_media_status(if_ctx_t, struct ifmediareq *);
248 static int	em_if_media_change(if_ctx_t ctx);
249 static int	em_if_mtu_set(if_ctx_t ctx, uint32_t mtu);
250 static void	em_if_timer(if_ctx_t ctx, uint16_t qid);
251 static void	em_if_vlan_register(if_ctx_t ctx, u16 vtag);
252 static void	em_if_vlan_unregister(if_ctx_t ctx, u16 vtag);
253 static void	em_if_watchdog_reset(if_ctx_t ctx);
254 static bool	em_if_needs_restart(if_ctx_t ctx, enum iflib_restart_event event);
255 
256 static void	em_identify_hardware(if_ctx_t ctx);
257 static int	em_allocate_pci_resources(if_ctx_t ctx);
258 static void	em_free_pci_resources(if_ctx_t ctx);
259 static void	em_reset(if_ctx_t ctx);
260 static int	em_setup_interface(if_ctx_t ctx);
261 static int	em_setup_msix(if_ctx_t ctx);
262 
263 static void	em_initialize_transmit_unit(if_ctx_t ctx);
264 static void	em_initialize_receive_unit(if_ctx_t ctx);
265 
266 static void	em_if_intr_enable(if_ctx_t ctx);
267 static void	em_if_intr_disable(if_ctx_t ctx);
268 static void	igb_if_intr_enable(if_ctx_t ctx);
269 static void	igb_if_intr_disable(if_ctx_t ctx);
270 static int	em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
271 static int	em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
272 static int	igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
273 static int	igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
274 static void	em_if_multi_set(if_ctx_t ctx);
275 static void	em_if_update_admin_status(if_ctx_t ctx);
276 static void	em_if_debug(if_ctx_t ctx);
277 static void	em_update_stats_counters(struct adapter *);
278 static void	em_add_hw_stats(struct adapter *adapter);
279 static int	em_if_set_promisc(if_ctx_t ctx, int flags);
280 static void	em_setup_vlan_hw_support(struct adapter *);
281 static int	em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
282 static void	em_print_nvm_info(struct adapter *);
283 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
284 static int	em_get_rs(SYSCTL_HANDLER_ARGS);
285 static void	em_print_debug_info(struct adapter *);
286 static int 	em_is_valid_ether_addr(u8 *);
287 static int	em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
288 static void	em_add_int_delay_sysctl(struct adapter *, const char *,
289 		    const char *, struct em_int_delay_info *, int, int);
290 /* Management and WOL Support */
291 static void	em_init_manageability(struct adapter *);
292 static void	em_release_manageability(struct adapter *);
293 static void	em_get_hw_control(struct adapter *);
294 static void	em_release_hw_control(struct adapter *);
295 static void	em_get_wakeup(if_ctx_t ctx);
296 static void	em_enable_wakeup(if_ctx_t ctx);
297 static int	em_enable_phy_wakeup(struct adapter *);
298 static void	em_disable_aspm(struct adapter *);
299 
300 int		em_intr(void *arg);
301 static void	em_disable_promisc(if_ctx_t ctx);
302 
303 /* MSI-X handlers */
304 static int	em_if_msix_intr_assign(if_ctx_t, int);
305 static int	em_msix_link(void *);
306 static void	em_handle_link(void *context);
307 
308 static void	em_enable_vectors_82574(if_ctx_t);
309 
310 static int	em_set_flowcntl(SYSCTL_HANDLER_ARGS);
311 static int	em_sysctl_eee(SYSCTL_HANDLER_ARGS);
312 static void	em_if_led_func(if_ctx_t ctx, int onoff);
313 
314 static int	em_get_regs(SYSCTL_HANDLER_ARGS);
315 
316 static void	lem_smartspeed(struct adapter *adapter);
317 static void	igb_configure_queues(struct adapter *adapter);
318 
319 
320 /*********************************************************************
321  *  FreeBSD Device Interface Entry Points
322  *********************************************************************/
323 static device_method_t em_methods[] = {
324 	/* Device interface */
325 	DEVMETHOD(device_register, em_register),
326 	DEVMETHOD(device_probe, iflib_device_probe),
327 	DEVMETHOD(device_attach, iflib_device_attach),
328 	DEVMETHOD(device_detach, iflib_device_detach),
329 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
330 	DEVMETHOD(device_suspend, iflib_device_suspend),
331 	DEVMETHOD(device_resume, iflib_device_resume),
332 	DEVMETHOD_END
333 };
334 
335 static device_method_t igb_methods[] = {
336 	/* Device interface */
337 	DEVMETHOD(device_register, igb_register),
338 	DEVMETHOD(device_probe, iflib_device_probe),
339 	DEVMETHOD(device_attach, iflib_device_attach),
340 	DEVMETHOD(device_detach, iflib_device_detach),
341 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
342 	DEVMETHOD(device_suspend, iflib_device_suspend),
343 	DEVMETHOD(device_resume, iflib_device_resume),
344 	DEVMETHOD_END
345 };
346 
347 
348 static driver_t em_driver = {
349 	"em", em_methods, sizeof(struct adapter),
350 };
351 
352 static devclass_t em_devclass;
353 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
354 
355 MODULE_DEPEND(em, pci, 1, 1, 1);
356 MODULE_DEPEND(em, ether, 1, 1, 1);
357 MODULE_DEPEND(em, iflib, 1, 1, 1);
358 
359 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
360 
361 static driver_t igb_driver = {
362 	"igb", igb_methods, sizeof(struct adapter),
363 };
364 
365 static devclass_t igb_devclass;
366 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
367 
368 MODULE_DEPEND(igb, pci, 1, 1, 1);
369 MODULE_DEPEND(igb, ether, 1, 1, 1);
370 MODULE_DEPEND(igb, iflib, 1, 1, 1);
371 
372 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
373 
374 static device_method_t em_if_methods[] = {
375 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
376 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
377 	DEVMETHOD(ifdi_detach, em_if_detach),
378 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
379 	DEVMETHOD(ifdi_suspend, em_if_suspend),
380 	DEVMETHOD(ifdi_resume, em_if_resume),
381 	DEVMETHOD(ifdi_init, em_if_init),
382 	DEVMETHOD(ifdi_stop, em_if_stop),
383 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
384 	DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
385 	DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
386 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
387 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
388 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
389 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
390 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
391 	DEVMETHOD(ifdi_media_status, em_if_media_status),
392 	DEVMETHOD(ifdi_media_change, em_if_media_change),
393 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
394 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
395 	DEVMETHOD(ifdi_timer, em_if_timer),
396 	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
397 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
398 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
399 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
400 	DEVMETHOD(ifdi_led_func, em_if_led_func),
401 	DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
402 	DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
403 	DEVMETHOD(ifdi_debug, em_if_debug),
404 	DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
405 	DEVMETHOD_END
406 };
407 
408 static driver_t em_if_driver = {
409 	"em_if", em_if_methods, sizeof(struct adapter)
410 };
411 
412 static device_method_t igb_if_methods[] = {
413 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
414 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
415 	DEVMETHOD(ifdi_detach, em_if_detach),
416 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
417 	DEVMETHOD(ifdi_suspend, em_if_suspend),
418 	DEVMETHOD(ifdi_resume, em_if_resume),
419 	DEVMETHOD(ifdi_init, em_if_init),
420 	DEVMETHOD(ifdi_stop, em_if_stop),
421 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
422 	DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
423 	DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
424 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
425 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
426 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
427 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
428 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
429 	DEVMETHOD(ifdi_media_status, em_if_media_status),
430 	DEVMETHOD(ifdi_media_change, em_if_media_change),
431 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
432 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
433 	DEVMETHOD(ifdi_timer, em_if_timer),
434 	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
435 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
436 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
437 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
438 	DEVMETHOD(ifdi_led_func, em_if_led_func),
439 	DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
440 	DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
441 	DEVMETHOD(ifdi_debug, em_if_debug),
442 	DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
443 	DEVMETHOD_END
444 };
445 
446 static driver_t igb_if_driver = {
447 	"igb_if", igb_if_methods, sizeof(struct adapter)
448 };
449 
450 /*********************************************************************
451  *  Tunable default values.
452  *********************************************************************/
453 
454 #define EM_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
455 #define EM_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
456 
457 #define MAX_INTS_PER_SEC	8000
458 #define DEFAULT_ITR		(1000000000/(MAX_INTS_PER_SEC * 256))
459 
460 /* Allow common code without TSO */
461 #ifndef CSUM_TSO
462 #define CSUM_TSO	0
463 #endif
464 
465 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
466     "EM driver parameters");
467 
468 static int em_disable_crc_stripping = 0;
469 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
470     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
471 
472 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
473 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
474 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
475     0, "Default transmit interrupt delay in usecs");
476 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
477     0, "Default receive interrupt delay in usecs");
478 
479 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
480 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
481 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
482     &em_tx_abs_int_delay_dflt, 0,
483     "Default transmit interrupt delay limit in usecs");
484 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
485     &em_rx_abs_int_delay_dflt, 0,
486     "Default receive interrupt delay limit in usecs");
487 
488 static int em_smart_pwr_down = FALSE;
489 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
490     0, "Set to true to leave smart power down enabled on newer adapters");
491 
492 /* Controls whether promiscuous also shows bad packets */
493 static int em_debug_sbp = TRUE;
494 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
495     "Show bad packets in promiscuous mode");
496 
497 /* How many packets rxeof tries to clean at a time */
498 static int em_rx_process_limit = 100;
499 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
500     &em_rx_process_limit, 0,
501     "Maximum number of received packets to process "
502     "at a time, -1 means unlimited");
503 
504 /* Energy efficient ethernet - default to OFF */
505 static int eee_setting = 1;
506 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
507     "Enable Energy Efficient Ethernet");
508 
509 /*
510 ** Tuneable Interrupt rate
511 */
512 static int em_max_interrupt_rate = 8000;
513 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
514     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
515 
516 
517 
518 /* Global used in WOL setup with multiport cards */
519 static int global_quad_port_a = 0;
520 
521 extern struct if_txrx igb_txrx;
522 extern struct if_txrx em_txrx;
523 extern struct if_txrx lem_txrx;
524 
525 static struct if_shared_ctx em_sctx_init = {
526 	.isc_magic = IFLIB_MAGIC,
527 	.isc_q_align = PAGE_SIZE,
528 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
529 	.isc_tx_maxsegsize = PAGE_SIZE,
530 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
531 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
532 	.isc_rx_maxsize = MJUM9BYTES,
533 	.isc_rx_nsegments = 1,
534 	.isc_rx_maxsegsize = MJUM9BYTES,
535 	.isc_nfl = 1,
536 	.isc_nrxqs = 1,
537 	.isc_ntxqs = 1,
538 	.isc_admin_intrcnt = 1,
539 	.isc_vendor_info = em_vendor_info_array,
540 	.isc_driver_version = em_driver_version,
541 	.isc_driver = &em_if_driver,
542 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
543 
544 	.isc_nrxd_min = {EM_MIN_RXD},
545 	.isc_ntxd_min = {EM_MIN_TXD},
546 	.isc_nrxd_max = {EM_MAX_RXD},
547 	.isc_ntxd_max = {EM_MAX_TXD},
548 	.isc_nrxd_default = {EM_DEFAULT_RXD},
549 	.isc_ntxd_default = {EM_DEFAULT_TXD},
550 };
551 
552 if_shared_ctx_t em_sctx = &em_sctx_init;
553 
554 static struct if_shared_ctx igb_sctx_init = {
555 	.isc_magic = IFLIB_MAGIC,
556 	.isc_q_align = PAGE_SIZE,
557 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
558 	.isc_tx_maxsegsize = PAGE_SIZE,
559 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
560 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
561 	.isc_rx_maxsize = MJUM9BYTES,
562 	.isc_rx_nsegments = 1,
563 	.isc_rx_maxsegsize = MJUM9BYTES,
564 	.isc_nfl = 1,
565 	.isc_nrxqs = 1,
566 	.isc_ntxqs = 1,
567 	.isc_admin_intrcnt = 1,
568 	.isc_vendor_info = igb_vendor_info_array,
569 	.isc_driver_version = em_driver_version,
570 	.isc_driver = &igb_if_driver,
571 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
572 
573 	.isc_nrxd_min = {EM_MIN_RXD},
574 	.isc_ntxd_min = {EM_MIN_TXD},
575 	.isc_nrxd_max = {IGB_MAX_RXD},
576 	.isc_ntxd_max = {IGB_MAX_TXD},
577 	.isc_nrxd_default = {EM_DEFAULT_RXD},
578 	.isc_ntxd_default = {EM_DEFAULT_TXD},
579 };
580 
581 if_shared_ctx_t igb_sctx = &igb_sctx_init;
582 
583 /*****************************************************************
584  *
585  * Dump Registers
586  *
587  ****************************************************************/
588 #define IGB_REGS_LEN 739
589 
590 static int em_get_regs(SYSCTL_HANDLER_ARGS)
591 {
592 	struct adapter *adapter = (struct adapter *)arg1;
593 	struct e1000_hw *hw = &adapter->hw;
594 	struct sbuf *sb;
595 	u32 *regs_buff;
596 	int rc;
597 
598 	regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
599 	memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
600 
601 	rc = sysctl_wire_old_buffer(req, 0);
602 	MPASS(rc == 0);
603 	if (rc != 0) {
604 		free(regs_buff, M_DEVBUF);
605 		return (rc);
606 	}
607 
608 	sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
609 	MPASS(sb != NULL);
610 	if (sb == NULL) {
611 		free(regs_buff, M_DEVBUF);
612 		return (ENOMEM);
613 	}
614 
615 	/* General Registers */
616 	regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
617 	regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
618 	regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
619 	regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
620 	regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
621 	regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
622 	regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
623 	regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
624 	regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
625 	regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
626 	regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
627 	regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
628 	regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
629 	regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
630 	regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
631 	regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
632 	regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
633 	regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
634 	regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
635 	regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
636 	regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
637 	regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
638 
639 	sbuf_printf(sb, "General Registers\n");
640 	sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
641 	sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
642 	sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]);
643 
644 	sbuf_printf(sb, "Interrupt Registers\n");
645 	sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
646 
647 	sbuf_printf(sb, "RX Registers\n");
648 	sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
649 	sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
650 	sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
651 	sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
652 	sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
653 	sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
654 	sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
655 
656 	sbuf_printf(sb, "TX Registers\n");
657 	sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
658 	sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
659 	sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
660 	sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
661 	sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
662 	sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
663 	sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
664 	sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
665 	sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
666 	sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
667 	sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
668 
669 	free(regs_buff, M_DEVBUF);
670 
671 #ifdef DUMP_DESCS
672 	{
673 		if_softc_ctx_t scctx = adapter->shared;
674 		struct rx_ring *rxr = &rx_que->rxr;
675 		struct tx_ring *txr = &tx_que->txr;
676 		int ntxd = scctx->isc_ntxd[0];
677 		int nrxd = scctx->isc_nrxd[0];
678 		int j;
679 
680 	for (j = 0; j < nrxd; j++) {
681 		u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
682 		u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
683 		sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
684 	}
685 
686 	for (j = 0; j < min(ntxd, 256); j++) {
687 		unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
688 
689 		sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
690 			    j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
691 			    buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
692 
693 	}
694 	}
695 #endif
696 
697 	rc = sbuf_finish(sb);
698 	sbuf_delete(sb);
699 	return(rc);
700 }
701 
702 static void *
703 em_register(device_t dev)
704 {
705 	return (em_sctx);
706 }
707 
708 static void *
709 igb_register(device_t dev)
710 {
711 	return (igb_sctx);
712 }
713 
714 static int
715 em_set_num_queues(if_ctx_t ctx)
716 {
717 	struct adapter *adapter = iflib_get_softc(ctx);
718 	int maxqueues;
719 
720 	/* Sanity check based on HW */
721 	switch (adapter->hw.mac.type) {
722 	case e1000_82576:
723 	case e1000_82580:
724 	case e1000_i350:
725 	case e1000_i354:
726 		maxqueues = 8;
727 		break;
728 	case e1000_i210:
729 	case e1000_82575:
730 		maxqueues = 4;
731 		break;
732 	case e1000_i211:
733 	case e1000_82574:
734 		maxqueues = 2;
735 		break;
736 	default:
737 		maxqueues = 1;
738 		break;
739 	}
740 
741 	return (maxqueues);
742 }
743 
744 #define	LEM_CAPS							\
745     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
746     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER
747 
748 #define	EM_CAPS								\
749     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
750     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |	\
751     IFCAP_LRO | IFCAP_VLAN_HWTSO
752 
753 #define	IGB_CAPS							\
754     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
755     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |	\
756     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 |\
757     IFCAP_TSO6
758 
759 /*********************************************************************
760  *  Device initialization routine
761  *
762  *  The attach entry point is called when the driver is being loaded.
763  *  This routine identifies the type of hardware, allocates all resources
764  *  and initializes the hardware.
765  *
766  *  return 0 on success, positive on failure
767  *********************************************************************/
768 static int
769 em_if_attach_pre(if_ctx_t ctx)
770 {
771 	struct adapter *adapter;
772 	if_softc_ctx_t scctx;
773 	device_t dev;
774 	struct e1000_hw *hw;
775 	int error = 0;
776 
777 	INIT_DEBUGOUT("em_if_attach_pre: begin");
778 	dev = iflib_get_dev(ctx);
779 	adapter = iflib_get_softc(ctx);
780 
781 	adapter->ctx = adapter->osdep.ctx = ctx;
782 	adapter->dev = adapter->osdep.dev = dev;
783 	scctx = adapter->shared = iflib_get_softc_ctx(ctx);
784 	adapter->media = iflib_get_media(ctx);
785 	hw = &adapter->hw;
786 
787 	adapter->tx_process_limit = scctx->isc_ntxd[0];
788 
789 	/* SYSCTL stuff */
790 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
791 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
792 	    OID_AUTO, "nvm", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
793 	    adapter, 0, em_sysctl_nvm_info, "I", "NVM Information");
794 
795 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
796 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
797 	    OID_AUTO, "debug", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
798 	    adapter, 0, em_sysctl_debug_info, "I", "Debug Information");
799 
800 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
801 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
802 	    OID_AUTO, "fc", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
803 	    adapter, 0, em_set_flowcntl, "I", "Flow Control");
804 
805 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
806 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
807 	    OID_AUTO, "reg_dump",
808 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter, 0,
809 	    em_get_regs, "A", "Dump Registers");
810 
811 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
812 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
813 	    OID_AUTO, "rs_dump",
814 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, adapter, 0,
815 	    em_get_rs, "I", "Dump RS indexes");
816 
817 	/* Determine hardware and mac info */
818 	em_identify_hardware(ctx);
819 
820 	scctx->isc_tx_nsegments = EM_MAX_SCATTER;
821 	scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
822 	if (bootverbose)
823 		device_printf(dev, "attach_pre capping queues at %d\n",
824 		    scctx->isc_ntxqsets_max);
825 
826 	if (adapter->hw.mac.type >= igb_mac_min) {
827 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
828 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
829 		scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
830 		scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
831 		scctx->isc_txrx = &igb_txrx;
832 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
833 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
834 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
835 		scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
836 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
837 		     CSUM_IP6_TCP | CSUM_IP6_UDP;
838 		if (adapter->hw.mac.type != e1000_82575)
839 			scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
840 		/*
841 		** Some new devices, as with ixgbe, now may
842 		** use a different BAR, so we need to keep
843 		** track of which is used.
844 		*/
845 		scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR);
846 		if (pci_read_config(dev, scctx->isc_msix_bar, 4) == 0)
847 			scctx->isc_msix_bar += 4;
848 	} else if (adapter->hw.mac.type >= em_mac_min) {
849 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
850 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
851 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
852 		scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
853 		scctx->isc_txrx = &em_txrx;
854 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
855 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
856 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
857 		scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
858 		/*
859 		 * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO}
860 		 * by default as we don't have workarounds for all associated
861 		 * silicon errata.  E. g., with several MACs such as 82573E,
862 		 * TSO only works at Gigabit speed and otherwise can cause the
863 		 * hardware to hang (which also would be next to impossible to
864 		 * work around given that already queued TSO-using descriptors
865 		 * would need to be flushed and vlan(4) reconfigured at runtime
866 		 * in case of a link speed change).  Moreover, MACs like 82579
867 		 * still can hang at Gigabit even with all publicly documented
868 		 * TSO workarounds implemented.  Generally, the penality of
869 		 * these workarounds is rather high and may involve copying
870 		 * mbuf data around so advantages of TSO lapse.  Still, TSO may
871 		 * work for a few MACs of this class - at least when sticking
872 		 * with Gigabit - in which case users may enable TSO manually.
873 		 */
874 		scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
875 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
876 		/*
877 		 * We support MSI-X with 82574 only, but indicate to iflib(4)
878 		 * that it shall give MSI at least a try with other devices.
879 		 */
880 		if (adapter->hw.mac.type == e1000_82574) {
881 			scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR);
882 		} else {
883 			scctx->isc_msix_bar = -1;
884 			scctx->isc_disable_msix = 1;
885 		}
886 	} else {
887 		scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
888 		scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
889 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
890 		scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
891 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP;
892 		scctx->isc_txrx = &lem_txrx;
893 		scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
894 		if (adapter->hw.mac.type < e1000_82543)
895 			scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM);
896 		/* INTx only */
897 		scctx->isc_msix_bar = 0;
898 	}
899 
900 	/* Setup PCI resources */
901 	if (em_allocate_pci_resources(ctx)) {
902 		device_printf(dev, "Allocation of PCI resources failed\n");
903 		error = ENXIO;
904 		goto err_pci;
905 	}
906 
907 	/*
908 	** For ICH8 and family we need to
909 	** map the flash memory, and this
910 	** must happen after the MAC is
911 	** identified
912 	*/
913 	if ((hw->mac.type == e1000_ich8lan) ||
914 	    (hw->mac.type == e1000_ich9lan) ||
915 	    (hw->mac.type == e1000_ich10lan) ||
916 	    (hw->mac.type == e1000_pchlan) ||
917 	    (hw->mac.type == e1000_pch2lan) ||
918 	    (hw->mac.type == e1000_pch_lpt)) {
919 		int rid = EM_BAR_TYPE_FLASH;
920 		adapter->flash = bus_alloc_resource_any(dev,
921 		    SYS_RES_MEMORY, &rid, RF_ACTIVE);
922 		if (adapter->flash == NULL) {
923 			device_printf(dev, "Mapping of Flash failed\n");
924 			error = ENXIO;
925 			goto err_pci;
926 		}
927 		/* This is used in the shared code */
928 		hw->flash_address = (u8 *)adapter->flash;
929 		adapter->osdep.flash_bus_space_tag =
930 		    rman_get_bustag(adapter->flash);
931 		adapter->osdep.flash_bus_space_handle =
932 		    rman_get_bushandle(adapter->flash);
933 	}
934 	/*
935 	** In the new SPT device flash is not  a
936 	** separate BAR, rather it is also in BAR0,
937 	** so use the same tag and an offset handle for the
938 	** FLASH read/write macros in the shared code.
939 	*/
940 	else if (hw->mac.type >= e1000_pch_spt) {
941 		adapter->osdep.flash_bus_space_tag =
942 		    adapter->osdep.mem_bus_space_tag;
943 		adapter->osdep.flash_bus_space_handle =
944 		    adapter->osdep.mem_bus_space_handle
945 		    + E1000_FLASH_BASE_ADDR;
946 	}
947 
948 	/* Do Shared Code initialization */
949 	error = e1000_setup_init_funcs(hw, TRUE);
950 	if (error) {
951 		device_printf(dev, "Setup of Shared code failed, error %d\n",
952 		    error);
953 		error = ENXIO;
954 		goto err_pci;
955 	}
956 
957 	em_setup_msix(ctx);
958 	e1000_get_bus_info(hw);
959 
960 	/* Set up some sysctls for the tunable interrupt delays */
961 	em_add_int_delay_sysctl(adapter, "rx_int_delay",
962 	    "receive interrupt delay in usecs", &adapter->rx_int_delay,
963 	    E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
964 	em_add_int_delay_sysctl(adapter, "tx_int_delay",
965 	    "transmit interrupt delay in usecs", &adapter->tx_int_delay,
966 	    E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
967 	em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
968 	    "receive interrupt delay limit in usecs",
969 	    &adapter->rx_abs_int_delay,
970 	    E1000_REGISTER(hw, E1000_RADV),
971 	    em_rx_abs_int_delay_dflt);
972 	em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
973 	    "transmit interrupt delay limit in usecs",
974 	    &adapter->tx_abs_int_delay,
975 	    E1000_REGISTER(hw, E1000_TADV),
976 	    em_tx_abs_int_delay_dflt);
977 	em_add_int_delay_sysctl(adapter, "itr",
978 	    "interrupt delay limit in usecs/4",
979 	    &adapter->tx_itr,
980 	    E1000_REGISTER(hw, E1000_ITR),
981 	    DEFAULT_ITR);
982 
983 	hw->mac.autoneg = DO_AUTO_NEG;
984 	hw->phy.autoneg_wait_to_complete = FALSE;
985 	hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
986 
987 	if (adapter->hw.mac.type < em_mac_min) {
988 		e1000_init_script_state_82541(&adapter->hw, TRUE);
989 		e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
990 	}
991 	/* Copper options */
992 	if (hw->phy.media_type == e1000_media_type_copper) {
993 		hw->phy.mdix = AUTO_ALL_MODES;
994 		hw->phy.disable_polarity_correction = FALSE;
995 		hw->phy.ms_type = EM_MASTER_SLAVE;
996 	}
997 
998 	/*
999 	 * Set the frame limits assuming
1000 	 * standard ethernet sized frames.
1001 	 */
1002 	scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
1003 	    ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
1004 
1005 	/*
1006 	 * This controls when hardware reports transmit completion
1007 	 * status.
1008 	 */
1009 	hw->mac.report_tx_early = 1;
1010 
1011 	/* Allocate multicast array memory. */
1012 	adapter->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
1013 	    MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1014 	if (adapter->mta == NULL) {
1015 		device_printf(dev, "Can not allocate multicast setup array\n");
1016 		error = ENOMEM;
1017 		goto err_late;
1018 	}
1019 
1020 	/* Check SOL/IDER usage */
1021 	if (e1000_check_reset_block(hw))
1022 		device_printf(dev, "PHY reset is blocked"
1023 			      " due to SOL/IDER session.\n");
1024 
1025 	/* Sysctl for setting Energy Efficient Ethernet */
1026 	hw->dev_spec.ich8lan.eee_disable = eee_setting;
1027 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1028 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1029 	    OID_AUTO, "eee_control",
1030 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1031 	    adapter, 0, em_sysctl_eee, "I",
1032 	    "Disable Energy Efficient Ethernet");
1033 
1034 	/*
1035 	** Start from a known state, this is
1036 	** important in reading the nvm and
1037 	** mac from that.
1038 	*/
1039 	e1000_reset_hw(hw);
1040 
1041 	/* Make sure we have a good EEPROM before we read from it */
1042 	if (e1000_validate_nvm_checksum(hw) < 0) {
1043 		/*
1044 		** Some PCI-E parts fail the first check due to
1045 		** the link being in sleep state, call it again,
1046 		** if it fails a second time its a real issue.
1047 		*/
1048 		if (e1000_validate_nvm_checksum(hw) < 0) {
1049 			device_printf(dev,
1050 			    "The EEPROM Checksum Is Not Valid\n");
1051 			error = EIO;
1052 			goto err_late;
1053 		}
1054 	}
1055 
1056 	/* Copy the permanent MAC address out of the EEPROM */
1057 	if (e1000_read_mac_addr(hw) < 0) {
1058 		device_printf(dev, "EEPROM read error while reading MAC"
1059 			      " address\n");
1060 		error = EIO;
1061 		goto err_late;
1062 	}
1063 
1064 	if (!em_is_valid_ether_addr(hw->mac.addr)) {
1065 		device_printf(dev, "Invalid MAC address\n");
1066 		error = EIO;
1067 		goto err_late;
1068 	}
1069 
1070 	/* Disable ULP support */
1071 	e1000_disable_ulp_lpt_lp(hw, TRUE);
1072 
1073 	/*
1074 	 * Get Wake-on-Lan and Management info for later use
1075 	 */
1076 	em_get_wakeup(ctx);
1077 
1078 	/* Enable only WOL MAGIC by default */
1079 	scctx->isc_capenable &= ~IFCAP_WOL;
1080 	if (adapter->wol != 0)
1081 		scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1082 
1083 	iflib_set_mac(ctx, hw->mac.addr);
1084 
1085 	return (0);
1086 
1087 err_late:
1088 	em_release_hw_control(adapter);
1089 err_pci:
1090 	em_free_pci_resources(ctx);
1091 	free(adapter->mta, M_DEVBUF);
1092 
1093 	return (error);
1094 }
1095 
1096 static int
1097 em_if_attach_post(if_ctx_t ctx)
1098 {
1099 	struct adapter *adapter = iflib_get_softc(ctx);
1100 	struct e1000_hw *hw = &adapter->hw;
1101 	int error = 0;
1102 
1103 	/* Setup OS specific network interface */
1104 	error = em_setup_interface(ctx);
1105 	if (error != 0) {
1106 		goto err_late;
1107 	}
1108 
1109 	em_reset(ctx);
1110 
1111 	/* Initialize statistics */
1112 	em_update_stats_counters(adapter);
1113 	hw->mac.get_link_status = 1;
1114 	em_if_update_admin_status(ctx);
1115 	em_add_hw_stats(adapter);
1116 
1117 	/* Non-AMT based hardware can now take control from firmware */
1118 	if (adapter->has_manage && !adapter->has_amt)
1119 		em_get_hw_control(adapter);
1120 
1121 	INIT_DEBUGOUT("em_if_attach_post: end");
1122 
1123 	return (error);
1124 
1125 err_late:
1126 	em_release_hw_control(adapter);
1127 	em_free_pci_resources(ctx);
1128 	em_if_queues_free(ctx);
1129 	free(adapter->mta, M_DEVBUF);
1130 
1131 	return (error);
1132 }
1133 
1134 /*********************************************************************
1135  *  Device removal routine
1136  *
1137  *  The detach entry point is called when the driver is being removed.
1138  *  This routine stops the adapter and deallocates all the resources
1139  *  that were allocated for driver operation.
1140  *
1141  *  return 0 on success, positive on failure
1142  *********************************************************************/
1143 static int
1144 em_if_detach(if_ctx_t ctx)
1145 {
1146 	struct adapter	*adapter = iflib_get_softc(ctx);
1147 
1148 	INIT_DEBUGOUT("em_if_detach: begin");
1149 
1150 	e1000_phy_hw_reset(&adapter->hw);
1151 
1152 	em_release_manageability(adapter);
1153 	em_release_hw_control(adapter);
1154 	em_free_pci_resources(ctx);
1155 
1156 	return (0);
1157 }
1158 
1159 /*********************************************************************
1160  *
1161  *  Shutdown entry point
1162  *
1163  **********************************************************************/
1164 
1165 static int
1166 em_if_shutdown(if_ctx_t ctx)
1167 {
1168 	return em_if_suspend(ctx);
1169 }
1170 
1171 /*
1172  * Suspend/resume device methods.
1173  */
1174 static int
1175 em_if_suspend(if_ctx_t ctx)
1176 {
1177 	struct adapter *adapter = iflib_get_softc(ctx);
1178 
1179 	em_release_manageability(adapter);
1180 	em_release_hw_control(adapter);
1181 	em_enable_wakeup(ctx);
1182 	return (0);
1183 }
1184 
1185 static int
1186 em_if_resume(if_ctx_t ctx)
1187 {
1188 	struct adapter *adapter = iflib_get_softc(ctx);
1189 
1190 	if (adapter->hw.mac.type == e1000_pch2lan)
1191 		e1000_resume_workarounds_pchlan(&adapter->hw);
1192 	em_if_init(ctx);
1193 	em_init_manageability(adapter);
1194 
1195 	return(0);
1196 }
1197 
1198 static int
1199 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1200 {
1201 	int max_frame_size;
1202 	struct adapter *adapter = iflib_get_softc(ctx);
1203 	if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1204 
1205 	 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1206 
1207 	switch (adapter->hw.mac.type) {
1208 	case e1000_82571:
1209 	case e1000_82572:
1210 	case e1000_ich9lan:
1211 	case e1000_ich10lan:
1212 	case e1000_pch2lan:
1213 	case e1000_pch_lpt:
1214 	case e1000_pch_spt:
1215 	case e1000_pch_cnp:
1216 	case e1000_82574:
1217 	case e1000_82583:
1218 	case e1000_80003es2lan:
1219 		/* 9K Jumbo Frame size */
1220 		max_frame_size = 9234;
1221 		break;
1222 	case e1000_pchlan:
1223 		max_frame_size = 4096;
1224 		break;
1225 	case e1000_82542:
1226 	case e1000_ich8lan:
1227 		/* Adapters that do not support jumbo frames */
1228 		max_frame_size = ETHER_MAX_LEN;
1229 		break;
1230 	default:
1231 		if (adapter->hw.mac.type >= igb_mac_min)
1232 			max_frame_size = 9234;
1233 		else /* lem */
1234 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1235 	}
1236 	if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1237 		return (EINVAL);
1238 	}
1239 
1240 	scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
1241 	    mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1242 	return (0);
1243 }
1244 
1245 /*********************************************************************
1246  *  Init entry point
1247  *
1248  *  This routine is used in two ways. It is used by the stack as
1249  *  init entry point in network interface structure. It is also used
1250  *  by the driver as a hw/sw initialization routine to get to a
1251  *  consistent state.
1252  *
1253  **********************************************************************/
1254 static void
1255 em_if_init(if_ctx_t ctx)
1256 {
1257 	struct adapter *adapter = iflib_get_softc(ctx);
1258 	if_softc_ctx_t scctx = adapter->shared;
1259 	struct ifnet *ifp = iflib_get_ifp(ctx);
1260 	struct em_tx_queue *tx_que;
1261 	int i;
1262 
1263 	INIT_DEBUGOUT("em_if_init: begin");
1264 
1265 	/* Get the latest mac address, User can use a LAA */
1266 	bcopy(if_getlladdr(ifp), adapter->hw.mac.addr,
1267 	    ETHER_ADDR_LEN);
1268 
1269 	/* Put the address into the Receive Address Array */
1270 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1271 
1272 	/*
1273 	 * With the 82571 adapter, RAR[0] may be overwritten
1274 	 * when the other port is reset, we make a duplicate
1275 	 * in RAR[14] for that eventuality, this assures
1276 	 * the interface continues to function.
1277 	 */
1278 	if (adapter->hw.mac.type == e1000_82571) {
1279 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1280 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1281 		    E1000_RAR_ENTRIES - 1);
1282 	}
1283 
1284 
1285 	/* Initialize the hardware */
1286 	em_reset(ctx);
1287 	em_if_update_admin_status(ctx);
1288 
1289 	for (i = 0, tx_que = adapter->tx_queues; i < adapter->tx_num_queues; i++, tx_que++) {
1290 		struct tx_ring *txr = &tx_que->txr;
1291 
1292 		txr->tx_rs_cidx = txr->tx_rs_pidx;
1293 
1294 		/* Initialize the last processed descriptor to be the end of
1295 		 * the ring, rather than the start, so that we avoid an
1296 		 * off-by-one error when calculating how many descriptors are
1297 		 * done in the credits_update function.
1298 		 */
1299 		txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1300 	}
1301 
1302 	/* Setup VLAN support, basic and offload if available */
1303 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1304 
1305 	/* Clear bad data from Rx FIFOs */
1306 	if (adapter->hw.mac.type >= igb_mac_min)
1307 		e1000_rx_fifo_flush_82575(&adapter->hw);
1308 
1309 	/* Configure for OS presence */
1310 	em_init_manageability(adapter);
1311 
1312 	/* Prepare transmit descriptors and buffers */
1313 	em_initialize_transmit_unit(ctx);
1314 
1315 	/* Setup Multicast table */
1316 	em_if_multi_set(ctx);
1317 
1318 	adapter->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1319 	em_initialize_receive_unit(ctx);
1320 
1321 	/* Use real VLAN Filter support? */
1322 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
1323 		if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
1324 			/* Use real VLAN Filter support */
1325 			em_setup_vlan_hw_support(adapter);
1326 		else {
1327 			u32 ctrl;
1328 			ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1329 			ctrl |= E1000_CTRL_VME;
1330 			E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1331 		}
1332 	}
1333 
1334 	/* Don't lose promiscuous settings */
1335 	em_if_set_promisc(ctx, IFF_PROMISC);
1336 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1337 
1338 	/* MSI-X configuration for 82574 */
1339 	if (adapter->hw.mac.type == e1000_82574) {
1340 		int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1341 
1342 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1343 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1344 		/* Set the IVAR - interrupt vector routing. */
1345 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars);
1346 	} else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1347 		igb_configure_queues(adapter);
1348 
1349 	/* this clears any pending interrupts */
1350 	E1000_READ_REG(&adapter->hw, E1000_ICR);
1351 	E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
1352 
1353 	/* AMT based hardware can now take control from firmware */
1354 	if (adapter->has_manage && adapter->has_amt)
1355 		em_get_hw_control(adapter);
1356 
1357 	/* Set Energy Efficient Ethernet */
1358 	if (adapter->hw.mac.type >= igb_mac_min &&
1359 	    adapter->hw.phy.media_type == e1000_media_type_copper) {
1360 		if (adapter->hw.mac.type == e1000_i354)
1361 			e1000_set_eee_i354(&adapter->hw, TRUE, TRUE);
1362 		else
1363 			e1000_set_eee_i350(&adapter->hw, TRUE, TRUE);
1364 	}
1365 }
1366 
1367 /*********************************************************************
1368  *
1369  *  Fast Legacy/MSI Combined Interrupt Service routine
1370  *
1371  *********************************************************************/
1372 int
1373 em_intr(void *arg)
1374 {
1375 	struct adapter *adapter = arg;
1376 	if_ctx_t ctx = adapter->ctx;
1377 	u32 reg_icr;
1378 
1379 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1380 
1381 	/* Hot eject? */
1382 	if (reg_icr == 0xffffffff)
1383 		return FILTER_STRAY;
1384 
1385 	/* Definitely not our interrupt. */
1386 	if (reg_icr == 0x0)
1387 		return FILTER_STRAY;
1388 
1389 	/*
1390 	 * Starting with the 82571 chip, bit 31 should be used to
1391 	 * determine whether the interrupt belongs to us.
1392 	 */
1393 	if (adapter->hw.mac.type >= e1000_82571 &&
1394 	    (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1395 		return FILTER_STRAY;
1396 
1397 	/*
1398 	 * Only MSI-X interrupts have one-shot behavior by taking advantage
1399 	 * of the EIAC register.  Thus, explicitly disable interrupts.  This
1400 	 * also works around the MSI message reordering errata on certain
1401 	 * systems.
1402 	 */
1403 	IFDI_INTR_DISABLE(ctx);
1404 
1405 	/* Link status change */
1406 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1407 		em_handle_link(ctx);
1408 
1409 	if (reg_icr & E1000_ICR_RXO)
1410 		adapter->rx_overruns++;
1411 
1412 	return (FILTER_SCHEDULE_THREAD);
1413 }
1414 
1415 static int
1416 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1417 {
1418 	struct adapter *adapter = iflib_get_softc(ctx);
1419 	struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1420 
1421 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims);
1422 	return (0);
1423 }
1424 
1425 static int
1426 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1427 {
1428 	struct adapter *adapter = iflib_get_softc(ctx);
1429 	struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1430 
1431 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, txq->eims);
1432 	return (0);
1433 }
1434 
1435 static int
1436 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1437 {
1438 	struct adapter *adapter = iflib_get_softc(ctx);
1439 	struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1440 
1441 	E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims);
1442 	return (0);
1443 }
1444 
1445 static int
1446 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1447 {
1448 	struct adapter *adapter = iflib_get_softc(ctx);
1449 	struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1450 
1451 	E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txq->eims);
1452 	return (0);
1453 }
1454 
1455 /*********************************************************************
1456  *
1457  *  MSI-X RX Interrupt Service routine
1458  *
1459  **********************************************************************/
1460 static int
1461 em_msix_que(void *arg)
1462 {
1463 	struct em_rx_queue *que = arg;
1464 
1465 	++que->irqs;
1466 
1467 	return (FILTER_SCHEDULE_THREAD);
1468 }
1469 
1470 /*********************************************************************
1471  *
1472  *  MSI-X Link Fast Interrupt Service routine
1473  *
1474  **********************************************************************/
1475 static int
1476 em_msix_link(void *arg)
1477 {
1478 	struct adapter *adapter = arg;
1479 	u32 reg_icr;
1480 
1481 	++adapter->link_irq;
1482 	MPASS(adapter->hw.back != NULL);
1483 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1484 
1485 	if (reg_icr & E1000_ICR_RXO)
1486 		adapter->rx_overruns++;
1487 
1488 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1489 		em_handle_link(adapter->ctx);
1490 	} else if (adapter->hw.mac.type == e1000_82574) {
1491 		/* Only re-arm 82574 if em_if_update_admin_status() won't. */
1492 		E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK |
1493 		    E1000_IMS_LSC);
1494 	}
1495 
1496 	if (adapter->hw.mac.type == e1000_82574) {
1497 		/*
1498 		 * Because we must read the ICR for this interrupt it may
1499 		 * clear other causes using autoclear, for this reason we
1500 		 * simply create a soft interrupt for all these vectors.
1501 		 */
1502 		if (reg_icr)
1503 			E1000_WRITE_REG(&adapter->hw, E1000_ICS, adapter->ims);
1504 	} else {
1505 		/* Re-arm unconditionally */
1506 		E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC);
1507 		E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
1508 	}
1509 
1510 	return (FILTER_HANDLED);
1511 }
1512 
1513 static void
1514 em_handle_link(void *context)
1515 {
1516 	if_ctx_t ctx = context;
1517 	struct adapter *adapter = iflib_get_softc(ctx);
1518 
1519 	adapter->hw.mac.get_link_status = 1;
1520 	iflib_admin_intr_deferred(ctx);
1521 }
1522 
1523 /*********************************************************************
1524  *
1525  *  Media Ioctl callback
1526  *
1527  *  This routine is called whenever the user queries the status of
1528  *  the interface using ifconfig.
1529  *
1530  **********************************************************************/
1531 static void
1532 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1533 {
1534 	struct adapter *adapter = iflib_get_softc(ctx);
1535 	u_char fiber_type = IFM_1000_SX;
1536 
1537 	INIT_DEBUGOUT("em_if_media_status: begin");
1538 
1539 	iflib_admin_intr_deferred(ctx);
1540 
1541 	ifmr->ifm_status = IFM_AVALID;
1542 	ifmr->ifm_active = IFM_ETHER;
1543 
1544 	if (!adapter->link_active) {
1545 		return;
1546 	}
1547 
1548 	ifmr->ifm_status |= IFM_ACTIVE;
1549 
1550 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
1551 	    (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1552 		if (adapter->hw.mac.type == e1000_82545)
1553 			fiber_type = IFM_1000_LX;
1554 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1555 	} else {
1556 		switch (adapter->link_speed) {
1557 		case 10:
1558 			ifmr->ifm_active |= IFM_10_T;
1559 			break;
1560 		case 100:
1561 			ifmr->ifm_active |= IFM_100_TX;
1562 			break;
1563 		case 1000:
1564 			ifmr->ifm_active |= IFM_1000_T;
1565 			break;
1566 		}
1567 		if (adapter->link_duplex == FULL_DUPLEX)
1568 			ifmr->ifm_active |= IFM_FDX;
1569 		else
1570 			ifmr->ifm_active |= IFM_HDX;
1571 	}
1572 }
1573 
1574 /*********************************************************************
1575  *
1576  *  Media Ioctl callback
1577  *
1578  *  This routine is called when the user changes speed/duplex using
1579  *  media/mediopt option with ifconfig.
1580  *
1581  **********************************************************************/
1582 static int
1583 em_if_media_change(if_ctx_t ctx)
1584 {
1585 	struct adapter *adapter = iflib_get_softc(ctx);
1586 	struct ifmedia *ifm = iflib_get_media(ctx);
1587 
1588 	INIT_DEBUGOUT("em_if_media_change: begin");
1589 
1590 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1591 		return (EINVAL);
1592 
1593 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1594 	case IFM_AUTO:
1595 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1596 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1597 		break;
1598 	case IFM_1000_LX:
1599 	case IFM_1000_SX:
1600 	case IFM_1000_T:
1601 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1602 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1603 		break;
1604 	case IFM_100_TX:
1605 		adapter->hw.mac.autoneg = FALSE;
1606 		adapter->hw.phy.autoneg_advertised = 0;
1607 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1608 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1609 		else
1610 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1611 		break;
1612 	case IFM_10_T:
1613 		adapter->hw.mac.autoneg = FALSE;
1614 		adapter->hw.phy.autoneg_advertised = 0;
1615 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1616 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1617 		else
1618 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1619 		break;
1620 	default:
1621 		device_printf(adapter->dev, "Unsupported media type\n");
1622 	}
1623 
1624 	em_if_init(ctx);
1625 
1626 	return (0);
1627 }
1628 
1629 static int
1630 em_if_set_promisc(if_ctx_t ctx, int flags)
1631 {
1632 	struct adapter *adapter = iflib_get_softc(ctx);
1633 	u32 reg_rctl;
1634 
1635 	em_disable_promisc(ctx);
1636 
1637 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1638 
1639 	if (flags & IFF_PROMISC) {
1640 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1641 		/* Turn this on if you want to see bad packets */
1642 		if (em_debug_sbp)
1643 			reg_rctl |= E1000_RCTL_SBP;
1644 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1645 	} else if (flags & IFF_ALLMULTI) {
1646 		reg_rctl |= E1000_RCTL_MPE;
1647 		reg_rctl &= ~E1000_RCTL_UPE;
1648 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1649 	}
1650 	return (0);
1651 }
1652 
1653 static void
1654 em_disable_promisc(if_ctx_t ctx)
1655 {
1656 	struct adapter *adapter = iflib_get_softc(ctx);
1657 	struct ifnet *ifp = iflib_get_ifp(ctx);
1658 	u32 reg_rctl;
1659 	int mcnt = 0;
1660 
1661 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1662 	reg_rctl &= (~E1000_RCTL_UPE);
1663 	if (if_getflags(ifp) & IFF_ALLMULTI)
1664 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1665 	else
1666 		mcnt = if_llmaddr_count(ifp);
1667 	/* Don't disable if in MAX groups */
1668 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1669 		reg_rctl &=  (~E1000_RCTL_MPE);
1670 	reg_rctl &=  (~E1000_RCTL_SBP);
1671 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1672 }
1673 
1674 
1675 static u_int
1676 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1677 {
1678 	u8 *mta = arg;
1679 
1680 	if (cnt == MAX_NUM_MULTICAST_ADDRESSES)
1681 		return (1);
1682 
1683 	bcopy(LLADDR(sdl), &mta[cnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1684 
1685 	return (1);
1686 }
1687 
1688 /*********************************************************************
1689  *  Multicast Update
1690  *
1691  *  This routine is called whenever multicast address list is updated.
1692  *
1693  **********************************************************************/
1694 
1695 static void
1696 em_if_multi_set(if_ctx_t ctx)
1697 {
1698 	struct adapter *adapter = iflib_get_softc(ctx);
1699 	struct ifnet *ifp = iflib_get_ifp(ctx);
1700 	u32 reg_rctl = 0;
1701 	u8  *mta; /* Multicast array memory */
1702 	int mcnt = 0;
1703 
1704 	IOCTL_DEBUGOUT("em_set_multi: begin");
1705 
1706 	mta = adapter->mta;
1707 	bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1708 
1709 	if (adapter->hw.mac.type == e1000_82542 &&
1710 	    adapter->hw.revision_id == E1000_REVISION_2) {
1711 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1712 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1713 			e1000_pci_clear_mwi(&adapter->hw);
1714 		reg_rctl |= E1000_RCTL_RST;
1715 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1716 		msec_delay(5);
1717 	}
1718 
1719 	mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
1720 
1721 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1722 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1723 		reg_rctl |= E1000_RCTL_MPE;
1724 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1725 	} else
1726 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1727 
1728 	if (adapter->hw.mac.type == e1000_82542 &&
1729 	    adapter->hw.revision_id == E1000_REVISION_2) {
1730 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1731 		reg_rctl &= ~E1000_RCTL_RST;
1732 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1733 		msec_delay(5);
1734 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1735 			e1000_pci_set_mwi(&adapter->hw);
1736 	}
1737 }
1738 
1739 /*********************************************************************
1740  *  Timer routine
1741  *
1742  *  This routine schedules em_if_update_admin_status() to check for
1743  *  link status and to gather statistics as well as to perform some
1744  *  controller-specific hardware patting.
1745  *
1746  **********************************************************************/
1747 static void
1748 em_if_timer(if_ctx_t ctx, uint16_t qid)
1749 {
1750 
1751 	if (qid != 0)
1752 		return;
1753 
1754 	iflib_admin_intr_deferred(ctx);
1755 }
1756 
1757 static void
1758 em_if_update_admin_status(if_ctx_t ctx)
1759 {
1760 	struct adapter *adapter = iflib_get_softc(ctx);
1761 	struct e1000_hw *hw = &adapter->hw;
1762 	device_t dev = iflib_get_dev(ctx);
1763 	u32 link_check, thstat, ctrl;
1764 
1765 	link_check = thstat = ctrl = 0;
1766 	/* Get the cached link value or read phy for real */
1767 	switch (hw->phy.media_type) {
1768 	case e1000_media_type_copper:
1769 		if (hw->mac.get_link_status) {
1770 			if (hw->mac.type == e1000_pch_spt)
1771 				msec_delay(50);
1772 			/* Do the work to read phy */
1773 			e1000_check_for_link(hw);
1774 			link_check = !hw->mac.get_link_status;
1775 			if (link_check) /* ESB2 fix */
1776 				e1000_cfg_on_link_up(hw);
1777 		} else {
1778 			link_check = TRUE;
1779 		}
1780 		break;
1781 	case e1000_media_type_fiber:
1782 		e1000_check_for_link(hw);
1783 		link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1784 			    E1000_STATUS_LU);
1785 		break;
1786 	case e1000_media_type_internal_serdes:
1787 		e1000_check_for_link(hw);
1788 		link_check = adapter->hw.mac.serdes_has_link;
1789 		break;
1790 	/* VF device is type_unknown */
1791 	case e1000_media_type_unknown:
1792 		e1000_check_for_link(hw);
1793 		link_check = !hw->mac.get_link_status;
1794 		/* FALLTHROUGH */
1795 	default:
1796 		break;
1797 	}
1798 
1799 	/* Check for thermal downshift or shutdown */
1800 	if (hw->mac.type == e1000_i350) {
1801 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1802 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1803 	}
1804 
1805 	/* Now check for a transition */
1806 	if (link_check && (adapter->link_active == 0)) {
1807 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
1808 		    &adapter->link_duplex);
1809 		/* Check if we must disable SPEED_MODE bit on PCI-E */
1810 		if ((adapter->link_speed != SPEED_1000) &&
1811 		    ((hw->mac.type == e1000_82571) ||
1812 		    (hw->mac.type == e1000_82572))) {
1813 			int tarc0;
1814 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1815 			tarc0 &= ~TARC_SPEED_MODE_BIT;
1816 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1817 		}
1818 		if (bootverbose)
1819 			device_printf(dev, "Link is up %d Mbps %s\n",
1820 			    adapter->link_speed,
1821 			    ((adapter->link_duplex == FULL_DUPLEX) ?
1822 			    "Full Duplex" : "Half Duplex"));
1823 		adapter->link_active = 1;
1824 		adapter->smartspeed = 0;
1825 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
1826 		    E1000_CTRL_EXT_LINK_MODE_GMII &&
1827 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1828 			device_printf(dev, "Link: thermal downshift\n");
1829 		/* Delay Link Up for Phy update */
1830 		if (((hw->mac.type == e1000_i210) ||
1831 		    (hw->mac.type == e1000_i211)) &&
1832 		    (hw->phy.id == I210_I_PHY_ID))
1833 			msec_delay(I210_LINK_DELAY);
1834 		/* Reset if the media type changed. */
1835 		if ((hw->dev_spec._82575.media_changed) &&
1836 			(adapter->hw.mac.type >= igb_mac_min)) {
1837 			hw->dev_spec._82575.media_changed = false;
1838 			adapter->flags |= IGB_MEDIA_RESET;
1839 			em_reset(ctx);
1840 		}
1841 		iflib_link_state_change(ctx, LINK_STATE_UP,
1842 		    IF_Mbps(adapter->link_speed));
1843 	} else if (!link_check && (adapter->link_active == 1)) {
1844 		adapter->link_speed = 0;
1845 		adapter->link_duplex = 0;
1846 		adapter->link_active = 0;
1847 		iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
1848 	}
1849 	em_update_stats_counters(adapter);
1850 
1851 	/* Reset LAA into RAR[0] on 82571 */
1852 	if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
1853 		e1000_rar_set(hw, hw->mac.addr, 0);
1854 
1855 	if (hw->mac.type < em_mac_min)
1856 		lem_smartspeed(adapter);
1857 	else if (hw->mac.type == e1000_82574 &&
1858 	    adapter->intr_type == IFLIB_INTR_MSIX)
1859 		E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK |
1860 		    E1000_IMS_LSC);
1861 }
1862 
1863 static void
1864 em_if_watchdog_reset(if_ctx_t ctx)
1865 {
1866 	struct adapter *adapter = iflib_get_softc(ctx);
1867 
1868 	/*
1869 	 * Just count the event; iflib(4) will already trigger a
1870 	 * sufficient reset of the controller.
1871 	 */
1872 	adapter->watchdog_events++;
1873 }
1874 
1875 /*********************************************************************
1876  *
1877  *  This routine disables all traffic on the adapter by issuing a
1878  *  global reset on the MAC.
1879  *
1880  **********************************************************************/
1881 static void
1882 em_if_stop(if_ctx_t ctx)
1883 {
1884 	struct adapter *adapter = iflib_get_softc(ctx);
1885 
1886 	INIT_DEBUGOUT("em_if_stop: begin");
1887 
1888 	e1000_reset_hw(&adapter->hw);
1889 	if (adapter->hw.mac.type >= e1000_82544)
1890 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0);
1891 
1892 	e1000_led_off(&adapter->hw);
1893 	e1000_cleanup_led(&adapter->hw);
1894 }
1895 
1896 /*********************************************************************
1897  *
1898  *  Determine hardware revision.
1899  *
1900  **********************************************************************/
1901 static void
1902 em_identify_hardware(if_ctx_t ctx)
1903 {
1904 	device_t dev = iflib_get_dev(ctx);
1905 	struct adapter *adapter = iflib_get_softc(ctx);
1906 
1907 	/* Make sure our PCI config space has the necessary stuff set */
1908 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1909 
1910 	/* Save off the information about this board */
1911 	adapter->hw.vendor_id = pci_get_vendor(dev);
1912 	adapter->hw.device_id = pci_get_device(dev);
1913 	adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1914 	adapter->hw.subsystem_vendor_id =
1915 	    pci_read_config(dev, PCIR_SUBVEND_0, 2);
1916 	adapter->hw.subsystem_device_id =
1917 	    pci_read_config(dev, PCIR_SUBDEV_0, 2);
1918 
1919 	/* Do Shared Code Init and Setup */
1920 	if (e1000_set_mac_type(&adapter->hw)) {
1921 		device_printf(dev, "Setup init failure\n");
1922 		return;
1923 	}
1924 }
1925 
1926 static int
1927 em_allocate_pci_resources(if_ctx_t ctx)
1928 {
1929 	struct adapter *adapter = iflib_get_softc(ctx);
1930 	device_t dev = iflib_get_dev(ctx);
1931 	int rid, val;
1932 
1933 	rid = PCIR_BAR(0);
1934 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1935 	    &rid, RF_ACTIVE);
1936 	if (adapter->memory == NULL) {
1937 		device_printf(dev, "Unable to allocate bus resource: memory\n");
1938 		return (ENXIO);
1939 	}
1940 	adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->memory);
1941 	adapter->osdep.mem_bus_space_handle =
1942 	    rman_get_bushandle(adapter->memory);
1943 	adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
1944 
1945 	/* Only older adapters use IO mapping */
1946 	if (adapter->hw.mac.type < em_mac_min &&
1947 	    adapter->hw.mac.type > e1000_82543) {
1948 		/* Figure our where our IO BAR is ? */
1949 		for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1950 			val = pci_read_config(dev, rid, 4);
1951 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1952 				break;
1953 			}
1954 			rid += 4;
1955 			/* check for 64bit BAR */
1956 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1957 				rid += 4;
1958 		}
1959 		if (rid >= PCIR_CIS) {
1960 			device_printf(dev, "Unable to locate IO BAR\n");
1961 			return (ENXIO);
1962 		}
1963 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
1964 		    &rid, RF_ACTIVE);
1965 		if (adapter->ioport == NULL) {
1966 			device_printf(dev, "Unable to allocate bus resource: "
1967 			    "ioport\n");
1968 			return (ENXIO);
1969 		}
1970 		adapter->hw.io_base = 0;
1971 		adapter->osdep.io_bus_space_tag =
1972 		    rman_get_bustag(adapter->ioport);
1973 		adapter->osdep.io_bus_space_handle =
1974 		    rman_get_bushandle(adapter->ioport);
1975 	}
1976 
1977 	adapter->hw.back = &adapter->osdep;
1978 
1979 	return (0);
1980 }
1981 
1982 /*********************************************************************
1983  *
1984  *  Set up the MSI-X Interrupt handlers
1985  *
1986  **********************************************************************/
1987 static int
1988 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
1989 {
1990 	struct adapter *adapter = iflib_get_softc(ctx);
1991 	struct em_rx_queue *rx_que = adapter->rx_queues;
1992 	struct em_tx_queue *tx_que = adapter->tx_queues;
1993 	int error, rid, i, vector = 0, rx_vectors;
1994 	char buf[16];
1995 
1996 	/* First set up ring resources */
1997 	for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) {
1998 		rid = vector + 1;
1999 		snprintf(buf, sizeof(buf), "rxq%d", i);
2000 		error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
2001 		if (error) {
2002 			device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
2003 			adapter->rx_num_queues = i + 1;
2004 			goto fail;
2005 		}
2006 
2007 		rx_que->msix =  vector;
2008 
2009 		/*
2010 		 * Set the bit to enable interrupt
2011 		 * in E1000_IMS -- bits 20 and 21
2012 		 * are for RX0 and RX1, note this has
2013 		 * NOTHING to do with the MSI-X vector
2014 		 */
2015 		if (adapter->hw.mac.type == e1000_82574) {
2016 			rx_que->eims = 1 << (20 + i);
2017 			adapter->ims |= rx_que->eims;
2018 			adapter->ivars |= (8 | rx_que->msix) << (i * 4);
2019 		} else if (adapter->hw.mac.type == e1000_82575)
2020 			rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2021 		else
2022 			rx_que->eims = 1 << vector;
2023 	}
2024 	rx_vectors = vector;
2025 
2026 	vector = 0;
2027 	for (i = 0; i < adapter->tx_num_queues; i++, tx_que++, vector++) {
2028 		snprintf(buf, sizeof(buf), "txq%d", i);
2029 		tx_que = &adapter->tx_queues[i];
2030 		iflib_softirq_alloc_generic(ctx,
2031 		    &adapter->rx_queues[i % adapter->rx_num_queues].que_irq,
2032 		    IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2033 
2034 		tx_que->msix = (vector % adapter->rx_num_queues);
2035 
2036 		/*
2037 		 * Set the bit to enable interrupt
2038 		 * in E1000_IMS -- bits 22 and 23
2039 		 * are for TX0 and TX1, note this has
2040 		 * NOTHING to do with the MSI-X vector
2041 		 */
2042 		if (adapter->hw.mac.type == e1000_82574) {
2043 			tx_que->eims = 1 << (22 + i);
2044 			adapter->ims |= tx_que->eims;
2045 			adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2046 		} else if (adapter->hw.mac.type == e1000_82575) {
2047 			tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2048 		} else {
2049 			tx_que->eims = 1 << i;
2050 		}
2051 	}
2052 
2053 	/* Link interrupt */
2054 	rid = rx_vectors + 1;
2055 	error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq");
2056 
2057 	if (error) {
2058 		device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
2059 		goto fail;
2060 	}
2061 	adapter->linkvec = rx_vectors;
2062 	if (adapter->hw.mac.type < igb_mac_min) {
2063 		adapter->ivars |=  (8 | rx_vectors) << 16;
2064 		adapter->ivars |= 0x80000000;
2065 	}
2066 	return (0);
2067 fail:
2068 	iflib_irq_free(ctx, &adapter->irq);
2069 	rx_que = adapter->rx_queues;
2070 	for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++)
2071 		iflib_irq_free(ctx, &rx_que->que_irq);
2072 	return (error);
2073 }
2074 
2075 static void
2076 igb_configure_queues(struct adapter *adapter)
2077 {
2078 	struct e1000_hw *hw = &adapter->hw;
2079 	struct em_rx_queue *rx_que;
2080 	struct em_tx_queue *tx_que;
2081 	u32 tmp, ivar = 0, newitr = 0;
2082 
2083 	/* First turn on RSS capability */
2084 	if (adapter->hw.mac.type != e1000_82575)
2085 		E1000_WRITE_REG(hw, E1000_GPIE,
2086 		    E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2087 		    E1000_GPIE_PBA | E1000_GPIE_NSICR);
2088 
2089 	/* Turn on MSI-X */
2090 	switch (adapter->hw.mac.type) {
2091 	case e1000_82580:
2092 	case e1000_i350:
2093 	case e1000_i354:
2094 	case e1000_i210:
2095 	case e1000_i211:
2096 	case e1000_vfadapt:
2097 	case e1000_vfadapt_i350:
2098 		/* RX entries */
2099 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2100 			u32 index = i >> 1;
2101 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2102 			rx_que = &adapter->rx_queues[i];
2103 			if (i & 1) {
2104 				ivar &= 0xFF00FFFF;
2105 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2106 			} else {
2107 				ivar &= 0xFFFFFF00;
2108 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2109 			}
2110 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2111 		}
2112 		/* TX entries */
2113 		for (int i = 0; i < adapter->tx_num_queues; i++) {
2114 			u32 index = i >> 1;
2115 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2116 			tx_que = &adapter->tx_queues[i];
2117 			if (i & 1) {
2118 				ivar &= 0x00FFFFFF;
2119 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2120 			} else {
2121 				ivar &= 0xFFFF00FF;
2122 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2123 			}
2124 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2125 			adapter->que_mask |= tx_que->eims;
2126 		}
2127 
2128 		/* And for the link interrupt */
2129 		ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2130 		adapter->link_mask = 1 << adapter->linkvec;
2131 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2132 		break;
2133 	case e1000_82576:
2134 		/* RX entries */
2135 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2136 			u32 index = i & 0x7; /* Each IVAR has two entries */
2137 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2138 			rx_que = &adapter->rx_queues[i];
2139 			if (i < 8) {
2140 				ivar &= 0xFFFFFF00;
2141 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2142 			} else {
2143 				ivar &= 0xFF00FFFF;
2144 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2145 			}
2146 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2147 			adapter->que_mask |= rx_que->eims;
2148 		}
2149 		/* TX entries */
2150 		for (int i = 0; i < adapter->tx_num_queues; i++) {
2151 			u32 index = i & 0x7; /* Each IVAR has two entries */
2152 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2153 			tx_que = &adapter->tx_queues[i];
2154 			if (i < 8) {
2155 				ivar &= 0xFFFF00FF;
2156 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2157 			} else {
2158 				ivar &= 0x00FFFFFF;
2159 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2160 			}
2161 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2162 			adapter->que_mask |= tx_que->eims;
2163 		}
2164 
2165 		/* And for the link interrupt */
2166 		ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2167 		adapter->link_mask = 1 << adapter->linkvec;
2168 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2169 		break;
2170 
2171 	case e1000_82575:
2172 		/* enable MSI-X support*/
2173 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2174 		tmp |= E1000_CTRL_EXT_PBA_CLR;
2175 		/* Auto-Mask interrupts upon ICR read. */
2176 		tmp |= E1000_CTRL_EXT_EIAME;
2177 		tmp |= E1000_CTRL_EXT_IRCA;
2178 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2179 
2180 		/* Queues */
2181 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2182 			rx_que = &adapter->rx_queues[i];
2183 			tmp = E1000_EICR_RX_QUEUE0 << i;
2184 			tmp |= E1000_EICR_TX_QUEUE0 << i;
2185 			rx_que->eims = tmp;
2186 			E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2187 			    i, rx_que->eims);
2188 			adapter->que_mask |= rx_que->eims;
2189 		}
2190 
2191 		/* Link */
2192 		E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
2193 		    E1000_EIMS_OTHER);
2194 		adapter->link_mask |= E1000_EIMS_OTHER;
2195 	default:
2196 		break;
2197 	}
2198 
2199 	/* Set the starting interrupt rate */
2200 	if (em_max_interrupt_rate > 0)
2201 		newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2202 
2203 	if (hw->mac.type == e1000_82575)
2204 		newitr |= newitr << 16;
2205 	else
2206 		newitr |= E1000_EITR_CNT_IGNR;
2207 
2208 	for (int i = 0; i < adapter->rx_num_queues; i++) {
2209 		rx_que = &adapter->rx_queues[i];
2210 		E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2211 	}
2212 
2213 	return;
2214 }
2215 
2216 static void
2217 em_free_pci_resources(if_ctx_t ctx)
2218 {
2219 	struct adapter *adapter = iflib_get_softc(ctx);
2220 	struct em_rx_queue *que = adapter->rx_queues;
2221 	device_t dev = iflib_get_dev(ctx);
2222 
2223 	/* Release all MSI-X queue resources */
2224 	if (adapter->intr_type == IFLIB_INTR_MSIX)
2225 		iflib_irq_free(ctx, &adapter->irq);
2226 
2227 	for (int i = 0; i < adapter->rx_num_queues; i++, que++) {
2228 		iflib_irq_free(ctx, &que->que_irq);
2229 	}
2230 
2231 	if (adapter->memory != NULL) {
2232 		bus_release_resource(dev, SYS_RES_MEMORY,
2233 		    rman_get_rid(adapter->memory), adapter->memory);
2234 		adapter->memory = NULL;
2235 	}
2236 
2237 	if (adapter->flash != NULL) {
2238 		bus_release_resource(dev, SYS_RES_MEMORY,
2239 		    rman_get_rid(adapter->flash), adapter->flash);
2240 		adapter->flash = NULL;
2241 	}
2242 
2243 	if (adapter->ioport != NULL) {
2244 		bus_release_resource(dev, SYS_RES_IOPORT,
2245 		    rman_get_rid(adapter->ioport), adapter->ioport);
2246 		adapter->ioport = NULL;
2247 	}
2248 }
2249 
2250 /* Set up MSI or MSI-X */
2251 static int
2252 em_setup_msix(if_ctx_t ctx)
2253 {
2254 	struct adapter *adapter = iflib_get_softc(ctx);
2255 
2256 	if (adapter->hw.mac.type == e1000_82574) {
2257 		em_enable_vectors_82574(ctx);
2258 	}
2259 	return (0);
2260 }
2261 
2262 /*********************************************************************
2263  *
2264  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2265  *
2266  **********************************************************************/
2267 static void
2268 lem_smartspeed(struct adapter *adapter)
2269 {
2270 	u16 phy_tmp;
2271 
2272 	if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
2273 	    adapter->hw.mac.autoneg == 0 ||
2274 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2275 		return;
2276 
2277 	if (adapter->smartspeed == 0) {
2278 		/* If Master/Slave config fault is asserted twice,
2279 		 * we assume back-to-back */
2280 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2281 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2282 			return;
2283 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2284 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2285 			e1000_read_phy_reg(&adapter->hw,
2286 			    PHY_1000T_CTRL, &phy_tmp);
2287 			if(phy_tmp & CR_1000T_MS_ENABLE) {
2288 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2289 				e1000_write_phy_reg(&adapter->hw,
2290 				    PHY_1000T_CTRL, phy_tmp);
2291 				adapter->smartspeed++;
2292 				if(adapter->hw.mac.autoneg &&
2293 				   !e1000_copper_link_autoneg(&adapter->hw) &&
2294 				   !e1000_read_phy_reg(&adapter->hw,
2295 				    PHY_CONTROL, &phy_tmp)) {
2296 					phy_tmp |= (MII_CR_AUTO_NEG_EN |
2297 						    MII_CR_RESTART_AUTO_NEG);
2298 					e1000_write_phy_reg(&adapter->hw,
2299 					    PHY_CONTROL, phy_tmp);
2300 				}
2301 			}
2302 		}
2303 		return;
2304 	} else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2305 		/* If still no link, perhaps using 2/3 pair cable */
2306 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2307 		phy_tmp |= CR_1000T_MS_ENABLE;
2308 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2309 		if(adapter->hw.mac.autoneg &&
2310 		   !e1000_copper_link_autoneg(&adapter->hw) &&
2311 		   !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2312 			phy_tmp |= (MII_CR_AUTO_NEG_EN |
2313 				    MII_CR_RESTART_AUTO_NEG);
2314 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2315 		}
2316 	}
2317 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2318 	if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2319 		adapter->smartspeed = 0;
2320 }
2321 
2322 /*********************************************************************
2323  *
2324  *  Initialize the DMA Coalescing feature
2325  *
2326  **********************************************************************/
2327 static void
2328 igb_init_dmac(struct adapter *adapter, u32 pba)
2329 {
2330 	device_t	dev = adapter->dev;
2331 	struct e1000_hw *hw = &adapter->hw;
2332 	u32 		dmac, reg = ~E1000_DMACR_DMAC_EN;
2333 	u16		hwm;
2334 	u16		max_frame_size;
2335 
2336 	if (hw->mac.type == e1000_i211)
2337 		return;
2338 
2339 	max_frame_size = adapter->shared->isc_max_frame_size;
2340 	if (hw->mac.type > e1000_82580) {
2341 
2342 		if (adapter->dmac == 0) { /* Disabling it */
2343 			E1000_WRITE_REG(hw, E1000_DMACR, reg);
2344 			return;
2345 		} else
2346 			device_printf(dev, "DMA Coalescing enabled\n");
2347 
2348 		/* Set starting threshold */
2349 		E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2350 
2351 		hwm = 64 * pba - max_frame_size / 16;
2352 		if (hwm < 64 * (pba - 6))
2353 			hwm = 64 * (pba - 6);
2354 		reg = E1000_READ_REG(hw, E1000_FCRTC);
2355 		reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2356 		reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2357 		    & E1000_FCRTC_RTH_COAL_MASK);
2358 		E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2359 
2360 
2361 		dmac = pba - max_frame_size / 512;
2362 		if (dmac < pba - 10)
2363 			dmac = pba - 10;
2364 		reg = E1000_READ_REG(hw, E1000_DMACR);
2365 		reg &= ~E1000_DMACR_DMACTHR_MASK;
2366 		reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2367 		    & E1000_DMACR_DMACTHR_MASK);
2368 
2369 		/* transition to L0x or L1 if available..*/
2370 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2371 
2372 		/* Check if status is 2.5Gb backplane connection
2373 		* before configuration of watchdog timer, which is
2374 		* in msec values in 12.8usec intervals
2375 		* watchdog timer= msec values in 32usec intervals
2376 		* for non 2.5Gb connection
2377 		*/
2378 		if (hw->mac.type == e1000_i354) {
2379 			int status = E1000_READ_REG(hw, E1000_STATUS);
2380 			if ((status & E1000_STATUS_2P5_SKU) &&
2381 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2382 				reg |= ((adapter->dmac * 5) >> 6);
2383 			else
2384 				reg |= (adapter->dmac >> 5);
2385 		} else {
2386 			reg |= (adapter->dmac >> 5);
2387 		}
2388 
2389 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
2390 
2391 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2392 
2393 		/* Set the interval before transition */
2394 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
2395 		if (hw->mac.type == e1000_i350)
2396 			reg |= IGB_DMCTLX_DCFLUSH_DIS;
2397 		/*
2398 		** in 2.5Gb connection, TTLX unit is 0.4 usec
2399 		** which is 0x4*2 = 0xA. But delay is still 4 usec
2400 		*/
2401 		if (hw->mac.type == e1000_i354) {
2402 			int status = E1000_READ_REG(hw, E1000_STATUS);
2403 			if ((status & E1000_STATUS_2P5_SKU) &&
2404 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2405 				reg |= 0xA;
2406 			else
2407 				reg |= 0x4;
2408 		} else {
2409 			reg |= 0x4;
2410 		}
2411 
2412 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2413 
2414 		/* free space in tx packet buffer to wake from DMA coal */
2415 		E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2416 		    (2 * max_frame_size)) >> 6);
2417 
2418 		/* make low power state decision controlled by DMA coal */
2419 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2420 		reg &= ~E1000_PCIEMISC_LX_DECISION;
2421 		E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2422 
2423 	} else if (hw->mac.type == e1000_82580) {
2424 		u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2425 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
2426 		    reg & ~E1000_PCIEMISC_LX_DECISION);
2427 		E1000_WRITE_REG(hw, E1000_DMACR, 0);
2428 	}
2429 }
2430 
2431 /*********************************************************************
2432  *
2433  *  Initialize the hardware to a configuration as specified by the
2434  *  adapter structure.
2435  *
2436  **********************************************************************/
2437 static void
2438 em_reset(if_ctx_t ctx)
2439 {
2440 	device_t dev = iflib_get_dev(ctx);
2441 	struct adapter *adapter = iflib_get_softc(ctx);
2442 	struct ifnet *ifp = iflib_get_ifp(ctx);
2443 	struct e1000_hw *hw = &adapter->hw;
2444 	u16 rx_buffer_size;
2445 	u32 pba;
2446 
2447 	INIT_DEBUGOUT("em_reset: begin");
2448 	/* Let the firmware know the OS is in control */
2449 	em_get_hw_control(adapter);
2450 
2451 	/* Set up smart power down as default off on newer adapters. */
2452 	if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2453 	    hw->mac.type == e1000_82572)) {
2454 		u16 phy_tmp = 0;
2455 
2456 		/* Speed up time to link by disabling smart power down. */
2457 		e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2458 		phy_tmp &= ~IGP02E1000_PM_SPD;
2459 		e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2460 	}
2461 
2462 	/*
2463 	 * Packet Buffer Allocation (PBA)
2464 	 * Writing PBA sets the receive portion of the buffer
2465 	 * the remainder is used for the transmit buffer.
2466 	 */
2467 	switch (hw->mac.type) {
2468 	/* Total Packet Buffer on these is 48K */
2469 	case e1000_82571:
2470 	case e1000_82572:
2471 	case e1000_80003es2lan:
2472 			pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2473 		break;
2474 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2475 			pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2476 		break;
2477 	case e1000_82574:
2478 	case e1000_82583:
2479 			pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2480 		break;
2481 	case e1000_ich8lan:
2482 		pba = E1000_PBA_8K;
2483 		break;
2484 	case e1000_ich9lan:
2485 	case e1000_ich10lan:
2486 		/* Boost Receive side for jumbo frames */
2487 		if (adapter->hw.mac.max_frame_size > 4096)
2488 			pba = E1000_PBA_14K;
2489 		else
2490 			pba = E1000_PBA_10K;
2491 		break;
2492 	case e1000_pchlan:
2493 	case e1000_pch2lan:
2494 	case e1000_pch_lpt:
2495 	case e1000_pch_spt:
2496 	case e1000_pch_cnp:
2497 		pba = E1000_PBA_26K;
2498 		break;
2499 	case e1000_82575:
2500 		pba = E1000_PBA_32K;
2501 		break;
2502 	case e1000_82576:
2503 	case e1000_vfadapt:
2504 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2505 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2506 		break;
2507 	case e1000_82580:
2508 	case e1000_i350:
2509 	case e1000_i354:
2510 	case e1000_vfadapt_i350:
2511 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2512 		pba = e1000_rxpbs_adjust_82580(pba);
2513 		break;
2514 	case e1000_i210:
2515 	case e1000_i211:
2516 		pba = E1000_PBA_34K;
2517 		break;
2518 	default:
2519 		if (adapter->hw.mac.max_frame_size > 8192)
2520 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2521 		else
2522 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2523 	}
2524 
2525 	/* Special needs in case of Jumbo frames */
2526 	if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
2527 		u32 tx_space, min_tx, min_rx;
2528 		pba = E1000_READ_REG(hw, E1000_PBA);
2529 		tx_space = pba >> 16;
2530 		pba &= 0xffff;
2531 		min_tx = (adapter->hw.mac.max_frame_size +
2532 		    sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
2533 		min_tx = roundup2(min_tx, 1024);
2534 		min_tx >>= 10;
2535 		min_rx = adapter->hw.mac.max_frame_size;
2536 		min_rx = roundup2(min_rx, 1024);
2537 		min_rx >>= 10;
2538 		if (tx_space < min_tx &&
2539 		    ((min_tx - tx_space) < pba)) {
2540 			pba = pba - (min_tx - tx_space);
2541 			/*
2542 			 * if short on rx space, rx wins
2543 			 * and must trump tx adjustment
2544 			 */
2545 			if (pba < min_rx)
2546 				pba = min_rx;
2547 		}
2548 		E1000_WRITE_REG(hw, E1000_PBA, pba);
2549 	}
2550 
2551 	if (hw->mac.type < igb_mac_min)
2552 		E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2553 
2554 	INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
2555 
2556 	/*
2557 	 * These parameters control the automatic generation (Tx) and
2558 	 * response (Rx) to Ethernet PAUSE frames.
2559 	 * - High water mark should allow for at least two frames to be
2560 	 *   received after sending an XOFF.
2561 	 * - Low water mark works best when it is very near the high water mark.
2562 	 *   This allows the receiver to restart by sending XON when it has
2563 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
2564 	 *   restart after one full frame is pulled from the buffer. There
2565 	 *   could be several smaller frames in the buffer and if so they will
2566 	 *   not trigger the XON until their total number reduces the buffer
2567 	 *   by 1500.
2568 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2569 	 */
2570 	rx_buffer_size = (pba & 0xffff) << 10;
2571 	hw->fc.high_water = rx_buffer_size -
2572 	    roundup2(adapter->hw.mac.max_frame_size, 1024);
2573 	hw->fc.low_water = hw->fc.high_water - 1500;
2574 
2575 	if (adapter->fc) /* locally set flow control value? */
2576 		hw->fc.requested_mode = adapter->fc;
2577 	else
2578 		hw->fc.requested_mode = e1000_fc_full;
2579 
2580 	if (hw->mac.type == e1000_80003es2lan)
2581 		hw->fc.pause_time = 0xFFFF;
2582 	else
2583 		hw->fc.pause_time = EM_FC_PAUSE_TIME;
2584 
2585 	hw->fc.send_xon = TRUE;
2586 
2587 	/* Device specific overrides/settings */
2588 	switch (hw->mac.type) {
2589 	case e1000_pchlan:
2590 		/* Workaround: no TX flow ctrl for PCH */
2591 		hw->fc.requested_mode = e1000_fc_rx_pause;
2592 		hw->fc.pause_time = 0xFFFF; /* override */
2593 		if (if_getmtu(ifp) > ETHERMTU) {
2594 			hw->fc.high_water = 0x3500;
2595 			hw->fc.low_water = 0x1500;
2596 		} else {
2597 			hw->fc.high_water = 0x5000;
2598 			hw->fc.low_water = 0x3000;
2599 		}
2600 		hw->fc.refresh_time = 0x1000;
2601 		break;
2602 	case e1000_pch2lan:
2603 	case e1000_pch_lpt:
2604 	case e1000_pch_spt:
2605 	case e1000_pch_cnp:
2606 		hw->fc.high_water = 0x5C20;
2607 		hw->fc.low_water = 0x5048;
2608 		hw->fc.pause_time = 0x0650;
2609 		hw->fc.refresh_time = 0x0400;
2610 		/* Jumbos need adjusted PBA */
2611 		if (if_getmtu(ifp) > ETHERMTU)
2612 			E1000_WRITE_REG(hw, E1000_PBA, 12);
2613 		else
2614 			E1000_WRITE_REG(hw, E1000_PBA, 26);
2615 		break;
2616 	case e1000_82575:
2617 	case e1000_82576:
2618 		/* 8-byte granularity */
2619 		hw->fc.low_water = hw->fc.high_water - 8;
2620 		break;
2621 	case e1000_82580:
2622 	case e1000_i350:
2623 	case e1000_i354:
2624 	case e1000_i210:
2625 	case e1000_i211:
2626 	case e1000_vfadapt:
2627 	case e1000_vfadapt_i350:
2628 		/* 16-byte granularity */
2629 		hw->fc.low_water = hw->fc.high_water - 16;
2630 		break;
2631 	case e1000_ich9lan:
2632 	case e1000_ich10lan:
2633 		if (if_getmtu(ifp) > ETHERMTU) {
2634 			hw->fc.high_water = 0x2800;
2635 			hw->fc.low_water = hw->fc.high_water - 8;
2636 			break;
2637 		}
2638 		/* FALLTHROUGH */
2639 	default:
2640 		if (hw->mac.type == e1000_80003es2lan)
2641 			hw->fc.pause_time = 0xFFFF;
2642 		break;
2643 	}
2644 
2645 	/* Issue a global reset */
2646 	e1000_reset_hw(hw);
2647 	if (adapter->hw.mac.type >= igb_mac_min) {
2648 		E1000_WRITE_REG(hw, E1000_WUC, 0);
2649 	} else {
2650 		E1000_WRITE_REG(hw, E1000_WUFC, 0);
2651 		em_disable_aspm(adapter);
2652 	}
2653 	if (adapter->flags & IGB_MEDIA_RESET) {
2654 		e1000_setup_init_funcs(hw, TRUE);
2655 		e1000_get_bus_info(hw);
2656 		adapter->flags &= ~IGB_MEDIA_RESET;
2657 	}
2658 	/* and a re-init */
2659 	if (e1000_init_hw(hw) < 0) {
2660 		device_printf(dev, "Hardware Initialization Failed\n");
2661 		return;
2662 	}
2663 	if (adapter->hw.mac.type >= igb_mac_min)
2664 		igb_init_dmac(adapter, pba);
2665 
2666 	E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2667 	e1000_get_phy_info(hw);
2668 	e1000_check_for_link(hw);
2669 }
2670 
2671 /*
2672  * Initialise the RSS mapping for NICs that support multiple transmit/
2673  * receive rings.
2674  */
2675 
2676 #define RSSKEYLEN 10
2677 static void
2678 em_initialize_rss_mapping(struct adapter *adapter)
2679 {
2680 	uint8_t  rss_key[4 * RSSKEYLEN];
2681 	uint32_t reta = 0;
2682 	struct e1000_hw	*hw = &adapter->hw;
2683 	int i;
2684 
2685 	/*
2686 	 * Configure RSS key
2687 	 */
2688 	arc4rand(rss_key, sizeof(rss_key), 0);
2689 	for (i = 0; i < RSSKEYLEN; ++i) {
2690 		uint32_t rssrk = 0;
2691 
2692 		rssrk = EM_RSSRK_VAL(rss_key, i);
2693 		E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2694 	}
2695 
2696 	/*
2697 	 * Configure RSS redirect table in following fashion:
2698 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2699 	 */
2700 	for (i = 0; i < sizeof(reta); ++i) {
2701 		uint32_t q;
2702 
2703 		q = (i % adapter->rx_num_queues) << 7;
2704 		reta |= q << (8 * i);
2705 	}
2706 
2707 	for (i = 0; i < 32; ++i)
2708 		E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2709 
2710 	E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
2711 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2712 			E1000_MRQC_RSS_FIELD_IPV4 |
2713 			E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2714 			E1000_MRQC_RSS_FIELD_IPV6_EX |
2715 			E1000_MRQC_RSS_FIELD_IPV6);
2716 }
2717 
2718 static void
2719 igb_initialize_rss_mapping(struct adapter *adapter)
2720 {
2721 	struct e1000_hw *hw = &adapter->hw;
2722 	int i;
2723 	int queue_id;
2724 	u32 reta;
2725 	u32 rss_key[10], mrqc, shift = 0;
2726 
2727 	/* XXX? */
2728 	if (adapter->hw.mac.type == e1000_82575)
2729 		shift = 6;
2730 
2731 	/*
2732 	 * The redirection table controls which destination
2733 	 * queue each bucket redirects traffic to.
2734 	 * Each DWORD represents four queues, with the LSB
2735 	 * being the first queue in the DWORD.
2736 	 *
2737 	 * This just allocates buckets to queues using round-robin
2738 	 * allocation.
2739 	 *
2740 	 * NOTE: It Just Happens to line up with the default
2741 	 * RSS allocation method.
2742 	 */
2743 
2744 	/* Warning FM follows */
2745 	reta = 0;
2746 	for (i = 0; i < 128; i++) {
2747 #ifdef RSS
2748 		queue_id = rss_get_indirection_to_bucket(i);
2749 		/*
2750 		 * If we have more queues than buckets, we'll
2751 		 * end up mapping buckets to a subset of the
2752 		 * queues.
2753 		 *
2754 		 * If we have more buckets than queues, we'll
2755 		 * end up instead assigning multiple buckets
2756 		 * to queues.
2757 		 *
2758 		 * Both are suboptimal, but we need to handle
2759 		 * the case so we don't go out of bounds
2760 		 * indexing arrays and such.
2761 		 */
2762 		queue_id = queue_id % adapter->rx_num_queues;
2763 #else
2764 		queue_id = (i % adapter->rx_num_queues);
2765 #endif
2766 		/* Adjust if required */
2767 		queue_id = queue_id << shift;
2768 
2769 		/*
2770 		 * The low 8 bits are for hash value (n+0);
2771 		 * The next 8 bits are for hash value (n+1), etc.
2772 		 */
2773 		reta = reta >> 8;
2774 		reta = reta | ( ((uint32_t) queue_id) << 24);
2775 		if ((i & 3) == 3) {
2776 			E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2777 			reta = 0;
2778 		}
2779 	}
2780 
2781 	/* Now fill in hash table */
2782 
2783 	/*
2784 	 * MRQC: Multiple Receive Queues Command
2785 	 * Set queuing to RSS control, number depends on the device.
2786 	 */
2787 	mrqc = E1000_MRQC_ENABLE_RSS_8Q;
2788 
2789 #ifdef RSS
2790 	/* XXX ew typecasting */
2791 	rss_getkey((uint8_t *) &rss_key);
2792 #else
2793 	arc4rand(&rss_key, sizeof(rss_key), 0);
2794 #endif
2795 	for (i = 0; i < 10; i++)
2796 		E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
2797 
2798 	/*
2799 	 * Configure the RSS fields to hash upon.
2800 	 */
2801 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2802 	    E1000_MRQC_RSS_FIELD_IPV4_TCP);
2803 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2804 	    E1000_MRQC_RSS_FIELD_IPV6_TCP);
2805 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2806 	    E1000_MRQC_RSS_FIELD_IPV6_UDP);
2807 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2808 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2809 
2810 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2811 }
2812 
2813 /*********************************************************************
2814  *
2815  *  Setup networking device structure and register interface media.
2816  *
2817  **********************************************************************/
2818 static int
2819 em_setup_interface(if_ctx_t ctx)
2820 {
2821 	struct ifnet *ifp = iflib_get_ifp(ctx);
2822 	struct adapter *adapter = iflib_get_softc(ctx);
2823 	if_softc_ctx_t scctx = adapter->shared;
2824 
2825 	INIT_DEBUGOUT("em_setup_interface: begin");
2826 
2827 	/* Single Queue */
2828 	if (adapter->tx_num_queues == 1) {
2829 		if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
2830 		if_setsendqready(ifp);
2831 	}
2832 
2833 	/*
2834 	 * Specify the media types supported by this adapter and register
2835 	 * callbacks to update media and link information
2836 	 */
2837 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
2838 	    (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
2839 		u_char fiber_type = IFM_1000_SX;	/* default type */
2840 
2841 		if (adapter->hw.mac.type == e1000_82545)
2842 			fiber_type = IFM_1000_LX;
2843 		ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
2844 		ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2845 	} else {
2846 		ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2847 		ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
2848 		ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2849 		ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
2850 		if (adapter->hw.phy.type != e1000_phy_ife) {
2851 			ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2852 			ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2853 		}
2854 	}
2855 	ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2856 	ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO);
2857 	return (0);
2858 }
2859 
2860 static int
2861 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
2862 {
2863 	struct adapter *adapter = iflib_get_softc(ctx);
2864 	if_softc_ctx_t scctx = adapter->shared;
2865 	int error = E1000_SUCCESS;
2866 	struct em_tx_queue *que;
2867 	int i, j;
2868 
2869 	MPASS(adapter->tx_num_queues > 0);
2870 	MPASS(adapter->tx_num_queues == ntxqsets);
2871 
2872 	/* First allocate the top level queue structs */
2873 	if (!(adapter->tx_queues =
2874 	    (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
2875 	    adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2876 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2877 		return(ENOMEM);
2878 	}
2879 
2880 	for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) {
2881 		/* Set up some basics */
2882 
2883 		struct tx_ring *txr = &que->txr;
2884 		txr->adapter = que->adapter = adapter;
2885 		que->me = txr->me =  i;
2886 
2887 		/* Allocate report status array */
2888 		if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2889 			device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
2890 			error = ENOMEM;
2891 			goto fail;
2892 		}
2893 		for (j = 0; j < scctx->isc_ntxd[0]; j++)
2894 			txr->tx_rsq[j] = QIDX_INVALID;
2895 		/* get the virtual and physical address of the hardware queues */
2896 		txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
2897 		txr->tx_paddr = paddrs[i*ntxqs];
2898 	}
2899 
2900 	if (bootverbose)
2901 		device_printf(iflib_get_dev(ctx),
2902 		    "allocated for %d tx_queues\n", adapter->tx_num_queues);
2903 	return (0);
2904 fail:
2905 	em_if_queues_free(ctx);
2906 	return (error);
2907 }
2908 
2909 static int
2910 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
2911 {
2912 	struct adapter *adapter = iflib_get_softc(ctx);
2913 	int error = E1000_SUCCESS;
2914 	struct em_rx_queue *que;
2915 	int i;
2916 
2917 	MPASS(adapter->rx_num_queues > 0);
2918 	MPASS(adapter->rx_num_queues == nrxqsets);
2919 
2920 	/* First allocate the top level queue structs */
2921 	if (!(adapter->rx_queues =
2922 	    (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
2923 	    adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2924 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2925 		error = ENOMEM;
2926 		goto fail;
2927 	}
2928 
2929 	for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) {
2930 		/* Set up some basics */
2931 		struct rx_ring *rxr = &que->rxr;
2932 		rxr->adapter = que->adapter = adapter;
2933 		rxr->que = que;
2934 		que->me = rxr->me =  i;
2935 
2936 		/* get the virtual and physical address of the hardware queues */
2937 		rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
2938 		rxr->rx_paddr = paddrs[i*nrxqs];
2939 	}
2940 
2941 	if (bootverbose)
2942 		device_printf(iflib_get_dev(ctx),
2943 		    "allocated for %d rx_queues\n", adapter->rx_num_queues);
2944 
2945 	return (0);
2946 fail:
2947 	em_if_queues_free(ctx);
2948 	return (error);
2949 }
2950 
2951 static void
2952 em_if_queues_free(if_ctx_t ctx)
2953 {
2954 	struct adapter *adapter = iflib_get_softc(ctx);
2955 	struct em_tx_queue *tx_que = adapter->tx_queues;
2956 	struct em_rx_queue *rx_que = adapter->rx_queues;
2957 
2958 	if (tx_que != NULL) {
2959 		for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
2960 			struct tx_ring *txr = &tx_que->txr;
2961 			if (txr->tx_rsq == NULL)
2962 				break;
2963 
2964 			free(txr->tx_rsq, M_DEVBUF);
2965 			txr->tx_rsq = NULL;
2966 		}
2967 		free(adapter->tx_queues, M_DEVBUF);
2968 		adapter->tx_queues = NULL;
2969 	}
2970 
2971 	if (rx_que != NULL) {
2972 		free(adapter->rx_queues, M_DEVBUF);
2973 		adapter->rx_queues = NULL;
2974 	}
2975 
2976 	em_release_hw_control(adapter);
2977 
2978 	if (adapter->mta != NULL) {
2979 		free(adapter->mta, M_DEVBUF);
2980 	}
2981 }
2982 
2983 /*********************************************************************
2984  *
2985  *  Enable transmit unit.
2986  *
2987  **********************************************************************/
2988 static void
2989 em_initialize_transmit_unit(if_ctx_t ctx)
2990 {
2991 	struct adapter *adapter = iflib_get_softc(ctx);
2992 	if_softc_ctx_t scctx = adapter->shared;
2993 	struct em_tx_queue *que;
2994 	struct tx_ring	*txr;
2995 	struct e1000_hw	*hw = &adapter->hw;
2996 	u32 tctl, txdctl = 0, tarc, tipg = 0;
2997 
2998 	INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
2999 
3000 	for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
3001 		u64 bus_addr;
3002 		caddr_t offp, endp;
3003 
3004 		que = &adapter->tx_queues[i];
3005 		txr = &que->txr;
3006 		bus_addr = txr->tx_paddr;
3007 
3008 		/* Clear checksum offload context. */
3009 		offp = (caddr_t)&txr->csum_flags;
3010 		endp = (caddr_t)(txr + 1);
3011 		bzero(offp, endp - offp);
3012 
3013 		/* Base and Len of TX Ring */
3014 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
3015 		    scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
3016 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
3017 		    (u32)(bus_addr >> 32));
3018 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
3019 		    (u32)bus_addr);
3020 		/* Init the HEAD/TAIL indices */
3021 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3022 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3023 
3024 		HW_DEBUGOUT2("Base = %x, Length = %x\n",
3025 		    E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)),
3026 		    E1000_READ_REG(&adapter->hw, E1000_TDLEN(i)));
3027 
3028 		txdctl = 0; /* clear txdctl */
3029 		txdctl |= 0x1f; /* PTHRESH */
3030 		txdctl |= 1 << 8; /* HTHRESH */
3031 		txdctl |= 1 << 16;/* WTHRESH */
3032 		txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3033 		txdctl |= E1000_TXDCTL_GRAN;
3034 		txdctl |= 1 << 25; /* LWTHRESH */
3035 
3036 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3037 	}
3038 
3039 	/* Set the default values for the Tx Inter Packet Gap timer */
3040 	switch (adapter->hw.mac.type) {
3041 	case e1000_80003es2lan:
3042 		tipg = DEFAULT_82543_TIPG_IPGR1;
3043 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3044 		    E1000_TIPG_IPGR2_SHIFT;
3045 		break;
3046 	case e1000_82542:
3047 		tipg = DEFAULT_82542_TIPG_IPGT;
3048 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3049 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3050 		break;
3051 	default:
3052 		if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
3053 		    (adapter->hw.phy.media_type ==
3054 		    e1000_media_type_internal_serdes))
3055 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3056 		else
3057 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3058 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3059 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3060 	}
3061 
3062 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
3063 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value);
3064 
3065 	if(adapter->hw.mac.type >= e1000_82540)
3066 		E1000_WRITE_REG(&adapter->hw, E1000_TADV,
3067 		    adapter->tx_abs_int_delay.value);
3068 
3069 	if ((adapter->hw.mac.type == e1000_82571) ||
3070 	    (adapter->hw.mac.type == e1000_82572)) {
3071 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3072 		tarc |= TARC_SPEED_MODE_BIT;
3073 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3074 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
3075 		/* errata: program both queues to unweighted RR */
3076 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3077 		tarc |= 1;
3078 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3079 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
3080 		tarc |= 1;
3081 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3082 	} else if (adapter->hw.mac.type == e1000_82574) {
3083 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3084 		tarc |= TARC_ERRATA_BIT;
3085 		if ( adapter->tx_num_queues > 1) {
3086 			tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3087 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3088 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3089 		} else
3090 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3091 	}
3092 
3093 	if (adapter->tx_int_delay.value > 0)
3094 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3095 
3096 	/* Program the Transmit Control Register */
3097 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
3098 	tctl &= ~E1000_TCTL_CT;
3099 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3100 		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3101 
3102 	if (adapter->hw.mac.type >= e1000_82571)
3103 		tctl |= E1000_TCTL_MULR;
3104 
3105 	/* This write will effectively turn on the transmit unit. */
3106 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
3107 
3108 	/* SPT and KBL errata workarounds */
3109 	if (hw->mac.type == e1000_pch_spt) {
3110 		u32 reg;
3111 		reg = E1000_READ_REG(hw, E1000_IOSFPC);
3112 		reg |= E1000_RCTL_RDMTS_HEX;
3113 		E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3114 		/* i218-i219 Specification Update 1.5.4.5 */
3115 		reg = E1000_READ_REG(hw, E1000_TARC(0));
3116 		reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3117 		reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3118 		E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3119 	}
3120 }
3121 
3122 /*********************************************************************
3123  *
3124  *  Enable receive unit.
3125  *
3126  **********************************************************************/
3127 
3128 static void
3129 em_initialize_receive_unit(if_ctx_t ctx)
3130 {
3131 	struct adapter *adapter = iflib_get_softc(ctx);
3132 	if_softc_ctx_t scctx = adapter->shared;
3133 	struct ifnet *ifp = iflib_get_ifp(ctx);
3134 	struct e1000_hw	*hw = &adapter->hw;
3135 	struct em_rx_queue *que;
3136 	int i;
3137 	u32 rctl, rxcsum, rfctl;
3138 
3139 	INIT_DEBUGOUT("em_initialize_receive_units: begin");
3140 
3141 	/*
3142 	 * Make sure receives are disabled while setting
3143 	 * up the descriptor ring
3144 	 */
3145 	rctl = E1000_READ_REG(hw, E1000_RCTL);
3146 	/* Do not disable if ever enabled on this hardware */
3147 	if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3148 		E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3149 
3150 	/* Setup the Receive Control Register */
3151 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3152 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3153 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3154 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3155 
3156 	/* Do not store bad packets */
3157 	rctl &= ~E1000_RCTL_SBP;
3158 
3159 	/* Enable Long Packet receive */
3160 	if (if_getmtu(ifp) > ETHERMTU)
3161 		rctl |= E1000_RCTL_LPE;
3162 	else
3163 		rctl &= ~E1000_RCTL_LPE;
3164 
3165 	/* Strip the CRC */
3166 	if (!em_disable_crc_stripping)
3167 		rctl |= E1000_RCTL_SECRC;
3168 
3169 	if (adapter->hw.mac.type >= e1000_82540) {
3170 		E1000_WRITE_REG(&adapter->hw, E1000_RADV,
3171 			    adapter->rx_abs_int_delay.value);
3172 
3173 		/*
3174 		 * Set the interrupt throttling rate. Value is calculated
3175 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3176 		 */
3177 		E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
3178 	}
3179 	E1000_WRITE_REG(&adapter->hw, E1000_RDTR,
3180 	    adapter->rx_int_delay.value);
3181 
3182 	/* Use extended rx descriptor formats */
3183 	rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3184 	rfctl |= E1000_RFCTL_EXTEN;
3185 	/*
3186 	 * When using MSI-X interrupts we need to throttle
3187 	 * using the EITR register (82574 only)
3188 	 */
3189 	if (hw->mac.type == e1000_82574) {
3190 		for (int i = 0; i < 4; i++)
3191 			E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3192 			    DEFAULT_ITR);
3193 		/* Disable accelerated acknowledge */
3194 		rfctl |= E1000_RFCTL_ACK_DIS;
3195 	}
3196 	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3197 
3198 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3199 	if (if_getcapenable(ifp) & IFCAP_RXCSUM &&
3200 	    adapter->hw.mac.type >= e1000_82543) {
3201 		if (adapter->tx_num_queues > 1) {
3202 			if (adapter->hw.mac.type >= igb_mac_min) {
3203 				rxcsum |= E1000_RXCSUM_PCSD;
3204 				if (hw->mac.type != e1000_82575)
3205 					rxcsum |= E1000_RXCSUM_CRCOFL;
3206 			} else
3207 				rxcsum |= E1000_RXCSUM_TUOFL |
3208 					E1000_RXCSUM_IPOFL |
3209 					E1000_RXCSUM_PCSD;
3210 		} else {
3211 			if (adapter->hw.mac.type >= igb_mac_min)
3212 				rxcsum |= E1000_RXCSUM_IPPCSE;
3213 			else
3214 				rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3215 			if (adapter->hw.mac.type > e1000_82575)
3216 				rxcsum |= E1000_RXCSUM_CRCOFL;
3217 		}
3218 	} else
3219 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3220 
3221 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3222 
3223 	if (adapter->rx_num_queues > 1) {
3224 		if (adapter->hw.mac.type >= igb_mac_min)
3225 			igb_initialize_rss_mapping(adapter);
3226 		else
3227 			em_initialize_rss_mapping(adapter);
3228 	}
3229 
3230 	/*
3231 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3232 	 * long latencies are observed, like Lenovo X60. This
3233 	 * change eliminates the problem, but since having positive
3234 	 * values in RDTR is a known source of problems on other
3235 	 * platforms another solution is being sought.
3236 	 */
3237 	if (hw->mac.type == e1000_82573)
3238 		E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3239 
3240 	for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3241 		struct rx_ring *rxr = &que->rxr;
3242 		/* Setup the Base and Length of the Rx Descriptor Ring */
3243 		u64 bus_addr = rxr->rx_paddr;
3244 #if 0
3245 		u32 rdt = adapter->rx_num_queues -1;  /* default */
3246 #endif
3247 
3248 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
3249 		    scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
3250 		E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3251 		E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3252 		/* Setup the Head and Tail Descriptor Pointers */
3253 		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3254 		E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3255 	}
3256 
3257 	/*
3258 	 * Set PTHRESH for improved jumbo performance
3259 	 * According to 10.2.5.11 of Intel 82574 Datasheet,
3260 	 * RXDCTL(1) is written whenever RXDCTL(0) is written.
3261 	 * Only write to RXDCTL(1) if there is a need for different
3262 	 * settings.
3263 	 */
3264 
3265 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3266 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3267 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3268 	    (if_getmtu(ifp) > ETHERMTU)) {
3269 		u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3270 		E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3271 	} else if (adapter->hw.mac.type == e1000_82574) {
3272 		for (int i = 0; i < adapter->rx_num_queues; i++) {
3273 			u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3274 			rxdctl |= 0x20; /* PTHRESH */
3275 			rxdctl |= 4 << 8; /* HTHRESH */
3276 			rxdctl |= 4 << 16;/* WTHRESH */
3277 			rxdctl |= 1 << 24; /* Switch to granularity */
3278 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3279 		}
3280 	} else if (adapter->hw.mac.type >= igb_mac_min) {
3281 		u32 psize, srrctl = 0;
3282 
3283 		if (if_getmtu(ifp) > ETHERMTU) {
3284 			/* Set maximum packet len */
3285 			if (adapter->rx_mbuf_sz <= 4096) {
3286 				srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3287 				rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3288 			} else if (adapter->rx_mbuf_sz > 4096) {
3289 				srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3290 				rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3291 			}
3292 			psize = scctx->isc_max_frame_size;
3293 			/* are we on a vlan? */
3294 			if (ifp->if_vlantrunk != NULL)
3295 				psize += VLAN_TAG_SIZE;
3296 			E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
3297 		} else {
3298 			srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3299 			rctl |= E1000_RCTL_SZ_2048;
3300 		}
3301 
3302 		/*
3303 		 * If TX flow control is disabled and there's >1 queue defined,
3304 		 * enable DROP.
3305 		 *
3306 		 * This drops frames rather than hanging the RX MAC for all queues.
3307 		 */
3308 		if ((adapter->rx_num_queues > 1) &&
3309 		    (adapter->fc == e1000_fc_none ||
3310 		     adapter->fc == e1000_fc_rx_pause)) {
3311 			srrctl |= E1000_SRRCTL_DROP_EN;
3312 		}
3313 			/* Setup the Base and Length of the Rx Descriptor Rings */
3314 		for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3315 			struct rx_ring *rxr = &que->rxr;
3316 			u64 bus_addr = rxr->rx_paddr;
3317 			u32 rxdctl;
3318 
3319 #ifdef notyet
3320 			/* Configure for header split? -- ignore for now */
3321 			rxr->hdr_split = igb_header_split;
3322 #else
3323 			srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3324 #endif
3325 
3326 			E1000_WRITE_REG(hw, E1000_RDLEN(i),
3327 					scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3328 			E1000_WRITE_REG(hw, E1000_RDBAH(i),
3329 					(uint32_t)(bus_addr >> 32));
3330 			E1000_WRITE_REG(hw, E1000_RDBAL(i),
3331 					(uint32_t)bus_addr);
3332 			E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3333 			/* Enable this Queue */
3334 			rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3335 			rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3336 			rxdctl &= 0xFFF00000;
3337 			rxdctl |= IGB_RX_PTHRESH;
3338 			rxdctl |= IGB_RX_HTHRESH << 8;
3339 			rxdctl |= IGB_RX_WTHRESH << 16;
3340 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3341 		}
3342 	} else if (adapter->hw.mac.type >= e1000_pch2lan) {
3343 		if (if_getmtu(ifp) > ETHERMTU)
3344 			e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
3345 		else
3346 			e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
3347 	}
3348 
3349 	/* Make sure VLAN Filters are off */
3350 	rctl &= ~E1000_RCTL_VFE;
3351 
3352 	if (adapter->hw.mac.type < igb_mac_min) {
3353 		if (adapter->rx_mbuf_sz == MCLBYTES)
3354 			rctl |= E1000_RCTL_SZ_2048;
3355 		else if (adapter->rx_mbuf_sz == MJUMPAGESIZE)
3356 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3357 		else if (adapter->rx_mbuf_sz > MJUMPAGESIZE)
3358 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3359 
3360 		/* ensure we clear use DTYPE of 00 here */
3361 		rctl &= ~0x00000C00;
3362 	}
3363 
3364 	/* Write out the settings */
3365 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3366 
3367 	return;
3368 }
3369 
3370 static void
3371 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3372 {
3373 	struct adapter *adapter = iflib_get_softc(ctx);
3374 	u32 index, bit;
3375 
3376 	index = (vtag >> 5) & 0x7F;
3377 	bit = vtag & 0x1F;
3378 	adapter->shadow_vfta[index] |= (1 << bit);
3379 	++adapter->num_vlans;
3380 }
3381 
3382 static void
3383 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3384 {
3385 	struct adapter *adapter = iflib_get_softc(ctx);
3386 	u32 index, bit;
3387 
3388 	index = (vtag >> 5) & 0x7F;
3389 	bit = vtag & 0x1F;
3390 	adapter->shadow_vfta[index] &= ~(1 << bit);
3391 	--adapter->num_vlans;
3392 }
3393 
3394 static void
3395 em_setup_vlan_hw_support(struct adapter *adapter)
3396 {
3397 	struct e1000_hw *hw = &adapter->hw;
3398 	u32 reg;
3399 
3400 	/*
3401 	 * We get here thru init_locked, meaning
3402 	 * a soft reset, this has already cleared
3403 	 * the VFTA and other state, so if there
3404 	 * have been no vlan's registered do nothing.
3405 	 */
3406 	if (adapter->num_vlans == 0)
3407 		return;
3408 
3409 	/*
3410 	 * A soft reset zero's out the VFTA, so
3411 	 * we need to repopulate it now.
3412 	 */
3413 	for (int i = 0; i < EM_VFTA_SIZE; i++)
3414 		if (adapter->shadow_vfta[i] != 0)
3415 			E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
3416 			    i, adapter->shadow_vfta[i]);
3417 
3418 	reg = E1000_READ_REG(hw, E1000_CTRL);
3419 	reg |= E1000_CTRL_VME;
3420 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
3421 
3422 	/* Enable the Filter Table */
3423 	reg = E1000_READ_REG(hw, E1000_RCTL);
3424 	reg &= ~E1000_RCTL_CFIEN;
3425 	reg |= E1000_RCTL_VFE;
3426 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
3427 }
3428 
3429 static void
3430 em_if_intr_enable(if_ctx_t ctx)
3431 {
3432 	struct adapter *adapter = iflib_get_softc(ctx);
3433 	struct e1000_hw *hw = &adapter->hw;
3434 	u32 ims_mask = IMS_ENABLE_MASK;
3435 
3436 	if (hw->mac.type == e1000_82574) {
3437 		E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK);
3438 		ims_mask |= adapter->ims;
3439 	}
3440 	E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3441 }
3442 
3443 static void
3444 em_if_intr_disable(if_ctx_t ctx)
3445 {
3446 	struct adapter *adapter = iflib_get_softc(ctx);
3447 	struct e1000_hw *hw = &adapter->hw;
3448 
3449 	if (hw->mac.type == e1000_82574)
3450 		E1000_WRITE_REG(hw, EM_EIAC, 0);
3451 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3452 }
3453 
3454 static void
3455 igb_if_intr_enable(if_ctx_t ctx)
3456 {
3457 	struct adapter *adapter = iflib_get_softc(ctx);
3458 	struct e1000_hw *hw = &adapter->hw;
3459 	u32 mask;
3460 
3461 	if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3462 		mask = (adapter->que_mask | adapter->link_mask);
3463 		E1000_WRITE_REG(hw, E1000_EIAC, mask);
3464 		E1000_WRITE_REG(hw, E1000_EIAM, mask);
3465 		E1000_WRITE_REG(hw, E1000_EIMS, mask);
3466 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3467 	} else
3468 		E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3469 	E1000_WRITE_FLUSH(hw);
3470 }
3471 
3472 static void
3473 igb_if_intr_disable(if_ctx_t ctx)
3474 {
3475 	struct adapter *adapter = iflib_get_softc(ctx);
3476 	struct e1000_hw *hw = &adapter->hw;
3477 
3478 	if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3479 		E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
3480 		E1000_WRITE_REG(hw, E1000_EIAC, 0);
3481 	}
3482 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3483 	E1000_WRITE_FLUSH(hw);
3484 }
3485 
3486 /*
3487  * Bit of a misnomer, what this really means is
3488  * to enable OS management of the system... aka
3489  * to disable special hardware management features
3490  */
3491 static void
3492 em_init_manageability(struct adapter *adapter)
3493 {
3494 	/* A shared code workaround */
3495 #define E1000_82542_MANC2H E1000_MANC2H
3496 	if (adapter->has_manage) {
3497 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3498 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3499 
3500 		/* disable hardware interception of ARP */
3501 		manc &= ~(E1000_MANC_ARP_EN);
3502 
3503 		/* enable receiving management packets to the host */
3504 		manc |= E1000_MANC_EN_MNG2HOST;
3505 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3506 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3507 		manc2h |= E1000_MNG2HOST_PORT_623;
3508 		manc2h |= E1000_MNG2HOST_PORT_664;
3509 		E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3510 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3511 	}
3512 }
3513 
3514 /*
3515  * Give control back to hardware management
3516  * controller if there is one.
3517  */
3518 static void
3519 em_release_manageability(struct adapter *adapter)
3520 {
3521 	if (adapter->has_manage) {
3522 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3523 
3524 		/* re-enable hardware interception of ARP */
3525 		manc |= E1000_MANC_ARP_EN;
3526 		manc &= ~E1000_MANC_EN_MNG2HOST;
3527 
3528 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3529 	}
3530 }
3531 
3532 /*
3533  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3534  * For ASF and Pass Through versions of f/w this means
3535  * that the driver is loaded. For AMT version type f/w
3536  * this means that the network i/f is open.
3537  */
3538 static void
3539 em_get_hw_control(struct adapter *adapter)
3540 {
3541 	u32 ctrl_ext, swsm;
3542 
3543 	if (adapter->vf_ifp)
3544 		return;
3545 
3546 	if (adapter->hw.mac.type == e1000_82573) {
3547 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3548 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3549 		    swsm | E1000_SWSM_DRV_LOAD);
3550 		return;
3551 	}
3552 	/* else */
3553 	ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3554 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3555 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3556 }
3557 
3558 /*
3559  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3560  * For ASF and Pass Through versions of f/w this means that
3561  * the driver is no longer loaded. For AMT versions of the
3562  * f/w this means that the network i/f is closed.
3563  */
3564 static void
3565 em_release_hw_control(struct adapter *adapter)
3566 {
3567 	u32 ctrl_ext, swsm;
3568 
3569 	if (!adapter->has_manage)
3570 		return;
3571 
3572 	if (adapter->hw.mac.type == e1000_82573) {
3573 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3574 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3575 		    swsm & ~E1000_SWSM_DRV_LOAD);
3576 		return;
3577 	}
3578 	/* else */
3579 	ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3580 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3581 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3582 	return;
3583 }
3584 
3585 static int
3586 em_is_valid_ether_addr(u8 *addr)
3587 {
3588 	char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3589 
3590 	if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3591 		return (FALSE);
3592 	}
3593 
3594 	return (TRUE);
3595 }
3596 
3597 /*
3598 ** Parse the interface capabilities with regard
3599 ** to both system management and wake-on-lan for
3600 ** later use.
3601 */
3602 static void
3603 em_get_wakeup(if_ctx_t ctx)
3604 {
3605 	struct adapter *adapter = iflib_get_softc(ctx);
3606 	device_t dev = iflib_get_dev(ctx);
3607 	u16 eeprom_data = 0, device_id, apme_mask;
3608 
3609 	adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
3610 	apme_mask = EM_EEPROM_APME;
3611 
3612 	switch (adapter->hw.mac.type) {
3613 	case e1000_82542:
3614 	case e1000_82543:
3615 		break;
3616 	case e1000_82544:
3617 		e1000_read_nvm(&adapter->hw,
3618 		    NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3619 		apme_mask = EM_82544_APME;
3620 		break;
3621 	case e1000_82546:
3622 	case e1000_82546_rev_3:
3623 		if (adapter->hw.bus.func == 1) {
3624 			e1000_read_nvm(&adapter->hw,
3625 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3626 			break;
3627 		} else
3628 			e1000_read_nvm(&adapter->hw,
3629 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3630 		break;
3631 	case e1000_82573:
3632 	case e1000_82583:
3633 		adapter->has_amt = TRUE;
3634 		/* FALLTHROUGH */
3635 	case e1000_82571:
3636 	case e1000_82572:
3637 	case e1000_80003es2lan:
3638 		if (adapter->hw.bus.func == 1) {
3639 			e1000_read_nvm(&adapter->hw,
3640 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3641 			break;
3642 		} else
3643 			e1000_read_nvm(&adapter->hw,
3644 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3645 		break;
3646 	case e1000_ich8lan:
3647 	case e1000_ich9lan:
3648 	case e1000_ich10lan:
3649 	case e1000_pchlan:
3650 	case e1000_pch2lan:
3651 	case e1000_pch_lpt:
3652 	case e1000_pch_spt:
3653 	case e1000_82575:	/* listing all igb devices */
3654 	case e1000_82576:
3655 	case e1000_82580:
3656 	case e1000_i350:
3657 	case e1000_i354:
3658 	case e1000_i210:
3659 	case e1000_i211:
3660 	case e1000_vfadapt:
3661 	case e1000_vfadapt_i350:
3662 		apme_mask = E1000_WUC_APME;
3663 		adapter->has_amt = TRUE;
3664 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
3665 		break;
3666 	default:
3667 		e1000_read_nvm(&adapter->hw,
3668 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3669 		break;
3670 	}
3671 	if (eeprom_data & apme_mask)
3672 		adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
3673 	/*
3674 	 * We have the eeprom settings, now apply the special cases
3675 	 * where the eeprom may be wrong or the board won't support
3676 	 * wake on lan on a particular port
3677 	 */
3678 	device_id = pci_get_device(dev);
3679 	switch (device_id) {
3680 	case E1000_DEV_ID_82546GB_PCIE:
3681 		adapter->wol = 0;
3682 		break;
3683 	case E1000_DEV_ID_82546EB_FIBER:
3684 	case E1000_DEV_ID_82546GB_FIBER:
3685 		/* Wake events only supported on port A for dual fiber
3686 		 * regardless of eeprom setting */
3687 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3688 		    E1000_STATUS_FUNC_1)
3689 			adapter->wol = 0;
3690 		break;
3691 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
3692 		/* if quad port adapter, disable WoL on all but port A */
3693 		if (global_quad_port_a != 0)
3694 			adapter->wol = 0;
3695 		/* Reset for multiple quad port adapters */
3696 		if (++global_quad_port_a == 4)
3697 			global_quad_port_a = 0;
3698 		break;
3699 	case E1000_DEV_ID_82571EB_FIBER:
3700 		/* Wake events only supported on port A for dual fiber
3701 		 * regardless of eeprom setting */
3702 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3703 		    E1000_STATUS_FUNC_1)
3704 			adapter->wol = 0;
3705 		break;
3706 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
3707 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
3708 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
3709 		/* if quad port adapter, disable WoL on all but port A */
3710 		if (global_quad_port_a != 0)
3711 			adapter->wol = 0;
3712 		/* Reset for multiple quad port adapters */
3713 		if (++global_quad_port_a == 4)
3714 			global_quad_port_a = 0;
3715 		break;
3716 	}
3717 	return;
3718 }
3719 
3720 
3721 /*
3722  * Enable PCI Wake On Lan capability
3723  */
3724 static void
3725 em_enable_wakeup(if_ctx_t ctx)
3726 {
3727 	struct adapter *adapter = iflib_get_softc(ctx);
3728 	device_t dev = iflib_get_dev(ctx);
3729 	if_t ifp = iflib_get_ifp(ctx);
3730 	int error = 0;
3731 	u32 pmc, ctrl, ctrl_ext, rctl;
3732 	u16 status;
3733 
3734 	if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
3735 		return;
3736 
3737 	/*
3738 	 * Determine type of Wakeup: note that wol
3739 	 * is set with all bits on by default.
3740 	 */
3741 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
3742 		adapter->wol &= ~E1000_WUFC_MAG;
3743 
3744 	if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
3745 		adapter->wol &= ~E1000_WUFC_EX;
3746 
3747 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
3748 		adapter->wol &= ~E1000_WUFC_MC;
3749 	else {
3750 		rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3751 		rctl |= E1000_RCTL_MPE;
3752 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3753 	}
3754 
3755 	if (!(adapter->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
3756 		goto pme;
3757 
3758 	/* Advertise the wakeup capability */
3759 	ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
3760 	ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
3761 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
3762 
3763 	/* Keep the laser running on Fiber adapters */
3764 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3765 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
3766 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3767 		ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
3768 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext);
3769 	}
3770 
3771 	if ((adapter->hw.mac.type == e1000_ich8lan) ||
3772 	    (adapter->hw.mac.type == e1000_pchlan) ||
3773 	    (adapter->hw.mac.type == e1000_ich9lan) ||
3774 	    (adapter->hw.mac.type == e1000_ich10lan))
3775 		e1000_suspend_workarounds_ich8lan(&adapter->hw);
3776 
3777 	if ( adapter->hw.mac.type >= e1000_pchlan) {
3778 		error = em_enable_phy_wakeup(adapter);
3779 		if (error)
3780 			goto pme;
3781 	} else {
3782 		/* Enable wakeup by the MAC */
3783 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
3784 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
3785 	}
3786 
3787 	if (adapter->hw.phy.type == e1000_phy_igp_3)
3788 		e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3789 
3790 pme:
3791 	status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
3792 	status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3793 	if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
3794 		status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3795 	pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
3796 
3797 	return;
3798 }
3799 
3800 /*
3801  * WOL in the newer chipset interfaces (pchlan)
3802  * require thing to be copied into the phy
3803  */
3804 static int
3805 em_enable_phy_wakeup(struct adapter *adapter)
3806 {
3807 	struct e1000_hw *hw = &adapter->hw;
3808 	u32 mreg, ret = 0;
3809 	u16 preg;
3810 
3811 	/* copy MAC RARs to PHY RARs */
3812 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
3813 
3814 	/* copy MAC MTA to PHY MTA */
3815 	for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
3816 		mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
3817 		e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
3818 		e1000_write_phy_reg(hw, BM_MTA(i) + 1,
3819 		    (u16)((mreg >> 16) & 0xFFFF));
3820 	}
3821 
3822 	/* configure PHY Rx Control register */
3823 	e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg);
3824 	mreg = E1000_READ_REG(hw, E1000_RCTL);
3825 	if (mreg & E1000_RCTL_UPE)
3826 		preg |= BM_RCTL_UPE;
3827 	if (mreg & E1000_RCTL_MPE)
3828 		preg |= BM_RCTL_MPE;
3829 	preg &= ~(BM_RCTL_MO_MASK);
3830 	if (mreg & E1000_RCTL_MO_3)
3831 		preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
3832 				<< BM_RCTL_MO_SHIFT);
3833 	if (mreg & E1000_RCTL_BAM)
3834 		preg |= BM_RCTL_BAM;
3835 	if (mreg & E1000_RCTL_PMCF)
3836 		preg |= BM_RCTL_PMCF;
3837 	mreg = E1000_READ_REG(hw, E1000_CTRL);
3838 	if (mreg & E1000_CTRL_RFCE)
3839 		preg |= BM_RCTL_RFCE;
3840 	e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg);
3841 
3842 	/* enable PHY wakeup in MAC register */
3843 	E1000_WRITE_REG(hw, E1000_WUC,
3844 	    E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
3845 	E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol);
3846 
3847 	/* configure and enable PHY wakeup in PHY registers */
3848 	e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol);
3849 	e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
3850 
3851 	/* activate PHY wakeup */
3852 	ret = hw->phy.ops.acquire(hw);
3853 	if (ret) {
3854 		printf("Could not acquire PHY\n");
3855 		return ret;
3856 	}
3857 	e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3858 	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
3859 	ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
3860 	if (ret) {
3861 		printf("Could not read PHY page 769\n");
3862 		goto out;
3863 	}
3864 	preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
3865 	ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
3866 	if (ret)
3867 		printf("Could not set PHY Host Wakeup bit\n");
3868 out:
3869 	hw->phy.ops.release(hw);
3870 
3871 	return ret;
3872 }
3873 
3874 static void
3875 em_if_led_func(if_ctx_t ctx, int onoff)
3876 {
3877 	struct adapter *adapter = iflib_get_softc(ctx);
3878 
3879 	if (onoff) {
3880 		e1000_setup_led(&adapter->hw);
3881 		e1000_led_on(&adapter->hw);
3882 	} else {
3883 		e1000_led_off(&adapter->hw);
3884 		e1000_cleanup_led(&adapter->hw);
3885 	}
3886 }
3887 
3888 /*
3889  * Disable the L0S and L1 LINK states
3890  */
3891 static void
3892 em_disable_aspm(struct adapter *adapter)
3893 {
3894 	int base, reg;
3895 	u16 link_cap,link_ctrl;
3896 	device_t dev = adapter->dev;
3897 
3898 	switch (adapter->hw.mac.type) {
3899 	case e1000_82573:
3900 	case e1000_82574:
3901 	case e1000_82583:
3902 		break;
3903 	default:
3904 		return;
3905 	}
3906 	if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
3907 		return;
3908 	reg = base + PCIER_LINK_CAP;
3909 	link_cap = pci_read_config(dev, reg, 2);
3910 	if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
3911 		return;
3912 	reg = base + PCIER_LINK_CTL;
3913 	link_ctrl = pci_read_config(dev, reg, 2);
3914 	link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
3915 	pci_write_config(dev, reg, link_ctrl, 2);
3916 	return;
3917 }
3918 
3919 /**********************************************************************
3920  *
3921  *  Update the board statistics counters.
3922  *
3923  **********************************************************************/
3924 static void
3925 em_update_stats_counters(struct adapter *adapter)
3926 {
3927 	u64 prev_xoffrxc = adapter->stats.xoffrxc;
3928 
3929 	if(adapter->hw.phy.media_type == e1000_media_type_copper ||
3930 	   (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3931 		adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3932 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3933 	}
3934 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3935 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3936 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3937 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3938 
3939 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3940 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3941 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3942 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3943 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3944 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3945 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3946 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3947 	/*
3948 	 ** For watchdog management we need to know if we have been
3949 	 ** paused during the last interval, so capture that here.
3950 	*/
3951 	if (adapter->stats.xoffrxc != prev_xoffrxc)
3952 		adapter->shared->isc_pause_frames = 1;
3953 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3954 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3955 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3956 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3957 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3958 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3959 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3960 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3961 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3962 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3963 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3964 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3965 
3966 	/* For the 64-bit byte counters the low dword must be read first. */
3967 	/* Both registers clear on the read of the high dword */
3968 
3969 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) +
3970 	    ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32);
3971 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) +
3972 	    ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32);
3973 
3974 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3975 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3976 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3977 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3978 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3979 
3980 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3981 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3982 
3983 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3984 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3985 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3986 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3987 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3988 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3989 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3990 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3991 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3992 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3993 
3994 	/* Interrupt Counts */
3995 
3996 	adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC);
3997 	adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC);
3998 	adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC);
3999 	adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC);
4000 	adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC);
4001 	adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC);
4002 	adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC);
4003 	adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC);
4004 	adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC);
4005 
4006 	if (adapter->hw.mac.type >= e1000_82543) {
4007 		adapter->stats.algnerrc +=
4008 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
4009 		adapter->stats.rxerrc +=
4010 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
4011 		adapter->stats.tncrs +=
4012 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
4013 		adapter->stats.cexterr +=
4014 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
4015 		adapter->stats.tsctc +=
4016 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
4017 		adapter->stats.tsctfc +=
4018 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
4019 	}
4020 }
4021 
4022 static uint64_t
4023 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4024 {
4025 	struct adapter *adapter = iflib_get_softc(ctx);
4026 	struct ifnet *ifp = iflib_get_ifp(ctx);
4027 
4028 	switch (cnt) {
4029 	case IFCOUNTER_COLLISIONS:
4030 		return (adapter->stats.colc);
4031 	case IFCOUNTER_IERRORS:
4032 		return (adapter->dropped_pkts + adapter->stats.rxerrc +
4033 		    adapter->stats.crcerrs + adapter->stats.algnerrc +
4034 		    adapter->stats.ruc + adapter->stats.roc +
4035 		    adapter->stats.mpc + adapter->stats.cexterr);
4036 	case IFCOUNTER_OERRORS:
4037 		return (adapter->stats.ecol + adapter->stats.latecol +
4038 		    adapter->watchdog_events);
4039 	default:
4040 		return (if_get_counter_default(ifp, cnt));
4041 	}
4042 }
4043 
4044 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized
4045  * @ctx: iflib context
4046  * @event: event code to check
4047  *
4048  * Defaults to returning true for unknown events.
4049  *
4050  * @returns true if iflib needs to reinit the interface
4051  */
4052 static bool
4053 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
4054 {
4055 	switch (event) {
4056 	case IFLIB_RESTART_VLAN_CONFIG:
4057 		return (false);
4058 	default:
4059 		return (true);
4060 	}
4061 }
4062 
4063 /* Export a single 32-bit register via a read-only sysctl. */
4064 static int
4065 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4066 {
4067 	struct adapter *adapter;
4068 	u_int val;
4069 
4070 	adapter = oidp->oid_arg1;
4071 	val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
4072 	return (sysctl_handle_int(oidp, &val, 0, req));
4073 }
4074 
4075 /*
4076  * Add sysctl variables, one per statistic, to the system.
4077  */
4078 static void
4079 em_add_hw_stats(struct adapter *adapter)
4080 {
4081 	device_t dev = iflib_get_dev(adapter->ctx);
4082 	struct em_tx_queue *tx_que = adapter->tx_queues;
4083 	struct em_rx_queue *rx_que = adapter->rx_queues;
4084 
4085 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4086 	struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4087 	struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4088 	struct e1000_hw_stats *stats = &adapter->stats;
4089 
4090 	struct sysctl_oid *stat_node, *queue_node, *int_node;
4091 	struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4092 
4093 #define QUEUE_NAME_LEN 32
4094 	char namebuf[QUEUE_NAME_LEN];
4095 
4096 	/* Driver Statistics */
4097 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4098 			CTLFLAG_RD, &adapter->dropped_pkts,
4099 			"Driver dropped packets");
4100 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4101 			CTLFLAG_RD, &adapter->link_irq,
4102 			"Link MSI-X IRQ Handled");
4103 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4104 			CTLFLAG_RD, &adapter->rx_overruns,
4105 			"RX overruns");
4106 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4107 			CTLFLAG_RD, &adapter->watchdog_events,
4108 			"Watchdog timeouts");
4109 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4110 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4111 	    adapter, E1000_CTRL, em_sysctl_reg_handler, "IU",
4112 	    "Device Control Register");
4113 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4114 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4115 	    adapter, E1000_RCTL, em_sysctl_reg_handler, "IU",
4116 	    "Receiver Control Register");
4117 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4118 			CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
4119 			"Flow Control High Watermark");
4120 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4121 			CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
4122 			"Flow Control Low Watermark");
4123 
4124 	for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
4125 		struct tx_ring *txr = &tx_que->txr;
4126 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4127 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4128 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
4129 		queue_list = SYSCTL_CHILDREN(queue_node);
4130 
4131 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4132 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4133 		    E1000_TDH(txr->me), em_sysctl_reg_handler, "IU",
4134 		    "Transmit Descriptor Head");
4135 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4136 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4137 		    E1000_TDT(txr->me), em_sysctl_reg_handler, "IU",
4138 		    "Transmit Descriptor Tail");
4139 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4140 				CTLFLAG_RD, &txr->tx_irq,
4141 				"Queue MSI-X Transmit Interrupts");
4142 	}
4143 
4144 	for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) {
4145 		struct rx_ring *rxr = &rx_que->rxr;
4146 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4147 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4148 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
4149 		queue_list = SYSCTL_CHILDREN(queue_node);
4150 
4151 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4152 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4153 		    E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU",
4154 		    "Receive Descriptor Head");
4155 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4156 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4157 		    E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU",
4158 		    "Receive Descriptor Tail");
4159 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
4160 				CTLFLAG_RD, &rxr->rx_irq,
4161 				"Queue MSI-X Receive Interrupts");
4162 	}
4163 
4164 	/* MAC stats get their own sub node */
4165 
4166 	stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
4167 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
4168 	stat_list = SYSCTL_CHILDREN(stat_node);
4169 
4170 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
4171 			CTLFLAG_RD, &stats->ecol,
4172 			"Excessive collisions");
4173 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
4174 			CTLFLAG_RD, &stats->scc,
4175 			"Single collisions");
4176 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
4177 			CTLFLAG_RD, &stats->mcc,
4178 			"Multiple collisions");
4179 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
4180 			CTLFLAG_RD, &stats->latecol,
4181 			"Late collisions");
4182 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
4183 			CTLFLAG_RD, &stats->colc,
4184 			"Collision Count");
4185 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
4186 			CTLFLAG_RD, &adapter->stats.symerrs,
4187 			"Symbol Errors");
4188 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
4189 			CTLFLAG_RD, &adapter->stats.sec,
4190 			"Sequence Errors");
4191 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
4192 			CTLFLAG_RD, &adapter->stats.dc,
4193 			"Defer Count");
4194 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
4195 			CTLFLAG_RD, &adapter->stats.mpc,
4196 			"Missed Packets");
4197 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
4198 			CTLFLAG_RD, &adapter->stats.rnbc,
4199 			"Receive No Buffers");
4200 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
4201 			CTLFLAG_RD, &adapter->stats.ruc,
4202 			"Receive Undersize");
4203 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
4204 			CTLFLAG_RD, &adapter->stats.rfc,
4205 			"Fragmented Packets Received ");
4206 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
4207 			CTLFLAG_RD, &adapter->stats.roc,
4208 			"Oversized Packets Received");
4209 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
4210 			CTLFLAG_RD, &adapter->stats.rjc,
4211 			"Recevied Jabber");
4212 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
4213 			CTLFLAG_RD, &adapter->stats.rxerrc,
4214 			"Receive Errors");
4215 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
4216 			CTLFLAG_RD, &adapter->stats.crcerrs,
4217 			"CRC errors");
4218 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
4219 			CTLFLAG_RD, &adapter->stats.algnerrc,
4220 			"Alignment Errors");
4221 	/* On 82575 these are collision counts */
4222 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
4223 			CTLFLAG_RD, &adapter->stats.cexterr,
4224 			"Collision/Carrier extension errors");
4225 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
4226 			CTLFLAG_RD, &adapter->stats.xonrxc,
4227 			"XON Received");
4228 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
4229 			CTLFLAG_RD, &adapter->stats.xontxc,
4230 			"XON Transmitted");
4231 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
4232 			CTLFLAG_RD, &adapter->stats.xoffrxc,
4233 			"XOFF Received");
4234 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
4235 			CTLFLAG_RD, &adapter->stats.xofftxc,
4236 			"XOFF Transmitted");
4237 
4238 	/* Packet Reception Stats */
4239 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
4240 			CTLFLAG_RD, &adapter->stats.tpr,
4241 			"Total Packets Received ");
4242 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
4243 			CTLFLAG_RD, &adapter->stats.gprc,
4244 			"Good Packets Received");
4245 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
4246 			CTLFLAG_RD, &adapter->stats.bprc,
4247 			"Broadcast Packets Received");
4248 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
4249 			CTLFLAG_RD, &adapter->stats.mprc,
4250 			"Multicast Packets Received");
4251 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
4252 			CTLFLAG_RD, &adapter->stats.prc64,
4253 			"64 byte frames received ");
4254 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
4255 			CTLFLAG_RD, &adapter->stats.prc127,
4256 			"65-127 byte frames received");
4257 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
4258 			CTLFLAG_RD, &adapter->stats.prc255,
4259 			"128-255 byte frames received");
4260 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
4261 			CTLFLAG_RD, &adapter->stats.prc511,
4262 			"256-511 byte frames received");
4263 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
4264 			CTLFLAG_RD, &adapter->stats.prc1023,
4265 			"512-1023 byte frames received");
4266 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
4267 			CTLFLAG_RD, &adapter->stats.prc1522,
4268 			"1023-1522 byte frames received");
4269 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
4270 			CTLFLAG_RD, &adapter->stats.gorc,
4271 			"Good Octets Received");
4272 
4273 	/* Packet Transmission Stats */
4274 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
4275 			CTLFLAG_RD, &adapter->stats.gotc,
4276 			"Good Octets Transmitted");
4277 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
4278 			CTLFLAG_RD, &adapter->stats.tpt,
4279 			"Total Packets Transmitted");
4280 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
4281 			CTLFLAG_RD, &adapter->stats.gptc,
4282 			"Good Packets Transmitted");
4283 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
4284 			CTLFLAG_RD, &adapter->stats.bptc,
4285 			"Broadcast Packets Transmitted");
4286 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
4287 			CTLFLAG_RD, &adapter->stats.mptc,
4288 			"Multicast Packets Transmitted");
4289 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
4290 			CTLFLAG_RD, &adapter->stats.ptc64,
4291 			"64 byte frames transmitted ");
4292 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
4293 			CTLFLAG_RD, &adapter->stats.ptc127,
4294 			"65-127 byte frames transmitted");
4295 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
4296 			CTLFLAG_RD, &adapter->stats.ptc255,
4297 			"128-255 byte frames transmitted");
4298 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
4299 			CTLFLAG_RD, &adapter->stats.ptc511,
4300 			"256-511 byte frames transmitted");
4301 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
4302 			CTLFLAG_RD, &adapter->stats.ptc1023,
4303 			"512-1023 byte frames transmitted");
4304 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
4305 			CTLFLAG_RD, &adapter->stats.ptc1522,
4306 			"1024-1522 byte frames transmitted");
4307 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
4308 			CTLFLAG_RD, &adapter->stats.tsctc,
4309 			"TSO Contexts Transmitted");
4310 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
4311 			CTLFLAG_RD, &adapter->stats.tsctfc,
4312 			"TSO Contexts Failed");
4313 
4314 
4315 	/* Interrupt Stats */
4316 
4317 	int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
4318 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
4319 	int_list = SYSCTL_CHILDREN(int_node);
4320 
4321 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
4322 			CTLFLAG_RD, &adapter->stats.iac,
4323 			"Interrupt Assertion Count");
4324 
4325 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
4326 			CTLFLAG_RD, &adapter->stats.icrxptc,
4327 			"Interrupt Cause Rx Pkt Timer Expire Count");
4328 
4329 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
4330 			CTLFLAG_RD, &adapter->stats.icrxatc,
4331 			"Interrupt Cause Rx Abs Timer Expire Count");
4332 
4333 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
4334 			CTLFLAG_RD, &adapter->stats.ictxptc,
4335 			"Interrupt Cause Tx Pkt Timer Expire Count");
4336 
4337 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
4338 			CTLFLAG_RD, &adapter->stats.ictxatc,
4339 			"Interrupt Cause Tx Abs Timer Expire Count");
4340 
4341 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
4342 			CTLFLAG_RD, &adapter->stats.ictxqec,
4343 			"Interrupt Cause Tx Queue Empty Count");
4344 
4345 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
4346 			CTLFLAG_RD, &adapter->stats.ictxqmtc,
4347 			"Interrupt Cause Tx Queue Min Thresh Count");
4348 
4349 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4350 			CTLFLAG_RD, &adapter->stats.icrxdmtc,
4351 			"Interrupt Cause Rx Desc Min Thresh Count");
4352 
4353 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4354 			CTLFLAG_RD, &adapter->stats.icrxoc,
4355 			"Interrupt Cause Receiver Overrun Count");
4356 }
4357 
4358 /**********************************************************************
4359  *
4360  *  This routine provides a way to dump out the adapter eeprom,
4361  *  often a useful debug/service tool. This only dumps the first
4362  *  32 words, stuff that matters is in that extent.
4363  *
4364  **********************************************************************/
4365 static int
4366 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4367 {
4368 	struct adapter *adapter = (struct adapter *)arg1;
4369 	int error;
4370 	int result;
4371 
4372 	result = -1;
4373 	error = sysctl_handle_int(oidp, &result, 0, req);
4374 
4375 	if (error || !req->newptr)
4376 		return (error);
4377 
4378 	/*
4379 	 * This value will cause a hex dump of the
4380 	 * first 32 16-bit words of the EEPROM to
4381 	 * the screen.
4382 	 */
4383 	if (result == 1)
4384 		em_print_nvm_info(adapter);
4385 
4386 	return (error);
4387 }
4388 
4389 static void
4390 em_print_nvm_info(struct adapter *adapter)
4391 {
4392 	u16 eeprom_data;
4393 	int i, j, row = 0;
4394 
4395 	/* Its a bit crude, but it gets the job done */
4396 	printf("\nInterface EEPROM Dump:\n");
4397 	printf("Offset\n0x0000  ");
4398 	for (i = 0, j = 0; i < 32; i++, j++) {
4399 		if (j == 8) { /* Make the offset block */
4400 			j = 0; ++row;
4401 			printf("\n0x00%x0  ",row);
4402 		}
4403 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4404 		printf("%04x ", eeprom_data);
4405 	}
4406 	printf("\n");
4407 }
4408 
4409 static int
4410 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4411 {
4412 	struct em_int_delay_info *info;
4413 	struct adapter *adapter;
4414 	u32 regval;
4415 	int error, usecs, ticks;
4416 
4417 	info = (struct em_int_delay_info *) arg1;
4418 	usecs = info->value;
4419 	error = sysctl_handle_int(oidp, &usecs, 0, req);
4420 	if (error != 0 || req->newptr == NULL)
4421 		return (error);
4422 	if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4423 		return (EINVAL);
4424 	info->value = usecs;
4425 	ticks = EM_USECS_TO_TICKS(usecs);
4426 	if (info->offset == E1000_ITR)	/* units are 256ns here */
4427 		ticks *= 4;
4428 
4429 	adapter = info->adapter;
4430 
4431 	regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
4432 	regval = (regval & ~0xffff) | (ticks & 0xffff);
4433 	/* Handle a few special cases. */
4434 	switch (info->offset) {
4435 	case E1000_RDTR:
4436 		break;
4437 	case E1000_TIDV:
4438 		if (ticks == 0) {
4439 			adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
4440 			/* Don't write 0 into the TIDV register. */
4441 			regval++;
4442 		} else
4443 			adapter->txd_cmd |= E1000_TXD_CMD_IDE;
4444 		break;
4445 	}
4446 	E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
4447 	return (0);
4448 }
4449 
4450 static void
4451 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
4452 	const char *description, struct em_int_delay_info *info,
4453 	int offset, int value)
4454 {
4455 	info->adapter = adapter;
4456 	info->offset = offset;
4457 	info->value = value;
4458 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
4459 	    SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
4460 	    OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
4461 	    info, 0, em_sysctl_int_delay, "I", description);
4462 }
4463 
4464 /*
4465  * Set flow control using sysctl:
4466  * Flow control values:
4467  *      0 - off
4468  *      1 - rx pause
4469  *      2 - tx pause
4470  *      3 - full
4471  */
4472 static int
4473 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4474 {
4475 	int error;
4476 	static int input = 3; /* default is full */
4477 	struct adapter	*adapter = (struct adapter *) arg1;
4478 
4479 	error = sysctl_handle_int(oidp, &input, 0, req);
4480 
4481 	if ((error) || (req->newptr == NULL))
4482 		return (error);
4483 
4484 	if (input == adapter->fc) /* no change? */
4485 		return (error);
4486 
4487 	switch (input) {
4488 	case e1000_fc_rx_pause:
4489 	case e1000_fc_tx_pause:
4490 	case e1000_fc_full:
4491 	case e1000_fc_none:
4492 		adapter->hw.fc.requested_mode = input;
4493 		adapter->fc = input;
4494 		break;
4495 	default:
4496 		/* Do nothing */
4497 		return (error);
4498 	}
4499 
4500 	adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
4501 	e1000_force_mac_fc(&adapter->hw);
4502 	return (error);
4503 }
4504 
4505 /*
4506  * Manage Energy Efficient Ethernet:
4507  * Control values:
4508  *     0/1 - enabled/disabled
4509  */
4510 static int
4511 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
4512 {
4513 	struct adapter *adapter = (struct adapter *) arg1;
4514 	int error, value;
4515 
4516 	value = adapter->hw.dev_spec.ich8lan.eee_disable;
4517 	error = sysctl_handle_int(oidp, &value, 0, req);
4518 	if (error || req->newptr == NULL)
4519 		return (error);
4520 	adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0);
4521 	em_if_init(adapter->ctx);
4522 
4523 	return (0);
4524 }
4525 
4526 static int
4527 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4528 {
4529 	struct adapter *adapter;
4530 	int error;
4531 	int result;
4532 
4533 	result = -1;
4534 	error = sysctl_handle_int(oidp, &result, 0, req);
4535 
4536 	if (error || !req->newptr)
4537 		return (error);
4538 
4539 	if (result == 1) {
4540 		adapter = (struct adapter *) arg1;
4541 		em_print_debug_info(adapter);
4542 	}
4543 
4544 	return (error);
4545 }
4546 
4547 static int
4548 em_get_rs(SYSCTL_HANDLER_ARGS)
4549 {
4550 	struct adapter *adapter = (struct adapter *) arg1;
4551 	int error;
4552 	int result;
4553 
4554 	result = 0;
4555 	error = sysctl_handle_int(oidp, &result, 0, req);
4556 
4557 	if (error || !req->newptr || result != 1)
4558 		return (error);
4559 	em_dump_rs(adapter);
4560 
4561 	return (error);
4562 }
4563 
4564 static void
4565 em_if_debug(if_ctx_t ctx)
4566 {
4567 	em_dump_rs(iflib_get_softc(ctx));
4568 }
4569 
4570 /*
4571  * This routine is meant to be fluid, add whatever is
4572  * needed for debugging a problem.  -jfv
4573  */
4574 static void
4575 em_print_debug_info(struct adapter *adapter)
4576 {
4577 	device_t dev = iflib_get_dev(adapter->ctx);
4578 	struct ifnet *ifp = iflib_get_ifp(adapter->ctx);
4579 	struct tx_ring *txr = &adapter->tx_queues->txr;
4580 	struct rx_ring *rxr = &adapter->rx_queues->rxr;
4581 
4582 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
4583 		printf("Interface is RUNNING ");
4584 	else
4585 		printf("Interface is NOT RUNNING\n");
4586 
4587 	if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
4588 		printf("and INACTIVE\n");
4589 	else
4590 		printf("and ACTIVE\n");
4591 
4592 	for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
4593 		device_printf(dev, "TX Queue %d ------\n", i);
4594 		device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4595 			E1000_READ_REG(&adapter->hw, E1000_TDH(i)),
4596 			E1000_READ_REG(&adapter->hw, E1000_TDT(i)));
4597 
4598 	}
4599 	for (int j=0; j < adapter->rx_num_queues; j++, rxr++) {
4600 		device_printf(dev, "RX Queue %d ------\n", j);
4601 		device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4602 			E1000_READ_REG(&adapter->hw, E1000_RDH(j)),
4603 			E1000_READ_REG(&adapter->hw, E1000_RDT(j)));
4604 	}
4605 }
4606 
4607 /*
4608  * 82574 only:
4609  * Write a new value to the EEPROM increasing the number of MSI-X
4610  * vectors from 3 to 5, for proper multiqueue support.
4611  */
4612 static void
4613 em_enable_vectors_82574(if_ctx_t ctx)
4614 {
4615 	struct adapter *adapter = iflib_get_softc(ctx);
4616 	struct e1000_hw *hw = &adapter->hw;
4617 	device_t dev = iflib_get_dev(ctx);
4618 	u16 edata;
4619 
4620 	e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4621 	if (bootverbose)
4622 		device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
4623 	if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
4624 		device_printf(dev, "Writing to eeprom: increasing "
4625 		    "reported MSI-X vectors from 3 to 5...\n");
4626 		edata &= ~(EM_NVM_MSIX_N_MASK);
4627 		edata |= 4 << EM_NVM_MSIX_N_SHIFT;
4628 		e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4629 		e1000_update_nvm_checksum(hw);
4630 		device_printf(dev, "Writing to eeprom: done\n");
4631 	}
4632 }
4633