1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include "if_em.h" 30 #include <sys/sbuf.h> 31 #include <machine/_inttypes.h> 32 33 #define em_mac_min e1000_82571 34 #define igb_mac_min e1000_82575 35 36 /********************************************************************* 37 * Driver version: 38 *********************************************************************/ 39 static const char em_driver_version[] = "7.7.8-fbsd"; 40 static const char igb_driver_version[] = "2.5.28-fbsd"; 41 42 /********************************************************************* 43 * PCI Device ID Table 44 * 45 * Used by probe to select devices to load on 46 * Last field stores an index into e1000_strings 47 * Last entry must be all 0s 48 * 49 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index } 50 *********************************************************************/ 51 52 static const pci_vendor_info_t em_vendor_info_array[] = 53 { 54 /* Intel(R) - lem-class legacy devices */ 55 PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) Legacy PRO/1000 MT 82540EM"), 56 PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) Legacy PRO/1000 MT 82540EM (LOM)"), 57 PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) Legacy PRO/1000 MT 82540EP"), 58 PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) Legacy PRO/1000 MT 82540EP (LOM)"), 59 PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) Legacy PRO/1000 MT 82540EP (Mobile)"), 60 61 PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) Legacy PRO/1000 MT 82541EI (Copper)"), 62 PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) Legacy PRO/1000 82541ER"), 63 PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) Legacy PRO/1000 MT 82541ER"), 64 PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541EI (Mobile)"), 65 PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) Legacy PRO/1000 MT 82541GI"), 66 PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) Legacy PRO/1000 GT 82541PI"), 67 PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541GI (Mobile)"), 68 69 PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) Legacy PRO/1000 82542 (Fiber)"), 70 71 PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) Legacy PRO/1000 F 82543GC (Fiber)"), 72 PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) Legacy PRO/1000 T 82543GC (Copper)"), 73 74 PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) Legacy PRO/1000 XT 82544EI (Copper)"), 75 PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) Legacy PRO/1000 XF 82544EI (Fiber)"), 76 PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) Legacy PRO/1000 T 82544GC (Copper)"), 77 PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) Legacy PRO/1000 XT 82544GC (LOM)"), 78 79 PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545EM (Copper)"), 80 PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545EM (Fiber)"), 81 PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545GM (Copper)"), 82 PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545GM (Fiber)"), 83 PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) Legacy PRO/1000 MB 82545GM (SERDES)"), 84 85 PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Copper)"), 86 PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546EB (Fiber)"), 87 PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Quad Copper"), 88 PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546GB (Copper)"), 89 PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546GB (Fiber)"), 90 PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) Legacy PRO/1000 MB 82546GB (SERDES)"), 91 PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) Legacy PRO/1000 P 82546GB (PCIe)"), 92 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"), 93 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"), 94 95 PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) Legacy PRO/1000 CT 82547EI"), 96 PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) Legacy PRO/1000 CT 82547EI (Mobile)"), 97 PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) Legacy PRO/1000 CT 82547GI"), 98 99 /* Intel(R) - em-class devices */ 100 PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Copper)"), 101 PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 PF 82571EB/82571GB (Fiber)"), 102 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 PB 82571EB (SERDES)"), 103 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 82571EB (Dual Mezzanine)"), 104 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 82571EB (Quad Mezzanine)"), 105 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"), 106 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"), 107 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 PF 82571EB (Quad Fiber)"), 108 PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571PT (Quad Copper)"), 109 PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 PT 82572EI (Copper)"), 110 PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 PT 82572EI (Copper)"), 111 PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 PF 82572EI (Fiber)"), 112 PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 82572EI (SERDES)"), 113 PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 82573E (Copper)"), 114 PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 82573E AMT (Copper)"), 115 PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 82573L"), 116 PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) 82583V"), 117 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) 80003ES2LAN (Copper)"), 118 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) 80003ES2LAN (SERDES)"), 119 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) 80003ES2LAN (Dual Copper)"), 120 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) 80003ES2LAN (Dual SERDES)"), 121 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) 82566MM ICH8 AMT (Mobile)"), 122 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) 82566DM ICH8 AMT"), 123 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) 82566DC ICH8"), 124 PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) 82562V ICH8"), 125 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) 82562GT ICH8"), 126 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) 82562G ICH8"), 127 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) 82566MC ICH8"), 128 PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) 82567V-3 ICH8"), 129 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) 82567LM ICH9 AMT"), 130 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) 82566DM-2 ICH9 AMT"), 131 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) 82566DC-2 ICH9"), 132 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) 82567LF ICH9"), 133 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) 82567V ICH9"), 134 PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) 82562V-2 ICH9"), 135 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) 82562GT-2 ICH9"), 136 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) 82562G-2 ICH9"), 137 PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) 82567LM-4 ICH9"), 138 PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) Gigabit CT 82574L"), 139 PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) 82574L-Apple"), 140 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) 82567LM-2 ICH10"), 141 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) 82567LF-2 ICH10"), 142 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) 82567V-2 ICH10"), 143 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) 82567LM-3 ICH10"), 144 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) 82567LF-3 ICH10"), 145 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) 82567V-4 ICH10"), 146 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) 82577LM"), 147 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) 82577LC"), 148 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) 82578DM"), 149 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) 82578DC"), 150 PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) 82579LM"), 151 PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) 82579V"), 152 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) I217-LM LPT"), 153 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) I217-V LPT"), 154 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) I218-LM LPTLP"), 155 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) I218-V LPTLP"), 156 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) I218-LM (2)"), 157 PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) I218-V (2)"), 158 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) I218-LM (3)"), 159 PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) I218-V (3)"), 160 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) I219-LM SPT"), 161 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) I219-V SPT"), 162 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) I219-LM SPT-H(2)"), 163 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) I219-V SPT-H(2)"), 164 PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) I219-LM LBG(3)"), 165 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) I219-LM SPT(4)"), 166 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) I219-V SPT(4)"), 167 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) I219-LM SPT(5)"), 168 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) I219-V SPT(5)"), 169 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) I219-LM CNP(6)"), 170 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) I219-V CNP(6)"), 171 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) I219-LM CNP(7)"), 172 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) I219-V CNP(7)"), 173 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) I219-LM ICP(8)"), 174 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) I219-V ICP(8)"), 175 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) I219-LM ICP(9)"), 176 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) I219-V ICP(9)"), 177 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10, "Intel(R) I219-LM CMP(10)"), 178 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10, "Intel(R) I219-V CMP(10)"), 179 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11, "Intel(R) I219-LM CMP(11)"), 180 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11, "Intel(R) I219-V CMP(11)"), 181 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12, "Intel(R) I219-LM CMP(12)"), 182 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12, "Intel(R) I219-V CMP(12)"), 183 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM13, "Intel(R) I219-LM TGP(13)"), 184 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V13, "Intel(R) I219-V TGP(13)"), 185 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM14, "Intel(R) I219-LM TGP(14)"), 186 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V14, "Intel(R) I219-V GTP(14)"), 187 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM15, "Intel(R) I219-LM TGP(15)"), 188 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V15, "Intel(R) I219-V TGP(15)"), 189 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM16, "Intel(R) I219-LM ADL(16)"), 190 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V16, "Intel(R) I219-V ADL(16)"), 191 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM17, "Intel(R) I219-LM ADL(17)"), 192 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V17, "Intel(R) I219-V ADL(17)"), 193 PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM18, "Intel(R) I219-LM MTP(18)"), 194 PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V18, "Intel(R) I219-V MTP(18)"), 195 PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM19, "Intel(R) I219-LM MTP(19)"), 196 PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V19, "Intel(R) I219-V MTP(19)"), 197 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM20, "Intel(R) I219-LM LNL(20)"), 198 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V20, "Intel(R) I219-V LNL(20)"), 199 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM21, "Intel(R) I219-LM LNL(21)"), 200 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V21, "Intel(R) I219-V LNL(21)"), 201 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM22, "Intel(R) I219-LM RPL(22)"), 202 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V22, "Intel(R) I219-V RPL(22)"), 203 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM23, "Intel(R) I219-LM RPL(23)"), 204 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V23, "Intel(R) I219-V RPL(23)"), 205 PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_LM24, "Intel(R) I219-LM ARL(24)"), 206 PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_V24, "Intel(R) I219-V ARL(24)"), 207 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM25, "Intel(R) I219-LM PTP(25)"), 208 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V25, "Intel(R) I219-V PTP(25)"), 209 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM26, "Intel(R) I219-LM PTP(26)"), 210 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V26, "Intel(R) I219-V PTP(26)"), 211 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM27, "Intel(R) I219-LM PTP(27)"), 212 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V27, "Intel(R) I219-V PTP(27)"), 213 /* required last entry */ 214 PVID_END 215 }; 216 217 static const pci_vendor_info_t igb_vendor_info_array[] = 218 { 219 /* Intel(R) - igb-class devices */ 220 PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 82575EB (Copper)"), 221 PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 82575EB (SERDES)"), 222 PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 VT 82575GB (Quad Copper)"), 223 PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 82576"), 224 PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 82576NS"), 225 PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 82576NS (SERDES)"), 226 PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 EF 82576 (Dual Fiber)"), 227 PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 82576 (Dual SERDES)"), 228 PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 ET 82576 (Quad SERDES)"), 229 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 ET 82576 (Quad Copper)"), 230 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 ET(2) 82576 (Quad Copper)"), 231 PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 82576 Virtual Function"), 232 PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) I340 82580 (Copper)"), 233 PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) I340 82580 (Fiber)"), 234 PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) I340 82580 (SERDES)"), 235 PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) I340 82580 (SGMII)"), 236 PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) I340-T2 82580 (Dual Copper)"), 237 PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) I340-F4 82580 (Quad Fiber)"), 238 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) DH89XXCC (SERDES)"), 239 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) I347-AT4 DH89XXCC"), 240 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) DH89XXCC (SFP)"), 241 PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) DH89XXCC (Backplane)"), 242 PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) I350 (Copper)"), 243 PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) I350 (Fiber)"), 244 PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) I350 (SERDES)"), 245 PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) I350 (SGMII)"), 246 PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) I350 Virtual Function"), 247 PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) I210 (Copper)"), 248 PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) I210 IT (Copper)"), 249 PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) I210 (OEM)"), 250 PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) I210 Flashless (Copper)"), 251 PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) I210 Flashless (SERDES)"), 252 PVID(0x8086, E1000_DEV_ID_I210_SGMII_FLASHLESS, "Intel(R) I210 Flashless (SGMII)"), 253 PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) I210 (Fiber)"), 254 PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) I210 (SERDES)"), 255 PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) I210 (SGMII)"), 256 PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) I211 (Copper)"), 257 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) I354 (1.0 GbE Backplane)"), 258 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) I354 (2.5 GbE Backplane)"), 259 PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) I354 (SGMII)"), 260 /* required last entry */ 261 PVID_END 262 }; 263 264 /********************************************************************* 265 * Function prototypes 266 *********************************************************************/ 267 static void *em_register(device_t); 268 static void *igb_register(device_t); 269 static int em_if_attach_pre(if_ctx_t); 270 static int em_if_attach_post(if_ctx_t); 271 static int em_if_detach(if_ctx_t); 272 static int em_if_shutdown(if_ctx_t); 273 static int em_if_suspend(if_ctx_t); 274 static int em_if_resume(if_ctx_t); 275 276 static int em_if_tx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int, int); 277 static int em_if_rx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int, int); 278 static void em_if_queues_free(if_ctx_t); 279 280 static uint64_t em_if_get_counter(if_ctx_t, ift_counter); 281 static void em_if_init(if_ctx_t); 282 static void em_if_stop(if_ctx_t); 283 static void em_if_media_status(if_ctx_t, struct ifmediareq *); 284 static int em_if_media_change(if_ctx_t); 285 static int em_if_mtu_set(if_ctx_t, uint32_t); 286 static void em_if_timer(if_ctx_t, uint16_t); 287 static void em_if_vlan_register(if_ctx_t, u16); 288 static void em_if_vlan_unregister(if_ctx_t, u16); 289 static void em_if_watchdog_reset(if_ctx_t); 290 static bool em_if_needs_restart(if_ctx_t, enum iflib_restart_event); 291 292 static void em_identify_hardware(if_ctx_t); 293 static int em_allocate_pci_resources(if_ctx_t); 294 static void em_free_pci_resources(if_ctx_t); 295 static void em_reset(if_ctx_t); 296 static int em_setup_interface(if_ctx_t); 297 static int em_setup_msix(if_ctx_t); 298 299 static void em_initialize_transmit_unit(if_ctx_t); 300 static void em_initialize_receive_unit(if_ctx_t); 301 302 static void em_if_intr_enable(if_ctx_t); 303 static void em_if_intr_disable(if_ctx_t); 304 static void igb_if_intr_enable(if_ctx_t); 305 static void igb_if_intr_disable(if_ctx_t); 306 static int em_if_rx_queue_intr_enable(if_ctx_t, uint16_t); 307 static int em_if_tx_queue_intr_enable(if_ctx_t, uint16_t); 308 static int igb_if_rx_queue_intr_enable(if_ctx_t, uint16_t); 309 static int igb_if_tx_queue_intr_enable(if_ctx_t, uint16_t); 310 static void em_if_multi_set(if_ctx_t); 311 static void em_if_update_admin_status(if_ctx_t); 312 static void em_if_debug(if_ctx_t); 313 static void em_update_stats_counters(struct e1000_softc *); 314 static void em_add_hw_stats(struct e1000_softc *); 315 static int em_if_set_promisc(if_ctx_t, int); 316 static bool em_if_vlan_filter_capable(if_ctx_t); 317 static bool em_if_vlan_filter_used(if_ctx_t); 318 static void em_if_vlan_filter_enable(struct e1000_softc *); 319 static void em_if_vlan_filter_disable(struct e1000_softc *); 320 static void em_if_vlan_filter_write(struct e1000_softc *); 321 static void em_setup_vlan_hw_support(if_ctx_t ctx); 322 static int em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS); 323 static void em_print_nvm_info(struct e1000_softc *); 324 static void em_fw_version_locked(if_ctx_t); 325 static void em_sbuf_fw_version(struct e1000_fw_version *, struct sbuf *); 326 static void em_print_fw_version(struct e1000_softc *); 327 static int em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS); 328 static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS); 329 static int em_get_rs(SYSCTL_HANDLER_ARGS); 330 static void em_print_debug_info(struct e1000_softc *); 331 static int em_is_valid_ether_addr(u8 *); 332 static bool em_automask_tso(if_ctx_t); 333 static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS); 334 static void em_add_int_delay_sysctl(struct e1000_softc *, const char *, 335 const char *, struct em_int_delay_info *, int, int); 336 /* Management and WOL Support */ 337 static void em_init_manageability(struct e1000_softc *); 338 static void em_release_manageability(struct e1000_softc *); 339 static void em_get_hw_control(struct e1000_softc *); 340 static void em_release_hw_control(struct e1000_softc *); 341 static void em_get_wakeup(if_ctx_t); 342 static void em_enable_wakeup(if_ctx_t); 343 static int em_enable_phy_wakeup(struct e1000_softc *); 344 static void em_disable_aspm(struct e1000_softc *); 345 346 int em_intr(void *); 347 348 /* MSI-X handlers */ 349 static int em_if_msix_intr_assign(if_ctx_t, int); 350 static int em_msix_link(void *); 351 static void em_handle_link(void *); 352 353 static void em_enable_vectors_82574(if_ctx_t); 354 355 static int em_set_flowcntl(SYSCTL_HANDLER_ARGS); 356 static int em_sysctl_eee(SYSCTL_HANDLER_ARGS); 357 static int igb_sysctl_dmac(SYSCTL_HANDLER_ARGS); 358 static void em_if_led_func(if_ctx_t, int); 359 360 static int em_get_regs(SYSCTL_HANDLER_ARGS); 361 362 static void lem_smartspeed(struct e1000_softc *); 363 static void igb_configure_queues(struct e1000_softc *); 364 static void em_flush_desc_rings(struct e1000_softc *); 365 366 367 /********************************************************************* 368 * FreeBSD Device Interface Entry Points 369 *********************************************************************/ 370 static device_method_t em_methods[] = { 371 /* Device interface */ 372 DEVMETHOD(device_register, em_register), 373 DEVMETHOD(device_probe, iflib_device_probe), 374 DEVMETHOD(device_attach, iflib_device_attach), 375 DEVMETHOD(device_detach, iflib_device_detach), 376 DEVMETHOD(device_shutdown, iflib_device_shutdown), 377 DEVMETHOD(device_suspend, iflib_device_suspend), 378 DEVMETHOD(device_resume, iflib_device_resume), 379 DEVMETHOD_END 380 }; 381 382 static device_method_t igb_methods[] = { 383 /* Device interface */ 384 DEVMETHOD(device_register, igb_register), 385 DEVMETHOD(device_probe, iflib_device_probe), 386 DEVMETHOD(device_attach, iflib_device_attach), 387 DEVMETHOD(device_detach, iflib_device_detach), 388 DEVMETHOD(device_shutdown, iflib_device_shutdown), 389 DEVMETHOD(device_suspend, iflib_device_suspend), 390 DEVMETHOD(device_resume, iflib_device_resume), 391 DEVMETHOD_END 392 }; 393 394 395 static driver_t em_driver = { 396 "em", em_methods, sizeof(struct e1000_softc), 397 }; 398 399 DRIVER_MODULE(em, pci, em_driver, 0, 0); 400 401 MODULE_DEPEND(em, pci, 1, 1, 1); 402 MODULE_DEPEND(em, ether, 1, 1, 1); 403 MODULE_DEPEND(em, iflib, 1, 1, 1); 404 405 IFLIB_PNP_INFO(pci, em, em_vendor_info_array); 406 407 static driver_t igb_driver = { 408 "igb", igb_methods, sizeof(struct e1000_softc), 409 }; 410 411 DRIVER_MODULE(igb, pci, igb_driver, 0, 0); 412 413 MODULE_DEPEND(igb, pci, 1, 1, 1); 414 MODULE_DEPEND(igb, ether, 1, 1, 1); 415 MODULE_DEPEND(igb, iflib, 1, 1, 1); 416 417 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array); 418 419 static device_method_t em_if_methods[] = { 420 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre), 421 DEVMETHOD(ifdi_attach_post, em_if_attach_post), 422 DEVMETHOD(ifdi_detach, em_if_detach), 423 DEVMETHOD(ifdi_shutdown, em_if_shutdown), 424 DEVMETHOD(ifdi_suspend, em_if_suspend), 425 DEVMETHOD(ifdi_resume, em_if_resume), 426 DEVMETHOD(ifdi_init, em_if_init), 427 DEVMETHOD(ifdi_stop, em_if_stop), 428 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign), 429 DEVMETHOD(ifdi_intr_enable, em_if_intr_enable), 430 DEVMETHOD(ifdi_intr_disable, em_if_intr_disable), 431 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc), 432 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc), 433 DEVMETHOD(ifdi_queues_free, em_if_queues_free), 434 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status), 435 DEVMETHOD(ifdi_multi_set, em_if_multi_set), 436 DEVMETHOD(ifdi_media_status, em_if_media_status), 437 DEVMETHOD(ifdi_media_change, em_if_media_change), 438 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set), 439 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc), 440 DEVMETHOD(ifdi_timer, em_if_timer), 441 DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset), 442 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register), 443 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister), 444 DEVMETHOD(ifdi_get_counter, em_if_get_counter), 445 DEVMETHOD(ifdi_led_func, em_if_led_func), 446 DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable), 447 DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable), 448 DEVMETHOD(ifdi_debug, em_if_debug), 449 DEVMETHOD(ifdi_needs_restart, em_if_needs_restart), 450 DEVMETHOD_END 451 }; 452 453 static driver_t em_if_driver = { 454 "em_if", em_if_methods, sizeof(struct e1000_softc) 455 }; 456 457 static device_method_t igb_if_methods[] = { 458 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre), 459 DEVMETHOD(ifdi_attach_post, em_if_attach_post), 460 DEVMETHOD(ifdi_detach, em_if_detach), 461 DEVMETHOD(ifdi_shutdown, em_if_shutdown), 462 DEVMETHOD(ifdi_suspend, em_if_suspend), 463 DEVMETHOD(ifdi_resume, em_if_resume), 464 DEVMETHOD(ifdi_init, em_if_init), 465 DEVMETHOD(ifdi_stop, em_if_stop), 466 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign), 467 DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable), 468 DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable), 469 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc), 470 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc), 471 DEVMETHOD(ifdi_queues_free, em_if_queues_free), 472 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status), 473 DEVMETHOD(ifdi_multi_set, em_if_multi_set), 474 DEVMETHOD(ifdi_media_status, em_if_media_status), 475 DEVMETHOD(ifdi_media_change, em_if_media_change), 476 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set), 477 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc), 478 DEVMETHOD(ifdi_timer, em_if_timer), 479 DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset), 480 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register), 481 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister), 482 DEVMETHOD(ifdi_get_counter, em_if_get_counter), 483 DEVMETHOD(ifdi_led_func, em_if_led_func), 484 DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable), 485 DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable), 486 DEVMETHOD(ifdi_debug, em_if_debug), 487 DEVMETHOD(ifdi_needs_restart, em_if_needs_restart), 488 DEVMETHOD_END 489 }; 490 491 static driver_t igb_if_driver = { 492 "igb_if", igb_if_methods, sizeof(struct e1000_softc) 493 }; 494 495 /********************************************************************* 496 * Tunable default values. 497 *********************************************************************/ 498 499 #define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000) 500 #define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024) 501 502 #define MAX_INTS_PER_SEC 8000 503 #define DEFAULT_ITR (1000000000/(MAX_INTS_PER_SEC * 256)) 504 505 /* Allow common code without TSO */ 506 #ifndef CSUM_TSO 507 #define CSUM_TSO 0 508 #endif 509 510 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 511 "EM driver parameters"); 512 513 static int em_disable_crc_stripping = 0; 514 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN, 515 &em_disable_crc_stripping, 0, "Disable CRC Stripping"); 516 517 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV); 518 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR); 519 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt, 520 0, "Default transmit interrupt delay in usecs"); 521 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt, 522 0, "Default receive interrupt delay in usecs"); 523 524 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV); 525 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV); 526 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN, 527 &em_tx_abs_int_delay_dflt, 0, 528 "Default transmit interrupt delay limit in usecs"); 529 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN, 530 &em_rx_abs_int_delay_dflt, 0, 531 "Default receive interrupt delay limit in usecs"); 532 533 static int em_smart_pwr_down = false; 534 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down, 535 0, "Set to true to leave smart power down enabled on newer adapters"); 536 537 static bool em_unsupported_tso = false; 538 SYSCTL_BOOL(_hw_em, OID_AUTO, unsupported_tso, CTLFLAG_RDTUN, 539 &em_unsupported_tso, 0, "Allow unsupported em(4) TSO configurations"); 540 541 /* Controls whether promiscuous also shows bad packets */ 542 static int em_debug_sbp = false; 543 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0, 544 "Show bad packets in promiscuous mode"); 545 546 /* Energy efficient ethernet - default to OFF */ 547 static int eee_setting = 1; 548 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0, 549 "Enable Energy Efficient Ethernet"); 550 551 /* 552 ** Tuneable Interrupt rate 553 */ 554 static int em_max_interrupt_rate = 8000; 555 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN, 556 &em_max_interrupt_rate, 0, "Maximum interrupts per second"); 557 558 /* Global used in WOL setup with multiport cards */ 559 static int global_quad_port_a = 0; 560 561 extern struct if_txrx igb_txrx; 562 extern struct if_txrx em_txrx; 563 extern struct if_txrx lem_txrx; 564 565 static struct if_shared_ctx em_sctx_init = { 566 .isc_magic = IFLIB_MAGIC, 567 .isc_q_align = PAGE_SIZE, 568 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 569 .isc_tx_maxsegsize = PAGE_SIZE, 570 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 571 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE, 572 .isc_rx_maxsize = MJUM9BYTES, 573 .isc_rx_nsegments = 1, 574 .isc_rx_maxsegsize = MJUM9BYTES, 575 .isc_nfl = 1, 576 .isc_nrxqs = 1, 577 .isc_ntxqs = 1, 578 .isc_admin_intrcnt = 1, 579 .isc_vendor_info = em_vendor_info_array, 580 .isc_driver_version = em_driver_version, 581 .isc_driver = &em_if_driver, 582 .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM, 583 584 .isc_nrxd_min = {EM_MIN_RXD}, 585 .isc_ntxd_min = {EM_MIN_TXD}, 586 .isc_nrxd_max = {EM_MAX_RXD}, 587 .isc_ntxd_max = {EM_MAX_TXD}, 588 .isc_nrxd_default = {EM_DEFAULT_RXD}, 589 .isc_ntxd_default = {EM_DEFAULT_TXD}, 590 }; 591 592 static struct if_shared_ctx igb_sctx_init = { 593 .isc_magic = IFLIB_MAGIC, 594 .isc_q_align = PAGE_SIZE, 595 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 596 .isc_tx_maxsegsize = PAGE_SIZE, 597 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 598 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE, 599 .isc_rx_maxsize = MJUM9BYTES, 600 .isc_rx_nsegments = 1, 601 .isc_rx_maxsegsize = MJUM9BYTES, 602 .isc_nfl = 1, 603 .isc_nrxqs = 1, 604 .isc_ntxqs = 1, 605 .isc_admin_intrcnt = 1, 606 .isc_vendor_info = igb_vendor_info_array, 607 .isc_driver_version = igb_driver_version, 608 .isc_driver = &igb_if_driver, 609 .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM, 610 611 .isc_nrxd_min = {EM_MIN_RXD}, 612 .isc_ntxd_min = {EM_MIN_TXD}, 613 .isc_nrxd_max = {IGB_MAX_RXD}, 614 .isc_ntxd_max = {IGB_MAX_TXD}, 615 .isc_nrxd_default = {EM_DEFAULT_RXD}, 616 .isc_ntxd_default = {EM_DEFAULT_TXD}, 617 }; 618 619 /***************************************************************** 620 * 621 * Dump Registers 622 * 623 ****************************************************************/ 624 #define IGB_REGS_LEN 739 625 626 static int em_get_regs(SYSCTL_HANDLER_ARGS) 627 { 628 struct e1000_softc *sc = (struct e1000_softc *)arg1; 629 struct e1000_hw *hw = &sc->hw; 630 struct sbuf *sb; 631 u32 *regs_buff; 632 int rc; 633 634 regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK); 635 memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32)); 636 637 rc = sysctl_wire_old_buffer(req, 0); 638 MPASS(rc == 0); 639 if (rc != 0) { 640 free(regs_buff, M_DEVBUF); 641 return (rc); 642 } 643 644 sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req); 645 MPASS(sb != NULL); 646 if (sb == NULL) { 647 free(regs_buff, M_DEVBUF); 648 return (ENOMEM); 649 } 650 651 /* General Registers */ 652 regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL); 653 regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS); 654 regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT); 655 regs_buff[3] = E1000_READ_REG(hw, E1000_ICR); 656 regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL); 657 regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0)); 658 regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0)); 659 regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0)); 660 regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0)); 661 regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0)); 662 regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0)); 663 regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL); 664 regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0)); 665 regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0)); 666 regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0)); 667 regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0)); 668 regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0)); 669 regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0)); 670 regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH); 671 regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT); 672 regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS); 673 regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC); 674 675 sbuf_printf(sb, "General Registers\n"); 676 sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]); 677 sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]); 678 sbuf_printf(sb, "\tCTRL_EXT\t %08x\n\n", regs_buff[2]); 679 680 sbuf_printf(sb, "Interrupt Registers\n"); 681 sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]); 682 683 sbuf_printf(sb, "RX Registers\n"); 684 sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]); 685 sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]); 686 sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]); 687 sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]); 688 sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]); 689 sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]); 690 sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]); 691 692 sbuf_printf(sb, "TX Registers\n"); 693 sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]); 694 sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]); 695 sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]); 696 sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]); 697 sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]); 698 sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]); 699 sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]); 700 sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]); 701 sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]); 702 sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]); 703 sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]); 704 705 free(regs_buff, M_DEVBUF); 706 707 #ifdef DUMP_DESCS 708 { 709 if_softc_ctx_t scctx = sc->shared; 710 struct rx_ring *rxr = &rx_que->rxr; 711 struct tx_ring *txr = &tx_que->txr; 712 int ntxd = scctx->isc_ntxd[0]; 713 int nrxd = scctx->isc_nrxd[0]; 714 int j; 715 716 for (j = 0; j < nrxd; j++) { 717 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error); 718 u32 length = le32toh(rxr->rx_base[j].wb.upper.length); 719 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 " Error:%d Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length); 720 } 721 722 for (j = 0; j < min(ntxd, 256); j++) { 723 unsigned int *ptr = (unsigned int *)&txr->tx_base[j]; 724 725 sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x eop: %d DD=%d\n", 726 j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop, 727 buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0); 728 729 } 730 } 731 #endif 732 733 rc = sbuf_finish(sb); 734 sbuf_delete(sb); 735 return(rc); 736 } 737 738 static void * 739 em_register(device_t dev) 740 { 741 return (&em_sctx_init); 742 } 743 744 static void * 745 igb_register(device_t dev) 746 { 747 return (&igb_sctx_init); 748 } 749 750 static int 751 em_set_num_queues(if_ctx_t ctx) 752 { 753 struct e1000_softc *sc = iflib_get_softc(ctx); 754 int maxqueues; 755 756 /* Sanity check based on HW */ 757 switch (sc->hw.mac.type) { 758 case e1000_82576: 759 case e1000_82580: 760 case e1000_i350: 761 case e1000_i354: 762 maxqueues = 8; 763 break; 764 case e1000_i210: 765 case e1000_82575: 766 maxqueues = 4; 767 break; 768 case e1000_i211: 769 case e1000_82574: 770 maxqueues = 2; 771 break; 772 default: 773 maxqueues = 1; 774 break; 775 } 776 777 return (maxqueues); 778 } 779 780 #define LEM_CAPS \ 781 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ 782 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \ 783 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 784 785 #define EM_CAPS \ 786 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ 787 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \ 788 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \ 789 IFCAP_TSO6 790 791 #define IGB_CAPS \ 792 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ 793 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \ 794 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \ 795 IFCAP_TSO6 796 797 /********************************************************************* 798 * Device initialization routine 799 * 800 * The attach entry point is called when the driver is being loaded. 801 * This routine identifies the type of hardware, allocates all resources 802 * and initializes the hardware. 803 * 804 * return 0 on success, positive on failure 805 *********************************************************************/ 806 static int 807 em_if_attach_pre(if_ctx_t ctx) 808 { 809 struct e1000_softc *sc; 810 if_softc_ctx_t scctx; 811 device_t dev; 812 struct e1000_hw *hw; 813 struct sysctl_oid_list *child; 814 struct sysctl_ctx_list *ctx_list; 815 int error = 0; 816 817 INIT_DEBUGOUT("em_if_attach_pre: begin"); 818 dev = iflib_get_dev(ctx); 819 sc = iflib_get_softc(ctx); 820 821 sc->ctx = sc->osdep.ctx = ctx; 822 sc->dev = sc->osdep.dev = dev; 823 scctx = sc->shared = iflib_get_softc_ctx(ctx); 824 sc->media = iflib_get_media(ctx); 825 hw = &sc->hw; 826 827 /* Determine hardware and mac info */ 828 em_identify_hardware(ctx); 829 830 /* SYSCTL stuff */ 831 ctx_list = device_get_sysctl_ctx(dev); 832 child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev)); 833 834 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "nvm", 835 CTLTYPE_INT | CTLFLAG_RW, sc, 0, 836 em_sysctl_nvm_info, "I", "NVM Information"); 837 838 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fw_version", 839 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 840 em_sysctl_print_fw_version, "A", 841 "Prints FW/NVM Versions"); 842 843 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "debug", 844 CTLTYPE_INT | CTLFLAG_RW, sc, 0, 845 em_sysctl_debug_info, "I", "Debug Information"); 846 847 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fc", 848 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 849 em_set_flowcntl, "I", "Flow Control"); 850 851 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "reg_dump", 852 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, 853 em_get_regs, "A", "Dump Registers"); 854 855 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "rs_dump", 856 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 857 em_get_rs, "I", "Dump RS indexes"); 858 859 if (hw->mac.type >= e1000_i350) { 860 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "dmac", 861 CTLTYPE_INT | CTLFLAG_RW, sc, 0, 862 igb_sysctl_dmac, "I", "DMA Coalesce"); 863 } 864 865 scctx->isc_tx_nsegments = EM_MAX_SCATTER; 866 scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx); 867 if (bootverbose) 868 device_printf(dev, "attach_pre capping queues at %d\n", 869 scctx->isc_ntxqsets_max); 870 871 if (hw->mac.type >= igb_mac_min) { 872 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN); 873 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN); 874 scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc); 875 scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc); 876 scctx->isc_txrx = &igb_txrx; 877 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER; 878 scctx->isc_tx_tso_size_max = EM_TSO_SIZE; 879 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE; 880 scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS; 881 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO | 882 CSUM_IP6_TCP | CSUM_IP6_UDP; 883 if (hw->mac.type != e1000_82575) 884 scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP; 885 /* 886 ** Some new devices, as with ixgbe, now may 887 ** use a different BAR, so we need to keep 888 ** track of which is used. 889 */ 890 scctx->isc_msix_bar = pci_msix_table_bar(dev); 891 } else if (hw->mac.type >= em_mac_min) { 892 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN); 893 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN); 894 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc); 895 scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended); 896 scctx->isc_txrx = &em_txrx; 897 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER; 898 scctx->isc_tx_tso_size_max = EM_TSO_SIZE; 899 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE; 900 scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS; 901 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO | 902 CSUM_IP6_TCP | CSUM_IP6_UDP; 903 904 /* Disable TSO on all em(4) until ring stalls can be debugged */ 905 scctx->isc_capenable &= ~IFCAP_TSO; 906 907 /* 908 * Disable TSO on SPT due to errata that downclocks DMA performance 909 * i218-i219 Specification Update 1.5.4.5 910 */ 911 if (hw->mac.type == e1000_pch_spt) 912 scctx->isc_capenable &= ~IFCAP_TSO; 913 914 /* 915 * We support MSI-X with 82574 only, but indicate to iflib(4) 916 * that it shall give MSI at least a try with other devices. 917 */ 918 if (hw->mac.type == e1000_82574) { 919 scctx->isc_msix_bar = pci_msix_table_bar(dev); 920 } else { 921 scctx->isc_msix_bar = -1; 922 scctx->isc_disable_msix = 1; 923 } 924 } else { 925 scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN); 926 scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN); 927 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc); 928 scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc); 929 scctx->isc_txrx = &lem_txrx; 930 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER; 931 scctx->isc_tx_tso_size_max = EM_TSO_SIZE; 932 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE; 933 scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS; 934 if (em_unsupported_tso) 935 scctx->isc_capabilities |= IFCAP_TSO6; 936 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO | 937 CSUM_IP6_TCP | CSUM_IP6_UDP; 938 939 /* Disable TSO on all lem(4) until ring stalls can be debugged */ 940 scctx->isc_capenable &= ~IFCAP_TSO; 941 942 /* 82541ER doesn't do HW tagging */ 943 if (hw->device_id == E1000_DEV_ID_82541ER || 944 hw->device_id == E1000_DEV_ID_82541ER_LOM) { 945 scctx->isc_capabilities &= ~IFCAP_VLAN_HWTAGGING; 946 scctx->isc_capenable = scctx->isc_capabilities; 947 } 948 /* This is the first e1000 chip and it does not do offloads */ 949 if (hw->mac.type == e1000_82542) { 950 scctx->isc_capabilities &= ~(IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM | 951 IFCAP_HWCSUM_IPV6 | IFCAP_VLAN_HWTAGGING | 952 IFCAP_VLAN_HWFILTER | IFCAP_TSO | IFCAP_VLAN_HWTSO); 953 scctx->isc_capenable = scctx->isc_capabilities; 954 } 955 /* These can't do TSO for various reasons */ 956 if (hw->mac.type < e1000_82544 || hw->mac.type == e1000_82547 || 957 hw->mac.type == e1000_82547_rev_2) { 958 scctx->isc_capabilities &= ~(IFCAP_TSO | IFCAP_VLAN_HWTSO); 959 scctx->isc_capenable = scctx->isc_capabilities; 960 } 961 /* XXXKB: No IPv6 before this? */ 962 if (hw->mac.type < e1000_82545){ 963 scctx->isc_capabilities &= ~IFCAP_HWCSUM_IPV6; 964 scctx->isc_capenable = scctx->isc_capabilities; 965 } 966 /* "PCI/PCI-X SDM 4.0" page 33 (b) - FDX requirement on these chips */ 967 if (hw->mac.type == e1000_82547 || hw->mac.type == e1000_82547_rev_2) 968 scctx->isc_capenable &= ~(IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM | 969 IFCAP_HWCSUM_IPV6); 970 971 /* INTx only */ 972 scctx->isc_msix_bar = 0; 973 } 974 975 /* Setup PCI resources */ 976 if (em_allocate_pci_resources(ctx)) { 977 device_printf(dev, "Allocation of PCI resources failed\n"); 978 error = ENXIO; 979 goto err_pci; 980 } 981 982 /* 983 ** For ICH8 and family we need to 984 ** map the flash memory, and this 985 ** must happen after the MAC is 986 ** identified 987 */ 988 if ((hw->mac.type == e1000_ich8lan) || 989 (hw->mac.type == e1000_ich9lan) || 990 (hw->mac.type == e1000_ich10lan) || 991 (hw->mac.type == e1000_pchlan) || 992 (hw->mac.type == e1000_pch2lan) || 993 (hw->mac.type == e1000_pch_lpt)) { 994 int rid = EM_BAR_TYPE_FLASH; 995 sc->flash = bus_alloc_resource_any(dev, 996 SYS_RES_MEMORY, &rid, RF_ACTIVE); 997 if (sc->flash == NULL) { 998 device_printf(dev, "Mapping of Flash failed\n"); 999 error = ENXIO; 1000 goto err_pci; 1001 } 1002 /* This is used in the shared code */ 1003 hw->flash_address = (u8 *)sc->flash; 1004 sc->osdep.flash_bus_space_tag = 1005 rman_get_bustag(sc->flash); 1006 sc->osdep.flash_bus_space_handle = 1007 rman_get_bushandle(sc->flash); 1008 } 1009 /* 1010 ** In the new SPT device flash is not a 1011 ** separate BAR, rather it is also in BAR0, 1012 ** so use the same tag and an offset handle for the 1013 ** FLASH read/write macros in the shared code. 1014 */ 1015 else if (hw->mac.type >= e1000_pch_spt) { 1016 sc->osdep.flash_bus_space_tag = 1017 sc->osdep.mem_bus_space_tag; 1018 sc->osdep.flash_bus_space_handle = 1019 sc->osdep.mem_bus_space_handle 1020 + E1000_FLASH_BASE_ADDR; 1021 } 1022 1023 /* Do Shared Code initialization */ 1024 error = e1000_setup_init_funcs(hw, true); 1025 if (error) { 1026 device_printf(dev, "Setup of Shared code failed, error %d\n", 1027 error); 1028 error = ENXIO; 1029 goto err_pci; 1030 } 1031 1032 em_setup_msix(ctx); 1033 e1000_get_bus_info(hw); 1034 1035 /* Set up some sysctls for the tunable interrupt delays */ 1036 em_add_int_delay_sysctl(sc, "rx_int_delay", 1037 "receive interrupt delay in usecs", &sc->rx_int_delay, 1038 E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt); 1039 em_add_int_delay_sysctl(sc, "tx_int_delay", 1040 "transmit interrupt delay in usecs", &sc->tx_int_delay, 1041 E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt); 1042 em_add_int_delay_sysctl(sc, "rx_abs_int_delay", 1043 "receive interrupt delay limit in usecs", 1044 &sc->rx_abs_int_delay, 1045 E1000_REGISTER(hw, E1000_RADV), 1046 em_rx_abs_int_delay_dflt); 1047 em_add_int_delay_sysctl(sc, "tx_abs_int_delay", 1048 "transmit interrupt delay limit in usecs", 1049 &sc->tx_abs_int_delay, 1050 E1000_REGISTER(hw, E1000_TADV), 1051 em_tx_abs_int_delay_dflt); 1052 em_add_int_delay_sysctl(sc, "itr", 1053 "interrupt delay limit in usecs/4", 1054 &sc->tx_itr, 1055 E1000_REGISTER(hw, E1000_ITR), 1056 DEFAULT_ITR); 1057 1058 hw->mac.autoneg = DO_AUTO_NEG; 1059 hw->phy.autoneg_wait_to_complete = false; 1060 hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; 1061 1062 if (hw->mac.type < em_mac_min) { 1063 e1000_init_script_state_82541(hw, true); 1064 e1000_set_tbi_compatibility_82543(hw, true); 1065 } 1066 /* Copper options */ 1067 if (hw->phy.media_type == e1000_media_type_copper) { 1068 hw->phy.mdix = AUTO_ALL_MODES; 1069 hw->phy.disable_polarity_correction = false; 1070 hw->phy.ms_type = EM_MASTER_SLAVE; 1071 } 1072 1073 /* 1074 * Set the frame limits assuming 1075 * standard ethernet sized frames. 1076 */ 1077 scctx->isc_max_frame_size = hw->mac.max_frame_size = 1078 ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE; 1079 1080 /* 1081 * This controls when hardware reports transmit completion 1082 * status. 1083 */ 1084 hw->mac.report_tx_early = 1; 1085 1086 /* Allocate multicast array memory. */ 1087 sc->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN * 1088 MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT); 1089 if (sc->mta == NULL) { 1090 device_printf(dev, "Can not allocate multicast setup array\n"); 1091 error = ENOMEM; 1092 goto err_late; 1093 } 1094 1095 /* Clear the IFCAP_TSO auto mask */ 1096 sc->tso_automasked = 0; 1097 1098 /* Check SOL/IDER usage */ 1099 if (e1000_check_reset_block(hw)) 1100 device_printf(dev, "PHY reset is blocked" 1101 " due to SOL/IDER session.\n"); 1102 1103 /* Sysctl for setting Energy Efficient Ethernet */ 1104 if (hw->mac.type < igb_mac_min) 1105 hw->dev_spec.ich8lan.eee_disable = eee_setting; 1106 else 1107 hw->dev_spec._82575.eee_disable = eee_setting; 1108 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "eee_control", 1109 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 1110 em_sysctl_eee, "I", "Disable Energy Efficient Ethernet"); 1111 1112 /* 1113 ** Start from a known state, this is 1114 ** important in reading the nvm and 1115 ** mac from that. 1116 */ 1117 e1000_reset_hw(hw); 1118 1119 /* Make sure we have a good EEPROM before we read from it */ 1120 if (e1000_validate_nvm_checksum(hw) < 0) { 1121 /* 1122 ** Some PCI-E parts fail the first check due to 1123 ** the link being in sleep state, call it again, 1124 ** if it fails a second time its a real issue. 1125 */ 1126 if (e1000_validate_nvm_checksum(hw) < 0) { 1127 device_printf(dev, 1128 "The EEPROM Checksum Is Not Valid\n"); 1129 error = EIO; 1130 goto err_late; 1131 } 1132 } 1133 1134 /* Copy the permanent MAC address out of the EEPROM */ 1135 if (e1000_read_mac_addr(hw) < 0) { 1136 device_printf(dev, "EEPROM read error while reading MAC" 1137 " address\n"); 1138 error = EIO; 1139 goto err_late; 1140 } 1141 1142 if (!em_is_valid_ether_addr(hw->mac.addr)) { 1143 if (sc->vf_ifp) { 1144 ether_gen_addr(iflib_get_ifp(ctx), 1145 (struct ether_addr *)hw->mac.addr); 1146 } else { 1147 device_printf(dev, "Invalid MAC address\n"); 1148 error = EIO; 1149 goto err_late; 1150 } 1151 } 1152 1153 /* Save the EEPROM/NVM versions, must be done under IFLIB_CTX_LOCK */ 1154 em_fw_version_locked(ctx); 1155 1156 em_print_fw_version(sc); 1157 1158 /* 1159 * Get Wake-on-Lan and Management info for later use 1160 */ 1161 em_get_wakeup(ctx); 1162 1163 /* Enable only WOL MAGIC by default */ 1164 scctx->isc_capenable &= ~IFCAP_WOL; 1165 if (sc->wol != 0) 1166 scctx->isc_capenable |= IFCAP_WOL_MAGIC; 1167 1168 iflib_set_mac(ctx, hw->mac.addr); 1169 1170 return (0); 1171 1172 err_late: 1173 em_release_hw_control(sc); 1174 err_pci: 1175 em_free_pci_resources(ctx); 1176 free(sc->mta, M_DEVBUF); 1177 1178 return (error); 1179 } 1180 1181 static int 1182 em_if_attach_post(if_ctx_t ctx) 1183 { 1184 struct e1000_softc *sc = iflib_get_softc(ctx); 1185 struct e1000_hw *hw = &sc->hw; 1186 int error = 0; 1187 1188 /* Setup OS specific network interface */ 1189 error = em_setup_interface(ctx); 1190 if (error != 0) { 1191 device_printf(sc->dev, "Interface setup failed: %d\n", error); 1192 goto err_late; 1193 } 1194 1195 em_reset(ctx); 1196 1197 /* Initialize statistics */ 1198 em_update_stats_counters(sc); 1199 hw->mac.get_link_status = 1; 1200 em_if_update_admin_status(ctx); 1201 em_add_hw_stats(sc); 1202 1203 /* Non-AMT based hardware can now take control from firmware */ 1204 if (sc->has_manage && !sc->has_amt) 1205 em_get_hw_control(sc); 1206 1207 INIT_DEBUGOUT("em_if_attach_post: end"); 1208 1209 return (0); 1210 1211 err_late: 1212 /* upon attach_post() error, iflib calls _if_detach() to free resources. */ 1213 return (error); 1214 } 1215 1216 /********************************************************************* 1217 * Device removal routine 1218 * 1219 * The detach entry point is called when the driver is being removed. 1220 * This routine stops the adapter and deallocates all the resources 1221 * that were allocated for driver operation. 1222 * 1223 * return 0 on success, positive on failure 1224 *********************************************************************/ 1225 static int 1226 em_if_detach(if_ctx_t ctx) 1227 { 1228 struct e1000_softc *sc = iflib_get_softc(ctx); 1229 1230 INIT_DEBUGOUT("em_if_detach: begin"); 1231 1232 e1000_phy_hw_reset(&sc->hw); 1233 1234 em_release_manageability(sc); 1235 em_release_hw_control(sc); 1236 em_free_pci_resources(ctx); 1237 free(sc->mta, M_DEVBUF); 1238 sc->mta = NULL; 1239 1240 return (0); 1241 } 1242 1243 /********************************************************************* 1244 * 1245 * Shutdown entry point 1246 * 1247 **********************************************************************/ 1248 1249 static int 1250 em_if_shutdown(if_ctx_t ctx) 1251 { 1252 return em_if_suspend(ctx); 1253 } 1254 1255 /* 1256 * Suspend/resume device methods. 1257 */ 1258 static int 1259 em_if_suspend(if_ctx_t ctx) 1260 { 1261 struct e1000_softc *sc = iflib_get_softc(ctx); 1262 1263 em_release_manageability(sc); 1264 em_release_hw_control(sc); 1265 em_enable_wakeup(ctx); 1266 return (0); 1267 } 1268 1269 static int 1270 em_if_resume(if_ctx_t ctx) 1271 { 1272 struct e1000_softc *sc = iflib_get_softc(ctx); 1273 1274 if (sc->hw.mac.type == e1000_pch2lan) 1275 e1000_resume_workarounds_pchlan(&sc->hw); 1276 em_if_init(ctx); 1277 em_init_manageability(sc); 1278 1279 return(0); 1280 } 1281 1282 static int 1283 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu) 1284 { 1285 int max_frame_size; 1286 struct e1000_softc *sc = iflib_get_softc(ctx); 1287 if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx); 1288 1289 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)"); 1290 1291 switch (sc->hw.mac.type) { 1292 case e1000_82571: 1293 case e1000_82572: 1294 case e1000_ich9lan: 1295 case e1000_ich10lan: 1296 case e1000_pch2lan: 1297 case e1000_pch_lpt: 1298 case e1000_pch_spt: 1299 case e1000_pch_cnp: 1300 case e1000_pch_tgp: 1301 case e1000_pch_adp: 1302 case e1000_pch_mtp: 1303 case e1000_pch_ptp: 1304 case e1000_82574: 1305 case e1000_82583: 1306 case e1000_80003es2lan: 1307 /* 9K Jumbo Frame size */ 1308 max_frame_size = 9234; 1309 break; 1310 case e1000_pchlan: 1311 max_frame_size = 4096; 1312 break; 1313 case e1000_82542: 1314 case e1000_ich8lan: 1315 /* Adapters that do not support jumbo frames */ 1316 max_frame_size = ETHER_MAX_LEN; 1317 break; 1318 default: 1319 if (sc->hw.mac.type >= igb_mac_min) 1320 max_frame_size = 9234; 1321 else /* lem */ 1322 max_frame_size = MAX_JUMBO_FRAME_SIZE; 1323 } 1324 if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) { 1325 return (EINVAL); 1326 } 1327 1328 scctx->isc_max_frame_size = sc->hw.mac.max_frame_size = 1329 mtu + ETHER_HDR_LEN + ETHER_CRC_LEN; 1330 return (0); 1331 } 1332 1333 /********************************************************************* 1334 * Init entry point 1335 * 1336 * This routine is used in two ways. It is used by the stack as 1337 * init entry point in network interface structure. It is also used 1338 * by the driver as a hw/sw initialization routine to get to a 1339 * consistent state. 1340 * 1341 **********************************************************************/ 1342 static void 1343 em_if_init(if_ctx_t ctx) 1344 { 1345 struct e1000_softc *sc = iflib_get_softc(ctx); 1346 if_softc_ctx_t scctx = sc->shared; 1347 if_t ifp = iflib_get_ifp(ctx); 1348 struct em_tx_queue *tx_que; 1349 int i; 1350 1351 INIT_DEBUGOUT("em_if_init: begin"); 1352 1353 /* Get the latest mac address, User can use a LAA */ 1354 bcopy(if_getlladdr(ifp), sc->hw.mac.addr, 1355 ETHER_ADDR_LEN); 1356 1357 /* Put the address into the Receive Address Array */ 1358 e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0); 1359 1360 /* 1361 * With the 82571 adapter, RAR[0] may be overwritten 1362 * when the other port is reset, we make a duplicate 1363 * in RAR[14] for that eventuality, this assures 1364 * the interface continues to function. 1365 */ 1366 if (sc->hw.mac.type == e1000_82571) { 1367 e1000_set_laa_state_82571(&sc->hw, true); 1368 e1000_rar_set(&sc->hw, sc->hw.mac.addr, 1369 E1000_RAR_ENTRIES - 1); 1370 } 1371 1372 /* Initialize the hardware */ 1373 em_reset(ctx); 1374 em_if_update_admin_status(ctx); 1375 1376 for (i = 0, tx_que = sc->tx_queues; i < sc->tx_num_queues; i++, tx_que++) { 1377 struct tx_ring *txr = &tx_que->txr; 1378 1379 txr->tx_rs_cidx = txr->tx_rs_pidx; 1380 1381 /* Initialize the last processed descriptor to be the end of 1382 * the ring, rather than the start, so that we avoid an 1383 * off-by-one error when calculating how many descriptors are 1384 * done in the credits_update function. 1385 */ 1386 txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1; 1387 } 1388 1389 /* Setup VLAN support, basic and offload if available */ 1390 E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN); 1391 1392 /* Clear bad data from Rx FIFOs */ 1393 if (sc->hw.mac.type >= igb_mac_min) 1394 e1000_rx_fifo_flush_base(&sc->hw); 1395 1396 /* Configure for OS presence */ 1397 em_init_manageability(sc); 1398 1399 /* Prepare transmit descriptors and buffers */ 1400 em_initialize_transmit_unit(ctx); 1401 1402 /* Setup Multicast table */ 1403 em_if_multi_set(ctx); 1404 1405 sc->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx); 1406 em_initialize_receive_unit(ctx); 1407 1408 /* Set up VLAN support and filter */ 1409 em_setup_vlan_hw_support(ctx); 1410 1411 /* Don't lose promiscuous settings */ 1412 em_if_set_promisc(ctx, if_getflags(ifp)); 1413 e1000_clear_hw_cntrs_base_generic(&sc->hw); 1414 1415 /* MSI-X configuration for 82574 */ 1416 if (sc->hw.mac.type == e1000_82574) { 1417 int tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT); 1418 1419 tmp |= E1000_CTRL_EXT_PBA_CLR; 1420 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp); 1421 /* Set the IVAR - interrupt vector routing. */ 1422 E1000_WRITE_REG(&sc->hw, E1000_IVAR, sc->ivars); 1423 } else if (sc->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */ 1424 igb_configure_queues(sc); 1425 1426 /* this clears any pending interrupts */ 1427 E1000_READ_REG(&sc->hw, E1000_ICR); 1428 E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC); 1429 1430 /* AMT based hardware can now take control from firmware */ 1431 if (sc->has_manage && sc->has_amt) 1432 em_get_hw_control(sc); 1433 1434 /* Set Energy Efficient Ethernet */ 1435 if (sc->hw.mac.type >= igb_mac_min && 1436 sc->hw.phy.media_type == e1000_media_type_copper) { 1437 if (sc->hw.mac.type == e1000_i354) 1438 e1000_set_eee_i354(&sc->hw, true, true); 1439 else 1440 e1000_set_eee_i350(&sc->hw, true, true); 1441 } 1442 } 1443 1444 /********************************************************************* 1445 * 1446 * Fast Legacy/MSI Combined Interrupt Service routine 1447 * 1448 *********************************************************************/ 1449 int 1450 em_intr(void *arg) 1451 { 1452 struct e1000_softc *sc = arg; 1453 if_ctx_t ctx = sc->ctx; 1454 u32 reg_icr; 1455 1456 reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR); 1457 1458 /* Hot eject? */ 1459 if (reg_icr == 0xffffffff) 1460 return FILTER_STRAY; 1461 1462 /* Definitely not our interrupt. */ 1463 if (reg_icr == 0x0) 1464 return FILTER_STRAY; 1465 1466 /* 1467 * Starting with the 82571 chip, bit 31 should be used to 1468 * determine whether the interrupt belongs to us. 1469 */ 1470 if (sc->hw.mac.type >= e1000_82571 && 1471 (reg_icr & E1000_ICR_INT_ASSERTED) == 0) 1472 return FILTER_STRAY; 1473 1474 /* 1475 * Only MSI-X interrupts have one-shot behavior by taking advantage 1476 * of the EIAC register. Thus, explicitly disable interrupts. This 1477 * also works around the MSI message reordering errata on certain 1478 * systems. 1479 */ 1480 IFDI_INTR_DISABLE(ctx); 1481 1482 /* Link status change */ 1483 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) 1484 em_handle_link(ctx); 1485 1486 if (reg_icr & E1000_ICR_RXO) 1487 sc->rx_overruns++; 1488 1489 return (FILTER_SCHEDULE_THREAD); 1490 } 1491 1492 static int 1493 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid) 1494 { 1495 struct e1000_softc *sc = iflib_get_softc(ctx); 1496 struct em_rx_queue *rxq = &sc->rx_queues[rxqid]; 1497 1498 E1000_WRITE_REG(&sc->hw, E1000_IMS, rxq->eims); 1499 return (0); 1500 } 1501 1502 static int 1503 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid) 1504 { 1505 struct e1000_softc *sc = iflib_get_softc(ctx); 1506 struct em_tx_queue *txq = &sc->tx_queues[txqid]; 1507 1508 E1000_WRITE_REG(&sc->hw, E1000_IMS, txq->eims); 1509 return (0); 1510 } 1511 1512 static int 1513 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid) 1514 { 1515 struct e1000_softc *sc = iflib_get_softc(ctx); 1516 struct em_rx_queue *rxq = &sc->rx_queues[rxqid]; 1517 1518 E1000_WRITE_REG(&sc->hw, E1000_EIMS, rxq->eims); 1519 return (0); 1520 } 1521 1522 static int 1523 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid) 1524 { 1525 struct e1000_softc *sc = iflib_get_softc(ctx); 1526 struct em_tx_queue *txq = &sc->tx_queues[txqid]; 1527 1528 E1000_WRITE_REG(&sc->hw, E1000_EIMS, txq->eims); 1529 return (0); 1530 } 1531 1532 /********************************************************************* 1533 * 1534 * MSI-X RX Interrupt Service routine 1535 * 1536 **********************************************************************/ 1537 static int 1538 em_msix_que(void *arg) 1539 { 1540 struct em_rx_queue *que = arg; 1541 1542 ++que->irqs; 1543 1544 return (FILTER_SCHEDULE_THREAD); 1545 } 1546 1547 /********************************************************************* 1548 * 1549 * MSI-X Link Fast Interrupt Service routine 1550 * 1551 **********************************************************************/ 1552 static int 1553 em_msix_link(void *arg) 1554 { 1555 struct e1000_softc *sc = arg; 1556 u32 reg_icr; 1557 1558 ++sc->link_irq; 1559 MPASS(sc->hw.back != NULL); 1560 reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR); 1561 1562 if (reg_icr & E1000_ICR_RXO) 1563 sc->rx_overruns++; 1564 1565 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) 1566 em_handle_link(sc->ctx); 1567 1568 /* Re-arm unconditionally */ 1569 if (sc->hw.mac.type >= igb_mac_min) { 1570 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC); 1571 E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->link_mask); 1572 } else if (sc->hw.mac.type == e1000_82574) { 1573 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC | 1574 E1000_IMS_OTHER); 1575 /* 1576 * Because we must read the ICR for this interrupt it may 1577 * clear other causes using autoclear, for this reason we 1578 * simply create a soft interrupt for all these vectors. 1579 */ 1580 if (reg_icr) 1581 E1000_WRITE_REG(&sc->hw, E1000_ICS, sc->ims); 1582 } else 1583 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC); 1584 1585 return (FILTER_HANDLED); 1586 } 1587 1588 static void 1589 em_handle_link(void *context) 1590 { 1591 if_ctx_t ctx = context; 1592 struct e1000_softc *sc = iflib_get_softc(ctx); 1593 1594 sc->hw.mac.get_link_status = 1; 1595 iflib_admin_intr_deferred(ctx); 1596 } 1597 1598 /********************************************************************* 1599 * 1600 * Media Ioctl callback 1601 * 1602 * This routine is called whenever the user queries the status of 1603 * the interface using ifconfig. 1604 * 1605 **********************************************************************/ 1606 static void 1607 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr) 1608 { 1609 struct e1000_softc *sc = iflib_get_softc(ctx); 1610 u_char fiber_type = IFM_1000_SX; 1611 1612 INIT_DEBUGOUT("em_if_media_status: begin"); 1613 1614 iflib_admin_intr_deferred(ctx); 1615 1616 ifmr->ifm_status = IFM_AVALID; 1617 ifmr->ifm_active = IFM_ETHER; 1618 1619 if (!sc->link_active) { 1620 return; 1621 } 1622 1623 ifmr->ifm_status |= IFM_ACTIVE; 1624 1625 if ((sc->hw.phy.media_type == e1000_media_type_fiber) || 1626 (sc->hw.phy.media_type == e1000_media_type_internal_serdes)) { 1627 if (sc->hw.mac.type == e1000_82545) 1628 fiber_type = IFM_1000_LX; 1629 ifmr->ifm_active |= fiber_type | IFM_FDX; 1630 } else { 1631 switch (sc->link_speed) { 1632 case 10: 1633 ifmr->ifm_active |= IFM_10_T; 1634 break; 1635 case 100: 1636 ifmr->ifm_active |= IFM_100_TX; 1637 break; 1638 case 1000: 1639 ifmr->ifm_active |= IFM_1000_T; 1640 break; 1641 } 1642 if (sc->link_duplex == FULL_DUPLEX) 1643 ifmr->ifm_active |= IFM_FDX; 1644 else 1645 ifmr->ifm_active |= IFM_HDX; 1646 } 1647 } 1648 1649 /********************************************************************* 1650 * 1651 * Media Ioctl callback 1652 * 1653 * This routine is called when the user changes speed/duplex using 1654 * media/mediopt option with ifconfig. 1655 * 1656 **********************************************************************/ 1657 static int 1658 em_if_media_change(if_ctx_t ctx) 1659 { 1660 struct e1000_softc *sc = iflib_get_softc(ctx); 1661 struct ifmedia *ifm = iflib_get_media(ctx); 1662 1663 INIT_DEBUGOUT("em_if_media_change: begin"); 1664 1665 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 1666 return (EINVAL); 1667 1668 switch (IFM_SUBTYPE(ifm->ifm_media)) { 1669 case IFM_AUTO: 1670 sc->hw.mac.autoneg = DO_AUTO_NEG; 1671 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; 1672 break; 1673 case IFM_1000_LX: 1674 case IFM_1000_SX: 1675 case IFM_1000_T: 1676 sc->hw.mac.autoneg = DO_AUTO_NEG; 1677 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 1678 break; 1679 case IFM_100_TX: 1680 sc->hw.mac.autoneg = false; 1681 sc->hw.phy.autoneg_advertised = 0; 1682 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) 1683 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL; 1684 else 1685 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF; 1686 break; 1687 case IFM_10_T: 1688 sc->hw.mac.autoneg = false; 1689 sc->hw.phy.autoneg_advertised = 0; 1690 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) 1691 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL; 1692 else 1693 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF; 1694 break; 1695 default: 1696 device_printf(sc->dev, "Unsupported media type\n"); 1697 } 1698 1699 em_if_init(ctx); 1700 1701 return (0); 1702 } 1703 1704 static int 1705 em_if_set_promisc(if_ctx_t ctx, int flags) 1706 { 1707 struct e1000_softc *sc = iflib_get_softc(ctx); 1708 if_t ifp = iflib_get_ifp(ctx); 1709 u32 reg_rctl; 1710 int mcnt = 0; 1711 1712 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL); 1713 reg_rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_UPE); 1714 if (flags & IFF_ALLMULTI) 1715 mcnt = MAX_NUM_MULTICAST_ADDRESSES; 1716 else 1717 mcnt = min(if_llmaddr_count(ifp), MAX_NUM_MULTICAST_ADDRESSES); 1718 1719 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES) 1720 reg_rctl &= (~E1000_RCTL_MPE); 1721 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl); 1722 1723 if (flags & IFF_PROMISC) { 1724 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 1725 em_if_vlan_filter_disable(sc); 1726 /* Turn this on if you want to see bad packets */ 1727 if (em_debug_sbp) 1728 reg_rctl |= E1000_RCTL_SBP; 1729 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl); 1730 } else { 1731 if (flags & IFF_ALLMULTI) { 1732 reg_rctl |= E1000_RCTL_MPE; 1733 reg_rctl &= ~E1000_RCTL_UPE; 1734 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl); 1735 } 1736 if (em_if_vlan_filter_used(ctx)) 1737 em_if_vlan_filter_enable(sc); 1738 } 1739 return (0); 1740 } 1741 1742 static u_int 1743 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int idx) 1744 { 1745 u8 *mta = arg; 1746 1747 if (idx == MAX_NUM_MULTICAST_ADDRESSES) 1748 return (0); 1749 1750 bcopy(LLADDR(sdl), &mta[idx * ETHER_ADDR_LEN], ETHER_ADDR_LEN); 1751 1752 return (1); 1753 } 1754 1755 /********************************************************************* 1756 * Multicast Update 1757 * 1758 * This routine is called whenever multicast address list is updated. 1759 * 1760 **********************************************************************/ 1761 static void 1762 em_if_multi_set(if_ctx_t ctx) 1763 { 1764 struct e1000_softc *sc = iflib_get_softc(ctx); 1765 if_t ifp = iflib_get_ifp(ctx); 1766 u8 *mta; /* Multicast array memory */ 1767 u32 reg_rctl = 0; 1768 int mcnt = 0; 1769 1770 IOCTL_DEBUGOUT("em_set_multi: begin"); 1771 1772 mta = sc->mta; 1773 bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES); 1774 1775 if (sc->hw.mac.type == e1000_82542 && 1776 sc->hw.revision_id == E1000_REVISION_2) { 1777 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL); 1778 if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) 1779 e1000_pci_clear_mwi(&sc->hw); 1780 reg_rctl |= E1000_RCTL_RST; 1781 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl); 1782 msec_delay(5); 1783 } 1784 1785 mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta); 1786 1787 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES) 1788 e1000_update_mc_addr_list(&sc->hw, mta, mcnt); 1789 1790 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL); 1791 1792 if (if_getflags(ifp) & IFF_PROMISC) 1793 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 1794 else if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES || 1795 if_getflags(ifp) & IFF_ALLMULTI) { 1796 reg_rctl |= E1000_RCTL_MPE; 1797 reg_rctl &= ~E1000_RCTL_UPE; 1798 } else 1799 reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); 1800 1801 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl); 1802 1803 if (sc->hw.mac.type == e1000_82542 && 1804 sc->hw.revision_id == E1000_REVISION_2) { 1805 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL); 1806 reg_rctl &= ~E1000_RCTL_RST; 1807 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl); 1808 msec_delay(5); 1809 if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) 1810 e1000_pci_set_mwi(&sc->hw); 1811 } 1812 } 1813 1814 /********************************************************************* 1815 * Timer routine 1816 * 1817 * This routine schedules em_if_update_admin_status() to check for 1818 * link status and to gather statistics as well as to perform some 1819 * controller-specific hardware patting. 1820 * 1821 **********************************************************************/ 1822 static void 1823 em_if_timer(if_ctx_t ctx, uint16_t qid) 1824 { 1825 1826 if (qid != 0) 1827 return; 1828 1829 iflib_admin_intr_deferred(ctx); 1830 } 1831 1832 static void 1833 em_if_update_admin_status(if_ctx_t ctx) 1834 { 1835 struct e1000_softc *sc = iflib_get_softc(ctx); 1836 struct e1000_hw *hw = &sc->hw; 1837 device_t dev = iflib_get_dev(ctx); 1838 u32 link_check, thstat, ctrl; 1839 bool automasked = false; 1840 1841 link_check = thstat = ctrl = 0; 1842 /* Get the cached link value or read phy for real */ 1843 switch (hw->phy.media_type) { 1844 case e1000_media_type_copper: 1845 if (hw->mac.get_link_status) { 1846 if (hw->mac.type == e1000_pch_spt) 1847 msec_delay(50); 1848 /* Do the work to read phy */ 1849 e1000_check_for_link(hw); 1850 link_check = !hw->mac.get_link_status; 1851 if (link_check) /* ESB2 fix */ 1852 e1000_cfg_on_link_up(hw); 1853 } else { 1854 link_check = true; 1855 } 1856 break; 1857 case e1000_media_type_fiber: 1858 e1000_check_for_link(hw); 1859 link_check = (E1000_READ_REG(hw, E1000_STATUS) & 1860 E1000_STATUS_LU); 1861 break; 1862 case e1000_media_type_internal_serdes: 1863 e1000_check_for_link(hw); 1864 link_check = hw->mac.serdes_has_link; 1865 break; 1866 /* VF device is type_unknown */ 1867 case e1000_media_type_unknown: 1868 e1000_check_for_link(hw); 1869 link_check = !hw->mac.get_link_status; 1870 /* FALLTHROUGH */ 1871 default: 1872 break; 1873 } 1874 1875 /* Check for thermal downshift or shutdown */ 1876 if (hw->mac.type == e1000_i350) { 1877 thstat = E1000_READ_REG(hw, E1000_THSTAT); 1878 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT); 1879 } 1880 1881 /* Now check for a transition */ 1882 if (link_check && (sc->link_active == 0)) { 1883 e1000_get_speed_and_duplex(hw, &sc->link_speed, 1884 &sc->link_duplex); 1885 /* Check if we must disable SPEED_MODE bit on PCI-E */ 1886 if ((sc->link_speed != SPEED_1000) && 1887 ((hw->mac.type == e1000_82571) || 1888 (hw->mac.type == e1000_82572))) { 1889 int tarc0; 1890 tarc0 = E1000_READ_REG(hw, E1000_TARC(0)); 1891 tarc0 &= ~TARC_SPEED_MODE_BIT; 1892 E1000_WRITE_REG(hw, E1000_TARC(0), tarc0); 1893 } 1894 if (bootverbose) 1895 device_printf(dev, "Link is up %d Mbps %s\n", 1896 sc->link_speed, 1897 ((sc->link_duplex == FULL_DUPLEX) ? 1898 "Full Duplex" : "Half Duplex")); 1899 sc->link_active = 1; 1900 sc->smartspeed = 0; 1901 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) == 1902 E1000_CTRL_EXT_LINK_MODE_GMII && 1903 (thstat & E1000_THSTAT_LINK_THROTTLE)) 1904 device_printf(dev, "Link: thermal downshift\n"); 1905 /* Delay Link Up for Phy update */ 1906 if (((hw->mac.type == e1000_i210) || 1907 (hw->mac.type == e1000_i211)) && 1908 (hw->phy.id == I210_I_PHY_ID)) 1909 msec_delay(I210_LINK_DELAY); 1910 /* Reset if the media type changed. */ 1911 if (hw->dev_spec._82575.media_changed && 1912 hw->mac.type >= igb_mac_min) { 1913 hw->dev_spec._82575.media_changed = false; 1914 sc->flags |= IGB_MEDIA_RESET; 1915 em_reset(ctx); 1916 } 1917 /* Only do TSO on gigabit Ethernet for older chips due to errata */ 1918 if (hw->mac.type < igb_mac_min) 1919 automasked = em_automask_tso(ctx); 1920 1921 /* Automasking resets the interface, so don't mark it up yet */ 1922 if (!automasked) 1923 iflib_link_state_change(ctx, LINK_STATE_UP, 1924 IF_Mbps(sc->link_speed)); 1925 } else if (!link_check && (sc->link_active == 1)) { 1926 sc->link_speed = 0; 1927 sc->link_duplex = 0; 1928 sc->link_active = 0; 1929 iflib_link_state_change(ctx, LINK_STATE_DOWN, 0); 1930 } 1931 em_update_stats_counters(sc); 1932 1933 /* Reset LAA into RAR[0] on 82571 */ 1934 if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw)) 1935 e1000_rar_set(hw, hw->mac.addr, 0); 1936 1937 if (hw->mac.type < em_mac_min) 1938 lem_smartspeed(sc); 1939 } 1940 1941 static void 1942 em_if_watchdog_reset(if_ctx_t ctx) 1943 { 1944 struct e1000_softc *sc = iflib_get_softc(ctx); 1945 1946 /* 1947 * Just count the event; iflib(4) will already trigger a 1948 * sufficient reset of the controller. 1949 */ 1950 sc->watchdog_events++; 1951 } 1952 1953 /********************************************************************* 1954 * 1955 * This routine disables all traffic on the adapter by issuing a 1956 * global reset on the MAC. 1957 * 1958 **********************************************************************/ 1959 static void 1960 em_if_stop(if_ctx_t ctx) 1961 { 1962 struct e1000_softc *sc = iflib_get_softc(ctx); 1963 1964 INIT_DEBUGOUT("em_if_stop: begin"); 1965 1966 /* I219 needs special flushing to avoid hangs */ 1967 if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min) 1968 em_flush_desc_rings(sc); 1969 1970 e1000_reset_hw(&sc->hw); 1971 if (sc->hw.mac.type >= e1000_82544) 1972 E1000_WRITE_REG(&sc->hw, E1000_WUFC, 0); 1973 1974 e1000_led_off(&sc->hw); 1975 e1000_cleanup_led(&sc->hw); 1976 } 1977 1978 /********************************************************************* 1979 * 1980 * Determine hardware revision. 1981 * 1982 **********************************************************************/ 1983 static void 1984 em_identify_hardware(if_ctx_t ctx) 1985 { 1986 device_t dev = iflib_get_dev(ctx); 1987 struct e1000_softc *sc = iflib_get_softc(ctx); 1988 1989 /* Make sure our PCI config space has the necessary stuff set */ 1990 sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2); 1991 1992 /* Save off the information about this board */ 1993 sc->hw.vendor_id = pci_get_vendor(dev); 1994 sc->hw.device_id = pci_get_device(dev); 1995 sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1); 1996 sc->hw.subsystem_vendor_id = 1997 pci_read_config(dev, PCIR_SUBVEND_0, 2); 1998 sc->hw.subsystem_device_id = 1999 pci_read_config(dev, PCIR_SUBDEV_0, 2); 2000 2001 /* Do Shared Code Init and Setup */ 2002 if (e1000_set_mac_type(&sc->hw)) { 2003 device_printf(dev, "Setup init failure\n"); 2004 return; 2005 } 2006 2007 /* Are we a VF device? */ 2008 if ((sc->hw.mac.type == e1000_vfadapt) || 2009 (sc->hw.mac.type == e1000_vfadapt_i350)) 2010 sc->vf_ifp = 1; 2011 else 2012 sc->vf_ifp = 0; 2013 } 2014 2015 static int 2016 em_allocate_pci_resources(if_ctx_t ctx) 2017 { 2018 struct e1000_softc *sc = iflib_get_softc(ctx); 2019 device_t dev = iflib_get_dev(ctx); 2020 int rid, val; 2021 2022 rid = PCIR_BAR(0); 2023 sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 2024 &rid, RF_ACTIVE); 2025 if (sc->memory == NULL) { 2026 device_printf(dev, "Unable to allocate bus resource: memory\n"); 2027 return (ENXIO); 2028 } 2029 sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory); 2030 sc->osdep.mem_bus_space_handle = 2031 rman_get_bushandle(sc->memory); 2032 sc->hw.hw_addr = (u8 *)&sc->osdep.mem_bus_space_handle; 2033 2034 /* Only older adapters use IO mapping */ 2035 if (sc->hw.mac.type < em_mac_min && sc->hw.mac.type > e1000_82543) { 2036 /* Figure our where our IO BAR is ? */ 2037 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) { 2038 val = pci_read_config(dev, rid, 4); 2039 if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) { 2040 break; 2041 } 2042 rid += 4; 2043 /* check for 64bit BAR */ 2044 if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT) 2045 rid += 4; 2046 } 2047 if (rid >= PCIR_CIS) { 2048 device_printf(dev, "Unable to locate IO BAR\n"); 2049 return (ENXIO); 2050 } 2051 sc->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT, 2052 &rid, RF_ACTIVE); 2053 if (sc->ioport == NULL) { 2054 device_printf(dev, "Unable to allocate bus resource: " 2055 "ioport\n"); 2056 return (ENXIO); 2057 } 2058 sc->hw.io_base = 0; 2059 sc->osdep.io_bus_space_tag = 2060 rman_get_bustag(sc->ioport); 2061 sc->osdep.io_bus_space_handle = 2062 rman_get_bushandle(sc->ioport); 2063 } 2064 2065 sc->hw.back = &sc->osdep; 2066 2067 return (0); 2068 } 2069 2070 /********************************************************************* 2071 * 2072 * Set up the MSI-X Interrupt handlers 2073 * 2074 **********************************************************************/ 2075 static int 2076 em_if_msix_intr_assign(if_ctx_t ctx, int msix) 2077 { 2078 struct e1000_softc *sc = iflib_get_softc(ctx); 2079 struct em_rx_queue *rx_que = sc->rx_queues; 2080 struct em_tx_queue *tx_que = sc->tx_queues; 2081 int error, rid, i, vector = 0, rx_vectors; 2082 char buf[16]; 2083 2084 /* First set up ring resources */ 2085 for (i = 0; i < sc->rx_num_queues; i++, rx_que++, vector++) { 2086 rid = vector + 1; 2087 snprintf(buf, sizeof(buf), "rxq%d", i); 2088 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf); 2089 if (error) { 2090 device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error); 2091 sc->rx_num_queues = i + 1; 2092 goto fail; 2093 } 2094 2095 rx_que->msix = vector; 2096 2097 /* 2098 * Set the bit to enable interrupt 2099 * in E1000_IMS -- bits 20 and 21 2100 * are for RX0 and RX1, note this has 2101 * NOTHING to do with the MSI-X vector 2102 */ 2103 if (sc->hw.mac.type == e1000_82574) { 2104 rx_que->eims = 1 << (20 + i); 2105 sc->ims |= rx_que->eims; 2106 sc->ivars |= (8 | rx_que->msix) << (i * 4); 2107 } else if (sc->hw.mac.type == e1000_82575) 2108 rx_que->eims = E1000_EICR_TX_QUEUE0 << vector; 2109 else 2110 rx_que->eims = 1 << vector; 2111 } 2112 rx_vectors = vector; 2113 2114 vector = 0; 2115 for (i = 0; i < sc->tx_num_queues; i++, tx_que++, vector++) { 2116 snprintf(buf, sizeof(buf), "txq%d", i); 2117 tx_que = &sc->tx_queues[i]; 2118 iflib_softirq_alloc_generic(ctx, 2119 &sc->rx_queues[i % sc->rx_num_queues].que_irq, 2120 IFLIB_INTR_TX, tx_que, tx_que->me, buf); 2121 2122 tx_que->msix = (vector % sc->rx_num_queues); 2123 2124 /* 2125 * Set the bit to enable interrupt 2126 * in E1000_IMS -- bits 22 and 23 2127 * are for TX0 and TX1, note this has 2128 * NOTHING to do with the MSI-X vector 2129 */ 2130 if (sc->hw.mac.type == e1000_82574) { 2131 tx_que->eims = 1 << (22 + i); 2132 sc->ims |= tx_que->eims; 2133 sc->ivars |= (8 | tx_que->msix) << (8 + (i * 4)); 2134 } else if (sc->hw.mac.type == e1000_82575) { 2135 tx_que->eims = E1000_EICR_TX_QUEUE0 << i; 2136 } else { 2137 tx_que->eims = 1 << i; 2138 } 2139 } 2140 2141 /* Link interrupt */ 2142 rid = rx_vectors + 1; 2143 error = iflib_irq_alloc_generic(ctx, &sc->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, sc, 0, "aq"); 2144 2145 if (error) { 2146 device_printf(iflib_get_dev(ctx), "Failed to register admin handler"); 2147 goto fail; 2148 } 2149 sc->linkvec = rx_vectors; 2150 if (sc->hw.mac.type < igb_mac_min) { 2151 sc->ivars |= (8 | rx_vectors) << 16; 2152 sc->ivars |= 0x80000000; 2153 /* Enable the "Other" interrupt type for link status change */ 2154 sc->ims |= E1000_IMS_OTHER; 2155 } 2156 2157 return (0); 2158 fail: 2159 iflib_irq_free(ctx, &sc->irq); 2160 rx_que = sc->rx_queues; 2161 for (int i = 0; i < sc->rx_num_queues; i++, rx_que++) 2162 iflib_irq_free(ctx, &rx_que->que_irq); 2163 return (error); 2164 } 2165 2166 static void 2167 igb_configure_queues(struct e1000_softc *sc) 2168 { 2169 struct e1000_hw *hw = &sc->hw; 2170 struct em_rx_queue *rx_que; 2171 struct em_tx_queue *tx_que; 2172 u32 tmp, ivar = 0, newitr = 0; 2173 2174 /* First turn on RSS capability */ 2175 if (hw->mac.type != e1000_82575) 2176 E1000_WRITE_REG(hw, E1000_GPIE, 2177 E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME | 2178 E1000_GPIE_PBA | E1000_GPIE_NSICR); 2179 2180 /* Turn on MSI-X */ 2181 switch (hw->mac.type) { 2182 case e1000_82580: 2183 case e1000_i350: 2184 case e1000_i354: 2185 case e1000_i210: 2186 case e1000_i211: 2187 case e1000_vfadapt: 2188 case e1000_vfadapt_i350: 2189 /* RX entries */ 2190 for (int i = 0; i < sc->rx_num_queues; i++) { 2191 u32 index = i >> 1; 2192 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2193 rx_que = &sc->rx_queues[i]; 2194 if (i & 1) { 2195 ivar &= 0xFF00FFFF; 2196 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16; 2197 } else { 2198 ivar &= 0xFFFFFF00; 2199 ivar |= rx_que->msix | E1000_IVAR_VALID; 2200 } 2201 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2202 } 2203 /* TX entries */ 2204 for (int i = 0; i < sc->tx_num_queues; i++) { 2205 u32 index = i >> 1; 2206 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2207 tx_que = &sc->tx_queues[i]; 2208 if (i & 1) { 2209 ivar &= 0x00FFFFFF; 2210 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24; 2211 } else { 2212 ivar &= 0xFFFF00FF; 2213 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8; 2214 } 2215 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2216 sc->que_mask |= tx_que->eims; 2217 } 2218 2219 /* And for the link interrupt */ 2220 ivar = (sc->linkvec | E1000_IVAR_VALID) << 8; 2221 sc->link_mask = 1 << sc->linkvec; 2222 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); 2223 break; 2224 case e1000_82576: 2225 /* RX entries */ 2226 for (int i = 0; i < sc->rx_num_queues; i++) { 2227 u32 index = i & 0x7; /* Each IVAR has two entries */ 2228 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2229 rx_que = &sc->rx_queues[i]; 2230 if (i < 8) { 2231 ivar &= 0xFFFFFF00; 2232 ivar |= rx_que->msix | E1000_IVAR_VALID; 2233 } else { 2234 ivar &= 0xFF00FFFF; 2235 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16; 2236 } 2237 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2238 sc->que_mask |= rx_que->eims; 2239 } 2240 /* TX entries */ 2241 for (int i = 0; i < sc->tx_num_queues; i++) { 2242 u32 index = i & 0x7; /* Each IVAR has two entries */ 2243 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2244 tx_que = &sc->tx_queues[i]; 2245 if (i < 8) { 2246 ivar &= 0xFFFF00FF; 2247 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8; 2248 } else { 2249 ivar &= 0x00FFFFFF; 2250 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24; 2251 } 2252 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2253 sc->que_mask |= tx_que->eims; 2254 } 2255 2256 /* And for the link interrupt */ 2257 ivar = (sc->linkvec | E1000_IVAR_VALID) << 8; 2258 sc->link_mask = 1 << sc->linkvec; 2259 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); 2260 break; 2261 2262 case e1000_82575: 2263 /* enable MSI-X support*/ 2264 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT); 2265 tmp |= E1000_CTRL_EXT_PBA_CLR; 2266 /* Auto-Mask interrupts upon ICR read. */ 2267 tmp |= E1000_CTRL_EXT_EIAME; 2268 tmp |= E1000_CTRL_EXT_IRCA; 2269 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp); 2270 2271 /* Queues */ 2272 for (int i = 0; i < sc->rx_num_queues; i++) { 2273 rx_que = &sc->rx_queues[i]; 2274 tmp = E1000_EICR_RX_QUEUE0 << i; 2275 tmp |= E1000_EICR_TX_QUEUE0 << i; 2276 rx_que->eims = tmp; 2277 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 2278 i, rx_que->eims); 2279 sc->que_mask |= rx_que->eims; 2280 } 2281 2282 /* Link */ 2283 E1000_WRITE_REG(hw, E1000_MSIXBM(sc->linkvec), 2284 E1000_EIMS_OTHER); 2285 sc->link_mask |= E1000_EIMS_OTHER; 2286 default: 2287 break; 2288 } 2289 2290 /* Set the starting interrupt rate */ 2291 if (em_max_interrupt_rate > 0) 2292 newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC; 2293 2294 if (hw->mac.type == e1000_82575) 2295 newitr |= newitr << 16; 2296 else 2297 newitr |= E1000_EITR_CNT_IGNR; 2298 2299 for (int i = 0; i < sc->rx_num_queues; i++) { 2300 rx_que = &sc->rx_queues[i]; 2301 E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr); 2302 } 2303 2304 return; 2305 } 2306 2307 static void 2308 em_free_pci_resources(if_ctx_t ctx) 2309 { 2310 struct e1000_softc *sc = iflib_get_softc(ctx); 2311 struct em_rx_queue *que = sc->rx_queues; 2312 device_t dev = iflib_get_dev(ctx); 2313 2314 /* Release all MSI-X queue resources */ 2315 if (sc->intr_type == IFLIB_INTR_MSIX) 2316 iflib_irq_free(ctx, &sc->irq); 2317 2318 if (que != NULL) { 2319 for (int i = 0; i < sc->rx_num_queues; i++, que++) { 2320 iflib_irq_free(ctx, &que->que_irq); 2321 } 2322 } 2323 2324 if (sc->memory != NULL) { 2325 bus_release_resource(dev, SYS_RES_MEMORY, 2326 rman_get_rid(sc->memory), sc->memory); 2327 sc->memory = NULL; 2328 } 2329 2330 if (sc->flash != NULL) { 2331 bus_release_resource(dev, SYS_RES_MEMORY, 2332 rman_get_rid(sc->flash), sc->flash); 2333 sc->flash = NULL; 2334 } 2335 2336 if (sc->ioport != NULL) { 2337 bus_release_resource(dev, SYS_RES_IOPORT, 2338 rman_get_rid(sc->ioport), sc->ioport); 2339 sc->ioport = NULL; 2340 } 2341 } 2342 2343 /* Set up MSI or MSI-X */ 2344 static int 2345 em_setup_msix(if_ctx_t ctx) 2346 { 2347 struct e1000_softc *sc = iflib_get_softc(ctx); 2348 2349 if (sc->hw.mac.type == e1000_82574) { 2350 em_enable_vectors_82574(ctx); 2351 } 2352 return (0); 2353 } 2354 2355 /********************************************************************* 2356 * 2357 * Workaround for SmartSpeed on 82541 and 82547 controllers 2358 * 2359 **********************************************************************/ 2360 static void 2361 lem_smartspeed(struct e1000_softc *sc) 2362 { 2363 u16 phy_tmp; 2364 2365 if (sc->link_active || (sc->hw.phy.type != e1000_phy_igp) || 2366 sc->hw.mac.autoneg == 0 || 2367 (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0) 2368 return; 2369 2370 if (sc->smartspeed == 0) { 2371 /* If Master/Slave config fault is asserted twice, 2372 * we assume back-to-back */ 2373 e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp); 2374 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT)) 2375 return; 2376 e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp); 2377 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) { 2378 e1000_read_phy_reg(&sc->hw, 2379 PHY_1000T_CTRL, &phy_tmp); 2380 if(phy_tmp & CR_1000T_MS_ENABLE) { 2381 phy_tmp &= ~CR_1000T_MS_ENABLE; 2382 e1000_write_phy_reg(&sc->hw, 2383 PHY_1000T_CTRL, phy_tmp); 2384 sc->smartspeed++; 2385 if(sc->hw.mac.autoneg && 2386 !e1000_copper_link_autoneg(&sc->hw) && 2387 !e1000_read_phy_reg(&sc->hw, 2388 PHY_CONTROL, &phy_tmp)) { 2389 phy_tmp |= (MII_CR_AUTO_NEG_EN | 2390 MII_CR_RESTART_AUTO_NEG); 2391 e1000_write_phy_reg(&sc->hw, 2392 PHY_CONTROL, phy_tmp); 2393 } 2394 } 2395 } 2396 return; 2397 } else if(sc->smartspeed == EM_SMARTSPEED_DOWNSHIFT) { 2398 /* If still no link, perhaps using 2/3 pair cable */ 2399 e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp); 2400 phy_tmp |= CR_1000T_MS_ENABLE; 2401 e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp); 2402 if(sc->hw.mac.autoneg && 2403 !e1000_copper_link_autoneg(&sc->hw) && 2404 !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) { 2405 phy_tmp |= (MII_CR_AUTO_NEG_EN | 2406 MII_CR_RESTART_AUTO_NEG); 2407 e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp); 2408 } 2409 } 2410 /* Restart process after EM_SMARTSPEED_MAX iterations */ 2411 if(sc->smartspeed++ == EM_SMARTSPEED_MAX) 2412 sc->smartspeed = 0; 2413 } 2414 2415 /********************************************************************* 2416 * 2417 * Initialize the DMA Coalescing feature 2418 * 2419 **********************************************************************/ 2420 static void 2421 igb_init_dmac(struct e1000_softc *sc, u32 pba) 2422 { 2423 device_t dev = sc->dev; 2424 struct e1000_hw *hw = &sc->hw; 2425 u32 dmac, reg = ~E1000_DMACR_DMAC_EN; 2426 u16 hwm; 2427 u16 max_frame_size; 2428 2429 if (hw->mac.type == e1000_i211) 2430 return; 2431 2432 max_frame_size = sc->shared->isc_max_frame_size; 2433 if (hw->mac.type > e1000_82580) { 2434 2435 if (sc->dmac == 0) { /* Disabling it */ 2436 E1000_WRITE_REG(hw, E1000_DMACR, reg); 2437 return; 2438 } else 2439 device_printf(dev, "DMA Coalescing enabled\n"); 2440 2441 /* Set starting threshold */ 2442 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0); 2443 2444 hwm = 64 * pba - max_frame_size / 16; 2445 if (hwm < 64 * (pba - 6)) 2446 hwm = 64 * (pba - 6); 2447 reg = E1000_READ_REG(hw, E1000_FCRTC); 2448 reg &= ~E1000_FCRTC_RTH_COAL_MASK; 2449 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) 2450 & E1000_FCRTC_RTH_COAL_MASK); 2451 E1000_WRITE_REG(hw, E1000_FCRTC, reg); 2452 2453 2454 dmac = pba - max_frame_size / 512; 2455 if (dmac < pba - 10) 2456 dmac = pba - 10; 2457 reg = E1000_READ_REG(hw, E1000_DMACR); 2458 reg &= ~E1000_DMACR_DMACTHR_MASK; 2459 reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT) 2460 & E1000_DMACR_DMACTHR_MASK); 2461 2462 /* transition to L0x or L1 if available..*/ 2463 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); 2464 2465 /* Check if status is 2.5Gb backplane connection 2466 * before configuration of watchdog timer, which is 2467 * in msec values in 12.8usec intervals 2468 * watchdog timer= msec values in 32usec intervals 2469 * for non 2.5Gb connection 2470 */ 2471 if (hw->mac.type == e1000_i354) { 2472 int status = E1000_READ_REG(hw, E1000_STATUS); 2473 if ((status & E1000_STATUS_2P5_SKU) && 2474 (!(status & E1000_STATUS_2P5_SKU_OVER))) 2475 reg |= ((sc->dmac * 5) >> 6); 2476 else 2477 reg |= (sc->dmac >> 5); 2478 } else { 2479 reg |= (sc->dmac >> 5); 2480 } 2481 2482 E1000_WRITE_REG(hw, E1000_DMACR, reg); 2483 2484 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0); 2485 2486 /* Set the interval before transition */ 2487 reg = E1000_READ_REG(hw, E1000_DMCTLX); 2488 if (hw->mac.type == e1000_i350) 2489 reg |= IGB_DMCTLX_DCFLUSH_DIS; 2490 /* 2491 ** in 2.5Gb connection, TTLX unit is 0.4 usec 2492 ** which is 0x4*2 = 0xA. But delay is still 4 usec 2493 */ 2494 if (hw->mac.type == e1000_i354) { 2495 int status = E1000_READ_REG(hw, E1000_STATUS); 2496 if ((status & E1000_STATUS_2P5_SKU) && 2497 (!(status & E1000_STATUS_2P5_SKU_OVER))) 2498 reg |= 0xA; 2499 else 2500 reg |= 0x4; 2501 } else { 2502 reg |= 0x4; 2503 } 2504 2505 E1000_WRITE_REG(hw, E1000_DMCTLX, reg); 2506 2507 /* free space in tx packet buffer to wake from DMA coal */ 2508 E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE - 2509 (2 * max_frame_size)) >> 6); 2510 2511 /* make low power state decision controlled by DMA coal */ 2512 reg = E1000_READ_REG(hw, E1000_PCIEMISC); 2513 reg &= ~E1000_PCIEMISC_LX_DECISION; 2514 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg); 2515 2516 } else if (hw->mac.type == e1000_82580) { 2517 u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC); 2518 E1000_WRITE_REG(hw, E1000_PCIEMISC, 2519 reg & ~E1000_PCIEMISC_LX_DECISION); 2520 E1000_WRITE_REG(hw, E1000_DMACR, 0); 2521 } 2522 } 2523 /********************************************************************* 2524 * The 3 following flush routines are used as a workaround in the 2525 * I219 client parts and only for them. 2526 * 2527 * em_flush_tx_ring - remove all descriptors from the tx_ring 2528 * 2529 * We want to clear all pending descriptors from the TX ring. 2530 * zeroing happens when the HW reads the regs. We assign the ring itself as 2531 * the data of the next descriptor. We don't care about the data we are about 2532 * to reset the HW. 2533 **********************************************************************/ 2534 static void 2535 em_flush_tx_ring(struct e1000_softc *sc) 2536 { 2537 struct e1000_hw *hw = &sc->hw; 2538 struct tx_ring *txr = &sc->tx_queues->txr; 2539 struct e1000_tx_desc *txd; 2540 u32 tctl, txd_lower = E1000_TXD_CMD_IFCS; 2541 u16 size = 512; 2542 2543 tctl = E1000_READ_REG(hw, E1000_TCTL); 2544 E1000_WRITE_REG(hw, E1000_TCTL, tctl | E1000_TCTL_EN); 2545 2546 txd = &txr->tx_base[txr->tx_cidx_processed]; 2547 2548 /* Just use the ring as a dummy buffer addr */ 2549 txd->buffer_addr = txr->tx_paddr; 2550 txd->lower.data = htole32(txd_lower | size); 2551 txd->upper.data = 0; 2552 2553 /* flush descriptors to memory before notifying the HW */ 2554 wmb(); 2555 2556 E1000_WRITE_REG(hw, E1000_TDT(0), txr->tx_cidx_processed); 2557 mb(); 2558 usec_delay(250); 2559 } 2560 2561 /********************************************************************* 2562 * em_flush_rx_ring - remove all descriptors from the rx_ring 2563 * 2564 * Mark all descriptors in the RX ring as consumed and disable the rx ring 2565 **********************************************************************/ 2566 static void 2567 em_flush_rx_ring(struct e1000_softc *sc) 2568 { 2569 struct e1000_hw *hw = &sc->hw; 2570 u32 rctl, rxdctl; 2571 2572 rctl = E1000_READ_REG(hw, E1000_RCTL); 2573 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); 2574 E1000_WRITE_FLUSH(hw); 2575 usec_delay(150); 2576 2577 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0)); 2578 /* zero the lower 14 bits (prefetch and host thresholds) */ 2579 rxdctl &= 0xffffc000; 2580 /* 2581 * update thresholds: prefetch threshold to 31, host threshold to 1 2582 * and make sure the granularity is "descriptors" and not "cache lines" 2583 */ 2584 rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC); 2585 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl); 2586 2587 /* momentarily enable the RX ring for the changes to take effect */ 2588 E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN); 2589 E1000_WRITE_FLUSH(hw); 2590 usec_delay(150); 2591 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); 2592 } 2593 2594 /********************************************************************* 2595 * em_flush_desc_rings - remove all descriptors from the descriptor rings 2596 * 2597 * In I219, the descriptor rings must be emptied before resetting the HW 2598 * or before changing the device state to D3 during runtime (runtime PM). 2599 * 2600 * Failure to do this will cause the HW to enter a unit hang state which can 2601 * only be released by PCI reset on the device 2602 * 2603 **********************************************************************/ 2604 static void 2605 em_flush_desc_rings(struct e1000_softc *sc) 2606 { 2607 struct e1000_hw *hw = &sc->hw; 2608 device_t dev = sc->dev; 2609 u16 hang_state; 2610 u32 fext_nvm11, tdlen; 2611 2612 /* First, disable MULR fix in FEXTNVM11 */ 2613 fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11); 2614 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; 2615 E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11); 2616 2617 /* do nothing if we're not in faulty state, or if the queue is empty */ 2618 tdlen = E1000_READ_REG(hw, E1000_TDLEN(0)); 2619 hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2); 2620 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen) 2621 return; 2622 em_flush_tx_ring(sc); 2623 2624 /* recheck, maybe the fault is caused by the rx ring */ 2625 hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2); 2626 if (hang_state & FLUSH_DESC_REQUIRED) 2627 em_flush_rx_ring(sc); 2628 } 2629 2630 2631 /********************************************************************* 2632 * 2633 * Initialize the hardware to a configuration as specified by the 2634 * sc structure. 2635 * 2636 **********************************************************************/ 2637 static void 2638 em_reset(if_ctx_t ctx) 2639 { 2640 device_t dev = iflib_get_dev(ctx); 2641 struct e1000_softc *sc = iflib_get_softc(ctx); 2642 if_t ifp = iflib_get_ifp(ctx); 2643 struct e1000_hw *hw = &sc->hw; 2644 u32 rx_buffer_size; 2645 u32 pba; 2646 2647 INIT_DEBUGOUT("em_reset: begin"); 2648 /* Let the firmware know the OS is in control */ 2649 em_get_hw_control(sc); 2650 2651 /* Set up smart power down as default off on newer adapters. */ 2652 if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 || 2653 hw->mac.type == e1000_82572)) { 2654 u16 phy_tmp = 0; 2655 2656 /* Speed up time to link by disabling smart power down. */ 2657 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp); 2658 phy_tmp &= ~IGP02E1000_PM_SPD; 2659 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp); 2660 } 2661 2662 /* 2663 * Packet Buffer Allocation (PBA) 2664 * Writing PBA sets the receive portion of the buffer 2665 * the remainder is used for the transmit buffer. 2666 */ 2667 switch (hw->mac.type) { 2668 /* 82547: Total Packet Buffer is 40K */ 2669 case e1000_82547: 2670 case e1000_82547_rev_2: 2671 if (hw->mac.max_frame_size > 8192) 2672 pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */ 2673 else 2674 pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */ 2675 break; 2676 /* 82571/82572/80003es2lan: Total Packet Buffer is 48K */ 2677 case e1000_82571: 2678 case e1000_82572: 2679 case e1000_80003es2lan: 2680 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */ 2681 break; 2682 /* 82573: Total Packet Buffer is 32K */ 2683 case e1000_82573: 2684 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */ 2685 break; 2686 case e1000_82574: 2687 case e1000_82583: 2688 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */ 2689 break; 2690 case e1000_ich8lan: 2691 pba = E1000_PBA_8K; 2692 break; 2693 case e1000_ich9lan: 2694 case e1000_ich10lan: 2695 /* Boost Receive side for jumbo frames */ 2696 if (hw->mac.max_frame_size > 4096) 2697 pba = E1000_PBA_14K; 2698 else 2699 pba = E1000_PBA_10K; 2700 break; 2701 case e1000_pchlan: 2702 case e1000_pch2lan: 2703 case e1000_pch_lpt: 2704 case e1000_pch_spt: 2705 case e1000_pch_cnp: 2706 case e1000_pch_tgp: 2707 case e1000_pch_adp: 2708 case e1000_pch_mtp: 2709 case e1000_pch_ptp: 2710 pba = E1000_PBA_26K; 2711 break; 2712 case e1000_82575: 2713 pba = E1000_PBA_32K; 2714 break; 2715 case e1000_82576: 2716 case e1000_vfadapt: 2717 pba = E1000_READ_REG(hw, E1000_RXPBS); 2718 pba &= E1000_RXPBS_SIZE_MASK_82576; 2719 break; 2720 case e1000_82580: 2721 case e1000_i350: 2722 case e1000_i354: 2723 case e1000_vfadapt_i350: 2724 pba = E1000_READ_REG(hw, E1000_RXPBS); 2725 pba = e1000_rxpbs_adjust_82580(pba); 2726 break; 2727 case e1000_i210: 2728 case e1000_i211: 2729 pba = E1000_PBA_34K; 2730 break; 2731 default: 2732 /* Remaining devices assumed to have a Packet Buffer of 64K. */ 2733 if (hw->mac.max_frame_size > 8192) 2734 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */ 2735 else 2736 pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */ 2737 } 2738 2739 /* Special needs in case of Jumbo frames */ 2740 if ((hw->mac.type == e1000_82575) && (if_getmtu(ifp) > ETHERMTU)) { 2741 u32 tx_space, min_tx, min_rx; 2742 pba = E1000_READ_REG(hw, E1000_PBA); 2743 tx_space = pba >> 16; 2744 pba &= 0xffff; 2745 min_tx = (hw->mac.max_frame_size + 2746 sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2; 2747 min_tx = roundup2(min_tx, 1024); 2748 min_tx >>= 10; 2749 min_rx = hw->mac.max_frame_size; 2750 min_rx = roundup2(min_rx, 1024); 2751 min_rx >>= 10; 2752 if (tx_space < min_tx && 2753 ((min_tx - tx_space) < pba)) { 2754 pba = pba - (min_tx - tx_space); 2755 /* 2756 * if short on rx space, rx wins 2757 * and must trump tx adjustment 2758 */ 2759 if (pba < min_rx) 2760 pba = min_rx; 2761 } 2762 E1000_WRITE_REG(hw, E1000_PBA, pba); 2763 } 2764 2765 if (hw->mac.type < igb_mac_min) 2766 E1000_WRITE_REG(hw, E1000_PBA, pba); 2767 2768 INIT_DEBUGOUT1("em_reset: pba=%dK",pba); 2769 2770 /* 2771 * These parameters control the automatic generation (Tx) and 2772 * response (Rx) to Ethernet PAUSE frames. 2773 * - High water mark should allow for at least two frames to be 2774 * received after sending an XOFF. 2775 * - Low water mark works best when it is very near the high water mark. 2776 * This allows the receiver to restart by sending XON when it has 2777 * drained a bit. Here we use an arbitrary value of 1500 which will 2778 * restart after one full frame is pulled from the buffer. There 2779 * could be several smaller frames in the buffer and if so they will 2780 * not trigger the XON until their total number reduces the buffer 2781 * by 1500. 2782 * - The pause time is fairly large at 1000 x 512ns = 512 usec. 2783 */ 2784 rx_buffer_size = (pba & 0xffff) << 10; 2785 hw->fc.high_water = rx_buffer_size - 2786 roundup2(hw->mac.max_frame_size, 1024); 2787 hw->fc.low_water = hw->fc.high_water - 1500; 2788 2789 if (sc->fc) /* locally set flow control value? */ 2790 hw->fc.requested_mode = sc->fc; 2791 else 2792 hw->fc.requested_mode = e1000_fc_full; 2793 2794 if (hw->mac.type == e1000_80003es2lan) 2795 hw->fc.pause_time = 0xFFFF; 2796 else 2797 hw->fc.pause_time = EM_FC_PAUSE_TIME; 2798 2799 hw->fc.send_xon = true; 2800 2801 /* Device specific overrides/settings */ 2802 switch (hw->mac.type) { 2803 case e1000_pchlan: 2804 /* Workaround: no TX flow ctrl for PCH */ 2805 hw->fc.requested_mode = e1000_fc_rx_pause; 2806 hw->fc.pause_time = 0xFFFF; /* override */ 2807 if (if_getmtu(ifp) > ETHERMTU) { 2808 hw->fc.high_water = 0x3500; 2809 hw->fc.low_water = 0x1500; 2810 } else { 2811 hw->fc.high_water = 0x5000; 2812 hw->fc.low_water = 0x3000; 2813 } 2814 hw->fc.refresh_time = 0x1000; 2815 break; 2816 case e1000_pch2lan: 2817 case e1000_pch_lpt: 2818 case e1000_pch_spt: 2819 case e1000_pch_cnp: 2820 case e1000_pch_tgp: 2821 case e1000_pch_adp: 2822 case e1000_pch_mtp: 2823 case e1000_pch_ptp: 2824 hw->fc.high_water = 0x5C20; 2825 hw->fc.low_water = 0x5048; 2826 hw->fc.pause_time = 0x0650; 2827 hw->fc.refresh_time = 0x0400; 2828 /* Jumbos need adjusted PBA */ 2829 if (if_getmtu(ifp) > ETHERMTU) 2830 E1000_WRITE_REG(hw, E1000_PBA, 12); 2831 else 2832 E1000_WRITE_REG(hw, E1000_PBA, 26); 2833 break; 2834 case e1000_82575: 2835 case e1000_82576: 2836 /* 8-byte granularity */ 2837 hw->fc.low_water = hw->fc.high_water - 8; 2838 break; 2839 case e1000_82580: 2840 case e1000_i350: 2841 case e1000_i354: 2842 case e1000_i210: 2843 case e1000_i211: 2844 case e1000_vfadapt: 2845 case e1000_vfadapt_i350: 2846 /* 16-byte granularity */ 2847 hw->fc.low_water = hw->fc.high_water - 16; 2848 break; 2849 case e1000_ich9lan: 2850 case e1000_ich10lan: 2851 if (if_getmtu(ifp) > ETHERMTU) { 2852 hw->fc.high_water = 0x2800; 2853 hw->fc.low_water = hw->fc.high_water - 8; 2854 break; 2855 } 2856 /* FALLTHROUGH */ 2857 default: 2858 if (hw->mac.type == e1000_80003es2lan) 2859 hw->fc.pause_time = 0xFFFF; 2860 break; 2861 } 2862 2863 /* I219 needs some special flushing to avoid hangs */ 2864 if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min) 2865 em_flush_desc_rings(sc); 2866 2867 /* Issue a global reset */ 2868 e1000_reset_hw(hw); 2869 if (hw->mac.type >= igb_mac_min) { 2870 E1000_WRITE_REG(hw, E1000_WUC, 0); 2871 } else { 2872 E1000_WRITE_REG(hw, E1000_WUFC, 0); 2873 em_disable_aspm(sc); 2874 } 2875 if (sc->flags & IGB_MEDIA_RESET) { 2876 e1000_setup_init_funcs(hw, true); 2877 e1000_get_bus_info(hw); 2878 sc->flags &= ~IGB_MEDIA_RESET; 2879 } 2880 /* and a re-init */ 2881 if (e1000_init_hw(hw) < 0) { 2882 device_printf(dev, "Hardware Initialization Failed\n"); 2883 return; 2884 } 2885 if (hw->mac.type >= igb_mac_min) 2886 igb_init_dmac(sc, pba); 2887 2888 E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN); 2889 e1000_get_phy_info(hw); 2890 e1000_check_for_link(hw); 2891 } 2892 2893 /* 2894 * Initialise the RSS mapping for NICs that support multiple transmit/ 2895 * receive rings. 2896 */ 2897 2898 #define RSSKEYLEN 10 2899 static void 2900 em_initialize_rss_mapping(struct e1000_softc *sc) 2901 { 2902 uint8_t rss_key[4 * RSSKEYLEN]; 2903 uint32_t reta = 0; 2904 struct e1000_hw *hw = &sc->hw; 2905 int i; 2906 2907 /* 2908 * Configure RSS key 2909 */ 2910 arc4rand(rss_key, sizeof(rss_key), 0); 2911 for (i = 0; i < RSSKEYLEN; ++i) { 2912 uint32_t rssrk = 0; 2913 2914 rssrk = EM_RSSRK_VAL(rss_key, i); 2915 E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk); 2916 } 2917 2918 /* 2919 * Configure RSS redirect table in following fashion: 2920 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)] 2921 */ 2922 for (i = 0; i < sizeof(reta); ++i) { 2923 uint32_t q; 2924 2925 q = (i % sc->rx_num_queues) << 7; 2926 reta |= q << (8 * i); 2927 } 2928 2929 for (i = 0; i < 32; ++i) 2930 E1000_WRITE_REG(hw, E1000_RETA(i), reta); 2931 2932 E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q | 2933 E1000_MRQC_RSS_FIELD_IPV4_TCP | 2934 E1000_MRQC_RSS_FIELD_IPV4 | 2935 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX | 2936 E1000_MRQC_RSS_FIELD_IPV6_EX | 2937 E1000_MRQC_RSS_FIELD_IPV6); 2938 } 2939 2940 static void 2941 igb_initialize_rss_mapping(struct e1000_softc *sc) 2942 { 2943 struct e1000_hw *hw = &sc->hw; 2944 int i; 2945 int queue_id; 2946 u32 reta; 2947 u32 rss_key[10], mrqc, shift = 0; 2948 2949 /* XXX? */ 2950 if (hw->mac.type == e1000_82575) 2951 shift = 6; 2952 2953 /* 2954 * The redirection table controls which destination 2955 * queue each bucket redirects traffic to. 2956 * Each DWORD represents four queues, with the LSB 2957 * being the first queue in the DWORD. 2958 * 2959 * This just allocates buckets to queues using round-robin 2960 * allocation. 2961 * 2962 * NOTE: It Just Happens to line up with the default 2963 * RSS allocation method. 2964 */ 2965 2966 /* Warning FM follows */ 2967 reta = 0; 2968 for (i = 0; i < 128; i++) { 2969 #ifdef RSS 2970 queue_id = rss_get_indirection_to_bucket(i); 2971 /* 2972 * If we have more queues than buckets, we'll 2973 * end up mapping buckets to a subset of the 2974 * queues. 2975 * 2976 * If we have more buckets than queues, we'll 2977 * end up instead assigning multiple buckets 2978 * to queues. 2979 * 2980 * Both are suboptimal, but we need to handle 2981 * the case so we don't go out of bounds 2982 * indexing arrays and such. 2983 */ 2984 queue_id = queue_id % sc->rx_num_queues; 2985 #else 2986 queue_id = (i % sc->rx_num_queues); 2987 #endif 2988 /* Adjust if required */ 2989 queue_id = queue_id << shift; 2990 2991 /* 2992 * The low 8 bits are for hash value (n+0); 2993 * The next 8 bits are for hash value (n+1), etc. 2994 */ 2995 reta = reta >> 8; 2996 reta = reta | ( ((uint32_t) queue_id) << 24); 2997 if ((i & 3) == 3) { 2998 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta); 2999 reta = 0; 3000 } 3001 } 3002 3003 /* Now fill in hash table */ 3004 3005 /* 3006 * MRQC: Multiple Receive Queues Command 3007 * Set queuing to RSS control, number depends on the device. 3008 */ 3009 mrqc = E1000_MRQC_ENABLE_RSS_MQ; 3010 3011 #ifdef RSS 3012 /* XXX ew typecasting */ 3013 rss_getkey((uint8_t *) &rss_key); 3014 #else 3015 arc4rand(&rss_key, sizeof(rss_key), 0); 3016 #endif 3017 for (i = 0; i < 10; i++) 3018 E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]); 3019 3020 /* 3021 * Configure the RSS fields to hash upon. 3022 */ 3023 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 | 3024 E1000_MRQC_RSS_FIELD_IPV4_TCP); 3025 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 | 3026 E1000_MRQC_RSS_FIELD_IPV6_TCP); 3027 mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP | 3028 E1000_MRQC_RSS_FIELD_IPV6_UDP); 3029 mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX | 3030 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); 3031 3032 E1000_WRITE_REG(hw, E1000_MRQC, mrqc); 3033 } 3034 3035 /********************************************************************* 3036 * 3037 * Setup networking device structure and register interface media. 3038 * 3039 **********************************************************************/ 3040 static int 3041 em_setup_interface(if_ctx_t ctx) 3042 { 3043 if_t ifp = iflib_get_ifp(ctx); 3044 struct e1000_softc *sc = iflib_get_softc(ctx); 3045 if_softc_ctx_t scctx = sc->shared; 3046 3047 INIT_DEBUGOUT("em_setup_interface: begin"); 3048 3049 /* Single Queue */ 3050 if (sc->tx_num_queues == 1) { 3051 if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1); 3052 if_setsendqready(ifp); 3053 } 3054 3055 /* 3056 * Specify the media types supported by this adapter and register 3057 * callbacks to update media and link information 3058 */ 3059 if (sc->hw.phy.media_type == e1000_media_type_fiber || 3060 sc->hw.phy.media_type == e1000_media_type_internal_serdes) { 3061 u_char fiber_type = IFM_1000_SX; /* default type */ 3062 3063 if (sc->hw.mac.type == e1000_82545) 3064 fiber_type = IFM_1000_LX; 3065 ifmedia_add(sc->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL); 3066 ifmedia_add(sc->media, IFM_ETHER | fiber_type, 0, NULL); 3067 } else { 3068 ifmedia_add(sc->media, IFM_ETHER | IFM_10_T, 0, NULL); 3069 ifmedia_add(sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL); 3070 ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX, 0, NULL); 3071 ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); 3072 if (sc->hw.phy.type != e1000_phy_ife) { 3073 ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); 3074 ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T, 0, NULL); 3075 } 3076 } 3077 ifmedia_add(sc->media, IFM_ETHER | IFM_AUTO, 0, NULL); 3078 ifmedia_set(sc->media, IFM_ETHER | IFM_AUTO); 3079 return (0); 3080 } 3081 3082 static int 3083 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets) 3084 { 3085 struct e1000_softc *sc = iflib_get_softc(ctx); 3086 if_softc_ctx_t scctx = sc->shared; 3087 int error = E1000_SUCCESS; 3088 struct em_tx_queue *que; 3089 int i, j; 3090 3091 MPASS(sc->tx_num_queues > 0); 3092 MPASS(sc->tx_num_queues == ntxqsets); 3093 3094 /* First allocate the top level queue structs */ 3095 if (!(sc->tx_queues = 3096 (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) * 3097 sc->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { 3098 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n"); 3099 return(ENOMEM); 3100 } 3101 3102 for (i = 0, que = sc->tx_queues; i < sc->tx_num_queues; i++, que++) { 3103 /* Set up some basics */ 3104 3105 struct tx_ring *txr = &que->txr; 3106 txr->sc = que->sc = sc; 3107 que->me = txr->me = i; 3108 3109 /* Allocate report status array */ 3110 if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) { 3111 device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n"); 3112 error = ENOMEM; 3113 goto fail; 3114 } 3115 for (j = 0; j < scctx->isc_ntxd[0]; j++) 3116 txr->tx_rsq[j] = QIDX_INVALID; 3117 /* get the virtual and physical address of the hardware queues */ 3118 txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs]; 3119 txr->tx_paddr = paddrs[i*ntxqs]; 3120 } 3121 3122 if (bootverbose) 3123 device_printf(iflib_get_dev(ctx), 3124 "allocated for %d tx_queues\n", sc->tx_num_queues); 3125 return (0); 3126 fail: 3127 em_if_queues_free(ctx); 3128 return (error); 3129 } 3130 3131 static int 3132 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets) 3133 { 3134 struct e1000_softc *sc = iflib_get_softc(ctx); 3135 int error = E1000_SUCCESS; 3136 struct em_rx_queue *que; 3137 int i; 3138 3139 MPASS(sc->rx_num_queues > 0); 3140 MPASS(sc->rx_num_queues == nrxqsets); 3141 3142 /* First allocate the top level queue structs */ 3143 if (!(sc->rx_queues = 3144 (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) * 3145 sc->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { 3146 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n"); 3147 error = ENOMEM; 3148 goto fail; 3149 } 3150 3151 for (i = 0, que = sc->rx_queues; i < nrxqsets; i++, que++) { 3152 /* Set up some basics */ 3153 struct rx_ring *rxr = &que->rxr; 3154 rxr->sc = que->sc = sc; 3155 rxr->que = que; 3156 que->me = rxr->me = i; 3157 3158 /* get the virtual and physical address of the hardware queues */ 3159 rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs]; 3160 rxr->rx_paddr = paddrs[i*nrxqs]; 3161 } 3162 3163 if (bootverbose) 3164 device_printf(iflib_get_dev(ctx), 3165 "allocated for %d rx_queues\n", sc->rx_num_queues); 3166 3167 return (0); 3168 fail: 3169 em_if_queues_free(ctx); 3170 return (error); 3171 } 3172 3173 static void 3174 em_if_queues_free(if_ctx_t ctx) 3175 { 3176 struct e1000_softc *sc = iflib_get_softc(ctx); 3177 struct em_tx_queue *tx_que = sc->tx_queues; 3178 struct em_rx_queue *rx_que = sc->rx_queues; 3179 3180 if (tx_que != NULL) { 3181 for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) { 3182 struct tx_ring *txr = &tx_que->txr; 3183 if (txr->tx_rsq == NULL) 3184 break; 3185 3186 free(txr->tx_rsq, M_DEVBUF); 3187 txr->tx_rsq = NULL; 3188 } 3189 free(sc->tx_queues, M_DEVBUF); 3190 sc->tx_queues = NULL; 3191 } 3192 3193 if (rx_que != NULL) { 3194 free(sc->rx_queues, M_DEVBUF); 3195 sc->rx_queues = NULL; 3196 } 3197 } 3198 3199 /********************************************************************* 3200 * 3201 * Enable transmit unit. 3202 * 3203 **********************************************************************/ 3204 static void 3205 em_initialize_transmit_unit(if_ctx_t ctx) 3206 { 3207 struct e1000_softc *sc = iflib_get_softc(ctx); 3208 if_softc_ctx_t scctx = sc->shared; 3209 struct em_tx_queue *que; 3210 struct tx_ring *txr; 3211 struct e1000_hw *hw = &sc->hw; 3212 u32 tctl, txdctl = 0, tarc, tipg = 0; 3213 3214 INIT_DEBUGOUT("em_initialize_transmit_unit: begin"); 3215 3216 for (int i = 0; i < sc->tx_num_queues; i++, txr++) { 3217 u64 bus_addr; 3218 caddr_t offp, endp; 3219 3220 que = &sc->tx_queues[i]; 3221 txr = &que->txr; 3222 bus_addr = txr->tx_paddr; 3223 3224 /* Clear checksum offload context. */ 3225 offp = (caddr_t)&txr->csum_flags; 3226 endp = (caddr_t)(txr + 1); 3227 bzero(offp, endp - offp); 3228 3229 /* Base and Len of TX Ring */ 3230 E1000_WRITE_REG(hw, E1000_TDLEN(i), 3231 scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc)); 3232 E1000_WRITE_REG(hw, E1000_TDBAH(i), 3233 (u32)(bus_addr >> 32)); 3234 E1000_WRITE_REG(hw, E1000_TDBAL(i), 3235 (u32)bus_addr); 3236 /* Init the HEAD/TAIL indices */ 3237 E1000_WRITE_REG(hw, E1000_TDT(i), 0); 3238 E1000_WRITE_REG(hw, E1000_TDH(i), 0); 3239 3240 HW_DEBUGOUT2("Base = %x, Length = %x\n", 3241 E1000_READ_REG(hw, E1000_TDBAL(i)), 3242 E1000_READ_REG(hw, E1000_TDLEN(i))); 3243 3244 txdctl = 0; /* clear txdctl */ 3245 txdctl |= 0x1f; /* PTHRESH */ 3246 txdctl |= 1 << 8; /* HTHRESH */ 3247 txdctl |= 1 << 16;/* WTHRESH */ 3248 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */ 3249 txdctl |= E1000_TXDCTL_GRAN; 3250 txdctl |= 1 << 25; /* LWTHRESH */ 3251 3252 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl); 3253 } 3254 3255 /* Set the default values for the Tx Inter Packet Gap timer */ 3256 switch (hw->mac.type) { 3257 case e1000_80003es2lan: 3258 tipg = DEFAULT_82543_TIPG_IPGR1; 3259 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 << 3260 E1000_TIPG_IPGR2_SHIFT; 3261 break; 3262 case e1000_82542: 3263 tipg = DEFAULT_82542_TIPG_IPGT; 3264 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; 3265 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; 3266 break; 3267 default: 3268 if (hw->phy.media_type == e1000_media_type_fiber || 3269 hw->phy.media_type == e1000_media_type_internal_serdes) 3270 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 3271 else 3272 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 3273 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; 3274 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; 3275 } 3276 3277 E1000_WRITE_REG(hw, E1000_TIPG, tipg); 3278 E1000_WRITE_REG(hw, E1000_TIDV, sc->tx_int_delay.value); 3279 3280 if(hw->mac.type >= e1000_82540) 3281 E1000_WRITE_REG(hw, E1000_TADV, 3282 sc->tx_abs_int_delay.value); 3283 3284 if (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572) { 3285 tarc = E1000_READ_REG(hw, E1000_TARC(0)); 3286 tarc |= TARC_SPEED_MODE_BIT; 3287 E1000_WRITE_REG(hw, E1000_TARC(0), tarc); 3288 } else if (hw->mac.type == e1000_80003es2lan) { 3289 /* errata: program both queues to unweighted RR */ 3290 tarc = E1000_READ_REG(hw, E1000_TARC(0)); 3291 tarc |= 1; 3292 E1000_WRITE_REG(hw, E1000_TARC(0), tarc); 3293 tarc = E1000_READ_REG(hw, E1000_TARC(1)); 3294 tarc |= 1; 3295 E1000_WRITE_REG(hw, E1000_TARC(1), tarc); 3296 } else if (hw->mac.type == e1000_82574) { 3297 tarc = E1000_READ_REG(hw, E1000_TARC(0)); 3298 tarc |= TARC_ERRATA_BIT; 3299 if ( sc->tx_num_queues > 1) { 3300 tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX); 3301 E1000_WRITE_REG(hw, E1000_TARC(0), tarc); 3302 E1000_WRITE_REG(hw, E1000_TARC(1), tarc); 3303 } else 3304 E1000_WRITE_REG(hw, E1000_TARC(0), tarc); 3305 } 3306 3307 if (sc->tx_int_delay.value > 0) 3308 sc->txd_cmd |= E1000_TXD_CMD_IDE; 3309 3310 /* Program the Transmit Control Register */ 3311 tctl = E1000_READ_REG(hw, E1000_TCTL); 3312 tctl &= ~E1000_TCTL_CT; 3313 tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN | 3314 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT)); 3315 3316 if (hw->mac.type >= e1000_82571) 3317 tctl |= E1000_TCTL_MULR; 3318 3319 /* This write will effectively turn on the transmit unit. */ 3320 E1000_WRITE_REG(hw, E1000_TCTL, tctl); 3321 3322 /* SPT and KBL errata workarounds */ 3323 if (hw->mac.type == e1000_pch_spt) { 3324 u32 reg; 3325 reg = E1000_READ_REG(hw, E1000_IOSFPC); 3326 reg |= E1000_RCTL_RDMTS_HEX; 3327 E1000_WRITE_REG(hw, E1000_IOSFPC, reg); 3328 /* i218-i219 Specification Update 1.5.4.5 */ 3329 reg = E1000_READ_REG(hw, E1000_TARC(0)); 3330 reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ; 3331 reg |= E1000_TARC0_CB_MULTIQ_2_REQ; 3332 E1000_WRITE_REG(hw, E1000_TARC(0), reg); 3333 } 3334 } 3335 3336 /********************************************************************* 3337 * 3338 * Enable receive unit. 3339 * 3340 **********************************************************************/ 3341 #define BSIZEPKT_ROUNDUP ((1<<E1000_SRRCTL_BSIZEPKT_SHIFT)-1) 3342 3343 static void 3344 em_initialize_receive_unit(if_ctx_t ctx) 3345 { 3346 struct e1000_softc *sc = iflib_get_softc(ctx); 3347 if_softc_ctx_t scctx = sc->shared; 3348 if_t ifp = iflib_get_ifp(ctx); 3349 struct e1000_hw *hw = &sc->hw; 3350 struct em_rx_queue *que; 3351 int i; 3352 uint32_t rctl, rxcsum; 3353 3354 INIT_DEBUGOUT("em_initialize_receive_units: begin"); 3355 3356 /* 3357 * Make sure receives are disabled while setting 3358 * up the descriptor ring 3359 */ 3360 rctl = E1000_READ_REG(hw, E1000_RCTL); 3361 /* Do not disable if ever enabled on this hardware */ 3362 if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583)) 3363 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); 3364 3365 /* Setup the Receive Control Register */ 3366 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 3367 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | 3368 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 3369 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 3370 3371 /* Do not store bad packets */ 3372 rctl &= ~E1000_RCTL_SBP; 3373 3374 /* Enable Long Packet receive */ 3375 if (if_getmtu(ifp) > ETHERMTU) 3376 rctl |= E1000_RCTL_LPE; 3377 else 3378 rctl &= ~E1000_RCTL_LPE; 3379 3380 /* Strip the CRC */ 3381 if (!em_disable_crc_stripping) 3382 rctl |= E1000_RCTL_SECRC; 3383 3384 if (hw->mac.type >= e1000_82540) { 3385 E1000_WRITE_REG(hw, E1000_RADV, 3386 sc->rx_abs_int_delay.value); 3387 3388 /* 3389 * Set the interrupt throttling rate. Value is calculated 3390 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) 3391 */ 3392 E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR); 3393 } 3394 E1000_WRITE_REG(hw, E1000_RDTR, sc->rx_int_delay.value); 3395 3396 if (hw->mac.type >= em_mac_min) { 3397 uint32_t rfctl; 3398 /* Use extended rx descriptor formats */ 3399 rfctl = E1000_READ_REG(hw, E1000_RFCTL); 3400 rfctl |= E1000_RFCTL_EXTEN; 3401 3402 /* 3403 * When using MSI-X interrupts we need to throttle 3404 * using the EITR register (82574 only) 3405 */ 3406 if (hw->mac.type == e1000_82574) { 3407 for (int i = 0; i < 4; i++) 3408 E1000_WRITE_REG(hw, E1000_EITR_82574(i), 3409 DEFAULT_ITR); 3410 /* Disable accelerated acknowledge */ 3411 rfctl |= E1000_RFCTL_ACK_DIS; 3412 } 3413 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); 3414 } 3415 3416 /* Set up L3 and L4 csum Rx descriptor offloads */ 3417 rxcsum = E1000_READ_REG(hw, E1000_RXCSUM); 3418 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 3419 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL; 3420 if (hw->mac.type > e1000_82575) 3421 rxcsum |= E1000_RXCSUM_CRCOFL; 3422 else if (hw->mac.type < em_mac_min && 3423 if_getcapenable(ifp) & IFCAP_HWCSUM_IPV6) 3424 rxcsum |= E1000_RXCSUM_IPV6OFL; 3425 } else { 3426 rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL); 3427 if (hw->mac.type > e1000_82575) 3428 rxcsum &= ~E1000_RXCSUM_CRCOFL; 3429 else if (hw->mac.type < em_mac_min) 3430 rxcsum &= ~E1000_RXCSUM_IPV6OFL; 3431 } 3432 3433 if (sc->rx_num_queues > 1) { 3434 /* RSS hash needed in the Rx descriptor */ 3435 rxcsum |= E1000_RXCSUM_PCSD; 3436 3437 if (hw->mac.type >= igb_mac_min) 3438 igb_initialize_rss_mapping(sc); 3439 else 3440 em_initialize_rss_mapping(sc); 3441 } 3442 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum); 3443 3444 /* 3445 * XXX TEMPORARY WORKAROUND: on some systems with 82573 3446 * long latencies are observed, like Lenovo X60. This 3447 * change eliminates the problem, but since having positive 3448 * values in RDTR is a known source of problems on other 3449 * platforms another solution is being sought. 3450 */ 3451 if (hw->mac.type == e1000_82573) 3452 E1000_WRITE_REG(hw, E1000_RDTR, 0x20); 3453 3454 for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) { 3455 struct rx_ring *rxr = &que->rxr; 3456 /* Setup the Base and Length of the Rx Descriptor Ring */ 3457 u64 bus_addr = rxr->rx_paddr; 3458 #if 0 3459 u32 rdt = sc->rx_num_queues -1; /* default */ 3460 #endif 3461 3462 E1000_WRITE_REG(hw, E1000_RDLEN(i), 3463 scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended)); 3464 E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32)); 3465 E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr); 3466 /* Setup the Head and Tail Descriptor Pointers */ 3467 E1000_WRITE_REG(hw, E1000_RDH(i), 0); 3468 E1000_WRITE_REG(hw, E1000_RDT(i), 0); 3469 } 3470 3471 /* 3472 * Set PTHRESH for improved jumbo performance 3473 * According to 10.2.5.11 of Intel 82574 Datasheet, 3474 * RXDCTL(1) is written whenever RXDCTL(0) is written. 3475 * Only write to RXDCTL(1) if there is a need for different 3476 * settings. 3477 */ 3478 if ((hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_pch2lan || 3479 hw->mac.type == e1000_ich10lan) && if_getmtu(ifp) > ETHERMTU) { 3480 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0)); 3481 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3); 3482 } else if (hw->mac.type == e1000_82574) { 3483 for (int i = 0; i < sc->rx_num_queues; i++) { 3484 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i)); 3485 rxdctl |= 0x20; /* PTHRESH */ 3486 rxdctl |= 4 << 8; /* HTHRESH */ 3487 rxdctl |= 4 << 16;/* WTHRESH */ 3488 rxdctl |= 1 << 24; /* Switch to granularity */ 3489 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); 3490 } 3491 } else if (hw->mac.type >= igb_mac_min) { 3492 u32 psize, srrctl = 0; 3493 3494 if (if_getmtu(ifp) > ETHERMTU) { 3495 psize = scctx->isc_max_frame_size; 3496 /* are we on a vlan? */ 3497 if (if_vlantrunkinuse(ifp)) 3498 psize += VLAN_TAG_SIZE; 3499 3500 if (sc->vf_ifp) 3501 e1000_rlpml_set_vf(hw, psize); 3502 else 3503 E1000_WRITE_REG(hw, E1000_RLPML, psize); 3504 } 3505 3506 /* Set maximum packet buffer len */ 3507 srrctl |= (sc->rx_mbuf_sz + BSIZEPKT_ROUNDUP) >> 3508 E1000_SRRCTL_BSIZEPKT_SHIFT; 3509 3510 /* 3511 * If TX flow control is disabled and there's >1 queue defined, 3512 * enable DROP. 3513 * 3514 * This drops frames rather than hanging the RX MAC for all queues. 3515 */ 3516 if ((sc->rx_num_queues > 1) && 3517 (sc->fc == e1000_fc_none || 3518 sc->fc == e1000_fc_rx_pause)) { 3519 srrctl |= E1000_SRRCTL_DROP_EN; 3520 } 3521 /* Setup the Base and Length of the Rx Descriptor Rings */ 3522 for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) { 3523 struct rx_ring *rxr = &que->rxr; 3524 u64 bus_addr = rxr->rx_paddr; 3525 u32 rxdctl; 3526 3527 #ifdef notyet 3528 /* Configure for header split? -- ignore for now */ 3529 rxr->hdr_split = igb_header_split; 3530 #else 3531 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 3532 #endif 3533 3534 E1000_WRITE_REG(hw, E1000_RDLEN(i), 3535 scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc)); 3536 E1000_WRITE_REG(hw, E1000_RDBAH(i), 3537 (uint32_t)(bus_addr >> 32)); 3538 E1000_WRITE_REG(hw, E1000_RDBAL(i), 3539 (uint32_t)bus_addr); 3540 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl); 3541 /* Enable this Queue */ 3542 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i)); 3543 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 3544 rxdctl &= 0xFFF00000; 3545 rxdctl |= IGB_RX_PTHRESH; 3546 rxdctl |= IGB_RX_HTHRESH << 8; 3547 rxdctl |= IGB_RX_WTHRESH << 16; 3548 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); 3549 } 3550 } else if (hw->mac.type >= e1000_pch2lan) { 3551 if (if_getmtu(ifp) > ETHERMTU) 3552 e1000_lv_jumbo_workaround_ich8lan(hw, true); 3553 else 3554 e1000_lv_jumbo_workaround_ich8lan(hw, false); 3555 } 3556 3557 /* Make sure VLAN Filters are off */ 3558 rctl &= ~E1000_RCTL_VFE; 3559 3560 /* Set up packet buffer size, overridden by per queue srrctl on igb */ 3561 if (hw->mac.type < igb_mac_min) { 3562 if (sc->rx_mbuf_sz > 2048 && sc->rx_mbuf_sz <= 4096) 3563 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX; 3564 else if (sc->rx_mbuf_sz > 4096 && sc->rx_mbuf_sz <= 8192) 3565 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX; 3566 else if (sc->rx_mbuf_sz > 8192) 3567 rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX; 3568 else { 3569 rctl |= E1000_RCTL_SZ_2048; 3570 rctl &= ~E1000_RCTL_BSEX; 3571 } 3572 } else 3573 rctl |= E1000_RCTL_SZ_2048; 3574 3575 /* 3576 * rctl bits 11:10 are as follows 3577 * lem: reserved 3578 * em: DTYPE 3579 * igb: reserved 3580 * and should be 00 on all of the above 3581 */ 3582 rctl &= ~0x00000C00; 3583 3584 /* Write out the settings */ 3585 E1000_WRITE_REG(hw, E1000_RCTL, rctl); 3586 3587 return; 3588 } 3589 3590 static void 3591 em_if_vlan_register(if_ctx_t ctx, u16 vtag) 3592 { 3593 struct e1000_softc *sc = iflib_get_softc(ctx); 3594 u32 index, bit; 3595 3596 index = (vtag >> 5) & 0x7F; 3597 bit = vtag & 0x1F; 3598 sc->shadow_vfta[index] |= (1 << bit); 3599 ++sc->num_vlans; 3600 em_if_vlan_filter_write(sc); 3601 } 3602 3603 static void 3604 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag) 3605 { 3606 struct e1000_softc *sc = iflib_get_softc(ctx); 3607 u32 index, bit; 3608 3609 index = (vtag >> 5) & 0x7F; 3610 bit = vtag & 0x1F; 3611 sc->shadow_vfta[index] &= ~(1 << bit); 3612 --sc->num_vlans; 3613 em_if_vlan_filter_write(sc); 3614 } 3615 3616 static bool 3617 em_if_vlan_filter_capable(if_ctx_t ctx) 3618 { 3619 if_t ifp = iflib_get_ifp(ctx); 3620 3621 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) && 3622 !em_disable_crc_stripping) 3623 return (true); 3624 3625 return (false); 3626 } 3627 3628 static bool 3629 em_if_vlan_filter_used(if_ctx_t ctx) 3630 { 3631 struct e1000_softc *sc = iflib_get_softc(ctx); 3632 3633 if (!em_if_vlan_filter_capable(ctx)) 3634 return (false); 3635 3636 for (int i = 0; i < EM_VFTA_SIZE; i++) 3637 if (sc->shadow_vfta[i] != 0) 3638 return (true); 3639 3640 return (false); 3641 } 3642 3643 static void 3644 em_if_vlan_filter_enable(struct e1000_softc *sc) 3645 { 3646 struct e1000_hw *hw = &sc->hw; 3647 u32 reg; 3648 3649 reg = E1000_READ_REG(hw, E1000_RCTL); 3650 reg &= ~E1000_RCTL_CFIEN; 3651 reg |= E1000_RCTL_VFE; 3652 E1000_WRITE_REG(hw, E1000_RCTL, reg); 3653 } 3654 3655 static void 3656 em_if_vlan_filter_disable(struct e1000_softc *sc) 3657 { 3658 struct e1000_hw *hw = &sc->hw; 3659 u32 reg; 3660 3661 reg = E1000_READ_REG(hw, E1000_RCTL); 3662 reg &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN); 3663 E1000_WRITE_REG(hw, E1000_RCTL, reg); 3664 } 3665 3666 static void 3667 em_if_vlan_filter_write(struct e1000_softc *sc) 3668 { 3669 struct e1000_hw *hw = &sc->hw; 3670 3671 if (sc->vf_ifp) 3672 return; 3673 3674 /* Disable interrupts for lem-class devices during the filter change */ 3675 if (hw->mac.type < em_mac_min) 3676 em_if_intr_disable(sc->ctx); 3677 3678 for (int i = 0; i < EM_VFTA_SIZE; i++) 3679 if (sc->shadow_vfta[i] != 0) { 3680 /* XXXKB: incomplete VF support, we return early above */ 3681 if (sc->vf_ifp) 3682 e1000_vfta_set_vf(hw, sc->shadow_vfta[i], true); 3683 else 3684 e1000_write_vfta(hw, i, sc->shadow_vfta[i]); 3685 } 3686 3687 /* Re-enable interrupts for lem-class devices */ 3688 if (hw->mac.type < em_mac_min) 3689 em_if_intr_enable(sc->ctx); 3690 } 3691 3692 static void 3693 em_setup_vlan_hw_support(if_ctx_t ctx) 3694 { 3695 struct e1000_softc *sc = iflib_get_softc(ctx); 3696 struct e1000_hw *hw = &sc->hw; 3697 if_t ifp = iflib_get_ifp(ctx); 3698 u32 reg; 3699 3700 /* XXXKB: Return early if we are a VF until VF decap and filter management 3701 * is ready and tested. 3702 */ 3703 if (sc->vf_ifp) 3704 return; 3705 3706 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING && 3707 !em_disable_crc_stripping) { 3708 reg = E1000_READ_REG(hw, E1000_CTRL); 3709 reg |= E1000_CTRL_VME; 3710 E1000_WRITE_REG(hw, E1000_CTRL, reg); 3711 } else { 3712 reg = E1000_READ_REG(hw, E1000_CTRL); 3713 reg &= ~E1000_CTRL_VME; 3714 E1000_WRITE_REG(hw, E1000_CTRL, reg); 3715 } 3716 3717 /* If we aren't doing HW filtering, we're done */ 3718 if (!em_if_vlan_filter_capable(ctx)) { 3719 em_if_vlan_filter_disable(sc); 3720 return; 3721 } 3722 3723 /* 3724 * A soft reset zero's out the VFTA, so 3725 * we need to repopulate it now. 3726 * We also insert VLAN 0 in the filter list, so we pass VLAN 0 tagged 3727 * traffic through. This will write the entire table. 3728 */ 3729 em_if_vlan_register(ctx, 0); 3730 3731 /* Enable the Filter Table */ 3732 em_if_vlan_filter_enable(sc); 3733 } 3734 3735 static void 3736 em_if_intr_enable(if_ctx_t ctx) 3737 { 3738 struct e1000_softc *sc = iflib_get_softc(ctx); 3739 struct e1000_hw *hw = &sc->hw; 3740 u32 ims_mask = IMS_ENABLE_MASK; 3741 3742 if (sc->intr_type == IFLIB_INTR_MSIX) { 3743 E1000_WRITE_REG(hw, EM_EIAC, sc->ims); 3744 ims_mask |= sc->ims; 3745 } 3746 E1000_WRITE_REG(hw, E1000_IMS, ims_mask); 3747 E1000_WRITE_FLUSH(hw); 3748 } 3749 3750 static void 3751 em_if_intr_disable(if_ctx_t ctx) 3752 { 3753 struct e1000_softc *sc = iflib_get_softc(ctx); 3754 struct e1000_hw *hw = &sc->hw; 3755 3756 if (sc->intr_type == IFLIB_INTR_MSIX) 3757 E1000_WRITE_REG(hw, EM_EIAC, 0); 3758 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); 3759 E1000_WRITE_FLUSH(hw); 3760 } 3761 3762 static void 3763 igb_if_intr_enable(if_ctx_t ctx) 3764 { 3765 struct e1000_softc *sc = iflib_get_softc(ctx); 3766 struct e1000_hw *hw = &sc->hw; 3767 u32 mask; 3768 3769 if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) { 3770 mask = (sc->que_mask | sc->link_mask); 3771 E1000_WRITE_REG(hw, E1000_EIAC, mask); 3772 E1000_WRITE_REG(hw, E1000_EIAM, mask); 3773 E1000_WRITE_REG(hw, E1000_EIMS, mask); 3774 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC); 3775 } else 3776 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK); 3777 E1000_WRITE_FLUSH(hw); 3778 } 3779 3780 static void 3781 igb_if_intr_disable(if_ctx_t ctx) 3782 { 3783 struct e1000_softc *sc = iflib_get_softc(ctx); 3784 struct e1000_hw *hw = &sc->hw; 3785 3786 if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) { 3787 E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff); 3788 E1000_WRITE_REG(hw, E1000_EIAC, 0); 3789 } 3790 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); 3791 E1000_WRITE_FLUSH(hw); 3792 } 3793 3794 /* 3795 * Bit of a misnomer, what this really means is 3796 * to enable OS management of the system... aka 3797 * to disable special hardware management features 3798 */ 3799 static void 3800 em_init_manageability(struct e1000_softc *sc) 3801 { 3802 /* A shared code workaround */ 3803 #define E1000_82542_MANC2H E1000_MANC2H 3804 if (sc->has_manage) { 3805 int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H); 3806 int manc = E1000_READ_REG(&sc->hw, E1000_MANC); 3807 3808 /* disable hardware interception of ARP */ 3809 manc &= ~(E1000_MANC_ARP_EN); 3810 3811 /* enable receiving management packets to the host */ 3812 manc |= E1000_MANC_EN_MNG2HOST; 3813 #define E1000_MNG2HOST_PORT_623 (1 << 5) 3814 #define E1000_MNG2HOST_PORT_664 (1 << 6) 3815 manc2h |= E1000_MNG2HOST_PORT_623; 3816 manc2h |= E1000_MNG2HOST_PORT_664; 3817 E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h); 3818 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc); 3819 } 3820 } 3821 3822 /* 3823 * Give control back to hardware management 3824 * controller if there is one. 3825 */ 3826 static void 3827 em_release_manageability(struct e1000_softc *sc) 3828 { 3829 if (sc->has_manage) { 3830 int manc = E1000_READ_REG(&sc->hw, E1000_MANC); 3831 3832 /* re-enable hardware interception of ARP */ 3833 manc |= E1000_MANC_ARP_EN; 3834 manc &= ~E1000_MANC_EN_MNG2HOST; 3835 3836 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc); 3837 } 3838 } 3839 3840 /* 3841 * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit. 3842 * For ASF and Pass Through versions of f/w this means 3843 * that the driver is loaded. For AMT version type f/w 3844 * this means that the network i/f is open. 3845 */ 3846 static void 3847 em_get_hw_control(struct e1000_softc *sc) 3848 { 3849 u32 ctrl_ext, swsm; 3850 3851 if (sc->vf_ifp) 3852 return; 3853 3854 if (sc->hw.mac.type == e1000_82573) { 3855 swsm = E1000_READ_REG(&sc->hw, E1000_SWSM); 3856 E1000_WRITE_REG(&sc->hw, E1000_SWSM, 3857 swsm | E1000_SWSM_DRV_LOAD); 3858 return; 3859 } 3860 /* else */ 3861 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT); 3862 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, 3863 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 3864 } 3865 3866 /* 3867 * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. 3868 * For ASF and Pass Through versions of f/w this means that 3869 * the driver is no longer loaded. For AMT versions of the 3870 * f/w this means that the network i/f is closed. 3871 */ 3872 static void 3873 em_release_hw_control(struct e1000_softc *sc) 3874 { 3875 u32 ctrl_ext, swsm; 3876 3877 if (!sc->has_manage) 3878 return; 3879 3880 if (sc->hw.mac.type == e1000_82573) { 3881 swsm = E1000_READ_REG(&sc->hw, E1000_SWSM); 3882 E1000_WRITE_REG(&sc->hw, E1000_SWSM, 3883 swsm & ~E1000_SWSM_DRV_LOAD); 3884 return; 3885 } 3886 /* else */ 3887 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT); 3888 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, 3889 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 3890 return; 3891 } 3892 3893 static int 3894 em_is_valid_ether_addr(u8 *addr) 3895 { 3896 char zero_addr[6] = { 0, 0, 0, 0, 0, 0 }; 3897 3898 if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) { 3899 return (false); 3900 } 3901 3902 return (true); 3903 } 3904 3905 static bool 3906 em_automask_tso(if_ctx_t ctx) 3907 { 3908 struct e1000_softc *sc = iflib_get_softc(ctx); 3909 if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx); 3910 if_t ifp = iflib_get_ifp(ctx); 3911 3912 if (!em_unsupported_tso && sc->link_speed && 3913 sc->link_speed != SPEED_1000 && scctx->isc_capenable & IFCAP_TSO) { 3914 device_printf(sc->dev, "Disabling TSO for 10/100 Ethernet.\n"); 3915 sc->tso_automasked = scctx->isc_capenable & IFCAP_TSO; 3916 scctx->isc_capenable &= ~IFCAP_TSO; 3917 if_setcapenablebit(ifp, 0, IFCAP_TSO); 3918 /* iflib_init_locked handles ifnet hwassistbits */ 3919 iflib_request_reset(ctx); 3920 return true; 3921 } else if (sc->link_speed == SPEED_1000 && sc->tso_automasked) { 3922 device_printf(sc->dev, "Re-enabling TSO for GbE.\n"); 3923 scctx->isc_capenable |= sc->tso_automasked; 3924 if_setcapenablebit(ifp, sc->tso_automasked, 0); 3925 sc->tso_automasked = 0; 3926 /* iflib_init_locked handles ifnet hwassistbits */ 3927 iflib_request_reset(ctx); 3928 return true; 3929 } 3930 3931 return false; 3932 } 3933 3934 /* 3935 ** Parse the interface capabilities with regard 3936 ** to both system management and wake-on-lan for 3937 ** later use. 3938 */ 3939 static void 3940 em_get_wakeup(if_ctx_t ctx) 3941 { 3942 struct e1000_softc *sc = iflib_get_softc(ctx); 3943 device_t dev = iflib_get_dev(ctx); 3944 u16 eeprom_data = 0, device_id, apme_mask; 3945 3946 sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw); 3947 apme_mask = EM_EEPROM_APME; 3948 3949 switch (sc->hw.mac.type) { 3950 case e1000_82542: 3951 case e1000_82543: 3952 break; 3953 case e1000_82544: 3954 e1000_read_nvm(&sc->hw, 3955 NVM_INIT_CONTROL2_REG, 1, &eeprom_data); 3956 apme_mask = EM_82544_APME; 3957 break; 3958 case e1000_82546: 3959 case e1000_82546_rev_3: 3960 if (sc->hw.bus.func == 1) { 3961 e1000_read_nvm(&sc->hw, 3962 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 3963 break; 3964 } else 3965 e1000_read_nvm(&sc->hw, 3966 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3967 break; 3968 case e1000_82573: 3969 case e1000_82583: 3970 sc->has_amt = true; 3971 /* FALLTHROUGH */ 3972 case e1000_82571: 3973 case e1000_82572: 3974 case e1000_80003es2lan: 3975 if (sc->hw.bus.func == 1) { 3976 e1000_read_nvm(&sc->hw, 3977 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 3978 break; 3979 } else 3980 e1000_read_nvm(&sc->hw, 3981 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3982 break; 3983 case e1000_ich8lan: 3984 case e1000_ich9lan: 3985 case e1000_ich10lan: 3986 case e1000_pchlan: 3987 case e1000_pch2lan: 3988 case e1000_pch_lpt: 3989 case e1000_pch_spt: 3990 case e1000_82575: /* listing all igb devices */ 3991 case e1000_82576: 3992 case e1000_82580: 3993 case e1000_i350: 3994 case e1000_i354: 3995 case e1000_i210: 3996 case e1000_i211: 3997 case e1000_vfadapt: 3998 case e1000_vfadapt_i350: 3999 apme_mask = E1000_WUC_APME; 4000 sc->has_amt = true; 4001 eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC); 4002 break; 4003 default: 4004 e1000_read_nvm(&sc->hw, 4005 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 4006 break; 4007 } 4008 if (eeprom_data & apme_mask) 4009 sc->wol = (E1000_WUFC_MAG | E1000_WUFC_MC); 4010 /* 4011 * We have the eeprom settings, now apply the special cases 4012 * where the eeprom may be wrong or the board won't support 4013 * wake on lan on a particular port 4014 */ 4015 device_id = pci_get_device(dev); 4016 switch (device_id) { 4017 case E1000_DEV_ID_82546GB_PCIE: 4018 sc->wol = 0; 4019 break; 4020 case E1000_DEV_ID_82546EB_FIBER: 4021 case E1000_DEV_ID_82546GB_FIBER: 4022 /* Wake events only supported on port A for dual fiber 4023 * regardless of eeprom setting */ 4024 if (E1000_READ_REG(&sc->hw, E1000_STATUS) & 4025 E1000_STATUS_FUNC_1) 4026 sc->wol = 0; 4027 break; 4028 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 4029 /* if quad port adapter, disable WoL on all but port A */ 4030 if (global_quad_port_a != 0) 4031 sc->wol = 0; 4032 /* Reset for multiple quad port adapters */ 4033 if (++global_quad_port_a == 4) 4034 global_quad_port_a = 0; 4035 break; 4036 case E1000_DEV_ID_82571EB_FIBER: 4037 /* Wake events only supported on port A for dual fiber 4038 * regardless of eeprom setting */ 4039 if (E1000_READ_REG(&sc->hw, E1000_STATUS) & 4040 E1000_STATUS_FUNC_1) 4041 sc->wol = 0; 4042 break; 4043 case E1000_DEV_ID_82571EB_QUAD_COPPER: 4044 case E1000_DEV_ID_82571EB_QUAD_FIBER: 4045 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 4046 /* if quad port adapter, disable WoL on all but port A */ 4047 if (global_quad_port_a != 0) 4048 sc->wol = 0; 4049 /* Reset for multiple quad port adapters */ 4050 if (++global_quad_port_a == 4) 4051 global_quad_port_a = 0; 4052 break; 4053 } 4054 return; 4055 } 4056 4057 4058 /* 4059 * Enable PCI Wake On Lan capability 4060 */ 4061 static void 4062 em_enable_wakeup(if_ctx_t ctx) 4063 { 4064 struct e1000_softc *sc = iflib_get_softc(ctx); 4065 device_t dev = iflib_get_dev(ctx); 4066 if_t ifp = iflib_get_ifp(ctx); 4067 int error = 0; 4068 u32 pmc, ctrl, ctrl_ext, rctl; 4069 u16 status; 4070 4071 if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0) 4072 return; 4073 4074 /* 4075 * Determine type of Wakeup: note that wol 4076 * is set with all bits on by default. 4077 */ 4078 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0) 4079 sc->wol &= ~E1000_WUFC_MAG; 4080 4081 if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0) 4082 sc->wol &= ~E1000_WUFC_EX; 4083 4084 if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0) 4085 sc->wol &= ~E1000_WUFC_MC; 4086 else { 4087 rctl = E1000_READ_REG(&sc->hw, E1000_RCTL); 4088 rctl |= E1000_RCTL_MPE; 4089 E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl); 4090 } 4091 4092 if (!(sc->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC))) 4093 goto pme; 4094 4095 /* Advertise the wakeup capability */ 4096 ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL); 4097 ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3); 4098 E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl); 4099 4100 /* Keep the laser running on Fiber adapters */ 4101 if (sc->hw.phy.media_type == e1000_media_type_fiber || 4102 sc->hw.phy.media_type == e1000_media_type_internal_serdes) { 4103 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT); 4104 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; 4105 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, ctrl_ext); 4106 } 4107 4108 if ((sc->hw.mac.type == e1000_ich8lan) || 4109 (sc->hw.mac.type == e1000_pchlan) || 4110 (sc->hw.mac.type == e1000_ich9lan) || 4111 (sc->hw.mac.type == e1000_ich10lan)) 4112 e1000_suspend_workarounds_ich8lan(&sc->hw); 4113 4114 if ( sc->hw.mac.type >= e1000_pchlan) { 4115 error = em_enable_phy_wakeup(sc); 4116 if (error) 4117 goto pme; 4118 } else { 4119 /* Enable wakeup by the MAC */ 4120 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN); 4121 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol); 4122 } 4123 4124 if (sc->hw.phy.type == e1000_phy_igp_3) 4125 e1000_igp3_phy_powerdown_workaround_ich8lan(&sc->hw); 4126 4127 pme: 4128 status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2); 4129 status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 4130 if (!error && (if_getcapenable(ifp) & IFCAP_WOL)) 4131 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 4132 pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2); 4133 4134 return; 4135 } 4136 4137 /* 4138 * WOL in the newer chipset interfaces (pchlan) 4139 * require thing to be copied into the phy 4140 */ 4141 static int 4142 em_enable_phy_wakeup(struct e1000_softc *sc) 4143 { 4144 struct e1000_hw *hw = &sc->hw; 4145 u32 mreg, ret = 0; 4146 u16 preg; 4147 4148 /* copy MAC RARs to PHY RARs */ 4149 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 4150 4151 /* copy MAC MTA to PHY MTA */ 4152 for (int i = 0; i < hw->mac.mta_reg_count; i++) { 4153 mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); 4154 e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF)); 4155 e1000_write_phy_reg(hw, BM_MTA(i) + 1, 4156 (u16)((mreg >> 16) & 0xFFFF)); 4157 } 4158 4159 /* configure PHY Rx Control register */ 4160 e1000_read_phy_reg(hw, BM_RCTL, &preg); 4161 mreg = E1000_READ_REG(hw, E1000_RCTL); 4162 if (mreg & E1000_RCTL_UPE) 4163 preg |= BM_RCTL_UPE; 4164 if (mreg & E1000_RCTL_MPE) 4165 preg |= BM_RCTL_MPE; 4166 preg &= ~(BM_RCTL_MO_MASK); 4167 if (mreg & E1000_RCTL_MO_3) 4168 preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) 4169 << BM_RCTL_MO_SHIFT); 4170 if (mreg & E1000_RCTL_BAM) 4171 preg |= BM_RCTL_BAM; 4172 if (mreg & E1000_RCTL_PMCF) 4173 preg |= BM_RCTL_PMCF; 4174 mreg = E1000_READ_REG(hw, E1000_CTRL); 4175 if (mreg & E1000_CTRL_RFCE) 4176 preg |= BM_RCTL_RFCE; 4177 e1000_write_phy_reg(hw, BM_RCTL, preg); 4178 4179 /* enable PHY wakeup in MAC register */ 4180 E1000_WRITE_REG(hw, E1000_WUC, 4181 E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME); 4182 E1000_WRITE_REG(hw, E1000_WUFC, sc->wol); 4183 4184 /* configure and enable PHY wakeup in PHY registers */ 4185 e1000_write_phy_reg(hw, BM_WUFC, sc->wol); 4186 e1000_write_phy_reg(hw, BM_WUC, E1000_WUC_PME_EN); 4187 4188 /* activate PHY wakeup */ 4189 ret = hw->phy.ops.acquire(hw); 4190 if (ret) { 4191 printf("Could not acquire PHY\n"); 4192 return ret; 4193 } 4194 e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 4195 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT)); 4196 ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg); 4197 if (ret) { 4198 printf("Could not read PHY page 769\n"); 4199 goto out; 4200 } 4201 preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; 4202 ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg); 4203 if (ret) 4204 printf("Could not set PHY Host Wakeup bit\n"); 4205 out: 4206 hw->phy.ops.release(hw); 4207 4208 return ret; 4209 } 4210 4211 static void 4212 em_if_led_func(if_ctx_t ctx, int onoff) 4213 { 4214 struct e1000_softc *sc = iflib_get_softc(ctx); 4215 4216 if (onoff) { 4217 e1000_setup_led(&sc->hw); 4218 e1000_led_on(&sc->hw); 4219 } else { 4220 e1000_led_off(&sc->hw); 4221 e1000_cleanup_led(&sc->hw); 4222 } 4223 } 4224 4225 /* 4226 * Disable the L0S and L1 LINK states 4227 */ 4228 static void 4229 em_disable_aspm(struct e1000_softc *sc) 4230 { 4231 int base, reg; 4232 u16 link_cap,link_ctrl; 4233 device_t dev = sc->dev; 4234 4235 switch (sc->hw.mac.type) { 4236 case e1000_82573: 4237 case e1000_82574: 4238 case e1000_82583: 4239 break; 4240 default: 4241 return; 4242 } 4243 if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0) 4244 return; 4245 reg = base + PCIER_LINK_CAP; 4246 link_cap = pci_read_config(dev, reg, 2); 4247 if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0) 4248 return; 4249 reg = base + PCIER_LINK_CTL; 4250 link_ctrl = pci_read_config(dev, reg, 2); 4251 link_ctrl &= ~PCIEM_LINK_CTL_ASPMC; 4252 pci_write_config(dev, reg, link_ctrl, 2); 4253 return; 4254 } 4255 4256 /********************************************************************** 4257 * 4258 * Update the board statistics counters. 4259 * 4260 **********************************************************************/ 4261 static void 4262 em_update_stats_counters(struct e1000_softc *sc) 4263 { 4264 u64 prev_xoffrxc = sc->stats.xoffrxc; 4265 4266 if(sc->hw.phy.media_type == e1000_media_type_copper || 4267 (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) { 4268 sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS); 4269 sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC); 4270 } 4271 sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS); 4272 sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC); 4273 sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC); 4274 sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL); 4275 4276 sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC); 4277 sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL); 4278 sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC); 4279 sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC); 4280 sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC); 4281 sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC); 4282 sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC); 4283 sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC); 4284 /* 4285 ** For watchdog management we need to know if we have been 4286 ** paused during the last interval, so capture that here. 4287 */ 4288 if (sc->stats.xoffrxc != prev_xoffrxc) 4289 sc->shared->isc_pause_frames = 1; 4290 sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC); 4291 sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC); 4292 sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64); 4293 sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127); 4294 sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255); 4295 sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511); 4296 sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023); 4297 sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522); 4298 sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC); 4299 sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC); 4300 sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC); 4301 sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC); 4302 4303 /* For the 64-bit byte counters the low dword must be read first. */ 4304 /* Both registers clear on the read of the high dword */ 4305 4306 sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCL) + 4307 ((u64)E1000_READ_REG(&sc->hw, E1000_GORCH) << 32); 4308 sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCL) + 4309 ((u64)E1000_READ_REG(&sc->hw, E1000_GOTCH) << 32); 4310 4311 sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC); 4312 sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC); 4313 sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC); 4314 sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC); 4315 sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC); 4316 4317 sc->stats.mgprc += E1000_READ_REG(&sc->hw, E1000_MGTPRC); 4318 sc->stats.mgpdc += E1000_READ_REG(&sc->hw, E1000_MGTPDC); 4319 sc->stats.mgptc += E1000_READ_REG(&sc->hw, E1000_MGTPTC); 4320 4321 sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH); 4322 sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH); 4323 4324 sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR); 4325 sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT); 4326 sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64); 4327 sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127); 4328 sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255); 4329 sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511); 4330 sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023); 4331 sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522); 4332 sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC); 4333 sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC); 4334 4335 /* Interrupt Counts */ 4336 4337 sc->stats.iac += E1000_READ_REG(&sc->hw, E1000_IAC); 4338 sc->stats.icrxptc += E1000_READ_REG(&sc->hw, E1000_ICRXPTC); 4339 sc->stats.icrxatc += E1000_READ_REG(&sc->hw, E1000_ICRXATC); 4340 sc->stats.ictxptc += E1000_READ_REG(&sc->hw, E1000_ICTXPTC); 4341 sc->stats.ictxatc += E1000_READ_REG(&sc->hw, E1000_ICTXATC); 4342 sc->stats.ictxqec += E1000_READ_REG(&sc->hw, E1000_ICTXQEC); 4343 sc->stats.ictxqmtc += E1000_READ_REG(&sc->hw, E1000_ICTXQMTC); 4344 sc->stats.icrxdmtc += E1000_READ_REG(&sc->hw, E1000_ICRXDMTC); 4345 sc->stats.icrxoc += E1000_READ_REG(&sc->hw, E1000_ICRXOC); 4346 4347 if (sc->hw.mac.type >= e1000_82543) { 4348 sc->stats.algnerrc += 4349 E1000_READ_REG(&sc->hw, E1000_ALGNERRC); 4350 sc->stats.rxerrc += 4351 E1000_READ_REG(&sc->hw, E1000_RXERRC); 4352 sc->stats.tncrs += 4353 E1000_READ_REG(&sc->hw, E1000_TNCRS); 4354 sc->stats.cexterr += 4355 E1000_READ_REG(&sc->hw, E1000_CEXTERR); 4356 sc->stats.tsctc += 4357 E1000_READ_REG(&sc->hw, E1000_TSCTC); 4358 sc->stats.tsctfc += 4359 E1000_READ_REG(&sc->hw, E1000_TSCTFC); 4360 } 4361 } 4362 4363 static uint64_t 4364 em_if_get_counter(if_ctx_t ctx, ift_counter cnt) 4365 { 4366 struct e1000_softc *sc = iflib_get_softc(ctx); 4367 if_t ifp = iflib_get_ifp(ctx); 4368 4369 switch (cnt) { 4370 case IFCOUNTER_COLLISIONS: 4371 return (sc->stats.colc); 4372 case IFCOUNTER_IERRORS: 4373 return (sc->dropped_pkts + sc->stats.rxerrc + 4374 sc->stats.crcerrs + sc->stats.algnerrc + 4375 sc->stats.ruc + sc->stats.roc + 4376 sc->stats.mpc + sc->stats.cexterr); 4377 case IFCOUNTER_OERRORS: 4378 return (sc->stats.ecol + sc->stats.latecol + 4379 sc->watchdog_events); 4380 default: 4381 return (if_get_counter_default(ifp, cnt)); 4382 } 4383 } 4384 4385 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized 4386 * @ctx: iflib context 4387 * @event: event code to check 4388 * 4389 * Defaults to returning false for unknown events. 4390 * 4391 * @returns true if iflib needs to reinit the interface 4392 */ 4393 static bool 4394 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event) 4395 { 4396 switch (event) { 4397 case IFLIB_RESTART_VLAN_CONFIG: 4398 default: 4399 return (false); 4400 } 4401 } 4402 4403 /* Export a single 32-bit register via a read-only sysctl. */ 4404 static int 4405 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS) 4406 { 4407 struct e1000_softc *sc; 4408 u_int val; 4409 4410 sc = oidp->oid_arg1; 4411 val = E1000_READ_REG(&sc->hw, oidp->oid_arg2); 4412 return (sysctl_handle_int(oidp, &val, 0, req)); 4413 } 4414 4415 /* 4416 * Add sysctl variables, one per statistic, to the system. 4417 */ 4418 static void 4419 em_add_hw_stats(struct e1000_softc *sc) 4420 { 4421 device_t dev = iflib_get_dev(sc->ctx); 4422 struct em_tx_queue *tx_que = sc->tx_queues; 4423 struct em_rx_queue *rx_que = sc->rx_queues; 4424 4425 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev); 4426 struct sysctl_oid *tree = device_get_sysctl_tree(dev); 4427 struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree); 4428 struct e1000_hw_stats *stats = &sc->stats; 4429 4430 struct sysctl_oid *stat_node, *queue_node, *int_node; 4431 struct sysctl_oid_list *stat_list, *queue_list, *int_list; 4432 4433 #define QUEUE_NAME_LEN 32 4434 char namebuf[QUEUE_NAME_LEN]; 4435 4436 /* Driver Statistics */ 4437 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped", 4438 CTLFLAG_RD, &sc->dropped_pkts, 4439 "Driver dropped packets"); 4440 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq", 4441 CTLFLAG_RD, &sc->link_irq, 4442 "Link MSI-X IRQ Handled"); 4443 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns", 4444 CTLFLAG_RD, &sc->rx_overruns, 4445 "RX overruns"); 4446 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts", 4447 CTLFLAG_RD, &sc->watchdog_events, 4448 "Watchdog timeouts"); 4449 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control", 4450 CTLTYPE_UINT | CTLFLAG_RD, 4451 sc, E1000_CTRL, em_sysctl_reg_handler, "IU", 4452 "Device Control Register"); 4453 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control", 4454 CTLTYPE_UINT | CTLFLAG_RD, 4455 sc, E1000_RCTL, em_sysctl_reg_handler, "IU", 4456 "Receiver Control Register"); 4457 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water", 4458 CTLFLAG_RD, &sc->hw.fc.high_water, 0, 4459 "Flow Control High Watermark"); 4460 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water", 4461 CTLFLAG_RD, &sc->hw.fc.low_water, 0, 4462 "Flow Control Low Watermark"); 4463 4464 for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) { 4465 struct tx_ring *txr = &tx_que->txr; 4466 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i); 4467 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, 4468 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name"); 4469 queue_list = SYSCTL_CHILDREN(queue_node); 4470 4471 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head", 4472 CTLTYPE_UINT | CTLFLAG_RD, sc, 4473 E1000_TDH(txr->me), em_sysctl_reg_handler, "IU", 4474 "Transmit Descriptor Head"); 4475 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail", 4476 CTLTYPE_UINT | CTLFLAG_RD, sc, 4477 E1000_TDT(txr->me), em_sysctl_reg_handler, "IU", 4478 "Transmit Descriptor Tail"); 4479 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq", 4480 CTLFLAG_RD, &txr->tx_irq, 4481 "Queue MSI-X Transmit Interrupts"); 4482 } 4483 4484 for (int j = 0; j < sc->rx_num_queues; j++, rx_que++) { 4485 struct rx_ring *rxr = &rx_que->rxr; 4486 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j); 4487 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, 4488 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name"); 4489 queue_list = SYSCTL_CHILDREN(queue_node); 4490 4491 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head", 4492 CTLTYPE_UINT | CTLFLAG_RD, sc, 4493 E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU", 4494 "Receive Descriptor Head"); 4495 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail", 4496 CTLTYPE_UINT | CTLFLAG_RD, sc, 4497 E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU", 4498 "Receive Descriptor Tail"); 4499 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq", 4500 CTLFLAG_RD, &rxr->rx_irq, 4501 "Queue MSI-X Receive Interrupts"); 4502 } 4503 4504 /* MAC stats get their own sub node */ 4505 4506 stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats", 4507 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics"); 4508 stat_list = SYSCTL_CHILDREN(stat_node); 4509 4510 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll", 4511 CTLFLAG_RD, &stats->ecol, 4512 "Excessive collisions"); 4513 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll", 4514 CTLFLAG_RD, &stats->scc, 4515 "Single collisions"); 4516 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll", 4517 CTLFLAG_RD, &stats->mcc, 4518 "Multiple collisions"); 4519 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll", 4520 CTLFLAG_RD, &stats->latecol, 4521 "Late collisions"); 4522 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count", 4523 CTLFLAG_RD, &stats->colc, 4524 "Collision Count"); 4525 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors", 4526 CTLFLAG_RD, &sc->stats.symerrs, 4527 "Symbol Errors"); 4528 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors", 4529 CTLFLAG_RD, &sc->stats.sec, 4530 "Sequence Errors"); 4531 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count", 4532 CTLFLAG_RD, &sc->stats.dc, 4533 "Defer Count"); 4534 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets", 4535 CTLFLAG_RD, &sc->stats.mpc, 4536 "Missed Packets"); 4537 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_length_errors", 4538 CTLFLAG_RD, &sc->stats.rlec, 4539 "Receive Length Errors"); 4540 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff", 4541 CTLFLAG_RD, &sc->stats.rnbc, 4542 "Receive No Buffers"); 4543 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize", 4544 CTLFLAG_RD, &sc->stats.ruc, 4545 "Receive Undersize"); 4546 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented", 4547 CTLFLAG_RD, &sc->stats.rfc, 4548 "Fragmented Packets Received "); 4549 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize", 4550 CTLFLAG_RD, &sc->stats.roc, 4551 "Oversized Packets Received"); 4552 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber", 4553 CTLFLAG_RD, &sc->stats.rjc, 4554 "Recevied Jabber"); 4555 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs", 4556 CTLFLAG_RD, &sc->stats.rxerrc, 4557 "Receive Errors"); 4558 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs", 4559 CTLFLAG_RD, &sc->stats.crcerrs, 4560 "CRC errors"); 4561 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs", 4562 CTLFLAG_RD, &sc->stats.algnerrc, 4563 "Alignment Errors"); 4564 /* On 82575 these are collision counts */ 4565 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs", 4566 CTLFLAG_RD, &sc->stats.cexterr, 4567 "Collision/Carrier extension errors"); 4568 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd", 4569 CTLFLAG_RD, &sc->stats.xonrxc, 4570 "XON Received"); 4571 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd", 4572 CTLFLAG_RD, &sc->stats.xontxc, 4573 "XON Transmitted"); 4574 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd", 4575 CTLFLAG_RD, &sc->stats.xoffrxc, 4576 "XOFF Received"); 4577 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd", 4578 CTLFLAG_RD, &sc->stats.xofftxc, 4579 "XOFF Transmitted"); 4580 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "unsupported_fc_recvd", 4581 CTLFLAG_RD, &sc->stats.fcruc, 4582 "Unsupported Flow Control Received"); 4583 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_recvd", 4584 CTLFLAG_RD, &sc->stats.mgprc, 4585 "Management Packets Received"); 4586 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_drop", 4587 CTLFLAG_RD, &sc->stats.mgpdc, 4588 "Management Packets Dropped"); 4589 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_txd", 4590 CTLFLAG_RD, &sc->stats.mgptc, 4591 "Management Packets Transmitted"); 4592 4593 /* Packet Reception Stats */ 4594 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd", 4595 CTLFLAG_RD, &sc->stats.tpr, 4596 "Total Packets Received "); 4597 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd", 4598 CTLFLAG_RD, &sc->stats.gprc, 4599 "Good Packets Received"); 4600 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd", 4601 CTLFLAG_RD, &sc->stats.bprc, 4602 "Broadcast Packets Received"); 4603 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd", 4604 CTLFLAG_RD, &sc->stats.mprc, 4605 "Multicast Packets Received"); 4606 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64", 4607 CTLFLAG_RD, &sc->stats.prc64, 4608 "64 byte frames received "); 4609 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127", 4610 CTLFLAG_RD, &sc->stats.prc127, 4611 "65-127 byte frames received"); 4612 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255", 4613 CTLFLAG_RD, &sc->stats.prc255, 4614 "128-255 byte frames received"); 4615 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511", 4616 CTLFLAG_RD, &sc->stats.prc511, 4617 "256-511 byte frames received"); 4618 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023", 4619 CTLFLAG_RD, &sc->stats.prc1023, 4620 "512-1023 byte frames received"); 4621 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522", 4622 CTLFLAG_RD, &sc->stats.prc1522, 4623 "1023-1522 byte frames received"); 4624 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd", 4625 CTLFLAG_RD, &sc->stats.gorc, 4626 "Good Octets Received"); 4627 4628 /* Packet Transmission Stats */ 4629 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd", 4630 CTLFLAG_RD, &sc->stats.gotc, 4631 "Good Octets Transmitted"); 4632 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd", 4633 CTLFLAG_RD, &sc->stats.tpt, 4634 "Total Packets Transmitted"); 4635 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd", 4636 CTLFLAG_RD, &sc->stats.gptc, 4637 "Good Packets Transmitted"); 4638 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd", 4639 CTLFLAG_RD, &sc->stats.bptc, 4640 "Broadcast Packets Transmitted"); 4641 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd", 4642 CTLFLAG_RD, &sc->stats.mptc, 4643 "Multicast Packets Transmitted"); 4644 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64", 4645 CTLFLAG_RD, &sc->stats.ptc64, 4646 "64 byte frames transmitted "); 4647 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127", 4648 CTLFLAG_RD, &sc->stats.ptc127, 4649 "65-127 byte frames transmitted"); 4650 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255", 4651 CTLFLAG_RD, &sc->stats.ptc255, 4652 "128-255 byte frames transmitted"); 4653 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511", 4654 CTLFLAG_RD, &sc->stats.ptc511, 4655 "256-511 byte frames transmitted"); 4656 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023", 4657 CTLFLAG_RD, &sc->stats.ptc1023, 4658 "512-1023 byte frames transmitted"); 4659 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522", 4660 CTLFLAG_RD, &sc->stats.ptc1522, 4661 "1024-1522 byte frames transmitted"); 4662 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd", 4663 CTLFLAG_RD, &sc->stats.tsctc, 4664 "TSO Contexts Transmitted"); 4665 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail", 4666 CTLFLAG_RD, &sc->stats.tsctfc, 4667 "TSO Contexts Failed"); 4668 4669 4670 /* Interrupt Stats */ 4671 4672 int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts", 4673 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics"); 4674 int_list = SYSCTL_CHILDREN(int_node); 4675 4676 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts", 4677 CTLFLAG_RD, &sc->stats.iac, 4678 "Interrupt Assertion Count"); 4679 4680 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer", 4681 CTLFLAG_RD, &sc->stats.icrxptc, 4682 "Interrupt Cause Rx Pkt Timer Expire Count"); 4683 4684 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer", 4685 CTLFLAG_RD, &sc->stats.icrxatc, 4686 "Interrupt Cause Rx Abs Timer Expire Count"); 4687 4688 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer", 4689 CTLFLAG_RD, &sc->stats.ictxptc, 4690 "Interrupt Cause Tx Pkt Timer Expire Count"); 4691 4692 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer", 4693 CTLFLAG_RD, &sc->stats.ictxatc, 4694 "Interrupt Cause Tx Abs Timer Expire Count"); 4695 4696 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty", 4697 CTLFLAG_RD, &sc->stats.ictxqec, 4698 "Interrupt Cause Tx Queue Empty Count"); 4699 4700 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh", 4701 CTLFLAG_RD, &sc->stats.ictxqmtc, 4702 "Interrupt Cause Tx Queue Min Thresh Count"); 4703 4704 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh", 4705 CTLFLAG_RD, &sc->stats.icrxdmtc, 4706 "Interrupt Cause Rx Desc Min Thresh Count"); 4707 4708 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun", 4709 CTLFLAG_RD, &sc->stats.icrxoc, 4710 "Interrupt Cause Receiver Overrun Count"); 4711 } 4712 4713 static void 4714 em_fw_version_locked(if_ctx_t ctx) 4715 { 4716 struct e1000_softc *sc = iflib_get_softc(ctx); 4717 struct e1000_hw *hw = &sc->hw; 4718 struct e1000_fw_version *fw_ver = &sc->fw_ver; 4719 uint16_t eep = 0; 4720 4721 /* 4722 * em_fw_version_locked() must run under the IFLIB_CTX_LOCK to meet the 4723 * NVM locking model, so we do it in em_if_attach_pre() and store the 4724 * info in the softc 4725 */ 4726 ASSERT_CTX_LOCK_HELD(hw); 4727 4728 *fw_ver = (struct e1000_fw_version){0}; 4729 4730 if (hw->mac.type >= igb_mac_min) { 4731 /* 4732 * Use the Shared Code for igb(4) 4733 */ 4734 e1000_get_fw_version(hw, fw_ver); 4735 } else { 4736 /* 4737 * Otherwise, EEPROM version should be present on (almost?) all 4738 * devices here 4739 */ 4740 if(e1000_read_nvm(hw, NVM_VERSION, 1, &eep)) { 4741 INIT_DEBUGOUT("can't get EEPROM version"); 4742 return; 4743 } 4744 4745 fw_ver->eep_major = (eep & NVM_MAJOR_MASK) >> NVM_MAJOR_SHIFT; 4746 fw_ver->eep_minor = (eep & NVM_MINOR_MASK) >> NVM_MINOR_SHIFT; 4747 fw_ver->eep_build = (eep & NVM_IMAGE_ID_MASK); 4748 } 4749 } 4750 4751 static void 4752 em_sbuf_fw_version(struct e1000_fw_version *fw_ver, struct sbuf *buf) 4753 { 4754 const char *space = ""; 4755 4756 if (fw_ver->eep_major || fw_ver->eep_minor || fw_ver->eep_build) { 4757 sbuf_printf(buf, "EEPROM V%d.%d-%d", fw_ver->eep_major, 4758 fw_ver->eep_minor, fw_ver->eep_build); 4759 space = " "; 4760 } 4761 4762 if (fw_ver->invm_major || fw_ver->invm_minor || fw_ver->invm_img_type) { 4763 sbuf_printf(buf, "%sNVM V%d.%d imgtype%d", 4764 space, fw_ver->invm_major, fw_ver->invm_minor, 4765 fw_ver->invm_img_type); 4766 space = " "; 4767 } 4768 4769 if (fw_ver->or_valid) { 4770 sbuf_printf(buf, "%sOption ROM V%d-b%d-p%d", 4771 space, fw_ver->or_major, fw_ver->or_build, 4772 fw_ver->or_patch); 4773 space = " "; 4774 } 4775 4776 if (fw_ver->etrack_id) 4777 sbuf_printf(buf, "%seTrack 0x%08x", space, fw_ver->etrack_id); 4778 } 4779 4780 static void 4781 em_print_fw_version(struct e1000_softc *sc ) 4782 { 4783 device_t dev = sc->dev; 4784 struct sbuf *buf; 4785 int error = 0; 4786 4787 buf = sbuf_new_auto(); 4788 if (!buf) { 4789 device_printf(dev, "Could not allocate sbuf for output.\n"); 4790 return; 4791 } 4792 4793 em_sbuf_fw_version(&sc->fw_ver, buf); 4794 4795 error = sbuf_finish(buf); 4796 if (error) 4797 device_printf(dev, "Error finishing sbuf: %d\n", error); 4798 else if (sbuf_len(buf)) 4799 device_printf(dev, "%s\n", sbuf_data(buf)); 4800 4801 sbuf_delete(buf); 4802 } 4803 4804 static int 4805 em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS) 4806 { 4807 struct e1000_softc *sc = (struct e1000_softc *)arg1; 4808 device_t dev = sc->dev; 4809 struct sbuf *buf; 4810 int error = 0; 4811 4812 buf = sbuf_new_for_sysctl(NULL, NULL, 128, req); 4813 if (!buf) { 4814 device_printf(dev, "Could not allocate sbuf for output.\n"); 4815 return (ENOMEM); 4816 } 4817 4818 em_sbuf_fw_version(&sc->fw_ver, buf); 4819 4820 error = sbuf_finish(buf); 4821 if (error) 4822 device_printf(dev, "Error finishing sbuf: %d\n", error); 4823 4824 sbuf_delete(buf); 4825 4826 return (0); 4827 } 4828 4829 /********************************************************************** 4830 * 4831 * This routine provides a way to dump out the adapter eeprom, 4832 * often a useful debug/service tool. This only dumps the first 4833 * 32 words, stuff that matters is in that extent. 4834 * 4835 **********************************************************************/ 4836 static int 4837 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS) 4838 { 4839 struct e1000_softc *sc = (struct e1000_softc *)arg1; 4840 int error; 4841 int result; 4842 4843 result = -1; 4844 error = sysctl_handle_int(oidp, &result, 0, req); 4845 4846 if (error || !req->newptr) 4847 return (error); 4848 4849 /* 4850 * This value will cause a hex dump of the 4851 * first 32 16-bit words of the EEPROM to 4852 * the screen. 4853 */ 4854 if (result == 1) 4855 em_print_nvm_info(sc); 4856 4857 return (error); 4858 } 4859 4860 static void 4861 em_print_nvm_info(struct e1000_softc *sc) 4862 { 4863 struct e1000_hw *hw = &sc->hw; 4864 struct sx *iflib_ctx_lock = iflib_ctx_lock_get(sc->ctx); 4865 u16 eeprom_data; 4866 int i, j, row = 0; 4867 4868 /* Its a bit crude, but it gets the job done */ 4869 printf("\nInterface EEPROM Dump:\n"); 4870 printf("Offset\n0x0000 "); 4871 4872 /* We rely on the IFLIB_CTX_LOCK as part of NVM locking model */ 4873 sx_xlock(iflib_ctx_lock); 4874 ASSERT_CTX_LOCK_HELD(hw); 4875 for (i = 0, j = 0; i < 32; i++, j++) { 4876 if (j == 8) { /* Make the offset block */ 4877 j = 0; ++row; 4878 printf("\n0x00%x0 ",row); 4879 } 4880 e1000_read_nvm(hw, i, 1, &eeprom_data); 4881 printf("%04x ", eeprom_data); 4882 } 4883 sx_xunlock(iflib_ctx_lock); 4884 printf("\n"); 4885 } 4886 4887 static int 4888 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS) 4889 { 4890 struct em_int_delay_info *info; 4891 struct e1000_softc *sc; 4892 u32 regval; 4893 int error, usecs, ticks; 4894 4895 info = (struct em_int_delay_info *) arg1; 4896 usecs = info->value; 4897 error = sysctl_handle_int(oidp, &usecs, 0, req); 4898 if (error != 0 || req->newptr == NULL) 4899 return (error); 4900 if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535)) 4901 return (EINVAL); 4902 info->value = usecs; 4903 ticks = EM_USECS_TO_TICKS(usecs); 4904 if (info->offset == E1000_ITR) /* units are 256ns here */ 4905 ticks *= 4; 4906 4907 sc = info->sc; 4908 4909 regval = E1000_READ_OFFSET(&sc->hw, info->offset); 4910 regval = (regval & ~0xffff) | (ticks & 0xffff); 4911 /* Handle a few special cases. */ 4912 switch (info->offset) { 4913 case E1000_RDTR: 4914 break; 4915 case E1000_TIDV: 4916 if (ticks == 0) { 4917 sc->txd_cmd &= ~E1000_TXD_CMD_IDE; 4918 /* Don't write 0 into the TIDV register. */ 4919 regval++; 4920 } else 4921 sc->txd_cmd |= E1000_TXD_CMD_IDE; 4922 break; 4923 } 4924 E1000_WRITE_OFFSET(&sc->hw, info->offset, regval); 4925 return (0); 4926 } 4927 4928 static void 4929 em_add_int_delay_sysctl(struct e1000_softc *sc, const char *name, 4930 const char *description, struct em_int_delay_info *info, 4931 int offset, int value) 4932 { 4933 info->sc = sc; 4934 info->offset = offset; 4935 info->value = value; 4936 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev), 4937 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), 4938 OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 4939 info, 0, em_sysctl_int_delay, "I", description); 4940 } 4941 4942 /* 4943 * Set flow control using sysctl: 4944 * Flow control values: 4945 * 0 - off 4946 * 1 - rx pause 4947 * 2 - tx pause 4948 * 3 - full 4949 */ 4950 static int 4951 em_set_flowcntl(SYSCTL_HANDLER_ARGS) 4952 { 4953 int error; 4954 static int input = 3; /* default is full */ 4955 struct e1000_softc *sc = (struct e1000_softc *) arg1; 4956 4957 error = sysctl_handle_int(oidp, &input, 0, req); 4958 4959 if ((error) || (req->newptr == NULL)) 4960 return (error); 4961 4962 if (input == sc->fc) /* no change? */ 4963 return (error); 4964 4965 switch (input) { 4966 case e1000_fc_rx_pause: 4967 case e1000_fc_tx_pause: 4968 case e1000_fc_full: 4969 case e1000_fc_none: 4970 sc->hw.fc.requested_mode = input; 4971 sc->fc = input; 4972 break; 4973 default: 4974 /* Do nothing */ 4975 return (error); 4976 } 4977 4978 sc->hw.fc.current_mode = sc->hw.fc.requested_mode; 4979 e1000_force_mac_fc(&sc->hw); 4980 return (error); 4981 } 4982 4983 /* 4984 * Manage DMA Coalesce: 4985 * Control values: 4986 * 0/1 - off/on 4987 * Legal timer values are: 4988 * 250,500,1000-10000 in thousands 4989 */ 4990 static int 4991 igb_sysctl_dmac(SYSCTL_HANDLER_ARGS) 4992 { 4993 struct e1000_softc *sc = (struct e1000_softc *) arg1; 4994 int error; 4995 4996 error = sysctl_handle_int(oidp, &sc->dmac, 0, req); 4997 4998 if ((error) || (req->newptr == NULL)) 4999 return (error); 5000 5001 switch (sc->dmac) { 5002 case 0: 5003 /* Disabling */ 5004 break; 5005 case 1: /* Just enable and use default */ 5006 sc->dmac = 1000; 5007 break; 5008 case 250: 5009 case 500: 5010 case 1000: 5011 case 2000: 5012 case 3000: 5013 case 4000: 5014 case 5000: 5015 case 6000: 5016 case 7000: 5017 case 8000: 5018 case 9000: 5019 case 10000: 5020 /* Legal values - allow */ 5021 break; 5022 default: 5023 /* Do nothing, illegal value */ 5024 sc->dmac = 0; 5025 return (EINVAL); 5026 } 5027 /* Reinit the interface */ 5028 em_if_init(sc->ctx); 5029 return (error); 5030 } 5031 5032 /* 5033 * Manage Energy Efficient Ethernet: 5034 * Control values: 5035 * 0/1 - enabled/disabled 5036 */ 5037 static int 5038 em_sysctl_eee(SYSCTL_HANDLER_ARGS) 5039 { 5040 struct e1000_softc *sc = (struct e1000_softc *) arg1; 5041 int error, value; 5042 5043 if (sc->hw.mac.type < igb_mac_min) 5044 value = sc->hw.dev_spec.ich8lan.eee_disable; 5045 else 5046 value = sc->hw.dev_spec._82575.eee_disable; 5047 error = sysctl_handle_int(oidp, &value, 0, req); 5048 if (error || req->newptr == NULL) 5049 return (error); 5050 if (sc->hw.mac.type < igb_mac_min) 5051 sc->hw.dev_spec.ich8lan.eee_disable = (value != 0); 5052 else 5053 sc->hw.dev_spec._82575.eee_disable = (value != 0); 5054 em_if_init(sc->ctx); 5055 5056 return (0); 5057 } 5058 5059 static int 5060 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS) 5061 { 5062 struct e1000_softc *sc; 5063 int error; 5064 int result; 5065 5066 result = -1; 5067 error = sysctl_handle_int(oidp, &result, 0, req); 5068 5069 if (error || !req->newptr) 5070 return (error); 5071 5072 if (result == 1) { 5073 sc = (struct e1000_softc *) arg1; 5074 em_print_debug_info(sc); 5075 } 5076 5077 return (error); 5078 } 5079 5080 static int 5081 em_get_rs(SYSCTL_HANDLER_ARGS) 5082 { 5083 struct e1000_softc *sc = (struct e1000_softc *) arg1; 5084 int error; 5085 int result; 5086 5087 result = 0; 5088 error = sysctl_handle_int(oidp, &result, 0, req); 5089 5090 if (error || !req->newptr || result != 1) 5091 return (error); 5092 em_dump_rs(sc); 5093 5094 return (error); 5095 } 5096 5097 static void 5098 em_if_debug(if_ctx_t ctx) 5099 { 5100 em_dump_rs(iflib_get_softc(ctx)); 5101 } 5102 5103 /* 5104 * This routine is meant to be fluid, add whatever is 5105 * needed for debugging a problem. -jfv 5106 */ 5107 static void 5108 em_print_debug_info(struct e1000_softc *sc) 5109 { 5110 device_t dev = iflib_get_dev(sc->ctx); 5111 if_t ifp = iflib_get_ifp(sc->ctx); 5112 struct tx_ring *txr = &sc->tx_queues->txr; 5113 struct rx_ring *rxr = &sc->rx_queues->rxr; 5114 5115 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 5116 printf("Interface is RUNNING "); 5117 else 5118 printf("Interface is NOT RUNNING\n"); 5119 5120 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) 5121 printf("and INACTIVE\n"); 5122 else 5123 printf("and ACTIVE\n"); 5124 5125 for (int i = 0; i < sc->tx_num_queues; i++, txr++) { 5126 device_printf(dev, "TX Queue %d ------\n", i); 5127 device_printf(dev, "hw tdh = %d, hw tdt = %d\n", 5128 E1000_READ_REG(&sc->hw, E1000_TDH(i)), 5129 E1000_READ_REG(&sc->hw, E1000_TDT(i))); 5130 5131 } 5132 for (int j=0; j < sc->rx_num_queues; j++, rxr++) { 5133 device_printf(dev, "RX Queue %d ------\n", j); 5134 device_printf(dev, "hw rdh = %d, hw rdt = %d\n", 5135 E1000_READ_REG(&sc->hw, E1000_RDH(j)), 5136 E1000_READ_REG(&sc->hw, E1000_RDT(j))); 5137 } 5138 } 5139 5140 /* 5141 * 82574 only: 5142 * Write a new value to the EEPROM increasing the number of MSI-X 5143 * vectors from 3 to 5, for proper multiqueue support. 5144 */ 5145 static void 5146 em_enable_vectors_82574(if_ctx_t ctx) 5147 { 5148 struct e1000_softc *sc = iflib_get_softc(ctx); 5149 struct e1000_hw *hw = &sc->hw; 5150 device_t dev = iflib_get_dev(ctx); 5151 u16 edata; 5152 5153 e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata); 5154 if (bootverbose) 5155 device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata); 5156 if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) { 5157 device_printf(dev, "Writing to eeprom: increasing " 5158 "reported MSI-X vectors from 3 to 5...\n"); 5159 edata &= ~(EM_NVM_MSIX_N_MASK); 5160 edata |= 4 << EM_NVM_MSIX_N_SHIFT; 5161 e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata); 5162 e1000_update_nvm_checksum(hw); 5163 device_printf(dev, "Writing to eeprom: done\n"); 5164 } 5165 } 5166