xref: /freebsd/sys/dev/e1000/if_em.c (revision c7a33fe37d7688cb21c743f68256680e003210ad)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include "if_em.h"
30 #include <sys/sbuf.h>
31 #include <machine/_inttypes.h>
32 
33 #define em_mac_min e1000_82571
34 #define igb_mac_min e1000_82575
35 
36 /*********************************************************************
37  *  Driver version:
38  *********************************************************************/
39 static const char em_driver_version[] = "7.7.8-fbsd";
40 static const char igb_driver_version[] = "2.5.28-fbsd";
41 
42 /*********************************************************************
43  *  PCI Device ID Table
44  *
45  *  Used by probe to select devices to load on
46  *  Last field stores an index into e1000_strings
47  *  Last entry must be all 0s
48  *
49  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
50  *********************************************************************/
51 
52 static const pci_vendor_info_t em_vendor_info_array[] =
53 {
54 	/* Intel(R) - lem-class legacy devices */
55 	PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) Legacy PRO/1000 MT 82540EM"),
56 	PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) Legacy PRO/1000 MT 82540EM (LOM)"),
57 	PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) Legacy PRO/1000 MT 82540EP"),
58 	PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) Legacy PRO/1000 MT 82540EP (LOM)"),
59 	PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) Legacy PRO/1000 MT 82540EP (Mobile)"),
60 
61 	PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) Legacy PRO/1000 MT 82541EI (Copper)"),
62 	PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) Legacy PRO/1000 82541ER"),
63 	PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) Legacy PRO/1000 MT 82541ER"),
64 	PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541EI (Mobile)"),
65 	PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) Legacy PRO/1000 MT 82541GI"),
66 	PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) Legacy PRO/1000 GT 82541PI"),
67 	PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541GI (Mobile)"),
68 
69 	PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) Legacy PRO/1000 82542 (Fiber)"),
70 
71 	PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) Legacy PRO/1000 F 82543GC (Fiber)"),
72 	PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) Legacy PRO/1000 T 82543GC (Copper)"),
73 
74 	PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) Legacy PRO/1000 XT 82544EI (Copper)"),
75 	PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) Legacy PRO/1000 XF 82544EI (Fiber)"),
76 	PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) Legacy PRO/1000 T 82544GC (Copper)"),
77 	PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) Legacy PRO/1000 XT 82544GC (LOM)"),
78 
79 	PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545EM (Copper)"),
80 	PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545EM (Fiber)"),
81 	PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545GM (Copper)"),
82 	PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545GM (Fiber)"),
83 	PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) Legacy PRO/1000 MB 82545GM (SERDES)"),
84 
85 	PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Copper)"),
86 	PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546EB (Fiber)"),
87 	PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Quad Copper"),
88 	PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546GB (Copper)"),
89 	PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546GB (Fiber)"),
90 	PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) Legacy PRO/1000 MB 82546GB (SERDES)"),
91 	PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) Legacy PRO/1000 P 82546GB (PCIe)"),
92 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
93 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
94 
95 	PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) Legacy PRO/1000 CT 82547EI"),
96 	PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) Legacy PRO/1000 CT 82547EI (Mobile)"),
97 	PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) Legacy PRO/1000 CT 82547GI"),
98 
99 	/* Intel(R) - em-class devices */
100 	PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Copper)"),
101 	PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 PF 82571EB/82571GB (Fiber)"),
102 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 PB 82571EB (SERDES)"),
103 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 82571EB (Dual Mezzanine)"),
104 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 82571EB (Quad Mezzanine)"),
105 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
106 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
107 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 PF 82571EB (Quad Fiber)"),
108 	PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571PT (Quad Copper)"),
109 	PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 PT 82572EI (Copper)"),
110 	PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 PT 82572EI (Copper)"),
111 	PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 PF 82572EI (Fiber)"),
112 	PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 82572EI (SERDES)"),
113 	PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 82573E (Copper)"),
114 	PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 82573E AMT (Copper)"),
115 	PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 82573L"),
116 	PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) 82583V"),
117 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) 80003ES2LAN (Copper)"),
118 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) 80003ES2LAN (SERDES)"),
119 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) 80003ES2LAN (Dual Copper)"),
120 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) 80003ES2LAN (Dual SERDES)"),
121 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) 82566MM ICH8 AMT (Mobile)"),
122 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) 82566DM ICH8 AMT"),
123 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) 82566DC ICH8"),
124 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) 82562V ICH8"),
125 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) 82562GT ICH8"),
126 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) 82562G ICH8"),
127 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) 82566MC ICH8"),
128 	PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) 82567V-3 ICH8"),
129 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) 82567LM ICH9 AMT"),
130 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) 82566DM-2 ICH9 AMT"),
131 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) 82566DC-2 ICH9"),
132 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) 82567LF ICH9"),
133 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) 82567V ICH9"),
134 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) 82562V-2 ICH9"),
135 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) 82562GT-2 ICH9"),
136 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) 82562G-2 ICH9"),
137 	PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) 82567LM-4 ICH9"),
138 	PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) Gigabit CT 82574L"),
139 	PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) 82574L-Apple"),
140 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) 82567LM-2 ICH10"),
141 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) 82567LF-2 ICH10"),
142 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) 82567V-2 ICH10"),
143 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) 82567LM-3 ICH10"),
144 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) 82567LF-3 ICH10"),
145 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) 82567V-4 ICH10"),
146 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) 82577LM"),
147 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) 82577LC"),
148 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) 82578DM"),
149 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) 82578DC"),
150 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) 82579LM"),
151 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) 82579V"),
152 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) I217-LM LPT"),
153 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) I217-V LPT"),
154 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) I218-LM LPTLP"),
155 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) I218-V LPTLP"),
156 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) I218-LM (2)"),
157 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) I218-V (2)"),
158 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) I218-LM (3)"),
159 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) I218-V (3)"),
160 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) I219-LM SPT"),
161 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) I219-V SPT"),
162 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) I219-LM SPT-H(2)"),
163 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) I219-V SPT-H(2)"),
164 	PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) I219-LM LBG(3)"),
165 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) I219-LM SPT(4)"),
166 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) I219-V SPT(4)"),
167 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) I219-LM SPT(5)"),
168 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) I219-V SPT(5)"),
169 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) I219-LM CNP(6)"),
170 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) I219-V CNP(6)"),
171 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) I219-LM CNP(7)"),
172 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) I219-V CNP(7)"),
173 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) I219-LM ICP(8)"),
174 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) I219-V ICP(8)"),
175 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) I219-LM ICP(9)"),
176 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) I219-V ICP(9)"),
177 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10, "Intel(R) I219-LM CMP(10)"),
178 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10, "Intel(R) I219-V CMP(10)"),
179 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11, "Intel(R) I219-LM CMP(11)"),
180 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11, "Intel(R) I219-V CMP(11)"),
181 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12, "Intel(R) I219-LM CMP(12)"),
182 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12, "Intel(R) I219-V CMP(12)"),
183 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM13, "Intel(R) I219-LM TGP(13)"),
184 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V13, "Intel(R) I219-V TGP(13)"),
185 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM14, "Intel(R) I219-LM TGP(14)"),
186 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V14, "Intel(R) I219-V GTP(14)"),
187 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM15, "Intel(R) I219-LM TGP(15)"),
188 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V15, "Intel(R) I219-V TGP(15)"),
189 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM16, "Intel(R) I219-LM ADL(16)"),
190 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V16, "Intel(R) I219-V ADL(16)"),
191 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM17, "Intel(R) I219-LM ADL(17)"),
192 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V17, "Intel(R) I219-V ADL(17)"),
193 	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM18, "Intel(R) I219-LM MTP(18)"),
194 	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V18, "Intel(R) I219-V MTP(18)"),
195 	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM19, "Intel(R) I219-LM MTP(19)"),
196 	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V19, "Intel(R) I219-V MTP(19)"),
197 	PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM20, "Intel(R) I219-LM LNL(20)"),
198 	PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V20, "Intel(R) I219-V LNL(20)"),
199 	PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM21, "Intel(R) I219-LM LNL(21)"),
200 	PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V21, "Intel(R) I219-V LNL(21)"),
201 	PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM22, "Intel(R) I219-LM RPL(22)"),
202 	PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V22, "Intel(R) I219-V RPL(22)"),
203 	PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM23, "Intel(R) I219-LM RPL(23)"),
204 	PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V23, "Intel(R) I219-V RPL(23)"),
205 	PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_LM24, "Intel(R) I219-LM ARL(24)"),
206 	PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_V24, "Intel(R) I219-V ARL(24)"),
207 	PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM25, "Intel(R) I219-LM PTP(25)"),
208 	PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V25, "Intel(R) I219-V PTP(25)"),
209 	PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM26, "Intel(R) I219-LM PTP(26)"),
210 	PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V26, "Intel(R) I219-V PTP(26)"),
211 	PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM27, "Intel(R) I219-LM PTP(27)"),
212 	PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V27, "Intel(R) I219-V PTP(27)"),
213 	/* required last entry */
214 	PVID_END
215 };
216 
217 static const pci_vendor_info_t igb_vendor_info_array[] =
218 {
219 	/* Intel(R) - igb-class devices */
220 	PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 82575EB (Copper)"),
221 	PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 82575EB (SERDES)"),
222 	PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 VT 82575GB (Quad Copper)"),
223 	PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 82576"),
224 	PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 82576NS"),
225 	PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 82576NS (SERDES)"),
226 	PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 EF 82576 (Dual Fiber)"),
227 	PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 82576 (Dual SERDES)"),
228 	PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 ET 82576 (Quad SERDES)"),
229 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 ET 82576 (Quad Copper)"),
230 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 ET(2) 82576 (Quad Copper)"),
231 	PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 82576 Virtual Function"),
232 	PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) I340 82580 (Copper)"),
233 	PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) I340 82580 (Fiber)"),
234 	PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) I340 82580 (SERDES)"),
235 	PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) I340 82580 (SGMII)"),
236 	PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) I340-T2 82580 (Dual Copper)"),
237 	PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) I340-F4 82580 (Quad Fiber)"),
238 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) DH89XXCC (SERDES)"),
239 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) I347-AT4 DH89XXCC"),
240 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) DH89XXCC (SFP)"),
241 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) DH89XXCC (Backplane)"),
242 	PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) I350 (Copper)"),
243 	PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) I350 (Fiber)"),
244 	PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) I350 (SERDES)"),
245 	PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) I350 (SGMII)"),
246 	PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) I350 Virtual Function"),
247 	PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) I210 (Copper)"),
248 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) I210 IT (Copper)"),
249 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) I210 (OEM)"),
250 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) I210 Flashless (Copper)"),
251 	PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) I210 Flashless (SERDES)"),
252 	PVID(0x8086, E1000_DEV_ID_I210_SGMII_FLASHLESS, "Intel(R) I210 Flashless (SGMII)"),
253 	PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) I210 (Fiber)"),
254 	PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) I210 (SERDES)"),
255 	PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) I210 (SGMII)"),
256 	PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) I211 (Copper)"),
257 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) I354 (1.0 GbE Backplane)"),
258 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) I354 (2.5 GbE Backplane)"),
259 	PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) I354 (SGMII)"),
260 	/* required last entry */
261 	PVID_END
262 };
263 
264 /*********************************************************************
265  *  Function prototypes
266  *********************************************************************/
267 static void	*em_register(device_t);
268 static void	*igb_register(device_t);
269 static int	em_if_attach_pre(if_ctx_t);
270 static int	em_if_attach_post(if_ctx_t);
271 static int	em_if_detach(if_ctx_t);
272 static int	em_if_shutdown(if_ctx_t);
273 static int	em_if_suspend(if_ctx_t);
274 static int	em_if_resume(if_ctx_t);
275 
276 static int	em_if_tx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int, int);
277 static int	em_if_rx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int, int);
278 static void	em_if_queues_free(if_ctx_t);
279 
280 static uint64_t	em_if_get_counter(if_ctx_t, ift_counter);
281 static void	em_if_init(if_ctx_t);
282 static void	em_if_stop(if_ctx_t);
283 static void	em_if_media_status(if_ctx_t, struct ifmediareq *);
284 static int	em_if_media_change(if_ctx_t);
285 static int	em_if_mtu_set(if_ctx_t, uint32_t);
286 static void	em_if_timer(if_ctx_t, uint16_t);
287 static void	em_if_vlan_register(if_ctx_t, u16);
288 static void	em_if_vlan_unregister(if_ctx_t, u16);
289 static void	em_if_watchdog_reset(if_ctx_t);
290 static bool	em_if_needs_restart(if_ctx_t, enum iflib_restart_event);
291 
292 static void	em_identify_hardware(if_ctx_t);
293 static int	em_allocate_pci_resources(if_ctx_t);
294 static void	em_free_pci_resources(if_ctx_t);
295 static void	em_reset(if_ctx_t);
296 static int	em_setup_interface(if_ctx_t);
297 static int	em_setup_msix(if_ctx_t);
298 
299 static void	em_initialize_transmit_unit(if_ctx_t);
300 static void	em_initialize_receive_unit(if_ctx_t);
301 
302 static void	em_if_intr_enable(if_ctx_t);
303 static void	em_if_intr_disable(if_ctx_t);
304 static void	igb_if_intr_enable(if_ctx_t);
305 static void	igb_if_intr_disable(if_ctx_t);
306 static int	em_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
307 static int	em_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
308 static int	igb_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
309 static int	igb_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
310 static void	em_if_multi_set(if_ctx_t);
311 static void	em_if_update_admin_status(if_ctx_t);
312 static void	em_if_debug(if_ctx_t);
313 static void	em_update_stats_counters(struct e1000_softc *);
314 static void	em_add_hw_stats(struct e1000_softc *);
315 static int	em_if_set_promisc(if_ctx_t, int);
316 static bool	em_if_vlan_filter_capable(if_ctx_t);
317 static bool	em_if_vlan_filter_used(if_ctx_t);
318 static void	em_if_vlan_filter_enable(struct e1000_softc *);
319 static void	em_if_vlan_filter_disable(struct e1000_softc *);
320 static void	em_if_vlan_filter_write(struct e1000_softc *);
321 static void	em_setup_vlan_hw_support(if_ctx_t ctx);
322 static int	em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
323 static void	em_print_nvm_info(struct e1000_softc *);
324 static void	em_fw_version_locked(if_ctx_t);
325 static void	em_sbuf_fw_version(struct e1000_fw_version *, struct sbuf *);
326 static void	em_print_fw_version(struct e1000_softc *);
327 static int	em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS);
328 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
329 static int	em_get_rs(SYSCTL_HANDLER_ARGS);
330 static void	em_print_debug_info(struct e1000_softc *);
331 static int 	em_is_valid_ether_addr(u8 *);
332 static bool	em_automask_tso(if_ctx_t);
333 static int	em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
334 static void	em_add_int_delay_sysctl(struct e1000_softc *, const char *,
335 		    const char *, struct em_int_delay_info *, int, int);
336 /* Management and WOL Support */
337 static void	em_init_manageability(struct e1000_softc *);
338 static void	em_release_manageability(struct e1000_softc *);
339 static void	em_get_hw_control(struct e1000_softc *);
340 static void	em_release_hw_control(struct e1000_softc *);
341 static void	em_get_wakeup(if_ctx_t);
342 static void	em_enable_wakeup(if_ctx_t);
343 static int	em_enable_phy_wakeup(struct e1000_softc *);
344 static void	em_disable_aspm(struct e1000_softc *);
345 
346 int		em_intr(void *);
347 
348 /* MSI-X handlers */
349 static int	em_if_msix_intr_assign(if_ctx_t, int);
350 static int	em_msix_link(void *);
351 static void	em_handle_link(void *);
352 
353 static void	em_enable_vectors_82574(if_ctx_t);
354 
355 static int	em_set_flowcntl(SYSCTL_HANDLER_ARGS);
356 static int	em_sysctl_eee(SYSCTL_HANDLER_ARGS);
357 static int	igb_sysctl_dmac(SYSCTL_HANDLER_ARGS);
358 static void	em_if_led_func(if_ctx_t, int);
359 
360 static int	em_get_regs(SYSCTL_HANDLER_ARGS);
361 
362 static void	lem_smartspeed(struct e1000_softc *);
363 static void	igb_configure_queues(struct e1000_softc *);
364 static void	em_flush_desc_rings(struct e1000_softc *);
365 
366 
367 /*********************************************************************
368  *  FreeBSD Device Interface Entry Points
369  *********************************************************************/
370 static device_method_t em_methods[] = {
371 	/* Device interface */
372 	DEVMETHOD(device_register, em_register),
373 	DEVMETHOD(device_probe, iflib_device_probe),
374 	DEVMETHOD(device_attach, iflib_device_attach),
375 	DEVMETHOD(device_detach, iflib_device_detach),
376 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
377 	DEVMETHOD(device_suspend, iflib_device_suspend),
378 	DEVMETHOD(device_resume, iflib_device_resume),
379 	DEVMETHOD_END
380 };
381 
382 static device_method_t igb_methods[] = {
383 	/* Device interface */
384 	DEVMETHOD(device_register, igb_register),
385 	DEVMETHOD(device_probe, iflib_device_probe),
386 	DEVMETHOD(device_attach, iflib_device_attach),
387 	DEVMETHOD(device_detach, iflib_device_detach),
388 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
389 	DEVMETHOD(device_suspend, iflib_device_suspend),
390 	DEVMETHOD(device_resume, iflib_device_resume),
391 	DEVMETHOD_END
392 };
393 
394 
395 static driver_t em_driver = {
396 	"em", em_methods, sizeof(struct e1000_softc),
397 };
398 
399 DRIVER_MODULE(em, pci, em_driver, 0, 0);
400 
401 MODULE_DEPEND(em, pci, 1, 1, 1);
402 MODULE_DEPEND(em, ether, 1, 1, 1);
403 MODULE_DEPEND(em, iflib, 1, 1, 1);
404 
405 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
406 
407 static driver_t igb_driver = {
408 	"igb", igb_methods, sizeof(struct e1000_softc),
409 };
410 
411 DRIVER_MODULE(igb, pci, igb_driver, 0, 0);
412 
413 MODULE_DEPEND(igb, pci, 1, 1, 1);
414 MODULE_DEPEND(igb, ether, 1, 1, 1);
415 MODULE_DEPEND(igb, iflib, 1, 1, 1);
416 
417 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
418 
419 static device_method_t em_if_methods[] = {
420 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
421 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
422 	DEVMETHOD(ifdi_detach, em_if_detach),
423 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
424 	DEVMETHOD(ifdi_suspend, em_if_suspend),
425 	DEVMETHOD(ifdi_resume, em_if_resume),
426 	DEVMETHOD(ifdi_init, em_if_init),
427 	DEVMETHOD(ifdi_stop, em_if_stop),
428 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
429 	DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
430 	DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
431 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
432 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
433 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
434 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
435 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
436 	DEVMETHOD(ifdi_media_status, em_if_media_status),
437 	DEVMETHOD(ifdi_media_change, em_if_media_change),
438 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
439 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
440 	DEVMETHOD(ifdi_timer, em_if_timer),
441 	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
442 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
443 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
444 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
445 	DEVMETHOD(ifdi_led_func, em_if_led_func),
446 	DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
447 	DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
448 	DEVMETHOD(ifdi_debug, em_if_debug),
449 	DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
450 	DEVMETHOD_END
451 };
452 
453 static driver_t em_if_driver = {
454 	"em_if", em_if_methods, sizeof(struct e1000_softc)
455 };
456 
457 static device_method_t igb_if_methods[] = {
458 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
459 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
460 	DEVMETHOD(ifdi_detach, em_if_detach),
461 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
462 	DEVMETHOD(ifdi_suspend, em_if_suspend),
463 	DEVMETHOD(ifdi_resume, em_if_resume),
464 	DEVMETHOD(ifdi_init, em_if_init),
465 	DEVMETHOD(ifdi_stop, em_if_stop),
466 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
467 	DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
468 	DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
469 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
470 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
471 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
472 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
473 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
474 	DEVMETHOD(ifdi_media_status, em_if_media_status),
475 	DEVMETHOD(ifdi_media_change, em_if_media_change),
476 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
477 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
478 	DEVMETHOD(ifdi_timer, em_if_timer),
479 	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
480 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
481 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
482 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
483 	DEVMETHOD(ifdi_led_func, em_if_led_func),
484 	DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
485 	DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
486 	DEVMETHOD(ifdi_debug, em_if_debug),
487 	DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
488 	DEVMETHOD_END
489 };
490 
491 static driver_t igb_if_driver = {
492 	"igb_if", igb_if_methods, sizeof(struct e1000_softc)
493 };
494 
495 /*********************************************************************
496  *  Tunable default values.
497  *********************************************************************/
498 
499 #define EM_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
500 #define EM_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
501 
502 #define MAX_INTS_PER_SEC	8000
503 #define DEFAULT_ITR		(1000000000/(MAX_INTS_PER_SEC * 256))
504 
505 /* Allow common code without TSO */
506 #ifndef CSUM_TSO
507 #define CSUM_TSO	0
508 #endif
509 
510 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
511     "EM driver parameters");
512 
513 static int em_disable_crc_stripping = 0;
514 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
515     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
516 
517 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
518 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
519 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
520     0, "Default transmit interrupt delay in usecs");
521 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
522     0, "Default receive interrupt delay in usecs");
523 
524 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
525 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
526 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
527     &em_tx_abs_int_delay_dflt, 0,
528     "Default transmit interrupt delay limit in usecs");
529 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
530     &em_rx_abs_int_delay_dflt, 0,
531     "Default receive interrupt delay limit in usecs");
532 
533 static int em_smart_pwr_down = false;
534 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
535     0, "Set to true to leave smart power down enabled on newer adapters");
536 
537 static bool em_unsupported_tso = false;
538 SYSCTL_BOOL(_hw_em, OID_AUTO, unsupported_tso, CTLFLAG_RDTUN,
539     &em_unsupported_tso, 0, "Allow unsupported em(4) TSO configurations");
540 
541 /* Controls whether promiscuous also shows bad packets */
542 static int em_debug_sbp = false;
543 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
544     "Show bad packets in promiscuous mode");
545 
546 /* Energy efficient ethernet - default to OFF */
547 static int eee_setting = 1;
548 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
549     "Enable Energy Efficient Ethernet");
550 
551 /*
552 ** Tuneable Interrupt rate
553 */
554 static int em_max_interrupt_rate = 8000;
555 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
556     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
557 
558 /* Global used in WOL setup with multiport cards */
559 static int global_quad_port_a = 0;
560 
561 extern struct if_txrx igb_txrx;
562 extern struct if_txrx em_txrx;
563 extern struct if_txrx lem_txrx;
564 
565 static struct if_shared_ctx em_sctx_init = {
566 	.isc_magic = IFLIB_MAGIC,
567 	.isc_q_align = PAGE_SIZE,
568 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
569 	.isc_tx_maxsegsize = PAGE_SIZE,
570 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
571 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
572 	.isc_rx_maxsize = MJUM9BYTES,
573 	.isc_rx_nsegments = 1,
574 	.isc_rx_maxsegsize = MJUM9BYTES,
575 	.isc_nfl = 1,
576 	.isc_nrxqs = 1,
577 	.isc_ntxqs = 1,
578 	.isc_admin_intrcnt = 1,
579 	.isc_vendor_info = em_vendor_info_array,
580 	.isc_driver_version = em_driver_version,
581 	.isc_driver = &em_if_driver,
582 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
583 
584 	.isc_nrxd_min = {EM_MIN_RXD},
585 	.isc_ntxd_min = {EM_MIN_TXD},
586 	.isc_nrxd_max = {EM_MAX_RXD},
587 	.isc_ntxd_max = {EM_MAX_TXD},
588 	.isc_nrxd_default = {EM_DEFAULT_RXD},
589 	.isc_ntxd_default = {EM_DEFAULT_TXD},
590 };
591 
592 static struct if_shared_ctx igb_sctx_init = {
593 	.isc_magic = IFLIB_MAGIC,
594 	.isc_q_align = PAGE_SIZE,
595 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
596 	.isc_tx_maxsegsize = PAGE_SIZE,
597 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
598 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
599 	.isc_rx_maxsize = MJUM9BYTES,
600 	.isc_rx_nsegments = 1,
601 	.isc_rx_maxsegsize = MJUM9BYTES,
602 	.isc_nfl = 1,
603 	.isc_nrxqs = 1,
604 	.isc_ntxqs = 1,
605 	.isc_admin_intrcnt = 1,
606 	.isc_vendor_info = igb_vendor_info_array,
607 	.isc_driver_version = igb_driver_version,
608 	.isc_driver = &igb_if_driver,
609 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
610 
611 	.isc_nrxd_min = {EM_MIN_RXD},
612 	.isc_ntxd_min = {EM_MIN_TXD},
613 	.isc_nrxd_max = {IGB_MAX_RXD},
614 	.isc_ntxd_max = {IGB_MAX_TXD},
615 	.isc_nrxd_default = {EM_DEFAULT_RXD},
616 	.isc_ntxd_default = {EM_DEFAULT_TXD},
617 };
618 
619 /*****************************************************************
620  *
621  * Dump Registers
622  *
623  ****************************************************************/
624 #define IGB_REGS_LEN 739
625 
626 static int em_get_regs(SYSCTL_HANDLER_ARGS)
627 {
628 	struct e1000_softc *sc = (struct e1000_softc *)arg1;
629 	struct e1000_hw *hw = &sc->hw;
630 	struct sbuf *sb;
631 	u32 *regs_buff;
632 	int rc;
633 
634 	regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
635 	memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
636 
637 	rc = sysctl_wire_old_buffer(req, 0);
638 	MPASS(rc == 0);
639 	if (rc != 0) {
640 		free(regs_buff, M_DEVBUF);
641 		return (rc);
642 	}
643 
644 	sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
645 	MPASS(sb != NULL);
646 	if (sb == NULL) {
647 		free(regs_buff, M_DEVBUF);
648 		return (ENOMEM);
649 	}
650 
651 	/* General Registers */
652 	regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
653 	regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
654 	regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
655 	regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
656 	regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
657 	regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
658 	regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
659 	regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
660 	regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
661 	regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
662 	regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
663 	regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
664 	regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
665 	regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
666 	regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
667 	regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
668 	regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
669 	regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
670 	regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
671 	regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
672 	regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
673 	regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
674 
675 	sbuf_printf(sb, "General Registers\n");
676 	sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
677 	sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
678 	sbuf_printf(sb, "\tCTRL_EXT\t %08x\n\n", regs_buff[2]);
679 
680 	sbuf_printf(sb, "Interrupt Registers\n");
681 	sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
682 
683 	sbuf_printf(sb, "RX Registers\n");
684 	sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
685 	sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
686 	sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
687 	sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
688 	sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
689 	sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
690 	sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
691 
692 	sbuf_printf(sb, "TX Registers\n");
693 	sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
694 	sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
695 	sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
696 	sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
697 	sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
698 	sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
699 	sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
700 	sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
701 	sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
702 	sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
703 	sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
704 
705 	free(regs_buff, M_DEVBUF);
706 
707 #ifdef DUMP_DESCS
708 	{
709 		if_softc_ctx_t scctx = sc->shared;
710 		struct rx_ring *rxr = &rx_que->rxr;
711 		struct tx_ring *txr = &tx_que->txr;
712 		int ntxd = scctx->isc_ntxd[0];
713 		int nrxd = scctx->isc_nrxd[0];
714 		int j;
715 
716 	for (j = 0; j < nrxd; j++) {
717 		u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
718 		u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
719 		sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
720 	}
721 
722 	for (j = 0; j < min(ntxd, 256); j++) {
723 		unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
724 
725 		sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
726 			    j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
727 			    buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
728 
729 	}
730 	}
731 #endif
732 
733 	rc = sbuf_finish(sb);
734 	sbuf_delete(sb);
735 	return(rc);
736 }
737 
738 static void *
739 em_register(device_t dev)
740 {
741 	return (&em_sctx_init);
742 }
743 
744 static void *
745 igb_register(device_t dev)
746 {
747 	return (&igb_sctx_init);
748 }
749 
750 static int
751 em_set_num_queues(if_ctx_t ctx)
752 {
753 	struct e1000_softc *sc = iflib_get_softc(ctx);
754 	int maxqueues;
755 
756 	/* Sanity check based on HW */
757 	switch (sc->hw.mac.type) {
758 	case e1000_82576:
759 	case e1000_82580:
760 	case e1000_i350:
761 	case e1000_i354:
762 		maxqueues = 8;
763 		break;
764 	case e1000_i210:
765 	case e1000_82575:
766 		maxqueues = 4;
767 		break;
768 	case e1000_i211:
769 	case e1000_82574:
770 		maxqueues = 2;
771 		break;
772 	default:
773 		maxqueues = 1;
774 		break;
775 	}
776 
777 	return (maxqueues);
778 }
779 
780 #define LEM_CAPS \
781     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
782     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
783     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6
784 
785 #define EM_CAPS \
786     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
787     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
788     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \
789     IFCAP_TSO6
790 
791 #define IGB_CAPS \
792     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
793     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
794     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \
795     IFCAP_TSO6
796 
797 /*********************************************************************
798  *  Device initialization routine
799  *
800  *  The attach entry point is called when the driver is being loaded.
801  *  This routine identifies the type of hardware, allocates all resources
802  *  and initializes the hardware.
803  *
804  *  return 0 on success, positive on failure
805  *********************************************************************/
806 static int
807 em_if_attach_pre(if_ctx_t ctx)
808 {
809 	struct e1000_softc *sc;
810 	if_softc_ctx_t scctx;
811 	device_t dev;
812 	struct e1000_hw *hw;
813 	struct sysctl_oid_list *child;
814 	struct sysctl_ctx_list *ctx_list;
815 	int error = 0;
816 
817 	INIT_DEBUGOUT("em_if_attach_pre: begin");
818 	dev = iflib_get_dev(ctx);
819 	sc = iflib_get_softc(ctx);
820 
821 	sc->ctx = sc->osdep.ctx = ctx;
822 	sc->dev = sc->osdep.dev = dev;
823 	scctx = sc->shared = iflib_get_softc_ctx(ctx);
824 	sc->media = iflib_get_media(ctx);
825 	hw = &sc->hw;
826 
827 	/* Determine hardware and mac info */
828 	em_identify_hardware(ctx);
829 
830 	/* SYSCTL stuff */
831 	ctx_list = device_get_sysctl_ctx(dev);
832 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
833 
834 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "nvm",
835 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0,
836 	    em_sysctl_nvm_info, "I", "NVM Information");
837 
838 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fw_version",
839 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
840 	    em_sysctl_print_fw_version, "A",
841 	    "Prints FW/NVM Versions");
842 
843 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "debug",
844 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0,
845 	    em_sysctl_debug_info, "I", "Debug Information");
846 
847 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fc",
848 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
849 	    em_set_flowcntl, "I", "Flow Control");
850 
851 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "reg_dump",
852 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
853 	    em_get_regs, "A", "Dump Registers");
854 
855 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "rs_dump",
856 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
857 	    em_get_rs, "I", "Dump RS indexes");
858 
859 	if (hw->mac.type >= e1000_i350) {
860 		SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "dmac",
861 		    CTLTYPE_INT | CTLFLAG_RW, sc, 0,
862 		    igb_sysctl_dmac, "I", "DMA Coalesce");
863 	}
864 
865 	scctx->isc_tx_nsegments = EM_MAX_SCATTER;
866 	scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
867 	if (bootverbose)
868 		device_printf(dev, "attach_pre capping queues at %d\n",
869 		    scctx->isc_ntxqsets_max);
870 
871 	if (hw->mac.type >= igb_mac_min) {
872 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
873 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
874 		scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
875 		scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
876 		scctx->isc_txrx = &igb_txrx;
877 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
878 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
879 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
880 		scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
881 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
882 		     CSUM_IP6_TCP | CSUM_IP6_UDP;
883 		if (hw->mac.type != e1000_82575)
884 			scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
885 		/*
886 		** Some new devices, as with ixgbe, now may
887 		** use a different BAR, so we need to keep
888 		** track of which is used.
889 		*/
890 		scctx->isc_msix_bar = pci_msix_table_bar(dev);
891 	} else if (hw->mac.type >= em_mac_min) {
892 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
893 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
894 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
895 		scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
896 		scctx->isc_txrx = &em_txrx;
897 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
898 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
899 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
900 		scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
901 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO |
902 		    CSUM_IP6_TCP | CSUM_IP6_UDP;
903 
904 		/* Disable TSO on all em(4) until ring stalls can be debugged */
905 		scctx->isc_capenable &= ~IFCAP_TSO;
906 
907 		/*
908 		 * Disable TSO on SPT due to errata that downclocks DMA performance
909 		 * i218-i219 Specification Update 1.5.4.5
910 		 */
911 		if (hw->mac.type == e1000_pch_spt)
912 			scctx->isc_capenable &= ~IFCAP_TSO;
913 
914 		/*
915 		 * We support MSI-X with 82574 only, but indicate to iflib(4)
916 		 * that it shall give MSI at least a try with other devices.
917 		 */
918 		if (hw->mac.type == e1000_82574) {
919 			scctx->isc_msix_bar = pci_msix_table_bar(dev);
920 		} else {
921 			scctx->isc_msix_bar = -1;
922 			scctx->isc_disable_msix = 1;
923 		}
924 	} else {
925 		scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
926 		scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
927 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
928 		scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
929 		scctx->isc_txrx = &lem_txrx;
930 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
931 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
932 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
933 		scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
934 		if (em_unsupported_tso)
935 			scctx->isc_capabilities |= IFCAP_TSO6;
936 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO |
937 		    CSUM_IP6_TCP | CSUM_IP6_UDP;
938 
939 		/* Disable TSO on all lem(4) until ring stalls can be debugged */
940 		scctx->isc_capenable &= ~IFCAP_TSO;
941 
942 		/* 82541ER doesn't do HW tagging */
943 		if (hw->device_id == E1000_DEV_ID_82541ER ||
944 		    hw->device_id == E1000_DEV_ID_82541ER_LOM) {
945 			scctx->isc_capabilities &= ~IFCAP_VLAN_HWTAGGING;
946 			scctx->isc_capenable = scctx->isc_capabilities;
947 		}
948 		/* This is the first e1000 chip and it does not do offloads */
949 		if (hw->mac.type == e1000_82542) {
950 			scctx->isc_capabilities &= ~(IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
951 			    IFCAP_HWCSUM_IPV6 | IFCAP_VLAN_HWTAGGING |
952 			    IFCAP_VLAN_HWFILTER | IFCAP_TSO | IFCAP_VLAN_HWTSO);
953 			scctx->isc_capenable = scctx->isc_capabilities;
954 		}
955 		/* These can't do TSO for various reasons */
956 		if (hw->mac.type < e1000_82544 || hw->mac.type == e1000_82547 ||
957 		    hw->mac.type == e1000_82547_rev_2) {
958 			scctx->isc_capabilities &= ~(IFCAP_TSO | IFCAP_VLAN_HWTSO);
959 			scctx->isc_capenable = scctx->isc_capabilities;
960 		}
961 		/* XXXKB: No IPv6 before this? */
962 		if (hw->mac.type < e1000_82545){
963 			scctx->isc_capabilities &= ~IFCAP_HWCSUM_IPV6;
964 			scctx->isc_capenable = scctx->isc_capabilities;
965 		}
966 		/* "PCI/PCI-X SDM 4.0" page 33 (b) - FDX requirement on these chips */
967 		if (hw->mac.type == e1000_82547 || hw->mac.type == e1000_82547_rev_2)
968 			scctx->isc_capenable &= ~(IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
969 			    IFCAP_HWCSUM_IPV6);
970 
971 		/* INTx only */
972 		scctx->isc_msix_bar = 0;
973 	}
974 
975 	/* Setup PCI resources */
976 	if (em_allocate_pci_resources(ctx)) {
977 		device_printf(dev, "Allocation of PCI resources failed\n");
978 		error = ENXIO;
979 		goto err_pci;
980 	}
981 
982 	/*
983 	** For ICH8 and family we need to
984 	** map the flash memory, and this
985 	** must happen after the MAC is
986 	** identified
987 	*/
988 	if ((hw->mac.type == e1000_ich8lan) ||
989 	    (hw->mac.type == e1000_ich9lan) ||
990 	    (hw->mac.type == e1000_ich10lan) ||
991 	    (hw->mac.type == e1000_pchlan) ||
992 	    (hw->mac.type == e1000_pch2lan) ||
993 	    (hw->mac.type == e1000_pch_lpt)) {
994 		int rid = EM_BAR_TYPE_FLASH;
995 		sc->flash = bus_alloc_resource_any(dev,
996 		    SYS_RES_MEMORY, &rid, RF_ACTIVE);
997 		if (sc->flash == NULL) {
998 			device_printf(dev, "Mapping of Flash failed\n");
999 			error = ENXIO;
1000 			goto err_pci;
1001 		}
1002 		/* This is used in the shared code */
1003 		hw->flash_address = (u8 *)sc->flash;
1004 		sc->osdep.flash_bus_space_tag =
1005 		    rman_get_bustag(sc->flash);
1006 		sc->osdep.flash_bus_space_handle =
1007 		    rman_get_bushandle(sc->flash);
1008 	}
1009 	/*
1010 	** In the new SPT device flash is not  a
1011 	** separate BAR, rather it is also in BAR0,
1012 	** so use the same tag and an offset handle for the
1013 	** FLASH read/write macros in the shared code.
1014 	*/
1015 	else if (hw->mac.type >= e1000_pch_spt) {
1016 		sc->osdep.flash_bus_space_tag =
1017 		    sc->osdep.mem_bus_space_tag;
1018 		sc->osdep.flash_bus_space_handle =
1019 		    sc->osdep.mem_bus_space_handle
1020 		    + E1000_FLASH_BASE_ADDR;
1021 	}
1022 
1023 	/* Do Shared Code initialization */
1024 	error = e1000_setup_init_funcs(hw, true);
1025 	if (error) {
1026 		device_printf(dev, "Setup of Shared code failed, error %d\n",
1027 		    error);
1028 		error = ENXIO;
1029 		goto err_pci;
1030 	}
1031 
1032 	em_setup_msix(ctx);
1033 	e1000_get_bus_info(hw);
1034 
1035 	/* Set up some sysctls for the tunable interrupt delays */
1036 	em_add_int_delay_sysctl(sc, "rx_int_delay",
1037 	    "receive interrupt delay in usecs", &sc->rx_int_delay,
1038 	    E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
1039 	em_add_int_delay_sysctl(sc, "tx_int_delay",
1040 	    "transmit interrupt delay in usecs", &sc->tx_int_delay,
1041 	    E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
1042 	em_add_int_delay_sysctl(sc, "rx_abs_int_delay",
1043 	    "receive interrupt delay limit in usecs",
1044 	    &sc->rx_abs_int_delay,
1045 	    E1000_REGISTER(hw, E1000_RADV),
1046 	    em_rx_abs_int_delay_dflt);
1047 	em_add_int_delay_sysctl(sc, "tx_abs_int_delay",
1048 	    "transmit interrupt delay limit in usecs",
1049 	    &sc->tx_abs_int_delay,
1050 	    E1000_REGISTER(hw, E1000_TADV),
1051 	    em_tx_abs_int_delay_dflt);
1052 	em_add_int_delay_sysctl(sc, "itr",
1053 	    "interrupt delay limit in usecs/4",
1054 	    &sc->tx_itr,
1055 	    E1000_REGISTER(hw, E1000_ITR),
1056 	    DEFAULT_ITR);
1057 
1058 	hw->mac.autoneg = DO_AUTO_NEG;
1059 	hw->phy.autoneg_wait_to_complete = false;
1060 	hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1061 
1062 	if (hw->mac.type < em_mac_min) {
1063 		e1000_init_script_state_82541(hw, true);
1064 		e1000_set_tbi_compatibility_82543(hw, true);
1065 	}
1066 	/* Copper options */
1067 	if (hw->phy.media_type == e1000_media_type_copper) {
1068 		hw->phy.mdix = AUTO_ALL_MODES;
1069 		hw->phy.disable_polarity_correction = false;
1070 		hw->phy.ms_type = EM_MASTER_SLAVE;
1071 	}
1072 
1073 	/*
1074 	 * Set the frame limits assuming
1075 	 * standard ethernet sized frames.
1076 	 */
1077 	scctx->isc_max_frame_size = hw->mac.max_frame_size =
1078 	    ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
1079 
1080 	/*
1081 	 * This controls when hardware reports transmit completion
1082 	 * status.
1083 	 */
1084 	hw->mac.report_tx_early = 1;
1085 
1086 	/* Allocate multicast array memory. */
1087 	sc->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
1088 	    MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1089 	if (sc->mta == NULL) {
1090 		device_printf(dev, "Can not allocate multicast setup array\n");
1091 		error = ENOMEM;
1092 		goto err_late;
1093 	}
1094 
1095 	/* Clear the IFCAP_TSO auto mask */
1096 	sc->tso_automasked = 0;
1097 
1098 	/* Check SOL/IDER usage */
1099 	if (e1000_check_reset_block(hw))
1100 		device_printf(dev, "PHY reset is blocked"
1101 			      " due to SOL/IDER session.\n");
1102 
1103 	/* Sysctl for setting Energy Efficient Ethernet */
1104 	if (hw->mac.type < igb_mac_min)
1105 		hw->dev_spec.ich8lan.eee_disable = eee_setting;
1106 	else
1107 		hw->dev_spec._82575.eee_disable = eee_setting;
1108 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "eee_control",
1109 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
1110 	    em_sysctl_eee, "I", "Disable Energy Efficient Ethernet");
1111 
1112 	/*
1113 	** Start from a known state, this is
1114 	** important in reading the nvm and
1115 	** mac from that.
1116 	*/
1117 	e1000_reset_hw(hw);
1118 
1119 	/* Make sure we have a good EEPROM before we read from it */
1120 	if (e1000_validate_nvm_checksum(hw) < 0) {
1121 		/*
1122 		** Some PCI-E parts fail the first check due to
1123 		** the link being in sleep state, call it again,
1124 		** if it fails a second time its a real issue.
1125 		*/
1126 		if (e1000_validate_nvm_checksum(hw) < 0) {
1127 			device_printf(dev,
1128 			    "The EEPROM Checksum Is Not Valid\n");
1129 			error = EIO;
1130 			goto err_late;
1131 		}
1132 	}
1133 
1134 	/* Copy the permanent MAC address out of the EEPROM */
1135 	if (e1000_read_mac_addr(hw) < 0) {
1136 		device_printf(dev, "EEPROM read error while reading MAC"
1137 			      " address\n");
1138 		error = EIO;
1139 		goto err_late;
1140 	}
1141 
1142 	if (!em_is_valid_ether_addr(hw->mac.addr)) {
1143 		if (sc->vf_ifp) {
1144 			ether_gen_addr(iflib_get_ifp(ctx),
1145 			    (struct ether_addr *)hw->mac.addr);
1146 		} else {
1147 			device_printf(dev, "Invalid MAC address\n");
1148 			error = EIO;
1149 			goto err_late;
1150 		}
1151 	}
1152 
1153 	/* Save the EEPROM/NVM versions, must be done under IFLIB_CTX_LOCK */
1154 	em_fw_version_locked(ctx);
1155 
1156 	em_print_fw_version(sc);
1157 
1158 	/*
1159 	 * Get Wake-on-Lan and Management info for later use
1160 	 */
1161 	em_get_wakeup(ctx);
1162 
1163 	/* Enable only WOL MAGIC by default */
1164 	scctx->isc_capenable &= ~IFCAP_WOL;
1165 	if (sc->wol != 0)
1166 		scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1167 
1168 	iflib_set_mac(ctx, hw->mac.addr);
1169 
1170 	return (0);
1171 
1172 err_late:
1173 	em_release_hw_control(sc);
1174 err_pci:
1175 	em_free_pci_resources(ctx);
1176 	free(sc->mta, M_DEVBUF);
1177 
1178 	return (error);
1179 }
1180 
1181 static int
1182 em_if_attach_post(if_ctx_t ctx)
1183 {
1184 	struct e1000_softc *sc = iflib_get_softc(ctx);
1185 	struct e1000_hw *hw = &sc->hw;
1186 	int error = 0;
1187 
1188 	/* Setup OS specific network interface */
1189 	error = em_setup_interface(ctx);
1190 	if (error != 0) {
1191 		device_printf(sc->dev, "Interface setup failed: %d\n", error);
1192 		goto err_late;
1193 	}
1194 
1195 	em_reset(ctx);
1196 
1197 	/* Initialize statistics */
1198 	em_update_stats_counters(sc);
1199 	hw->mac.get_link_status = 1;
1200 	em_if_update_admin_status(ctx);
1201 	em_add_hw_stats(sc);
1202 
1203 	/* Non-AMT based hardware can now take control from firmware */
1204 	if (sc->has_manage && !sc->has_amt)
1205 		em_get_hw_control(sc);
1206 
1207 	INIT_DEBUGOUT("em_if_attach_post: end");
1208 
1209 	return (0);
1210 
1211 err_late:
1212 	/* upon attach_post() error, iflib calls _if_detach() to free resources. */
1213 	return (error);
1214 }
1215 
1216 /*********************************************************************
1217  *  Device removal routine
1218  *
1219  *  The detach entry point is called when the driver is being removed.
1220  *  This routine stops the adapter and deallocates all the resources
1221  *  that were allocated for driver operation.
1222  *
1223  *  return 0 on success, positive on failure
1224  *********************************************************************/
1225 static int
1226 em_if_detach(if_ctx_t ctx)
1227 {
1228 	struct e1000_softc	*sc = iflib_get_softc(ctx);
1229 
1230 	INIT_DEBUGOUT("em_if_detach: begin");
1231 
1232 	e1000_phy_hw_reset(&sc->hw);
1233 
1234 	em_release_manageability(sc);
1235 	em_release_hw_control(sc);
1236 	em_free_pci_resources(ctx);
1237 	free(sc->mta, M_DEVBUF);
1238 	sc->mta = NULL;
1239 
1240 	return (0);
1241 }
1242 
1243 /*********************************************************************
1244  *
1245  *  Shutdown entry point
1246  *
1247  **********************************************************************/
1248 
1249 static int
1250 em_if_shutdown(if_ctx_t ctx)
1251 {
1252 	return em_if_suspend(ctx);
1253 }
1254 
1255 /*
1256  * Suspend/resume device methods.
1257  */
1258 static int
1259 em_if_suspend(if_ctx_t ctx)
1260 {
1261 	struct e1000_softc *sc = iflib_get_softc(ctx);
1262 
1263 	em_release_manageability(sc);
1264 	em_release_hw_control(sc);
1265 	em_enable_wakeup(ctx);
1266 	return (0);
1267 }
1268 
1269 static int
1270 em_if_resume(if_ctx_t ctx)
1271 {
1272 	struct e1000_softc *sc = iflib_get_softc(ctx);
1273 
1274 	if (sc->hw.mac.type == e1000_pch2lan)
1275 		e1000_resume_workarounds_pchlan(&sc->hw);
1276 	em_if_init(ctx);
1277 	em_init_manageability(sc);
1278 
1279 	return(0);
1280 }
1281 
1282 static int
1283 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1284 {
1285 	int max_frame_size;
1286 	struct e1000_softc *sc = iflib_get_softc(ctx);
1287 	if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1288 
1289 	IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1290 
1291 	switch (sc->hw.mac.type) {
1292 	case e1000_82571:
1293 	case e1000_82572:
1294 	case e1000_ich9lan:
1295 	case e1000_ich10lan:
1296 	case e1000_pch2lan:
1297 	case e1000_pch_lpt:
1298 	case e1000_pch_spt:
1299 	case e1000_pch_cnp:
1300 	case e1000_pch_tgp:
1301 	case e1000_pch_adp:
1302 	case e1000_pch_mtp:
1303 	case e1000_pch_ptp:
1304 	case e1000_82574:
1305 	case e1000_82583:
1306 	case e1000_80003es2lan:
1307 		/* 9K Jumbo Frame size */
1308 		max_frame_size = 9234;
1309 		break;
1310 	case e1000_pchlan:
1311 		max_frame_size = 4096;
1312 		break;
1313 	case e1000_82542:
1314 	case e1000_ich8lan:
1315 		/* Adapters that do not support jumbo frames */
1316 		max_frame_size = ETHER_MAX_LEN;
1317 		break;
1318 	default:
1319 		if (sc->hw.mac.type >= igb_mac_min)
1320 			max_frame_size = 9234;
1321 		else /* lem */
1322 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1323 	}
1324 	if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1325 		return (EINVAL);
1326 	}
1327 
1328 	scctx->isc_max_frame_size = sc->hw.mac.max_frame_size =
1329 	    mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1330 	return (0);
1331 }
1332 
1333 /*********************************************************************
1334  *  Init entry point
1335  *
1336  *  This routine is used in two ways. It is used by the stack as
1337  *  init entry point in network interface structure. It is also used
1338  *  by the driver as a hw/sw initialization routine to get to a
1339  *  consistent state.
1340  *
1341  **********************************************************************/
1342 static void
1343 em_if_init(if_ctx_t ctx)
1344 {
1345 	struct e1000_softc *sc = iflib_get_softc(ctx);
1346 	if_softc_ctx_t scctx = sc->shared;
1347 	if_t ifp = iflib_get_ifp(ctx);
1348 	struct em_tx_queue *tx_que;
1349 	int i;
1350 
1351 	INIT_DEBUGOUT("em_if_init: begin");
1352 
1353 	/* Get the latest mac address, User can use a LAA */
1354 	bcopy(if_getlladdr(ifp), sc->hw.mac.addr,
1355 	    ETHER_ADDR_LEN);
1356 
1357 	/* Put the address into the Receive Address Array */
1358 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1359 
1360 	/*
1361 	 * With the 82571 adapter, RAR[0] may be overwritten
1362 	 * when the other port is reset, we make a duplicate
1363 	 * in RAR[14] for that eventuality, this assures
1364 	 * the interface continues to function.
1365 	 */
1366 	if (sc->hw.mac.type == e1000_82571) {
1367 		e1000_set_laa_state_82571(&sc->hw, true);
1368 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1369 		    E1000_RAR_ENTRIES - 1);
1370 	}
1371 
1372 	/* Initialize the hardware */
1373 	em_reset(ctx);
1374 	em_if_update_admin_status(ctx);
1375 
1376 	for (i = 0, tx_que = sc->tx_queues; i < sc->tx_num_queues; i++, tx_que++) {
1377 		struct tx_ring *txr = &tx_que->txr;
1378 
1379 		txr->tx_rs_cidx = txr->tx_rs_pidx;
1380 
1381 		/* Initialize the last processed descriptor to be the end of
1382 		 * the ring, rather than the start, so that we avoid an
1383 		 * off-by-one error when calculating how many descriptors are
1384 		 * done in the credits_update function.
1385 		 */
1386 		txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1387 	}
1388 
1389 	/* Setup VLAN support, basic and offload if available */
1390 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1391 
1392 	/* Clear bad data from Rx FIFOs */
1393 	if (sc->hw.mac.type >= igb_mac_min)
1394 		e1000_rx_fifo_flush_base(&sc->hw);
1395 
1396 	/* Configure for OS presence */
1397 	em_init_manageability(sc);
1398 
1399 	/* Prepare transmit descriptors and buffers */
1400 	em_initialize_transmit_unit(ctx);
1401 
1402 	/* Setup Multicast table */
1403 	em_if_multi_set(ctx);
1404 
1405 	sc->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1406 	em_initialize_receive_unit(ctx);
1407 
1408 	/* Set up VLAN support and filter */
1409 	em_setup_vlan_hw_support(ctx);
1410 
1411 	/* Don't lose promiscuous settings */
1412 	em_if_set_promisc(ctx, if_getflags(ifp));
1413 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1414 
1415 	/* MSI-X configuration for 82574 */
1416 	if (sc->hw.mac.type == e1000_82574) {
1417 		int tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1418 
1419 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1420 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1421 		/* Set the IVAR - interrupt vector routing. */
1422 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, sc->ivars);
1423 	} else if (sc->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1424 		igb_configure_queues(sc);
1425 
1426 	/* this clears any pending interrupts */
1427 	E1000_READ_REG(&sc->hw, E1000_ICR);
1428 	E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1429 
1430 	/* AMT based hardware can now take control from firmware */
1431 	if (sc->has_manage && sc->has_amt)
1432 		em_get_hw_control(sc);
1433 
1434 	/* Set Energy Efficient Ethernet */
1435 	if (sc->hw.mac.type >= igb_mac_min &&
1436 	    sc->hw.phy.media_type == e1000_media_type_copper) {
1437 		if (sc->hw.mac.type == e1000_i354)
1438 			e1000_set_eee_i354(&sc->hw, true, true);
1439 		else
1440 			e1000_set_eee_i350(&sc->hw, true, true);
1441 	}
1442 }
1443 
1444 /*********************************************************************
1445  *
1446  *  Fast Legacy/MSI Combined Interrupt Service routine
1447  *
1448  *********************************************************************/
1449 int
1450 em_intr(void *arg)
1451 {
1452 	struct e1000_softc *sc = arg;
1453 	if_ctx_t ctx = sc->ctx;
1454 	u32 reg_icr;
1455 
1456 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1457 
1458 	/* Hot eject? */
1459 	if (reg_icr == 0xffffffff)
1460 		return FILTER_STRAY;
1461 
1462 	/* Definitely not our interrupt. */
1463 	if (reg_icr == 0x0)
1464 		return FILTER_STRAY;
1465 
1466 	/*
1467 	 * Starting with the 82571 chip, bit 31 should be used to
1468 	 * determine whether the interrupt belongs to us.
1469 	 */
1470 	if (sc->hw.mac.type >= e1000_82571 &&
1471 	    (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1472 		return FILTER_STRAY;
1473 
1474 	/*
1475 	 * Only MSI-X interrupts have one-shot behavior by taking advantage
1476 	 * of the EIAC register.  Thus, explicitly disable interrupts.  This
1477 	 * also works around the MSI message reordering errata on certain
1478 	 * systems.
1479 	 */
1480 	IFDI_INTR_DISABLE(ctx);
1481 
1482 	/* Link status change */
1483 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1484 		em_handle_link(ctx);
1485 
1486 	if (reg_icr & E1000_ICR_RXO)
1487 		sc->rx_overruns++;
1488 
1489 	return (FILTER_SCHEDULE_THREAD);
1490 }
1491 
1492 static int
1493 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1494 {
1495 	struct e1000_softc *sc = iflib_get_softc(ctx);
1496 	struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
1497 
1498 	E1000_WRITE_REG(&sc->hw, E1000_IMS, rxq->eims);
1499 	return (0);
1500 }
1501 
1502 static int
1503 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1504 {
1505 	struct e1000_softc *sc = iflib_get_softc(ctx);
1506 	struct em_tx_queue *txq = &sc->tx_queues[txqid];
1507 
1508 	E1000_WRITE_REG(&sc->hw, E1000_IMS, txq->eims);
1509 	return (0);
1510 }
1511 
1512 static int
1513 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1514 {
1515 	struct e1000_softc *sc = iflib_get_softc(ctx);
1516 	struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
1517 
1518 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, rxq->eims);
1519 	return (0);
1520 }
1521 
1522 static int
1523 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1524 {
1525 	struct e1000_softc *sc = iflib_get_softc(ctx);
1526 	struct em_tx_queue *txq = &sc->tx_queues[txqid];
1527 
1528 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, txq->eims);
1529 	return (0);
1530 }
1531 
1532 /*********************************************************************
1533  *
1534  *  MSI-X RX Interrupt Service routine
1535  *
1536  **********************************************************************/
1537 static int
1538 em_msix_que(void *arg)
1539 {
1540 	struct em_rx_queue *que = arg;
1541 
1542 	++que->irqs;
1543 
1544 	return (FILTER_SCHEDULE_THREAD);
1545 }
1546 
1547 /*********************************************************************
1548  *
1549  *  MSI-X Link Fast Interrupt Service routine
1550  *
1551  **********************************************************************/
1552 static int
1553 em_msix_link(void *arg)
1554 {
1555 	struct e1000_softc *sc = arg;
1556 	u32 reg_icr;
1557 
1558 	++sc->link_irq;
1559 	MPASS(sc->hw.back != NULL);
1560 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1561 
1562 	if (reg_icr & E1000_ICR_RXO)
1563 		sc->rx_overruns++;
1564 
1565 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1566 		em_handle_link(sc->ctx);
1567 
1568 	/* Re-arm unconditionally */
1569 	if (sc->hw.mac.type >= igb_mac_min) {
1570 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
1571 		E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->link_mask);
1572 	} else if (sc->hw.mac.type == e1000_82574) {
1573 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC |
1574 		    E1000_IMS_OTHER);
1575 		/*
1576 		 * Because we must read the ICR for this interrupt it may
1577 		 * clear other causes using autoclear, for this reason we
1578 		 * simply create a soft interrupt for all these vectors.
1579 		 */
1580 		if (reg_icr)
1581 			E1000_WRITE_REG(&sc->hw, E1000_ICS, sc->ims);
1582 	} else
1583 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
1584 
1585 	return (FILTER_HANDLED);
1586 }
1587 
1588 static void
1589 em_handle_link(void *context)
1590 {
1591 	if_ctx_t ctx = context;
1592 	struct e1000_softc *sc = iflib_get_softc(ctx);
1593 
1594 	sc->hw.mac.get_link_status = 1;
1595 	iflib_admin_intr_deferred(ctx);
1596 }
1597 
1598 /*********************************************************************
1599  *
1600  *  Media Ioctl callback
1601  *
1602  *  This routine is called whenever the user queries the status of
1603  *  the interface using ifconfig.
1604  *
1605  **********************************************************************/
1606 static void
1607 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1608 {
1609 	struct e1000_softc *sc = iflib_get_softc(ctx);
1610 	u_char fiber_type = IFM_1000_SX;
1611 
1612 	INIT_DEBUGOUT("em_if_media_status: begin");
1613 
1614 	iflib_admin_intr_deferred(ctx);
1615 
1616 	ifmr->ifm_status = IFM_AVALID;
1617 	ifmr->ifm_active = IFM_ETHER;
1618 
1619 	if (!sc->link_active) {
1620 		return;
1621 	}
1622 
1623 	ifmr->ifm_status |= IFM_ACTIVE;
1624 
1625 	if ((sc->hw.phy.media_type == e1000_media_type_fiber) ||
1626 	    (sc->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1627 		if (sc->hw.mac.type == e1000_82545)
1628 			fiber_type = IFM_1000_LX;
1629 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1630 	} else {
1631 		switch (sc->link_speed) {
1632 		case 10:
1633 			ifmr->ifm_active |= IFM_10_T;
1634 			break;
1635 		case 100:
1636 			ifmr->ifm_active |= IFM_100_TX;
1637 			break;
1638 		case 1000:
1639 			ifmr->ifm_active |= IFM_1000_T;
1640 			break;
1641 		}
1642 		if (sc->link_duplex == FULL_DUPLEX)
1643 			ifmr->ifm_active |= IFM_FDX;
1644 		else
1645 			ifmr->ifm_active |= IFM_HDX;
1646 	}
1647 }
1648 
1649 /*********************************************************************
1650  *
1651  *  Media Ioctl callback
1652  *
1653  *  This routine is called when the user changes speed/duplex using
1654  *  media/mediopt option with ifconfig.
1655  *
1656  **********************************************************************/
1657 static int
1658 em_if_media_change(if_ctx_t ctx)
1659 {
1660 	struct e1000_softc *sc = iflib_get_softc(ctx);
1661 	struct ifmedia *ifm = iflib_get_media(ctx);
1662 
1663 	INIT_DEBUGOUT("em_if_media_change: begin");
1664 
1665 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1666 		return (EINVAL);
1667 
1668 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1669 	case IFM_AUTO:
1670 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1671 		sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1672 		break;
1673 	case IFM_1000_LX:
1674 	case IFM_1000_SX:
1675 	case IFM_1000_T:
1676 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1677 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1678 		break;
1679 	case IFM_100_TX:
1680 		sc->hw.mac.autoneg = false;
1681 		sc->hw.phy.autoneg_advertised = 0;
1682 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1683 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1684 		else
1685 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1686 		break;
1687 	case IFM_10_T:
1688 		sc->hw.mac.autoneg = false;
1689 		sc->hw.phy.autoneg_advertised = 0;
1690 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1691 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1692 		else
1693 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1694 		break;
1695 	default:
1696 		device_printf(sc->dev, "Unsupported media type\n");
1697 	}
1698 
1699 	em_if_init(ctx);
1700 
1701 	return (0);
1702 }
1703 
1704 static int
1705 em_if_set_promisc(if_ctx_t ctx, int flags)
1706 {
1707 	struct e1000_softc *sc = iflib_get_softc(ctx);
1708 	if_t ifp = iflib_get_ifp(ctx);
1709 	u32 reg_rctl;
1710 	int mcnt = 0;
1711 
1712 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1713 	reg_rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_UPE);
1714 	if (flags & IFF_ALLMULTI)
1715 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1716 	else
1717 		mcnt = min(if_llmaddr_count(ifp), MAX_NUM_MULTICAST_ADDRESSES);
1718 
1719 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1720 		reg_rctl &= (~E1000_RCTL_MPE);
1721 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1722 
1723 	if (flags & IFF_PROMISC) {
1724 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1725 		em_if_vlan_filter_disable(sc);
1726 		/* Turn this on if you want to see bad packets */
1727 		if (em_debug_sbp)
1728 			reg_rctl |= E1000_RCTL_SBP;
1729 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1730 	} else {
1731 		if (flags & IFF_ALLMULTI) {
1732 			reg_rctl |= E1000_RCTL_MPE;
1733 			reg_rctl &= ~E1000_RCTL_UPE;
1734 			E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1735 		}
1736 		if (em_if_vlan_filter_used(ctx))
1737 			em_if_vlan_filter_enable(sc);
1738 	}
1739 	return (0);
1740 }
1741 
1742 static u_int
1743 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int idx)
1744 {
1745 	u8 *mta = arg;
1746 
1747 	if (idx == MAX_NUM_MULTICAST_ADDRESSES)
1748 		return (0);
1749 
1750 	bcopy(LLADDR(sdl), &mta[idx * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1751 
1752 	return (1);
1753 }
1754 
1755 /*********************************************************************
1756  *  Multicast Update
1757  *
1758  *  This routine is called whenever multicast address list is updated.
1759  *
1760  **********************************************************************/
1761 static void
1762 em_if_multi_set(if_ctx_t ctx)
1763 {
1764 	struct e1000_softc *sc = iflib_get_softc(ctx);
1765 	if_t ifp = iflib_get_ifp(ctx);
1766 	u8  *mta; /* Multicast array memory */
1767 	u32 reg_rctl = 0;
1768 	int mcnt = 0;
1769 
1770 	IOCTL_DEBUGOUT("em_set_multi: begin");
1771 
1772 	mta = sc->mta;
1773 	bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1774 
1775 	if (sc->hw.mac.type == e1000_82542 &&
1776 	    sc->hw.revision_id == E1000_REVISION_2) {
1777 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1778 		if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1779 			e1000_pci_clear_mwi(&sc->hw);
1780 		reg_rctl |= E1000_RCTL_RST;
1781 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1782 		msec_delay(5);
1783 	}
1784 
1785 	mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
1786 
1787 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1788 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1789 
1790 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1791 
1792 	if (if_getflags(ifp) & IFF_PROMISC)
1793 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1794 	else if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES ||
1795 	    if_getflags(ifp) & IFF_ALLMULTI) {
1796 		reg_rctl |= E1000_RCTL_MPE;
1797 		reg_rctl &= ~E1000_RCTL_UPE;
1798 	} else
1799 		reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1800 
1801 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1802 
1803 	if (sc->hw.mac.type == e1000_82542 &&
1804 	    sc->hw.revision_id == E1000_REVISION_2) {
1805 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1806 		reg_rctl &= ~E1000_RCTL_RST;
1807 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1808 		msec_delay(5);
1809 		if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1810 			e1000_pci_set_mwi(&sc->hw);
1811 	}
1812 }
1813 
1814 /*********************************************************************
1815  *  Timer routine
1816  *
1817  *  This routine schedules em_if_update_admin_status() to check for
1818  *  link status and to gather statistics as well as to perform some
1819  *  controller-specific hardware patting.
1820  *
1821  **********************************************************************/
1822 static void
1823 em_if_timer(if_ctx_t ctx, uint16_t qid)
1824 {
1825 
1826 	if (qid != 0)
1827 		return;
1828 
1829 	iflib_admin_intr_deferred(ctx);
1830 }
1831 
1832 static void
1833 em_if_update_admin_status(if_ctx_t ctx)
1834 {
1835 	struct e1000_softc *sc = iflib_get_softc(ctx);
1836 	struct e1000_hw *hw = &sc->hw;
1837 	device_t dev = iflib_get_dev(ctx);
1838 	u32 link_check, thstat, ctrl;
1839 	bool automasked = false;
1840 
1841 	link_check = thstat = ctrl = 0;
1842 	/* Get the cached link value or read phy for real */
1843 	switch (hw->phy.media_type) {
1844 	case e1000_media_type_copper:
1845 		if (hw->mac.get_link_status) {
1846 			if (hw->mac.type == e1000_pch_spt)
1847 				msec_delay(50);
1848 			/* Do the work to read phy */
1849 			e1000_check_for_link(hw);
1850 			link_check = !hw->mac.get_link_status;
1851 			if (link_check) /* ESB2 fix */
1852 				e1000_cfg_on_link_up(hw);
1853 		} else {
1854 			link_check = true;
1855 		}
1856 		break;
1857 	case e1000_media_type_fiber:
1858 		e1000_check_for_link(hw);
1859 		link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1860 			    E1000_STATUS_LU);
1861 		break;
1862 	case e1000_media_type_internal_serdes:
1863 		e1000_check_for_link(hw);
1864 		link_check = hw->mac.serdes_has_link;
1865 		break;
1866 	/* VF device is type_unknown */
1867 	case e1000_media_type_unknown:
1868 		e1000_check_for_link(hw);
1869 		link_check = !hw->mac.get_link_status;
1870 		/* FALLTHROUGH */
1871 	default:
1872 		break;
1873 	}
1874 
1875 	/* Check for thermal downshift or shutdown */
1876 	if (hw->mac.type == e1000_i350) {
1877 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1878 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1879 	}
1880 
1881 	/* Now check for a transition */
1882 	if (link_check && (sc->link_active == 0)) {
1883 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1884 		    &sc->link_duplex);
1885 		/* Check if we must disable SPEED_MODE bit on PCI-E */
1886 		if ((sc->link_speed != SPEED_1000) &&
1887 		    ((hw->mac.type == e1000_82571) ||
1888 		    (hw->mac.type == e1000_82572))) {
1889 			int tarc0;
1890 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1891 			tarc0 &= ~TARC_SPEED_MODE_BIT;
1892 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1893 		}
1894 		if (bootverbose)
1895 			device_printf(dev, "Link is up %d Mbps %s\n",
1896 			    sc->link_speed,
1897 			    ((sc->link_duplex == FULL_DUPLEX) ?
1898 			    "Full Duplex" : "Half Duplex"));
1899 		sc->link_active = 1;
1900 		sc->smartspeed = 0;
1901 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
1902 		    E1000_CTRL_EXT_LINK_MODE_GMII &&
1903 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1904 			device_printf(dev, "Link: thermal downshift\n");
1905 		/* Delay Link Up for Phy update */
1906 		if (((hw->mac.type == e1000_i210) ||
1907 		    (hw->mac.type == e1000_i211)) &&
1908 		    (hw->phy.id == I210_I_PHY_ID))
1909 			msec_delay(I210_LINK_DELAY);
1910 		/* Reset if the media type changed. */
1911 		if (hw->dev_spec._82575.media_changed &&
1912 		    hw->mac.type >= igb_mac_min) {
1913 			hw->dev_spec._82575.media_changed = false;
1914 			sc->flags |= IGB_MEDIA_RESET;
1915 			em_reset(ctx);
1916 		}
1917 		/* Only do TSO on gigabit Ethernet for older chips due to errata */
1918 		if (hw->mac.type < igb_mac_min)
1919 			automasked = em_automask_tso(ctx);
1920 
1921 		/* Automasking resets the interface, so don't mark it up yet */
1922 		if (!automasked)
1923 			iflib_link_state_change(ctx, LINK_STATE_UP,
1924 			    IF_Mbps(sc->link_speed));
1925 	} else if (!link_check && (sc->link_active == 1)) {
1926 		sc->link_speed = 0;
1927 		sc->link_duplex = 0;
1928 		sc->link_active = 0;
1929 		iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
1930 	}
1931 	em_update_stats_counters(sc);
1932 
1933 	/* Reset LAA into RAR[0] on 82571 */
1934 	if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
1935 		e1000_rar_set(hw, hw->mac.addr, 0);
1936 
1937 	if (hw->mac.type < em_mac_min)
1938 		lem_smartspeed(sc);
1939 }
1940 
1941 static void
1942 em_if_watchdog_reset(if_ctx_t ctx)
1943 {
1944 	struct e1000_softc *sc = iflib_get_softc(ctx);
1945 
1946 	/*
1947 	 * Just count the event; iflib(4) will already trigger a
1948 	 * sufficient reset of the controller.
1949 	 */
1950 	sc->watchdog_events++;
1951 }
1952 
1953 /*********************************************************************
1954  *
1955  *  This routine disables all traffic on the adapter by issuing a
1956  *  global reset on the MAC.
1957  *
1958  **********************************************************************/
1959 static void
1960 em_if_stop(if_ctx_t ctx)
1961 {
1962 	struct e1000_softc *sc = iflib_get_softc(ctx);
1963 
1964 	INIT_DEBUGOUT("em_if_stop: begin");
1965 
1966 	/* I219 needs special flushing to avoid hangs */
1967 	if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min)
1968 		em_flush_desc_rings(sc);
1969 
1970 	e1000_reset_hw(&sc->hw);
1971 	if (sc->hw.mac.type >= e1000_82544)
1972 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, 0);
1973 
1974 	e1000_led_off(&sc->hw);
1975 	e1000_cleanup_led(&sc->hw);
1976 }
1977 
1978 /*********************************************************************
1979  *
1980  *  Determine hardware revision.
1981  *
1982  **********************************************************************/
1983 static void
1984 em_identify_hardware(if_ctx_t ctx)
1985 {
1986 	device_t dev = iflib_get_dev(ctx);
1987 	struct e1000_softc *sc = iflib_get_softc(ctx);
1988 
1989 	/* Make sure our PCI config space has the necessary stuff set */
1990 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1991 
1992 	/* Save off the information about this board */
1993 	sc->hw.vendor_id = pci_get_vendor(dev);
1994 	sc->hw.device_id = pci_get_device(dev);
1995 	sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1996 	sc->hw.subsystem_vendor_id =
1997 	    pci_read_config(dev, PCIR_SUBVEND_0, 2);
1998 	sc->hw.subsystem_device_id =
1999 	    pci_read_config(dev, PCIR_SUBDEV_0, 2);
2000 
2001 	/* Do Shared Code Init and Setup */
2002 	if (e1000_set_mac_type(&sc->hw)) {
2003 		device_printf(dev, "Setup init failure\n");
2004 		return;
2005 	}
2006 
2007 	/* Are we a VF device? */
2008 	if ((sc->hw.mac.type == e1000_vfadapt) ||
2009 	    (sc->hw.mac.type == e1000_vfadapt_i350))
2010 		sc->vf_ifp = 1;
2011 	else
2012 		sc->vf_ifp = 0;
2013 }
2014 
2015 static int
2016 em_allocate_pci_resources(if_ctx_t ctx)
2017 {
2018 	struct e1000_softc *sc = iflib_get_softc(ctx);
2019 	device_t dev = iflib_get_dev(ctx);
2020 	int rid, val;
2021 
2022 	rid = PCIR_BAR(0);
2023 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2024 	    &rid, RF_ACTIVE);
2025 	if (sc->memory == NULL) {
2026 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2027 		return (ENXIO);
2028 	}
2029 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
2030 	sc->osdep.mem_bus_space_handle =
2031 	    rman_get_bushandle(sc->memory);
2032 	sc->hw.hw_addr = (u8 *)&sc->osdep.mem_bus_space_handle;
2033 
2034 	/* Only older adapters use IO mapping */
2035 	if (sc->hw.mac.type < em_mac_min && sc->hw.mac.type > e1000_82543) {
2036 		/* Figure our where our IO BAR is ? */
2037 		for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
2038 			val = pci_read_config(dev, rid, 4);
2039 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2040 				break;
2041 			}
2042 			rid += 4;
2043 			/* check for 64bit BAR */
2044 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2045 				rid += 4;
2046 		}
2047 		if (rid >= PCIR_CIS) {
2048 			device_printf(dev, "Unable to locate IO BAR\n");
2049 			return (ENXIO);
2050 		}
2051 		sc->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2052 		    &rid, RF_ACTIVE);
2053 		if (sc->ioport == NULL) {
2054 			device_printf(dev, "Unable to allocate bus resource: "
2055 			    "ioport\n");
2056 			return (ENXIO);
2057 		}
2058 		sc->hw.io_base = 0;
2059 		sc->osdep.io_bus_space_tag =
2060 		    rman_get_bustag(sc->ioport);
2061 		sc->osdep.io_bus_space_handle =
2062 		    rman_get_bushandle(sc->ioport);
2063 	}
2064 
2065 	sc->hw.back = &sc->osdep;
2066 
2067 	return (0);
2068 }
2069 
2070 /*********************************************************************
2071  *
2072  *  Set up the MSI-X Interrupt handlers
2073  *
2074  **********************************************************************/
2075 static int
2076 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
2077 {
2078 	struct e1000_softc *sc = iflib_get_softc(ctx);
2079 	struct em_rx_queue *rx_que = sc->rx_queues;
2080 	struct em_tx_queue *tx_que = sc->tx_queues;
2081 	int error, rid, i, vector = 0, rx_vectors;
2082 	char buf[16];
2083 
2084 	/* First set up ring resources */
2085 	for (i = 0; i < sc->rx_num_queues; i++, rx_que++, vector++) {
2086 		rid = vector + 1;
2087 		snprintf(buf, sizeof(buf), "rxq%d", i);
2088 		error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
2089 		if (error) {
2090 			device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
2091 			sc->rx_num_queues = i + 1;
2092 			goto fail;
2093 		}
2094 
2095 		rx_que->msix =  vector;
2096 
2097 		/*
2098 		 * Set the bit to enable interrupt
2099 		 * in E1000_IMS -- bits 20 and 21
2100 		 * are for RX0 and RX1, note this has
2101 		 * NOTHING to do with the MSI-X vector
2102 		 */
2103 		if (sc->hw.mac.type == e1000_82574) {
2104 			rx_que->eims = 1 << (20 + i);
2105 			sc->ims |= rx_que->eims;
2106 			sc->ivars |= (8 | rx_que->msix) << (i * 4);
2107 		} else if (sc->hw.mac.type == e1000_82575)
2108 			rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2109 		else
2110 			rx_que->eims = 1 << vector;
2111 	}
2112 	rx_vectors = vector;
2113 
2114 	vector = 0;
2115 	for (i = 0; i < sc->tx_num_queues; i++, tx_que++, vector++) {
2116 		snprintf(buf, sizeof(buf), "txq%d", i);
2117 		tx_que = &sc->tx_queues[i];
2118 		iflib_softirq_alloc_generic(ctx,
2119 		    &sc->rx_queues[i % sc->rx_num_queues].que_irq,
2120 		    IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2121 
2122 		tx_que->msix = (vector % sc->rx_num_queues);
2123 
2124 		/*
2125 		 * Set the bit to enable interrupt
2126 		 * in E1000_IMS -- bits 22 and 23
2127 		 * are for TX0 and TX1, note this has
2128 		 * NOTHING to do with the MSI-X vector
2129 		 */
2130 		if (sc->hw.mac.type == e1000_82574) {
2131 			tx_que->eims = 1 << (22 + i);
2132 			sc->ims |= tx_que->eims;
2133 			sc->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2134 		} else if (sc->hw.mac.type == e1000_82575) {
2135 			tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2136 		} else {
2137 			tx_que->eims = 1 << i;
2138 		}
2139 	}
2140 
2141 	/* Link interrupt */
2142 	rid = rx_vectors + 1;
2143 	error = iflib_irq_alloc_generic(ctx, &sc->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, sc, 0, "aq");
2144 
2145 	if (error) {
2146 		device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
2147 		goto fail;
2148 	}
2149 	sc->linkvec = rx_vectors;
2150 	if (sc->hw.mac.type < igb_mac_min) {
2151 		sc->ivars |=  (8 | rx_vectors) << 16;
2152 		sc->ivars |= 0x80000000;
2153 		/* Enable the "Other" interrupt type for link status change */
2154 		sc->ims |= E1000_IMS_OTHER;
2155 	}
2156 
2157 	return (0);
2158 fail:
2159 	iflib_irq_free(ctx, &sc->irq);
2160 	rx_que = sc->rx_queues;
2161 	for (int i = 0; i < sc->rx_num_queues; i++, rx_que++)
2162 		iflib_irq_free(ctx, &rx_que->que_irq);
2163 	return (error);
2164 }
2165 
2166 static void
2167 igb_configure_queues(struct e1000_softc *sc)
2168 {
2169 	struct e1000_hw *hw = &sc->hw;
2170 	struct em_rx_queue *rx_que;
2171 	struct em_tx_queue *tx_que;
2172 	u32 tmp, ivar = 0, newitr = 0;
2173 
2174 	/* First turn on RSS capability */
2175 	if (hw->mac.type != e1000_82575)
2176 		E1000_WRITE_REG(hw, E1000_GPIE,
2177 		    E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2178 		    E1000_GPIE_PBA | E1000_GPIE_NSICR);
2179 
2180 	/* Turn on MSI-X */
2181 	switch (hw->mac.type) {
2182 	case e1000_82580:
2183 	case e1000_i350:
2184 	case e1000_i354:
2185 	case e1000_i210:
2186 	case e1000_i211:
2187 	case e1000_vfadapt:
2188 	case e1000_vfadapt_i350:
2189 		/* RX entries */
2190 		for (int i = 0; i < sc->rx_num_queues; i++) {
2191 			u32 index = i >> 1;
2192 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2193 			rx_que = &sc->rx_queues[i];
2194 			if (i & 1) {
2195 				ivar &= 0xFF00FFFF;
2196 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2197 			} else {
2198 				ivar &= 0xFFFFFF00;
2199 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2200 			}
2201 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2202 		}
2203 		/* TX entries */
2204 		for (int i = 0; i < sc->tx_num_queues; i++) {
2205 			u32 index = i >> 1;
2206 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2207 			tx_que = &sc->tx_queues[i];
2208 			if (i & 1) {
2209 				ivar &= 0x00FFFFFF;
2210 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2211 			} else {
2212 				ivar &= 0xFFFF00FF;
2213 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2214 			}
2215 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2216 			sc->que_mask |= tx_que->eims;
2217 		}
2218 
2219 		/* And for the link interrupt */
2220 		ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
2221 		sc->link_mask = 1 << sc->linkvec;
2222 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2223 		break;
2224 	case e1000_82576:
2225 		/* RX entries */
2226 		for (int i = 0; i < sc->rx_num_queues; i++) {
2227 			u32 index = i & 0x7; /* Each IVAR has two entries */
2228 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2229 			rx_que = &sc->rx_queues[i];
2230 			if (i < 8) {
2231 				ivar &= 0xFFFFFF00;
2232 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2233 			} else {
2234 				ivar &= 0xFF00FFFF;
2235 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2236 			}
2237 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2238 			sc->que_mask |= rx_que->eims;
2239 		}
2240 		/* TX entries */
2241 		for (int i = 0; i < sc->tx_num_queues; i++) {
2242 			u32 index = i & 0x7; /* Each IVAR has two entries */
2243 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2244 			tx_que = &sc->tx_queues[i];
2245 			if (i < 8) {
2246 				ivar &= 0xFFFF00FF;
2247 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2248 			} else {
2249 				ivar &= 0x00FFFFFF;
2250 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2251 			}
2252 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2253 			sc->que_mask |= tx_que->eims;
2254 		}
2255 
2256 		/* And for the link interrupt */
2257 		ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
2258 		sc->link_mask = 1 << sc->linkvec;
2259 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2260 		break;
2261 
2262 	case e1000_82575:
2263 		/* enable MSI-X support*/
2264 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2265 		tmp |= E1000_CTRL_EXT_PBA_CLR;
2266 		/* Auto-Mask interrupts upon ICR read. */
2267 		tmp |= E1000_CTRL_EXT_EIAME;
2268 		tmp |= E1000_CTRL_EXT_IRCA;
2269 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2270 
2271 		/* Queues */
2272 		for (int i = 0; i < sc->rx_num_queues; i++) {
2273 			rx_que = &sc->rx_queues[i];
2274 			tmp = E1000_EICR_RX_QUEUE0 << i;
2275 			tmp |= E1000_EICR_TX_QUEUE0 << i;
2276 			rx_que->eims = tmp;
2277 			E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2278 			    i, rx_que->eims);
2279 			sc->que_mask |= rx_que->eims;
2280 		}
2281 
2282 		/* Link */
2283 		E1000_WRITE_REG(hw, E1000_MSIXBM(sc->linkvec),
2284 		    E1000_EIMS_OTHER);
2285 		sc->link_mask |= E1000_EIMS_OTHER;
2286 	default:
2287 		break;
2288 	}
2289 
2290 	/* Set the starting interrupt rate */
2291 	if (em_max_interrupt_rate > 0)
2292 		newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2293 
2294 	if (hw->mac.type == e1000_82575)
2295 		newitr |= newitr << 16;
2296 	else
2297 		newitr |= E1000_EITR_CNT_IGNR;
2298 
2299 	for (int i = 0; i < sc->rx_num_queues; i++) {
2300 		rx_que = &sc->rx_queues[i];
2301 		E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2302 	}
2303 
2304 	return;
2305 }
2306 
2307 static void
2308 em_free_pci_resources(if_ctx_t ctx)
2309 {
2310 	struct e1000_softc *sc = iflib_get_softc(ctx);
2311 	struct em_rx_queue *que = sc->rx_queues;
2312 	device_t dev = iflib_get_dev(ctx);
2313 
2314 	/* Release all MSI-X queue resources */
2315 	if (sc->intr_type == IFLIB_INTR_MSIX)
2316 		iflib_irq_free(ctx, &sc->irq);
2317 
2318 	if (que != NULL) {
2319 		for (int i = 0; i < sc->rx_num_queues; i++, que++) {
2320 			iflib_irq_free(ctx, &que->que_irq);
2321 		}
2322 	}
2323 
2324 	if (sc->memory != NULL) {
2325 		bus_release_resource(dev, SYS_RES_MEMORY,
2326 		    rman_get_rid(sc->memory), sc->memory);
2327 		sc->memory = NULL;
2328 	}
2329 
2330 	if (sc->flash != NULL) {
2331 		bus_release_resource(dev, SYS_RES_MEMORY,
2332 		    rman_get_rid(sc->flash), sc->flash);
2333 		sc->flash = NULL;
2334 	}
2335 
2336 	if (sc->ioport != NULL) {
2337 		bus_release_resource(dev, SYS_RES_IOPORT,
2338 		    rman_get_rid(sc->ioport), sc->ioport);
2339 		sc->ioport = NULL;
2340 	}
2341 }
2342 
2343 /* Set up MSI or MSI-X */
2344 static int
2345 em_setup_msix(if_ctx_t ctx)
2346 {
2347 	struct e1000_softc *sc = iflib_get_softc(ctx);
2348 
2349 	if (sc->hw.mac.type == e1000_82574) {
2350 		em_enable_vectors_82574(ctx);
2351 	}
2352 	return (0);
2353 }
2354 
2355 /*********************************************************************
2356  *
2357  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2358  *
2359  **********************************************************************/
2360 static void
2361 lem_smartspeed(struct e1000_softc *sc)
2362 {
2363 	u16 phy_tmp;
2364 
2365 	if (sc->link_active || (sc->hw.phy.type != e1000_phy_igp) ||
2366 	    sc->hw.mac.autoneg == 0 ||
2367 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2368 		return;
2369 
2370 	if (sc->smartspeed == 0) {
2371 		/* If Master/Slave config fault is asserted twice,
2372 		 * we assume back-to-back */
2373 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2374 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2375 			return;
2376 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2377 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2378 			e1000_read_phy_reg(&sc->hw,
2379 			    PHY_1000T_CTRL, &phy_tmp);
2380 			if(phy_tmp & CR_1000T_MS_ENABLE) {
2381 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2382 				e1000_write_phy_reg(&sc->hw,
2383 				    PHY_1000T_CTRL, phy_tmp);
2384 				sc->smartspeed++;
2385 				if(sc->hw.mac.autoneg &&
2386 				   !e1000_copper_link_autoneg(&sc->hw) &&
2387 				   !e1000_read_phy_reg(&sc->hw,
2388 				    PHY_CONTROL, &phy_tmp)) {
2389 					phy_tmp |= (MII_CR_AUTO_NEG_EN |
2390 						    MII_CR_RESTART_AUTO_NEG);
2391 					e1000_write_phy_reg(&sc->hw,
2392 					    PHY_CONTROL, phy_tmp);
2393 				}
2394 			}
2395 		}
2396 		return;
2397 	} else if(sc->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2398 		/* If still no link, perhaps using 2/3 pair cable */
2399 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2400 		phy_tmp |= CR_1000T_MS_ENABLE;
2401 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2402 		if(sc->hw.mac.autoneg &&
2403 		   !e1000_copper_link_autoneg(&sc->hw) &&
2404 		   !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2405 			phy_tmp |= (MII_CR_AUTO_NEG_EN |
2406 				    MII_CR_RESTART_AUTO_NEG);
2407 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2408 		}
2409 	}
2410 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2411 	if(sc->smartspeed++ == EM_SMARTSPEED_MAX)
2412 		sc->smartspeed = 0;
2413 }
2414 
2415 /*********************************************************************
2416  *
2417  *  Initialize the DMA Coalescing feature
2418  *
2419  **********************************************************************/
2420 static void
2421 igb_init_dmac(struct e1000_softc *sc, u32 pba)
2422 {
2423 	device_t	dev = sc->dev;
2424 	struct e1000_hw *hw = &sc->hw;
2425 	u32 		dmac, reg = ~E1000_DMACR_DMAC_EN;
2426 	u16		hwm;
2427 	u16		max_frame_size;
2428 
2429 	if (hw->mac.type == e1000_i211)
2430 		return;
2431 
2432 	max_frame_size = sc->shared->isc_max_frame_size;
2433 	if (hw->mac.type > e1000_82580) {
2434 
2435 		if (sc->dmac == 0) { /* Disabling it */
2436 			E1000_WRITE_REG(hw, E1000_DMACR, reg);
2437 			return;
2438 		} else
2439 			device_printf(dev, "DMA Coalescing enabled\n");
2440 
2441 		/* Set starting threshold */
2442 		E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2443 
2444 		hwm = 64 * pba - max_frame_size / 16;
2445 		if (hwm < 64 * (pba - 6))
2446 			hwm = 64 * (pba - 6);
2447 		reg = E1000_READ_REG(hw, E1000_FCRTC);
2448 		reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2449 		reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2450 		    & E1000_FCRTC_RTH_COAL_MASK);
2451 		E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2452 
2453 
2454 		dmac = pba - max_frame_size / 512;
2455 		if (dmac < pba - 10)
2456 			dmac = pba - 10;
2457 		reg = E1000_READ_REG(hw, E1000_DMACR);
2458 		reg &= ~E1000_DMACR_DMACTHR_MASK;
2459 		reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2460 		    & E1000_DMACR_DMACTHR_MASK);
2461 
2462 		/* transition to L0x or L1 if available..*/
2463 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2464 
2465 		/* Check if status is 2.5Gb backplane connection
2466 		* before configuration of watchdog timer, which is
2467 		* in msec values in 12.8usec intervals
2468 		* watchdog timer= msec values in 32usec intervals
2469 		* for non 2.5Gb connection
2470 		*/
2471 		if (hw->mac.type == e1000_i354) {
2472 			int status = E1000_READ_REG(hw, E1000_STATUS);
2473 			if ((status & E1000_STATUS_2P5_SKU) &&
2474 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2475 				reg |= ((sc->dmac * 5) >> 6);
2476 			else
2477 				reg |= (sc->dmac >> 5);
2478 		} else {
2479 			reg |= (sc->dmac >> 5);
2480 		}
2481 
2482 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
2483 
2484 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2485 
2486 		/* Set the interval before transition */
2487 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
2488 		if (hw->mac.type == e1000_i350)
2489 			reg |= IGB_DMCTLX_DCFLUSH_DIS;
2490 		/*
2491 		** in 2.5Gb connection, TTLX unit is 0.4 usec
2492 		** which is 0x4*2 = 0xA. But delay is still 4 usec
2493 		*/
2494 		if (hw->mac.type == e1000_i354) {
2495 			int status = E1000_READ_REG(hw, E1000_STATUS);
2496 			if ((status & E1000_STATUS_2P5_SKU) &&
2497 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2498 				reg |= 0xA;
2499 			else
2500 				reg |= 0x4;
2501 		} else {
2502 			reg |= 0x4;
2503 		}
2504 
2505 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2506 
2507 		/* free space in tx packet buffer to wake from DMA coal */
2508 		E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2509 		    (2 * max_frame_size)) >> 6);
2510 
2511 		/* make low power state decision controlled by DMA coal */
2512 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2513 		reg &= ~E1000_PCIEMISC_LX_DECISION;
2514 		E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2515 
2516 	} else if (hw->mac.type == e1000_82580) {
2517 		u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2518 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
2519 		    reg & ~E1000_PCIEMISC_LX_DECISION);
2520 		E1000_WRITE_REG(hw, E1000_DMACR, 0);
2521 	}
2522 }
2523 /*********************************************************************
2524  * The 3 following flush routines are used as a workaround in the
2525  * I219 client parts and only for them.
2526  *
2527  * em_flush_tx_ring - remove all descriptors from the tx_ring
2528  *
2529  * We want to clear all pending descriptors from the TX ring.
2530  * zeroing happens when the HW reads the regs. We assign the ring itself as
2531  * the data of the next descriptor. We don't care about the data we are about
2532  * to reset the HW.
2533  **********************************************************************/
2534 static void
2535 em_flush_tx_ring(struct e1000_softc *sc)
2536 {
2537 	struct e1000_hw		*hw = &sc->hw;
2538 	struct tx_ring		*txr = &sc->tx_queues->txr;
2539 	struct e1000_tx_desc	*txd;
2540 	u32			tctl, txd_lower = E1000_TXD_CMD_IFCS;
2541 	u16			size = 512;
2542 
2543 	tctl = E1000_READ_REG(hw, E1000_TCTL);
2544 	E1000_WRITE_REG(hw, E1000_TCTL, tctl | E1000_TCTL_EN);
2545 
2546 	txd = &txr->tx_base[txr->tx_cidx_processed];
2547 
2548 	/* Just use the ring as a dummy buffer addr */
2549 	txd->buffer_addr = txr->tx_paddr;
2550 	txd->lower.data = htole32(txd_lower | size);
2551 	txd->upper.data = 0;
2552 
2553 	/* flush descriptors to memory before notifying the HW */
2554 	wmb();
2555 
2556 	E1000_WRITE_REG(hw, E1000_TDT(0), txr->tx_cidx_processed);
2557 	mb();
2558 	usec_delay(250);
2559 }
2560 
2561 /*********************************************************************
2562  * em_flush_rx_ring - remove all descriptors from the rx_ring
2563  *
2564  * Mark all descriptors in the RX ring as consumed and disable the rx ring
2565  **********************************************************************/
2566 static void
2567 em_flush_rx_ring(struct e1000_softc *sc)
2568 {
2569 	struct e1000_hw	*hw = &sc->hw;
2570 	u32		rctl, rxdctl;
2571 
2572 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2573 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2574 	E1000_WRITE_FLUSH(hw);
2575 	usec_delay(150);
2576 
2577 	rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
2578 	/* zero the lower 14 bits (prefetch and host thresholds) */
2579 	rxdctl &= 0xffffc000;
2580 	/*
2581 	 * update thresholds: prefetch threshold to 31, host threshold to 1
2582 	 * and make sure the granularity is "descriptors" and not "cache lines"
2583 	 */
2584 	rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
2585 	E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl);
2586 
2587 	/* momentarily enable the RX ring for the changes to take effect */
2588 	E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN);
2589 	E1000_WRITE_FLUSH(hw);
2590 	usec_delay(150);
2591 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2592 }
2593 
2594 /*********************************************************************
2595  * em_flush_desc_rings - remove all descriptors from the descriptor rings
2596  *
2597  * In I219, the descriptor rings must be emptied before resetting the HW
2598  * or before changing the device state to D3 during runtime (runtime PM).
2599  *
2600  * Failure to do this will cause the HW to enter a unit hang state which can
2601  * only be released by PCI reset on the device
2602  *
2603  **********************************************************************/
2604 static void
2605 em_flush_desc_rings(struct e1000_softc *sc)
2606 {
2607 	struct e1000_hw	*hw = &sc->hw;
2608 	device_t dev = sc->dev;
2609 	u16		hang_state;
2610 	u32		fext_nvm11, tdlen;
2611 
2612 	/* First, disable MULR fix in FEXTNVM11 */
2613 	fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
2614 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
2615 	E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11);
2616 
2617 	/* do nothing if we're not in faulty state, or if the queue is empty */
2618 	tdlen = E1000_READ_REG(hw, E1000_TDLEN(0));
2619 	hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
2620 	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
2621 		return;
2622 	em_flush_tx_ring(sc);
2623 
2624 	/* recheck, maybe the fault is caused by the rx ring */
2625 	hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
2626 	if (hang_state & FLUSH_DESC_REQUIRED)
2627 		em_flush_rx_ring(sc);
2628 }
2629 
2630 
2631 /*********************************************************************
2632  *
2633  *  Initialize the hardware to a configuration as specified by the
2634  *  sc structure.
2635  *
2636  **********************************************************************/
2637 static void
2638 em_reset(if_ctx_t ctx)
2639 {
2640 	device_t dev = iflib_get_dev(ctx);
2641 	struct e1000_softc *sc = iflib_get_softc(ctx);
2642 	if_t ifp = iflib_get_ifp(ctx);
2643 	struct e1000_hw *hw = &sc->hw;
2644 	u32 rx_buffer_size;
2645 	u32 pba;
2646 
2647 	INIT_DEBUGOUT("em_reset: begin");
2648 	/* Let the firmware know the OS is in control */
2649 	em_get_hw_control(sc);
2650 
2651 	/* Set up smart power down as default off on newer adapters. */
2652 	if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2653 	    hw->mac.type == e1000_82572)) {
2654 		u16 phy_tmp = 0;
2655 
2656 		/* Speed up time to link by disabling smart power down. */
2657 		e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2658 		phy_tmp &= ~IGP02E1000_PM_SPD;
2659 		e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2660 	}
2661 
2662 	/*
2663 	 * Packet Buffer Allocation (PBA)
2664 	 * Writing PBA sets the receive portion of the buffer
2665 	 * the remainder is used for the transmit buffer.
2666 	 */
2667 	switch (hw->mac.type) {
2668 	/* 82547: Total Packet Buffer is 40K */
2669 	case e1000_82547:
2670 	case e1000_82547_rev_2:
2671 		if (hw->mac.max_frame_size > 8192)
2672 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2673 		else
2674 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2675 		break;
2676 	/* 82571/82572/80003es2lan: Total Packet Buffer is 48K */
2677 	case e1000_82571:
2678 	case e1000_82572:
2679 	case e1000_80003es2lan:
2680 			pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2681 		break;
2682 	/* 82573: Total Packet Buffer is 32K */
2683 	case e1000_82573:
2684 			pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2685 		break;
2686 	case e1000_82574:
2687 	case e1000_82583:
2688 			pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2689 		break;
2690 	case e1000_ich8lan:
2691 		pba = E1000_PBA_8K;
2692 		break;
2693 	case e1000_ich9lan:
2694 	case e1000_ich10lan:
2695 		/* Boost Receive side for jumbo frames */
2696 		if (hw->mac.max_frame_size > 4096)
2697 			pba = E1000_PBA_14K;
2698 		else
2699 			pba = E1000_PBA_10K;
2700 		break;
2701 	case e1000_pchlan:
2702 	case e1000_pch2lan:
2703 	case e1000_pch_lpt:
2704 	case e1000_pch_spt:
2705 	case e1000_pch_cnp:
2706 	case e1000_pch_tgp:
2707 	case e1000_pch_adp:
2708 	case e1000_pch_mtp:
2709 	case e1000_pch_ptp:
2710 		pba = E1000_PBA_26K;
2711 		break;
2712 	case e1000_82575:
2713 		pba = E1000_PBA_32K;
2714 		break;
2715 	case e1000_82576:
2716 	case e1000_vfadapt:
2717 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2718 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2719 		break;
2720 	case e1000_82580:
2721 	case e1000_i350:
2722 	case e1000_i354:
2723 	case e1000_vfadapt_i350:
2724 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2725 		pba = e1000_rxpbs_adjust_82580(pba);
2726 		break;
2727 	case e1000_i210:
2728 	case e1000_i211:
2729 		pba = E1000_PBA_34K;
2730 		break;
2731 	default:
2732 		/* Remaining devices assumed to have a Packet Buffer of 64K. */
2733 		if (hw->mac.max_frame_size > 8192)
2734 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2735 		else
2736 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2737 	}
2738 
2739 	/* Special needs in case of Jumbo frames */
2740 	if ((hw->mac.type == e1000_82575) && (if_getmtu(ifp) > ETHERMTU)) {
2741 		u32 tx_space, min_tx, min_rx;
2742 		pba = E1000_READ_REG(hw, E1000_PBA);
2743 		tx_space = pba >> 16;
2744 		pba &= 0xffff;
2745 		min_tx = (hw->mac.max_frame_size +
2746 		    sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
2747 		min_tx = roundup2(min_tx, 1024);
2748 		min_tx >>= 10;
2749 		min_rx = hw->mac.max_frame_size;
2750 		min_rx = roundup2(min_rx, 1024);
2751 		min_rx >>= 10;
2752 		if (tx_space < min_tx &&
2753 		    ((min_tx - tx_space) < pba)) {
2754 			pba = pba - (min_tx - tx_space);
2755 			/*
2756 			 * if short on rx space, rx wins
2757 			 * and must trump tx adjustment
2758 			 */
2759 			if (pba < min_rx)
2760 				pba = min_rx;
2761 		}
2762 		E1000_WRITE_REG(hw, E1000_PBA, pba);
2763 	}
2764 
2765 	if (hw->mac.type < igb_mac_min)
2766 		E1000_WRITE_REG(hw, E1000_PBA, pba);
2767 
2768 	INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
2769 
2770 	/*
2771 	 * These parameters control the automatic generation (Tx) and
2772 	 * response (Rx) to Ethernet PAUSE frames.
2773 	 * - High water mark should allow for at least two frames to be
2774 	 *   received after sending an XOFF.
2775 	 * - Low water mark works best when it is very near the high water mark.
2776 	 *   This allows the receiver to restart by sending XON when it has
2777 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
2778 	 *   restart after one full frame is pulled from the buffer. There
2779 	 *   could be several smaller frames in the buffer and if so they will
2780 	 *   not trigger the XON until their total number reduces the buffer
2781 	 *   by 1500.
2782 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2783 	 */
2784 	rx_buffer_size = (pba & 0xffff) << 10;
2785 	hw->fc.high_water = rx_buffer_size -
2786 	    roundup2(hw->mac.max_frame_size, 1024);
2787 	hw->fc.low_water = hw->fc.high_water - 1500;
2788 
2789 	if (sc->fc) /* locally set flow control value? */
2790 		hw->fc.requested_mode = sc->fc;
2791 	else
2792 		hw->fc.requested_mode = e1000_fc_full;
2793 
2794 	if (hw->mac.type == e1000_80003es2lan)
2795 		hw->fc.pause_time = 0xFFFF;
2796 	else
2797 		hw->fc.pause_time = EM_FC_PAUSE_TIME;
2798 
2799 	hw->fc.send_xon = true;
2800 
2801 	/* Device specific overrides/settings */
2802 	switch (hw->mac.type) {
2803 	case e1000_pchlan:
2804 		/* Workaround: no TX flow ctrl for PCH */
2805 		hw->fc.requested_mode = e1000_fc_rx_pause;
2806 		hw->fc.pause_time = 0xFFFF; /* override */
2807 		if (if_getmtu(ifp) > ETHERMTU) {
2808 			hw->fc.high_water = 0x3500;
2809 			hw->fc.low_water = 0x1500;
2810 		} else {
2811 			hw->fc.high_water = 0x5000;
2812 			hw->fc.low_water = 0x3000;
2813 		}
2814 		hw->fc.refresh_time = 0x1000;
2815 		break;
2816 	case e1000_pch2lan:
2817 	case e1000_pch_lpt:
2818 	case e1000_pch_spt:
2819 	case e1000_pch_cnp:
2820 	case e1000_pch_tgp:
2821 	case e1000_pch_adp:
2822 	case e1000_pch_mtp:
2823 	case e1000_pch_ptp:
2824 		hw->fc.high_water = 0x5C20;
2825 		hw->fc.low_water = 0x5048;
2826 		hw->fc.pause_time = 0x0650;
2827 		hw->fc.refresh_time = 0x0400;
2828 		/* Jumbos need adjusted PBA */
2829 		if (if_getmtu(ifp) > ETHERMTU)
2830 			E1000_WRITE_REG(hw, E1000_PBA, 12);
2831 		else
2832 			E1000_WRITE_REG(hw, E1000_PBA, 26);
2833 		break;
2834 	case e1000_82575:
2835 	case e1000_82576:
2836 		/* 8-byte granularity */
2837 		hw->fc.low_water = hw->fc.high_water - 8;
2838 		break;
2839 	case e1000_82580:
2840 	case e1000_i350:
2841 	case e1000_i354:
2842 	case e1000_i210:
2843 	case e1000_i211:
2844 	case e1000_vfadapt:
2845 	case e1000_vfadapt_i350:
2846 		/* 16-byte granularity */
2847 		hw->fc.low_water = hw->fc.high_water - 16;
2848 		break;
2849 	case e1000_ich9lan:
2850 	case e1000_ich10lan:
2851 		if (if_getmtu(ifp) > ETHERMTU) {
2852 			hw->fc.high_water = 0x2800;
2853 			hw->fc.low_water = hw->fc.high_water - 8;
2854 			break;
2855 		}
2856 		/* FALLTHROUGH */
2857 	default:
2858 		if (hw->mac.type == e1000_80003es2lan)
2859 			hw->fc.pause_time = 0xFFFF;
2860 		break;
2861 	}
2862 
2863 	/* I219 needs some special flushing to avoid hangs */
2864 	if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min)
2865 		em_flush_desc_rings(sc);
2866 
2867 	/* Issue a global reset */
2868 	e1000_reset_hw(hw);
2869 	if (hw->mac.type >= igb_mac_min) {
2870 		E1000_WRITE_REG(hw, E1000_WUC, 0);
2871 	} else {
2872 		E1000_WRITE_REG(hw, E1000_WUFC, 0);
2873 		em_disable_aspm(sc);
2874 	}
2875 	if (sc->flags & IGB_MEDIA_RESET) {
2876 		e1000_setup_init_funcs(hw, true);
2877 		e1000_get_bus_info(hw);
2878 		sc->flags &= ~IGB_MEDIA_RESET;
2879 	}
2880 	/* and a re-init */
2881 	if (e1000_init_hw(hw) < 0) {
2882 		device_printf(dev, "Hardware Initialization Failed\n");
2883 		return;
2884 	}
2885 	if (hw->mac.type >= igb_mac_min)
2886 		igb_init_dmac(sc, pba);
2887 
2888 	E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2889 	e1000_get_phy_info(hw);
2890 	e1000_check_for_link(hw);
2891 }
2892 
2893 /*
2894  * Initialise the RSS mapping for NICs that support multiple transmit/
2895  * receive rings.
2896  */
2897 
2898 #define RSSKEYLEN 10
2899 static void
2900 em_initialize_rss_mapping(struct e1000_softc *sc)
2901 {
2902 	uint8_t  rss_key[4 * RSSKEYLEN];
2903 	uint32_t reta = 0;
2904 	struct e1000_hw	*hw = &sc->hw;
2905 	int i;
2906 
2907 	/*
2908 	 * Configure RSS key
2909 	 */
2910 	arc4rand(rss_key, sizeof(rss_key), 0);
2911 	for (i = 0; i < RSSKEYLEN; ++i) {
2912 		uint32_t rssrk = 0;
2913 
2914 		rssrk = EM_RSSRK_VAL(rss_key, i);
2915 		E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2916 	}
2917 
2918 	/*
2919 	 * Configure RSS redirect table in following fashion:
2920 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2921 	 */
2922 	for (i = 0; i < sizeof(reta); ++i) {
2923 		uint32_t q;
2924 
2925 		q = (i % sc->rx_num_queues) << 7;
2926 		reta |= q << (8 * i);
2927 	}
2928 
2929 	for (i = 0; i < 32; ++i)
2930 		E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2931 
2932 	E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
2933 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2934 			E1000_MRQC_RSS_FIELD_IPV4 |
2935 			E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2936 			E1000_MRQC_RSS_FIELD_IPV6_EX |
2937 			E1000_MRQC_RSS_FIELD_IPV6);
2938 }
2939 
2940 static void
2941 igb_initialize_rss_mapping(struct e1000_softc *sc)
2942 {
2943 	struct e1000_hw *hw = &sc->hw;
2944 	int i;
2945 	int queue_id;
2946 	u32 reta;
2947 	u32 rss_key[10], mrqc, shift = 0;
2948 
2949 	/* XXX? */
2950 	if (hw->mac.type == e1000_82575)
2951 		shift = 6;
2952 
2953 	/*
2954 	 * The redirection table controls which destination
2955 	 * queue each bucket redirects traffic to.
2956 	 * Each DWORD represents four queues, with the LSB
2957 	 * being the first queue in the DWORD.
2958 	 *
2959 	 * This just allocates buckets to queues using round-robin
2960 	 * allocation.
2961 	 *
2962 	 * NOTE: It Just Happens to line up with the default
2963 	 * RSS allocation method.
2964 	 */
2965 
2966 	/* Warning FM follows */
2967 	reta = 0;
2968 	for (i = 0; i < 128; i++) {
2969 #ifdef RSS
2970 		queue_id = rss_get_indirection_to_bucket(i);
2971 		/*
2972 		 * If we have more queues than buckets, we'll
2973 		 * end up mapping buckets to a subset of the
2974 		 * queues.
2975 		 *
2976 		 * If we have more buckets than queues, we'll
2977 		 * end up instead assigning multiple buckets
2978 		 * to queues.
2979 		 *
2980 		 * Both are suboptimal, but we need to handle
2981 		 * the case so we don't go out of bounds
2982 		 * indexing arrays and such.
2983 		 */
2984 		queue_id = queue_id % sc->rx_num_queues;
2985 #else
2986 		queue_id = (i % sc->rx_num_queues);
2987 #endif
2988 		/* Adjust if required */
2989 		queue_id = queue_id << shift;
2990 
2991 		/*
2992 		 * The low 8 bits are for hash value (n+0);
2993 		 * The next 8 bits are for hash value (n+1), etc.
2994 		 */
2995 		reta = reta >> 8;
2996 		reta = reta | ( ((uint32_t) queue_id) << 24);
2997 		if ((i & 3) == 3) {
2998 			E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2999 			reta = 0;
3000 		}
3001 	}
3002 
3003 	/* Now fill in hash table */
3004 
3005 	/*
3006 	 * MRQC: Multiple Receive Queues Command
3007 	 * Set queuing to RSS control, number depends on the device.
3008 	 */
3009 	mrqc = E1000_MRQC_ENABLE_RSS_MQ;
3010 
3011 #ifdef RSS
3012 	/* XXX ew typecasting */
3013 	rss_getkey((uint8_t *) &rss_key);
3014 #else
3015 	arc4rand(&rss_key, sizeof(rss_key), 0);
3016 #endif
3017 	for (i = 0; i < 10; i++)
3018 		E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
3019 
3020 	/*
3021 	 * Configure the RSS fields to hash upon.
3022 	 */
3023 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
3024 	    E1000_MRQC_RSS_FIELD_IPV4_TCP);
3025 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
3026 	    E1000_MRQC_RSS_FIELD_IPV6_TCP);
3027 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
3028 	    E1000_MRQC_RSS_FIELD_IPV6_UDP);
3029 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
3030 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3031 
3032 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
3033 }
3034 
3035 /*********************************************************************
3036  *
3037  *  Setup networking device structure and register interface media.
3038  *
3039  **********************************************************************/
3040 static int
3041 em_setup_interface(if_ctx_t ctx)
3042 {
3043 	if_t ifp = iflib_get_ifp(ctx);
3044 	struct e1000_softc *sc = iflib_get_softc(ctx);
3045 	if_softc_ctx_t scctx = sc->shared;
3046 
3047 	INIT_DEBUGOUT("em_setup_interface: begin");
3048 
3049 	/* Single Queue */
3050 	if (sc->tx_num_queues == 1) {
3051 		if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
3052 		if_setsendqready(ifp);
3053 	}
3054 
3055 	/*
3056 	 * Specify the media types supported by this adapter and register
3057 	 * callbacks to update media and link information
3058 	 */
3059 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
3060 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
3061 		u_char fiber_type = IFM_1000_SX;	/* default type */
3062 
3063 		if (sc->hw.mac.type == e1000_82545)
3064 			fiber_type = IFM_1000_LX;
3065 		ifmedia_add(sc->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
3066 		ifmedia_add(sc->media, IFM_ETHER | fiber_type, 0, NULL);
3067 	} else {
3068 		ifmedia_add(sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
3069 		ifmedia_add(sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
3070 		ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
3071 		ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
3072 		if (sc->hw.phy.type != e1000_phy_ife) {
3073 			ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
3074 			ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T, 0, NULL);
3075 		}
3076 	}
3077 	ifmedia_add(sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
3078 	ifmedia_set(sc->media, IFM_ETHER | IFM_AUTO);
3079 	return (0);
3080 }
3081 
3082 static int
3083 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
3084 {
3085 	struct e1000_softc *sc = iflib_get_softc(ctx);
3086 	if_softc_ctx_t scctx = sc->shared;
3087 	int error = E1000_SUCCESS;
3088 	struct em_tx_queue *que;
3089 	int i, j;
3090 
3091 	MPASS(sc->tx_num_queues > 0);
3092 	MPASS(sc->tx_num_queues == ntxqsets);
3093 
3094 	/* First allocate the top level queue structs */
3095 	if (!(sc->tx_queues =
3096 	    (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
3097 	    sc->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
3098 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
3099 		return(ENOMEM);
3100 	}
3101 
3102 	for (i = 0, que = sc->tx_queues; i < sc->tx_num_queues; i++, que++) {
3103 		/* Set up some basics */
3104 
3105 		struct tx_ring *txr = &que->txr;
3106 		txr->sc = que->sc = sc;
3107 		que->me = txr->me =  i;
3108 
3109 		/* Allocate report status array */
3110 		if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
3111 			device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
3112 			error = ENOMEM;
3113 			goto fail;
3114 		}
3115 		for (j = 0; j < scctx->isc_ntxd[0]; j++)
3116 			txr->tx_rsq[j] = QIDX_INVALID;
3117 		/* get the virtual and physical address of the hardware queues */
3118 		txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
3119 		txr->tx_paddr = paddrs[i*ntxqs];
3120 	}
3121 
3122 	if (bootverbose)
3123 		device_printf(iflib_get_dev(ctx),
3124 		    "allocated for %d tx_queues\n", sc->tx_num_queues);
3125 	return (0);
3126 fail:
3127 	em_if_queues_free(ctx);
3128 	return (error);
3129 }
3130 
3131 static int
3132 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
3133 {
3134 	struct e1000_softc *sc = iflib_get_softc(ctx);
3135 	int error = E1000_SUCCESS;
3136 	struct em_rx_queue *que;
3137 	int i;
3138 
3139 	MPASS(sc->rx_num_queues > 0);
3140 	MPASS(sc->rx_num_queues == nrxqsets);
3141 
3142 	/* First allocate the top level queue structs */
3143 	if (!(sc->rx_queues =
3144 	    (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
3145 	    sc->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
3146 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
3147 		error = ENOMEM;
3148 		goto fail;
3149 	}
3150 
3151 	for (i = 0, que = sc->rx_queues; i < nrxqsets; i++, que++) {
3152 		/* Set up some basics */
3153 		struct rx_ring *rxr = &que->rxr;
3154 		rxr->sc = que->sc = sc;
3155 		rxr->que = que;
3156 		que->me = rxr->me =  i;
3157 
3158 		/* get the virtual and physical address of the hardware queues */
3159 		rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
3160 		rxr->rx_paddr = paddrs[i*nrxqs];
3161 	}
3162 
3163 	if (bootverbose)
3164 		device_printf(iflib_get_dev(ctx),
3165 		    "allocated for %d rx_queues\n", sc->rx_num_queues);
3166 
3167 	return (0);
3168 fail:
3169 	em_if_queues_free(ctx);
3170 	return (error);
3171 }
3172 
3173 static void
3174 em_if_queues_free(if_ctx_t ctx)
3175 {
3176 	struct e1000_softc *sc = iflib_get_softc(ctx);
3177 	struct em_tx_queue *tx_que = sc->tx_queues;
3178 	struct em_rx_queue *rx_que = sc->rx_queues;
3179 
3180 	if (tx_que != NULL) {
3181 		for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
3182 			struct tx_ring *txr = &tx_que->txr;
3183 			if (txr->tx_rsq == NULL)
3184 				break;
3185 
3186 			free(txr->tx_rsq, M_DEVBUF);
3187 			txr->tx_rsq = NULL;
3188 		}
3189 		free(sc->tx_queues, M_DEVBUF);
3190 		sc->tx_queues = NULL;
3191 	}
3192 
3193 	if (rx_que != NULL) {
3194 		free(sc->rx_queues, M_DEVBUF);
3195 		sc->rx_queues = NULL;
3196 	}
3197 }
3198 
3199 /*********************************************************************
3200  *
3201  *  Enable transmit unit.
3202  *
3203  **********************************************************************/
3204 static void
3205 em_initialize_transmit_unit(if_ctx_t ctx)
3206 {
3207 	struct e1000_softc *sc = iflib_get_softc(ctx);
3208 	if_softc_ctx_t scctx = sc->shared;
3209 	struct em_tx_queue *que;
3210 	struct tx_ring	*txr;
3211 	struct e1000_hw	*hw = &sc->hw;
3212 	u32 tctl, txdctl = 0, tarc, tipg = 0;
3213 
3214 	INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
3215 
3216 	for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
3217 		u64 bus_addr;
3218 		caddr_t offp, endp;
3219 
3220 		que = &sc->tx_queues[i];
3221 		txr = &que->txr;
3222 		bus_addr = txr->tx_paddr;
3223 
3224 		/* Clear checksum offload context. */
3225 		offp = (caddr_t)&txr->csum_flags;
3226 		endp = (caddr_t)(txr + 1);
3227 		bzero(offp, endp - offp);
3228 
3229 		/* Base and Len of TX Ring */
3230 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
3231 		    scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
3232 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
3233 		    (u32)(bus_addr >> 32));
3234 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
3235 		    (u32)bus_addr);
3236 		/* Init the HEAD/TAIL indices */
3237 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3238 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3239 
3240 		HW_DEBUGOUT2("Base = %x, Length = %x\n",
3241 		    E1000_READ_REG(hw, E1000_TDBAL(i)),
3242 		    E1000_READ_REG(hw, E1000_TDLEN(i)));
3243 
3244 		txdctl = 0; /* clear txdctl */
3245 		txdctl |= 0x1f; /* PTHRESH */
3246 		txdctl |= 1 << 8; /* HTHRESH */
3247 		txdctl |= 1 << 16;/* WTHRESH */
3248 		txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3249 		txdctl |= E1000_TXDCTL_GRAN;
3250 		txdctl |= 1 << 25; /* LWTHRESH */
3251 
3252 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3253 	}
3254 
3255 	/* Set the default values for the Tx Inter Packet Gap timer */
3256 	switch (hw->mac.type) {
3257 	case e1000_80003es2lan:
3258 		tipg = DEFAULT_82543_TIPG_IPGR1;
3259 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3260 		    E1000_TIPG_IPGR2_SHIFT;
3261 		break;
3262 	case e1000_82542:
3263 		tipg = DEFAULT_82542_TIPG_IPGT;
3264 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3265 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3266 		break;
3267 	default:
3268 		if (hw->phy.media_type == e1000_media_type_fiber ||
3269 		    hw->phy.media_type == e1000_media_type_internal_serdes)
3270 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3271 		else
3272 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3273 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3274 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3275 	}
3276 
3277 	E1000_WRITE_REG(hw, E1000_TIPG, tipg);
3278 	E1000_WRITE_REG(hw, E1000_TIDV, sc->tx_int_delay.value);
3279 
3280 	if(hw->mac.type >= e1000_82540)
3281 		E1000_WRITE_REG(hw, E1000_TADV,
3282 		    sc->tx_abs_int_delay.value);
3283 
3284 	if (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572) {
3285 		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3286 		tarc |= TARC_SPEED_MODE_BIT;
3287 		E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3288 	} else if (hw->mac.type == e1000_80003es2lan) {
3289 		/* errata: program both queues to unweighted RR */
3290 		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3291 		tarc |= 1;
3292 		E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3293 		tarc = E1000_READ_REG(hw, E1000_TARC(1));
3294 		tarc |= 1;
3295 		E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3296 	} else if (hw->mac.type == e1000_82574) {
3297 		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3298 		tarc |= TARC_ERRATA_BIT;
3299 		if ( sc->tx_num_queues > 1) {
3300 			tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3301 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3302 			E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3303 		} else
3304 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3305 	}
3306 
3307 	if (sc->tx_int_delay.value > 0)
3308 		sc->txd_cmd |= E1000_TXD_CMD_IDE;
3309 
3310 	/* Program the Transmit Control Register */
3311 	tctl = E1000_READ_REG(hw, E1000_TCTL);
3312 	tctl &= ~E1000_TCTL_CT;
3313 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3314 		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3315 
3316 	if (hw->mac.type >= e1000_82571)
3317 		tctl |= E1000_TCTL_MULR;
3318 
3319 	/* This write will effectively turn on the transmit unit. */
3320 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
3321 
3322 	/* SPT and KBL errata workarounds */
3323 	if (hw->mac.type == e1000_pch_spt) {
3324 		u32 reg;
3325 		reg = E1000_READ_REG(hw, E1000_IOSFPC);
3326 		reg |= E1000_RCTL_RDMTS_HEX;
3327 		E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3328 		/* i218-i219 Specification Update 1.5.4.5 */
3329 		reg = E1000_READ_REG(hw, E1000_TARC(0));
3330 		reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3331 		reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3332 		E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3333 	}
3334 }
3335 
3336 /*********************************************************************
3337  *
3338  *  Enable receive unit.
3339  *
3340  **********************************************************************/
3341 #define BSIZEPKT_ROUNDUP ((1<<E1000_SRRCTL_BSIZEPKT_SHIFT)-1)
3342 
3343 static void
3344 em_initialize_receive_unit(if_ctx_t ctx)
3345 {
3346 	struct e1000_softc *sc = iflib_get_softc(ctx);
3347 	if_softc_ctx_t scctx = sc->shared;
3348 	if_t ifp = iflib_get_ifp(ctx);
3349 	struct e1000_hw	*hw = &sc->hw;
3350 	struct em_rx_queue *que;
3351 	int i;
3352 	uint32_t rctl, rxcsum;
3353 
3354 	INIT_DEBUGOUT("em_initialize_receive_units: begin");
3355 
3356 	/*
3357 	 * Make sure receives are disabled while setting
3358 	 * up the descriptor ring
3359 	 */
3360 	rctl = E1000_READ_REG(hw, E1000_RCTL);
3361 	/* Do not disable if ever enabled on this hardware */
3362 	if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3363 		E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3364 
3365 	/* Setup the Receive Control Register */
3366 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3367 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3368 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3369 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3370 
3371 	/* Do not store bad packets */
3372 	rctl &= ~E1000_RCTL_SBP;
3373 
3374 	/* Enable Long Packet receive */
3375 	if (if_getmtu(ifp) > ETHERMTU)
3376 		rctl |= E1000_RCTL_LPE;
3377 	else
3378 		rctl &= ~E1000_RCTL_LPE;
3379 
3380 	/* Strip the CRC */
3381 	if (!em_disable_crc_stripping)
3382 		rctl |= E1000_RCTL_SECRC;
3383 
3384 	if (hw->mac.type >= e1000_82540) {
3385 		E1000_WRITE_REG(hw, E1000_RADV,
3386 		    sc->rx_abs_int_delay.value);
3387 
3388 		/*
3389 		 * Set the interrupt throttling rate. Value is calculated
3390 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3391 		 */
3392 		E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
3393 	}
3394 	E1000_WRITE_REG(hw, E1000_RDTR, sc->rx_int_delay.value);
3395 
3396 	if (hw->mac.type >= em_mac_min) {
3397 		uint32_t rfctl;
3398 		/* Use extended rx descriptor formats */
3399 		rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3400 		rfctl |= E1000_RFCTL_EXTEN;
3401 
3402 		/*
3403 		 * When using MSI-X interrupts we need to throttle
3404 		 * using the EITR register (82574 only)
3405 		 */
3406 		if (hw->mac.type == e1000_82574) {
3407 			for (int i = 0; i < 4; i++)
3408 				E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3409 				    DEFAULT_ITR);
3410 			/* Disable accelerated acknowledge */
3411 			rfctl |= E1000_RFCTL_ACK_DIS;
3412 		}
3413 		E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3414 	}
3415 
3416 	/* Set up L3 and L4 csum Rx descriptor offloads */
3417 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3418 	if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3419 		rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3420 		if (hw->mac.type > e1000_82575)
3421 			rxcsum |= E1000_RXCSUM_CRCOFL;
3422 		else if (hw->mac.type < em_mac_min &&
3423 		    if_getcapenable(ifp) & IFCAP_HWCSUM_IPV6)
3424 			rxcsum |= E1000_RXCSUM_IPV6OFL;
3425 	} else {
3426 		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3427 		if (hw->mac.type > e1000_82575)
3428 			rxcsum &= ~E1000_RXCSUM_CRCOFL;
3429 		else if (hw->mac.type < em_mac_min)
3430 			rxcsum &= ~E1000_RXCSUM_IPV6OFL;
3431 	}
3432 
3433 	if (sc->rx_num_queues > 1) {
3434 		/* RSS hash needed in the Rx descriptor */
3435 		rxcsum |= E1000_RXCSUM_PCSD;
3436 
3437 		if (hw->mac.type >= igb_mac_min)
3438 			igb_initialize_rss_mapping(sc);
3439 		else
3440 			em_initialize_rss_mapping(sc);
3441 	}
3442 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3443 
3444 	/*
3445 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3446 	 * long latencies are observed, like Lenovo X60. This
3447 	 * change eliminates the problem, but since having positive
3448 	 * values in RDTR is a known source of problems on other
3449 	 * platforms another solution is being sought.
3450 	 */
3451 	if (hw->mac.type == e1000_82573)
3452 		E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3453 
3454 	for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) {
3455 		struct rx_ring *rxr = &que->rxr;
3456 		/* Setup the Base and Length of the Rx Descriptor Ring */
3457 		u64 bus_addr = rxr->rx_paddr;
3458 #if 0
3459 		u32 rdt = sc->rx_num_queues -1;  /* default */
3460 #endif
3461 
3462 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
3463 		    scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
3464 		E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3465 		E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3466 		/* Setup the Head and Tail Descriptor Pointers */
3467 		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3468 		E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3469 	}
3470 
3471 	/*
3472 	 * Set PTHRESH for improved jumbo performance
3473 	 * According to 10.2.5.11 of Intel 82574 Datasheet,
3474 	 * RXDCTL(1) is written whenever RXDCTL(0) is written.
3475 	 * Only write to RXDCTL(1) if there is a need for different
3476 	 * settings.
3477 	 */
3478 	if ((hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_pch2lan ||
3479 	    hw->mac.type == e1000_ich10lan) && if_getmtu(ifp) > ETHERMTU) {
3480 		u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3481 		E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3482 	} else if (hw->mac.type == e1000_82574) {
3483 		for (int i = 0; i < sc->rx_num_queues; i++) {
3484 			u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3485 			rxdctl |= 0x20; /* PTHRESH */
3486 			rxdctl |= 4 << 8; /* HTHRESH */
3487 			rxdctl |= 4 << 16;/* WTHRESH */
3488 			rxdctl |= 1 << 24; /* Switch to granularity */
3489 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3490 		}
3491 	} else if (hw->mac.type >= igb_mac_min) {
3492 		u32 psize, srrctl = 0;
3493 
3494 		if (if_getmtu(ifp) > ETHERMTU) {
3495 			psize = scctx->isc_max_frame_size;
3496 			/* are we on a vlan? */
3497 			if (if_vlantrunkinuse(ifp))
3498 				psize += VLAN_TAG_SIZE;
3499 
3500 			if (sc->vf_ifp)
3501 				e1000_rlpml_set_vf(hw, psize);
3502 			else
3503 				E1000_WRITE_REG(hw, E1000_RLPML, psize);
3504 		}
3505 
3506 		/* Set maximum packet buffer len */
3507 		srrctl |= (sc->rx_mbuf_sz + BSIZEPKT_ROUNDUP) >>
3508 		    E1000_SRRCTL_BSIZEPKT_SHIFT;
3509 
3510 		/*
3511 		 * If TX flow control is disabled and there's >1 queue defined,
3512 		 * enable DROP.
3513 		 *
3514 		 * This drops frames rather than hanging the RX MAC for all queues.
3515 		 */
3516 		if ((sc->rx_num_queues > 1) &&
3517 		    (sc->fc == e1000_fc_none ||
3518 		     sc->fc == e1000_fc_rx_pause)) {
3519 			srrctl |= E1000_SRRCTL_DROP_EN;
3520 		}
3521 			/* Setup the Base and Length of the Rx Descriptor Rings */
3522 		for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) {
3523 			struct rx_ring *rxr = &que->rxr;
3524 			u64 bus_addr = rxr->rx_paddr;
3525 			u32 rxdctl;
3526 
3527 #ifdef notyet
3528 			/* Configure for header split? -- ignore for now */
3529 			rxr->hdr_split = igb_header_split;
3530 #else
3531 			srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3532 #endif
3533 
3534 			E1000_WRITE_REG(hw, E1000_RDLEN(i),
3535 					scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3536 			E1000_WRITE_REG(hw, E1000_RDBAH(i),
3537 					(uint32_t)(bus_addr >> 32));
3538 			E1000_WRITE_REG(hw, E1000_RDBAL(i),
3539 					(uint32_t)bus_addr);
3540 			E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3541 			/* Enable this Queue */
3542 			rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3543 			rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3544 			rxdctl &= 0xFFF00000;
3545 			rxdctl |= IGB_RX_PTHRESH;
3546 			rxdctl |= IGB_RX_HTHRESH << 8;
3547 			rxdctl |= IGB_RX_WTHRESH << 16;
3548 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3549 		}
3550 	} else if (hw->mac.type >= e1000_pch2lan) {
3551 		if (if_getmtu(ifp) > ETHERMTU)
3552 			e1000_lv_jumbo_workaround_ich8lan(hw, true);
3553 		else
3554 			e1000_lv_jumbo_workaround_ich8lan(hw, false);
3555 	}
3556 
3557 	/* Make sure VLAN Filters are off */
3558 	rctl &= ~E1000_RCTL_VFE;
3559 
3560 	/* Set up packet buffer size, overridden by per queue srrctl on igb */
3561 	if (hw->mac.type < igb_mac_min) {
3562 		if (sc->rx_mbuf_sz > 2048 && sc->rx_mbuf_sz <= 4096)
3563 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3564 		else if (sc->rx_mbuf_sz > 4096 && sc->rx_mbuf_sz <= 8192)
3565 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3566 		else if (sc->rx_mbuf_sz > 8192)
3567 			rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX;
3568 		else {
3569 			rctl |= E1000_RCTL_SZ_2048;
3570 			rctl &= ~E1000_RCTL_BSEX;
3571 		}
3572 	} else
3573 		rctl |= E1000_RCTL_SZ_2048;
3574 
3575 	/*
3576 	 * rctl bits 11:10 are as follows
3577 	 * lem: reserved
3578 	 * em: DTYPE
3579 	 * igb: reserved
3580 	 * and should be 00 on all of the above
3581 	 */
3582 	rctl &= ~0x00000C00;
3583 
3584 	/* Write out the settings */
3585 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3586 
3587 	return;
3588 }
3589 
3590 static void
3591 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3592 {
3593 	struct e1000_softc *sc = iflib_get_softc(ctx);
3594 	u32 index, bit;
3595 
3596 	index = (vtag >> 5) & 0x7F;
3597 	bit = vtag & 0x1F;
3598 	sc->shadow_vfta[index] |= (1 << bit);
3599 	++sc->num_vlans;
3600 	em_if_vlan_filter_write(sc);
3601 }
3602 
3603 static void
3604 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3605 {
3606 	struct e1000_softc *sc = iflib_get_softc(ctx);
3607 	u32 index, bit;
3608 
3609 	index = (vtag >> 5) & 0x7F;
3610 	bit = vtag & 0x1F;
3611 	sc->shadow_vfta[index] &= ~(1 << bit);
3612 	--sc->num_vlans;
3613 	em_if_vlan_filter_write(sc);
3614 }
3615 
3616 static bool
3617 em_if_vlan_filter_capable(if_ctx_t ctx)
3618 {
3619 	if_t ifp = iflib_get_ifp(ctx);
3620 
3621 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) &&
3622 	    !em_disable_crc_stripping)
3623 		return (true);
3624 
3625 	return (false);
3626 }
3627 
3628 static bool
3629 em_if_vlan_filter_used(if_ctx_t ctx)
3630 {
3631 	struct e1000_softc *sc = iflib_get_softc(ctx);
3632 
3633 	if (!em_if_vlan_filter_capable(ctx))
3634 		return (false);
3635 
3636 	for (int i = 0; i < EM_VFTA_SIZE; i++)
3637 		if (sc->shadow_vfta[i] != 0)
3638 			return (true);
3639 
3640 	return (false);
3641 }
3642 
3643 static void
3644 em_if_vlan_filter_enable(struct e1000_softc *sc)
3645 {
3646 	struct e1000_hw *hw = &sc->hw;
3647 	u32 reg;
3648 
3649 	reg = E1000_READ_REG(hw, E1000_RCTL);
3650 	reg &= ~E1000_RCTL_CFIEN;
3651 	reg |= E1000_RCTL_VFE;
3652 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
3653 }
3654 
3655 static void
3656 em_if_vlan_filter_disable(struct e1000_softc *sc)
3657 {
3658 	struct e1000_hw *hw = &sc->hw;
3659 	u32 reg;
3660 
3661 	reg = E1000_READ_REG(hw, E1000_RCTL);
3662 	reg &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
3663 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
3664 }
3665 
3666 static void
3667 em_if_vlan_filter_write(struct e1000_softc *sc)
3668 {
3669 	struct e1000_hw *hw = &sc->hw;
3670 
3671 	if (sc->vf_ifp)
3672 		return;
3673 
3674 	/* Disable interrupts for lem-class devices during the filter change */
3675 	if (hw->mac.type < em_mac_min)
3676 		em_if_intr_disable(sc->ctx);
3677 
3678 	for (int i = 0; i < EM_VFTA_SIZE; i++)
3679 		if (sc->shadow_vfta[i] != 0) {
3680 			/* XXXKB: incomplete VF support, we return early above */
3681 			if (sc->vf_ifp)
3682 				e1000_vfta_set_vf(hw, sc->shadow_vfta[i], true);
3683 			else
3684 				e1000_write_vfta(hw, i, sc->shadow_vfta[i]);
3685 		}
3686 
3687 	/* Re-enable interrupts for lem-class devices */
3688 	if (hw->mac.type < em_mac_min)
3689 		em_if_intr_enable(sc->ctx);
3690 }
3691 
3692 static void
3693 em_setup_vlan_hw_support(if_ctx_t ctx)
3694 {
3695 	struct e1000_softc *sc = iflib_get_softc(ctx);
3696 	struct e1000_hw *hw = &sc->hw;
3697 	if_t ifp = iflib_get_ifp(ctx);
3698 	u32 reg;
3699 
3700 	/* XXXKB: Return early if we are a VF until VF decap and filter management
3701 	 * is ready and tested.
3702 	 */
3703 	if (sc->vf_ifp)
3704 		return;
3705 
3706 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
3707 	    !em_disable_crc_stripping) {
3708 		reg = E1000_READ_REG(hw, E1000_CTRL);
3709 		reg |= E1000_CTRL_VME;
3710 		E1000_WRITE_REG(hw, E1000_CTRL, reg);
3711 	} else {
3712 		reg = E1000_READ_REG(hw, E1000_CTRL);
3713 		reg &= ~E1000_CTRL_VME;
3714 		E1000_WRITE_REG(hw, E1000_CTRL, reg);
3715 	}
3716 
3717 	/* If we aren't doing HW filtering, we're done */
3718 	if (!em_if_vlan_filter_capable(ctx))  {
3719 		em_if_vlan_filter_disable(sc);
3720 		return;
3721 	}
3722 
3723 	/*
3724 	 * A soft reset zero's out the VFTA, so
3725 	 * we need to repopulate it now.
3726 	 * We also insert VLAN 0 in the filter list, so we pass VLAN 0 tagged
3727 	 * traffic through. This will write the entire table.
3728 	 */
3729 	em_if_vlan_register(ctx, 0);
3730 
3731 	/* Enable the Filter Table */
3732 	em_if_vlan_filter_enable(sc);
3733 }
3734 
3735 static void
3736 em_if_intr_enable(if_ctx_t ctx)
3737 {
3738 	struct e1000_softc *sc = iflib_get_softc(ctx);
3739 	struct e1000_hw *hw = &sc->hw;
3740 	u32 ims_mask = IMS_ENABLE_MASK;
3741 
3742 	if (sc->intr_type == IFLIB_INTR_MSIX) {
3743 		E1000_WRITE_REG(hw, EM_EIAC, sc->ims);
3744 		ims_mask |= sc->ims;
3745 	}
3746 	E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3747 	E1000_WRITE_FLUSH(hw);
3748 }
3749 
3750 static void
3751 em_if_intr_disable(if_ctx_t ctx)
3752 {
3753 	struct e1000_softc *sc = iflib_get_softc(ctx);
3754 	struct e1000_hw *hw = &sc->hw;
3755 
3756 	if (sc->intr_type == IFLIB_INTR_MSIX)
3757 		E1000_WRITE_REG(hw, EM_EIAC, 0);
3758 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3759 	E1000_WRITE_FLUSH(hw);
3760 }
3761 
3762 static void
3763 igb_if_intr_enable(if_ctx_t ctx)
3764 {
3765 	struct e1000_softc *sc = iflib_get_softc(ctx);
3766 	struct e1000_hw *hw = &sc->hw;
3767 	u32 mask;
3768 
3769 	if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
3770 		mask = (sc->que_mask | sc->link_mask);
3771 		E1000_WRITE_REG(hw, E1000_EIAC, mask);
3772 		E1000_WRITE_REG(hw, E1000_EIAM, mask);
3773 		E1000_WRITE_REG(hw, E1000_EIMS, mask);
3774 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3775 	} else
3776 		E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3777 	E1000_WRITE_FLUSH(hw);
3778 }
3779 
3780 static void
3781 igb_if_intr_disable(if_ctx_t ctx)
3782 {
3783 	struct e1000_softc *sc = iflib_get_softc(ctx);
3784 	struct e1000_hw *hw = &sc->hw;
3785 
3786 	if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
3787 		E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
3788 		E1000_WRITE_REG(hw, E1000_EIAC, 0);
3789 	}
3790 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3791 	E1000_WRITE_FLUSH(hw);
3792 }
3793 
3794 /*
3795  * Bit of a misnomer, what this really means is
3796  * to enable OS management of the system... aka
3797  * to disable special hardware management features
3798  */
3799 static void
3800 em_init_manageability(struct e1000_softc *sc)
3801 {
3802 	/* A shared code workaround */
3803 #define E1000_82542_MANC2H E1000_MANC2H
3804 	if (sc->has_manage) {
3805 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3806 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3807 
3808 		/* disable hardware interception of ARP */
3809 		manc &= ~(E1000_MANC_ARP_EN);
3810 
3811 		/* enable receiving management packets to the host */
3812 		manc |= E1000_MANC_EN_MNG2HOST;
3813 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3814 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3815 		manc2h |= E1000_MNG2HOST_PORT_623;
3816 		manc2h |= E1000_MNG2HOST_PORT_664;
3817 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3818 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3819 	}
3820 }
3821 
3822 /*
3823  * Give control back to hardware management
3824  * controller if there is one.
3825  */
3826 static void
3827 em_release_manageability(struct e1000_softc *sc)
3828 {
3829 	if (sc->has_manage) {
3830 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3831 
3832 		/* re-enable hardware interception of ARP */
3833 		manc |= E1000_MANC_ARP_EN;
3834 		manc &= ~E1000_MANC_EN_MNG2HOST;
3835 
3836 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3837 	}
3838 }
3839 
3840 /*
3841  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3842  * For ASF and Pass Through versions of f/w this means
3843  * that the driver is loaded. For AMT version type f/w
3844  * this means that the network i/f is open.
3845  */
3846 static void
3847 em_get_hw_control(struct e1000_softc *sc)
3848 {
3849 	u32 ctrl_ext, swsm;
3850 
3851 	if (sc->vf_ifp)
3852 		return;
3853 
3854 	if (sc->hw.mac.type == e1000_82573) {
3855 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3856 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3857 		    swsm | E1000_SWSM_DRV_LOAD);
3858 		return;
3859 	}
3860 	/* else */
3861 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3862 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3863 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3864 }
3865 
3866 /*
3867  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3868  * For ASF and Pass Through versions of f/w this means that
3869  * the driver is no longer loaded. For AMT versions of the
3870  * f/w this means that the network i/f is closed.
3871  */
3872 static void
3873 em_release_hw_control(struct e1000_softc *sc)
3874 {
3875 	u32 ctrl_ext, swsm;
3876 
3877 	if (!sc->has_manage)
3878 		return;
3879 
3880 	if (sc->hw.mac.type == e1000_82573) {
3881 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3882 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3883 		    swsm & ~E1000_SWSM_DRV_LOAD);
3884 		return;
3885 	}
3886 	/* else */
3887 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3888 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3889 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3890 	return;
3891 }
3892 
3893 static int
3894 em_is_valid_ether_addr(u8 *addr)
3895 {
3896 	char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3897 
3898 	if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3899 		return (false);
3900 	}
3901 
3902 	return (true);
3903 }
3904 
3905 static bool
3906 em_automask_tso(if_ctx_t ctx)
3907 {
3908 	struct e1000_softc *sc = iflib_get_softc(ctx);
3909 	if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
3910 	if_t ifp = iflib_get_ifp(ctx);
3911 
3912 	if (!em_unsupported_tso && sc->link_speed &&
3913 	    sc->link_speed != SPEED_1000 && scctx->isc_capenable & IFCAP_TSO) {
3914 		device_printf(sc->dev, "Disabling TSO for 10/100 Ethernet.\n");
3915 		sc->tso_automasked = scctx->isc_capenable & IFCAP_TSO;
3916 		scctx->isc_capenable &= ~IFCAP_TSO;
3917 		if_setcapenablebit(ifp, 0, IFCAP_TSO);
3918 		/* iflib_init_locked handles ifnet hwassistbits */
3919 		iflib_request_reset(ctx);
3920 		return true;
3921 	} else if (sc->link_speed == SPEED_1000 && sc->tso_automasked) {
3922 		device_printf(sc->dev, "Re-enabling TSO for GbE.\n");
3923 		scctx->isc_capenable |= sc->tso_automasked;
3924 		if_setcapenablebit(ifp, sc->tso_automasked, 0);
3925 		sc->tso_automasked = 0;
3926 		/* iflib_init_locked handles ifnet hwassistbits */
3927 		iflib_request_reset(ctx);
3928 		return true;
3929 	}
3930 
3931 	return false;
3932 }
3933 
3934 /*
3935 ** Parse the interface capabilities with regard
3936 ** to both system management and wake-on-lan for
3937 ** later use.
3938 */
3939 static void
3940 em_get_wakeup(if_ctx_t ctx)
3941 {
3942 	struct e1000_softc *sc = iflib_get_softc(ctx);
3943 	device_t dev = iflib_get_dev(ctx);
3944 	u16 eeprom_data = 0, device_id, apme_mask;
3945 
3946 	sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
3947 	apme_mask = EM_EEPROM_APME;
3948 
3949 	switch (sc->hw.mac.type) {
3950 	case e1000_82542:
3951 	case e1000_82543:
3952 		break;
3953 	case e1000_82544:
3954 		e1000_read_nvm(&sc->hw,
3955 		    NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3956 		apme_mask = EM_82544_APME;
3957 		break;
3958 	case e1000_82546:
3959 	case e1000_82546_rev_3:
3960 		if (sc->hw.bus.func == 1) {
3961 			e1000_read_nvm(&sc->hw,
3962 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3963 			break;
3964 		} else
3965 			e1000_read_nvm(&sc->hw,
3966 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3967 		break;
3968 	case e1000_82573:
3969 	case e1000_82583:
3970 		sc->has_amt = true;
3971 		/* FALLTHROUGH */
3972 	case e1000_82571:
3973 	case e1000_82572:
3974 	case e1000_80003es2lan:
3975 		if (sc->hw.bus.func == 1) {
3976 			e1000_read_nvm(&sc->hw,
3977 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3978 			break;
3979 		} else
3980 			e1000_read_nvm(&sc->hw,
3981 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3982 		break;
3983 	case e1000_ich8lan:
3984 	case e1000_ich9lan:
3985 	case e1000_ich10lan:
3986 	case e1000_pchlan:
3987 	case e1000_pch2lan:
3988 	case e1000_pch_lpt:
3989 	case e1000_pch_spt:
3990 	case e1000_82575:	/* listing all igb devices */
3991 	case e1000_82576:
3992 	case e1000_82580:
3993 	case e1000_i350:
3994 	case e1000_i354:
3995 	case e1000_i210:
3996 	case e1000_i211:
3997 	case e1000_vfadapt:
3998 	case e1000_vfadapt_i350:
3999 		apme_mask = E1000_WUC_APME;
4000 		sc->has_amt = true;
4001 		eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC);
4002 		break;
4003 	default:
4004 		e1000_read_nvm(&sc->hw,
4005 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4006 		break;
4007 	}
4008 	if (eeprom_data & apme_mask)
4009 		sc->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
4010 	/*
4011 	 * We have the eeprom settings, now apply the special cases
4012 	 * where the eeprom may be wrong or the board won't support
4013 	 * wake on lan on a particular port
4014 	 */
4015 	device_id = pci_get_device(dev);
4016 	switch (device_id) {
4017 	case E1000_DEV_ID_82546GB_PCIE:
4018 		sc->wol = 0;
4019 		break;
4020 	case E1000_DEV_ID_82546EB_FIBER:
4021 	case E1000_DEV_ID_82546GB_FIBER:
4022 		/* Wake events only supported on port A for dual fiber
4023 		 * regardless of eeprom setting */
4024 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
4025 		    E1000_STATUS_FUNC_1)
4026 			sc->wol = 0;
4027 		break;
4028 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
4029 		/* if quad port adapter, disable WoL on all but port A */
4030 		if (global_quad_port_a != 0)
4031 			sc->wol = 0;
4032 		/* Reset for multiple quad port adapters */
4033 		if (++global_quad_port_a == 4)
4034 			global_quad_port_a = 0;
4035 		break;
4036 	case E1000_DEV_ID_82571EB_FIBER:
4037 		/* Wake events only supported on port A for dual fiber
4038 		 * regardless of eeprom setting */
4039 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
4040 		    E1000_STATUS_FUNC_1)
4041 			sc->wol = 0;
4042 		break;
4043 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
4044 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
4045 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
4046 		/* if quad port adapter, disable WoL on all but port A */
4047 		if (global_quad_port_a != 0)
4048 			sc->wol = 0;
4049 		/* Reset for multiple quad port adapters */
4050 		if (++global_quad_port_a == 4)
4051 			global_quad_port_a = 0;
4052 		break;
4053 	}
4054 	return;
4055 }
4056 
4057 
4058 /*
4059  * Enable PCI Wake On Lan capability
4060  */
4061 static void
4062 em_enable_wakeup(if_ctx_t ctx)
4063 {
4064 	struct e1000_softc *sc = iflib_get_softc(ctx);
4065 	device_t dev = iflib_get_dev(ctx);
4066 	if_t ifp = iflib_get_ifp(ctx);
4067 	int error = 0;
4068 	u32 pmc, ctrl, ctrl_ext, rctl;
4069 	u16 status;
4070 
4071 	if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
4072 		return;
4073 
4074 	/*
4075 	 * Determine type of Wakeup: note that wol
4076 	 * is set with all bits on by default.
4077 	 */
4078 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
4079 		sc->wol &= ~E1000_WUFC_MAG;
4080 
4081 	if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
4082 		sc->wol &= ~E1000_WUFC_EX;
4083 
4084 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
4085 		sc->wol &= ~E1000_WUFC_MC;
4086 	else {
4087 		rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
4088 		rctl |= E1000_RCTL_MPE;
4089 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
4090 	}
4091 
4092 	if (!(sc->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
4093 		goto pme;
4094 
4095 	/* Advertise the wakeup capability */
4096 	ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
4097 	ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
4098 	E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
4099 
4100 	/* Keep the laser running on Fiber adapters */
4101 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
4102 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
4103 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
4104 		ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
4105 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, ctrl_ext);
4106 	}
4107 
4108 	if ((sc->hw.mac.type == e1000_ich8lan) ||
4109 	    (sc->hw.mac.type == e1000_pchlan) ||
4110 	    (sc->hw.mac.type == e1000_ich9lan) ||
4111 	    (sc->hw.mac.type == e1000_ich10lan))
4112 		e1000_suspend_workarounds_ich8lan(&sc->hw);
4113 
4114 	if ( sc->hw.mac.type >= e1000_pchlan) {
4115 		error = em_enable_phy_wakeup(sc);
4116 		if (error)
4117 			goto pme;
4118 	} else {
4119 		/* Enable wakeup by the MAC */
4120 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
4121 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
4122 	}
4123 
4124 	if (sc->hw.phy.type == e1000_phy_igp_3)
4125 		e1000_igp3_phy_powerdown_workaround_ich8lan(&sc->hw);
4126 
4127 pme:
4128 	status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
4129 	status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
4130 	if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
4131 		status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
4132 	pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
4133 
4134 	return;
4135 }
4136 
4137 /*
4138  * WOL in the newer chipset interfaces (pchlan)
4139  * require thing to be copied into the phy
4140  */
4141 static int
4142 em_enable_phy_wakeup(struct e1000_softc *sc)
4143 {
4144 	struct e1000_hw *hw = &sc->hw;
4145 	u32 mreg, ret = 0;
4146 	u16 preg;
4147 
4148 	/* copy MAC RARs to PHY RARs */
4149 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
4150 
4151 	/* copy MAC MTA to PHY MTA */
4152 	for (int i = 0; i < hw->mac.mta_reg_count; i++) {
4153 		mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
4154 		e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
4155 		e1000_write_phy_reg(hw, BM_MTA(i) + 1,
4156 		    (u16)((mreg >> 16) & 0xFFFF));
4157 	}
4158 
4159 	/* configure PHY Rx Control register */
4160 	e1000_read_phy_reg(hw, BM_RCTL, &preg);
4161 	mreg = E1000_READ_REG(hw, E1000_RCTL);
4162 	if (mreg & E1000_RCTL_UPE)
4163 		preg |= BM_RCTL_UPE;
4164 	if (mreg & E1000_RCTL_MPE)
4165 		preg |= BM_RCTL_MPE;
4166 	preg &= ~(BM_RCTL_MO_MASK);
4167 	if (mreg & E1000_RCTL_MO_3)
4168 		preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
4169 				<< BM_RCTL_MO_SHIFT);
4170 	if (mreg & E1000_RCTL_BAM)
4171 		preg |= BM_RCTL_BAM;
4172 	if (mreg & E1000_RCTL_PMCF)
4173 		preg |= BM_RCTL_PMCF;
4174 	mreg = E1000_READ_REG(hw, E1000_CTRL);
4175 	if (mreg & E1000_CTRL_RFCE)
4176 		preg |= BM_RCTL_RFCE;
4177 	e1000_write_phy_reg(hw, BM_RCTL, preg);
4178 
4179 	/* enable PHY wakeup in MAC register */
4180 	E1000_WRITE_REG(hw, E1000_WUC,
4181 	    E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
4182 	E1000_WRITE_REG(hw, E1000_WUFC, sc->wol);
4183 
4184 	/* configure and enable PHY wakeup in PHY registers */
4185 	e1000_write_phy_reg(hw, BM_WUFC, sc->wol);
4186 	e1000_write_phy_reg(hw, BM_WUC, E1000_WUC_PME_EN);
4187 
4188 	/* activate PHY wakeup */
4189 	ret = hw->phy.ops.acquire(hw);
4190 	if (ret) {
4191 		printf("Could not acquire PHY\n");
4192 		return ret;
4193 	}
4194 	e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4195 	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
4196 	ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
4197 	if (ret) {
4198 		printf("Could not read PHY page 769\n");
4199 		goto out;
4200 	}
4201 	preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
4202 	ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
4203 	if (ret)
4204 		printf("Could not set PHY Host Wakeup bit\n");
4205 out:
4206 	hw->phy.ops.release(hw);
4207 
4208 	return ret;
4209 }
4210 
4211 static void
4212 em_if_led_func(if_ctx_t ctx, int onoff)
4213 {
4214 	struct e1000_softc *sc = iflib_get_softc(ctx);
4215 
4216 	if (onoff) {
4217 		e1000_setup_led(&sc->hw);
4218 		e1000_led_on(&sc->hw);
4219 	} else {
4220 		e1000_led_off(&sc->hw);
4221 		e1000_cleanup_led(&sc->hw);
4222 	}
4223 }
4224 
4225 /*
4226  * Disable the L0S and L1 LINK states
4227  */
4228 static void
4229 em_disable_aspm(struct e1000_softc *sc)
4230 {
4231 	int base, reg;
4232 	u16 link_cap,link_ctrl;
4233 	device_t dev = sc->dev;
4234 
4235 	switch (sc->hw.mac.type) {
4236 	case e1000_82573:
4237 	case e1000_82574:
4238 	case e1000_82583:
4239 		break;
4240 	default:
4241 		return;
4242 	}
4243 	if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
4244 		return;
4245 	reg = base + PCIER_LINK_CAP;
4246 	link_cap = pci_read_config(dev, reg, 2);
4247 	if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
4248 		return;
4249 	reg = base + PCIER_LINK_CTL;
4250 	link_ctrl = pci_read_config(dev, reg, 2);
4251 	link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
4252 	pci_write_config(dev, reg, link_ctrl, 2);
4253 	return;
4254 }
4255 
4256 /**********************************************************************
4257  *
4258  *  Update the board statistics counters.
4259  *
4260  **********************************************************************/
4261 static void
4262 em_update_stats_counters(struct e1000_softc *sc)
4263 {
4264 	u64 prev_xoffrxc = sc->stats.xoffrxc;
4265 
4266 	if(sc->hw.phy.media_type == e1000_media_type_copper ||
4267 	   (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
4268 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
4269 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
4270 	}
4271 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
4272 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
4273 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
4274 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
4275 
4276 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
4277 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
4278 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
4279 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
4280 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
4281 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
4282 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
4283 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
4284 	/*
4285 	 ** For watchdog management we need to know if we have been
4286 	 ** paused during the last interval, so capture that here.
4287 	*/
4288 	if (sc->stats.xoffrxc != prev_xoffrxc)
4289 		sc->shared->isc_pause_frames = 1;
4290 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
4291 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
4292 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
4293 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
4294 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
4295 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
4296 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
4297 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
4298 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
4299 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
4300 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
4301 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
4302 
4303 	/* For the 64-bit byte counters the low dword must be read first. */
4304 	/* Both registers clear on the read of the high dword */
4305 
4306 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCL) +
4307 	    ((u64)E1000_READ_REG(&sc->hw, E1000_GORCH) << 32);
4308 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCL) +
4309 	    ((u64)E1000_READ_REG(&sc->hw, E1000_GOTCH) << 32);
4310 
4311 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
4312 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
4313 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
4314 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
4315 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
4316 
4317 	sc->stats.mgprc += E1000_READ_REG(&sc->hw, E1000_MGTPRC);
4318 	sc->stats.mgpdc += E1000_READ_REG(&sc->hw, E1000_MGTPDC);
4319 	sc->stats.mgptc += E1000_READ_REG(&sc->hw, E1000_MGTPTC);
4320 
4321 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
4322 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
4323 
4324 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
4325 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
4326 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
4327 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
4328 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
4329 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
4330 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
4331 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
4332 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
4333 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
4334 
4335 	/* Interrupt Counts */
4336 
4337 	sc->stats.iac += E1000_READ_REG(&sc->hw, E1000_IAC);
4338 	sc->stats.icrxptc += E1000_READ_REG(&sc->hw, E1000_ICRXPTC);
4339 	sc->stats.icrxatc += E1000_READ_REG(&sc->hw, E1000_ICRXATC);
4340 	sc->stats.ictxptc += E1000_READ_REG(&sc->hw, E1000_ICTXPTC);
4341 	sc->stats.ictxatc += E1000_READ_REG(&sc->hw, E1000_ICTXATC);
4342 	sc->stats.ictxqec += E1000_READ_REG(&sc->hw, E1000_ICTXQEC);
4343 	sc->stats.ictxqmtc += E1000_READ_REG(&sc->hw, E1000_ICTXQMTC);
4344 	sc->stats.icrxdmtc += E1000_READ_REG(&sc->hw, E1000_ICRXDMTC);
4345 	sc->stats.icrxoc += E1000_READ_REG(&sc->hw, E1000_ICRXOC);
4346 
4347 	if (sc->hw.mac.type >= e1000_82543) {
4348 		sc->stats.algnerrc +=
4349 		E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
4350 		sc->stats.rxerrc +=
4351 		E1000_READ_REG(&sc->hw, E1000_RXERRC);
4352 		sc->stats.tncrs +=
4353 		E1000_READ_REG(&sc->hw, E1000_TNCRS);
4354 		sc->stats.cexterr +=
4355 		E1000_READ_REG(&sc->hw, E1000_CEXTERR);
4356 		sc->stats.tsctc +=
4357 		E1000_READ_REG(&sc->hw, E1000_TSCTC);
4358 		sc->stats.tsctfc +=
4359 		E1000_READ_REG(&sc->hw, E1000_TSCTFC);
4360 	}
4361 }
4362 
4363 static uint64_t
4364 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4365 {
4366 	struct e1000_softc *sc = iflib_get_softc(ctx);
4367 	if_t ifp = iflib_get_ifp(ctx);
4368 
4369 	switch (cnt) {
4370 	case IFCOUNTER_COLLISIONS:
4371 		return (sc->stats.colc);
4372 	case IFCOUNTER_IERRORS:
4373 		return (sc->dropped_pkts + sc->stats.rxerrc +
4374 		    sc->stats.crcerrs + sc->stats.algnerrc +
4375 		    sc->stats.ruc + sc->stats.roc +
4376 		    sc->stats.mpc + sc->stats.cexterr);
4377 	case IFCOUNTER_OERRORS:
4378 		return (sc->stats.ecol + sc->stats.latecol +
4379 		    sc->watchdog_events);
4380 	default:
4381 		return (if_get_counter_default(ifp, cnt));
4382 	}
4383 }
4384 
4385 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized
4386  * @ctx: iflib context
4387  * @event: event code to check
4388  *
4389  * Defaults to returning false for unknown events.
4390  *
4391  * @returns true if iflib needs to reinit the interface
4392  */
4393 static bool
4394 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
4395 {
4396 	switch (event) {
4397 	case IFLIB_RESTART_VLAN_CONFIG:
4398 	default:
4399 		return (false);
4400 	}
4401 }
4402 
4403 /* Export a single 32-bit register via a read-only sysctl. */
4404 static int
4405 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4406 {
4407 	struct e1000_softc *sc;
4408 	u_int val;
4409 
4410 	sc = oidp->oid_arg1;
4411 	val = E1000_READ_REG(&sc->hw, oidp->oid_arg2);
4412 	return (sysctl_handle_int(oidp, &val, 0, req));
4413 }
4414 
4415 /*
4416  * Add sysctl variables, one per statistic, to the system.
4417  */
4418 static void
4419 em_add_hw_stats(struct e1000_softc *sc)
4420 {
4421 	device_t dev = iflib_get_dev(sc->ctx);
4422 	struct em_tx_queue *tx_que = sc->tx_queues;
4423 	struct em_rx_queue *rx_que = sc->rx_queues;
4424 
4425 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4426 	struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4427 	struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4428 	struct e1000_hw_stats *stats = &sc->stats;
4429 
4430 	struct sysctl_oid *stat_node, *queue_node, *int_node;
4431 	struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4432 
4433 #define QUEUE_NAME_LEN 32
4434 	char namebuf[QUEUE_NAME_LEN];
4435 
4436 	/* Driver Statistics */
4437 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4438 			CTLFLAG_RD, &sc->dropped_pkts,
4439 			"Driver dropped packets");
4440 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4441 			CTLFLAG_RD, &sc->link_irq,
4442 			"Link MSI-X IRQ Handled");
4443 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4444 			CTLFLAG_RD, &sc->rx_overruns,
4445 			"RX overruns");
4446 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4447 			CTLFLAG_RD, &sc->watchdog_events,
4448 			"Watchdog timeouts");
4449 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4450 	    CTLTYPE_UINT | CTLFLAG_RD,
4451 	    sc, E1000_CTRL, em_sysctl_reg_handler, "IU",
4452 	    "Device Control Register");
4453 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4454 	    CTLTYPE_UINT | CTLFLAG_RD,
4455 	    sc, E1000_RCTL, em_sysctl_reg_handler, "IU",
4456 	    "Receiver Control Register");
4457 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4458 			CTLFLAG_RD, &sc->hw.fc.high_water, 0,
4459 			"Flow Control High Watermark");
4460 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4461 			CTLFLAG_RD, &sc->hw.fc.low_water, 0,
4462 			"Flow Control Low Watermark");
4463 
4464 	for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
4465 		struct tx_ring *txr = &tx_que->txr;
4466 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4467 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4468 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
4469 		queue_list = SYSCTL_CHILDREN(queue_node);
4470 
4471 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4472 		    CTLTYPE_UINT | CTLFLAG_RD, sc,
4473 		    E1000_TDH(txr->me), em_sysctl_reg_handler, "IU",
4474 		    "Transmit Descriptor Head");
4475 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4476 		    CTLTYPE_UINT | CTLFLAG_RD, sc,
4477 		    E1000_TDT(txr->me), em_sysctl_reg_handler, "IU",
4478 		    "Transmit Descriptor Tail");
4479 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4480 				CTLFLAG_RD, &txr->tx_irq,
4481 				"Queue MSI-X Transmit Interrupts");
4482 	}
4483 
4484 	for (int j = 0; j < sc->rx_num_queues; j++, rx_que++) {
4485 		struct rx_ring *rxr = &rx_que->rxr;
4486 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4487 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4488 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
4489 		queue_list = SYSCTL_CHILDREN(queue_node);
4490 
4491 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4492 		    CTLTYPE_UINT | CTLFLAG_RD, sc,
4493 		    E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU",
4494 		    "Receive Descriptor Head");
4495 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4496 		    CTLTYPE_UINT | CTLFLAG_RD, sc,
4497 		    E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU",
4498 		    "Receive Descriptor Tail");
4499 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
4500 				CTLFLAG_RD, &rxr->rx_irq,
4501 				"Queue MSI-X Receive Interrupts");
4502 	}
4503 
4504 	/* MAC stats get their own sub node */
4505 
4506 	stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
4507 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
4508 	stat_list = SYSCTL_CHILDREN(stat_node);
4509 
4510 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
4511 			CTLFLAG_RD, &stats->ecol,
4512 			"Excessive collisions");
4513 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
4514 			CTLFLAG_RD, &stats->scc,
4515 			"Single collisions");
4516 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
4517 			CTLFLAG_RD, &stats->mcc,
4518 			"Multiple collisions");
4519 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
4520 			CTLFLAG_RD, &stats->latecol,
4521 			"Late collisions");
4522 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
4523 			CTLFLAG_RD, &stats->colc,
4524 			"Collision Count");
4525 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
4526 			CTLFLAG_RD, &sc->stats.symerrs,
4527 			"Symbol Errors");
4528 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
4529 			CTLFLAG_RD, &sc->stats.sec,
4530 			"Sequence Errors");
4531 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
4532 			CTLFLAG_RD, &sc->stats.dc,
4533 			"Defer Count");
4534 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
4535 			CTLFLAG_RD, &sc->stats.mpc,
4536 			"Missed Packets");
4537 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_length_errors",
4538 			CTLFLAG_RD, &sc->stats.rlec,
4539 			"Receive Length Errors");
4540 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
4541 			CTLFLAG_RD, &sc->stats.rnbc,
4542 			"Receive No Buffers");
4543 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
4544 			CTLFLAG_RD, &sc->stats.ruc,
4545 			"Receive Undersize");
4546 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
4547 			CTLFLAG_RD, &sc->stats.rfc,
4548 			"Fragmented Packets Received ");
4549 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
4550 			CTLFLAG_RD, &sc->stats.roc,
4551 			"Oversized Packets Received");
4552 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
4553 			CTLFLAG_RD, &sc->stats.rjc,
4554 			"Recevied Jabber");
4555 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
4556 			CTLFLAG_RD, &sc->stats.rxerrc,
4557 			"Receive Errors");
4558 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
4559 			CTLFLAG_RD, &sc->stats.crcerrs,
4560 			"CRC errors");
4561 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
4562 			CTLFLAG_RD, &sc->stats.algnerrc,
4563 			"Alignment Errors");
4564 	/* On 82575 these are collision counts */
4565 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
4566 			CTLFLAG_RD, &sc->stats.cexterr,
4567 			"Collision/Carrier extension errors");
4568 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
4569 			CTLFLAG_RD, &sc->stats.xonrxc,
4570 			"XON Received");
4571 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
4572 			CTLFLAG_RD, &sc->stats.xontxc,
4573 			"XON Transmitted");
4574 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
4575 			CTLFLAG_RD, &sc->stats.xoffrxc,
4576 			"XOFF Received");
4577 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
4578 			CTLFLAG_RD, &sc->stats.xofftxc,
4579 			"XOFF Transmitted");
4580 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "unsupported_fc_recvd",
4581 			CTLFLAG_RD, &sc->stats.fcruc,
4582 			"Unsupported Flow Control Received");
4583 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_recvd",
4584 			CTLFLAG_RD, &sc->stats.mgprc,
4585 			"Management Packets Received");
4586 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_drop",
4587 			CTLFLAG_RD, &sc->stats.mgpdc,
4588 			"Management Packets Dropped");
4589 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_txd",
4590 			CTLFLAG_RD, &sc->stats.mgptc,
4591 			"Management Packets Transmitted");
4592 
4593 	/* Packet Reception Stats */
4594 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
4595 			CTLFLAG_RD, &sc->stats.tpr,
4596 			"Total Packets Received ");
4597 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
4598 			CTLFLAG_RD, &sc->stats.gprc,
4599 			"Good Packets Received");
4600 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
4601 			CTLFLAG_RD, &sc->stats.bprc,
4602 			"Broadcast Packets Received");
4603 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
4604 			CTLFLAG_RD, &sc->stats.mprc,
4605 			"Multicast Packets Received");
4606 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
4607 			CTLFLAG_RD, &sc->stats.prc64,
4608 			"64 byte frames received ");
4609 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
4610 			CTLFLAG_RD, &sc->stats.prc127,
4611 			"65-127 byte frames received");
4612 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
4613 			CTLFLAG_RD, &sc->stats.prc255,
4614 			"128-255 byte frames received");
4615 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
4616 			CTLFLAG_RD, &sc->stats.prc511,
4617 			"256-511 byte frames received");
4618 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
4619 			CTLFLAG_RD, &sc->stats.prc1023,
4620 			"512-1023 byte frames received");
4621 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
4622 			CTLFLAG_RD, &sc->stats.prc1522,
4623 			"1023-1522 byte frames received");
4624 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
4625 			CTLFLAG_RD, &sc->stats.gorc,
4626 			"Good Octets Received");
4627 
4628 	/* Packet Transmission Stats */
4629 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
4630 			CTLFLAG_RD, &sc->stats.gotc,
4631 			"Good Octets Transmitted");
4632 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
4633 			CTLFLAG_RD, &sc->stats.tpt,
4634 			"Total Packets Transmitted");
4635 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
4636 			CTLFLAG_RD, &sc->stats.gptc,
4637 			"Good Packets Transmitted");
4638 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
4639 			CTLFLAG_RD, &sc->stats.bptc,
4640 			"Broadcast Packets Transmitted");
4641 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
4642 			CTLFLAG_RD, &sc->stats.mptc,
4643 			"Multicast Packets Transmitted");
4644 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
4645 			CTLFLAG_RD, &sc->stats.ptc64,
4646 			"64 byte frames transmitted ");
4647 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
4648 			CTLFLAG_RD, &sc->stats.ptc127,
4649 			"65-127 byte frames transmitted");
4650 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
4651 			CTLFLAG_RD, &sc->stats.ptc255,
4652 			"128-255 byte frames transmitted");
4653 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
4654 			CTLFLAG_RD, &sc->stats.ptc511,
4655 			"256-511 byte frames transmitted");
4656 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
4657 			CTLFLAG_RD, &sc->stats.ptc1023,
4658 			"512-1023 byte frames transmitted");
4659 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
4660 			CTLFLAG_RD, &sc->stats.ptc1522,
4661 			"1024-1522 byte frames transmitted");
4662 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
4663 			CTLFLAG_RD, &sc->stats.tsctc,
4664 			"TSO Contexts Transmitted");
4665 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
4666 			CTLFLAG_RD, &sc->stats.tsctfc,
4667 			"TSO Contexts Failed");
4668 
4669 
4670 	/* Interrupt Stats */
4671 
4672 	int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
4673 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
4674 	int_list = SYSCTL_CHILDREN(int_node);
4675 
4676 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
4677 			CTLFLAG_RD, &sc->stats.iac,
4678 			"Interrupt Assertion Count");
4679 
4680 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
4681 			CTLFLAG_RD, &sc->stats.icrxptc,
4682 			"Interrupt Cause Rx Pkt Timer Expire Count");
4683 
4684 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
4685 			CTLFLAG_RD, &sc->stats.icrxatc,
4686 			"Interrupt Cause Rx Abs Timer Expire Count");
4687 
4688 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
4689 			CTLFLAG_RD, &sc->stats.ictxptc,
4690 			"Interrupt Cause Tx Pkt Timer Expire Count");
4691 
4692 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
4693 			CTLFLAG_RD, &sc->stats.ictxatc,
4694 			"Interrupt Cause Tx Abs Timer Expire Count");
4695 
4696 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
4697 			CTLFLAG_RD, &sc->stats.ictxqec,
4698 			"Interrupt Cause Tx Queue Empty Count");
4699 
4700 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
4701 			CTLFLAG_RD, &sc->stats.ictxqmtc,
4702 			"Interrupt Cause Tx Queue Min Thresh Count");
4703 
4704 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4705 			CTLFLAG_RD, &sc->stats.icrxdmtc,
4706 			"Interrupt Cause Rx Desc Min Thresh Count");
4707 
4708 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4709 			CTLFLAG_RD, &sc->stats.icrxoc,
4710 			"Interrupt Cause Receiver Overrun Count");
4711 }
4712 
4713 static void
4714 em_fw_version_locked(if_ctx_t ctx)
4715 {
4716 	struct e1000_softc *sc = iflib_get_softc(ctx);
4717 	struct e1000_hw *hw = &sc->hw;
4718 	struct e1000_fw_version *fw_ver = &sc->fw_ver;
4719 	uint16_t eep = 0;
4720 
4721 	/*
4722 	 * em_fw_version_locked() must run under the IFLIB_CTX_LOCK to meet the
4723 	 * NVM locking model, so we do it in em_if_attach_pre() and store the
4724 	 * info in the softc
4725 	 */
4726 	ASSERT_CTX_LOCK_HELD(hw);
4727 
4728 	*fw_ver = (struct e1000_fw_version){0};
4729 
4730 	if (hw->mac.type >= igb_mac_min) {
4731 		/*
4732 		 * Use the Shared Code for igb(4)
4733 		 */
4734 		e1000_get_fw_version(hw, fw_ver);
4735 	} else {
4736 		/*
4737 		 * Otherwise, EEPROM version should be present on (almost?) all
4738 		 * devices here
4739 		 */
4740 		if(e1000_read_nvm(hw, NVM_VERSION, 1, &eep)) {
4741 			INIT_DEBUGOUT("can't get EEPROM version");
4742 			return;
4743 		}
4744 
4745 		fw_ver->eep_major = (eep & NVM_MAJOR_MASK) >> NVM_MAJOR_SHIFT;
4746 		fw_ver->eep_minor = (eep & NVM_MINOR_MASK) >> NVM_MINOR_SHIFT;
4747 		fw_ver->eep_build = (eep & NVM_IMAGE_ID_MASK);
4748 	}
4749 }
4750 
4751 static void
4752 em_sbuf_fw_version(struct e1000_fw_version *fw_ver, struct sbuf *buf)
4753 {
4754 	const char *space = "";
4755 
4756 	if (fw_ver->eep_major || fw_ver->eep_minor || fw_ver->eep_build) {
4757 		sbuf_printf(buf, "EEPROM V%d.%d-%d", fw_ver->eep_major,
4758 			    fw_ver->eep_minor, fw_ver->eep_build);
4759 		space = " ";
4760 	}
4761 
4762 	if (fw_ver->invm_major || fw_ver->invm_minor || fw_ver->invm_img_type) {
4763 		sbuf_printf(buf, "%sNVM V%d.%d imgtype%d",
4764 			    space, fw_ver->invm_major, fw_ver->invm_minor,
4765 			    fw_ver->invm_img_type);
4766 		space = " ";
4767 	}
4768 
4769 	if (fw_ver->or_valid) {
4770 		sbuf_printf(buf, "%sOption ROM V%d-b%d-p%d",
4771 			    space, fw_ver->or_major, fw_ver->or_build,
4772 			    fw_ver->or_patch);
4773 		space = " ";
4774 	}
4775 
4776 	if (fw_ver->etrack_id)
4777 		sbuf_printf(buf, "%seTrack 0x%08x", space, fw_ver->etrack_id);
4778 }
4779 
4780 static void
4781 em_print_fw_version(struct e1000_softc *sc )
4782 {
4783 	device_t dev = sc->dev;
4784 	struct sbuf *buf;
4785 	int error = 0;
4786 
4787 	buf = sbuf_new_auto();
4788 	if (!buf) {
4789 		device_printf(dev, "Could not allocate sbuf for output.\n");
4790 		return;
4791 	}
4792 
4793 	em_sbuf_fw_version(&sc->fw_ver, buf);
4794 
4795 	error = sbuf_finish(buf);
4796 	if (error)
4797 		device_printf(dev, "Error finishing sbuf: %d\n", error);
4798 	else if (sbuf_len(buf))
4799 		device_printf(dev, "%s\n", sbuf_data(buf));
4800 
4801 	sbuf_delete(buf);
4802 }
4803 
4804 static int
4805 em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS)
4806 {
4807 	struct e1000_softc *sc = (struct e1000_softc *)arg1;
4808 	device_t dev = sc->dev;
4809 	struct sbuf *buf;
4810 	int error = 0;
4811 
4812 	buf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
4813 	if (!buf) {
4814 		device_printf(dev, "Could not allocate sbuf for output.\n");
4815 		return (ENOMEM);
4816 	}
4817 
4818 	em_sbuf_fw_version(&sc->fw_ver, buf);
4819 
4820 	error = sbuf_finish(buf);
4821 	if (error)
4822 		device_printf(dev, "Error finishing sbuf: %d\n", error);
4823 
4824 	sbuf_delete(buf);
4825 
4826 	return (0);
4827 }
4828 
4829 /**********************************************************************
4830  *
4831  *  This routine provides a way to dump out the adapter eeprom,
4832  *  often a useful debug/service tool. This only dumps the first
4833  *  32 words, stuff that matters is in that extent.
4834  *
4835  **********************************************************************/
4836 static int
4837 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4838 {
4839 	struct e1000_softc *sc = (struct e1000_softc *)arg1;
4840 	int error;
4841 	int result;
4842 
4843 	result = -1;
4844 	error = sysctl_handle_int(oidp, &result, 0, req);
4845 
4846 	if (error || !req->newptr)
4847 		return (error);
4848 
4849 	/*
4850 	 * This value will cause a hex dump of the
4851 	 * first 32 16-bit words of the EEPROM to
4852 	 * the screen.
4853 	 */
4854 	if (result == 1)
4855 		em_print_nvm_info(sc);
4856 
4857 	return (error);
4858 }
4859 
4860 static void
4861 em_print_nvm_info(struct e1000_softc *sc)
4862 {
4863 	struct e1000_hw *hw = &sc->hw;
4864 	struct sx *iflib_ctx_lock = iflib_ctx_lock_get(sc->ctx);
4865 	u16 eeprom_data;
4866 	int i, j, row = 0;
4867 
4868 	/* Its a bit crude, but it gets the job done */
4869 	printf("\nInterface EEPROM Dump:\n");
4870 	printf("Offset\n0x0000  ");
4871 
4872 	/* We rely on the IFLIB_CTX_LOCK as part of NVM locking model */
4873 	sx_xlock(iflib_ctx_lock);
4874 	ASSERT_CTX_LOCK_HELD(hw);
4875 	for (i = 0, j = 0; i < 32; i++, j++) {
4876 		if (j == 8) { /* Make the offset block */
4877 			j = 0; ++row;
4878 			printf("\n0x00%x0  ",row);
4879 		}
4880 		e1000_read_nvm(hw, i, 1, &eeprom_data);
4881 		printf("%04x ", eeprom_data);
4882 	}
4883 	sx_xunlock(iflib_ctx_lock);
4884 	printf("\n");
4885 }
4886 
4887 static int
4888 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4889 {
4890 	struct em_int_delay_info *info;
4891 	struct e1000_softc *sc;
4892 	u32 regval;
4893 	int error, usecs, ticks;
4894 
4895 	info = (struct em_int_delay_info *) arg1;
4896 	usecs = info->value;
4897 	error = sysctl_handle_int(oidp, &usecs, 0, req);
4898 	if (error != 0 || req->newptr == NULL)
4899 		return (error);
4900 	if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4901 		return (EINVAL);
4902 	info->value = usecs;
4903 	ticks = EM_USECS_TO_TICKS(usecs);
4904 	if (info->offset == E1000_ITR)	/* units are 256ns here */
4905 		ticks *= 4;
4906 
4907 	sc = info->sc;
4908 
4909 	regval = E1000_READ_OFFSET(&sc->hw, info->offset);
4910 	regval = (regval & ~0xffff) | (ticks & 0xffff);
4911 	/* Handle a few special cases. */
4912 	switch (info->offset) {
4913 	case E1000_RDTR:
4914 		break;
4915 	case E1000_TIDV:
4916 		if (ticks == 0) {
4917 			sc->txd_cmd &= ~E1000_TXD_CMD_IDE;
4918 			/* Don't write 0 into the TIDV register. */
4919 			regval++;
4920 		} else
4921 			sc->txd_cmd |= E1000_TXD_CMD_IDE;
4922 		break;
4923 	}
4924 	E1000_WRITE_OFFSET(&sc->hw, info->offset, regval);
4925 	return (0);
4926 }
4927 
4928 static void
4929 em_add_int_delay_sysctl(struct e1000_softc *sc, const char *name,
4930 	const char *description, struct em_int_delay_info *info,
4931 	int offset, int value)
4932 {
4933 	info->sc = sc;
4934 	info->offset = offset;
4935 	info->value = value;
4936 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
4937 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
4938 	    OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
4939 	    info, 0, em_sysctl_int_delay, "I", description);
4940 }
4941 
4942 /*
4943  * Set flow control using sysctl:
4944  * Flow control values:
4945  *      0 - off
4946  *      1 - rx pause
4947  *      2 - tx pause
4948  *      3 - full
4949  */
4950 static int
4951 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4952 {
4953 	int error;
4954 	static int input = 3; /* default is full */
4955 	struct e1000_softc	*sc = (struct e1000_softc *) arg1;
4956 
4957 	error = sysctl_handle_int(oidp, &input, 0, req);
4958 
4959 	if ((error) || (req->newptr == NULL))
4960 		return (error);
4961 
4962 	if (input == sc->fc) /* no change? */
4963 		return (error);
4964 
4965 	switch (input) {
4966 	case e1000_fc_rx_pause:
4967 	case e1000_fc_tx_pause:
4968 	case e1000_fc_full:
4969 	case e1000_fc_none:
4970 		sc->hw.fc.requested_mode = input;
4971 		sc->fc = input;
4972 		break;
4973 	default:
4974 		/* Do nothing */
4975 		return (error);
4976 	}
4977 
4978 	sc->hw.fc.current_mode = sc->hw.fc.requested_mode;
4979 	e1000_force_mac_fc(&sc->hw);
4980 	return (error);
4981 }
4982 
4983 /*
4984  * Manage DMA Coalesce:
4985  * Control values:
4986  * 	0/1 - off/on
4987  *	Legal timer values are:
4988  *	250,500,1000-10000 in thousands
4989  */
4990 static int
4991 igb_sysctl_dmac(SYSCTL_HANDLER_ARGS)
4992 {
4993 	struct e1000_softc *sc = (struct e1000_softc *) arg1;
4994 	int error;
4995 
4996 	error = sysctl_handle_int(oidp, &sc->dmac, 0, req);
4997 
4998 	if ((error) || (req->newptr == NULL))
4999 		return (error);
5000 
5001 	switch (sc->dmac) {
5002 		case 0:
5003 			/* Disabling */
5004 			break;
5005 		case 1: /* Just enable and use default */
5006 			sc->dmac = 1000;
5007 			break;
5008 		case 250:
5009 		case 500:
5010 		case 1000:
5011 		case 2000:
5012 		case 3000:
5013 		case 4000:
5014 		case 5000:
5015 		case 6000:
5016 		case 7000:
5017 		case 8000:
5018 		case 9000:
5019 		case 10000:
5020 			/* Legal values - allow */
5021 			break;
5022 		default:
5023 			/* Do nothing, illegal value */
5024 			sc->dmac = 0;
5025 			return (EINVAL);
5026 	}
5027 	/* Reinit the interface */
5028 	em_if_init(sc->ctx);
5029 	return (error);
5030 }
5031 
5032 /*
5033  * Manage Energy Efficient Ethernet:
5034  * Control values:
5035  *     0/1 - enabled/disabled
5036  */
5037 static int
5038 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
5039 {
5040 	struct e1000_softc *sc = (struct e1000_softc *) arg1;
5041 	int error, value;
5042 
5043 	if (sc->hw.mac.type < igb_mac_min)
5044 		value = sc->hw.dev_spec.ich8lan.eee_disable;
5045 	else
5046 		value = sc->hw.dev_spec._82575.eee_disable;
5047 	error = sysctl_handle_int(oidp, &value, 0, req);
5048 	if (error || req->newptr == NULL)
5049 		return (error);
5050 	if (sc->hw.mac.type < igb_mac_min)
5051 		sc->hw.dev_spec.ich8lan.eee_disable = (value != 0);
5052 	else
5053 		sc->hw.dev_spec._82575.eee_disable = (value != 0);
5054 	em_if_init(sc->ctx);
5055 
5056 	return (0);
5057 }
5058 
5059 static int
5060 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
5061 {
5062 	struct e1000_softc *sc;
5063 	int error;
5064 	int result;
5065 
5066 	result = -1;
5067 	error = sysctl_handle_int(oidp, &result, 0, req);
5068 
5069 	if (error || !req->newptr)
5070 		return (error);
5071 
5072 	if (result == 1) {
5073 		sc = (struct e1000_softc *) arg1;
5074 		em_print_debug_info(sc);
5075 	}
5076 
5077 	return (error);
5078 }
5079 
5080 static int
5081 em_get_rs(SYSCTL_HANDLER_ARGS)
5082 {
5083 	struct e1000_softc *sc = (struct e1000_softc *) arg1;
5084 	int error;
5085 	int result;
5086 
5087 	result = 0;
5088 	error = sysctl_handle_int(oidp, &result, 0, req);
5089 
5090 	if (error || !req->newptr || result != 1)
5091 		return (error);
5092 	em_dump_rs(sc);
5093 
5094 	return (error);
5095 }
5096 
5097 static void
5098 em_if_debug(if_ctx_t ctx)
5099 {
5100 	em_dump_rs(iflib_get_softc(ctx));
5101 }
5102 
5103 /*
5104  * This routine is meant to be fluid, add whatever is
5105  * needed for debugging a problem.  -jfv
5106  */
5107 static void
5108 em_print_debug_info(struct e1000_softc *sc)
5109 {
5110 	device_t dev = iflib_get_dev(sc->ctx);
5111 	if_t ifp = iflib_get_ifp(sc->ctx);
5112 	struct tx_ring *txr = &sc->tx_queues->txr;
5113 	struct rx_ring *rxr = &sc->rx_queues->rxr;
5114 
5115 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
5116 		printf("Interface is RUNNING ");
5117 	else
5118 		printf("Interface is NOT RUNNING\n");
5119 
5120 	if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
5121 		printf("and INACTIVE\n");
5122 	else
5123 		printf("and ACTIVE\n");
5124 
5125 	for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
5126 		device_printf(dev, "TX Queue %d ------\n", i);
5127 		device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
5128 			E1000_READ_REG(&sc->hw, E1000_TDH(i)),
5129 			E1000_READ_REG(&sc->hw, E1000_TDT(i)));
5130 
5131 	}
5132 	for (int j=0; j < sc->rx_num_queues; j++, rxr++) {
5133 		device_printf(dev, "RX Queue %d ------\n", j);
5134 		device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
5135 			E1000_READ_REG(&sc->hw, E1000_RDH(j)),
5136 			E1000_READ_REG(&sc->hw, E1000_RDT(j)));
5137 	}
5138 }
5139 
5140 /*
5141  * 82574 only:
5142  * Write a new value to the EEPROM increasing the number of MSI-X
5143  * vectors from 3 to 5, for proper multiqueue support.
5144  */
5145 static void
5146 em_enable_vectors_82574(if_ctx_t ctx)
5147 {
5148 	struct e1000_softc *sc = iflib_get_softc(ctx);
5149 	struct e1000_hw *hw = &sc->hw;
5150 	device_t dev = iflib_get_dev(ctx);
5151 	u16 edata;
5152 
5153 	e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
5154 	if (bootverbose)
5155 		device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
5156 	if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
5157 		device_printf(dev, "Writing to eeprom: increasing "
5158 		    "reported MSI-X vectors from 3 to 5...\n");
5159 		edata &= ~(EM_NVM_MSIX_N_MASK);
5160 		edata |= 4 << EM_NVM_MSIX_N_SHIFT;
5161 		e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
5162 		e1000_update_nvm_checksum(hw);
5163 		device_printf(dev, "Writing to eeprom: done\n");
5164 	}
5165 }
5166