xref: /freebsd/sys/dev/e1000/if_em.c (revision b4a58fbf640409a1e507d9f7b411c83a3f83a2f3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* $FreeBSD$ */
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33 
34 #define em_mac_min e1000_82571
35 #define igb_mac_min e1000_82575
36 
37 /*********************************************************************
38  *  Driver version:
39  *********************************************************************/
40 char em_driver_version[] = "7.6.1-k";
41 
42 /*********************************************************************
43  *  PCI Device ID Table
44  *
45  *  Used by probe to select devices to load on
46  *  Last field stores an index into e1000_strings
47  *  Last entry must be all 0s
48  *
49  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
50  *********************************************************************/
51 
52 static pci_vendor_info_t em_vendor_info_array[] =
53 {
54 	/* Intel(R) - lem-class legacy devices */
55 	PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) Legacy PRO/1000 MT 82540EM"),
56 	PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) Legacy PRO/1000 MT 82540EM (LOM)"),
57 	PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) Legacy PRO/1000 MT 82540EP"),
58 	PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) Legacy PRO/1000 MT 82540EP (LOM)"),
59 	PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) Legacy PRO/1000 MT 82540EP (Mobile)"),
60 
61 	PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) Legacy PRO/1000 MT 82541EI (Copper)"),
62 	PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) Legacy PRO/1000 82541ER"),
63 	PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) Legacy PRO/1000 MT 82541ER"),
64 	PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541EI (Mobile)"),
65 	PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) Legacy PRO/1000 MT 82541GI"),
66 	PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) Legacy PRO/1000 GT 82541PI"),
67 	PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541GI (Mobile)"),
68 
69 	PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) Legacy PRO/1000 82542 (Fiber)"),
70 
71 	PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) Legacy PRO/1000 F 82543GC (Fiber)"),
72 	PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) Legacy PRO/1000 T 82543GC (Copper)"),
73 
74 	PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) Legacy PRO/1000 XT 82544EI (Copper)"),
75 	PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) Legacy PRO/1000 XF 82544EI (Fiber)"),
76 	PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) Legacy PRO/1000 T 82544GC (Copper)"),
77 	PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) Legacy PRO/1000 XT 82544GC (LOM)"),
78 
79 	PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545EM (Copper)"),
80 	PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545EM (Fiber)"),
81 	PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545GM (Copper)"),
82 	PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545GM (Fiber)"),
83 	PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) Legacy PRO/1000 MB 82545GM (SERDES)"),
84 
85 	PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Copper)"),
86 	PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546EB (Fiber)"),
87 	PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Quad Copper"),
88 	PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546GB (Copper)"),
89 	PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546GB (Fiber)"),
90 	PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) Legacy PRO/1000 MB 82546GB (SERDES)"),
91 	PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) Legacy PRO/1000 P 82546GB (PCIe)"),
92 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
93 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
94 
95 	PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) Legacy PRO/1000 CT 82547EI"),
96 	PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) Legacy PRO/1000 CT 82547EI (Mobile)"),
97 	PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) Legacy PRO/1000 CT 82547GI"),
98 
99 	/* Intel(R) - em-class devices */
100 	PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Copper)"),
101 	PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 PF 82571EB/82571GB (Fiber)"),
102 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 PB 82571EB (SERDES)"),
103 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 82571EB (Dual Mezzanine)"),
104 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 82571EB (Quad Mezzanine)"),
105 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
106 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
107 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 PF 82571EB (Quad Fiber)"),
108 	PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571PT (Quad Copper)"),
109 	PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 PT 82572EI (Copper)"),
110 	PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 PT 82572EI (Copper)"),
111 	PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 PF 82572EI (Fiber)"),
112 	PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 82572EI (SERDES)"),
113 	PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 82573E (Copper)"),
114 	PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 82573E AMT (Copper)"),
115 	PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 82573L"),
116 	PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) 82583V"),
117 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) 80003ES2LAN (Copper)"),
118 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) 80003ES2LAN (SERDES)"),
119 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) 80003ES2LAN (Dual Copper)"),
120 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) 80003ES2LAN (Dual SERDES)"),
121 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) 82566MM ICH8 AMT (Mobile)"),
122 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) 82566DM ICH8 AMT"),
123 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) 82566DC ICH8"),
124 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) 82562V ICH8"),
125 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) 82562GT ICH8"),
126 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) 82562G ICH8"),
127 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) 82566MC ICH8"),
128 	PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) 82567V-3 ICH8"),
129 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) 82567LM ICH9 AMT"),
130 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) 82566DM-2 ICH9 AMT"),
131 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) 82566DC-2 ICH9"),
132 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) 82567LF ICH9"),
133 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) 82567V ICH9"),
134 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) 82562V-2 ICH9"),
135 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) 82562GT-2 ICH9"),
136 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) 82562G-2 ICH9"),
137 	PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) 82567LM-4 ICH9"),
138 	PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) Gigabit CT 82574L"),
139 	PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) 82574L-Apple"),
140 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) 82567LM-2 ICH10"),
141 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) 82567LF-2 ICH10"),
142 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) 82567V-2 ICH10"),
143 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) 82567LM-3 ICH10"),
144 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) 82567LF-3 ICH10"),
145 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) 82567V-4 ICH10"),
146 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) 82577LM"),
147 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) 82577LC"),
148 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) 82578DM"),
149 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) 82578DC"),
150 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) 82579LM"),
151 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) 82579V"),
152 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) I217-LM LPT"),
153 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) I217-V LPT"),
154 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) I218-LM LPTLP"),
155 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) I218-V LPTLP"),
156 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) I218-LM (2)"),
157 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) I218-V (2)"),
158 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) I218-LM (3)"),
159 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) I218-V (3)"),
160 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) I219-LM SPT"),
161 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) I219-V SPT"),
162 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) I219-LM SPT-H(2)"),
163 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) I219-V SPT-H(2)"),
164 	PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) I219-LM LBG(3)"),
165 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) I219-LM SPT(4)"),
166 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) I219-V SPT(4)"),
167 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) I219-LM SPT(5)"),
168 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) I219-V SPT(5)"),
169 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) I219-LM CNP(6)"),
170 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) I219-V CNP(6)"),
171 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) I219-LM CNP(7)"),
172 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) I219-V CNP(7)"),
173 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) I219-LM ICP(8)"),
174 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) I219-V ICP(8)"),
175 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) I219-LM ICP(9)"),
176 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) I219-V ICP(9)"),
177 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10, "Intel(R) I219-LM CMP(10)"),
178 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10, "Intel(R) I219-V CMP(10)"),
179 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11, "Intel(R) I219-LM CMP(11)"),
180 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11, "Intel(R) I219-V CMP(11)"),
181 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12, "Intel(R) I219-LM CMP(12)"),
182 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12, "Intel(R) I219-V CMP(12)"),
183 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM13, "Intel(R) I219-LM TGP(13)"),
184 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V13, "Intel(R) I219-V TGP(13)"),
185 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM14, "Intel(R) I219-LM TGP(14)"),
186 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V14, "Intel(R) I219-V GTP(14)"),
187 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM15, "Intel(R) I219-LM TGP(15)"),
188 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V15, "Intel(R) I219-V TGP(15)"),
189 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM16, "Intel(R) I219-LM ADL(16)"),
190 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V16, "Intel(R) I219-V ADL(16)"),
191 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM17, "Intel(R) I219-LM ADL(17)"),
192 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V17, "Intel(R) I219-V ADL(17)"),
193 	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM18, "Intel(R) I219-LM MTP(18)"),
194 	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V18, "Intel(R) I219-V MTP(18)"),
195 	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM19, "Intel(R) I219-LM MTP(19)"),
196 	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V19, "Intel(R) I219-V MTP(19)"),
197 	/* required last entry */
198 	PVID_END
199 };
200 
201 static pci_vendor_info_t igb_vendor_info_array[] =
202 {
203 	/* Intel(R) - igb-class devices */
204 	PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 82575EB (Copper)"),
205 	PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 82575EB (SERDES)"),
206 	PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 VT 82575GB (Quad Copper)"),
207 	PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 82576"),
208 	PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 82576NS"),
209 	PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 82576NS (SERDES)"),
210 	PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 EF 82576 (Dual Fiber)"),
211 	PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 82576 (Dual SERDES)"),
212 	PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 ET 82576 (Quad SERDES)"),
213 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 ET 82576 (Quad Copper)"),
214 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 ET(2) 82576 (Quad Copper)"),
215 	PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 82576 Virtual Function"),
216 	PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) I340 82580 (Copper)"),
217 	PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) I340 82580 (Fiber)"),
218 	PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) I340 82580 (SERDES)"),
219 	PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) I340 82580 (SGMII)"),
220 	PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) I340-T2 82580 (Dual Copper)"),
221 	PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) I340-F4 82580 (Quad Fiber)"),
222 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) DH89XXCC (SERDES)"),
223 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) I347-AT4 DH89XXCC"),
224 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) DH89XXCC (SFP)"),
225 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) DH89XXCC (Backplane)"),
226 	PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) I350 (Copper)"),
227 	PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) I350 (Fiber)"),
228 	PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) I350 (SERDES)"),
229 	PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) I350 (SGMII)"),
230 	PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) I350 Virtual Function"),
231 	PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) I210 (Copper)"),
232 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) I210 IT (Copper)"),
233 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) I210 (OEM)"),
234 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) I210 Flashless (Copper)"),
235 	PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) I210 Flashless (SERDES)"),
236 	PVID(0x8086, E1000_DEV_ID_I210_SGMII_FLASHLESS, "Intel(R) I210 Flashless (SGMII)"),
237 	PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) I210 (Fiber)"),
238 	PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) I210 (SERDES)"),
239 	PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) I210 (SGMII)"),
240 	PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) I211 (Copper)"),
241 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) I354 (1.0 GbE Backplane)"),
242 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) I354 (2.5 GbE Backplane)"),
243 	PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) I354 (SGMII)"),
244 	/* required last entry */
245 	PVID_END
246 };
247 
248 /*********************************************************************
249  *  Function prototypes
250  *********************************************************************/
251 static void	*em_register(device_t);
252 static void	*igb_register(device_t);
253 static int	em_if_attach_pre(if_ctx_t);
254 static int	em_if_attach_post(if_ctx_t);
255 static int	em_if_detach(if_ctx_t);
256 static int	em_if_shutdown(if_ctx_t);
257 static int	em_if_suspend(if_ctx_t);
258 static int	em_if_resume(if_ctx_t);
259 
260 static int	em_if_tx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int, int);
261 static int	em_if_rx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int, int);
262 static void	em_if_queues_free(if_ctx_t);
263 
264 static uint64_t	em_if_get_counter(if_ctx_t, ift_counter);
265 static void	em_if_init(if_ctx_t);
266 static void	em_if_stop(if_ctx_t);
267 static void	em_if_media_status(if_ctx_t, struct ifmediareq *);
268 static int	em_if_media_change(if_ctx_t);
269 static int	em_if_mtu_set(if_ctx_t, uint32_t);
270 static void	em_if_timer(if_ctx_t, uint16_t);
271 static void	em_if_vlan_register(if_ctx_t, u16);
272 static void	em_if_vlan_unregister(if_ctx_t, u16);
273 static void	em_if_watchdog_reset(if_ctx_t);
274 static bool	em_if_needs_restart(if_ctx_t, enum iflib_restart_event);
275 
276 static void	em_identify_hardware(if_ctx_t);
277 static int	em_allocate_pci_resources(if_ctx_t);
278 static void	em_free_pci_resources(if_ctx_t);
279 static void	em_reset(if_ctx_t);
280 static int	em_setup_interface(if_ctx_t);
281 static int	em_setup_msix(if_ctx_t);
282 
283 static void	em_initialize_transmit_unit(if_ctx_t);
284 static void	em_initialize_receive_unit(if_ctx_t);
285 
286 static void	em_if_intr_enable(if_ctx_t);
287 static void	em_if_intr_disable(if_ctx_t);
288 static void	igb_if_intr_enable(if_ctx_t);
289 static void	igb_if_intr_disable(if_ctx_t);
290 static int	em_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
291 static int	em_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
292 static int	igb_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
293 static int	igb_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
294 static void	em_if_multi_set(if_ctx_t);
295 static void	em_if_update_admin_status(if_ctx_t);
296 static void	em_if_debug(if_ctx_t);
297 static void	em_update_stats_counters(struct e1000_softc *);
298 static void	em_add_hw_stats(struct e1000_softc *);
299 static int	em_if_set_promisc(if_ctx_t, int);
300 static bool	em_if_vlan_filter_capable(struct e1000_softc *);
301 static bool	em_if_vlan_filter_used(struct e1000_softc *);
302 static void	em_if_vlan_filter_enable(struct e1000_softc *);
303 static void	em_if_vlan_filter_disable(struct e1000_softc *);
304 static void	em_if_vlan_filter_write(struct e1000_softc *);
305 static void	em_setup_vlan_hw_support(struct e1000_softc *);
306 static int	em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
307 static void	em_print_nvm_info(struct e1000_softc *);
308 static void	em_fw_version_locked(if_ctx_t);
309 static void	em_sbuf_fw_version(struct e1000_fw_version *, struct sbuf *);
310 static void	em_print_fw_version(struct e1000_softc *);
311 static int	em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS);
312 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
313 static int	em_get_rs(SYSCTL_HANDLER_ARGS);
314 static void	em_print_debug_info(struct e1000_softc *);
315 static int 	em_is_valid_ether_addr(u8 *);
316 static int	em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
317 static void	em_add_int_delay_sysctl(struct e1000_softc *, const char *,
318 		    const char *, struct em_int_delay_info *, int, int);
319 /* Management and WOL Support */
320 static void	em_init_manageability(struct e1000_softc *);
321 static void	em_release_manageability(struct e1000_softc *);
322 static void	em_get_hw_control(struct e1000_softc *);
323 static void	em_release_hw_control(struct e1000_softc *);
324 static void	em_get_wakeup(if_ctx_t);
325 static void	em_enable_wakeup(if_ctx_t);
326 static int	em_enable_phy_wakeup(struct e1000_softc *);
327 static void	em_disable_aspm(struct e1000_softc *);
328 
329 int		em_intr(void *);
330 
331 /* MSI-X handlers */
332 static int	em_if_msix_intr_assign(if_ctx_t, int);
333 static int	em_msix_link(void *);
334 static void	em_handle_link(void *);
335 
336 static void	em_enable_vectors_82574(if_ctx_t);
337 
338 static int	em_set_flowcntl(SYSCTL_HANDLER_ARGS);
339 static int	em_sysctl_eee(SYSCTL_HANDLER_ARGS);
340 static void	em_if_led_func(if_ctx_t, int);
341 
342 static int	em_get_regs(SYSCTL_HANDLER_ARGS);
343 
344 static void	lem_smartspeed(struct e1000_softc *);
345 static void	igb_configure_queues(struct e1000_softc *);
346 
347 
348 /*********************************************************************
349  *  FreeBSD Device Interface Entry Points
350  *********************************************************************/
351 static device_method_t em_methods[] = {
352 	/* Device interface */
353 	DEVMETHOD(device_register, em_register),
354 	DEVMETHOD(device_probe, iflib_device_probe),
355 	DEVMETHOD(device_attach, iflib_device_attach),
356 	DEVMETHOD(device_detach, iflib_device_detach),
357 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
358 	DEVMETHOD(device_suspend, iflib_device_suspend),
359 	DEVMETHOD(device_resume, iflib_device_resume),
360 	DEVMETHOD_END
361 };
362 
363 static device_method_t igb_methods[] = {
364 	/* Device interface */
365 	DEVMETHOD(device_register, igb_register),
366 	DEVMETHOD(device_probe, iflib_device_probe),
367 	DEVMETHOD(device_attach, iflib_device_attach),
368 	DEVMETHOD(device_detach, iflib_device_detach),
369 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
370 	DEVMETHOD(device_suspend, iflib_device_suspend),
371 	DEVMETHOD(device_resume, iflib_device_resume),
372 	DEVMETHOD_END
373 };
374 
375 
376 static driver_t em_driver = {
377 	"em", em_methods, sizeof(struct e1000_softc),
378 };
379 
380 static devclass_t em_devclass;
381 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
382 
383 MODULE_DEPEND(em, pci, 1, 1, 1);
384 MODULE_DEPEND(em, ether, 1, 1, 1);
385 MODULE_DEPEND(em, iflib, 1, 1, 1);
386 
387 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
388 
389 static driver_t igb_driver = {
390 	"igb", igb_methods, sizeof(struct e1000_softc),
391 };
392 
393 static devclass_t igb_devclass;
394 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
395 
396 MODULE_DEPEND(igb, pci, 1, 1, 1);
397 MODULE_DEPEND(igb, ether, 1, 1, 1);
398 MODULE_DEPEND(igb, iflib, 1, 1, 1);
399 
400 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
401 
402 static device_method_t em_if_methods[] = {
403 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
404 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
405 	DEVMETHOD(ifdi_detach, em_if_detach),
406 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
407 	DEVMETHOD(ifdi_suspend, em_if_suspend),
408 	DEVMETHOD(ifdi_resume, em_if_resume),
409 	DEVMETHOD(ifdi_init, em_if_init),
410 	DEVMETHOD(ifdi_stop, em_if_stop),
411 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
412 	DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
413 	DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
414 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
415 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
416 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
417 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
418 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
419 	DEVMETHOD(ifdi_media_status, em_if_media_status),
420 	DEVMETHOD(ifdi_media_change, em_if_media_change),
421 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
422 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
423 	DEVMETHOD(ifdi_timer, em_if_timer),
424 	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
425 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
426 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
427 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
428 	DEVMETHOD(ifdi_led_func, em_if_led_func),
429 	DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
430 	DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
431 	DEVMETHOD(ifdi_debug, em_if_debug),
432 	DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
433 	DEVMETHOD_END
434 };
435 
436 static driver_t em_if_driver = {
437 	"em_if", em_if_methods, sizeof(struct e1000_softc)
438 };
439 
440 static device_method_t igb_if_methods[] = {
441 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
442 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
443 	DEVMETHOD(ifdi_detach, em_if_detach),
444 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
445 	DEVMETHOD(ifdi_suspend, em_if_suspend),
446 	DEVMETHOD(ifdi_resume, em_if_resume),
447 	DEVMETHOD(ifdi_init, em_if_init),
448 	DEVMETHOD(ifdi_stop, em_if_stop),
449 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
450 	DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
451 	DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
452 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
453 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
454 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
455 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
456 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
457 	DEVMETHOD(ifdi_media_status, em_if_media_status),
458 	DEVMETHOD(ifdi_media_change, em_if_media_change),
459 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
460 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
461 	DEVMETHOD(ifdi_timer, em_if_timer),
462 	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
463 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
464 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
465 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
466 	DEVMETHOD(ifdi_led_func, em_if_led_func),
467 	DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
468 	DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
469 	DEVMETHOD(ifdi_debug, em_if_debug),
470 	DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
471 	DEVMETHOD_END
472 };
473 
474 static driver_t igb_if_driver = {
475 	"igb_if", igb_if_methods, sizeof(struct e1000_softc)
476 };
477 
478 /*********************************************************************
479  *  Tunable default values.
480  *********************************************************************/
481 
482 #define EM_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
483 #define EM_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
484 
485 #define MAX_INTS_PER_SEC	8000
486 #define DEFAULT_ITR		(1000000000/(MAX_INTS_PER_SEC * 256))
487 
488 /* Allow common code without TSO */
489 #ifndef CSUM_TSO
490 #define CSUM_TSO	0
491 #endif
492 
493 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
494     "EM driver parameters");
495 
496 static int em_disable_crc_stripping = 0;
497 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
498     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
499 
500 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
501 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
502 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
503     0, "Default transmit interrupt delay in usecs");
504 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
505     0, "Default receive interrupt delay in usecs");
506 
507 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
508 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
509 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
510     &em_tx_abs_int_delay_dflt, 0,
511     "Default transmit interrupt delay limit in usecs");
512 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
513     &em_rx_abs_int_delay_dflt, 0,
514     "Default receive interrupt delay limit in usecs");
515 
516 static int em_smart_pwr_down = false;
517 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
518     0, "Set to true to leave smart power down enabled on newer adapters");
519 
520 /* Controls whether promiscuous also shows bad packets */
521 static int em_debug_sbp = false;
522 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
523     "Show bad packets in promiscuous mode");
524 
525 /* How many packets rxeof tries to clean at a time */
526 static int em_rx_process_limit = 100;
527 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
528     &em_rx_process_limit, 0,
529     "Maximum number of received packets to process "
530     "at a time, -1 means unlimited");
531 
532 /* Energy efficient ethernet - default to OFF */
533 static int eee_setting = 1;
534 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
535     "Enable Energy Efficient Ethernet");
536 
537 /*
538 ** Tuneable Interrupt rate
539 */
540 static int em_max_interrupt_rate = 8000;
541 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
542     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
543 
544 
545 
546 /* Global used in WOL setup with multiport cards */
547 static int global_quad_port_a = 0;
548 
549 extern struct if_txrx igb_txrx;
550 extern struct if_txrx em_txrx;
551 extern struct if_txrx lem_txrx;
552 
553 static struct if_shared_ctx em_sctx_init = {
554 	.isc_magic = IFLIB_MAGIC,
555 	.isc_q_align = PAGE_SIZE,
556 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
557 	.isc_tx_maxsegsize = PAGE_SIZE,
558 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
559 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
560 	.isc_rx_maxsize = MJUM9BYTES,
561 	.isc_rx_nsegments = 1,
562 	.isc_rx_maxsegsize = MJUM9BYTES,
563 	.isc_nfl = 1,
564 	.isc_nrxqs = 1,
565 	.isc_ntxqs = 1,
566 	.isc_admin_intrcnt = 1,
567 	.isc_vendor_info = em_vendor_info_array,
568 	.isc_driver_version = em_driver_version,
569 	.isc_driver = &em_if_driver,
570 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
571 
572 	.isc_nrxd_min = {EM_MIN_RXD},
573 	.isc_ntxd_min = {EM_MIN_TXD},
574 	.isc_nrxd_max = {EM_MAX_RXD},
575 	.isc_ntxd_max = {EM_MAX_TXD},
576 	.isc_nrxd_default = {EM_DEFAULT_RXD},
577 	.isc_ntxd_default = {EM_DEFAULT_TXD},
578 };
579 
580 static struct if_shared_ctx igb_sctx_init = {
581 	.isc_magic = IFLIB_MAGIC,
582 	.isc_q_align = PAGE_SIZE,
583 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
584 	.isc_tx_maxsegsize = PAGE_SIZE,
585 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
586 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
587 	.isc_rx_maxsize = MJUM9BYTES,
588 	.isc_rx_nsegments = 1,
589 	.isc_rx_maxsegsize = MJUM9BYTES,
590 	.isc_nfl = 1,
591 	.isc_nrxqs = 1,
592 	.isc_ntxqs = 1,
593 	.isc_admin_intrcnt = 1,
594 	.isc_vendor_info = igb_vendor_info_array,
595 	.isc_driver_version = em_driver_version,
596 	.isc_driver = &igb_if_driver,
597 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
598 
599 	.isc_nrxd_min = {EM_MIN_RXD},
600 	.isc_ntxd_min = {EM_MIN_TXD},
601 	.isc_nrxd_max = {IGB_MAX_RXD},
602 	.isc_ntxd_max = {IGB_MAX_TXD},
603 	.isc_nrxd_default = {EM_DEFAULT_RXD},
604 	.isc_ntxd_default = {EM_DEFAULT_TXD},
605 };
606 
607 /*****************************************************************
608  *
609  * Dump Registers
610  *
611  ****************************************************************/
612 #define IGB_REGS_LEN 739
613 
614 static int em_get_regs(SYSCTL_HANDLER_ARGS)
615 {
616 	struct e1000_softc *sc = (struct e1000_softc *)arg1;
617 	struct e1000_hw *hw = &sc->hw;
618 	struct sbuf *sb;
619 	u32 *regs_buff;
620 	int rc;
621 
622 	regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
623 	memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
624 
625 	rc = sysctl_wire_old_buffer(req, 0);
626 	MPASS(rc == 0);
627 	if (rc != 0) {
628 		free(regs_buff, M_DEVBUF);
629 		return (rc);
630 	}
631 
632 	sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
633 	MPASS(sb != NULL);
634 	if (sb == NULL) {
635 		free(regs_buff, M_DEVBUF);
636 		return (ENOMEM);
637 	}
638 
639 	/* General Registers */
640 	regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
641 	regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
642 	regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
643 	regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
644 	regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
645 	regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
646 	regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
647 	regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
648 	regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
649 	regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
650 	regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
651 	regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
652 	regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
653 	regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
654 	regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
655 	regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
656 	regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
657 	regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
658 	regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
659 	regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
660 	regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
661 	regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
662 
663 	sbuf_printf(sb, "General Registers\n");
664 	sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
665 	sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
666 	sbuf_printf(sb, "\tCTRL_EXT\t %08x\n\n", regs_buff[2]);
667 
668 	sbuf_printf(sb, "Interrupt Registers\n");
669 	sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
670 
671 	sbuf_printf(sb, "RX Registers\n");
672 	sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
673 	sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
674 	sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
675 	sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
676 	sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
677 	sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
678 	sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
679 
680 	sbuf_printf(sb, "TX Registers\n");
681 	sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
682 	sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
683 	sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
684 	sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
685 	sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
686 	sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
687 	sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
688 	sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
689 	sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
690 	sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
691 	sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
692 
693 	free(regs_buff, M_DEVBUF);
694 
695 #ifdef DUMP_DESCS
696 	{
697 		if_softc_ctx_t scctx = sc->shared;
698 		struct rx_ring *rxr = &rx_que->rxr;
699 		struct tx_ring *txr = &tx_que->txr;
700 		int ntxd = scctx->isc_ntxd[0];
701 		int nrxd = scctx->isc_nrxd[0];
702 		int j;
703 
704 	for (j = 0; j < nrxd; j++) {
705 		u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
706 		u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
707 		sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
708 	}
709 
710 	for (j = 0; j < min(ntxd, 256); j++) {
711 		unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
712 
713 		sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
714 			    j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
715 			    buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
716 
717 	}
718 	}
719 #endif
720 
721 	rc = sbuf_finish(sb);
722 	sbuf_delete(sb);
723 	return(rc);
724 }
725 
726 static void *
727 em_register(device_t dev)
728 {
729 	return (&em_sctx_init);
730 }
731 
732 static void *
733 igb_register(device_t dev)
734 {
735 	return (&igb_sctx_init);
736 }
737 
738 static int
739 em_set_num_queues(if_ctx_t ctx)
740 {
741 	struct e1000_softc *sc = iflib_get_softc(ctx);
742 	int maxqueues;
743 
744 	/* Sanity check based on HW */
745 	switch (sc->hw.mac.type) {
746 	case e1000_82576:
747 	case e1000_82580:
748 	case e1000_i350:
749 	case e1000_i354:
750 		maxqueues = 8;
751 		break;
752 	case e1000_i210:
753 	case e1000_82575:
754 		maxqueues = 4;
755 		break;
756 	case e1000_i211:
757 	case e1000_82574:
758 		maxqueues = 2;
759 		break;
760 	default:
761 		maxqueues = 1;
762 		break;
763 	}
764 
765 	return (maxqueues);
766 }
767 
768 #define	LEM_CAPS							\
769     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
770     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER
771 
772 #define	EM_CAPS								\
773     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
774     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |	\
775     IFCAP_LRO | IFCAP_VLAN_HWTSO
776 
777 #define	IGB_CAPS							\
778     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
779     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |	\
780     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 |\
781     IFCAP_TSO6
782 
783 /*********************************************************************
784  *  Device initialization routine
785  *
786  *  The attach entry point is called when the driver is being loaded.
787  *  This routine identifies the type of hardware, allocates all resources
788  *  and initializes the hardware.
789  *
790  *  return 0 on success, positive on failure
791  *********************************************************************/
792 static int
793 em_if_attach_pre(if_ctx_t ctx)
794 {
795 	struct e1000_softc *sc;
796 	if_softc_ctx_t scctx;
797 	device_t dev;
798 	struct e1000_hw *hw;
799 	struct sysctl_oid_list *child;
800 	struct sysctl_ctx_list *ctx_list;
801 	int error = 0;
802 
803 	INIT_DEBUGOUT("em_if_attach_pre: begin");
804 	dev = iflib_get_dev(ctx);
805 	sc = iflib_get_softc(ctx);
806 
807 	sc->ctx = sc->osdep.ctx = ctx;
808 	sc->dev = sc->osdep.dev = dev;
809 	scctx = sc->shared = iflib_get_softc_ctx(ctx);
810 	sc->media = iflib_get_media(ctx);
811 	hw = &sc->hw;
812 
813 	sc->tx_process_limit = scctx->isc_ntxd[0];
814 
815 	/* Determine hardware and mac info */
816 	em_identify_hardware(ctx);
817 
818 	/* SYSCTL stuff */
819 	ctx_list = device_get_sysctl_ctx(dev);
820 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
821 
822 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "nvm",
823 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
824 	    em_sysctl_nvm_info, "I", "NVM Information");
825 
826 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fw_version",
827 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
828 	    em_sysctl_print_fw_version, "A",
829 	    "Prints FW/NVM Versions");
830 
831 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "debug",
832 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
833 	    em_sysctl_debug_info, "I", "Debug Information");
834 
835 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fc",
836 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
837 	    em_set_flowcntl, "I", "Flow Control");
838 
839 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "reg_dump",
840 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
841 	    em_get_regs, "A", "Dump Registers");
842 
843 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "rs_dump",
844 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
845 	    em_get_rs, "I", "Dump RS indexes");
846 
847 	scctx->isc_tx_nsegments = EM_MAX_SCATTER;
848 	scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
849 	if (bootverbose)
850 		device_printf(dev, "attach_pre capping queues at %d\n",
851 		    scctx->isc_ntxqsets_max);
852 
853 	if (hw->mac.type >= igb_mac_min) {
854 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
855 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
856 		scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
857 		scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
858 		scctx->isc_txrx = &igb_txrx;
859 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
860 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
861 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
862 		scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
863 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
864 		     CSUM_IP6_TCP | CSUM_IP6_UDP;
865 		if (hw->mac.type != e1000_82575)
866 			scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
867 		/*
868 		** Some new devices, as with ixgbe, now may
869 		** use a different BAR, so we need to keep
870 		** track of which is used.
871 		*/
872 		scctx->isc_msix_bar = pci_msix_table_bar(dev);
873 	} else if (hw->mac.type >= em_mac_min) {
874 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
875 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
876 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
877 		scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
878 		scctx->isc_txrx = &em_txrx;
879 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
880 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
881 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
882 		scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
883 		/*
884 		 * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO}
885 		 * by default as we don't have workarounds for all associated
886 		 * silicon errata.  E. g., with several MACs such as 82573E,
887 		 * TSO only works at Gigabit speed and otherwise can cause the
888 		 * hardware to hang (which also would be next to impossible to
889 		 * work around given that already queued TSO-using descriptors
890 		 * would need to be flushed and vlan(4) reconfigured at runtime
891 		 * in case of a link speed change).  Moreover, MACs like 82579
892 		 * still can hang at Gigabit even with all publicly documented
893 		 * TSO workarounds implemented.  Generally, the penality of
894 		 * these workarounds is rather high and may involve copying
895 		 * mbuf data around so advantages of TSO lapse.  Still, TSO may
896 		 * work for a few MACs of this class - at least when sticking
897 		 * with Gigabit - in which case users may enable TSO manually.
898 		 */
899 		scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
900 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
901 		/*
902 		 * We support MSI-X with 82574 only, but indicate to iflib(4)
903 		 * that it shall give MSI at least a try with other devices.
904 		 */
905 		if (hw->mac.type == e1000_82574) {
906 			scctx->isc_msix_bar = pci_msix_table_bar(dev);;
907 		} else {
908 			scctx->isc_msix_bar = -1;
909 			scctx->isc_disable_msix = 1;
910 		}
911 	} else {
912 		scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
913 		scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
914 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
915 		scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
916 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP;
917 		scctx->isc_txrx = &lem_txrx;
918 		scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
919 		if (hw->mac.type < e1000_82543)
920 			scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM);
921 		/* 82541ER doesn't do HW tagging */
922 		if (hw->device_id == E1000_DEV_ID_82541ER || hw->device_id == E1000_DEV_ID_82541ER_LOM)
923 			scctx->isc_capenable &= ~IFCAP_VLAN_HWTAGGING;
924 		/* INTx only */
925 		scctx->isc_msix_bar = 0;
926 	}
927 
928 	/* Setup PCI resources */
929 	if (em_allocate_pci_resources(ctx)) {
930 		device_printf(dev, "Allocation of PCI resources failed\n");
931 		error = ENXIO;
932 		goto err_pci;
933 	}
934 
935 	/*
936 	** For ICH8 and family we need to
937 	** map the flash memory, and this
938 	** must happen after the MAC is
939 	** identified
940 	*/
941 	if ((hw->mac.type == e1000_ich8lan) ||
942 	    (hw->mac.type == e1000_ich9lan) ||
943 	    (hw->mac.type == e1000_ich10lan) ||
944 	    (hw->mac.type == e1000_pchlan) ||
945 	    (hw->mac.type == e1000_pch2lan) ||
946 	    (hw->mac.type == e1000_pch_lpt)) {
947 		int rid = EM_BAR_TYPE_FLASH;
948 		sc->flash = bus_alloc_resource_any(dev,
949 		    SYS_RES_MEMORY, &rid, RF_ACTIVE);
950 		if (sc->flash == NULL) {
951 			device_printf(dev, "Mapping of Flash failed\n");
952 			error = ENXIO;
953 			goto err_pci;
954 		}
955 		/* This is used in the shared code */
956 		hw->flash_address = (u8 *)sc->flash;
957 		sc->osdep.flash_bus_space_tag =
958 		    rman_get_bustag(sc->flash);
959 		sc->osdep.flash_bus_space_handle =
960 		    rman_get_bushandle(sc->flash);
961 	}
962 	/*
963 	** In the new SPT device flash is not  a
964 	** separate BAR, rather it is also in BAR0,
965 	** so use the same tag and an offset handle for the
966 	** FLASH read/write macros in the shared code.
967 	*/
968 	else if (hw->mac.type >= e1000_pch_spt) {
969 		sc->osdep.flash_bus_space_tag =
970 		    sc->osdep.mem_bus_space_tag;
971 		sc->osdep.flash_bus_space_handle =
972 		    sc->osdep.mem_bus_space_handle
973 		    + E1000_FLASH_BASE_ADDR;
974 	}
975 
976 	/* Do Shared Code initialization */
977 	error = e1000_setup_init_funcs(hw, true);
978 	if (error) {
979 		device_printf(dev, "Setup of Shared code failed, error %d\n",
980 		    error);
981 		error = ENXIO;
982 		goto err_pci;
983 	}
984 
985 	em_setup_msix(ctx);
986 	e1000_get_bus_info(hw);
987 
988 	/* Set up some sysctls for the tunable interrupt delays */
989 	em_add_int_delay_sysctl(sc, "rx_int_delay",
990 	    "receive interrupt delay in usecs", &sc->rx_int_delay,
991 	    E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
992 	em_add_int_delay_sysctl(sc, "tx_int_delay",
993 	    "transmit interrupt delay in usecs", &sc->tx_int_delay,
994 	    E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
995 	em_add_int_delay_sysctl(sc, "rx_abs_int_delay",
996 	    "receive interrupt delay limit in usecs",
997 	    &sc->rx_abs_int_delay,
998 	    E1000_REGISTER(hw, E1000_RADV),
999 	    em_rx_abs_int_delay_dflt);
1000 	em_add_int_delay_sysctl(sc, "tx_abs_int_delay",
1001 	    "transmit interrupt delay limit in usecs",
1002 	    &sc->tx_abs_int_delay,
1003 	    E1000_REGISTER(hw, E1000_TADV),
1004 	    em_tx_abs_int_delay_dflt);
1005 	em_add_int_delay_sysctl(sc, "itr",
1006 	    "interrupt delay limit in usecs/4",
1007 	    &sc->tx_itr,
1008 	    E1000_REGISTER(hw, E1000_ITR),
1009 	    DEFAULT_ITR);
1010 
1011 	hw->mac.autoneg = DO_AUTO_NEG;
1012 	hw->phy.autoneg_wait_to_complete = false;
1013 	hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1014 
1015 	if (hw->mac.type < em_mac_min) {
1016 		e1000_init_script_state_82541(hw, true);
1017 		e1000_set_tbi_compatibility_82543(hw, true);
1018 	}
1019 	/* Copper options */
1020 	if (hw->phy.media_type == e1000_media_type_copper) {
1021 		hw->phy.mdix = AUTO_ALL_MODES;
1022 		hw->phy.disable_polarity_correction = false;
1023 		hw->phy.ms_type = EM_MASTER_SLAVE;
1024 	}
1025 
1026 	/*
1027 	 * Set the frame limits assuming
1028 	 * standard ethernet sized frames.
1029 	 */
1030 	scctx->isc_max_frame_size = hw->mac.max_frame_size =
1031 	    ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
1032 
1033 	/*
1034 	 * This controls when hardware reports transmit completion
1035 	 * status.
1036 	 */
1037 	hw->mac.report_tx_early = 1;
1038 
1039 	/* Allocate multicast array memory. */
1040 	sc->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
1041 	    MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1042 	if (sc->mta == NULL) {
1043 		device_printf(dev, "Can not allocate multicast setup array\n");
1044 		error = ENOMEM;
1045 		goto err_late;
1046 	}
1047 
1048 	/* Check SOL/IDER usage */
1049 	if (e1000_check_reset_block(hw))
1050 		device_printf(dev, "PHY reset is blocked"
1051 			      " due to SOL/IDER session.\n");
1052 
1053 	/* Sysctl for setting Energy Efficient Ethernet */
1054 	hw->dev_spec.ich8lan.eee_disable = eee_setting;
1055 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "eee_control",
1056 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
1057 	    em_sysctl_eee, "I", "Disable Energy Efficient Ethernet");
1058 
1059 	/*
1060 	** Start from a known state, this is
1061 	** important in reading the nvm and
1062 	** mac from that.
1063 	*/
1064 	e1000_reset_hw(hw);
1065 
1066 	/* Make sure we have a good EEPROM before we read from it */
1067 	if (e1000_validate_nvm_checksum(hw) < 0) {
1068 		/*
1069 		** Some PCI-E parts fail the first check due to
1070 		** the link being in sleep state, call it again,
1071 		** if it fails a second time its a real issue.
1072 		*/
1073 		if (e1000_validate_nvm_checksum(hw) < 0) {
1074 			device_printf(dev,
1075 			    "The EEPROM Checksum Is Not Valid\n");
1076 			error = EIO;
1077 			goto err_late;
1078 		}
1079 	}
1080 
1081 	/* Copy the permanent MAC address out of the EEPROM */
1082 	if (e1000_read_mac_addr(hw) < 0) {
1083 		device_printf(dev, "EEPROM read error while reading MAC"
1084 			      " address\n");
1085 		error = EIO;
1086 		goto err_late;
1087 	}
1088 
1089 	if (!em_is_valid_ether_addr(hw->mac.addr)) {
1090 		if (sc->vf_ifp) {
1091 			ether_gen_addr(iflib_get_ifp(ctx),
1092 			    (struct ether_addr *)hw->mac.addr);
1093 		} else {
1094 			device_printf(dev, "Invalid MAC address\n");
1095 			error = EIO;
1096 			goto err_late;
1097 		}
1098 	}
1099 
1100 	/* Save the EEPROM/NVM versions, must be done under IFLIB_CTX_LOCK */
1101 	em_fw_version_locked(ctx);
1102 
1103 	em_print_fw_version(sc);
1104 
1105 	/* Disable ULP support */
1106 	e1000_disable_ulp_lpt_lp(hw, true);
1107 
1108 	/*
1109 	 * Get Wake-on-Lan and Management info for later use
1110 	 */
1111 	em_get_wakeup(ctx);
1112 
1113 	/* Enable only WOL MAGIC by default */
1114 	scctx->isc_capenable &= ~IFCAP_WOL;
1115 	if (sc->wol != 0)
1116 		scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1117 
1118 	iflib_set_mac(ctx, hw->mac.addr);
1119 
1120 	return (0);
1121 
1122 err_late:
1123 	em_release_hw_control(sc);
1124 err_pci:
1125 	em_free_pci_resources(ctx);
1126 	free(sc->mta, M_DEVBUF);
1127 
1128 	return (error);
1129 }
1130 
1131 static int
1132 em_if_attach_post(if_ctx_t ctx)
1133 {
1134 	struct e1000_softc *sc = iflib_get_softc(ctx);
1135 	struct e1000_hw *hw = &sc->hw;
1136 	int error = 0;
1137 
1138 	/* Setup OS specific network interface */
1139 	error = em_setup_interface(ctx);
1140 	if (error != 0) {
1141 		device_printf(sc->dev, "Interface setup failed: %d\n", error);
1142 		goto err_late;
1143 	}
1144 
1145 	em_reset(ctx);
1146 
1147 	/* Initialize statistics */
1148 	em_update_stats_counters(sc);
1149 	hw->mac.get_link_status = 1;
1150 	em_if_update_admin_status(ctx);
1151 	em_add_hw_stats(sc);
1152 
1153 	/* Non-AMT based hardware can now take control from firmware */
1154 	if (sc->has_manage && !sc->has_amt)
1155 		em_get_hw_control(sc);
1156 
1157 	INIT_DEBUGOUT("em_if_attach_post: end");
1158 
1159 	return (0);
1160 
1161 err_late:
1162 	/* upon attach_post() error, iflib calls _if_detach() to free resources. */
1163 	return (error);
1164 }
1165 
1166 /*********************************************************************
1167  *  Device removal routine
1168  *
1169  *  The detach entry point is called when the driver is being removed.
1170  *  This routine stops the adapter and deallocates all the resources
1171  *  that were allocated for driver operation.
1172  *
1173  *  return 0 on success, positive on failure
1174  *********************************************************************/
1175 static int
1176 em_if_detach(if_ctx_t ctx)
1177 {
1178 	struct e1000_softc	*sc = iflib_get_softc(ctx);
1179 
1180 	INIT_DEBUGOUT("em_if_detach: begin");
1181 
1182 	e1000_phy_hw_reset(&sc->hw);
1183 
1184 	em_release_manageability(sc);
1185 	em_release_hw_control(sc);
1186 	em_free_pci_resources(ctx);
1187 	free(sc->mta, M_DEVBUF);
1188 	sc->mta = NULL;
1189 
1190 	return (0);
1191 }
1192 
1193 /*********************************************************************
1194  *
1195  *  Shutdown entry point
1196  *
1197  **********************************************************************/
1198 
1199 static int
1200 em_if_shutdown(if_ctx_t ctx)
1201 {
1202 	return em_if_suspend(ctx);
1203 }
1204 
1205 /*
1206  * Suspend/resume device methods.
1207  */
1208 static int
1209 em_if_suspend(if_ctx_t ctx)
1210 {
1211 	struct e1000_softc *sc = iflib_get_softc(ctx);
1212 
1213 	em_release_manageability(sc);
1214 	em_release_hw_control(sc);
1215 	em_enable_wakeup(ctx);
1216 	return (0);
1217 }
1218 
1219 static int
1220 em_if_resume(if_ctx_t ctx)
1221 {
1222 	struct e1000_softc *sc = iflib_get_softc(ctx);
1223 
1224 	if (sc->hw.mac.type == e1000_pch2lan)
1225 		e1000_resume_workarounds_pchlan(&sc->hw);
1226 	em_if_init(ctx);
1227 	em_init_manageability(sc);
1228 
1229 	return(0);
1230 }
1231 
1232 static int
1233 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1234 {
1235 	int max_frame_size;
1236 	struct e1000_softc *sc = iflib_get_softc(ctx);
1237 	if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1238 
1239 	IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1240 
1241 	switch (sc->hw.mac.type) {
1242 	case e1000_82571:
1243 	case e1000_82572:
1244 	case e1000_ich9lan:
1245 	case e1000_ich10lan:
1246 	case e1000_pch2lan:
1247 	case e1000_pch_lpt:
1248 	case e1000_pch_spt:
1249 	case e1000_pch_cnp:
1250 	case e1000_pch_tgp:
1251 	case e1000_pch_adp:
1252 	case e1000_pch_mtp:
1253 	case e1000_82574:
1254 	case e1000_82583:
1255 	case e1000_80003es2lan:
1256 		/* 9K Jumbo Frame size */
1257 		max_frame_size = 9234;
1258 		break;
1259 	case e1000_pchlan:
1260 		max_frame_size = 4096;
1261 		break;
1262 	case e1000_82542:
1263 	case e1000_ich8lan:
1264 		/* Adapters that do not support jumbo frames */
1265 		max_frame_size = ETHER_MAX_LEN;
1266 		break;
1267 	default:
1268 		if (sc->hw.mac.type >= igb_mac_min)
1269 			max_frame_size = 9234;
1270 		else /* lem */
1271 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1272 	}
1273 	if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1274 		return (EINVAL);
1275 	}
1276 
1277 	scctx->isc_max_frame_size = sc->hw.mac.max_frame_size =
1278 	    mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1279 	return (0);
1280 }
1281 
1282 /*********************************************************************
1283  *  Init entry point
1284  *
1285  *  This routine is used in two ways. It is used by the stack as
1286  *  init entry point in network interface structure. It is also used
1287  *  by the driver as a hw/sw initialization routine to get to a
1288  *  consistent state.
1289  *
1290  **********************************************************************/
1291 static void
1292 em_if_init(if_ctx_t ctx)
1293 {
1294 	struct e1000_softc *sc = iflib_get_softc(ctx);
1295 	if_softc_ctx_t scctx = sc->shared;
1296 	struct ifnet *ifp = iflib_get_ifp(ctx);
1297 	struct em_tx_queue *tx_que;
1298 	int i;
1299 
1300 	INIT_DEBUGOUT("em_if_init: begin");
1301 
1302 	/* Get the latest mac address, User can use a LAA */
1303 	bcopy(if_getlladdr(ifp), sc->hw.mac.addr,
1304 	    ETHER_ADDR_LEN);
1305 
1306 	/* Put the address into the Receive Address Array */
1307 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1308 
1309 	/*
1310 	 * With the 82571 adapter, RAR[0] may be overwritten
1311 	 * when the other port is reset, we make a duplicate
1312 	 * in RAR[14] for that eventuality, this assures
1313 	 * the interface continues to function.
1314 	 */
1315 	if (sc->hw.mac.type == e1000_82571) {
1316 		e1000_set_laa_state_82571(&sc->hw, true);
1317 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1318 		    E1000_RAR_ENTRIES - 1);
1319 	}
1320 
1321 
1322 	/* Initialize the hardware */
1323 	em_reset(ctx);
1324 	em_if_update_admin_status(ctx);
1325 
1326 	for (i = 0, tx_que = sc->tx_queues; i < sc->tx_num_queues; i++, tx_que++) {
1327 		struct tx_ring *txr = &tx_que->txr;
1328 
1329 		txr->tx_rs_cidx = txr->tx_rs_pidx;
1330 
1331 		/* Initialize the last processed descriptor to be the end of
1332 		 * the ring, rather than the start, so that we avoid an
1333 		 * off-by-one error when calculating how many descriptors are
1334 		 * done in the credits_update function.
1335 		 */
1336 		txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1337 	}
1338 
1339 	/* Setup VLAN support, basic and offload if available */
1340 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1341 
1342 	/* Clear bad data from Rx FIFOs */
1343 	if (sc->hw.mac.type >= igb_mac_min)
1344 		e1000_rx_fifo_flush_base(&sc->hw);
1345 
1346 	/* Configure for OS presence */
1347 	em_init_manageability(sc);
1348 
1349 	/* Prepare transmit descriptors and buffers */
1350 	em_initialize_transmit_unit(ctx);
1351 
1352 	/* Setup Multicast table */
1353 	em_if_multi_set(ctx);
1354 
1355 	sc->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1356 	em_initialize_receive_unit(ctx);
1357 
1358 	/* Set up VLAN support and filter */
1359 	em_setup_vlan_hw_support(sc);
1360 
1361 	/* Don't lose promiscuous settings */
1362 	em_if_set_promisc(ctx, if_getflags(ifp));
1363 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1364 
1365 	/* MSI-X configuration for 82574 */
1366 	if (sc->hw.mac.type == e1000_82574) {
1367 		int tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1368 
1369 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1370 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1371 		/* Set the IVAR - interrupt vector routing. */
1372 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, sc->ivars);
1373 	} else if (sc->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1374 		igb_configure_queues(sc);
1375 
1376 	/* this clears any pending interrupts */
1377 	E1000_READ_REG(&sc->hw, E1000_ICR);
1378 	E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1379 
1380 	/* AMT based hardware can now take control from firmware */
1381 	if (sc->has_manage && sc->has_amt)
1382 		em_get_hw_control(sc);
1383 
1384 	/* Set Energy Efficient Ethernet */
1385 	if (sc->hw.mac.type >= igb_mac_min &&
1386 	    sc->hw.phy.media_type == e1000_media_type_copper) {
1387 		if (sc->hw.mac.type == e1000_i354)
1388 			e1000_set_eee_i354(&sc->hw, true, true);
1389 		else
1390 			e1000_set_eee_i350(&sc->hw, true, true);
1391 	}
1392 }
1393 
1394 /*********************************************************************
1395  *
1396  *  Fast Legacy/MSI Combined Interrupt Service routine
1397  *
1398  *********************************************************************/
1399 int
1400 em_intr(void *arg)
1401 {
1402 	struct e1000_softc *sc = arg;
1403 	if_ctx_t ctx = sc->ctx;
1404 	u32 reg_icr;
1405 
1406 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1407 
1408 	/* Hot eject? */
1409 	if (reg_icr == 0xffffffff)
1410 		return FILTER_STRAY;
1411 
1412 	/* Definitely not our interrupt. */
1413 	if (reg_icr == 0x0)
1414 		return FILTER_STRAY;
1415 
1416 	/*
1417 	 * Starting with the 82571 chip, bit 31 should be used to
1418 	 * determine whether the interrupt belongs to us.
1419 	 */
1420 	if (sc->hw.mac.type >= e1000_82571 &&
1421 	    (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1422 		return FILTER_STRAY;
1423 
1424 	/*
1425 	 * Only MSI-X interrupts have one-shot behavior by taking advantage
1426 	 * of the EIAC register.  Thus, explicitly disable interrupts.  This
1427 	 * also works around the MSI message reordering errata on certain
1428 	 * systems.
1429 	 */
1430 	IFDI_INTR_DISABLE(ctx);
1431 
1432 	/* Link status change */
1433 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1434 		em_handle_link(ctx);
1435 
1436 	if (reg_icr & E1000_ICR_RXO)
1437 		sc->rx_overruns++;
1438 
1439 	return (FILTER_SCHEDULE_THREAD);
1440 }
1441 
1442 static int
1443 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1444 {
1445 	struct e1000_softc *sc = iflib_get_softc(ctx);
1446 	struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
1447 
1448 	E1000_WRITE_REG(&sc->hw, E1000_IMS, rxq->eims);
1449 	return (0);
1450 }
1451 
1452 static int
1453 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1454 {
1455 	struct e1000_softc *sc = iflib_get_softc(ctx);
1456 	struct em_tx_queue *txq = &sc->tx_queues[txqid];
1457 
1458 	E1000_WRITE_REG(&sc->hw, E1000_IMS, txq->eims);
1459 	return (0);
1460 }
1461 
1462 static int
1463 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1464 {
1465 	struct e1000_softc *sc = iflib_get_softc(ctx);
1466 	struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
1467 
1468 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, rxq->eims);
1469 	return (0);
1470 }
1471 
1472 static int
1473 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1474 {
1475 	struct e1000_softc *sc = iflib_get_softc(ctx);
1476 	struct em_tx_queue *txq = &sc->tx_queues[txqid];
1477 
1478 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, txq->eims);
1479 	return (0);
1480 }
1481 
1482 /*********************************************************************
1483  *
1484  *  MSI-X RX Interrupt Service routine
1485  *
1486  **********************************************************************/
1487 static int
1488 em_msix_que(void *arg)
1489 {
1490 	struct em_rx_queue *que = arg;
1491 
1492 	++que->irqs;
1493 
1494 	return (FILTER_SCHEDULE_THREAD);
1495 }
1496 
1497 /*********************************************************************
1498  *
1499  *  MSI-X Link Fast Interrupt Service routine
1500  *
1501  **********************************************************************/
1502 static int
1503 em_msix_link(void *arg)
1504 {
1505 	struct e1000_softc *sc = arg;
1506 	u32 reg_icr;
1507 
1508 	++sc->link_irq;
1509 	MPASS(sc->hw.back != NULL);
1510 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1511 
1512 	if (reg_icr & E1000_ICR_RXO)
1513 		sc->rx_overruns++;
1514 
1515 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1516 		em_handle_link(sc->ctx);
1517 
1518 	/* Re-arm unconditionally */
1519 	if (sc->hw.mac.type >= igb_mac_min) {
1520 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
1521 		E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->link_mask);
1522 	} else if (sc->hw.mac.type == e1000_82574) {
1523 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC |
1524 		    E1000_IMS_OTHER);
1525 		/*
1526 		 * Because we must read the ICR for this interrupt it may
1527 		 * clear other causes using autoclear, for this reason we
1528 		 * simply create a soft interrupt for all these vectors.
1529 		 */
1530 		if (reg_icr)
1531 			E1000_WRITE_REG(&sc->hw, E1000_ICS, sc->ims);
1532 	} else
1533 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
1534 
1535 	return (FILTER_HANDLED);
1536 }
1537 
1538 static void
1539 em_handle_link(void *context)
1540 {
1541 	if_ctx_t ctx = context;
1542 	struct e1000_softc *sc = iflib_get_softc(ctx);
1543 
1544 	sc->hw.mac.get_link_status = 1;
1545 	iflib_admin_intr_deferred(ctx);
1546 }
1547 
1548 /*********************************************************************
1549  *
1550  *  Media Ioctl callback
1551  *
1552  *  This routine is called whenever the user queries the status of
1553  *  the interface using ifconfig.
1554  *
1555  **********************************************************************/
1556 static void
1557 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1558 {
1559 	struct e1000_softc *sc = iflib_get_softc(ctx);
1560 	u_char fiber_type = IFM_1000_SX;
1561 
1562 	INIT_DEBUGOUT("em_if_media_status: begin");
1563 
1564 	iflib_admin_intr_deferred(ctx);
1565 
1566 	ifmr->ifm_status = IFM_AVALID;
1567 	ifmr->ifm_active = IFM_ETHER;
1568 
1569 	if (!sc->link_active) {
1570 		return;
1571 	}
1572 
1573 	ifmr->ifm_status |= IFM_ACTIVE;
1574 
1575 	if ((sc->hw.phy.media_type == e1000_media_type_fiber) ||
1576 	    (sc->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1577 		if (sc->hw.mac.type == e1000_82545)
1578 			fiber_type = IFM_1000_LX;
1579 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1580 	} else {
1581 		switch (sc->link_speed) {
1582 		case 10:
1583 			ifmr->ifm_active |= IFM_10_T;
1584 			break;
1585 		case 100:
1586 			ifmr->ifm_active |= IFM_100_TX;
1587 			break;
1588 		case 1000:
1589 			ifmr->ifm_active |= IFM_1000_T;
1590 			break;
1591 		}
1592 		if (sc->link_duplex == FULL_DUPLEX)
1593 			ifmr->ifm_active |= IFM_FDX;
1594 		else
1595 			ifmr->ifm_active |= IFM_HDX;
1596 	}
1597 }
1598 
1599 /*********************************************************************
1600  *
1601  *  Media Ioctl callback
1602  *
1603  *  This routine is called when the user changes speed/duplex using
1604  *  media/mediopt option with ifconfig.
1605  *
1606  **********************************************************************/
1607 static int
1608 em_if_media_change(if_ctx_t ctx)
1609 {
1610 	struct e1000_softc *sc = iflib_get_softc(ctx);
1611 	struct ifmedia *ifm = iflib_get_media(ctx);
1612 
1613 	INIT_DEBUGOUT("em_if_media_change: begin");
1614 
1615 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1616 		return (EINVAL);
1617 
1618 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1619 	case IFM_AUTO:
1620 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1621 		sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1622 		break;
1623 	case IFM_1000_LX:
1624 	case IFM_1000_SX:
1625 	case IFM_1000_T:
1626 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1627 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1628 		break;
1629 	case IFM_100_TX:
1630 		sc->hw.mac.autoneg = false;
1631 		sc->hw.phy.autoneg_advertised = 0;
1632 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1633 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1634 		else
1635 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1636 		break;
1637 	case IFM_10_T:
1638 		sc->hw.mac.autoneg = false;
1639 		sc->hw.phy.autoneg_advertised = 0;
1640 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1641 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1642 		else
1643 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1644 		break;
1645 	default:
1646 		device_printf(sc->dev, "Unsupported media type\n");
1647 	}
1648 
1649 	em_if_init(ctx);
1650 
1651 	return (0);
1652 }
1653 
1654 static int
1655 em_if_set_promisc(if_ctx_t ctx, int flags)
1656 {
1657 	struct e1000_softc *sc = iflib_get_softc(ctx);
1658 	struct ifnet *ifp = iflib_get_ifp(ctx);
1659 	u32 reg_rctl;
1660 	int mcnt = 0;
1661 
1662 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1663 	reg_rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_UPE);
1664 	if (flags & IFF_ALLMULTI)
1665 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1666 	else
1667 		mcnt = min(if_llmaddr_count(ifp), MAX_NUM_MULTICAST_ADDRESSES);
1668 
1669 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1670 		reg_rctl &= (~E1000_RCTL_MPE);
1671 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1672 
1673 	if (flags & IFF_PROMISC) {
1674 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1675 		em_if_vlan_filter_disable(sc);
1676 		/* Turn this on if you want to see bad packets */
1677 		if (em_debug_sbp)
1678 			reg_rctl |= E1000_RCTL_SBP;
1679 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1680 	} else {
1681 		if (flags & IFF_ALLMULTI) {
1682 			reg_rctl |= E1000_RCTL_MPE;
1683 			reg_rctl &= ~E1000_RCTL_UPE;
1684 			E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1685 		}
1686 		if (em_if_vlan_filter_used(sc))
1687 			em_if_vlan_filter_enable(sc);
1688 	}
1689 	return (0);
1690 }
1691 
1692 static u_int
1693 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int idx)
1694 {
1695 	u8 *mta = arg;
1696 
1697 	if (idx == MAX_NUM_MULTICAST_ADDRESSES)
1698 		return (0);
1699 
1700 	bcopy(LLADDR(sdl), &mta[idx * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1701 
1702 	return (1);
1703 }
1704 
1705 /*********************************************************************
1706  *  Multicast Update
1707  *
1708  *  This routine is called whenever multicast address list is updated.
1709  *
1710  **********************************************************************/
1711 static void
1712 em_if_multi_set(if_ctx_t ctx)
1713 {
1714 	struct e1000_softc *sc = iflib_get_softc(ctx);
1715 	struct ifnet *ifp = iflib_get_ifp(ctx);
1716 	u8  *mta; /* Multicast array memory */
1717 	u32 reg_rctl = 0;
1718 	int mcnt = 0;
1719 
1720 	IOCTL_DEBUGOUT("em_set_multi: begin");
1721 
1722 	mta = sc->mta;
1723 	bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1724 
1725 	if (sc->hw.mac.type == e1000_82542 &&
1726 	    sc->hw.revision_id == E1000_REVISION_2) {
1727 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1728 		if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1729 			e1000_pci_clear_mwi(&sc->hw);
1730 		reg_rctl |= E1000_RCTL_RST;
1731 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1732 		msec_delay(5);
1733 	}
1734 
1735 	mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
1736 
1737 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1738 
1739 	if (if_getflags(ifp) & IFF_PROMISC)
1740 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1741 	else if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES ||
1742 	    if_getflags(ifp) & IFF_ALLMULTI) {
1743 		reg_rctl |= E1000_RCTL_MPE;
1744 		reg_rctl &= ~E1000_RCTL_UPE;
1745 	} else
1746 		reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1747 
1748 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1749 
1750 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1751 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1752 
1753 	if (sc->hw.mac.type == e1000_82542 &&
1754 	    sc->hw.revision_id == E1000_REVISION_2) {
1755 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1756 		reg_rctl &= ~E1000_RCTL_RST;
1757 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1758 		msec_delay(5);
1759 		if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1760 			e1000_pci_set_mwi(&sc->hw);
1761 	}
1762 }
1763 
1764 /*********************************************************************
1765  *  Timer routine
1766  *
1767  *  This routine schedules em_if_update_admin_status() to check for
1768  *  link status and to gather statistics as well as to perform some
1769  *  controller-specific hardware patting.
1770  *
1771  **********************************************************************/
1772 static void
1773 em_if_timer(if_ctx_t ctx, uint16_t qid)
1774 {
1775 
1776 	if (qid != 0)
1777 		return;
1778 
1779 	iflib_admin_intr_deferred(ctx);
1780 }
1781 
1782 static void
1783 em_if_update_admin_status(if_ctx_t ctx)
1784 {
1785 	struct e1000_softc *sc = iflib_get_softc(ctx);
1786 	struct e1000_hw *hw = &sc->hw;
1787 	device_t dev = iflib_get_dev(ctx);
1788 	u32 link_check, thstat, ctrl;
1789 
1790 	link_check = thstat = ctrl = 0;
1791 	/* Get the cached link value or read phy for real */
1792 	switch (hw->phy.media_type) {
1793 	case e1000_media_type_copper:
1794 		if (hw->mac.get_link_status) {
1795 			if (hw->mac.type == e1000_pch_spt)
1796 				msec_delay(50);
1797 			/* Do the work to read phy */
1798 			e1000_check_for_link(hw);
1799 			link_check = !hw->mac.get_link_status;
1800 			if (link_check) /* ESB2 fix */
1801 				e1000_cfg_on_link_up(hw);
1802 		} else {
1803 			link_check = true;
1804 		}
1805 		break;
1806 	case e1000_media_type_fiber:
1807 		e1000_check_for_link(hw);
1808 		link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1809 			    E1000_STATUS_LU);
1810 		break;
1811 	case e1000_media_type_internal_serdes:
1812 		e1000_check_for_link(hw);
1813 		link_check = hw->mac.serdes_has_link;
1814 		break;
1815 	/* VF device is type_unknown */
1816 	case e1000_media_type_unknown:
1817 		e1000_check_for_link(hw);
1818 		link_check = !hw->mac.get_link_status;
1819 		/* FALLTHROUGH */
1820 	default:
1821 		break;
1822 	}
1823 
1824 	/* Check for thermal downshift or shutdown */
1825 	if (hw->mac.type == e1000_i350) {
1826 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1827 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1828 	}
1829 
1830 	/* Now check for a transition */
1831 	if (link_check && (sc->link_active == 0)) {
1832 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1833 		    &sc->link_duplex);
1834 		/* Check if we must disable SPEED_MODE bit on PCI-E */
1835 		if ((sc->link_speed != SPEED_1000) &&
1836 		    ((hw->mac.type == e1000_82571) ||
1837 		    (hw->mac.type == e1000_82572))) {
1838 			int tarc0;
1839 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1840 			tarc0 &= ~TARC_SPEED_MODE_BIT;
1841 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1842 		}
1843 		if (bootverbose)
1844 			device_printf(dev, "Link is up %d Mbps %s\n",
1845 			    sc->link_speed,
1846 			    ((sc->link_duplex == FULL_DUPLEX) ?
1847 			    "Full Duplex" : "Half Duplex"));
1848 		sc->link_active = 1;
1849 		sc->smartspeed = 0;
1850 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
1851 		    E1000_CTRL_EXT_LINK_MODE_GMII &&
1852 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1853 			device_printf(dev, "Link: thermal downshift\n");
1854 		/* Delay Link Up for Phy update */
1855 		if (((hw->mac.type == e1000_i210) ||
1856 		    (hw->mac.type == e1000_i211)) &&
1857 		    (hw->phy.id == I210_I_PHY_ID))
1858 			msec_delay(I210_LINK_DELAY);
1859 		/* Reset if the media type changed. */
1860 		if (hw->dev_spec._82575.media_changed &&
1861 		    hw->mac.type >= igb_mac_min) {
1862 			hw->dev_spec._82575.media_changed = false;
1863 			sc->flags |= IGB_MEDIA_RESET;
1864 			em_reset(ctx);
1865 		}
1866 		iflib_link_state_change(ctx, LINK_STATE_UP,
1867 		    IF_Mbps(sc->link_speed));
1868 	} else if (!link_check && (sc->link_active == 1)) {
1869 		sc->link_speed = 0;
1870 		sc->link_duplex = 0;
1871 		sc->link_active = 0;
1872 		iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
1873 	}
1874 	em_update_stats_counters(sc);
1875 
1876 	/* Reset LAA into RAR[0] on 82571 */
1877 	if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
1878 		e1000_rar_set(hw, hw->mac.addr, 0);
1879 
1880 	if (hw->mac.type < em_mac_min)
1881 		lem_smartspeed(sc);
1882 }
1883 
1884 static void
1885 em_if_watchdog_reset(if_ctx_t ctx)
1886 {
1887 	struct e1000_softc *sc = iflib_get_softc(ctx);
1888 
1889 	/*
1890 	 * Just count the event; iflib(4) will already trigger a
1891 	 * sufficient reset of the controller.
1892 	 */
1893 	sc->watchdog_events++;
1894 }
1895 
1896 /*********************************************************************
1897  *
1898  *  This routine disables all traffic on the adapter by issuing a
1899  *  global reset on the MAC.
1900  *
1901  **********************************************************************/
1902 static void
1903 em_if_stop(if_ctx_t ctx)
1904 {
1905 	struct e1000_softc *sc = iflib_get_softc(ctx);
1906 
1907 	INIT_DEBUGOUT("em_if_stop: begin");
1908 
1909 	e1000_reset_hw(&sc->hw);
1910 	if (sc->hw.mac.type >= e1000_82544)
1911 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, 0);
1912 
1913 	e1000_led_off(&sc->hw);
1914 	e1000_cleanup_led(&sc->hw);
1915 }
1916 
1917 /*********************************************************************
1918  *
1919  *  Determine hardware revision.
1920  *
1921  **********************************************************************/
1922 static void
1923 em_identify_hardware(if_ctx_t ctx)
1924 {
1925 	device_t dev = iflib_get_dev(ctx);
1926 	struct e1000_softc *sc = iflib_get_softc(ctx);
1927 
1928 	/* Make sure our PCI config space has the necessary stuff set */
1929 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1930 
1931 	/* Save off the information about this board */
1932 	sc->hw.vendor_id = pci_get_vendor(dev);
1933 	sc->hw.device_id = pci_get_device(dev);
1934 	sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1935 	sc->hw.subsystem_vendor_id =
1936 	    pci_read_config(dev, PCIR_SUBVEND_0, 2);
1937 	sc->hw.subsystem_device_id =
1938 	    pci_read_config(dev, PCIR_SUBDEV_0, 2);
1939 
1940 	/* Do Shared Code Init and Setup */
1941 	if (e1000_set_mac_type(&sc->hw)) {
1942 		device_printf(dev, "Setup init failure\n");
1943 		return;
1944 	}
1945 
1946 	/* Are we a VF device? */
1947 	if ((sc->hw.mac.type == e1000_vfadapt) ||
1948 	    (sc->hw.mac.type == e1000_vfadapt_i350))
1949 		sc->vf_ifp = 1;
1950 	else
1951 		sc->vf_ifp = 0;
1952 }
1953 
1954 static int
1955 em_allocate_pci_resources(if_ctx_t ctx)
1956 {
1957 	struct e1000_softc *sc = iflib_get_softc(ctx);
1958 	device_t dev = iflib_get_dev(ctx);
1959 	int rid, val;
1960 
1961 	rid = PCIR_BAR(0);
1962 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1963 	    &rid, RF_ACTIVE);
1964 	if (sc->memory == NULL) {
1965 		device_printf(dev, "Unable to allocate bus resource: memory\n");
1966 		return (ENXIO);
1967 	}
1968 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
1969 	sc->osdep.mem_bus_space_handle =
1970 	    rman_get_bushandle(sc->memory);
1971 	sc->hw.hw_addr = (u8 *)&sc->osdep.mem_bus_space_handle;
1972 
1973 	/* Only older adapters use IO mapping */
1974 	if (sc->hw.mac.type < em_mac_min &&
1975 	    sc->hw.mac.type > e1000_82543) {
1976 		/* Figure our where our IO BAR is ? */
1977 		for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1978 			val = pci_read_config(dev, rid, 4);
1979 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1980 				break;
1981 			}
1982 			rid += 4;
1983 			/* check for 64bit BAR */
1984 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1985 				rid += 4;
1986 		}
1987 		if (rid >= PCIR_CIS) {
1988 			device_printf(dev, "Unable to locate IO BAR\n");
1989 			return (ENXIO);
1990 		}
1991 		sc->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
1992 		    &rid, RF_ACTIVE);
1993 		if (sc->ioport == NULL) {
1994 			device_printf(dev, "Unable to allocate bus resource: "
1995 			    "ioport\n");
1996 			return (ENXIO);
1997 		}
1998 		sc->hw.io_base = 0;
1999 		sc->osdep.io_bus_space_tag =
2000 		    rman_get_bustag(sc->ioport);
2001 		sc->osdep.io_bus_space_handle =
2002 		    rman_get_bushandle(sc->ioport);
2003 	}
2004 
2005 	sc->hw.back = &sc->osdep;
2006 
2007 	return (0);
2008 }
2009 
2010 /*********************************************************************
2011  *
2012  *  Set up the MSI-X Interrupt handlers
2013  *
2014  **********************************************************************/
2015 static int
2016 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
2017 {
2018 	struct e1000_softc *sc = iflib_get_softc(ctx);
2019 	struct em_rx_queue *rx_que = sc->rx_queues;
2020 	struct em_tx_queue *tx_que = sc->tx_queues;
2021 	int error, rid, i, vector = 0, rx_vectors;
2022 	char buf[16];
2023 
2024 	/* First set up ring resources */
2025 	for (i = 0; i < sc->rx_num_queues; i++, rx_que++, vector++) {
2026 		rid = vector + 1;
2027 		snprintf(buf, sizeof(buf), "rxq%d", i);
2028 		error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
2029 		if (error) {
2030 			device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
2031 			sc->rx_num_queues = i + 1;
2032 			goto fail;
2033 		}
2034 
2035 		rx_que->msix =  vector;
2036 
2037 		/*
2038 		 * Set the bit to enable interrupt
2039 		 * in E1000_IMS -- bits 20 and 21
2040 		 * are for RX0 and RX1, note this has
2041 		 * NOTHING to do with the MSI-X vector
2042 		 */
2043 		if (sc->hw.mac.type == e1000_82574) {
2044 			rx_que->eims = 1 << (20 + i);
2045 			sc->ims |= rx_que->eims;
2046 			sc->ivars |= (8 | rx_que->msix) << (i * 4);
2047 		} else if (sc->hw.mac.type == e1000_82575)
2048 			rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2049 		else
2050 			rx_que->eims = 1 << vector;
2051 	}
2052 	rx_vectors = vector;
2053 
2054 	vector = 0;
2055 	for (i = 0; i < sc->tx_num_queues; i++, tx_que++, vector++) {
2056 		snprintf(buf, sizeof(buf), "txq%d", i);
2057 		tx_que = &sc->tx_queues[i];
2058 		iflib_softirq_alloc_generic(ctx,
2059 		    &sc->rx_queues[i % sc->rx_num_queues].que_irq,
2060 		    IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2061 
2062 		tx_que->msix = (vector % sc->rx_num_queues);
2063 
2064 		/*
2065 		 * Set the bit to enable interrupt
2066 		 * in E1000_IMS -- bits 22 and 23
2067 		 * are for TX0 and TX1, note this has
2068 		 * NOTHING to do with the MSI-X vector
2069 		 */
2070 		if (sc->hw.mac.type == e1000_82574) {
2071 			tx_que->eims = 1 << (22 + i);
2072 			sc->ims |= tx_que->eims;
2073 			sc->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2074 		} else if (sc->hw.mac.type == e1000_82575) {
2075 			tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2076 		} else {
2077 			tx_que->eims = 1 << i;
2078 		}
2079 	}
2080 
2081 	/* Link interrupt */
2082 	rid = rx_vectors + 1;
2083 	error = iflib_irq_alloc_generic(ctx, &sc->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, sc, 0, "aq");
2084 
2085 	if (error) {
2086 		device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
2087 		goto fail;
2088 	}
2089 	sc->linkvec = rx_vectors;
2090 	if (sc->hw.mac.type < igb_mac_min) {
2091 		sc->ivars |=  (8 | rx_vectors) << 16;
2092 		sc->ivars |= 0x80000000;
2093 		/* Enable the "Other" interrupt type for link status change */
2094 		sc->ims |= E1000_IMS_OTHER;
2095 	}
2096 
2097 	return (0);
2098 fail:
2099 	iflib_irq_free(ctx, &sc->irq);
2100 	rx_que = sc->rx_queues;
2101 	for (int i = 0; i < sc->rx_num_queues; i++, rx_que++)
2102 		iflib_irq_free(ctx, &rx_que->que_irq);
2103 	return (error);
2104 }
2105 
2106 static void
2107 igb_configure_queues(struct e1000_softc *sc)
2108 {
2109 	struct e1000_hw *hw = &sc->hw;
2110 	struct em_rx_queue *rx_que;
2111 	struct em_tx_queue *tx_que;
2112 	u32 tmp, ivar = 0, newitr = 0;
2113 
2114 	/* First turn on RSS capability */
2115 	if (hw->mac.type != e1000_82575)
2116 		E1000_WRITE_REG(hw, E1000_GPIE,
2117 		    E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2118 		    E1000_GPIE_PBA | E1000_GPIE_NSICR);
2119 
2120 	/* Turn on MSI-X */
2121 	switch (hw->mac.type) {
2122 	case e1000_82580:
2123 	case e1000_i350:
2124 	case e1000_i354:
2125 	case e1000_i210:
2126 	case e1000_i211:
2127 	case e1000_vfadapt:
2128 	case e1000_vfadapt_i350:
2129 		/* RX entries */
2130 		for (int i = 0; i < sc->rx_num_queues; i++) {
2131 			u32 index = i >> 1;
2132 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2133 			rx_que = &sc->rx_queues[i];
2134 			if (i & 1) {
2135 				ivar &= 0xFF00FFFF;
2136 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2137 			} else {
2138 				ivar &= 0xFFFFFF00;
2139 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2140 			}
2141 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2142 		}
2143 		/* TX entries */
2144 		for (int i = 0; i < sc->tx_num_queues; i++) {
2145 			u32 index = i >> 1;
2146 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2147 			tx_que = &sc->tx_queues[i];
2148 			if (i & 1) {
2149 				ivar &= 0x00FFFFFF;
2150 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2151 			} else {
2152 				ivar &= 0xFFFF00FF;
2153 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2154 			}
2155 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2156 			sc->que_mask |= tx_que->eims;
2157 		}
2158 
2159 		/* And for the link interrupt */
2160 		ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
2161 		sc->link_mask = 1 << sc->linkvec;
2162 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2163 		break;
2164 	case e1000_82576:
2165 		/* RX entries */
2166 		for (int i = 0; i < sc->rx_num_queues; i++) {
2167 			u32 index = i & 0x7; /* Each IVAR has two entries */
2168 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2169 			rx_que = &sc->rx_queues[i];
2170 			if (i < 8) {
2171 				ivar &= 0xFFFFFF00;
2172 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2173 			} else {
2174 				ivar &= 0xFF00FFFF;
2175 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2176 			}
2177 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2178 			sc->que_mask |= rx_que->eims;
2179 		}
2180 		/* TX entries */
2181 		for (int i = 0; i < sc->tx_num_queues; i++) {
2182 			u32 index = i & 0x7; /* Each IVAR has two entries */
2183 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2184 			tx_que = &sc->tx_queues[i];
2185 			if (i < 8) {
2186 				ivar &= 0xFFFF00FF;
2187 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2188 			} else {
2189 				ivar &= 0x00FFFFFF;
2190 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2191 			}
2192 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2193 			sc->que_mask |= tx_que->eims;
2194 		}
2195 
2196 		/* And for the link interrupt */
2197 		ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
2198 		sc->link_mask = 1 << sc->linkvec;
2199 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2200 		break;
2201 
2202 	case e1000_82575:
2203 		/* enable MSI-X support*/
2204 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2205 		tmp |= E1000_CTRL_EXT_PBA_CLR;
2206 		/* Auto-Mask interrupts upon ICR read. */
2207 		tmp |= E1000_CTRL_EXT_EIAME;
2208 		tmp |= E1000_CTRL_EXT_IRCA;
2209 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2210 
2211 		/* Queues */
2212 		for (int i = 0; i < sc->rx_num_queues; i++) {
2213 			rx_que = &sc->rx_queues[i];
2214 			tmp = E1000_EICR_RX_QUEUE0 << i;
2215 			tmp |= E1000_EICR_TX_QUEUE0 << i;
2216 			rx_que->eims = tmp;
2217 			E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2218 			    i, rx_que->eims);
2219 			sc->que_mask |= rx_que->eims;
2220 		}
2221 
2222 		/* Link */
2223 		E1000_WRITE_REG(hw, E1000_MSIXBM(sc->linkvec),
2224 		    E1000_EIMS_OTHER);
2225 		sc->link_mask |= E1000_EIMS_OTHER;
2226 	default:
2227 		break;
2228 	}
2229 
2230 	/* Set the starting interrupt rate */
2231 	if (em_max_interrupt_rate > 0)
2232 		newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2233 
2234 	if (hw->mac.type == e1000_82575)
2235 		newitr |= newitr << 16;
2236 	else
2237 		newitr |= E1000_EITR_CNT_IGNR;
2238 
2239 	for (int i = 0; i < sc->rx_num_queues; i++) {
2240 		rx_que = &sc->rx_queues[i];
2241 		E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2242 	}
2243 
2244 	return;
2245 }
2246 
2247 static void
2248 em_free_pci_resources(if_ctx_t ctx)
2249 {
2250 	struct e1000_softc *sc = iflib_get_softc(ctx);
2251 	struct em_rx_queue *que = sc->rx_queues;
2252 	device_t dev = iflib_get_dev(ctx);
2253 
2254 	/* Release all MSI-X queue resources */
2255 	if (sc->intr_type == IFLIB_INTR_MSIX)
2256 		iflib_irq_free(ctx, &sc->irq);
2257 
2258 	if (que != NULL) {
2259 		for (int i = 0; i < sc->rx_num_queues; i++, que++) {
2260 			iflib_irq_free(ctx, &que->que_irq);
2261 		}
2262 	}
2263 
2264 	if (sc->memory != NULL) {
2265 		bus_release_resource(dev, SYS_RES_MEMORY,
2266 		    rman_get_rid(sc->memory), sc->memory);
2267 		sc->memory = NULL;
2268 	}
2269 
2270 	if (sc->flash != NULL) {
2271 		bus_release_resource(dev, SYS_RES_MEMORY,
2272 		    rman_get_rid(sc->flash), sc->flash);
2273 		sc->flash = NULL;
2274 	}
2275 
2276 	if (sc->ioport != NULL) {
2277 		bus_release_resource(dev, SYS_RES_IOPORT,
2278 		    rman_get_rid(sc->ioport), sc->ioport);
2279 		sc->ioport = NULL;
2280 	}
2281 }
2282 
2283 /* Set up MSI or MSI-X */
2284 static int
2285 em_setup_msix(if_ctx_t ctx)
2286 {
2287 	struct e1000_softc *sc = iflib_get_softc(ctx);
2288 
2289 	if (sc->hw.mac.type == e1000_82574) {
2290 		em_enable_vectors_82574(ctx);
2291 	}
2292 	return (0);
2293 }
2294 
2295 /*********************************************************************
2296  *
2297  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2298  *
2299  **********************************************************************/
2300 static void
2301 lem_smartspeed(struct e1000_softc *sc)
2302 {
2303 	u16 phy_tmp;
2304 
2305 	if (sc->link_active || (sc->hw.phy.type != e1000_phy_igp) ||
2306 	    sc->hw.mac.autoneg == 0 ||
2307 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2308 		return;
2309 
2310 	if (sc->smartspeed == 0) {
2311 		/* If Master/Slave config fault is asserted twice,
2312 		 * we assume back-to-back */
2313 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2314 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2315 			return;
2316 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2317 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2318 			e1000_read_phy_reg(&sc->hw,
2319 			    PHY_1000T_CTRL, &phy_tmp);
2320 			if(phy_tmp & CR_1000T_MS_ENABLE) {
2321 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2322 				e1000_write_phy_reg(&sc->hw,
2323 				    PHY_1000T_CTRL, phy_tmp);
2324 				sc->smartspeed++;
2325 				if(sc->hw.mac.autoneg &&
2326 				   !e1000_copper_link_autoneg(&sc->hw) &&
2327 				   !e1000_read_phy_reg(&sc->hw,
2328 				    PHY_CONTROL, &phy_tmp)) {
2329 					phy_tmp |= (MII_CR_AUTO_NEG_EN |
2330 						    MII_CR_RESTART_AUTO_NEG);
2331 					e1000_write_phy_reg(&sc->hw,
2332 					    PHY_CONTROL, phy_tmp);
2333 				}
2334 			}
2335 		}
2336 		return;
2337 	} else if(sc->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2338 		/* If still no link, perhaps using 2/3 pair cable */
2339 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2340 		phy_tmp |= CR_1000T_MS_ENABLE;
2341 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2342 		if(sc->hw.mac.autoneg &&
2343 		   !e1000_copper_link_autoneg(&sc->hw) &&
2344 		   !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2345 			phy_tmp |= (MII_CR_AUTO_NEG_EN |
2346 				    MII_CR_RESTART_AUTO_NEG);
2347 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2348 		}
2349 	}
2350 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2351 	if(sc->smartspeed++ == EM_SMARTSPEED_MAX)
2352 		sc->smartspeed = 0;
2353 }
2354 
2355 /*********************************************************************
2356  *
2357  *  Initialize the DMA Coalescing feature
2358  *
2359  **********************************************************************/
2360 static void
2361 igb_init_dmac(struct e1000_softc *sc, u32 pba)
2362 {
2363 	device_t	dev = sc->dev;
2364 	struct e1000_hw *hw = &sc->hw;
2365 	u32 		dmac, reg = ~E1000_DMACR_DMAC_EN;
2366 	u16		hwm;
2367 	u16		max_frame_size;
2368 
2369 	if (hw->mac.type == e1000_i211)
2370 		return;
2371 
2372 	max_frame_size = sc->shared->isc_max_frame_size;
2373 	if (hw->mac.type > e1000_82580) {
2374 
2375 		if (sc->dmac == 0) { /* Disabling it */
2376 			E1000_WRITE_REG(hw, E1000_DMACR, reg);
2377 			return;
2378 		} else
2379 			device_printf(dev, "DMA Coalescing enabled\n");
2380 
2381 		/* Set starting threshold */
2382 		E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2383 
2384 		hwm = 64 * pba - max_frame_size / 16;
2385 		if (hwm < 64 * (pba - 6))
2386 			hwm = 64 * (pba - 6);
2387 		reg = E1000_READ_REG(hw, E1000_FCRTC);
2388 		reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2389 		reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2390 		    & E1000_FCRTC_RTH_COAL_MASK);
2391 		E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2392 
2393 
2394 		dmac = pba - max_frame_size / 512;
2395 		if (dmac < pba - 10)
2396 			dmac = pba - 10;
2397 		reg = E1000_READ_REG(hw, E1000_DMACR);
2398 		reg &= ~E1000_DMACR_DMACTHR_MASK;
2399 		reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2400 		    & E1000_DMACR_DMACTHR_MASK);
2401 
2402 		/* transition to L0x or L1 if available..*/
2403 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2404 
2405 		/* Check if status is 2.5Gb backplane connection
2406 		* before configuration of watchdog timer, which is
2407 		* in msec values in 12.8usec intervals
2408 		* watchdog timer= msec values in 32usec intervals
2409 		* for non 2.5Gb connection
2410 		*/
2411 		if (hw->mac.type == e1000_i354) {
2412 			int status = E1000_READ_REG(hw, E1000_STATUS);
2413 			if ((status & E1000_STATUS_2P5_SKU) &&
2414 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2415 				reg |= ((sc->dmac * 5) >> 6);
2416 			else
2417 				reg |= (sc->dmac >> 5);
2418 		} else {
2419 			reg |= (sc->dmac >> 5);
2420 		}
2421 
2422 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
2423 
2424 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2425 
2426 		/* Set the interval before transition */
2427 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
2428 		if (hw->mac.type == e1000_i350)
2429 			reg |= IGB_DMCTLX_DCFLUSH_DIS;
2430 		/*
2431 		** in 2.5Gb connection, TTLX unit is 0.4 usec
2432 		** which is 0x4*2 = 0xA. But delay is still 4 usec
2433 		*/
2434 		if (hw->mac.type == e1000_i354) {
2435 			int status = E1000_READ_REG(hw, E1000_STATUS);
2436 			if ((status & E1000_STATUS_2P5_SKU) &&
2437 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2438 				reg |= 0xA;
2439 			else
2440 				reg |= 0x4;
2441 		} else {
2442 			reg |= 0x4;
2443 		}
2444 
2445 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2446 
2447 		/* free space in tx packet buffer to wake from DMA coal */
2448 		E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2449 		    (2 * max_frame_size)) >> 6);
2450 
2451 		/* make low power state decision controlled by DMA coal */
2452 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2453 		reg &= ~E1000_PCIEMISC_LX_DECISION;
2454 		E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2455 
2456 	} else if (hw->mac.type == e1000_82580) {
2457 		u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2458 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
2459 		    reg & ~E1000_PCIEMISC_LX_DECISION);
2460 		E1000_WRITE_REG(hw, E1000_DMACR, 0);
2461 	}
2462 }
2463 
2464 /*********************************************************************
2465  *
2466  *  Initialize the hardware to a configuration as specified by the
2467  *  sc structure.
2468  *
2469  **********************************************************************/
2470 static void
2471 em_reset(if_ctx_t ctx)
2472 {
2473 	device_t dev = iflib_get_dev(ctx);
2474 	struct e1000_softc *sc = iflib_get_softc(ctx);
2475 	struct ifnet *ifp = iflib_get_ifp(ctx);
2476 	struct e1000_hw *hw = &sc->hw;
2477 	u16 rx_buffer_size;
2478 	u32 pba;
2479 
2480 	INIT_DEBUGOUT("em_reset: begin");
2481 	/* Let the firmware know the OS is in control */
2482 	em_get_hw_control(sc);
2483 
2484 	/* Set up smart power down as default off on newer adapters. */
2485 	if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2486 	    hw->mac.type == e1000_82572)) {
2487 		u16 phy_tmp = 0;
2488 
2489 		/* Speed up time to link by disabling smart power down. */
2490 		e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2491 		phy_tmp &= ~IGP02E1000_PM_SPD;
2492 		e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2493 	}
2494 
2495 	/*
2496 	 * Packet Buffer Allocation (PBA)
2497 	 * Writing PBA sets the receive portion of the buffer
2498 	 * the remainder is used for the transmit buffer.
2499 	 */
2500 	switch (hw->mac.type) {
2501 	/* 82547: Total Packet Buffer is 40K */
2502 	case e1000_82547:
2503 	case e1000_82547_rev_2:
2504 		if (hw->mac.max_frame_size > 8192)
2505 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2506 		else
2507 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2508 		break;
2509 	/* 82571/82572/80003es2lan: Total Packet Buffer is 48K */
2510 	case e1000_82571:
2511 	case e1000_82572:
2512 	case e1000_80003es2lan:
2513 			pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2514 		break;
2515 	/* 82573: Total Packet Buffer is 32K */
2516 	case e1000_82573:
2517 			pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2518 		break;
2519 	case e1000_82574:
2520 	case e1000_82583:
2521 			pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2522 		break;
2523 	case e1000_ich8lan:
2524 		pba = E1000_PBA_8K;
2525 		break;
2526 	case e1000_ich9lan:
2527 	case e1000_ich10lan:
2528 		/* Boost Receive side for jumbo frames */
2529 		if (hw->mac.max_frame_size > 4096)
2530 			pba = E1000_PBA_14K;
2531 		else
2532 			pba = E1000_PBA_10K;
2533 		break;
2534 	case e1000_pchlan:
2535 	case e1000_pch2lan:
2536 	case e1000_pch_lpt:
2537 	case e1000_pch_spt:
2538 	case e1000_pch_cnp:
2539 	case e1000_pch_tgp:
2540 	case e1000_pch_adp:
2541 	case e1000_pch_mtp:
2542 		pba = E1000_PBA_26K;
2543 		break;
2544 	case e1000_82575:
2545 		pba = E1000_PBA_32K;
2546 		break;
2547 	case e1000_82576:
2548 	case e1000_vfadapt:
2549 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2550 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2551 		break;
2552 	case e1000_82580:
2553 	case e1000_i350:
2554 	case e1000_i354:
2555 	case e1000_vfadapt_i350:
2556 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2557 		pba = e1000_rxpbs_adjust_82580(pba);
2558 		break;
2559 	case e1000_i210:
2560 	case e1000_i211:
2561 		pba = E1000_PBA_34K;
2562 		break;
2563 	default:
2564 		/* Remaining devices assumed to have a Packet Buffer of 64K. */
2565 		if (hw->mac.max_frame_size > 8192)
2566 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2567 		else
2568 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2569 	}
2570 
2571 	/* Special needs in case of Jumbo frames */
2572 	if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
2573 		u32 tx_space, min_tx, min_rx;
2574 		pba = E1000_READ_REG(hw, E1000_PBA);
2575 		tx_space = pba >> 16;
2576 		pba &= 0xffff;
2577 		min_tx = (hw->mac.max_frame_size +
2578 		    sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
2579 		min_tx = roundup2(min_tx, 1024);
2580 		min_tx >>= 10;
2581 		min_rx = hw->mac.max_frame_size;
2582 		min_rx = roundup2(min_rx, 1024);
2583 		min_rx >>= 10;
2584 		if (tx_space < min_tx &&
2585 		    ((min_tx - tx_space) < pba)) {
2586 			pba = pba - (min_tx - tx_space);
2587 			/*
2588 			 * if short on rx space, rx wins
2589 			 * and must trump tx adjustment
2590 			 */
2591 			if (pba < min_rx)
2592 				pba = min_rx;
2593 		}
2594 		E1000_WRITE_REG(hw, E1000_PBA, pba);
2595 	}
2596 
2597 	if (hw->mac.type < igb_mac_min)
2598 		E1000_WRITE_REG(hw, E1000_PBA, pba);
2599 
2600 	INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
2601 
2602 	/*
2603 	 * These parameters control the automatic generation (Tx) and
2604 	 * response (Rx) to Ethernet PAUSE frames.
2605 	 * - High water mark should allow for at least two frames to be
2606 	 *   received after sending an XOFF.
2607 	 * - Low water mark works best when it is very near the high water mark.
2608 	 *   This allows the receiver to restart by sending XON when it has
2609 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
2610 	 *   restart after one full frame is pulled from the buffer. There
2611 	 *   could be several smaller frames in the buffer and if so they will
2612 	 *   not trigger the XON until their total number reduces the buffer
2613 	 *   by 1500.
2614 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2615 	 */
2616 	rx_buffer_size = (pba & 0xffff) << 10;
2617 	hw->fc.high_water = rx_buffer_size -
2618 	    roundup2(hw->mac.max_frame_size, 1024);
2619 	hw->fc.low_water = hw->fc.high_water - 1500;
2620 
2621 	if (sc->fc) /* locally set flow control value? */
2622 		hw->fc.requested_mode = sc->fc;
2623 	else
2624 		hw->fc.requested_mode = e1000_fc_full;
2625 
2626 	if (hw->mac.type == e1000_80003es2lan)
2627 		hw->fc.pause_time = 0xFFFF;
2628 	else
2629 		hw->fc.pause_time = EM_FC_PAUSE_TIME;
2630 
2631 	hw->fc.send_xon = true;
2632 
2633 	/* Device specific overrides/settings */
2634 	switch (hw->mac.type) {
2635 	case e1000_pchlan:
2636 		/* Workaround: no TX flow ctrl for PCH */
2637 		hw->fc.requested_mode = e1000_fc_rx_pause;
2638 		hw->fc.pause_time = 0xFFFF; /* override */
2639 		if (if_getmtu(ifp) > ETHERMTU) {
2640 			hw->fc.high_water = 0x3500;
2641 			hw->fc.low_water = 0x1500;
2642 		} else {
2643 			hw->fc.high_water = 0x5000;
2644 			hw->fc.low_water = 0x3000;
2645 		}
2646 		hw->fc.refresh_time = 0x1000;
2647 		break;
2648 	case e1000_pch2lan:
2649 	case e1000_pch_lpt:
2650 	case e1000_pch_spt:
2651 	case e1000_pch_cnp:
2652 	case e1000_pch_tgp:
2653 	case e1000_pch_adp:
2654 	case e1000_pch_mtp:
2655 		hw->fc.high_water = 0x5C20;
2656 		hw->fc.low_water = 0x5048;
2657 		hw->fc.pause_time = 0x0650;
2658 		hw->fc.refresh_time = 0x0400;
2659 		/* Jumbos need adjusted PBA */
2660 		if (if_getmtu(ifp) > ETHERMTU)
2661 			E1000_WRITE_REG(hw, E1000_PBA, 12);
2662 		else
2663 			E1000_WRITE_REG(hw, E1000_PBA, 26);
2664 		break;
2665 	case e1000_82575:
2666 	case e1000_82576:
2667 		/* 8-byte granularity */
2668 		hw->fc.low_water = hw->fc.high_water - 8;
2669 		break;
2670 	case e1000_82580:
2671 	case e1000_i350:
2672 	case e1000_i354:
2673 	case e1000_i210:
2674 	case e1000_i211:
2675 	case e1000_vfadapt:
2676 	case e1000_vfadapt_i350:
2677 		/* 16-byte granularity */
2678 		hw->fc.low_water = hw->fc.high_water - 16;
2679 		break;
2680 	case e1000_ich9lan:
2681 	case e1000_ich10lan:
2682 		if (if_getmtu(ifp) > ETHERMTU) {
2683 			hw->fc.high_water = 0x2800;
2684 			hw->fc.low_water = hw->fc.high_water - 8;
2685 			break;
2686 		}
2687 		/* FALLTHROUGH */
2688 	default:
2689 		if (hw->mac.type == e1000_80003es2lan)
2690 			hw->fc.pause_time = 0xFFFF;
2691 		break;
2692 	}
2693 
2694 	/* Issue a global reset */
2695 	e1000_reset_hw(hw);
2696 	if (hw->mac.type >= igb_mac_min) {
2697 		E1000_WRITE_REG(hw, E1000_WUC, 0);
2698 	} else {
2699 		E1000_WRITE_REG(hw, E1000_WUFC, 0);
2700 		em_disable_aspm(sc);
2701 	}
2702 	if (sc->flags & IGB_MEDIA_RESET) {
2703 		e1000_setup_init_funcs(hw, true);
2704 		e1000_get_bus_info(hw);
2705 		sc->flags &= ~IGB_MEDIA_RESET;
2706 	}
2707 	/* and a re-init */
2708 	if (e1000_init_hw(hw) < 0) {
2709 		device_printf(dev, "Hardware Initialization Failed\n");
2710 		return;
2711 	}
2712 	if (hw->mac.type >= igb_mac_min)
2713 		igb_init_dmac(sc, pba);
2714 
2715 	E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2716 	e1000_get_phy_info(hw);
2717 	e1000_check_for_link(hw);
2718 }
2719 
2720 /*
2721  * Initialise the RSS mapping for NICs that support multiple transmit/
2722  * receive rings.
2723  */
2724 
2725 #define RSSKEYLEN 10
2726 static void
2727 em_initialize_rss_mapping(struct e1000_softc *sc)
2728 {
2729 	uint8_t  rss_key[4 * RSSKEYLEN];
2730 	uint32_t reta = 0;
2731 	struct e1000_hw	*hw = &sc->hw;
2732 	int i;
2733 
2734 	/*
2735 	 * Configure RSS key
2736 	 */
2737 	arc4rand(rss_key, sizeof(rss_key), 0);
2738 	for (i = 0; i < RSSKEYLEN; ++i) {
2739 		uint32_t rssrk = 0;
2740 
2741 		rssrk = EM_RSSRK_VAL(rss_key, i);
2742 		E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2743 	}
2744 
2745 	/*
2746 	 * Configure RSS redirect table in following fashion:
2747 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2748 	 */
2749 	for (i = 0; i < sizeof(reta); ++i) {
2750 		uint32_t q;
2751 
2752 		q = (i % sc->rx_num_queues) << 7;
2753 		reta |= q << (8 * i);
2754 	}
2755 
2756 	for (i = 0; i < 32; ++i)
2757 		E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2758 
2759 	E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
2760 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2761 			E1000_MRQC_RSS_FIELD_IPV4 |
2762 			E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2763 			E1000_MRQC_RSS_FIELD_IPV6_EX |
2764 			E1000_MRQC_RSS_FIELD_IPV6);
2765 }
2766 
2767 static void
2768 igb_initialize_rss_mapping(struct e1000_softc *sc)
2769 {
2770 	struct e1000_hw *hw = &sc->hw;
2771 	int i;
2772 	int queue_id;
2773 	u32 reta;
2774 	u32 rss_key[10], mrqc, shift = 0;
2775 
2776 	/* XXX? */
2777 	if (hw->mac.type == e1000_82575)
2778 		shift = 6;
2779 
2780 	/*
2781 	 * The redirection table controls which destination
2782 	 * queue each bucket redirects traffic to.
2783 	 * Each DWORD represents four queues, with the LSB
2784 	 * being the first queue in the DWORD.
2785 	 *
2786 	 * This just allocates buckets to queues using round-robin
2787 	 * allocation.
2788 	 *
2789 	 * NOTE: It Just Happens to line up with the default
2790 	 * RSS allocation method.
2791 	 */
2792 
2793 	/* Warning FM follows */
2794 	reta = 0;
2795 	for (i = 0; i < 128; i++) {
2796 #ifdef RSS
2797 		queue_id = rss_get_indirection_to_bucket(i);
2798 		/*
2799 		 * If we have more queues than buckets, we'll
2800 		 * end up mapping buckets to a subset of the
2801 		 * queues.
2802 		 *
2803 		 * If we have more buckets than queues, we'll
2804 		 * end up instead assigning multiple buckets
2805 		 * to queues.
2806 		 *
2807 		 * Both are suboptimal, but we need to handle
2808 		 * the case so we don't go out of bounds
2809 		 * indexing arrays and such.
2810 		 */
2811 		queue_id = queue_id % sc->rx_num_queues;
2812 #else
2813 		queue_id = (i % sc->rx_num_queues);
2814 #endif
2815 		/* Adjust if required */
2816 		queue_id = queue_id << shift;
2817 
2818 		/*
2819 		 * The low 8 bits are for hash value (n+0);
2820 		 * The next 8 bits are for hash value (n+1), etc.
2821 		 */
2822 		reta = reta >> 8;
2823 		reta = reta | ( ((uint32_t) queue_id) << 24);
2824 		if ((i & 3) == 3) {
2825 			E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2826 			reta = 0;
2827 		}
2828 	}
2829 
2830 	/* Now fill in hash table */
2831 
2832 	/*
2833 	 * MRQC: Multiple Receive Queues Command
2834 	 * Set queuing to RSS control, number depends on the device.
2835 	 */
2836 	mrqc = E1000_MRQC_ENABLE_RSS_MQ;
2837 
2838 #ifdef RSS
2839 	/* XXX ew typecasting */
2840 	rss_getkey((uint8_t *) &rss_key);
2841 #else
2842 	arc4rand(&rss_key, sizeof(rss_key), 0);
2843 #endif
2844 	for (i = 0; i < 10; i++)
2845 		E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
2846 
2847 	/*
2848 	 * Configure the RSS fields to hash upon.
2849 	 */
2850 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2851 	    E1000_MRQC_RSS_FIELD_IPV4_TCP);
2852 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2853 	    E1000_MRQC_RSS_FIELD_IPV6_TCP);
2854 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2855 	    E1000_MRQC_RSS_FIELD_IPV6_UDP);
2856 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2857 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2858 
2859 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2860 }
2861 
2862 /*********************************************************************
2863  *
2864  *  Setup networking device structure and register interface media.
2865  *
2866  **********************************************************************/
2867 static int
2868 em_setup_interface(if_ctx_t ctx)
2869 {
2870 	struct ifnet *ifp = iflib_get_ifp(ctx);
2871 	struct e1000_softc *sc = iflib_get_softc(ctx);
2872 	if_softc_ctx_t scctx = sc->shared;
2873 
2874 	INIT_DEBUGOUT("em_setup_interface: begin");
2875 
2876 	/* Single Queue */
2877 	if (sc->tx_num_queues == 1) {
2878 		if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
2879 		if_setsendqready(ifp);
2880 	}
2881 
2882 	/*
2883 	 * Specify the media types supported by this adapter and register
2884 	 * callbacks to update media and link information
2885 	 */
2886 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2887 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
2888 		u_char fiber_type = IFM_1000_SX;	/* default type */
2889 
2890 		if (sc->hw.mac.type == e1000_82545)
2891 			fiber_type = IFM_1000_LX;
2892 		ifmedia_add(sc->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
2893 		ifmedia_add(sc->media, IFM_ETHER | fiber_type, 0, NULL);
2894 	} else {
2895 		ifmedia_add(sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
2896 		ifmedia_add(sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
2897 		ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2898 		ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
2899 		if (sc->hw.phy.type != e1000_phy_ife) {
2900 			ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2901 			ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2902 		}
2903 	}
2904 	ifmedia_add(sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2905 	ifmedia_set(sc->media, IFM_ETHER | IFM_AUTO);
2906 	return (0);
2907 }
2908 
2909 static int
2910 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
2911 {
2912 	struct e1000_softc *sc = iflib_get_softc(ctx);
2913 	if_softc_ctx_t scctx = sc->shared;
2914 	int error = E1000_SUCCESS;
2915 	struct em_tx_queue *que;
2916 	int i, j;
2917 
2918 	MPASS(sc->tx_num_queues > 0);
2919 	MPASS(sc->tx_num_queues == ntxqsets);
2920 
2921 	/* First allocate the top level queue structs */
2922 	if (!(sc->tx_queues =
2923 	    (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
2924 	    sc->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2925 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2926 		return(ENOMEM);
2927 	}
2928 
2929 	for (i = 0, que = sc->tx_queues; i < sc->tx_num_queues; i++, que++) {
2930 		/* Set up some basics */
2931 
2932 		struct tx_ring *txr = &que->txr;
2933 		txr->sc = que->sc = sc;
2934 		que->me = txr->me =  i;
2935 
2936 		/* Allocate report status array */
2937 		if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2938 			device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
2939 			error = ENOMEM;
2940 			goto fail;
2941 		}
2942 		for (j = 0; j < scctx->isc_ntxd[0]; j++)
2943 			txr->tx_rsq[j] = QIDX_INVALID;
2944 		/* get the virtual and physical address of the hardware queues */
2945 		txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
2946 		txr->tx_paddr = paddrs[i*ntxqs];
2947 	}
2948 
2949 	if (bootverbose)
2950 		device_printf(iflib_get_dev(ctx),
2951 		    "allocated for %d tx_queues\n", sc->tx_num_queues);
2952 	return (0);
2953 fail:
2954 	em_if_queues_free(ctx);
2955 	return (error);
2956 }
2957 
2958 static int
2959 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
2960 {
2961 	struct e1000_softc *sc = iflib_get_softc(ctx);
2962 	int error = E1000_SUCCESS;
2963 	struct em_rx_queue *que;
2964 	int i;
2965 
2966 	MPASS(sc->rx_num_queues > 0);
2967 	MPASS(sc->rx_num_queues == nrxqsets);
2968 
2969 	/* First allocate the top level queue structs */
2970 	if (!(sc->rx_queues =
2971 	    (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
2972 	    sc->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2973 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2974 		error = ENOMEM;
2975 		goto fail;
2976 	}
2977 
2978 	for (i = 0, que = sc->rx_queues; i < nrxqsets; i++, que++) {
2979 		/* Set up some basics */
2980 		struct rx_ring *rxr = &que->rxr;
2981 		rxr->sc = que->sc = sc;
2982 		rxr->que = que;
2983 		que->me = rxr->me =  i;
2984 
2985 		/* get the virtual and physical address of the hardware queues */
2986 		rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
2987 		rxr->rx_paddr = paddrs[i*nrxqs];
2988 	}
2989 
2990 	if (bootverbose)
2991 		device_printf(iflib_get_dev(ctx),
2992 		    "allocated for %d rx_queues\n", sc->rx_num_queues);
2993 
2994 	return (0);
2995 fail:
2996 	em_if_queues_free(ctx);
2997 	return (error);
2998 }
2999 
3000 static void
3001 em_if_queues_free(if_ctx_t ctx)
3002 {
3003 	struct e1000_softc *sc = iflib_get_softc(ctx);
3004 	struct em_tx_queue *tx_que = sc->tx_queues;
3005 	struct em_rx_queue *rx_que = sc->rx_queues;
3006 
3007 	if (tx_que != NULL) {
3008 		for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
3009 			struct tx_ring *txr = &tx_que->txr;
3010 			if (txr->tx_rsq == NULL)
3011 				break;
3012 
3013 			free(txr->tx_rsq, M_DEVBUF);
3014 			txr->tx_rsq = NULL;
3015 		}
3016 		free(sc->tx_queues, M_DEVBUF);
3017 		sc->tx_queues = NULL;
3018 	}
3019 
3020 	if (rx_que != NULL) {
3021 		free(sc->rx_queues, M_DEVBUF);
3022 		sc->rx_queues = NULL;
3023 	}
3024 }
3025 
3026 /*********************************************************************
3027  *
3028  *  Enable transmit unit.
3029  *
3030  **********************************************************************/
3031 static void
3032 em_initialize_transmit_unit(if_ctx_t ctx)
3033 {
3034 	struct e1000_softc *sc = iflib_get_softc(ctx);
3035 	if_softc_ctx_t scctx = sc->shared;
3036 	struct em_tx_queue *que;
3037 	struct tx_ring	*txr;
3038 	struct e1000_hw	*hw = &sc->hw;
3039 	u32 tctl, txdctl = 0, tarc, tipg = 0;
3040 
3041 	INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
3042 
3043 	for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
3044 		u64 bus_addr;
3045 		caddr_t offp, endp;
3046 
3047 		que = &sc->tx_queues[i];
3048 		txr = &que->txr;
3049 		bus_addr = txr->tx_paddr;
3050 
3051 		/* Clear checksum offload context. */
3052 		offp = (caddr_t)&txr->csum_flags;
3053 		endp = (caddr_t)(txr + 1);
3054 		bzero(offp, endp - offp);
3055 
3056 		/* Base and Len of TX Ring */
3057 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
3058 		    scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
3059 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
3060 		    (u32)(bus_addr >> 32));
3061 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
3062 		    (u32)bus_addr);
3063 		/* Init the HEAD/TAIL indices */
3064 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3065 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3066 
3067 		HW_DEBUGOUT2("Base = %x, Length = %x\n",
3068 		    E1000_READ_REG(hw, E1000_TDBAL(i)),
3069 		    E1000_READ_REG(hw, E1000_TDLEN(i)));
3070 
3071 		txdctl = 0; /* clear txdctl */
3072 		txdctl |= 0x1f; /* PTHRESH */
3073 		txdctl |= 1 << 8; /* HTHRESH */
3074 		txdctl |= 1 << 16;/* WTHRESH */
3075 		txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3076 		txdctl |= E1000_TXDCTL_GRAN;
3077 		txdctl |= 1 << 25; /* LWTHRESH */
3078 
3079 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3080 	}
3081 
3082 	/* Set the default values for the Tx Inter Packet Gap timer */
3083 	switch (hw->mac.type) {
3084 	case e1000_80003es2lan:
3085 		tipg = DEFAULT_82543_TIPG_IPGR1;
3086 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3087 		    E1000_TIPG_IPGR2_SHIFT;
3088 		break;
3089 	case e1000_82542:
3090 		tipg = DEFAULT_82542_TIPG_IPGT;
3091 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3092 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3093 		break;
3094 	default:
3095 		if (hw->phy.media_type == e1000_media_type_fiber ||
3096 		    hw->phy.media_type == e1000_media_type_internal_serdes)
3097 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3098 		else
3099 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3100 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3101 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3102 	}
3103 
3104 	E1000_WRITE_REG(hw, E1000_TIPG, tipg);
3105 	E1000_WRITE_REG(hw, E1000_TIDV, sc->tx_int_delay.value);
3106 
3107 	if(hw->mac.type >= e1000_82540)
3108 		E1000_WRITE_REG(hw, E1000_TADV,
3109 		    sc->tx_abs_int_delay.value);
3110 
3111 	if (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572) {
3112 		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3113 		tarc |= TARC_SPEED_MODE_BIT;
3114 		E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3115 	} else if (hw->mac.type == e1000_80003es2lan) {
3116 		/* errata: program both queues to unweighted RR */
3117 		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3118 		tarc |= 1;
3119 		E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3120 		tarc = E1000_READ_REG(hw, E1000_TARC(1));
3121 		tarc |= 1;
3122 		E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3123 	} else if (hw->mac.type == e1000_82574) {
3124 		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3125 		tarc |= TARC_ERRATA_BIT;
3126 		if ( sc->tx_num_queues > 1) {
3127 			tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3128 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3129 			E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3130 		} else
3131 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3132 	}
3133 
3134 	if (sc->tx_int_delay.value > 0)
3135 		sc->txd_cmd |= E1000_TXD_CMD_IDE;
3136 
3137 	/* Program the Transmit Control Register */
3138 	tctl = E1000_READ_REG(hw, E1000_TCTL);
3139 	tctl &= ~E1000_TCTL_CT;
3140 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3141 		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3142 
3143 	if (hw->mac.type >= e1000_82571)
3144 		tctl |= E1000_TCTL_MULR;
3145 
3146 	/* This write will effectively turn on the transmit unit. */
3147 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
3148 
3149 	/* SPT and KBL errata workarounds */
3150 	if (hw->mac.type == e1000_pch_spt) {
3151 		u32 reg;
3152 		reg = E1000_READ_REG(hw, E1000_IOSFPC);
3153 		reg |= E1000_RCTL_RDMTS_HEX;
3154 		E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3155 		/* i218-i219 Specification Update 1.5.4.5 */
3156 		reg = E1000_READ_REG(hw, E1000_TARC(0));
3157 		reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3158 		reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3159 		E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3160 	}
3161 }
3162 
3163 /*********************************************************************
3164  *
3165  *  Enable receive unit.
3166  *
3167  **********************************************************************/
3168 #define BSIZEPKT_ROUNDUP ((1<<E1000_SRRCTL_BSIZEPKT_SHIFT)-1)
3169 
3170 static void
3171 em_initialize_receive_unit(if_ctx_t ctx)
3172 {
3173 	struct e1000_softc *sc = iflib_get_softc(ctx);
3174 	if_softc_ctx_t scctx = sc->shared;
3175 	struct ifnet *ifp = iflib_get_ifp(ctx);
3176 	struct e1000_hw	*hw = &sc->hw;
3177 	struct em_rx_queue *que;
3178 	int i;
3179 	uint32_t rctl, rxcsum;
3180 
3181 	INIT_DEBUGOUT("em_initialize_receive_units: begin");
3182 
3183 	/*
3184 	 * Make sure receives are disabled while setting
3185 	 * up the descriptor ring
3186 	 */
3187 	rctl = E1000_READ_REG(hw, E1000_RCTL);
3188 	/* Do not disable if ever enabled on this hardware */
3189 	if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3190 		E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3191 
3192 	/* Setup the Receive Control Register */
3193 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3194 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3195 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3196 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3197 
3198 	/* Do not store bad packets */
3199 	rctl &= ~E1000_RCTL_SBP;
3200 
3201 	/* Enable Long Packet receive */
3202 	if (if_getmtu(ifp) > ETHERMTU)
3203 		rctl |= E1000_RCTL_LPE;
3204 	else
3205 		rctl &= ~E1000_RCTL_LPE;
3206 
3207 	/* Strip the CRC */
3208 	if (!em_disable_crc_stripping)
3209 		rctl |= E1000_RCTL_SECRC;
3210 
3211 	if (hw->mac.type >= e1000_82540) {
3212 		E1000_WRITE_REG(hw, E1000_RADV,
3213 		    sc->rx_abs_int_delay.value);
3214 
3215 		/*
3216 		 * Set the interrupt throttling rate. Value is calculated
3217 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3218 		 */
3219 		E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
3220 	}
3221 	E1000_WRITE_REG(hw, E1000_RDTR, sc->rx_int_delay.value);
3222 
3223 	if (hw->mac.type >= em_mac_min) {
3224 		uint32_t rfctl;
3225 		/* Use extended rx descriptor formats */
3226 		rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3227 		rfctl |= E1000_RFCTL_EXTEN;
3228 
3229 		/*
3230 		 * When using MSI-X interrupts we need to throttle
3231 		 * using the EITR register (82574 only)
3232 		 */
3233 		if (hw->mac.type == e1000_82574) {
3234 			for (int i = 0; i < 4; i++)
3235 				E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3236 				    DEFAULT_ITR);
3237 			/* Disable accelerated acknowledge */
3238 			rfctl |= E1000_RFCTL_ACK_DIS;
3239 		}
3240 		E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3241 	}
3242 
3243 	/* Set up L3 and L4 csum Rx descriptor offloads */
3244 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3245 	if (scctx->isc_capenable & IFCAP_RXCSUM) {
3246 		rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3247 		if (hw->mac.type > e1000_82575)
3248 			rxcsum |= E1000_RXCSUM_CRCOFL;
3249 		else if (hw->mac.type < em_mac_min &&
3250 		    scctx->isc_capenable & IFCAP_HWCSUM_IPV6)
3251 			rxcsum |= E1000_RXCSUM_IPV6OFL;
3252 	} else {
3253 		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3254 		if (hw->mac.type > e1000_82575)
3255 			rxcsum &= ~E1000_RXCSUM_CRCOFL;
3256 		else if (hw->mac.type < em_mac_min)
3257 			rxcsum &= ~E1000_RXCSUM_IPV6OFL;
3258 	}
3259 
3260 	if (sc->rx_num_queues > 1) {
3261 		/* RSS hash needed in the Rx descriptor */
3262 		rxcsum |= E1000_RXCSUM_PCSD;
3263 
3264 		if (hw->mac.type >= igb_mac_min)
3265 			igb_initialize_rss_mapping(sc);
3266 		else
3267 			em_initialize_rss_mapping(sc);
3268 	}
3269 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3270 
3271 	/*
3272 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3273 	 * long latencies are observed, like Lenovo X60. This
3274 	 * change eliminates the problem, but since having positive
3275 	 * values in RDTR is a known source of problems on other
3276 	 * platforms another solution is being sought.
3277 	 */
3278 	if (hw->mac.type == e1000_82573)
3279 		E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3280 
3281 	for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) {
3282 		struct rx_ring *rxr = &que->rxr;
3283 		/* Setup the Base and Length of the Rx Descriptor Ring */
3284 		u64 bus_addr = rxr->rx_paddr;
3285 #if 0
3286 		u32 rdt = sc->rx_num_queues -1;  /* default */
3287 #endif
3288 
3289 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
3290 		    scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
3291 		E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3292 		E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3293 		/* Setup the Head and Tail Descriptor Pointers */
3294 		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3295 		E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3296 	}
3297 
3298 	/*
3299 	 * Set PTHRESH for improved jumbo performance
3300 	 * According to 10.2.5.11 of Intel 82574 Datasheet,
3301 	 * RXDCTL(1) is written whenever RXDCTL(0) is written.
3302 	 * Only write to RXDCTL(1) if there is a need for different
3303 	 * settings.
3304 	 */
3305 	if ((hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_pch2lan ||
3306 	    hw->mac.type == e1000_ich10lan) && if_getmtu(ifp) > ETHERMTU) {
3307 		u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3308 		E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3309 	} else if (hw->mac.type == e1000_82574) {
3310 		for (int i = 0; i < sc->rx_num_queues; i++) {
3311 			u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3312 			rxdctl |= 0x20; /* PTHRESH */
3313 			rxdctl |= 4 << 8; /* HTHRESH */
3314 			rxdctl |= 4 << 16;/* WTHRESH */
3315 			rxdctl |= 1 << 24; /* Switch to granularity */
3316 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3317 		}
3318 	} else if (hw->mac.type >= igb_mac_min) {
3319 		u32 psize, srrctl = 0;
3320 
3321 		if (if_getmtu(ifp) > ETHERMTU) {
3322 			psize = scctx->isc_max_frame_size;
3323 			/* are we on a vlan? */
3324 			if (ifp->if_vlantrunk != NULL)
3325 				psize += VLAN_TAG_SIZE;
3326 
3327 			if (sc->vf_ifp)
3328 				e1000_rlpml_set_vf(hw, psize);
3329 			else
3330 				E1000_WRITE_REG(hw, E1000_RLPML, psize);
3331 		}
3332 
3333 		/* Set maximum packet buffer len */
3334 		srrctl |= (sc->rx_mbuf_sz + BSIZEPKT_ROUNDUP) >>
3335 		    E1000_SRRCTL_BSIZEPKT_SHIFT;
3336 
3337 		/*
3338 		 * If TX flow control is disabled and there's >1 queue defined,
3339 		 * enable DROP.
3340 		 *
3341 		 * This drops frames rather than hanging the RX MAC for all queues.
3342 		 */
3343 		if ((sc->rx_num_queues > 1) &&
3344 		    (sc->fc == e1000_fc_none ||
3345 		     sc->fc == e1000_fc_rx_pause)) {
3346 			srrctl |= E1000_SRRCTL_DROP_EN;
3347 		}
3348 			/* Setup the Base and Length of the Rx Descriptor Rings */
3349 		for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) {
3350 			struct rx_ring *rxr = &que->rxr;
3351 			u64 bus_addr = rxr->rx_paddr;
3352 			u32 rxdctl;
3353 
3354 #ifdef notyet
3355 			/* Configure for header split? -- ignore for now */
3356 			rxr->hdr_split = igb_header_split;
3357 #else
3358 			srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3359 #endif
3360 
3361 			E1000_WRITE_REG(hw, E1000_RDLEN(i),
3362 					scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3363 			E1000_WRITE_REG(hw, E1000_RDBAH(i),
3364 					(uint32_t)(bus_addr >> 32));
3365 			E1000_WRITE_REG(hw, E1000_RDBAL(i),
3366 					(uint32_t)bus_addr);
3367 			E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3368 			/* Enable this Queue */
3369 			rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3370 			rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3371 			rxdctl &= 0xFFF00000;
3372 			rxdctl |= IGB_RX_PTHRESH;
3373 			rxdctl |= IGB_RX_HTHRESH << 8;
3374 			rxdctl |= IGB_RX_WTHRESH << 16;
3375 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3376 		}
3377 	} else if (hw->mac.type >= e1000_pch2lan) {
3378 		if (if_getmtu(ifp) > ETHERMTU)
3379 			e1000_lv_jumbo_workaround_ich8lan(hw, true);
3380 		else
3381 			e1000_lv_jumbo_workaround_ich8lan(hw, false);
3382 	}
3383 
3384 	/* Make sure VLAN Filters are off */
3385 	rctl &= ~E1000_RCTL_VFE;
3386 
3387 	/* Set up packet buffer size, overridden by per queue srrctl on igb */
3388 	if (hw->mac.type < igb_mac_min) {
3389 		if (sc->rx_mbuf_sz > 2048 && sc->rx_mbuf_sz <= 4096)
3390 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3391 		else if (sc->rx_mbuf_sz > 4096 && sc->rx_mbuf_sz <= 8192)
3392 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3393 		else if (sc->rx_mbuf_sz > 8192)
3394 			rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX;
3395 		else {
3396 			rctl |= E1000_RCTL_SZ_2048;
3397 			rctl &= ~E1000_RCTL_BSEX;
3398 		}
3399 	} else
3400 		rctl |= E1000_RCTL_SZ_2048;
3401 
3402 	/*
3403 	 * rctl bits 11:10 are as follows
3404 	 * lem: reserved
3405 	 * em: DTYPE
3406 	 * igb: reserved
3407 	 * and should be 00 on all of the above
3408 	 */
3409 	rctl &= ~0x00000C00;
3410 
3411 	/* Write out the settings */
3412 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3413 
3414 	return;
3415 }
3416 
3417 static void
3418 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3419 {
3420 	struct e1000_softc *sc = iflib_get_softc(ctx);
3421 	u32 index, bit;
3422 
3423 	index = (vtag >> 5) & 0x7F;
3424 	bit = vtag & 0x1F;
3425 	sc->shadow_vfta[index] |= (1 << bit);
3426 	++sc->num_vlans;
3427 	em_if_vlan_filter_write(sc);
3428 }
3429 
3430 static void
3431 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3432 {
3433 	struct e1000_softc *sc = iflib_get_softc(ctx);
3434 	u32 index, bit;
3435 
3436 	index = (vtag >> 5) & 0x7F;
3437 	bit = vtag & 0x1F;
3438 	sc->shadow_vfta[index] &= ~(1 << bit);
3439 	--sc->num_vlans;
3440 	em_if_vlan_filter_write(sc);
3441 }
3442 
3443 static bool
3444 em_if_vlan_filter_capable(struct e1000_softc *sc)
3445 {
3446 	if_softc_ctx_t scctx = sc->shared;
3447 
3448 	if ((scctx->isc_capenable & IFCAP_VLAN_HWFILTER) &&
3449 	    !em_disable_crc_stripping)
3450 		return (true);
3451 
3452 	return (false);
3453 }
3454 
3455 static bool
3456 em_if_vlan_filter_used(struct e1000_softc *sc)
3457 {
3458 	if (!em_if_vlan_filter_capable(sc))
3459 		return (false);
3460 
3461 	for (int i = 0; i < EM_VFTA_SIZE; i++)
3462 		if (sc->shadow_vfta[i] != 0)
3463 			return (true);
3464 
3465 	return (false);
3466 }
3467 
3468 static void
3469 em_if_vlan_filter_enable(struct e1000_softc *sc)
3470 {
3471 	struct e1000_hw *hw = &sc->hw;
3472 	u32 reg;
3473 
3474 	reg = E1000_READ_REG(hw, E1000_RCTL);
3475 	reg &= ~E1000_RCTL_CFIEN;
3476 	reg |= E1000_RCTL_VFE;
3477 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
3478 }
3479 
3480 static void
3481 em_if_vlan_filter_disable(struct e1000_softc *sc)
3482 {
3483 	struct e1000_hw *hw = &sc->hw;
3484 	u32 reg;
3485 
3486 	reg = E1000_READ_REG(hw, E1000_RCTL);
3487 	reg &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
3488 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
3489 }
3490 
3491 static void
3492 em_if_vlan_filter_write(struct e1000_softc *sc)
3493 {
3494 	struct e1000_hw *hw = &sc->hw;
3495 
3496 	if (sc->vf_ifp)
3497 		return;
3498 
3499 	/* Disable interrupts for lem-class devices during the filter change */
3500 	if (hw->mac.type < em_mac_min)
3501 		em_if_intr_disable(sc->ctx);
3502 
3503 	for (int i = 0; i < EM_VFTA_SIZE; i++)
3504 		if (sc->shadow_vfta[i] != 0) {
3505 			/* XXXKB: incomplete VF support, we return early above */
3506 			if (sc->vf_ifp)
3507 				e1000_vfta_set_vf(hw, sc->shadow_vfta[i], true);
3508 			else
3509 				e1000_write_vfta(hw, i, sc->shadow_vfta[i]);
3510 		}
3511 
3512 	/* Re-enable interrupts for lem-class devices */
3513 	if (hw->mac.type < em_mac_min)
3514 		em_if_intr_enable(sc->ctx);
3515 }
3516 
3517 static void
3518 em_setup_vlan_hw_support(struct e1000_softc *sc)
3519 {
3520 	if_softc_ctx_t scctx = sc->shared;
3521 	struct e1000_hw *hw = &sc->hw;
3522 	u32 reg;
3523 
3524 	/* XXXKB: Return early if we are a VF until VF decap and filter management
3525 	 * is ready and tested.
3526 	 */
3527 	if (sc->vf_ifp)
3528 		return;
3529 
3530 	if (scctx->isc_capenable & IFCAP_VLAN_HWTAGGING &&
3531 	    !em_disable_crc_stripping) {
3532 		reg = E1000_READ_REG(hw, E1000_CTRL);
3533 		reg |= E1000_CTRL_VME;
3534 		E1000_WRITE_REG(hw, E1000_CTRL, reg);
3535 	} else {
3536 		reg = E1000_READ_REG(hw, E1000_CTRL);
3537 		reg &= ~E1000_CTRL_VME;
3538 		E1000_WRITE_REG(hw, E1000_CTRL, reg);
3539 	}
3540 
3541 	/* If we aren't doing HW filtering, we're done */
3542 	if (!em_if_vlan_filter_capable(sc))  {
3543 		em_if_vlan_filter_disable(sc);
3544 		return;
3545 	}
3546 
3547 	/*
3548 	 * A soft reset zero's out the VFTA, so
3549 	 * we need to repopulate it now.
3550 	 */
3551 	em_if_vlan_filter_write(sc);
3552 
3553 	/* Enable the Filter Table */
3554 	em_if_vlan_filter_enable(sc);
3555 }
3556 
3557 static void
3558 em_if_intr_enable(if_ctx_t ctx)
3559 {
3560 	struct e1000_softc *sc = iflib_get_softc(ctx);
3561 	struct e1000_hw *hw = &sc->hw;
3562 	u32 ims_mask = IMS_ENABLE_MASK;
3563 
3564 	if (sc->intr_type == IFLIB_INTR_MSIX) {
3565 		E1000_WRITE_REG(hw, EM_EIAC, sc->ims);
3566 		ims_mask |= sc->ims;
3567 	}
3568 	E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3569 	E1000_WRITE_FLUSH(hw);
3570 }
3571 
3572 static void
3573 em_if_intr_disable(if_ctx_t ctx)
3574 {
3575 	struct e1000_softc *sc = iflib_get_softc(ctx);
3576 	struct e1000_hw *hw = &sc->hw;
3577 
3578 	if (sc->intr_type == IFLIB_INTR_MSIX)
3579 		E1000_WRITE_REG(hw, EM_EIAC, 0);
3580 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3581 	E1000_WRITE_FLUSH(hw);
3582 }
3583 
3584 static void
3585 igb_if_intr_enable(if_ctx_t ctx)
3586 {
3587 	struct e1000_softc *sc = iflib_get_softc(ctx);
3588 	struct e1000_hw *hw = &sc->hw;
3589 	u32 mask;
3590 
3591 	if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
3592 		mask = (sc->que_mask | sc->link_mask);
3593 		E1000_WRITE_REG(hw, E1000_EIAC, mask);
3594 		E1000_WRITE_REG(hw, E1000_EIAM, mask);
3595 		E1000_WRITE_REG(hw, E1000_EIMS, mask);
3596 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3597 	} else
3598 		E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3599 	E1000_WRITE_FLUSH(hw);
3600 }
3601 
3602 static void
3603 igb_if_intr_disable(if_ctx_t ctx)
3604 {
3605 	struct e1000_softc *sc = iflib_get_softc(ctx);
3606 	struct e1000_hw *hw = &sc->hw;
3607 
3608 	if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
3609 		E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
3610 		E1000_WRITE_REG(hw, E1000_EIAC, 0);
3611 	}
3612 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3613 	E1000_WRITE_FLUSH(hw);
3614 }
3615 
3616 /*
3617  * Bit of a misnomer, what this really means is
3618  * to enable OS management of the system... aka
3619  * to disable special hardware management features
3620  */
3621 static void
3622 em_init_manageability(struct e1000_softc *sc)
3623 {
3624 	/* A shared code workaround */
3625 #define E1000_82542_MANC2H E1000_MANC2H
3626 	if (sc->has_manage) {
3627 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3628 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3629 
3630 		/* disable hardware interception of ARP */
3631 		manc &= ~(E1000_MANC_ARP_EN);
3632 
3633 		/* enable receiving management packets to the host */
3634 		manc |= E1000_MANC_EN_MNG2HOST;
3635 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3636 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3637 		manc2h |= E1000_MNG2HOST_PORT_623;
3638 		manc2h |= E1000_MNG2HOST_PORT_664;
3639 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3640 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3641 	}
3642 }
3643 
3644 /*
3645  * Give control back to hardware management
3646  * controller if there is one.
3647  */
3648 static void
3649 em_release_manageability(struct e1000_softc *sc)
3650 {
3651 	if (sc->has_manage) {
3652 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3653 
3654 		/* re-enable hardware interception of ARP */
3655 		manc |= E1000_MANC_ARP_EN;
3656 		manc &= ~E1000_MANC_EN_MNG2HOST;
3657 
3658 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3659 	}
3660 }
3661 
3662 /*
3663  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3664  * For ASF and Pass Through versions of f/w this means
3665  * that the driver is loaded. For AMT version type f/w
3666  * this means that the network i/f is open.
3667  */
3668 static void
3669 em_get_hw_control(struct e1000_softc *sc)
3670 {
3671 	u32 ctrl_ext, swsm;
3672 
3673 	if (sc->vf_ifp)
3674 		return;
3675 
3676 	if (sc->hw.mac.type == e1000_82573) {
3677 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3678 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3679 		    swsm | E1000_SWSM_DRV_LOAD);
3680 		return;
3681 	}
3682 	/* else */
3683 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3684 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3685 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3686 }
3687 
3688 /*
3689  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3690  * For ASF and Pass Through versions of f/w this means that
3691  * the driver is no longer loaded. For AMT versions of the
3692  * f/w this means that the network i/f is closed.
3693  */
3694 static void
3695 em_release_hw_control(struct e1000_softc *sc)
3696 {
3697 	u32 ctrl_ext, swsm;
3698 
3699 	if (!sc->has_manage)
3700 		return;
3701 
3702 	if (sc->hw.mac.type == e1000_82573) {
3703 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3704 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3705 		    swsm & ~E1000_SWSM_DRV_LOAD);
3706 		return;
3707 	}
3708 	/* else */
3709 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3710 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3711 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3712 	return;
3713 }
3714 
3715 static int
3716 em_is_valid_ether_addr(u8 *addr)
3717 {
3718 	char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3719 
3720 	if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3721 		return (false);
3722 	}
3723 
3724 	return (true);
3725 }
3726 
3727 /*
3728 ** Parse the interface capabilities with regard
3729 ** to both system management and wake-on-lan for
3730 ** later use.
3731 */
3732 static void
3733 em_get_wakeup(if_ctx_t ctx)
3734 {
3735 	struct e1000_softc *sc = iflib_get_softc(ctx);
3736 	device_t dev = iflib_get_dev(ctx);
3737 	u16 eeprom_data = 0, device_id, apme_mask;
3738 
3739 	sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
3740 	apme_mask = EM_EEPROM_APME;
3741 
3742 	switch (sc->hw.mac.type) {
3743 	case e1000_82542:
3744 	case e1000_82543:
3745 		break;
3746 	case e1000_82544:
3747 		e1000_read_nvm(&sc->hw,
3748 		    NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3749 		apme_mask = EM_82544_APME;
3750 		break;
3751 	case e1000_82546:
3752 	case e1000_82546_rev_3:
3753 		if (sc->hw.bus.func == 1) {
3754 			e1000_read_nvm(&sc->hw,
3755 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3756 			break;
3757 		} else
3758 			e1000_read_nvm(&sc->hw,
3759 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3760 		break;
3761 	case e1000_82573:
3762 	case e1000_82583:
3763 		sc->has_amt = true;
3764 		/* FALLTHROUGH */
3765 	case e1000_82571:
3766 	case e1000_82572:
3767 	case e1000_80003es2lan:
3768 		if (sc->hw.bus.func == 1) {
3769 			e1000_read_nvm(&sc->hw,
3770 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3771 			break;
3772 		} else
3773 			e1000_read_nvm(&sc->hw,
3774 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3775 		break;
3776 	case e1000_ich8lan:
3777 	case e1000_ich9lan:
3778 	case e1000_ich10lan:
3779 	case e1000_pchlan:
3780 	case e1000_pch2lan:
3781 	case e1000_pch_lpt:
3782 	case e1000_pch_spt:
3783 	case e1000_82575:	/* listing all igb devices */
3784 	case e1000_82576:
3785 	case e1000_82580:
3786 	case e1000_i350:
3787 	case e1000_i354:
3788 	case e1000_i210:
3789 	case e1000_i211:
3790 	case e1000_vfadapt:
3791 	case e1000_vfadapt_i350:
3792 		apme_mask = E1000_WUC_APME;
3793 		sc->has_amt = true;
3794 		eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC);
3795 		break;
3796 	default:
3797 		e1000_read_nvm(&sc->hw,
3798 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3799 		break;
3800 	}
3801 	if (eeprom_data & apme_mask)
3802 		sc->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
3803 	/*
3804 	 * We have the eeprom settings, now apply the special cases
3805 	 * where the eeprom may be wrong or the board won't support
3806 	 * wake on lan on a particular port
3807 	 */
3808 	device_id = pci_get_device(dev);
3809 	switch (device_id) {
3810 	case E1000_DEV_ID_82546GB_PCIE:
3811 		sc->wol = 0;
3812 		break;
3813 	case E1000_DEV_ID_82546EB_FIBER:
3814 	case E1000_DEV_ID_82546GB_FIBER:
3815 		/* Wake events only supported on port A for dual fiber
3816 		 * regardless of eeprom setting */
3817 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
3818 		    E1000_STATUS_FUNC_1)
3819 			sc->wol = 0;
3820 		break;
3821 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
3822 		/* if quad port adapter, disable WoL on all but port A */
3823 		if (global_quad_port_a != 0)
3824 			sc->wol = 0;
3825 		/* Reset for multiple quad port adapters */
3826 		if (++global_quad_port_a == 4)
3827 			global_quad_port_a = 0;
3828 		break;
3829 	case E1000_DEV_ID_82571EB_FIBER:
3830 		/* Wake events only supported on port A for dual fiber
3831 		 * regardless of eeprom setting */
3832 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
3833 		    E1000_STATUS_FUNC_1)
3834 			sc->wol = 0;
3835 		break;
3836 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
3837 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
3838 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
3839 		/* if quad port adapter, disable WoL on all but port A */
3840 		if (global_quad_port_a != 0)
3841 			sc->wol = 0;
3842 		/* Reset for multiple quad port adapters */
3843 		if (++global_quad_port_a == 4)
3844 			global_quad_port_a = 0;
3845 		break;
3846 	}
3847 	return;
3848 }
3849 
3850 
3851 /*
3852  * Enable PCI Wake On Lan capability
3853  */
3854 static void
3855 em_enable_wakeup(if_ctx_t ctx)
3856 {
3857 	struct e1000_softc *sc = iflib_get_softc(ctx);
3858 	device_t dev = iflib_get_dev(ctx);
3859 	if_t ifp = iflib_get_ifp(ctx);
3860 	int error = 0;
3861 	u32 pmc, ctrl, ctrl_ext, rctl;
3862 	u16 status;
3863 
3864 	if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
3865 		return;
3866 
3867 	/*
3868 	 * Determine type of Wakeup: note that wol
3869 	 * is set with all bits on by default.
3870 	 */
3871 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
3872 		sc->wol &= ~E1000_WUFC_MAG;
3873 
3874 	if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
3875 		sc->wol &= ~E1000_WUFC_EX;
3876 
3877 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
3878 		sc->wol &= ~E1000_WUFC_MC;
3879 	else {
3880 		rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
3881 		rctl |= E1000_RCTL_MPE;
3882 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
3883 	}
3884 
3885 	if (!(sc->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
3886 		goto pme;
3887 
3888 	/* Advertise the wakeup capability */
3889 	ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
3890 	ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
3891 	E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
3892 
3893 	/* Keep the laser running on Fiber adapters */
3894 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
3895 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
3896 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3897 		ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
3898 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, ctrl_ext);
3899 	}
3900 
3901 	if ((sc->hw.mac.type == e1000_ich8lan) ||
3902 	    (sc->hw.mac.type == e1000_pchlan) ||
3903 	    (sc->hw.mac.type == e1000_ich9lan) ||
3904 	    (sc->hw.mac.type == e1000_ich10lan))
3905 		e1000_suspend_workarounds_ich8lan(&sc->hw);
3906 
3907 	if ( sc->hw.mac.type >= e1000_pchlan) {
3908 		error = em_enable_phy_wakeup(sc);
3909 		if (error)
3910 			goto pme;
3911 	} else {
3912 		/* Enable wakeup by the MAC */
3913 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
3914 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
3915 	}
3916 
3917 	if (sc->hw.phy.type == e1000_phy_igp_3)
3918 		e1000_igp3_phy_powerdown_workaround_ich8lan(&sc->hw);
3919 
3920 pme:
3921 	status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
3922 	status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3923 	if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
3924 		status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3925 	pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
3926 
3927 	return;
3928 }
3929 
3930 /*
3931  * WOL in the newer chipset interfaces (pchlan)
3932  * require thing to be copied into the phy
3933  */
3934 static int
3935 em_enable_phy_wakeup(struct e1000_softc *sc)
3936 {
3937 	struct e1000_hw *hw = &sc->hw;
3938 	u32 mreg, ret = 0;
3939 	u16 preg;
3940 
3941 	/* copy MAC RARs to PHY RARs */
3942 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
3943 
3944 	/* copy MAC MTA to PHY MTA */
3945 	for (int i = 0; i < hw->mac.mta_reg_count; i++) {
3946 		mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
3947 		e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
3948 		e1000_write_phy_reg(hw, BM_MTA(i) + 1,
3949 		    (u16)((mreg >> 16) & 0xFFFF));
3950 	}
3951 
3952 	/* configure PHY Rx Control register */
3953 	e1000_read_phy_reg(hw, BM_RCTL, &preg);
3954 	mreg = E1000_READ_REG(hw, E1000_RCTL);
3955 	if (mreg & E1000_RCTL_UPE)
3956 		preg |= BM_RCTL_UPE;
3957 	if (mreg & E1000_RCTL_MPE)
3958 		preg |= BM_RCTL_MPE;
3959 	preg &= ~(BM_RCTL_MO_MASK);
3960 	if (mreg & E1000_RCTL_MO_3)
3961 		preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
3962 				<< BM_RCTL_MO_SHIFT);
3963 	if (mreg & E1000_RCTL_BAM)
3964 		preg |= BM_RCTL_BAM;
3965 	if (mreg & E1000_RCTL_PMCF)
3966 		preg |= BM_RCTL_PMCF;
3967 	mreg = E1000_READ_REG(hw, E1000_CTRL);
3968 	if (mreg & E1000_CTRL_RFCE)
3969 		preg |= BM_RCTL_RFCE;
3970 	e1000_write_phy_reg(hw, BM_RCTL, preg);
3971 
3972 	/* enable PHY wakeup in MAC register */
3973 	E1000_WRITE_REG(hw, E1000_WUC,
3974 	    E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
3975 	E1000_WRITE_REG(hw, E1000_WUFC, sc->wol);
3976 
3977 	/* configure and enable PHY wakeup in PHY registers */
3978 	e1000_write_phy_reg(hw, BM_WUFC, sc->wol);
3979 	e1000_write_phy_reg(hw, BM_WUC, E1000_WUC_PME_EN);
3980 
3981 	/* activate PHY wakeup */
3982 	ret = hw->phy.ops.acquire(hw);
3983 	if (ret) {
3984 		printf("Could not acquire PHY\n");
3985 		return ret;
3986 	}
3987 	e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3988 	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
3989 	ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
3990 	if (ret) {
3991 		printf("Could not read PHY page 769\n");
3992 		goto out;
3993 	}
3994 	preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
3995 	ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
3996 	if (ret)
3997 		printf("Could not set PHY Host Wakeup bit\n");
3998 out:
3999 	hw->phy.ops.release(hw);
4000 
4001 	return ret;
4002 }
4003 
4004 static void
4005 em_if_led_func(if_ctx_t ctx, int onoff)
4006 {
4007 	struct e1000_softc *sc = iflib_get_softc(ctx);
4008 
4009 	if (onoff) {
4010 		e1000_setup_led(&sc->hw);
4011 		e1000_led_on(&sc->hw);
4012 	} else {
4013 		e1000_led_off(&sc->hw);
4014 		e1000_cleanup_led(&sc->hw);
4015 	}
4016 }
4017 
4018 /*
4019  * Disable the L0S and L1 LINK states
4020  */
4021 static void
4022 em_disable_aspm(struct e1000_softc *sc)
4023 {
4024 	int base, reg;
4025 	u16 link_cap,link_ctrl;
4026 	device_t dev = sc->dev;
4027 
4028 	switch (sc->hw.mac.type) {
4029 	case e1000_82573:
4030 	case e1000_82574:
4031 	case e1000_82583:
4032 		break;
4033 	default:
4034 		return;
4035 	}
4036 	if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
4037 		return;
4038 	reg = base + PCIER_LINK_CAP;
4039 	link_cap = pci_read_config(dev, reg, 2);
4040 	if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
4041 		return;
4042 	reg = base + PCIER_LINK_CTL;
4043 	link_ctrl = pci_read_config(dev, reg, 2);
4044 	link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
4045 	pci_write_config(dev, reg, link_ctrl, 2);
4046 	return;
4047 }
4048 
4049 /**********************************************************************
4050  *
4051  *  Update the board statistics counters.
4052  *
4053  **********************************************************************/
4054 static void
4055 em_update_stats_counters(struct e1000_softc *sc)
4056 {
4057 	u64 prev_xoffrxc = sc->stats.xoffrxc;
4058 
4059 	if(sc->hw.phy.media_type == e1000_media_type_copper ||
4060 	   (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
4061 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
4062 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
4063 	}
4064 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
4065 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
4066 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
4067 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
4068 
4069 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
4070 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
4071 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
4072 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
4073 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
4074 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
4075 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
4076 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
4077 	/*
4078 	 ** For watchdog management we need to know if we have been
4079 	 ** paused during the last interval, so capture that here.
4080 	*/
4081 	if (sc->stats.xoffrxc != prev_xoffrxc)
4082 		sc->shared->isc_pause_frames = 1;
4083 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
4084 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
4085 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
4086 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
4087 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
4088 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
4089 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
4090 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
4091 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
4092 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
4093 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
4094 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
4095 
4096 	/* For the 64-bit byte counters the low dword must be read first. */
4097 	/* Both registers clear on the read of the high dword */
4098 
4099 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCL) +
4100 	    ((u64)E1000_READ_REG(&sc->hw, E1000_GORCH) << 32);
4101 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCL) +
4102 	    ((u64)E1000_READ_REG(&sc->hw, E1000_GOTCH) << 32);
4103 
4104 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
4105 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
4106 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
4107 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
4108 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
4109 
4110 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
4111 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
4112 
4113 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
4114 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
4115 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
4116 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
4117 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
4118 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
4119 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
4120 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
4121 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
4122 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
4123 
4124 	/* Interrupt Counts */
4125 
4126 	sc->stats.iac += E1000_READ_REG(&sc->hw, E1000_IAC);
4127 	sc->stats.icrxptc += E1000_READ_REG(&sc->hw, E1000_ICRXPTC);
4128 	sc->stats.icrxatc += E1000_READ_REG(&sc->hw, E1000_ICRXATC);
4129 	sc->stats.ictxptc += E1000_READ_REG(&sc->hw, E1000_ICTXPTC);
4130 	sc->stats.ictxatc += E1000_READ_REG(&sc->hw, E1000_ICTXATC);
4131 	sc->stats.ictxqec += E1000_READ_REG(&sc->hw, E1000_ICTXQEC);
4132 	sc->stats.ictxqmtc += E1000_READ_REG(&sc->hw, E1000_ICTXQMTC);
4133 	sc->stats.icrxdmtc += E1000_READ_REG(&sc->hw, E1000_ICRXDMTC);
4134 	sc->stats.icrxoc += E1000_READ_REG(&sc->hw, E1000_ICRXOC);
4135 
4136 	if (sc->hw.mac.type >= e1000_82543) {
4137 		sc->stats.algnerrc +=
4138 		E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
4139 		sc->stats.rxerrc +=
4140 		E1000_READ_REG(&sc->hw, E1000_RXERRC);
4141 		sc->stats.tncrs +=
4142 		E1000_READ_REG(&sc->hw, E1000_TNCRS);
4143 		sc->stats.cexterr +=
4144 		E1000_READ_REG(&sc->hw, E1000_CEXTERR);
4145 		sc->stats.tsctc +=
4146 		E1000_READ_REG(&sc->hw, E1000_TSCTC);
4147 		sc->stats.tsctfc +=
4148 		E1000_READ_REG(&sc->hw, E1000_TSCTFC);
4149 	}
4150 }
4151 
4152 static uint64_t
4153 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4154 {
4155 	struct e1000_softc *sc = iflib_get_softc(ctx);
4156 	struct ifnet *ifp = iflib_get_ifp(ctx);
4157 
4158 	switch (cnt) {
4159 	case IFCOUNTER_COLLISIONS:
4160 		return (sc->stats.colc);
4161 	case IFCOUNTER_IERRORS:
4162 		return (sc->dropped_pkts + sc->stats.rxerrc +
4163 		    sc->stats.crcerrs + sc->stats.algnerrc +
4164 		    sc->stats.ruc + sc->stats.roc +
4165 		    sc->stats.mpc + sc->stats.cexterr);
4166 	case IFCOUNTER_OERRORS:
4167 		return (sc->stats.ecol + sc->stats.latecol +
4168 		    sc->watchdog_events);
4169 	default:
4170 		return (if_get_counter_default(ifp, cnt));
4171 	}
4172 }
4173 
4174 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized
4175  * @ctx: iflib context
4176  * @event: event code to check
4177  *
4178  * Defaults to returning true for unknown events.
4179  *
4180  * @returns true if iflib needs to reinit the interface
4181  */
4182 static bool
4183 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
4184 {
4185 	switch (event) {
4186 	case IFLIB_RESTART_VLAN_CONFIG:
4187 		return (false);
4188 	default:
4189 		return (true);
4190 	}
4191 }
4192 
4193 /* Export a single 32-bit register via a read-only sysctl. */
4194 static int
4195 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4196 {
4197 	struct e1000_softc *sc;
4198 	u_int val;
4199 
4200 	sc = oidp->oid_arg1;
4201 	val = E1000_READ_REG(&sc->hw, oidp->oid_arg2);
4202 	return (sysctl_handle_int(oidp, &val, 0, req));
4203 }
4204 
4205 /*
4206  * Add sysctl variables, one per statistic, to the system.
4207  */
4208 static void
4209 em_add_hw_stats(struct e1000_softc *sc)
4210 {
4211 	device_t dev = iflib_get_dev(sc->ctx);
4212 	struct em_tx_queue *tx_que = sc->tx_queues;
4213 	struct em_rx_queue *rx_que = sc->rx_queues;
4214 
4215 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4216 	struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4217 	struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4218 	struct e1000_hw_stats *stats = &sc->stats;
4219 
4220 	struct sysctl_oid *stat_node, *queue_node, *int_node;
4221 	struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4222 
4223 #define QUEUE_NAME_LEN 32
4224 	char namebuf[QUEUE_NAME_LEN];
4225 
4226 	/* Driver Statistics */
4227 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4228 			CTLFLAG_RD, &sc->dropped_pkts,
4229 			"Driver dropped packets");
4230 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4231 			CTLFLAG_RD, &sc->link_irq,
4232 			"Link MSI-X IRQ Handled");
4233 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4234 			CTLFLAG_RD, &sc->rx_overruns,
4235 			"RX overruns");
4236 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4237 			CTLFLAG_RD, &sc->watchdog_events,
4238 			"Watchdog timeouts");
4239 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4240 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4241 	    sc, E1000_CTRL, em_sysctl_reg_handler, "IU",
4242 	    "Device Control Register");
4243 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4244 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4245 	    sc, E1000_RCTL, em_sysctl_reg_handler, "IU",
4246 	    "Receiver Control Register");
4247 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4248 			CTLFLAG_RD, &sc->hw.fc.high_water, 0,
4249 			"Flow Control High Watermark");
4250 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4251 			CTLFLAG_RD, &sc->hw.fc.low_water, 0,
4252 			"Flow Control Low Watermark");
4253 
4254 	for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
4255 		struct tx_ring *txr = &tx_que->txr;
4256 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4257 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4258 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
4259 		queue_list = SYSCTL_CHILDREN(queue_node);
4260 
4261 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4262 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
4263 		    E1000_TDH(txr->me), em_sysctl_reg_handler, "IU",
4264 		    "Transmit Descriptor Head");
4265 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4266 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
4267 		    E1000_TDT(txr->me), em_sysctl_reg_handler, "IU",
4268 		    "Transmit Descriptor Tail");
4269 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4270 				CTLFLAG_RD, &txr->tx_irq,
4271 				"Queue MSI-X Transmit Interrupts");
4272 	}
4273 
4274 	for (int j = 0; j < sc->rx_num_queues; j++, rx_que++) {
4275 		struct rx_ring *rxr = &rx_que->rxr;
4276 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4277 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4278 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
4279 		queue_list = SYSCTL_CHILDREN(queue_node);
4280 
4281 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4282 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
4283 		    E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU",
4284 		    "Receive Descriptor Head");
4285 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4286 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
4287 		    E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU",
4288 		    "Receive Descriptor Tail");
4289 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
4290 				CTLFLAG_RD, &rxr->rx_irq,
4291 				"Queue MSI-X Receive Interrupts");
4292 	}
4293 
4294 	/* MAC stats get their own sub node */
4295 
4296 	stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
4297 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
4298 	stat_list = SYSCTL_CHILDREN(stat_node);
4299 
4300 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
4301 			CTLFLAG_RD, &stats->ecol,
4302 			"Excessive collisions");
4303 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
4304 			CTLFLAG_RD, &stats->scc,
4305 			"Single collisions");
4306 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
4307 			CTLFLAG_RD, &stats->mcc,
4308 			"Multiple collisions");
4309 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
4310 			CTLFLAG_RD, &stats->latecol,
4311 			"Late collisions");
4312 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
4313 			CTLFLAG_RD, &stats->colc,
4314 			"Collision Count");
4315 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
4316 			CTLFLAG_RD, &sc->stats.symerrs,
4317 			"Symbol Errors");
4318 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
4319 			CTLFLAG_RD, &sc->stats.sec,
4320 			"Sequence Errors");
4321 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
4322 			CTLFLAG_RD, &sc->stats.dc,
4323 			"Defer Count");
4324 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
4325 			CTLFLAG_RD, &sc->stats.mpc,
4326 			"Missed Packets");
4327 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
4328 			CTLFLAG_RD, &sc->stats.rnbc,
4329 			"Receive No Buffers");
4330 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
4331 			CTLFLAG_RD, &sc->stats.ruc,
4332 			"Receive Undersize");
4333 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
4334 			CTLFLAG_RD, &sc->stats.rfc,
4335 			"Fragmented Packets Received ");
4336 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
4337 			CTLFLAG_RD, &sc->stats.roc,
4338 			"Oversized Packets Received");
4339 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
4340 			CTLFLAG_RD, &sc->stats.rjc,
4341 			"Recevied Jabber");
4342 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
4343 			CTLFLAG_RD, &sc->stats.rxerrc,
4344 			"Receive Errors");
4345 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
4346 			CTLFLAG_RD, &sc->stats.crcerrs,
4347 			"CRC errors");
4348 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
4349 			CTLFLAG_RD, &sc->stats.algnerrc,
4350 			"Alignment Errors");
4351 	/* On 82575 these are collision counts */
4352 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
4353 			CTLFLAG_RD, &sc->stats.cexterr,
4354 			"Collision/Carrier extension errors");
4355 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
4356 			CTLFLAG_RD, &sc->stats.xonrxc,
4357 			"XON Received");
4358 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
4359 			CTLFLAG_RD, &sc->stats.xontxc,
4360 			"XON Transmitted");
4361 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
4362 			CTLFLAG_RD, &sc->stats.xoffrxc,
4363 			"XOFF Received");
4364 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
4365 			CTLFLAG_RD, &sc->stats.xofftxc,
4366 			"XOFF Transmitted");
4367 
4368 	/* Packet Reception Stats */
4369 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
4370 			CTLFLAG_RD, &sc->stats.tpr,
4371 			"Total Packets Received ");
4372 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
4373 			CTLFLAG_RD, &sc->stats.gprc,
4374 			"Good Packets Received");
4375 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
4376 			CTLFLAG_RD, &sc->stats.bprc,
4377 			"Broadcast Packets Received");
4378 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
4379 			CTLFLAG_RD, &sc->stats.mprc,
4380 			"Multicast Packets Received");
4381 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
4382 			CTLFLAG_RD, &sc->stats.prc64,
4383 			"64 byte frames received ");
4384 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
4385 			CTLFLAG_RD, &sc->stats.prc127,
4386 			"65-127 byte frames received");
4387 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
4388 			CTLFLAG_RD, &sc->stats.prc255,
4389 			"128-255 byte frames received");
4390 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
4391 			CTLFLAG_RD, &sc->stats.prc511,
4392 			"256-511 byte frames received");
4393 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
4394 			CTLFLAG_RD, &sc->stats.prc1023,
4395 			"512-1023 byte frames received");
4396 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
4397 			CTLFLAG_RD, &sc->stats.prc1522,
4398 			"1023-1522 byte frames received");
4399 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
4400 			CTLFLAG_RD, &sc->stats.gorc,
4401 			"Good Octets Received");
4402 
4403 	/* Packet Transmission Stats */
4404 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
4405 			CTLFLAG_RD, &sc->stats.gotc,
4406 			"Good Octets Transmitted");
4407 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
4408 			CTLFLAG_RD, &sc->stats.tpt,
4409 			"Total Packets Transmitted");
4410 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
4411 			CTLFLAG_RD, &sc->stats.gptc,
4412 			"Good Packets Transmitted");
4413 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
4414 			CTLFLAG_RD, &sc->stats.bptc,
4415 			"Broadcast Packets Transmitted");
4416 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
4417 			CTLFLAG_RD, &sc->stats.mptc,
4418 			"Multicast Packets Transmitted");
4419 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
4420 			CTLFLAG_RD, &sc->stats.ptc64,
4421 			"64 byte frames transmitted ");
4422 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
4423 			CTLFLAG_RD, &sc->stats.ptc127,
4424 			"65-127 byte frames transmitted");
4425 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
4426 			CTLFLAG_RD, &sc->stats.ptc255,
4427 			"128-255 byte frames transmitted");
4428 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
4429 			CTLFLAG_RD, &sc->stats.ptc511,
4430 			"256-511 byte frames transmitted");
4431 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
4432 			CTLFLAG_RD, &sc->stats.ptc1023,
4433 			"512-1023 byte frames transmitted");
4434 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
4435 			CTLFLAG_RD, &sc->stats.ptc1522,
4436 			"1024-1522 byte frames transmitted");
4437 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
4438 			CTLFLAG_RD, &sc->stats.tsctc,
4439 			"TSO Contexts Transmitted");
4440 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
4441 			CTLFLAG_RD, &sc->stats.tsctfc,
4442 			"TSO Contexts Failed");
4443 
4444 
4445 	/* Interrupt Stats */
4446 
4447 	int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
4448 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
4449 	int_list = SYSCTL_CHILDREN(int_node);
4450 
4451 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
4452 			CTLFLAG_RD, &sc->stats.iac,
4453 			"Interrupt Assertion Count");
4454 
4455 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
4456 			CTLFLAG_RD, &sc->stats.icrxptc,
4457 			"Interrupt Cause Rx Pkt Timer Expire Count");
4458 
4459 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
4460 			CTLFLAG_RD, &sc->stats.icrxatc,
4461 			"Interrupt Cause Rx Abs Timer Expire Count");
4462 
4463 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
4464 			CTLFLAG_RD, &sc->stats.ictxptc,
4465 			"Interrupt Cause Tx Pkt Timer Expire Count");
4466 
4467 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
4468 			CTLFLAG_RD, &sc->stats.ictxatc,
4469 			"Interrupt Cause Tx Abs Timer Expire Count");
4470 
4471 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
4472 			CTLFLAG_RD, &sc->stats.ictxqec,
4473 			"Interrupt Cause Tx Queue Empty Count");
4474 
4475 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
4476 			CTLFLAG_RD, &sc->stats.ictxqmtc,
4477 			"Interrupt Cause Tx Queue Min Thresh Count");
4478 
4479 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4480 			CTLFLAG_RD, &sc->stats.icrxdmtc,
4481 			"Interrupt Cause Rx Desc Min Thresh Count");
4482 
4483 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4484 			CTLFLAG_RD, &sc->stats.icrxoc,
4485 			"Interrupt Cause Receiver Overrun Count");
4486 }
4487 
4488 static void
4489 em_fw_version_locked(if_ctx_t ctx)
4490 {
4491 	struct e1000_softc *sc = iflib_get_softc(ctx);
4492 	struct e1000_hw *hw = &sc->hw;
4493 	struct e1000_fw_version *fw_ver = &sc->fw_ver;
4494 	uint16_t eep = 0;
4495 
4496 	/*
4497 	 * em_fw_version_locked() must run under the IFLIB_CTX_LOCK to meet the
4498 	 * NVM locking model, so we do it in em_if_attach_pre() and store the
4499 	 * info in the softc
4500 	 */
4501 	ASSERT_CTX_LOCK_HELD(hw);
4502 
4503 	*fw_ver = (struct e1000_fw_version){0};
4504 
4505 	if (hw->mac.type >= igb_mac_min) {
4506 		/*
4507 		 * Use the Shared Code for igb(4)
4508 		 */
4509 		e1000_get_fw_version(hw, fw_ver);
4510 	} else {
4511 		/*
4512 		 * Otherwise, EEPROM version should be present on (almost?) all
4513 		 * devices here
4514 		 */
4515 		if(e1000_read_nvm(hw, NVM_VERSION, 1, &eep)) {
4516 			INIT_DEBUGOUT("can't get EEPROM version");
4517 			return;
4518 		}
4519 
4520 		fw_ver->eep_major = (eep & NVM_MAJOR_MASK) >> NVM_MAJOR_SHIFT;
4521 		fw_ver->eep_minor = (eep & NVM_MINOR_MASK) >> NVM_MINOR_SHIFT;
4522 		fw_ver->eep_build = (eep & NVM_IMAGE_ID_MASK);
4523 	}
4524 }
4525 
4526 static void
4527 em_sbuf_fw_version(struct e1000_fw_version *fw_ver, struct sbuf *buf)
4528 {
4529 	const char *space = "";
4530 
4531 	if (fw_ver->eep_major || fw_ver->eep_minor || fw_ver->eep_build) {
4532 		sbuf_printf(buf, "EEPROM V%d.%d-%d", fw_ver->eep_major,
4533 			    fw_ver->eep_minor, fw_ver->eep_build);
4534 		space = " ";
4535 	}
4536 
4537 	if (fw_ver->invm_major || fw_ver->invm_minor || fw_ver->invm_img_type) {
4538 		sbuf_printf(buf, "%sNVM V%d.%d imgtype%d",
4539 			    space, fw_ver->invm_major, fw_ver->invm_minor,
4540 			    fw_ver->invm_img_type);
4541 		space = " ";
4542 	}
4543 
4544 	if (fw_ver->or_valid) {
4545 		sbuf_printf(buf, "%sOption ROM V%d-b%d-p%d",
4546 			    space, fw_ver->or_major, fw_ver->or_build,
4547 			    fw_ver->or_patch);
4548 		space = " ";
4549 	}
4550 
4551 	if (fw_ver->etrack_id)
4552 		sbuf_printf(buf, "%seTrack 0x%08x", space, fw_ver->etrack_id);
4553 }
4554 
4555 static void
4556 em_print_fw_version(struct e1000_softc *sc )
4557 {
4558 	device_t dev = sc->dev;
4559 	struct sbuf *buf;
4560 	int error = 0;
4561 
4562 	buf = sbuf_new_auto();
4563 	if (!buf) {
4564 		device_printf(dev, "Could not allocate sbuf for output.\n");
4565 		return;
4566 	}
4567 
4568 	em_sbuf_fw_version(&sc->fw_ver, buf);
4569 
4570 	error = sbuf_finish(buf);
4571 	if (error)
4572 		device_printf(dev, "Error finishing sbuf: %d\n", error);
4573 	else if (sbuf_len(buf))
4574 		device_printf(dev, "%s\n", sbuf_data(buf));
4575 
4576 	sbuf_delete(buf);
4577 }
4578 
4579 static int
4580 em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS)
4581 {
4582 	struct e1000_softc *sc = (struct e1000_softc *)arg1;
4583 	device_t dev = sc->dev;
4584 	struct sbuf *buf;
4585 	int error = 0;
4586 
4587 	buf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
4588 	if (!buf) {
4589 		device_printf(dev, "Could not allocate sbuf for output.\n");
4590 		return (ENOMEM);
4591 	}
4592 
4593 	em_sbuf_fw_version(&sc->fw_ver, buf);
4594 
4595 	error = sbuf_finish(buf);
4596 	if (error)
4597 		device_printf(dev, "Error finishing sbuf: %d\n", error);
4598 
4599 	sbuf_delete(buf);
4600 
4601 	return (0);
4602 }
4603 
4604 /**********************************************************************
4605  *
4606  *  This routine provides a way to dump out the adapter eeprom,
4607  *  often a useful debug/service tool. This only dumps the first
4608  *  32 words, stuff that matters is in that extent.
4609  *
4610  **********************************************************************/
4611 static int
4612 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4613 {
4614 	struct e1000_softc *sc = (struct e1000_softc *)arg1;
4615 	int error;
4616 	int result;
4617 
4618 	result = -1;
4619 	error = sysctl_handle_int(oidp, &result, 0, req);
4620 
4621 	if (error || !req->newptr)
4622 		return (error);
4623 
4624 	/*
4625 	 * This value will cause a hex dump of the
4626 	 * first 32 16-bit words of the EEPROM to
4627 	 * the screen.
4628 	 */
4629 	if (result == 1)
4630 		em_print_nvm_info(sc);
4631 
4632 	return (error);
4633 }
4634 
4635 static void
4636 em_print_nvm_info(struct e1000_softc *sc)
4637 {
4638 	struct e1000_hw *hw = &sc->hw;
4639 	struct sx *iflib_ctx_lock = iflib_ctx_lock_get(sc->ctx);
4640 	u16 eeprom_data;
4641 	int i, j, row = 0;
4642 
4643 	/* Its a bit crude, but it gets the job done */
4644 	printf("\nInterface EEPROM Dump:\n");
4645 	printf("Offset\n0x0000  ");
4646 
4647 	/* We rely on the IFLIB_CTX_LOCK as part of NVM locking model */
4648 	sx_xlock(iflib_ctx_lock);
4649 	ASSERT_CTX_LOCK_HELD(hw);
4650 	for (i = 0, j = 0; i < 32; i++, j++) {
4651 		if (j == 8) { /* Make the offset block */
4652 			j = 0; ++row;
4653 			printf("\n0x00%x0  ",row);
4654 		}
4655 		e1000_read_nvm(hw, i, 1, &eeprom_data);
4656 		printf("%04x ", eeprom_data);
4657 	}
4658 	sx_xunlock(iflib_ctx_lock);
4659 	printf("\n");
4660 }
4661 
4662 static int
4663 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4664 {
4665 	struct em_int_delay_info *info;
4666 	struct e1000_softc *sc;
4667 	u32 regval;
4668 	int error, usecs, ticks;
4669 
4670 	info = (struct em_int_delay_info *) arg1;
4671 	usecs = info->value;
4672 	error = sysctl_handle_int(oidp, &usecs, 0, req);
4673 	if (error != 0 || req->newptr == NULL)
4674 		return (error);
4675 	if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4676 		return (EINVAL);
4677 	info->value = usecs;
4678 	ticks = EM_USECS_TO_TICKS(usecs);
4679 	if (info->offset == E1000_ITR)	/* units are 256ns here */
4680 		ticks *= 4;
4681 
4682 	sc = info->sc;
4683 
4684 	regval = E1000_READ_OFFSET(&sc->hw, info->offset);
4685 	regval = (regval & ~0xffff) | (ticks & 0xffff);
4686 	/* Handle a few special cases. */
4687 	switch (info->offset) {
4688 	case E1000_RDTR:
4689 		break;
4690 	case E1000_TIDV:
4691 		if (ticks == 0) {
4692 			sc->txd_cmd &= ~E1000_TXD_CMD_IDE;
4693 			/* Don't write 0 into the TIDV register. */
4694 			regval++;
4695 		} else
4696 			sc->txd_cmd |= E1000_TXD_CMD_IDE;
4697 		break;
4698 	}
4699 	E1000_WRITE_OFFSET(&sc->hw, info->offset, regval);
4700 	return (0);
4701 }
4702 
4703 static void
4704 em_add_int_delay_sysctl(struct e1000_softc *sc, const char *name,
4705 	const char *description, struct em_int_delay_info *info,
4706 	int offset, int value)
4707 {
4708 	info->sc = sc;
4709 	info->offset = offset;
4710 	info->value = value;
4711 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
4712 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
4713 	    OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
4714 	    info, 0, em_sysctl_int_delay, "I", description);
4715 }
4716 
4717 /*
4718  * Set flow control using sysctl:
4719  * Flow control values:
4720  *      0 - off
4721  *      1 - rx pause
4722  *      2 - tx pause
4723  *      3 - full
4724  */
4725 static int
4726 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4727 {
4728 	int error;
4729 	static int input = 3; /* default is full */
4730 	struct e1000_softc	*sc = (struct e1000_softc *) arg1;
4731 
4732 	error = sysctl_handle_int(oidp, &input, 0, req);
4733 
4734 	if ((error) || (req->newptr == NULL))
4735 		return (error);
4736 
4737 	if (input == sc->fc) /* no change? */
4738 		return (error);
4739 
4740 	switch (input) {
4741 	case e1000_fc_rx_pause:
4742 	case e1000_fc_tx_pause:
4743 	case e1000_fc_full:
4744 	case e1000_fc_none:
4745 		sc->hw.fc.requested_mode = input;
4746 		sc->fc = input;
4747 		break;
4748 	default:
4749 		/* Do nothing */
4750 		return (error);
4751 	}
4752 
4753 	sc->hw.fc.current_mode = sc->hw.fc.requested_mode;
4754 	e1000_force_mac_fc(&sc->hw);
4755 	return (error);
4756 }
4757 
4758 /*
4759  * Manage Energy Efficient Ethernet:
4760  * Control values:
4761  *     0/1 - enabled/disabled
4762  */
4763 static int
4764 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
4765 {
4766 	struct e1000_softc *sc = (struct e1000_softc *) arg1;
4767 	int error, value;
4768 
4769 	value = sc->hw.dev_spec.ich8lan.eee_disable;
4770 	error = sysctl_handle_int(oidp, &value, 0, req);
4771 	if (error || req->newptr == NULL)
4772 		return (error);
4773 	sc->hw.dev_spec.ich8lan.eee_disable = (value != 0);
4774 	em_if_init(sc->ctx);
4775 
4776 	return (0);
4777 }
4778 
4779 static int
4780 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4781 {
4782 	struct e1000_softc *sc;
4783 	int error;
4784 	int result;
4785 
4786 	result = -1;
4787 	error = sysctl_handle_int(oidp, &result, 0, req);
4788 
4789 	if (error || !req->newptr)
4790 		return (error);
4791 
4792 	if (result == 1) {
4793 		sc = (struct e1000_softc *) arg1;
4794 		em_print_debug_info(sc);
4795 	}
4796 
4797 	return (error);
4798 }
4799 
4800 static int
4801 em_get_rs(SYSCTL_HANDLER_ARGS)
4802 {
4803 	struct e1000_softc *sc = (struct e1000_softc *) arg1;
4804 	int error;
4805 	int result;
4806 
4807 	result = 0;
4808 	error = sysctl_handle_int(oidp, &result, 0, req);
4809 
4810 	if (error || !req->newptr || result != 1)
4811 		return (error);
4812 	em_dump_rs(sc);
4813 
4814 	return (error);
4815 }
4816 
4817 static void
4818 em_if_debug(if_ctx_t ctx)
4819 {
4820 	em_dump_rs(iflib_get_softc(ctx));
4821 }
4822 
4823 /*
4824  * This routine is meant to be fluid, add whatever is
4825  * needed for debugging a problem.  -jfv
4826  */
4827 static void
4828 em_print_debug_info(struct e1000_softc *sc)
4829 {
4830 	device_t dev = iflib_get_dev(sc->ctx);
4831 	struct ifnet *ifp = iflib_get_ifp(sc->ctx);
4832 	struct tx_ring *txr = &sc->tx_queues->txr;
4833 	struct rx_ring *rxr = &sc->rx_queues->rxr;
4834 
4835 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
4836 		printf("Interface is RUNNING ");
4837 	else
4838 		printf("Interface is NOT RUNNING\n");
4839 
4840 	if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
4841 		printf("and INACTIVE\n");
4842 	else
4843 		printf("and ACTIVE\n");
4844 
4845 	for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
4846 		device_printf(dev, "TX Queue %d ------\n", i);
4847 		device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4848 			E1000_READ_REG(&sc->hw, E1000_TDH(i)),
4849 			E1000_READ_REG(&sc->hw, E1000_TDT(i)));
4850 
4851 	}
4852 	for (int j=0; j < sc->rx_num_queues; j++, rxr++) {
4853 		device_printf(dev, "RX Queue %d ------\n", j);
4854 		device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4855 			E1000_READ_REG(&sc->hw, E1000_RDH(j)),
4856 			E1000_READ_REG(&sc->hw, E1000_RDT(j)));
4857 	}
4858 }
4859 
4860 /*
4861  * 82574 only:
4862  * Write a new value to the EEPROM increasing the number of MSI-X
4863  * vectors from 3 to 5, for proper multiqueue support.
4864  */
4865 static void
4866 em_enable_vectors_82574(if_ctx_t ctx)
4867 {
4868 	struct e1000_softc *sc = iflib_get_softc(ctx);
4869 	struct e1000_hw *hw = &sc->hw;
4870 	device_t dev = iflib_get_dev(ctx);
4871 	u16 edata;
4872 
4873 	e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4874 	if (bootverbose)
4875 		device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
4876 	if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
4877 		device_printf(dev, "Writing to eeprom: increasing "
4878 		    "reported MSI-X vectors from 3 to 5...\n");
4879 		edata &= ~(EM_NVM_MSIX_N_MASK);
4880 		edata |= 4 << EM_NVM_MSIX_N_SHIFT;
4881 		e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4882 		e1000_update_nvm_checksum(hw);
4883 		device_printf(dev, "Writing to eeprom: done\n");
4884 	}
4885 }
4886