xref: /freebsd/sys/dev/e1000/if_em.c (revision b2d2a78ad80ec68d4a17f5aef97d21686cb1e29b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001-2024, Intel Corporation
5  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
6  * Copyright (c) 2024 Kevin Bowling <kbowling@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33 
34 #define em_mac_min e1000_82571
35 #define igb_mac_min e1000_82575
36 
37 /*********************************************************************
38  *  Driver version:
39  *********************************************************************/
40 static const char em_driver_version[] = "7.7.8-fbsd";
41 static const char igb_driver_version[] = "2.5.28-fbsd";
42 
43 /*********************************************************************
44  *  PCI Device ID Table
45  *
46  *  Used by probe to select devices to load on
47  *  Last field stores an index into e1000_strings
48  *  Last entry must be all 0s
49  *
50  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
51  *********************************************************************/
52 
53 static const pci_vendor_info_t em_vendor_info_array[] =
54 {
55 	/* Intel(R) - lem-class legacy devices */
56 	PVID(0x8086, E1000_DEV_ID_82540EM,
57 	    "Intel(R) Legacy PRO/1000 MT 82540EM"),
58 	PVID(0x8086, E1000_DEV_ID_82540EM_LOM,
59 	    "Intel(R) Legacy PRO/1000 MT 82540EM (LOM)"),
60 	PVID(0x8086, E1000_DEV_ID_82540EP,
61 	    "Intel(R) Legacy PRO/1000 MT 82540EP"),
62 	PVID(0x8086, E1000_DEV_ID_82540EP_LOM,
63 	    "Intel(R) Legacy PRO/1000 MT 82540EP (LOM)"),
64 	PVID(0x8086, E1000_DEV_ID_82540EP_LP,
65 	    "Intel(R) Legacy PRO/1000 MT 82540EP (Mobile)"),
66 
67 	PVID(0x8086, E1000_DEV_ID_82541EI,
68 	    "Intel(R) Legacy PRO/1000 MT 82541EI (Copper)"),
69 	PVID(0x8086, E1000_DEV_ID_82541ER,
70 	    "Intel(R) Legacy PRO/1000 82541ER"),
71 	PVID(0x8086, E1000_DEV_ID_82541ER_LOM,
72 	    "Intel(R) Legacy PRO/1000 MT 82541ER"),
73 	PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE,
74 	    "Intel(R) Legacy PRO/1000 MT 82541EI (Mobile)"),
75 	PVID(0x8086, E1000_DEV_ID_82541GI,
76 	    "Intel(R) Legacy PRO/1000 MT 82541GI"),
77 	PVID(0x8086, E1000_DEV_ID_82541GI_LF,
78 	    "Intel(R) Legacy PRO/1000 GT 82541PI"),
79 	PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE,
80 	    "Intel(R) Legacy PRO/1000 MT 82541GI (Mobile)"),
81 
82 	PVID(0x8086, E1000_DEV_ID_82542,
83 	    "Intel(R) Legacy PRO/1000 82542 (Fiber)"),
84 
85 	PVID(0x8086, E1000_DEV_ID_82543GC_FIBER,
86 	    "Intel(R) Legacy PRO/1000 F 82543GC (Fiber)"),
87 	PVID(0x8086, E1000_DEV_ID_82543GC_COPPER,
88 	    "Intel(R) Legacy PRO/1000 T 82543GC (Copper)"),
89 
90 	PVID(0x8086, E1000_DEV_ID_82544EI_COPPER,
91 	    "Intel(R) Legacy PRO/1000 XT 82544EI (Copper)"),
92 	PVID(0x8086, E1000_DEV_ID_82544EI_FIBER,
93 	    "Intel(R) Legacy PRO/1000 XF 82544EI (Fiber)"),
94 	PVID(0x8086, E1000_DEV_ID_82544GC_COPPER,
95 	    "Intel(R) Legacy PRO/1000 T 82544GC (Copper)"),
96 	PVID(0x8086, E1000_DEV_ID_82544GC_LOM,
97 	    "Intel(R) Legacy PRO/1000 XT 82544GC (LOM)"),
98 
99 	PVID(0x8086, E1000_DEV_ID_82545EM_COPPER,
100 	    "Intel(R) Legacy PRO/1000 MT 82545EM (Copper)"),
101 	PVID(0x8086, E1000_DEV_ID_82545EM_FIBER,
102 	    "Intel(R) Legacy PRO/1000 MF 82545EM (Fiber)"),
103 	PVID(0x8086, E1000_DEV_ID_82545GM_COPPER,
104 	    "Intel(R) Legacy PRO/1000 MT 82545GM (Copper)"),
105 	PVID(0x8086, E1000_DEV_ID_82545GM_FIBER,
106 	    "Intel(R) Legacy PRO/1000 MF 82545GM (Fiber)"),
107 	PVID(0x8086, E1000_DEV_ID_82545GM_SERDES,
108 	    "Intel(R) Legacy PRO/1000 MB 82545GM (SERDES)"),
109 
110 	PVID(0x8086, E1000_DEV_ID_82546EB_COPPER,
111 	    "Intel(R) Legacy PRO/1000 MT 82546EB (Copper)"),
112 	PVID(0x8086, E1000_DEV_ID_82546EB_FIBER,
113 	    "Intel(R) Legacy PRO/1000 MF 82546EB (Fiber)"),
114 	PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER,
115 	    "Intel(R) Legacy PRO/1000 MT 82546EB (Quad Copper"),
116 	PVID(0x8086, E1000_DEV_ID_82546GB_COPPER,
117 	    "Intel(R) Legacy PRO/1000 MT 82546GB (Copper)"),
118 	PVID(0x8086, E1000_DEV_ID_82546GB_FIBER,
119 	    "Intel(R) Legacy PRO/1000 MF 82546GB (Fiber)"),
120 	PVID(0x8086, E1000_DEV_ID_82546GB_SERDES,
121 	    "Intel(R) Legacy PRO/1000 MB 82546GB (SERDES)"),
122 	PVID(0x8086, E1000_DEV_ID_82546GB_PCIE,
123 	    "Intel(R) Legacy PRO/1000 P 82546GB (PCIe)"),
124 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER,
125 	    "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
126 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3,
127 	    "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
128 
129 	PVID(0x8086, E1000_DEV_ID_82547EI,
130 	    "Intel(R) Legacy PRO/1000 CT 82547EI"),
131 	PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE,
132 	    "Intel(R) Legacy PRO/1000 CT 82547EI (Mobile)"),
133 	PVID(0x8086, E1000_DEV_ID_82547GI,
134 	    "Intel(R) Legacy PRO/1000 CT 82547GI"),
135 
136 	/* Intel(R) - em-class devices */
137 	PVID(0x8086, E1000_DEV_ID_82571EB_COPPER,
138 	    "Intel(R) PRO/1000 PT 82571EB/82571GB (Copper)"),
139 	PVID(0x8086, E1000_DEV_ID_82571EB_FIBER,
140 	    "Intel(R) PRO/1000 PF 82571EB/82571GB (Fiber)"),
141 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES,
142 	    "Intel(R) PRO/1000 PB 82571EB (SERDES)"),
143 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL,
144 	    "Intel(R) PRO/1000 82571EB (Dual Mezzanine)"),
145 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD,
146 	    "Intel(R) PRO/1000 82571EB (Quad Mezzanine)"),
147 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER,
148 	    "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
149 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP,
150 	    "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
151 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER,
152 	    "Intel(R) PRO/1000 PF 82571EB (Quad Fiber)"),
153 	PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER,
154 	    "Intel(R) PRO/1000 PT 82571PT (Quad Copper)"),
155 	PVID(0x8086, E1000_DEV_ID_82572EI,
156 	    "Intel(R) PRO/1000 PT 82572EI (Copper)"),
157 	PVID(0x8086, E1000_DEV_ID_82572EI_COPPER,
158 	    "Intel(R) PRO/1000 PT 82572EI (Copper)"),
159 	PVID(0x8086, E1000_DEV_ID_82572EI_FIBER,
160 	    "Intel(R) PRO/1000 PF 82572EI (Fiber)"),
161 	PVID(0x8086, E1000_DEV_ID_82572EI_SERDES,
162 	    "Intel(R) PRO/1000 82572EI (SERDES)"),
163 	PVID(0x8086, E1000_DEV_ID_82573E,
164 	    "Intel(R) PRO/1000 82573E (Copper)"),
165 	PVID(0x8086, E1000_DEV_ID_82573E_IAMT,
166 	    "Intel(R) PRO/1000 82573E AMT (Copper)"),
167 	PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 82573L"),
168 	PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) 82583V"),
169 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT,
170 	    "Intel(R) 80003ES2LAN (Copper)"),
171 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT,
172 	    "Intel(R) 80003ES2LAN (SERDES)"),
173 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT,
174 	    "Intel(R) 80003ES2LAN (Dual Copper)"),
175 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT,
176 	    "Intel(R) 80003ES2LAN (Dual SERDES)"),
177 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT,
178 	    "Intel(R) 82566MM ICH8 AMT (Mobile)"),
179 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) 82566DM ICH8 AMT"),
180 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) 82566DC ICH8"),
181 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) 82562V ICH8"),
182 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) 82562GT ICH8"),
183 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) 82562G ICH8"),
184 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) 82566MC ICH8"),
185 	PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) 82567V-3 ICH8"),
186 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT,
187 	    "Intel(R) 82567LM ICH9 AMT"),
188 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT,
189 	    "Intel(R) 82566DM-2 ICH9 AMT"),
190 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) 82566DC-2 ICH9"),
191 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) 82567LF ICH9"),
192 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) 82567V ICH9"),
193 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) 82562V-2 ICH9"),
194 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) 82562GT-2 ICH9"),
195 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) 82562G-2 ICH9"),
196 	PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) 82567LM-4 ICH9"),
197 	PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) Gigabit CT 82574L"),
198 	PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) 82574L-Apple"),
199 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) 82567LM-2 ICH10"),
200 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) 82567LF-2 ICH10"),
201 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) 82567V-2 ICH10"),
202 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) 82567LM-3 ICH10"),
203 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) 82567LF-3 ICH10"),
204 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) 82567V-4 ICH10"),
205 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) 82577LM"),
206 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) 82577LC"),
207 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) 82578DM"),
208 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) 82578DC"),
209 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) 82579LM"),
210 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) 82579V"),
211 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) I217-LM LPT"),
212 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) I217-V LPT"),
213 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM,
214 	    "Intel(R) I218-LM LPTLP"),
215 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) I218-V LPTLP"),
216 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) I218-LM (2)"),
217 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) I218-V (2)"),
218 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) I218-LM (3)"),
219 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) I218-V (3)"),
220 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) I219-LM SPT"),
221 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) I219-V SPT"),
222 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2,
223 	    "Intel(R) I219-LM SPT-H(2)"),
224 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2,
225 	    "Intel(R) I219-V SPT-H(2)"),
226 	PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3,
227 	    "Intel(R) I219-LM LBG(3)"),
228 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4,
229 	    "Intel(R) I219-LM SPT(4)"),
230 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) I219-V SPT(4)"),
231 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5,
232 	    "Intel(R) I219-LM SPT(5)"),
233 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) I219-V SPT(5)"),
234 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6,
235 	    "Intel(R) I219-LM CNP(6)"),
236 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) I219-V CNP(6)"),
237 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7,
238 	    "Intel(R) I219-LM CNP(7)"),
239 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) I219-V CNP(7)"),
240 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8,
241 	    "Intel(R) I219-LM ICP(8)"),
242 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) I219-V ICP(8)"),
243 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9,
244 	    "Intel(R) I219-LM ICP(9)"),
245 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) I219-V ICP(9)"),
246 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10,
247 	    "Intel(R) I219-LM CMP(10)"),
248 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10,
249 	    "Intel(R) I219-V CMP(10)"),
250 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11,
251 	    "Intel(R) I219-LM CMP(11)"),
252 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11,
253 	    "Intel(R) I219-V CMP(11)"),
254 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12,
255 	    "Intel(R) I219-LM CMP(12)"),
256 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12,
257 	    "Intel(R) I219-V CMP(12)"),
258 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM13,
259 	    "Intel(R) I219-LM TGP(13)"),
260 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V13,
261 	    "Intel(R) I219-V TGP(13)"),
262 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM14,
263 	    "Intel(R) I219-LM TGP(14)"),
264 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V14,
265 	    "Intel(R) I219-V GTP(14)"),
266 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM15,
267 	    "Intel(R) I219-LM TGP(15)"),
268 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V15,
269 	    "Intel(R) I219-V TGP(15)"),
270 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM16,
271 	    "Intel(R) I219-LM ADL(16)"),
272 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V16,
273 	    "Intel(R) I219-V ADL(16)"),
274 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM17,
275 	    "Intel(R) I219-LM ADL(17)"),
276 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V17,
277 	    "Intel(R) I219-V ADL(17)"),
278 	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM18,
279 	    "Intel(R) I219-LM MTP(18)"),
280 	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V18,
281 	    "Intel(R) I219-V MTP(18)"),
282 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM19,
283 	    "Intel(R) I219-LM ADL(19)"),
284 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V19,
285 	    "Intel(R) I219-V ADL(19)"),
286 	PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM20,
287 	    "Intel(R) I219-LM LNL(20)"),
288 	PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V20,
289 	    "Intel(R) I219-V LNL(20)"),
290 	PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM21,
291 	    "Intel(R) I219-LM LNL(21)"),
292 	PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V21,
293 	    "Intel(R) I219-V LNL(21)"),
294 	PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM22,
295 	    "Intel(R) I219-LM RPL(22)"),
296 	PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V22,
297 	    "Intel(R) I219-V RPL(22)"),
298 	PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM23,
299 	    "Intel(R) I219-LM RPL(23)"),
300 	PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V23,
301 	    "Intel(R) I219-V RPL(23)"),
302 	PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_LM24,
303 	    "Intel(R) I219-LM ARL(24)"),
304 	PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_V24,
305 	    "Intel(R) I219-V ARL(24)"),
306 	PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM25,
307 	    "Intel(R) I219-LM PTP(25)"),
308 	PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V25,
309 	    "Intel(R) I219-V PTP(25)"),
310 	PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM26,
311 	    "Intel(R) I219-LM PTP(26)"),
312 	PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V26,
313 	    "Intel(R) I219-V PTP(26)"),
314 	PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM27,
315 	    "Intel(R) I219-LM PTP(27)"),
316 	PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V27,
317 	    "Intel(R) I219-V PTP(27)"),
318 	/* required last entry */
319 	PVID_END
320 };
321 
322 static const pci_vendor_info_t igb_vendor_info_array[] =
323 {
324 	/* Intel(R) - igb-class devices */
325 	PVID(0x8086, E1000_DEV_ID_82575EB_COPPER,
326 	    "Intel(R) PRO/1000 82575EB (Copper)"),
327 	PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES,
328 	    "Intel(R) PRO/1000 82575EB (SERDES)"),
329 	PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER,
330 	    "Intel(R) PRO/1000 VT 82575GB (Quad Copper)"),
331 	PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 82576"),
332 	PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 82576NS"),
333 	PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES,
334 	    "Intel(R) PRO/1000 82576NS (SERDES)"),
335 	PVID(0x8086, E1000_DEV_ID_82576_FIBER,
336 	    "Intel(R) PRO/1000 EF 82576 (Dual Fiber)"),
337 	PVID(0x8086, E1000_DEV_ID_82576_SERDES,
338 	    "Intel(R) PRO/1000 82576 (Dual SERDES)"),
339 	PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD,
340 	    "Intel(R) PRO/1000 ET 82576 (Quad SERDES)"),
341 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER,
342 	    "Intel(R) PRO/1000 ET 82576 (Quad Copper)"),
343 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2,
344 	    "Intel(R) PRO/1000 ET(2) 82576 (Quad Copper)"),
345 	PVID(0x8086, E1000_DEV_ID_82576_VF,
346 	    "Intel(R) PRO/1000 82576 Virtual Function"),
347 	PVID(0x8086, E1000_DEV_ID_82580_COPPER,
348 	    "Intel(R) I340 82580 (Copper)"),
349 	PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) I340 82580 (Fiber)"),
350 	PVID(0x8086, E1000_DEV_ID_82580_SERDES,
351 	    "Intel(R) I340 82580 (SERDES)"),
352 	PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) I340 82580 (SGMII)"),
353 	PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL,
354 	    "Intel(R) I340-T2 82580 (Dual Copper)"),
355 	PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER,
356 	    "Intel(R) I340-F4 82580 (Quad Fiber)"),
357 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES,
358 	    "Intel(R) DH89XXCC (SERDES)"),
359 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII,
360 	    "Intel(R) I347-AT4 DH89XXCC"),
361 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) DH89XXCC (SFP)"),
362 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE,
363 	    "Intel(R) DH89XXCC (Backplane)"),
364 	PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) I350 (Copper)"),
365 	PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) I350 (Fiber)"),
366 	PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) I350 (SERDES)"),
367 	PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) I350 (SGMII)"),
368 	PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) I350 Virtual Function"),
369 	PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) I210 (Copper)"),
370 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT,
371 	    "Intel(R) I210 IT (Copper)"),
372 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) I210 (OEM)"),
373 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS,
374 	    "Intel(R) I210 Flashless (Copper)"),
375 	PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS,
376 	    "Intel(R) I210 Flashless (SERDES)"),
377 	PVID(0x8086, E1000_DEV_ID_I210_SGMII_FLASHLESS,
378 	    "Intel(R) I210 Flashless (SGMII)"),
379 	PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) I210 (Fiber)"),
380 	PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) I210 (SERDES)"),
381 	PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) I210 (SGMII)"),
382 	PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) I211 (Copper)"),
383 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS,
384 	    "Intel(R) I354 (1.0 GbE Backplane)"),
385 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS,
386 	    "Intel(R) I354 (2.5 GbE Backplane)"),
387 	PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) I354 (SGMII)"),
388 	/* required last entry */
389 	PVID_END
390 };
391 
392 /*********************************************************************
393  *  Function prototypes
394  *********************************************************************/
395 static void	*em_register(device_t);
396 static void	*igb_register(device_t);
397 static int	em_if_attach_pre(if_ctx_t);
398 static int	em_if_attach_post(if_ctx_t);
399 static int	em_if_detach(if_ctx_t);
400 static int	em_if_shutdown(if_ctx_t);
401 static int	em_if_suspend(if_ctx_t);
402 static int	em_if_resume(if_ctx_t);
403 
404 static int	em_if_tx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int,
405     int);
406 static int	em_if_rx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int,
407     int);
408 static void	em_if_queues_free(if_ctx_t);
409 
410 static uint64_t	em_if_get_counter(if_ctx_t, ift_counter);
411 static void	em_if_init(if_ctx_t);
412 static void	em_if_stop(if_ctx_t);
413 static void	em_if_media_status(if_ctx_t, struct ifmediareq *);
414 static int	em_if_media_change(if_ctx_t);
415 static int	em_if_mtu_set(if_ctx_t, uint32_t);
416 static void	em_if_timer(if_ctx_t, uint16_t);
417 static void	em_if_vlan_register(if_ctx_t, u16);
418 static void	em_if_vlan_unregister(if_ctx_t, u16);
419 static void	em_if_watchdog_reset(if_ctx_t);
420 static bool	em_if_needs_restart(if_ctx_t, enum iflib_restart_event);
421 
422 static void	em_identify_hardware(if_ctx_t);
423 static int	em_allocate_pci_resources(if_ctx_t);
424 static void	em_free_pci_resources(if_ctx_t);
425 static void	em_reset(if_ctx_t);
426 static int	em_setup_interface(if_ctx_t);
427 static int	em_setup_msix(if_ctx_t);
428 
429 static void	em_initialize_transmit_unit(if_ctx_t);
430 static void	em_initialize_receive_unit(if_ctx_t);
431 
432 static void	em_if_intr_enable(if_ctx_t);
433 static void	em_if_intr_disable(if_ctx_t);
434 static void	igb_if_intr_enable(if_ctx_t);
435 static void	igb_if_intr_disable(if_ctx_t);
436 static int	em_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
437 static int	em_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
438 static int	igb_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
439 static int	igb_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
440 static void	em_if_multi_set(if_ctx_t);
441 static void	em_if_update_admin_status(if_ctx_t);
442 static void	em_if_debug(if_ctx_t);
443 static void	em_update_stats_counters(struct e1000_softc *);
444 static void	em_add_hw_stats(struct e1000_softc *);
445 static int	em_if_set_promisc(if_ctx_t, int);
446 static bool	em_if_vlan_filter_capable(if_ctx_t);
447 static bool	em_if_vlan_filter_used(if_ctx_t);
448 static void	em_if_vlan_filter_enable(struct e1000_softc *);
449 static void	em_if_vlan_filter_disable(struct e1000_softc *);
450 static void	em_if_vlan_filter_write(struct e1000_softc *);
451 static void	em_setup_vlan_hw_support(if_ctx_t ctx);
452 static int	em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
453 static void	em_print_nvm_info(struct e1000_softc *);
454 static void	em_fw_version_locked(if_ctx_t);
455 static void	em_sbuf_fw_version(struct e1000_fw_version *, struct sbuf *);
456 static void	em_print_fw_version(struct e1000_softc *);
457 static int	em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS);
458 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
459 static int	em_get_rs(SYSCTL_HANDLER_ARGS);
460 static void	em_print_debug_info(struct e1000_softc *);
461 static int 	em_is_valid_ether_addr(u8 *);
462 static void	em_newitr(struct e1000_softc *, struct em_rx_queue *,
463     struct tx_ring *, struct rx_ring *);
464 static bool	em_automask_tso(if_ctx_t);
465 static int	em_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS);
466 static int	em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
467 static void	em_add_int_delay_sysctl(struct e1000_softc *, const char *,
468     const char *, struct em_int_delay_info *, int, int);
469 /* Management and WOL Support */
470 static void	em_init_manageability(struct e1000_softc *);
471 static void	em_release_manageability(struct e1000_softc *);
472 static void	em_get_hw_control(struct e1000_softc *);
473 static void	em_release_hw_control(struct e1000_softc *);
474 static void	em_get_wakeup(if_ctx_t);
475 static void	em_enable_wakeup(if_ctx_t);
476 static int	em_enable_phy_wakeup(struct e1000_softc *);
477 static void	em_disable_aspm(struct e1000_softc *);
478 
479 int		em_intr(void *);
480 
481 /* MSI-X handlers */
482 static int	em_if_msix_intr_assign(if_ctx_t, int);
483 static int	em_msix_link(void *);
484 static void	em_handle_link(void *);
485 
486 static void	em_enable_vectors_82574(if_ctx_t);
487 
488 static int	em_set_flowcntl(SYSCTL_HANDLER_ARGS);
489 static int	em_sysctl_eee(SYSCTL_HANDLER_ARGS);
490 static int	igb_sysctl_dmac(SYSCTL_HANDLER_ARGS);
491 static void	em_if_led_func(if_ctx_t, int);
492 
493 static int	em_get_regs(SYSCTL_HANDLER_ARGS);
494 
495 static void	lem_smartspeed(struct e1000_softc *);
496 static void	igb_configure_queues(struct e1000_softc *);
497 static void	em_flush_desc_rings(struct e1000_softc *);
498 
499 
500 /*********************************************************************
501  *  FreeBSD Device Interface Entry Points
502  *********************************************************************/
503 static device_method_t em_methods[] = {
504 	/* Device interface */
505 	DEVMETHOD(device_register, em_register),
506 	DEVMETHOD(device_probe, iflib_device_probe),
507 	DEVMETHOD(device_attach, iflib_device_attach),
508 	DEVMETHOD(device_detach, iflib_device_detach),
509 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
510 	DEVMETHOD(device_suspend, iflib_device_suspend),
511 	DEVMETHOD(device_resume, iflib_device_resume),
512 	DEVMETHOD_END
513 };
514 
515 static device_method_t igb_methods[] = {
516 	/* Device interface */
517 	DEVMETHOD(device_register, igb_register),
518 	DEVMETHOD(device_probe, iflib_device_probe),
519 	DEVMETHOD(device_attach, iflib_device_attach),
520 	DEVMETHOD(device_detach, iflib_device_detach),
521 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
522 	DEVMETHOD(device_suspend, iflib_device_suspend),
523 	DEVMETHOD(device_resume, iflib_device_resume),
524 	DEVMETHOD_END
525 };
526 
527 
528 static driver_t em_driver = {
529 	"em", em_methods, sizeof(struct e1000_softc),
530 };
531 
532 DRIVER_MODULE(em, pci, em_driver, 0, 0);
533 
534 MODULE_DEPEND(em, pci, 1, 1, 1);
535 MODULE_DEPEND(em, ether, 1, 1, 1);
536 MODULE_DEPEND(em, iflib, 1, 1, 1);
537 
538 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
539 
540 static driver_t igb_driver = {
541 	"igb", igb_methods, sizeof(struct e1000_softc),
542 };
543 
544 DRIVER_MODULE(igb, pci, igb_driver, 0, 0);
545 
546 MODULE_DEPEND(igb, pci, 1, 1, 1);
547 MODULE_DEPEND(igb, ether, 1, 1, 1);
548 MODULE_DEPEND(igb, iflib, 1, 1, 1);
549 
550 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
551 
552 static device_method_t em_if_methods[] = {
553 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
554 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
555 	DEVMETHOD(ifdi_detach, em_if_detach),
556 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
557 	DEVMETHOD(ifdi_suspend, em_if_suspend),
558 	DEVMETHOD(ifdi_resume, em_if_resume),
559 	DEVMETHOD(ifdi_init, em_if_init),
560 	DEVMETHOD(ifdi_stop, em_if_stop),
561 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
562 	DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
563 	DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
564 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
565 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
566 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
567 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
568 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
569 	DEVMETHOD(ifdi_media_status, em_if_media_status),
570 	DEVMETHOD(ifdi_media_change, em_if_media_change),
571 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
572 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
573 	DEVMETHOD(ifdi_timer, em_if_timer),
574 	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
575 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
576 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
577 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
578 	DEVMETHOD(ifdi_led_func, em_if_led_func),
579 	DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
580 	DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
581 	DEVMETHOD(ifdi_debug, em_if_debug),
582 	DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
583 	DEVMETHOD_END
584 };
585 
586 static driver_t em_if_driver = {
587 	"em_if", em_if_methods, sizeof(struct e1000_softc)
588 };
589 
590 static device_method_t igb_if_methods[] = {
591 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
592 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
593 	DEVMETHOD(ifdi_detach, em_if_detach),
594 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
595 	DEVMETHOD(ifdi_suspend, em_if_suspend),
596 	DEVMETHOD(ifdi_resume, em_if_resume),
597 	DEVMETHOD(ifdi_init, em_if_init),
598 	DEVMETHOD(ifdi_stop, em_if_stop),
599 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
600 	DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
601 	DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
602 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
603 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
604 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
605 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
606 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
607 	DEVMETHOD(ifdi_media_status, em_if_media_status),
608 	DEVMETHOD(ifdi_media_change, em_if_media_change),
609 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
610 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
611 	DEVMETHOD(ifdi_timer, em_if_timer),
612 	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
613 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
614 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
615 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
616 	DEVMETHOD(ifdi_led_func, em_if_led_func),
617 	DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
618 	DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
619 	DEVMETHOD(ifdi_debug, em_if_debug),
620 	DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
621 	DEVMETHOD_END
622 };
623 
624 static driver_t igb_if_driver = {
625 	"igb_if", igb_if_methods, sizeof(struct e1000_softc)
626 };
627 
628 /*********************************************************************
629  *  Tunable default values.
630  *********************************************************************/
631 
632 #define EM_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
633 #define EM_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
634 
635 /* Allow common code without TSO */
636 #ifndef CSUM_TSO
637 #define CSUM_TSO	0
638 #endif
639 
640 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
641     "EM driver parameters");
642 
643 static int em_disable_crc_stripping = 0;
644 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
645     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
646 
647 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
648 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
649 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN,
650     &em_tx_int_delay_dflt, 0, "Default transmit interrupt delay in usecs");
651 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN,
652     &em_rx_int_delay_dflt, 0, "Default receive interrupt delay in usecs");
653 
654 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
655 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
656 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
657     &em_tx_abs_int_delay_dflt, 0,
658     "Default transmit interrupt delay limit in usecs");
659 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
660     &em_rx_abs_int_delay_dflt, 0,
661     "Default receive interrupt delay limit in usecs");
662 
663 static int em_smart_pwr_down = false;
664 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN,
665     &em_smart_pwr_down,
666     0, "Set to true to leave smart power down enabled on newer adapters");
667 
668 static bool em_unsupported_tso = false;
669 SYSCTL_BOOL(_hw_em, OID_AUTO, unsupported_tso, CTLFLAG_RDTUN,
670     &em_unsupported_tso, 0, "Allow unsupported em(4) TSO configurations");
671 
672 /* Controls whether promiscuous also shows bad packets */
673 static int em_debug_sbp = false;
674 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
675     "Show bad packets in promiscuous mode");
676 
677 /* Energy efficient ethernet - default to OFF */
678 static int eee_setting = 1;
679 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
680     "Enable Energy Efficient Ethernet");
681 
682 /*
683  * AIM: Adaptive Interrupt Moderation
684  * which means that the interrupt rate is varied over time based on the
685  * traffic for that interrupt vector
686  */
687 static int em_enable_aim = 1;
688 SYSCTL_INT(_hw_em, OID_AUTO, enable_aim, CTLFLAG_RWTUN, &em_enable_aim,
689     0, "Enable adaptive interrupt moderation (1=normal, 2=lowlatency)");
690 
691 /*
692 ** Tuneable Interrupt rate
693 */
694 static int em_max_interrupt_rate = EM_INTS_DEFAULT;
695 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
696     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
697 
698 /* Global used in WOL setup with multiport cards */
699 static int global_quad_port_a = 0;
700 
701 extern struct if_txrx igb_txrx;
702 extern struct if_txrx em_txrx;
703 extern struct if_txrx lem_txrx;
704 
705 static struct if_shared_ctx em_sctx_init = {
706 	.isc_magic = IFLIB_MAGIC,
707 	.isc_q_align = PAGE_SIZE,
708 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
709 	.isc_tx_maxsegsize = PAGE_SIZE,
710 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
711 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
712 	.isc_rx_maxsize = MJUM9BYTES,
713 	.isc_rx_nsegments = 1,
714 	.isc_rx_maxsegsize = MJUM9BYTES,
715 	.isc_nfl = 1,
716 	.isc_nrxqs = 1,
717 	.isc_ntxqs = 1,
718 	.isc_admin_intrcnt = 1,
719 	.isc_vendor_info = em_vendor_info_array,
720 	.isc_driver_version = em_driver_version,
721 	.isc_driver = &em_if_driver,
722 	.isc_flags =
723 	    IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
724 
725 	.isc_nrxd_min = {EM_MIN_RXD},
726 	.isc_ntxd_min = {EM_MIN_TXD},
727 	.isc_nrxd_max = {EM_MAX_RXD},
728 	.isc_ntxd_max = {EM_MAX_TXD},
729 	.isc_nrxd_default = {EM_DEFAULT_RXD},
730 	.isc_ntxd_default = {EM_DEFAULT_TXD},
731 };
732 
733 static struct if_shared_ctx igb_sctx_init = {
734 	.isc_magic = IFLIB_MAGIC,
735 	.isc_q_align = PAGE_SIZE,
736 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
737 	.isc_tx_maxsegsize = PAGE_SIZE,
738 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
739 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
740 	.isc_rx_maxsize = MJUM9BYTES,
741 	.isc_rx_nsegments = 1,
742 	.isc_rx_maxsegsize = MJUM9BYTES,
743 	.isc_nfl = 1,
744 	.isc_nrxqs = 1,
745 	.isc_ntxqs = 1,
746 	.isc_admin_intrcnt = 1,
747 	.isc_vendor_info = igb_vendor_info_array,
748 	.isc_driver_version = igb_driver_version,
749 	.isc_driver = &igb_if_driver,
750 	.isc_flags =
751 	    IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
752 
753 	.isc_nrxd_min = {EM_MIN_RXD},
754 	.isc_ntxd_min = {EM_MIN_TXD},
755 	.isc_nrxd_max = {IGB_MAX_RXD},
756 	.isc_ntxd_max = {IGB_MAX_TXD},
757 	.isc_nrxd_default = {EM_DEFAULT_RXD},
758 	.isc_ntxd_default = {EM_DEFAULT_TXD},
759 };
760 
761 /*****************************************************************
762  *
763  * Dump Registers
764  *
765  ****************************************************************/
766 #define IGB_REGS_LEN 739
767 
768 static int em_get_regs(SYSCTL_HANDLER_ARGS)
769 {
770 	struct e1000_softc *sc = (struct e1000_softc *)arg1;
771 	struct e1000_hw *hw = &sc->hw;
772 	struct sbuf *sb;
773 	u32 *regs_buff;
774 	int rc;
775 
776 	regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
777 	memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
778 
779 	rc = sysctl_wire_old_buffer(req, 0);
780 	MPASS(rc == 0);
781 	if (rc != 0) {
782 		free(regs_buff, M_DEVBUF);
783 		return (rc);
784 	}
785 
786 	sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
787 	MPASS(sb != NULL);
788 	if (sb == NULL) {
789 		free(regs_buff, M_DEVBUF);
790 		return (ENOMEM);
791 	}
792 
793 	/* General Registers */
794 	regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
795 	regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
796 	regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
797 	regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
798 	regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
799 	regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
800 	regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
801 	regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
802 	regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
803 	regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
804 	regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
805 	regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
806 	regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
807 	regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
808 	regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
809 	regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
810 	regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
811 	regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
812 	regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
813 	regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
814 	regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
815 	regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
816 
817 	sbuf_printf(sb, "General Registers\n");
818 	sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
819 	sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
820 	sbuf_printf(sb, "\tCTRL_EXT\t %08x\n\n", regs_buff[2]);
821 
822 	sbuf_printf(sb, "Interrupt Registers\n");
823 	sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
824 
825 	sbuf_printf(sb, "RX Registers\n");
826 	sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
827 	sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
828 	sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
829 	sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
830 	sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
831 	sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
832 	sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
833 
834 	sbuf_printf(sb, "TX Registers\n");
835 	sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
836 	sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
837 	sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
838 	sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
839 	sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
840 	sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
841 	sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
842 	sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
843 	sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
844 	sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
845 	sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
846 
847 	free(regs_buff, M_DEVBUF);
848 
849 #ifdef DUMP_DESCS
850 	{
851 		if_softc_ctx_t scctx = sc->shared;
852 		struct rx_ring *rxr = &rx_que->rxr;
853 		struct tx_ring *txr = &tx_que->txr;
854 		int ntxd = scctx->isc_ntxd[0];
855 		int nrxd = scctx->isc_nrxd[0];
856 		int j;
857 
858 	for (j = 0; j < nrxd; j++) {
859 		u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
860 		u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
861 		sbuf_printf(sb, "\tReceive Descriptor Address %d: %08"
862 		    PRIx64 "  Error:%d  Length:%d\n",
863 		    j, rxr->rx_base[j].read.buffer_addr, staterr, length);
864 	}
865 
866 	for (j = 0; j < min(ntxd, 256); j++) {
867 		unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
868 
869 		sbuf_printf(sb,
870 		    "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x"
871 		    "  eop: %d DD=%d\n",
872 		    j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
873 		    buf->eop != -1 ?
874 		    txr->tx_base[buf->eop].upper.fields.status &
875 		    E1000_TXD_STAT_DD : 0);
876 
877 	}
878 	}
879 #endif
880 
881 	rc = sbuf_finish(sb);
882 	sbuf_delete(sb);
883 	return(rc);
884 }
885 
886 static void *
887 em_register(device_t dev)
888 {
889 	return (&em_sctx_init);
890 }
891 
892 static void *
893 igb_register(device_t dev)
894 {
895 	return (&igb_sctx_init);
896 }
897 
898 static int
899 em_set_num_queues(if_ctx_t ctx)
900 {
901 	struct e1000_softc *sc = iflib_get_softc(ctx);
902 	int maxqueues;
903 
904 	/* Sanity check based on HW */
905 	switch (sc->hw.mac.type) {
906 	case e1000_82576:
907 	case e1000_82580:
908 	case e1000_i350:
909 	case e1000_i354:
910 		maxqueues = 8;
911 		break;
912 	case e1000_i210:
913 	case e1000_82575:
914 		maxqueues = 4;
915 		break;
916 	case e1000_i211:
917 	case e1000_82574:
918 		maxqueues = 2;
919 		break;
920 	default:
921 		maxqueues = 1;
922 		break;
923 	}
924 
925 	return (maxqueues);
926 }
927 
928 #define LEM_CAPS \
929     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
930     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
931     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6
932 
933 #define EM_CAPS \
934     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
935     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
936     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \
937     IFCAP_TSO6
938 
939 #define IGB_CAPS \
940     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
941     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
942     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \
943     IFCAP_TSO6
944 
945 /*********************************************************************
946  *  Device initialization routine
947  *
948  *  The attach entry point is called when the driver is being loaded.
949  *  This routine identifies the type of hardware, allocates all resources
950  *  and initializes the hardware.
951  *
952  *  return 0 on success, positive on failure
953  *********************************************************************/
954 static int
955 em_if_attach_pre(if_ctx_t ctx)
956 {
957 	struct e1000_softc *sc;
958 	if_softc_ctx_t scctx;
959 	device_t dev;
960 	struct e1000_hw *hw;
961 	struct sysctl_oid_list *child;
962 	struct sysctl_ctx_list *ctx_list;
963 	int error = 0;
964 
965 	INIT_DEBUGOUT("em_if_attach_pre: begin");
966 	dev = iflib_get_dev(ctx);
967 	sc = iflib_get_softc(ctx);
968 
969 	sc->ctx = sc->osdep.ctx = ctx;
970 	sc->dev = sc->osdep.dev = dev;
971 	scctx = sc->shared = iflib_get_softc_ctx(ctx);
972 	sc->media = iflib_get_media(ctx);
973 	hw = &sc->hw;
974 
975 	/* Determine hardware and mac info */
976 	em_identify_hardware(ctx);
977 
978 	/* SYSCTL stuff */
979 	ctx_list = device_get_sysctl_ctx(dev);
980 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
981 
982 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "nvm",
983 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0,
984 	    em_sysctl_nvm_info, "I", "NVM Information");
985 
986 	sc->enable_aim = em_enable_aim;
987 	SYSCTL_ADD_INT(ctx_list, child, OID_AUTO, "enable_aim",
988 	    CTLFLAG_RW, &sc->enable_aim, 0,
989 	    "Interrupt Moderation (1=normal, 2=lowlatency)");
990 
991 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fw_version",
992 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
993 	    em_sysctl_print_fw_version, "A",
994 	    "Prints FW/NVM Versions");
995 
996 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "debug",
997 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0,
998 	    em_sysctl_debug_info, "I", "Debug Information");
999 
1000 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fc",
1001 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
1002 	    em_set_flowcntl, "I", "Flow Control");
1003 
1004 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "reg_dump",
1005 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
1006 	    em_get_regs, "A", "Dump Registers");
1007 
1008 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "rs_dump",
1009 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
1010 	    em_get_rs, "I", "Dump RS indexes");
1011 
1012 	if (hw->mac.type >= e1000_i350) {
1013 		SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "dmac",
1014 		    CTLTYPE_INT | CTLFLAG_RW, sc, 0,
1015 		    igb_sysctl_dmac, "I", "DMA Coalesce");
1016 	}
1017 
1018 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO,
1019 	    "tso_tcp_flags_mask_first_segment",
1020 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1021 	    sc, 0, em_sysctl_tso_tcp_flags_mask, "IU",
1022 	    "TSO TCP flags mask for first segment");
1023 
1024 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO,
1025 	    "tso_tcp_flags_mask_middle_segment",
1026 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1027 	    sc, 1, em_sysctl_tso_tcp_flags_mask, "IU",
1028 	    "TSO TCP flags mask for middle segment");
1029 
1030 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO,
1031 	    "tso_tcp_flags_mask_last_segment",
1032 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1033 	    sc, 2, em_sysctl_tso_tcp_flags_mask, "IU",
1034 	    "TSO TCP flags mask for last segment");
1035 
1036 	scctx->isc_tx_nsegments = EM_MAX_SCATTER;
1037 	scctx->isc_nrxqsets_max =
1038 	    scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
1039 	if (bootverbose)
1040 		device_printf(dev, "attach_pre capping queues at %d\n",
1041 		    scctx->isc_ntxqsets_max);
1042 
1043 	if (hw->mac.type >= igb_mac_min) {
1044 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] *
1045 		    sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
1046 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] *
1047 		    sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
1048 		scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
1049 		scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
1050 		scctx->isc_txrx = &igb_txrx;
1051 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
1052 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
1053 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
1054 		scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
1055 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
1056 		     CSUM_IP6_TCP | CSUM_IP6_UDP;
1057 		if (hw->mac.type != e1000_82575)
1058 			scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
1059 		/*
1060 		** Some new devices, as with ixgbe, now may
1061 		** use a different BAR, so we need to keep
1062 		** track of which is used.
1063 		*/
1064 		scctx->isc_msix_bar = pci_msix_table_bar(dev);
1065 	} else if (hw->mac.type >= em_mac_min) {
1066 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] *
1067 		    sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
1068 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] *
1069 		    sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
1070 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
1071 		scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
1072 		scctx->isc_txrx = &em_txrx;
1073 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
1074 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
1075 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
1076 		scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
1077 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO |
1078 		    CSUM_IP6_TCP | CSUM_IP6_UDP;
1079 
1080 		/* Disable TSO on all em(4) until ring stalls are debugged */
1081 		scctx->isc_capenable &= ~IFCAP_TSO;
1082 
1083 		/*
1084 		 * Disable TSO on SPT due to errata that downclocks DMA
1085 		 * performance
1086 		 * i218-i219 Specification Update 1.5.4.5
1087 		 */
1088 		if (hw->mac.type == e1000_pch_spt)
1089 			scctx->isc_capenable &= ~IFCAP_TSO;
1090 
1091 		/*
1092 		 * We support MSI-X with 82574 only, but indicate to iflib(4)
1093 		 * that it shall give MSI at least a try with other devices.
1094 		 */
1095 		if (hw->mac.type == e1000_82574) {
1096 			scctx->isc_msix_bar = pci_msix_table_bar(dev);
1097 		} else {
1098 			scctx->isc_msix_bar = -1;
1099 			scctx->isc_disable_msix = 1;
1100 		}
1101 	} else {
1102 		scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) *
1103 		    sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
1104 		scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) *
1105 		    sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
1106 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
1107 		scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
1108 		scctx->isc_txrx = &lem_txrx;
1109 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
1110 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
1111 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
1112 		scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
1113 		if (em_unsupported_tso)
1114 			scctx->isc_capabilities |= IFCAP_TSO6;
1115 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO |
1116 		    CSUM_IP6_TCP | CSUM_IP6_UDP;
1117 
1118 		/* Disable TSO on all lem(4) until ring stalls debugged */
1119 		scctx->isc_capenable &= ~IFCAP_TSO;
1120 
1121 		/* 82541ER doesn't do HW tagging */
1122 		if (hw->device_id == E1000_DEV_ID_82541ER ||
1123 		    hw->device_id == E1000_DEV_ID_82541ER_LOM) {
1124 			scctx->isc_capabilities &= ~IFCAP_VLAN_HWTAGGING;
1125 			scctx->isc_capenable = scctx->isc_capabilities;
1126 		}
1127 		/* This is the first e1000 chip and it does not do offloads */
1128 		if (hw->mac.type == e1000_82542) {
1129 			scctx->isc_capabilities &= ~(IFCAP_HWCSUM |
1130 			    IFCAP_VLAN_HWCSUM | IFCAP_HWCSUM_IPV6 |
1131 			    IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWFILTER |
1132 			    IFCAP_TSO | IFCAP_VLAN_HWTSO);
1133 			scctx->isc_capenable = scctx->isc_capabilities;
1134 		}
1135 		/* These can't do TSO for various reasons */
1136 		if (hw->mac.type < e1000_82544 ||
1137 		    hw->mac.type == e1000_82547 ||
1138 		    hw->mac.type == e1000_82547_rev_2) {
1139 			scctx->isc_capabilities &=
1140 			    ~(IFCAP_TSO |IFCAP_VLAN_HWTSO);
1141 			scctx->isc_capenable = scctx->isc_capabilities;
1142 		}
1143 		/* XXXKB: No IPv6 before this? */
1144 		if (hw->mac.type < e1000_82545){
1145 			scctx->isc_capabilities &= ~IFCAP_HWCSUM_IPV6;
1146 			scctx->isc_capenable = scctx->isc_capabilities;
1147 		}
1148 		/*
1149 		 * "PCI/PCI-X SDM 4.0" page 33 (b):
1150 		 * FDX requirement on these chips
1151 		 */
1152 		if (hw->mac.type == e1000_82547 ||
1153 		    hw->mac.type == e1000_82547_rev_2)
1154 			scctx->isc_capenable &= ~(IFCAP_HWCSUM |
1155 			    IFCAP_VLAN_HWCSUM | IFCAP_HWCSUM_IPV6);
1156 
1157 		/* INTx only */
1158 		scctx->isc_msix_bar = 0;
1159 	}
1160 
1161 	/* Setup PCI resources */
1162 	if (em_allocate_pci_resources(ctx)) {
1163 		device_printf(dev, "Allocation of PCI resources failed\n");
1164 		error = ENXIO;
1165 		goto err_pci;
1166 	}
1167 
1168 	/*
1169 	** For ICH8 and family we need to
1170 	** map the flash memory, and this
1171 	** must happen after the MAC is
1172 	** identified
1173 	*/
1174 	if ((hw->mac.type == e1000_ich8lan) ||
1175 	    (hw->mac.type == e1000_ich9lan) ||
1176 	    (hw->mac.type == e1000_ich10lan) ||
1177 	    (hw->mac.type == e1000_pchlan) ||
1178 	    (hw->mac.type == e1000_pch2lan) ||
1179 	    (hw->mac.type == e1000_pch_lpt)) {
1180 		int rid = EM_BAR_TYPE_FLASH;
1181 		sc->flash = bus_alloc_resource_any(dev,
1182 		    SYS_RES_MEMORY, &rid, RF_ACTIVE);
1183 		if (sc->flash == NULL) {
1184 			device_printf(dev, "Mapping of Flash failed\n");
1185 			error = ENXIO;
1186 			goto err_pci;
1187 		}
1188 		/* This is used in the shared code */
1189 		hw->flash_address = (u8 *)sc->flash;
1190 		sc->osdep.flash_bus_space_tag =
1191 		    rman_get_bustag(sc->flash);
1192 		sc->osdep.flash_bus_space_handle =
1193 		    rman_get_bushandle(sc->flash);
1194 	}
1195 	/*
1196 	** In the new SPT device flash is not  a
1197 	** separate BAR, rather it is also in BAR0,
1198 	** so use the same tag and an offset handle for the
1199 	** FLASH read/write macros in the shared code.
1200 	*/
1201 	else if (hw->mac.type >= e1000_pch_spt) {
1202 		sc->osdep.flash_bus_space_tag = sc->osdep.mem_bus_space_tag;
1203 		sc->osdep.flash_bus_space_handle =
1204 		    sc->osdep.mem_bus_space_handle + E1000_FLASH_BASE_ADDR;
1205 	}
1206 
1207 	/* Do Shared Code initialization */
1208 	error = e1000_setup_init_funcs(hw, true);
1209 	if (error) {
1210 		device_printf(dev, "Setup of Shared code failed, error %d\n",
1211 		    error);
1212 		error = ENXIO;
1213 		goto err_pci;
1214 	}
1215 
1216 	em_setup_msix(ctx);
1217 	e1000_get_bus_info(hw);
1218 
1219 	/* Set up some sysctls for the tunable interrupt delays */
1220 	if (hw->mac.type < igb_mac_min) {
1221 		em_add_int_delay_sysctl(sc, "rx_int_delay",
1222 		    "receive interrupt delay in usecs", &sc->rx_int_delay,
1223 		    E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
1224 		em_add_int_delay_sysctl(sc, "tx_int_delay",
1225 		    "transmit interrupt delay in usecs", &sc->tx_int_delay,
1226 		    E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
1227 	}
1228 	if (hw->mac.type >= e1000_82540 && hw->mac.type < igb_mac_min) {
1229 		em_add_int_delay_sysctl(sc, "rx_abs_int_delay",
1230 		    "receive interrupt delay limit in usecs",
1231 		    &sc->rx_abs_int_delay,
1232 		    E1000_REGISTER(hw, E1000_RADV), em_rx_abs_int_delay_dflt);
1233 		em_add_int_delay_sysctl(sc, "tx_abs_int_delay",
1234 		    "transmit interrupt delay limit in usecs",
1235 		    &sc->tx_abs_int_delay,
1236 		    E1000_REGISTER(hw, E1000_TADV), em_tx_abs_int_delay_dflt);
1237 	}
1238 
1239 	hw->mac.autoneg = DO_AUTO_NEG;
1240 	hw->phy.autoneg_wait_to_complete = false;
1241 	hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1242 
1243 	if (hw->mac.type < em_mac_min) {
1244 		e1000_init_script_state_82541(hw, true);
1245 		e1000_set_tbi_compatibility_82543(hw, true);
1246 	}
1247 	/* Copper options */
1248 	if (hw->phy.media_type == e1000_media_type_copper) {
1249 		hw->phy.mdix = AUTO_ALL_MODES;
1250 		hw->phy.disable_polarity_correction = false;
1251 		hw->phy.ms_type = EM_MASTER_SLAVE;
1252 	}
1253 
1254 	/*
1255 	 * Set the frame limits assuming
1256 	 * standard ethernet sized frames.
1257 	 */
1258 	scctx->isc_max_frame_size = hw->mac.max_frame_size =
1259 	    ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
1260 
1261 	/*
1262 	 * This controls when hardware reports transmit completion
1263 	 * status.
1264 	 */
1265 	hw->mac.report_tx_early = 1;
1266 
1267 	/* Allocate multicast array memory. */
1268 	sc->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
1269 	    MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1270 	if (sc->mta == NULL) {
1271 		device_printf(dev,
1272 		    "Can not allocate multicast setup array\n");
1273 		error = ENOMEM;
1274 		goto err_late;
1275 	}
1276 
1277 	/* Clear the IFCAP_TSO auto mask */
1278 	sc->tso_automasked = 0;
1279 
1280 	/* Check SOL/IDER usage */
1281 	if (e1000_check_reset_block(hw))
1282 		device_printf(dev,
1283 		    "PHY reset is blocked due to SOL/IDER session.\n");
1284 
1285 	/* Sysctl for setting Energy Efficient Ethernet */
1286 	if (hw->mac.type < igb_mac_min)
1287 		hw->dev_spec.ich8lan.eee_disable = eee_setting;
1288 	else
1289 		hw->dev_spec._82575.eee_disable = eee_setting;
1290 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "eee_control",
1291 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
1292 	    em_sysctl_eee, "I", "Disable Energy Efficient Ethernet");
1293 
1294 	/*
1295 	** Start from a known state, this is
1296 	** important in reading the nvm and
1297 	** mac from that.
1298 	*/
1299 	e1000_reset_hw(hw);
1300 
1301 	/* Make sure we have a good EEPROM before we read from it */
1302 	if (e1000_validate_nvm_checksum(hw) < 0) {
1303 		/*
1304 		** Some PCI-E parts fail the first check due to
1305 		** the link being in sleep state, call it again,
1306 		** if it fails a second time its a real issue.
1307 		*/
1308 		if (e1000_validate_nvm_checksum(hw) < 0) {
1309 			device_printf(dev,
1310 			    "The EEPROM Checksum Is Not Valid\n");
1311 			error = EIO;
1312 			goto err_late;
1313 		}
1314 	}
1315 
1316 	/* Copy the permanent MAC address out of the EEPROM */
1317 	if (e1000_read_mac_addr(hw) < 0) {
1318 		device_printf(dev,
1319 		    "EEPROM read error while reading MAC address\n");
1320 		error = EIO;
1321 		goto err_late;
1322 	}
1323 
1324 	if (!em_is_valid_ether_addr(hw->mac.addr)) {
1325 		if (sc->vf_ifp) {
1326 			ether_gen_addr(iflib_get_ifp(ctx),
1327 			    (struct ether_addr *)hw->mac.addr);
1328 		} else {
1329 			device_printf(dev, "Invalid MAC address\n");
1330 			error = EIO;
1331 			goto err_late;
1332 		}
1333 	}
1334 
1335 	/* Save the EEPROM/NVM versions, must be done under IFLIB_CTX_LOCK */
1336 	em_fw_version_locked(ctx);
1337 
1338 	em_print_fw_version(sc);
1339 
1340 	/*
1341 	 * Get Wake-on-Lan and Management info for later use
1342 	 */
1343 	em_get_wakeup(ctx);
1344 
1345 	/* Enable only WOL MAGIC by default */
1346 	scctx->isc_capenable &= ~IFCAP_WOL;
1347 	if (sc->wol != 0)
1348 		scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1349 
1350 	iflib_set_mac(ctx, hw->mac.addr);
1351 
1352 	return (0);
1353 
1354 err_late:
1355 	em_release_hw_control(sc);
1356 err_pci:
1357 	em_free_pci_resources(ctx);
1358 	free(sc->mta, M_DEVBUF);
1359 
1360 	return (error);
1361 }
1362 
1363 static int
1364 em_if_attach_post(if_ctx_t ctx)
1365 {
1366 	struct e1000_softc *sc = iflib_get_softc(ctx);
1367 	struct e1000_hw *hw = &sc->hw;
1368 	int error = 0;
1369 
1370 	/* Setup OS specific network interface */
1371 	error = em_setup_interface(ctx);
1372 	if (error != 0) {
1373 		device_printf(sc->dev, "Interface setup failed: %d\n", error);
1374 		goto err_late;
1375 	}
1376 
1377 	em_reset(ctx);
1378 
1379 	/* Initialize statistics */
1380 	em_update_stats_counters(sc);
1381 	hw->mac.get_link_status = 1;
1382 	em_if_update_admin_status(ctx);
1383 	em_add_hw_stats(sc);
1384 
1385 	/* Non-AMT based hardware can now take control from firmware */
1386 	if (sc->has_manage && !sc->has_amt)
1387 		em_get_hw_control(sc);
1388 
1389 	INIT_DEBUGOUT("em_if_attach_post: end");
1390 
1391 	return (0);
1392 
1393 err_late:
1394 	/*
1395 	 * Upon em_if_attach_post() error, iflib calls em_if_detach() to
1396 	 * free resources
1397 	 */
1398 	return (error);
1399 }
1400 
1401 /*********************************************************************
1402  *  Device removal routine
1403  *
1404  *  The detach entry point is called when the driver is being removed.
1405  *  This routine stops the adapter and deallocates all the resources
1406  *  that were allocated for driver operation.
1407  *
1408  *  return 0 on success, positive on failure
1409  *********************************************************************/
1410 static int
1411 em_if_detach(if_ctx_t ctx)
1412 {
1413 	struct e1000_softc	*sc = iflib_get_softc(ctx);
1414 
1415 	INIT_DEBUGOUT("em_if_detach: begin");
1416 
1417 	e1000_phy_hw_reset(&sc->hw);
1418 
1419 	em_release_manageability(sc);
1420 	em_release_hw_control(sc);
1421 	em_free_pci_resources(ctx);
1422 	free(sc->mta, M_DEVBUF);
1423 	sc->mta = NULL;
1424 
1425 	return (0);
1426 }
1427 
1428 /*********************************************************************
1429  *
1430  *  Shutdown entry point
1431  *
1432  **********************************************************************/
1433 
1434 static int
1435 em_if_shutdown(if_ctx_t ctx)
1436 {
1437 	return em_if_suspend(ctx);
1438 }
1439 
1440 /*
1441  * Suspend/resume device methods.
1442  */
1443 static int
1444 em_if_suspend(if_ctx_t ctx)
1445 {
1446 	struct e1000_softc *sc = iflib_get_softc(ctx);
1447 
1448 	em_release_manageability(sc);
1449 	em_release_hw_control(sc);
1450 	em_enable_wakeup(ctx);
1451 	return (0);
1452 }
1453 
1454 static int
1455 em_if_resume(if_ctx_t ctx)
1456 {
1457 	struct e1000_softc *sc = iflib_get_softc(ctx);
1458 
1459 	if (sc->hw.mac.type == e1000_pch2lan)
1460 		e1000_resume_workarounds_pchlan(&sc->hw);
1461 	em_if_init(ctx);
1462 	em_init_manageability(sc);
1463 
1464 	return(0);
1465 }
1466 
1467 static int
1468 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1469 {
1470 	int max_frame_size;
1471 	struct e1000_softc *sc = iflib_get_softc(ctx);
1472 	if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1473 
1474 	IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1475 
1476 	switch (sc->hw.mac.type) {
1477 	case e1000_82571:
1478 	case e1000_82572:
1479 	case e1000_ich9lan:
1480 	case e1000_ich10lan:
1481 	case e1000_pch2lan:
1482 	case e1000_pch_lpt:
1483 	case e1000_pch_spt:
1484 	case e1000_pch_cnp:
1485 	case e1000_pch_tgp:
1486 	case e1000_pch_adp:
1487 	case e1000_pch_mtp:
1488 	case e1000_pch_ptp:
1489 	case e1000_82574:
1490 	case e1000_82583:
1491 	case e1000_80003es2lan:
1492 		/* 9K Jumbo Frame size */
1493 		max_frame_size = 9234;
1494 		break;
1495 	case e1000_pchlan:
1496 		max_frame_size = 4096;
1497 		break;
1498 	case e1000_82542:
1499 	case e1000_ich8lan:
1500 		/* Adapters that do not support jumbo frames */
1501 		max_frame_size = ETHER_MAX_LEN;
1502 		break;
1503 	default:
1504 		if (sc->hw.mac.type >= igb_mac_min)
1505 			max_frame_size = 9234;
1506 		else /* lem */
1507 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1508 	}
1509 	if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1510 		return (EINVAL);
1511 	}
1512 
1513 	scctx->isc_max_frame_size = sc->hw.mac.max_frame_size =
1514 	    mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1515 	return (0);
1516 }
1517 
1518 /*********************************************************************
1519  *  Init entry point
1520  *
1521  *  This routine is used in two ways. It is used by the stack as
1522  *  init entry point in network interface structure. It is also used
1523  *  by the driver as a hw/sw initialization routine to get to a
1524  *  consistent state.
1525  *
1526  **********************************************************************/
1527 static void
1528 em_if_init(if_ctx_t ctx)
1529 {
1530 	struct e1000_softc *sc = iflib_get_softc(ctx);
1531 	if_softc_ctx_t scctx = sc->shared;
1532 	if_t ifp = iflib_get_ifp(ctx);
1533 	struct em_tx_queue *tx_que;
1534 	int i;
1535 
1536 	INIT_DEBUGOUT("em_if_init: begin");
1537 
1538 	/* Get the latest mac address, User can use a LAA */
1539 	bcopy(if_getlladdr(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1540 
1541 	/* Put the address into the Receive Address Array */
1542 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1543 
1544 	/*
1545 	 * With the 82571 adapter, RAR[0] may be overwritten
1546 	 * when the other port is reset, we make a duplicate
1547 	 * in RAR[14] for that eventuality, this assures
1548 	 * the interface continues to function.
1549 	 */
1550 	if (sc->hw.mac.type == e1000_82571) {
1551 		e1000_set_laa_state_82571(&sc->hw, true);
1552 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1553 		    E1000_RAR_ENTRIES - 1);
1554 	}
1555 
1556 	/* Initialize the hardware */
1557 	em_reset(ctx);
1558 	em_if_update_admin_status(ctx);
1559 
1560 	for (i = 0, tx_que = sc->tx_queues; i < sc->tx_num_queues;
1561 	    i++, tx_que++) {
1562 		struct tx_ring *txr = &tx_que->txr;
1563 
1564 		txr->tx_rs_cidx = txr->tx_rs_pidx;
1565 
1566 		/* Initialize the last processed descriptor to be the end of
1567 		 * the ring, rather than the start, so that we avoid an
1568 		 * off-by-one error when calculating how many descriptors are
1569 		 * done in the credits_update function.
1570 		 */
1571 		txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1572 	}
1573 
1574 	/* Setup VLAN support, basic and offload if available */
1575 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1576 
1577 	/* Clear bad data from Rx FIFOs */
1578 	if (sc->hw.mac.type >= igb_mac_min)
1579 		e1000_rx_fifo_flush_base(&sc->hw);
1580 
1581 	/* Configure for OS presence */
1582 	em_init_manageability(sc);
1583 
1584 	/* Prepare transmit descriptors and buffers */
1585 	em_initialize_transmit_unit(ctx);
1586 
1587 	/* Setup Multicast table */
1588 	em_if_multi_set(ctx);
1589 
1590 	sc->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1591 	em_initialize_receive_unit(ctx);
1592 
1593 	/* Set up VLAN support and filter */
1594 	em_setup_vlan_hw_support(ctx);
1595 
1596 	/* Don't lose promiscuous settings */
1597 	em_if_set_promisc(ctx, if_getflags(ifp));
1598 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1599 
1600 	/* MSI-X configuration for 82574 */
1601 	if (sc->hw.mac.type == e1000_82574) {
1602 		int tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1603 
1604 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1605 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1606 		/* Set the IVAR - interrupt vector routing. */
1607 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, sc->ivars);
1608 	} else if (sc->intr_type == IFLIB_INTR_MSIX) {
1609 		/* Set up queue routing */
1610 		igb_configure_queues(sc);
1611 	}
1612 
1613 	/* this clears any pending interrupts */
1614 	E1000_READ_REG(&sc->hw, E1000_ICR);
1615 	E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1616 
1617 	/* AMT based hardware can now take control from firmware */
1618 	if (sc->has_manage && sc->has_amt)
1619 		em_get_hw_control(sc);
1620 
1621 	/* Set Energy Efficient Ethernet */
1622 	if (sc->hw.mac.type >= igb_mac_min &&
1623 	    sc->hw.phy.media_type == e1000_media_type_copper) {
1624 		if (sc->hw.mac.type == e1000_i354)
1625 			e1000_set_eee_i354(&sc->hw, true, true);
1626 		else
1627 			e1000_set_eee_i350(&sc->hw, true, true);
1628 	}
1629 }
1630 
1631 enum itr_latency_target {
1632 	itr_latency_disabled = 0,
1633 	itr_latency_lowest = 1,
1634 	itr_latency_low = 2,
1635 	itr_latency_bulk = 3
1636 };
1637 /*********************************************************************
1638  *
1639  *  Helper to calculate next (E)ITR value for AIM
1640  *
1641  *********************************************************************/
1642 static void
1643 em_newitr(struct e1000_softc *sc, struct em_rx_queue *que,
1644     struct tx_ring *txr, struct rx_ring *rxr)
1645 {
1646 	struct e1000_hw *hw = &sc->hw;
1647 	u32 newitr;
1648 	u32 bytes;
1649 	u32 bytes_packets;
1650 	u32 packets;
1651 	u8 nextlatency;
1652 
1653 	/* Idle, do nothing */
1654 	if ((txr->tx_bytes == 0) && (rxr->rx_bytes == 0))
1655 		return;
1656 
1657 	newitr = 0;
1658 
1659 	if (sc->enable_aim) {
1660 		nextlatency = rxr->rx_nextlatency;
1661 
1662 		/* Use half default (4K) ITR if sub-gig */
1663 		if (sc->link_speed != 1000) {
1664 			newitr = EM_INTS_4K;
1665 			goto em_set_next_itr;
1666 		}
1667 		/* Want at least enough packet buffer for two frames to AIM */
1668 		if (sc->shared->isc_max_frame_size * 2 > (sc->pba << 10)) {
1669 			newitr = em_max_interrupt_rate;
1670 			sc->enable_aim = 0;
1671 			goto em_set_next_itr;
1672 		}
1673 
1674 		/* Get largest values from the associated tx and rx ring */
1675 		if (txr->tx_bytes && txr->tx_packets) {
1676 			bytes = txr->tx_bytes;
1677 			bytes_packets = txr->tx_bytes/txr->tx_packets;
1678 			packets = txr->tx_packets;
1679 		}
1680 		if (rxr->rx_bytes && rxr->rx_packets) {
1681 			bytes = max(bytes, rxr->rx_bytes);
1682 			bytes_packets =
1683 			    max(bytes_packets, rxr->rx_bytes/rxr->rx_packets);
1684 			packets = max(packets, rxr->rx_packets);
1685 		}
1686 
1687 		/* Latency state machine */
1688 		switch (nextlatency) {
1689 		case itr_latency_disabled: /* Bootstrapping */
1690 			nextlatency = itr_latency_low;
1691 			break;
1692 		case itr_latency_lowest: /* 70k ints/s */
1693 			/* TSO and jumbo frames */
1694 			if (bytes_packets > 8000)
1695 				nextlatency = itr_latency_bulk;
1696 			else if ((packets < 5) && (bytes > 512))
1697 				nextlatency = itr_latency_low;
1698 			break;
1699 		case itr_latency_low: /* 20k ints/s */
1700 			if (bytes > 10000) {
1701 				/* Handle TSO */
1702 				if (bytes_packets > 8000)
1703 					nextlatency = itr_latency_bulk;
1704 				else if ((packets < 10) ||
1705 				    (bytes_packets > 1200))
1706 					nextlatency = itr_latency_bulk;
1707 				else if (packets > 35)
1708 					nextlatency = itr_latency_lowest;
1709 			} else if (bytes_packets > 2000) {
1710 				nextlatency = itr_latency_bulk;
1711 			} else if (packets < 3 && bytes < 512) {
1712 				nextlatency = itr_latency_lowest;
1713 			}
1714 			break;
1715 		case itr_latency_bulk: /* 4k ints/s */
1716 			if (bytes > 25000) {
1717 				if (packets > 35)
1718 					nextlatency = itr_latency_low;
1719 			} else if (bytes < 1500)
1720 				nextlatency = itr_latency_low;
1721 			break;
1722 		default:
1723 			nextlatency = itr_latency_low;
1724 			device_printf(sc->dev,
1725 			    "Unexpected newitr transition %d\n", nextlatency);
1726 			break;
1727 		}
1728 
1729 		/* Trim itr_latency_lowest for default AIM setting */
1730 		if (sc->enable_aim == 1 && nextlatency == itr_latency_lowest)
1731 			nextlatency = itr_latency_low;
1732 
1733 		/* Request new latency */
1734 		rxr->rx_nextlatency = nextlatency;
1735 	} else {
1736 		/* We may have toggled to AIM disabled */
1737 		nextlatency = itr_latency_disabled;
1738 		rxr->rx_nextlatency = nextlatency;
1739 	}
1740 
1741 	/* ITR state machine */
1742 	switch(nextlatency) {
1743 	case itr_latency_lowest:
1744 		newitr = EM_INTS_70K;
1745 		break;
1746 	case itr_latency_low:
1747 		newitr = EM_INTS_20K;
1748 		break;
1749 	case itr_latency_bulk:
1750 		newitr = EM_INTS_4K;
1751 		break;
1752 	case itr_latency_disabled:
1753 	default:
1754 		newitr = em_max_interrupt_rate;
1755 		break;
1756 	}
1757 
1758 em_set_next_itr:
1759 	if (hw->mac.type >= igb_mac_min) {
1760 		newitr = IGB_INTS_TO_EITR(newitr);
1761 
1762 		if (hw->mac.type == e1000_82575)
1763 			newitr |= newitr << 16;
1764 		else
1765 			newitr |= E1000_EITR_CNT_IGNR;
1766 
1767 		if (newitr != que->itr_setting) {
1768 			que->itr_setting = newitr;
1769 			E1000_WRITE_REG(hw, E1000_EITR(que->msix),
1770 			    que->itr_setting);
1771 		}
1772 	} else {
1773 		newitr = EM_INTS_TO_ITR(newitr);
1774 
1775 		if (newitr != que->itr_setting) {
1776 			que->itr_setting = newitr;
1777 			if (hw->mac.type == e1000_82574 && que->msix) {
1778 				E1000_WRITE_REG(hw,
1779 				    E1000_EITR_82574(que->msix),
1780 				    que->itr_setting);
1781 			} else {
1782 				E1000_WRITE_REG(hw, E1000_ITR,
1783 				    que->itr_setting);
1784 			}
1785 		}
1786 	}
1787 }
1788 
1789 /*********************************************************************
1790  *
1791  *  Fast Legacy/MSI Combined Interrupt Service routine
1792  *
1793  *********************************************************************/
1794 int
1795 em_intr(void *arg)
1796 {
1797 	struct e1000_softc *sc = arg;
1798 	struct e1000_hw *hw = &sc->hw;
1799 	struct em_rx_queue *que = &sc->rx_queues[0];
1800 	struct tx_ring *txr = &sc->tx_queues[0].txr;
1801 	struct rx_ring *rxr = &que->rxr;
1802 	if_ctx_t ctx = sc->ctx;
1803 	u32 reg_icr;
1804 
1805 	reg_icr = E1000_READ_REG(hw, E1000_ICR);
1806 
1807 	/* Hot eject? */
1808 	if (reg_icr == 0xffffffff)
1809 		return FILTER_STRAY;
1810 
1811 	/* Definitely not our interrupt. */
1812 	if (reg_icr == 0x0)
1813 		return FILTER_STRAY;
1814 
1815 	/*
1816 	 * Starting with the 82571 chip, bit 31 should be used to
1817 	 * determine whether the interrupt belongs to us.
1818 	 */
1819 	if (hw->mac.type >= e1000_82571 &&
1820 	    (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1821 		return FILTER_STRAY;
1822 
1823 	/*
1824 	 * Only MSI-X interrupts have one-shot behavior by taking advantage
1825 	 * of the EIAC register.  Thus, explicitly disable interrupts.  This
1826 	 * also works around the MSI message reordering errata on certain
1827 	 * systems.
1828 	 */
1829 	IFDI_INTR_DISABLE(ctx);
1830 
1831 	/* Link status change */
1832 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1833 		em_handle_link(ctx);
1834 
1835 	if (reg_icr & E1000_ICR_RXO)
1836 		sc->rx_overruns++;
1837 
1838 	if (hw->mac.type >= e1000_82540)
1839 		em_newitr(sc, que, txr, rxr);
1840 
1841 	/* Reset state */
1842 	txr->tx_bytes = 0;
1843 	txr->tx_packets = 0;
1844 	rxr->rx_bytes = 0;
1845 	rxr->rx_packets = 0;
1846 
1847 	return (FILTER_SCHEDULE_THREAD);
1848 }
1849 
1850 static int
1851 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1852 {
1853 	struct e1000_softc *sc = iflib_get_softc(ctx);
1854 	struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
1855 
1856 	E1000_WRITE_REG(&sc->hw, E1000_IMS, rxq->eims);
1857 	return (0);
1858 }
1859 
1860 static int
1861 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1862 {
1863 	struct e1000_softc *sc = iflib_get_softc(ctx);
1864 	struct em_tx_queue *txq = &sc->tx_queues[txqid];
1865 
1866 	E1000_WRITE_REG(&sc->hw, E1000_IMS, txq->eims);
1867 	return (0);
1868 }
1869 
1870 static int
1871 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1872 {
1873 	struct e1000_softc *sc = iflib_get_softc(ctx);
1874 	struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
1875 
1876 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, rxq->eims);
1877 	return (0);
1878 }
1879 
1880 static int
1881 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1882 {
1883 	struct e1000_softc *sc = iflib_get_softc(ctx);
1884 	struct em_tx_queue *txq = &sc->tx_queues[txqid];
1885 
1886 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, txq->eims);
1887 	return (0);
1888 }
1889 
1890 /*********************************************************************
1891  *
1892  *  MSI-X RX Interrupt Service routine
1893  *
1894  **********************************************************************/
1895 static int
1896 em_msix_que(void *arg)
1897 {
1898 	struct em_rx_queue *que = arg;
1899 	struct e1000_softc *sc = que->sc;
1900 	struct tx_ring *txr = &sc->tx_queues[que->msix].txr;
1901 	struct rx_ring *rxr = &que->rxr;
1902 
1903 	++que->irqs;
1904 
1905 	em_newitr(sc, que, txr, rxr);
1906 
1907 	/* Reset state */
1908 	txr->tx_bytes = 0;
1909 	txr->tx_packets = 0;
1910 	rxr->rx_bytes = 0;
1911 	rxr->rx_packets = 0;
1912 
1913 	return (FILTER_SCHEDULE_THREAD);
1914 }
1915 
1916 /*********************************************************************
1917  *
1918  *  MSI-X Link Fast Interrupt Service routine
1919  *
1920  **********************************************************************/
1921 static int
1922 em_msix_link(void *arg)
1923 {
1924 	struct e1000_softc *sc = arg;
1925 	u32 reg_icr;
1926 
1927 	++sc->link_irq;
1928 	MPASS(sc->hw.back != NULL);
1929 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1930 
1931 	if (reg_icr & E1000_ICR_RXO)
1932 		sc->rx_overruns++;
1933 
1934 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1935 		em_handle_link(sc->ctx);
1936 
1937 	/* Re-arm unconditionally */
1938 	if (sc->hw.mac.type >= igb_mac_min) {
1939 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
1940 		E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->link_mask);
1941 	} else if (sc->hw.mac.type == e1000_82574) {
1942 		E1000_WRITE_REG(&sc->hw, E1000_IMS,
1943 		    E1000_IMS_LSC | E1000_IMS_OTHER);
1944 		/*
1945 		 * Because we must read the ICR for this interrupt it may
1946 		 * clear other causes using autoclear, for this reason we
1947 		 * simply create a soft interrupt for all these vectors.
1948 		 */
1949 		if (reg_icr)
1950 			E1000_WRITE_REG(&sc->hw, E1000_ICS, sc->ims);
1951 	} else
1952 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
1953 
1954 	return (FILTER_HANDLED);
1955 }
1956 
1957 static void
1958 em_handle_link(void *context)
1959 {
1960 	if_ctx_t ctx = context;
1961 	struct e1000_softc *sc = iflib_get_softc(ctx);
1962 
1963 	sc->hw.mac.get_link_status = 1;
1964 	iflib_admin_intr_deferred(ctx);
1965 }
1966 
1967 /*********************************************************************
1968  *
1969  *  Media Ioctl callback
1970  *
1971  *  This routine is called whenever the user queries the status of
1972  *  the interface using ifconfig.
1973  *
1974  **********************************************************************/
1975 static void
1976 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1977 {
1978 	struct e1000_softc *sc = iflib_get_softc(ctx);
1979 	u_char fiber_type = IFM_1000_SX;
1980 
1981 	INIT_DEBUGOUT("em_if_media_status: begin");
1982 
1983 	iflib_admin_intr_deferred(ctx);
1984 
1985 	ifmr->ifm_status = IFM_AVALID;
1986 	ifmr->ifm_active = IFM_ETHER;
1987 
1988 	if (!sc->link_active) {
1989 		return;
1990 	}
1991 
1992 	ifmr->ifm_status |= IFM_ACTIVE;
1993 
1994 	if ((sc->hw.phy.media_type == e1000_media_type_fiber) ||
1995 	    (sc->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1996 		if (sc->hw.mac.type == e1000_82545)
1997 			fiber_type = IFM_1000_LX;
1998 		switch (sc->link_speed) {
1999 		case 10:
2000 			ifmr->ifm_active |= IFM_10_FL;
2001 			break;
2002 		case 100:
2003 			ifmr->ifm_active |= IFM_100_FX;
2004 			break;
2005 		case 1000:
2006 		default:
2007 			ifmr->ifm_active |= fiber_type | IFM_FDX;
2008 			break;
2009 		}
2010 	} else {
2011 		switch (sc->link_speed) {
2012 		case 10:
2013 			ifmr->ifm_active |= IFM_10_T;
2014 			break;
2015 		case 100:
2016 			ifmr->ifm_active |= IFM_100_TX;
2017 			break;
2018 		case 1000:
2019 			ifmr->ifm_active |= IFM_1000_T;
2020 			break;
2021 		}
2022 	}
2023 
2024 	if (sc->link_duplex == FULL_DUPLEX)
2025 		ifmr->ifm_active |= IFM_FDX;
2026 	else
2027 		ifmr->ifm_active |= IFM_HDX;
2028 }
2029 
2030 /*********************************************************************
2031  *
2032  *  Media Ioctl callback
2033  *
2034  *  This routine is called when the user changes speed/duplex using
2035  *  media/mediopt option with ifconfig.
2036  *
2037  **********************************************************************/
2038 static int
2039 em_if_media_change(if_ctx_t ctx)
2040 {
2041 	struct e1000_softc *sc = iflib_get_softc(ctx);
2042 	struct ifmedia *ifm = iflib_get_media(ctx);
2043 
2044 	INIT_DEBUGOUT("em_if_media_change: begin");
2045 
2046 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2047 		return (EINVAL);
2048 
2049 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
2050 	case IFM_AUTO:
2051 		sc->hw.mac.autoneg = DO_AUTO_NEG;
2052 		sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
2053 		break;
2054 	case IFM_1000_LX:
2055 	case IFM_1000_SX:
2056 	case IFM_1000_T:
2057 		sc->hw.mac.autoneg = DO_AUTO_NEG;
2058 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
2059 		break;
2060 	case IFM_100_TX:
2061 		sc->hw.mac.autoneg = DO_AUTO_NEG;
2062 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2063 			sc->hw.phy.autoneg_advertised = ADVERTISE_100_FULL;
2064 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
2065 		} else {
2066 			sc->hw.phy.autoneg_advertised = ADVERTISE_100_HALF;
2067 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
2068 		}
2069 		break;
2070 	case IFM_10_T:
2071 		sc->hw.mac.autoneg = DO_AUTO_NEG;
2072 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2073 			sc->hw.phy.autoneg_advertised = ADVERTISE_10_FULL;
2074 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
2075 		} else {
2076 			sc->hw.phy.autoneg_advertised = ADVERTISE_10_HALF;
2077 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
2078 		}
2079 		break;
2080 	case IFM_100_FX:
2081 		sc->hw.mac.autoneg = false;
2082 		sc->hw.phy.autoneg_advertised = 0;
2083 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2084 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
2085 		else
2086 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
2087 		break;
2088 	case IFM_10_FL:
2089 		sc->hw.mac.autoneg = false;
2090 		sc->hw.phy.autoneg_advertised = 0;
2091 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2092 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
2093 		else
2094 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
2095 		break;
2096 	default:
2097 		device_printf(sc->dev, "Unsupported media type\n");
2098 	}
2099 
2100 	em_if_init(ctx);
2101 
2102 	return (0);
2103 }
2104 
2105 static int
2106 em_if_set_promisc(if_ctx_t ctx, int flags)
2107 {
2108 	struct e1000_softc *sc = iflib_get_softc(ctx);
2109 	if_t ifp = iflib_get_ifp(ctx);
2110 	u32 reg_rctl;
2111 	int mcnt = 0;
2112 
2113 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2114 	reg_rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_UPE);
2115 	if (flags & IFF_ALLMULTI)
2116 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
2117 	else
2118 		mcnt = min(if_llmaddr_count(ifp),
2119 		    MAX_NUM_MULTICAST_ADDRESSES);
2120 
2121 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
2122 		reg_rctl &= (~E1000_RCTL_MPE);
2123 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2124 
2125 	if (flags & IFF_PROMISC) {
2126 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2127 		em_if_vlan_filter_disable(sc);
2128 		/* Turn this on if you want to see bad packets */
2129 		if (em_debug_sbp)
2130 			reg_rctl |= E1000_RCTL_SBP;
2131 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2132 	} else {
2133 		if (flags & IFF_ALLMULTI) {
2134 			reg_rctl |= E1000_RCTL_MPE;
2135 			reg_rctl &= ~E1000_RCTL_UPE;
2136 			E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2137 		}
2138 		if (em_if_vlan_filter_used(ctx))
2139 			em_if_vlan_filter_enable(sc);
2140 	}
2141 	return (0);
2142 }
2143 
2144 static u_int
2145 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int idx)
2146 {
2147 	u8 *mta = arg;
2148 
2149 	if (idx == MAX_NUM_MULTICAST_ADDRESSES)
2150 		return (0);
2151 
2152 	bcopy(LLADDR(sdl), &mta[idx * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
2153 
2154 	return (1);
2155 }
2156 
2157 /*********************************************************************
2158  *  Multicast Update
2159  *
2160  *  This routine is called whenever multicast address list is updated.
2161  *
2162  **********************************************************************/
2163 static void
2164 em_if_multi_set(if_ctx_t ctx)
2165 {
2166 	struct e1000_softc *sc = iflib_get_softc(ctx);
2167 	if_t ifp = iflib_get_ifp(ctx);
2168 	u8 *mta; /* Multicast array memory */
2169 	u32 reg_rctl = 0;
2170 	int mcnt = 0;
2171 
2172 	IOCTL_DEBUGOUT("em_set_multi: begin");
2173 
2174 	mta = sc->mta;
2175 	bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
2176 
2177 	if (sc->hw.mac.type == e1000_82542 &&
2178 	    sc->hw.revision_id == E1000_REVISION_2) {
2179 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2180 		if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2181 			e1000_pci_clear_mwi(&sc->hw);
2182 		reg_rctl |= E1000_RCTL_RST;
2183 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2184 		msec_delay(5);
2185 	}
2186 
2187 	mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
2188 
2189 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
2190 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
2191 
2192 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2193 
2194 	if (if_getflags(ifp) & IFF_PROMISC)
2195 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2196 	else if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES ||
2197 	    if_getflags(ifp) & IFF_ALLMULTI) {
2198 		reg_rctl |= E1000_RCTL_MPE;
2199 		reg_rctl &= ~E1000_RCTL_UPE;
2200 	} else
2201 		reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2202 
2203 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2204 
2205 	if (sc->hw.mac.type == e1000_82542 &&
2206 	    sc->hw.revision_id == E1000_REVISION_2) {
2207 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2208 		reg_rctl &= ~E1000_RCTL_RST;
2209 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2210 		msec_delay(5);
2211 		if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2212 			e1000_pci_set_mwi(&sc->hw);
2213 	}
2214 }
2215 
2216 /*********************************************************************
2217  *  Timer routine
2218  *
2219  *  This routine schedules em_if_update_admin_status() to check for
2220  *  link status and to gather statistics as well as to perform some
2221  *  controller-specific hardware patting.
2222  *
2223  **********************************************************************/
2224 static void
2225 em_if_timer(if_ctx_t ctx, uint16_t qid)
2226 {
2227 	if (qid != 0)
2228 		return;
2229 
2230 	iflib_admin_intr_deferred(ctx);
2231 }
2232 
2233 static void
2234 em_if_update_admin_status(if_ctx_t ctx)
2235 {
2236 	struct e1000_softc *sc = iflib_get_softc(ctx);
2237 	struct e1000_hw *hw = &sc->hw;
2238 	device_t dev = iflib_get_dev(ctx);
2239 	u32 link_check, thstat, ctrl;
2240 	bool automasked = false;
2241 
2242 	link_check = thstat = ctrl = 0;
2243 	/* Get the cached link value or read phy for real */
2244 	switch (hw->phy.media_type) {
2245 	case e1000_media_type_copper:
2246 		if (hw->mac.get_link_status) {
2247 			if (hw->mac.type == e1000_pch_spt)
2248 				msec_delay(50);
2249 			/* Do the work to read phy */
2250 			e1000_check_for_link(hw);
2251 			link_check = !hw->mac.get_link_status;
2252 			if (link_check) /* ESB2 fix */
2253 				e1000_cfg_on_link_up(hw);
2254 		} else {
2255 			link_check = true;
2256 		}
2257 		break;
2258 	case e1000_media_type_fiber:
2259 		e1000_check_for_link(hw);
2260 		link_check =
2261 		    (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
2262 		break;
2263 	case e1000_media_type_internal_serdes:
2264 		e1000_check_for_link(hw);
2265 		link_check = hw->mac.serdes_has_link;
2266 		break;
2267 	/* VF device is type_unknown */
2268 	case e1000_media_type_unknown:
2269 		e1000_check_for_link(hw);
2270 		link_check = !hw->mac.get_link_status;
2271 		/* FALLTHROUGH */
2272 	default:
2273 		break;
2274 	}
2275 
2276 	/* Check for thermal downshift or shutdown */
2277 	if (hw->mac.type == e1000_i350) {
2278 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
2279 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
2280 	}
2281 
2282 	/* Now check for a transition */
2283 	if (link_check && (sc->link_active == 0)) {
2284 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
2285 		    &sc->link_duplex);
2286 		/* Check if we must disable SPEED_MODE bit on PCI-E */
2287 		if ((sc->link_speed != SPEED_1000) &&
2288 		    ((hw->mac.type == e1000_82571) ||
2289 		    (hw->mac.type == e1000_82572))) {
2290 			int tarc0;
2291 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2292 			tarc0 &= ~TARC_SPEED_MODE_BIT;
2293 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2294 		}
2295 		if (bootverbose)
2296 			device_printf(dev, "Link is up %d Mbps %s\n",
2297 			    sc->link_speed,
2298 			    ((sc->link_duplex == FULL_DUPLEX) ?
2299 			    "Full Duplex" : "Half Duplex"));
2300 		sc->link_active = 1;
2301 		sc->smartspeed = 0;
2302 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
2303 		    E1000_CTRL_EXT_LINK_MODE_GMII &&
2304 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
2305 			device_printf(dev, "Link: thermal downshift\n");
2306 		/* Delay Link Up for Phy update */
2307 		if (((hw->mac.type == e1000_i210) ||
2308 		    (hw->mac.type == e1000_i211)) &&
2309 		    (hw->phy.id == I210_I_PHY_ID))
2310 			msec_delay(I210_LINK_DELAY);
2311 		/* Reset if the media type changed. */
2312 		if (hw->dev_spec._82575.media_changed &&
2313 		    hw->mac.type >= igb_mac_min) {
2314 			hw->dev_spec._82575.media_changed = false;
2315 			sc->flags |= IGB_MEDIA_RESET;
2316 			em_reset(ctx);
2317 		}
2318 		/* Only do TSO on gigabit for older chips due to errata */
2319 		if (hw->mac.type < igb_mac_min)
2320 			automasked = em_automask_tso(ctx);
2321 
2322 		/* Automasking resets the interface so don't mark it up yet */
2323 		if (!automasked)
2324 			iflib_link_state_change(ctx, LINK_STATE_UP,
2325 			    IF_Mbps(sc->link_speed));
2326 	} else if (!link_check && (sc->link_active == 1)) {
2327 		sc->link_speed = 0;
2328 		sc->link_duplex = 0;
2329 		sc->link_active = 0;
2330 		iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
2331 	}
2332 	em_update_stats_counters(sc);
2333 
2334 	/* Reset LAA into RAR[0] on 82571 */
2335 	if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
2336 		e1000_rar_set(hw, hw->mac.addr, 0);
2337 
2338 	if (hw->mac.type < em_mac_min)
2339 		lem_smartspeed(sc);
2340 }
2341 
2342 static void
2343 em_if_watchdog_reset(if_ctx_t ctx)
2344 {
2345 	struct e1000_softc *sc = iflib_get_softc(ctx);
2346 
2347 	/*
2348 	 * Just count the event; iflib(4) will already trigger a
2349 	 * sufficient reset of the controller.
2350 	 */
2351 	sc->watchdog_events++;
2352 }
2353 
2354 /*********************************************************************
2355  *
2356  *  This routine disables all traffic on the adapter by issuing a
2357  *  global reset on the MAC.
2358  *
2359  **********************************************************************/
2360 static void
2361 em_if_stop(if_ctx_t ctx)
2362 {
2363 	struct e1000_softc *sc = iflib_get_softc(ctx);
2364 
2365 	INIT_DEBUGOUT("em_if_stop: begin");
2366 
2367 	/* I219 needs special flushing to avoid hangs */
2368 	if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min)
2369 		em_flush_desc_rings(sc);
2370 
2371 	e1000_reset_hw(&sc->hw);
2372 	if (sc->hw.mac.type >= e1000_82544)
2373 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, 0);
2374 
2375 	e1000_led_off(&sc->hw);
2376 	e1000_cleanup_led(&sc->hw);
2377 }
2378 
2379 /*********************************************************************
2380  *
2381  *  Determine hardware revision.
2382  *
2383  **********************************************************************/
2384 static void
2385 em_identify_hardware(if_ctx_t ctx)
2386 {
2387 	device_t dev = iflib_get_dev(ctx);
2388 	struct e1000_softc *sc = iflib_get_softc(ctx);
2389 
2390 	/* Make sure our PCI config space has the necessary stuff set */
2391 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2392 
2393 	/* Save off the information about this board */
2394 	sc->hw.vendor_id = pci_get_vendor(dev);
2395 	sc->hw.device_id = pci_get_device(dev);
2396 	sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
2397 	sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
2398 	sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
2399 
2400 	/* Do Shared Code Init and Setup */
2401 	if (e1000_set_mac_type(&sc->hw)) {
2402 		device_printf(dev, "Setup init failure\n");
2403 		return;
2404 	}
2405 
2406 	/* Are we a VF device? */
2407 	if ((sc->hw.mac.type == e1000_vfadapt) ||
2408 	    (sc->hw.mac.type == e1000_vfadapt_i350))
2409 		sc->vf_ifp = 1;
2410 	else
2411 		sc->vf_ifp = 0;
2412 }
2413 
2414 static int
2415 em_allocate_pci_resources(if_ctx_t ctx)
2416 {
2417 	struct e1000_softc *sc = iflib_get_softc(ctx);
2418 	device_t dev = iflib_get_dev(ctx);
2419 	int rid, val;
2420 
2421 	rid = PCIR_BAR(0);
2422 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2423 	    RF_ACTIVE);
2424 	if (sc->memory == NULL) {
2425 		device_printf(dev,
2426 		    "Unable to allocate bus resource: memory\n");
2427 		return (ENXIO);
2428 	}
2429 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
2430 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
2431 	sc->hw.hw_addr = (u8 *)&sc->osdep.mem_bus_space_handle;
2432 
2433 	/* Only older adapters use IO mapping */
2434 	if (sc->hw.mac.type < em_mac_min && sc->hw.mac.type > e1000_82543) {
2435 		/* Figure our where our IO BAR is ? */
2436 		for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
2437 			val = pci_read_config(dev, rid, 4);
2438 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2439 				break;
2440 			}
2441 			rid += 4;
2442 			/* check for 64bit BAR */
2443 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2444 				rid += 4;
2445 		}
2446 		if (rid >= PCIR_CIS) {
2447 			device_printf(dev, "Unable to locate IO BAR\n");
2448 			return (ENXIO);
2449 		}
2450 		sc->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2451 		    &rid, RF_ACTIVE);
2452 		if (sc->ioport == NULL) {
2453 			device_printf(dev,
2454 			    "Unable to allocate bus resource: ioport\n");
2455 			return (ENXIO);
2456 		}
2457 		sc->hw.io_base = 0;
2458 		sc->osdep.io_bus_space_tag =
2459 		    rman_get_bustag(sc->ioport);
2460 		sc->osdep.io_bus_space_handle =
2461 		    rman_get_bushandle(sc->ioport);
2462 	}
2463 
2464 	sc->hw.back = &sc->osdep;
2465 
2466 	return (0);
2467 }
2468 
2469 /*********************************************************************
2470  *
2471  *  Set up the MSI-X Interrupt handlers
2472  *
2473  **********************************************************************/
2474 static int
2475 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
2476 {
2477 	struct e1000_softc *sc = iflib_get_softc(ctx);
2478 	struct em_rx_queue *rx_que = sc->rx_queues;
2479 	struct em_tx_queue *tx_que = sc->tx_queues;
2480 	int error, rid, i, vector = 0, rx_vectors;
2481 	char buf[16];
2482 
2483 	/* First set up ring resources */
2484 	for (i = 0; i < sc->rx_num_queues; i++, rx_que++, vector++) {
2485 		rid = vector + 1;
2486 		snprintf(buf, sizeof(buf), "rxq%d", i);
2487 		error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid,
2488 		    IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
2489 		if (error) {
2490 			device_printf(iflib_get_dev(ctx),
2491 			    "Failed to allocate que int %d err: %d",
2492 			    i, error);
2493 			sc->rx_num_queues = i + 1;
2494 			goto fail;
2495 		}
2496 
2497 		rx_que->msix =  vector;
2498 
2499 		/*
2500 		 * Set the bit to enable interrupt
2501 		 * in E1000_IMS -- bits 20 and 21
2502 		 * are for RX0 and RX1, note this has
2503 		 * NOTHING to do with the MSI-X vector
2504 		 */
2505 		if (sc->hw.mac.type == e1000_82574) {
2506 			rx_que->eims = 1 << (20 + i);
2507 			sc->ims |= rx_que->eims;
2508 			sc->ivars |= (8 | rx_que->msix) << (i * 4);
2509 		} else if (sc->hw.mac.type == e1000_82575)
2510 			rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2511 		else
2512 			rx_que->eims = 1 << vector;
2513 	}
2514 	rx_vectors = vector;
2515 
2516 	vector = 0;
2517 	for (i = 0; i < sc->tx_num_queues; i++, tx_que++, vector++) {
2518 		snprintf(buf, sizeof(buf), "txq%d", i);
2519 		tx_que = &sc->tx_queues[i];
2520 		iflib_softirq_alloc_generic(ctx,
2521 		    &sc->rx_queues[i % sc->rx_num_queues].que_irq,
2522 		    IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2523 
2524 		tx_que->msix = (vector % sc->rx_num_queues);
2525 
2526 		/*
2527 		 * Set the bit to enable interrupt
2528 		 * in E1000_IMS -- bits 22 and 23
2529 		 * are for TX0 and TX1, note this has
2530 		 * NOTHING to do with the MSI-X vector
2531 		 */
2532 		if (sc->hw.mac.type == e1000_82574) {
2533 			tx_que->eims = 1 << (22 + i);
2534 			sc->ims |= tx_que->eims;
2535 			sc->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2536 		} else if (sc->hw.mac.type == e1000_82575) {
2537 			tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2538 		} else {
2539 			tx_que->eims = 1 << i;
2540 		}
2541 	}
2542 
2543 	/* Link interrupt */
2544 	rid = rx_vectors + 1;
2545 	error = iflib_irq_alloc_generic(ctx, &sc->irq, rid, IFLIB_INTR_ADMIN,
2546 	    em_msix_link, sc, 0, "aq");
2547 
2548 	if (error) {
2549 		device_printf(iflib_get_dev(ctx),
2550 		    "Failed to register admin handler");
2551 		goto fail;
2552 	}
2553 	sc->linkvec = rx_vectors;
2554 	if (sc->hw.mac.type < igb_mac_min) {
2555 		sc->ivars |=  (8 | rx_vectors) << 16;
2556 		sc->ivars |= 0x80000000;
2557 		/* Enable the "Other" interrupt type for link status change */
2558 		sc->ims |= E1000_IMS_OTHER;
2559 	}
2560 
2561 	return (0);
2562 fail:
2563 	iflib_irq_free(ctx, &sc->irq);
2564 	rx_que = sc->rx_queues;
2565 	for (int i = 0; i < sc->rx_num_queues; i++, rx_que++)
2566 		iflib_irq_free(ctx, &rx_que->que_irq);
2567 	return (error);
2568 }
2569 
2570 static void
2571 igb_configure_queues(struct e1000_softc *sc)
2572 {
2573 	struct e1000_hw *hw = &sc->hw;
2574 	struct em_rx_queue *rx_que;
2575 	struct em_tx_queue *tx_que;
2576 	u32 tmp, ivar = 0, newitr = 0;
2577 
2578 	/* First turn on RSS capability */
2579 	if (hw->mac.type != e1000_82575)
2580 		E1000_WRITE_REG(hw, E1000_GPIE,
2581 		    E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2582 		    E1000_GPIE_PBA | E1000_GPIE_NSICR);
2583 
2584 	/* Turn on MSI-X */
2585 	switch (hw->mac.type) {
2586 	case e1000_82580:
2587 	case e1000_i350:
2588 	case e1000_i354:
2589 	case e1000_i210:
2590 	case e1000_i211:
2591 	case e1000_vfadapt:
2592 	case e1000_vfadapt_i350:
2593 		/* RX entries */
2594 		for (int i = 0; i < sc->rx_num_queues; i++) {
2595 			u32 index = i >> 1;
2596 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2597 			rx_que = &sc->rx_queues[i];
2598 			if (i & 1) {
2599 				ivar &= 0xFF00FFFF;
2600 				ivar |= (rx_que->msix | E1000_IVAR_VALID) <<
2601 				    16;
2602 			} else {
2603 				ivar &= 0xFFFFFF00;
2604 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2605 			}
2606 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2607 		}
2608 		/* TX entries */
2609 		for (int i = 0; i < sc->tx_num_queues; i++) {
2610 			u32 index = i >> 1;
2611 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2612 			tx_que = &sc->tx_queues[i];
2613 			if (i & 1) {
2614 				ivar &= 0x00FFFFFF;
2615 				ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
2616 				    24;
2617 			} else {
2618 				ivar &= 0xFFFF00FF;
2619 				ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
2620 				    8;
2621 			}
2622 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2623 			sc->que_mask |= tx_que->eims;
2624 		}
2625 
2626 		/* And for the link interrupt */
2627 		ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
2628 		sc->link_mask = 1 << sc->linkvec;
2629 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2630 		break;
2631 	case e1000_82576:
2632 		/* RX entries */
2633 		for (int i = 0; i < sc->rx_num_queues; i++) {
2634 			u32 index = i & 0x7; /* Each IVAR has two entries */
2635 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2636 			rx_que = &sc->rx_queues[i];
2637 			if (i < 8) {
2638 				ivar &= 0xFFFFFF00;
2639 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2640 			} else {
2641 				ivar &= 0xFF00FFFF;
2642 				ivar |= (rx_que->msix | E1000_IVAR_VALID) <<
2643 				    16;
2644 			}
2645 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2646 			sc->que_mask |= rx_que->eims;
2647 		}
2648 		/* TX entries */
2649 		for (int i = 0; i < sc->tx_num_queues; i++) {
2650 			u32 index = i & 0x7; /* Each IVAR has two entries */
2651 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2652 			tx_que = &sc->tx_queues[i];
2653 			if (i < 8) {
2654 				ivar &= 0xFFFF00FF;
2655 				ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
2656 				    8;
2657 			} else {
2658 				ivar &= 0x00FFFFFF;
2659 				ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
2660 				    24;
2661 			}
2662 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2663 			sc->que_mask |= tx_que->eims;
2664 		}
2665 
2666 		/* And for the link interrupt */
2667 		ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
2668 		sc->link_mask = 1 << sc->linkvec;
2669 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2670 		break;
2671 
2672 	case e1000_82575:
2673 		/* enable MSI-X support*/
2674 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2675 		tmp |= E1000_CTRL_EXT_PBA_CLR;
2676 		/* Auto-Mask interrupts upon ICR read. */
2677 		tmp |= E1000_CTRL_EXT_EIAME;
2678 		tmp |= E1000_CTRL_EXT_IRCA;
2679 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2680 
2681 		/* Queues */
2682 		for (int i = 0; i < sc->rx_num_queues; i++) {
2683 			rx_que = &sc->rx_queues[i];
2684 			tmp = E1000_EICR_RX_QUEUE0 << i;
2685 			tmp |= E1000_EICR_TX_QUEUE0 << i;
2686 			rx_que->eims = tmp;
2687 			E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), i,
2688 			    rx_que->eims);
2689 			sc->que_mask |= rx_que->eims;
2690 		}
2691 
2692 		/* Link */
2693 		E1000_WRITE_REG(hw, E1000_MSIXBM(sc->linkvec),
2694 		    E1000_EIMS_OTHER);
2695 		sc->link_mask |= E1000_EIMS_OTHER;
2696 	default:
2697 		break;
2698 	}
2699 
2700 	/* Set the igb starting interrupt rate */
2701 	if (em_max_interrupt_rate > 0) {
2702 		newitr = IGB_INTS_TO_EITR(em_max_interrupt_rate);
2703 
2704 		if (hw->mac.type == e1000_82575)
2705 			newitr |= newitr << 16;
2706 		else
2707 			newitr |= E1000_EITR_CNT_IGNR;
2708 
2709 		for (int i = 0; i < sc->rx_num_queues; i++) {
2710 			rx_que = &sc->rx_queues[i];
2711 			E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2712 		}
2713 	}
2714 
2715 	return;
2716 }
2717 
2718 static void
2719 em_free_pci_resources(if_ctx_t ctx)
2720 {
2721 	struct e1000_softc *sc = iflib_get_softc(ctx);
2722 	struct em_rx_queue *que = sc->rx_queues;
2723 	device_t dev = iflib_get_dev(ctx);
2724 
2725 	/* Release all MSI-X queue resources */
2726 	if (sc->intr_type == IFLIB_INTR_MSIX)
2727 		iflib_irq_free(ctx, &sc->irq);
2728 
2729 	if (que != NULL) {
2730 		for (int i = 0; i < sc->rx_num_queues; i++, que++) {
2731 			iflib_irq_free(ctx, &que->que_irq);
2732 		}
2733 	}
2734 
2735 	if (sc->memory != NULL) {
2736 		bus_release_resource(dev, SYS_RES_MEMORY,
2737 		    rman_get_rid(sc->memory), sc->memory);
2738 		sc->memory = NULL;
2739 	}
2740 
2741 	if (sc->flash != NULL) {
2742 		bus_release_resource(dev, SYS_RES_MEMORY,
2743 		    rman_get_rid(sc->flash), sc->flash);
2744 		sc->flash = NULL;
2745 	}
2746 
2747 	if (sc->ioport != NULL) {
2748 		bus_release_resource(dev, SYS_RES_IOPORT,
2749 		    rman_get_rid(sc->ioport), sc->ioport);
2750 		sc->ioport = NULL;
2751 	}
2752 }
2753 
2754 /* Set up MSI or MSI-X */
2755 static int
2756 em_setup_msix(if_ctx_t ctx)
2757 {
2758 	struct e1000_softc *sc = iflib_get_softc(ctx);
2759 
2760 	if (sc->hw.mac.type == e1000_82574) {
2761 		em_enable_vectors_82574(ctx);
2762 	}
2763 	return (0);
2764 }
2765 
2766 /*********************************************************************
2767  *
2768  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2769  *
2770  **********************************************************************/
2771 static void
2772 lem_smartspeed(struct e1000_softc *sc)
2773 {
2774 	u16 phy_tmp;
2775 
2776 	if (sc->link_active || (sc->hw.phy.type != e1000_phy_igp) ||
2777 	    sc->hw.mac.autoneg == 0 ||
2778 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2779 		return;
2780 
2781 	if (sc->smartspeed == 0) {
2782 		/* If Master/Slave config fault is asserted twice,
2783 		 * we assume back-to-back */
2784 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2785 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2786 			return;
2787 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2788 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2789 			e1000_read_phy_reg(&sc->hw,
2790 			    PHY_1000T_CTRL, &phy_tmp);
2791 			if(phy_tmp & CR_1000T_MS_ENABLE) {
2792 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2793 				e1000_write_phy_reg(&sc->hw,
2794 				    PHY_1000T_CTRL, phy_tmp);
2795 				sc->smartspeed++;
2796 				if(sc->hw.mac.autoneg &&
2797 				   !e1000_copper_link_autoneg(&sc->hw) &&
2798 				   !e1000_read_phy_reg(&sc->hw,
2799 				    PHY_CONTROL, &phy_tmp)) {
2800 					phy_tmp |= (MII_CR_AUTO_NEG_EN |
2801 						    MII_CR_RESTART_AUTO_NEG);
2802 					e1000_write_phy_reg(&sc->hw,
2803 					    PHY_CONTROL, phy_tmp);
2804 				}
2805 			}
2806 		}
2807 		return;
2808 	} else if(sc->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2809 		/* If still no link, perhaps using 2/3 pair cable */
2810 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2811 		phy_tmp |= CR_1000T_MS_ENABLE;
2812 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2813 		if(sc->hw.mac.autoneg &&
2814 		   !e1000_copper_link_autoneg(&sc->hw) &&
2815 		   !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2816 			phy_tmp |= (MII_CR_AUTO_NEG_EN |
2817 				    MII_CR_RESTART_AUTO_NEG);
2818 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2819 		}
2820 	}
2821 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2822 	if(sc->smartspeed++ == EM_SMARTSPEED_MAX)
2823 		sc->smartspeed = 0;
2824 }
2825 
2826 /*********************************************************************
2827  *
2828  *  Initialize the DMA Coalescing feature
2829  *
2830  **********************************************************************/
2831 static void
2832 igb_init_dmac(struct e1000_softc *sc, u32 pba)
2833 {
2834 	device_t	dev = sc->dev;
2835 	struct e1000_hw *hw = &sc->hw;
2836 	u32 		dmac, reg = ~E1000_DMACR_DMAC_EN;
2837 	u16		hwm;
2838 	u16		max_frame_size;
2839 
2840 	if (hw->mac.type == e1000_i211)
2841 		return;
2842 
2843 	max_frame_size = sc->shared->isc_max_frame_size;
2844 	if (hw->mac.type > e1000_82580) {
2845 
2846 		if (sc->dmac == 0) { /* Disabling it */
2847 			E1000_WRITE_REG(hw, E1000_DMACR, reg);
2848 			return;
2849 		} else
2850 			device_printf(dev, "DMA Coalescing enabled\n");
2851 
2852 		/* Set starting threshold */
2853 		E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2854 
2855 		hwm = 64 * pba - max_frame_size / 16;
2856 		if (hwm < 64 * (pba - 6))
2857 			hwm = 64 * (pba - 6);
2858 		reg = E1000_READ_REG(hw, E1000_FCRTC);
2859 		reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2860 		reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2861 		    & E1000_FCRTC_RTH_COAL_MASK);
2862 		E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2863 
2864 
2865 		dmac = pba - max_frame_size / 512;
2866 		if (dmac < pba - 10)
2867 			dmac = pba - 10;
2868 		reg = E1000_READ_REG(hw, E1000_DMACR);
2869 		reg &= ~E1000_DMACR_DMACTHR_MASK;
2870 		reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2871 		    & E1000_DMACR_DMACTHR_MASK);
2872 
2873 		/* transition to L0x or L1 if available..*/
2874 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2875 
2876 		/* Check if status is 2.5Gb backplane connection
2877 		* before configuration of watchdog timer, which is
2878 		* in msec values in 12.8usec intervals
2879 		* watchdog timer= msec values in 32usec intervals
2880 		* for non 2.5Gb connection
2881 		*/
2882 		if (hw->mac.type == e1000_i354) {
2883 			int status = E1000_READ_REG(hw, E1000_STATUS);
2884 			if ((status & E1000_STATUS_2P5_SKU) &&
2885 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2886 				reg |= ((sc->dmac * 5) >> 6);
2887 			else
2888 				reg |= (sc->dmac >> 5);
2889 		} else {
2890 			reg |= (sc->dmac >> 5);
2891 		}
2892 
2893 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
2894 
2895 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2896 
2897 		/* Set the interval before transition */
2898 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
2899 		if (hw->mac.type == e1000_i350)
2900 			reg |= IGB_DMCTLX_DCFLUSH_DIS;
2901 		/*
2902 		** in 2.5Gb connection, TTLX unit is 0.4 usec
2903 		** which is 0x4*2 = 0xA. But delay is still 4 usec
2904 		*/
2905 		if (hw->mac.type == e1000_i354) {
2906 			int status = E1000_READ_REG(hw, E1000_STATUS);
2907 			if ((status & E1000_STATUS_2P5_SKU) &&
2908 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2909 				reg |= 0xA;
2910 			else
2911 				reg |= 0x4;
2912 		} else {
2913 			reg |= 0x4;
2914 		}
2915 
2916 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2917 
2918 		/* free space in tx packet buffer to wake from DMA coal */
2919 		E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2920 		    (2 * max_frame_size)) >> 6);
2921 
2922 		/* make low power state decision controlled by DMA coal */
2923 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2924 		reg &= ~E1000_PCIEMISC_LX_DECISION;
2925 		E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2926 
2927 	} else if (hw->mac.type == e1000_82580) {
2928 		u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2929 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
2930 		    reg & ~E1000_PCIEMISC_LX_DECISION);
2931 		E1000_WRITE_REG(hw, E1000_DMACR, 0);
2932 	}
2933 }
2934 /*********************************************************************
2935  * The 3 following flush routines are used as a workaround in the
2936  * I219 client parts and only for them.
2937  *
2938  * em_flush_tx_ring - remove all descriptors from the tx_ring
2939  *
2940  * We want to clear all pending descriptors from the TX ring.
2941  * zeroing happens when the HW reads the regs. We assign the ring itself as
2942  * the data of the next descriptor. We don't care about the data we are about
2943  * to reset the HW.
2944  **********************************************************************/
2945 static void
2946 em_flush_tx_ring(struct e1000_softc *sc)
2947 {
2948 	struct e1000_hw *hw = &sc->hw;
2949 	struct tx_ring *txr = &sc->tx_queues->txr;
2950 	struct e1000_tx_desc *txd;
2951 	u32 tctl, txd_lower = E1000_TXD_CMD_IFCS;
2952 	u16 size = 512;
2953 
2954 	tctl = E1000_READ_REG(hw, E1000_TCTL);
2955 	E1000_WRITE_REG(hw, E1000_TCTL, tctl | E1000_TCTL_EN);
2956 
2957 	txd = &txr->tx_base[txr->tx_cidx_processed];
2958 
2959 	/* Just use the ring as a dummy buffer addr */
2960 	txd->buffer_addr = txr->tx_paddr;
2961 	txd->lower.data = htole32(txd_lower | size);
2962 	txd->upper.data = 0;
2963 
2964 	/* flush descriptors to memory before notifying the HW */
2965 	wmb();
2966 
2967 	E1000_WRITE_REG(hw, E1000_TDT(0), txr->tx_cidx_processed);
2968 	mb();
2969 	usec_delay(250);
2970 }
2971 
2972 /*********************************************************************
2973  * em_flush_rx_ring - remove all descriptors from the rx_ring
2974  *
2975  * Mark all descriptors in the RX ring as consumed and disable the rx ring
2976  **********************************************************************/
2977 static void
2978 em_flush_rx_ring(struct e1000_softc *sc)
2979 {
2980 	struct e1000_hw *hw = &sc->hw;
2981 	u32 rctl, rxdctl;
2982 
2983 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2984 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2985 	E1000_WRITE_FLUSH(hw);
2986 	usec_delay(150);
2987 
2988 	rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
2989 	/* zero the lower 14 bits (prefetch and host thresholds) */
2990 	rxdctl &= 0xffffc000;
2991 	/*
2992 	 * update thresholds: prefetch threshold to 31, host threshold to 1
2993 	 * and make sure the granularity is "descriptors" and not
2994 	 * "cache lines"
2995 	 */
2996 	rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
2997 	E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl);
2998 
2999 	/* momentarily enable the RX ring for the changes to take effect */
3000 	E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN);
3001 	E1000_WRITE_FLUSH(hw);
3002 	usec_delay(150);
3003 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3004 }
3005 
3006 /*********************************************************************
3007  * em_flush_desc_rings - remove all descriptors from the descriptor rings
3008  *
3009  * In I219, the descriptor rings must be emptied before resetting the HW
3010  * or before changing the device state to D3 during runtime (runtime PM).
3011  *
3012  * Failure to do this will cause the HW to enter a unit hang state which can
3013  * only be released by PCI reset on the device
3014  *
3015  **********************************************************************/
3016 static void
3017 em_flush_desc_rings(struct e1000_softc *sc)
3018 {
3019 	struct e1000_hw	*hw = &sc->hw;
3020 	device_t dev = sc->dev;
3021 	u16 hang_state;
3022 	u32 fext_nvm11, tdlen;
3023 
3024 	/* First, disable MULR fix in FEXTNVM11 */
3025 	fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
3026 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3027 	E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11);
3028 
3029 	/* do nothing if we're not in faulty state, or the queue is empty */
3030 	tdlen = E1000_READ_REG(hw, E1000_TDLEN(0));
3031 	hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
3032 	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3033 		return;
3034 	em_flush_tx_ring(sc);
3035 
3036 	/* recheck, maybe the fault is caused by the rx ring */
3037 	hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
3038 	if (hang_state & FLUSH_DESC_REQUIRED)
3039 		em_flush_rx_ring(sc);
3040 }
3041 
3042 
3043 /*********************************************************************
3044  *
3045  *  Initialize the hardware to a configuration as specified by the
3046  *  sc structure.
3047  *
3048  **********************************************************************/
3049 static void
3050 em_reset(if_ctx_t ctx)
3051 {
3052 	device_t dev = iflib_get_dev(ctx);
3053 	struct e1000_softc *sc = iflib_get_softc(ctx);
3054 	if_t ifp = iflib_get_ifp(ctx);
3055 	struct e1000_hw *hw = &sc->hw;
3056 	u32 rx_buffer_size;
3057 	u32 pba;
3058 
3059 	INIT_DEBUGOUT("em_reset: begin");
3060 	/* Let the firmware know the OS is in control */
3061 	em_get_hw_control(sc);
3062 
3063 	/* Set up smart power down as default off on newer adapters. */
3064 	if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
3065 	    hw->mac.type == e1000_82572)) {
3066 		u16 phy_tmp = 0;
3067 
3068 		/* Speed up time to link by disabling smart power down. */
3069 		e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
3070 		phy_tmp &= ~IGP02E1000_PM_SPD;
3071 		e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
3072 	}
3073 
3074 	/*
3075 	 * Packet Buffer Allocation (PBA)
3076 	 * Writing PBA sets the receive portion of the buffer
3077 	 * the remainder is used for the transmit buffer.
3078 	 */
3079 	switch (hw->mac.type) {
3080 	/* 82547: Total Packet Buffer is 40K */
3081 	case e1000_82547:
3082 	case e1000_82547_rev_2:
3083 		if (hw->mac.max_frame_size > 8192)
3084 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
3085 		else
3086 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
3087 		break;
3088 	/* 82571/82572/80003es2lan: Total Packet Buffer is 48K */
3089 	case e1000_82571:
3090 	case e1000_82572:
3091 	case e1000_80003es2lan:
3092 			pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
3093 		break;
3094 	/* 82573: Total Packet Buffer is 32K */
3095 	case e1000_82573:
3096 			pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
3097 		break;
3098 	case e1000_82574:
3099 	case e1000_82583:
3100 			pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
3101 		break;
3102 	case e1000_ich8lan:
3103 		pba = E1000_PBA_8K;
3104 		break;
3105 	case e1000_ich9lan:
3106 	case e1000_ich10lan:
3107 		/* Boost Receive side for jumbo frames */
3108 		if (hw->mac.max_frame_size > 4096)
3109 			pba = E1000_PBA_14K;
3110 		else
3111 			pba = E1000_PBA_10K;
3112 		break;
3113 	case e1000_pchlan:
3114 	case e1000_pch2lan:
3115 	case e1000_pch_lpt:
3116 	case e1000_pch_spt:
3117 	case e1000_pch_cnp:
3118 	case e1000_pch_tgp:
3119 	case e1000_pch_adp:
3120 	case e1000_pch_mtp:
3121 	case e1000_pch_ptp:
3122 		pba = E1000_PBA_26K;
3123 		break;
3124 	case e1000_82575:
3125 		pba = E1000_PBA_32K;
3126 		break;
3127 	case e1000_82576:
3128 	case e1000_vfadapt:
3129 		pba = E1000_READ_REG(hw, E1000_RXPBS);
3130 		pba &= E1000_RXPBS_SIZE_MASK_82576;
3131 		break;
3132 	case e1000_82580:
3133 	case e1000_i350:
3134 	case e1000_i354:
3135 	case e1000_vfadapt_i350:
3136 		pba = E1000_READ_REG(hw, E1000_RXPBS);
3137 		pba = e1000_rxpbs_adjust_82580(pba);
3138 		break;
3139 	case e1000_i210:
3140 	case e1000_i211:
3141 		pba = E1000_PBA_34K;
3142 		break;
3143 	default:
3144 		/* Remaining devices assumed to have Packet Buffer of 64K. */
3145 		if (hw->mac.max_frame_size > 8192)
3146 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
3147 		else
3148 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
3149 	}
3150 
3151 	/* Special needs in case of Jumbo frames */
3152 	if ((hw->mac.type == e1000_82575) && (if_getmtu(ifp) > ETHERMTU)) {
3153 		u32 tx_space, min_tx, min_rx;
3154 		pba = E1000_READ_REG(hw, E1000_PBA);
3155 		tx_space = pba >> 16;
3156 		pba &= 0xffff;
3157 		min_tx = (hw->mac.max_frame_size +
3158 		    sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
3159 		min_tx = roundup2(min_tx, 1024);
3160 		min_tx >>= 10;
3161 		min_rx = hw->mac.max_frame_size;
3162 		min_rx = roundup2(min_rx, 1024);
3163 		min_rx >>= 10;
3164 		if (tx_space < min_tx &&
3165 		    ((min_tx - tx_space) < pba)) {
3166 			pba = pba - (min_tx - tx_space);
3167 			/*
3168 			 * if short on rx space, rx wins
3169 			 * and must trump tx adjustment
3170 			 */
3171 			if (pba < min_rx)
3172 				pba = min_rx;
3173 		}
3174 		E1000_WRITE_REG(hw, E1000_PBA, pba);
3175 	}
3176 
3177 	if (hw->mac.type < igb_mac_min)
3178 		E1000_WRITE_REG(hw, E1000_PBA, pba);
3179 
3180 	INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
3181 
3182 	/*
3183 	 * These parameters control the automatic generation (Tx) and
3184 	 * response (Rx) to Ethernet PAUSE frames.
3185 	 * - High water mark should allow for at least two frames to be
3186 	 *   received after sending an XOFF.
3187 	 * - Low water mark works best when it is very near the high water
3188 	     mark.
3189 	 *   This allows the receiver to restart by sending XON when it has
3190 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
3191 	 *   restart after one full frame is pulled from the buffer. There
3192 	 *   could be several smaller frames in the buffer and if so they will
3193 	 *   not trigger the XON until their total number reduces the buffer
3194 	 *   by 1500.
3195 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
3196 	 */
3197 	rx_buffer_size = (pba & 0xffff) << 10;
3198 	hw->fc.high_water = rx_buffer_size -
3199 	    roundup2(hw->mac.max_frame_size, 1024);
3200 	hw->fc.low_water = hw->fc.high_water - 1500;
3201 
3202 	if (sc->fc) /* locally set flow control value? */
3203 		hw->fc.requested_mode = sc->fc;
3204 	else
3205 		hw->fc.requested_mode = e1000_fc_full;
3206 
3207 	if (hw->mac.type == e1000_80003es2lan)
3208 		hw->fc.pause_time = 0xFFFF;
3209 	else
3210 		hw->fc.pause_time = EM_FC_PAUSE_TIME;
3211 
3212 	hw->fc.send_xon = true;
3213 
3214 	/* Device specific overrides/settings */
3215 	switch (hw->mac.type) {
3216 	case e1000_pchlan:
3217 		/* Workaround: no TX flow ctrl for PCH */
3218 		hw->fc.requested_mode = e1000_fc_rx_pause;
3219 		hw->fc.pause_time = 0xFFFF; /* override */
3220 		if (if_getmtu(ifp) > ETHERMTU) {
3221 			hw->fc.high_water = 0x3500;
3222 			hw->fc.low_water = 0x1500;
3223 		} else {
3224 			hw->fc.high_water = 0x5000;
3225 			hw->fc.low_water = 0x3000;
3226 		}
3227 		hw->fc.refresh_time = 0x1000;
3228 		break;
3229 	case e1000_pch2lan:
3230 	case e1000_pch_lpt:
3231 	case e1000_pch_spt:
3232 	case e1000_pch_cnp:
3233 	case e1000_pch_tgp:
3234 	case e1000_pch_adp:
3235 	case e1000_pch_mtp:
3236 	case e1000_pch_ptp:
3237 		hw->fc.high_water = 0x5C20;
3238 		hw->fc.low_water = 0x5048;
3239 		hw->fc.pause_time = 0x0650;
3240 		hw->fc.refresh_time = 0x0400;
3241 		/* Jumbos need adjusted PBA */
3242 		if (if_getmtu(ifp) > ETHERMTU)
3243 			E1000_WRITE_REG(hw, E1000_PBA, 12);
3244 		else
3245 			E1000_WRITE_REG(hw, E1000_PBA, 26);
3246 		break;
3247 	case e1000_82575:
3248 	case e1000_82576:
3249 		/* 8-byte granularity */
3250 		hw->fc.low_water = hw->fc.high_water - 8;
3251 		break;
3252 	case e1000_82580:
3253 	case e1000_i350:
3254 	case e1000_i354:
3255 	case e1000_i210:
3256 	case e1000_i211:
3257 	case e1000_vfadapt:
3258 	case e1000_vfadapt_i350:
3259 		/* 16-byte granularity */
3260 		hw->fc.low_water = hw->fc.high_water - 16;
3261 		break;
3262 	case e1000_ich9lan:
3263 	case e1000_ich10lan:
3264 		if (if_getmtu(ifp) > ETHERMTU) {
3265 			hw->fc.high_water = 0x2800;
3266 			hw->fc.low_water = hw->fc.high_water - 8;
3267 			break;
3268 		}
3269 		/* FALLTHROUGH */
3270 	default:
3271 		if (hw->mac.type == e1000_80003es2lan)
3272 			hw->fc.pause_time = 0xFFFF;
3273 		break;
3274 	}
3275 
3276 	/* I219 needs some special flushing to avoid hangs */
3277 	if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min)
3278 		em_flush_desc_rings(sc);
3279 
3280 	/* Issue a global reset */
3281 	e1000_reset_hw(hw);
3282 	if (hw->mac.type >= igb_mac_min) {
3283 		E1000_WRITE_REG(hw, E1000_WUC, 0);
3284 	} else {
3285 		E1000_WRITE_REG(hw, E1000_WUFC, 0);
3286 		em_disable_aspm(sc);
3287 	}
3288 	if (sc->flags & IGB_MEDIA_RESET) {
3289 		e1000_setup_init_funcs(hw, true);
3290 		e1000_get_bus_info(hw);
3291 		sc->flags &= ~IGB_MEDIA_RESET;
3292 	}
3293 	/* and a re-init */
3294 	if (e1000_init_hw(hw) < 0) {
3295 		device_printf(dev, "Hardware Initialization Failed\n");
3296 		return;
3297 	}
3298 	if (hw->mac.type >= igb_mac_min)
3299 		igb_init_dmac(sc, pba);
3300 
3301 	/* Save the final PBA off if it needs to be used elsewhere i.e. AIM */
3302 	sc->pba = pba;
3303 
3304 	E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
3305 	e1000_get_phy_info(hw);
3306 	e1000_check_for_link(hw);
3307 }
3308 
3309 /*
3310  * Initialise the RSS mapping for NICs that support multiple transmit/
3311  * receive rings.
3312  */
3313 
3314 #define RSSKEYLEN 10
3315 static void
3316 em_initialize_rss_mapping(struct e1000_softc *sc)
3317 {
3318 	uint8_t rss_key[4 * RSSKEYLEN];
3319 	uint32_t reta = 0;
3320 	struct e1000_hw *hw = &sc->hw;
3321 	int i;
3322 
3323 	/*
3324 	 * Configure RSS key
3325 	 */
3326 	arc4rand(rss_key, sizeof(rss_key), 0);
3327 	for (i = 0; i < RSSKEYLEN; ++i) {
3328 		uint32_t rssrk = 0;
3329 
3330 		rssrk = EM_RSSRK_VAL(rss_key, i);
3331 		E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
3332 	}
3333 
3334 	/*
3335 	 * Configure RSS redirect table in following fashion:
3336 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
3337 	 */
3338 	for (i = 0; i < sizeof(reta); ++i) {
3339 		uint32_t q;
3340 
3341 		q = (i % sc->rx_num_queues) << 7;
3342 		reta |= q << (8 * i);
3343 	}
3344 
3345 	for (i = 0; i < 32; ++i)
3346 		E1000_WRITE_REG(hw, E1000_RETA(i), reta);
3347 
3348 	E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
3349 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
3350 			E1000_MRQC_RSS_FIELD_IPV4 |
3351 			E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
3352 			E1000_MRQC_RSS_FIELD_IPV6_EX |
3353 			E1000_MRQC_RSS_FIELD_IPV6);
3354 }
3355 
3356 static void
3357 igb_initialize_rss_mapping(struct e1000_softc *sc)
3358 {
3359 	struct e1000_hw *hw = &sc->hw;
3360 	int i;
3361 	int queue_id;
3362 	u32 reta;
3363 	u32 rss_key[10], mrqc, shift = 0;
3364 
3365 	/* XXX? */
3366 	if (hw->mac.type == e1000_82575)
3367 		shift = 6;
3368 
3369 	/*
3370 	 * The redirection table controls which destination
3371 	 * queue each bucket redirects traffic to.
3372 	 * Each DWORD represents four queues, with the LSB
3373 	 * being the first queue in the DWORD.
3374 	 *
3375 	 * This just allocates buckets to queues using round-robin
3376 	 * allocation.
3377 	 *
3378 	 * NOTE: It Just Happens to line up with the default
3379 	 * RSS allocation method.
3380 	 */
3381 
3382 	/* Warning FM follows */
3383 	reta = 0;
3384 	for (i = 0; i < 128; i++) {
3385 #ifdef RSS
3386 		queue_id = rss_get_indirection_to_bucket(i);
3387 		/*
3388 		 * If we have more queues than buckets, we'll
3389 		 * end up mapping buckets to a subset of the
3390 		 * queues.
3391 		 *
3392 		 * If we have more buckets than queues, we'll
3393 		 * end up instead assigning multiple buckets
3394 		 * to queues.
3395 		 *
3396 		 * Both are suboptimal, but we need to handle
3397 		 * the case so we don't go out of bounds
3398 		 * indexing arrays and such.
3399 		 */
3400 		queue_id = queue_id % sc->rx_num_queues;
3401 #else
3402 		queue_id = (i % sc->rx_num_queues);
3403 #endif
3404 		/* Adjust if required */
3405 		queue_id = queue_id << shift;
3406 
3407 		/*
3408 		 * The low 8 bits are for hash value (n+0);
3409 		 * The next 8 bits are for hash value (n+1), etc.
3410 		 */
3411 		reta = reta >> 8;
3412 		reta = reta | ( ((uint32_t) queue_id) << 24);
3413 		if ((i & 3) == 3) {
3414 			E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
3415 			reta = 0;
3416 		}
3417 	}
3418 
3419 	/* Now fill in hash table */
3420 
3421 	/*
3422 	 * MRQC: Multiple Receive Queues Command
3423 	 * Set queuing to RSS control, number depends on the device.
3424 	 */
3425 	mrqc = E1000_MRQC_ENABLE_RSS_MQ;
3426 
3427 #ifdef RSS
3428 	/* XXX ew typecasting */
3429 	rss_getkey((uint8_t *) &rss_key);
3430 #else
3431 	arc4rand(&rss_key, sizeof(rss_key), 0);
3432 #endif
3433 	for (i = 0; i < 10; i++)
3434 		E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
3435 
3436 	/*
3437 	 * Configure the RSS fields to hash upon.
3438 	 */
3439 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
3440 	    E1000_MRQC_RSS_FIELD_IPV4_TCP);
3441 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
3442 	    E1000_MRQC_RSS_FIELD_IPV6_TCP);
3443 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
3444 	    E1000_MRQC_RSS_FIELD_IPV6_UDP);
3445 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
3446 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3447 
3448 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
3449 }
3450 
3451 /*********************************************************************
3452  *
3453  *  Setup networking device structure and register interface media.
3454  *
3455  **********************************************************************/
3456 static int
3457 em_setup_interface(if_ctx_t ctx)
3458 {
3459 	if_t ifp = iflib_get_ifp(ctx);
3460 	struct e1000_softc *sc = iflib_get_softc(ctx);
3461 	if_softc_ctx_t scctx = sc->shared;
3462 
3463 	INIT_DEBUGOUT("em_setup_interface: begin");
3464 
3465 	/* Single Queue */
3466 	if (sc->tx_num_queues == 1) {
3467 		if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
3468 		if_setsendqready(ifp);
3469 	}
3470 
3471 	/*
3472 	 * Specify the media types supported by this adapter and register
3473 	 * callbacks to update media and link information
3474 	 */
3475 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
3476 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
3477 		u_char fiber_type = IFM_1000_SX;	/* default type */
3478 
3479 		if (sc->hw.mac.type == e1000_82545)
3480 			fiber_type = IFM_1000_LX;
3481 		ifmedia_add(sc->media,
3482 		    IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
3483 		ifmedia_add(sc->media, IFM_ETHER | fiber_type, 0, NULL);
3484 	} else {
3485 		ifmedia_add(sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
3486 		ifmedia_add(sc->media,
3487 		    IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
3488 		ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
3489 		ifmedia_add(sc->media,
3490 		    IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
3491 		if (sc->hw.phy.type != e1000_phy_ife) {
3492 			ifmedia_add(sc->media,
3493 			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
3494 			ifmedia_add(sc->media,
3495 			    IFM_ETHER | IFM_1000_T, 0, NULL);
3496 		}
3497 	}
3498 	ifmedia_add(sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
3499 	ifmedia_set(sc->media, IFM_ETHER | IFM_AUTO);
3500 	return (0);
3501 }
3502 
3503 static int
3504 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs,
3505     int ntxqs, int ntxqsets)
3506 {
3507 	struct e1000_softc *sc = iflib_get_softc(ctx);
3508 	if_softc_ctx_t scctx = sc->shared;
3509 	int error = E1000_SUCCESS;
3510 	struct em_tx_queue *que;
3511 	int i, j;
3512 
3513 	MPASS(sc->tx_num_queues > 0);
3514 	MPASS(sc->tx_num_queues == ntxqsets);
3515 
3516 	/* First allocate the top level queue structs */
3517 	if (!(sc->tx_queues =
3518 	    (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
3519 	    sc->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
3520 		device_printf(iflib_get_dev(ctx),
3521 		    "Unable to allocate queue memory\n");
3522 		return(ENOMEM);
3523 	}
3524 
3525 	for (i = 0, que = sc->tx_queues; i < sc->tx_num_queues; i++, que++) {
3526 		/* Set up some basics */
3527 
3528 		struct tx_ring *txr = &que->txr;
3529 		txr->sc = que->sc = sc;
3530 		que->me = txr->me =  i;
3531 
3532 		/* Allocate report status array */
3533 		if (!(txr->tx_rsq =
3534 		    (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0],
3535 		    M_DEVBUF, M_NOWAIT | M_ZERO))) {
3536 			device_printf(iflib_get_dev(ctx),
3537 			    "failed to allocate rs_idxs memory\n");
3538 			error = ENOMEM;
3539 			goto fail;
3540 		}
3541 		for (j = 0; j < scctx->isc_ntxd[0]; j++)
3542 			txr->tx_rsq[j] = QIDX_INVALID;
3543 		/* get the virtual and physical address of hardware queues */
3544 		txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
3545 		txr->tx_paddr = paddrs[i*ntxqs];
3546 	}
3547 
3548 	if (bootverbose)
3549 		device_printf(iflib_get_dev(ctx),
3550 		    "allocated for %d tx_queues\n", sc->tx_num_queues);
3551 	return (0);
3552 fail:
3553 	em_if_queues_free(ctx);
3554 	return (error);
3555 }
3556 
3557 static int
3558 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs,
3559     int nrxqs, int nrxqsets)
3560 {
3561 	struct e1000_softc *sc = iflib_get_softc(ctx);
3562 	int error = E1000_SUCCESS;
3563 	struct em_rx_queue *que;
3564 	int i;
3565 
3566 	MPASS(sc->rx_num_queues > 0);
3567 	MPASS(sc->rx_num_queues == nrxqsets);
3568 
3569 	/* First allocate the top level queue structs */
3570 	if (!(sc->rx_queues =
3571 	    (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
3572 	    sc->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
3573 		device_printf(iflib_get_dev(ctx),
3574 		    "Unable to allocate queue memory\n");
3575 		error = ENOMEM;
3576 		goto fail;
3577 	}
3578 
3579 	for (i = 0, que = sc->rx_queues; i < nrxqsets; i++, que++) {
3580 		/* Set up some basics */
3581 		struct rx_ring *rxr = &que->rxr;
3582 		rxr->sc = que->sc = sc;
3583 		rxr->que = que;
3584 		que->me = rxr->me =  i;
3585 
3586 		/* get the virtual and physical address of hardware queues */
3587 		rxr->rx_base =
3588 		    (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
3589 		rxr->rx_paddr = paddrs[i*nrxqs];
3590 	}
3591 
3592 	if (bootverbose)
3593 		device_printf(iflib_get_dev(ctx),
3594 		    "allocated for %d rx_queues\n", sc->rx_num_queues);
3595 
3596 	return (0);
3597 fail:
3598 	em_if_queues_free(ctx);
3599 	return (error);
3600 }
3601 
3602 static void
3603 em_if_queues_free(if_ctx_t ctx)
3604 {
3605 	struct e1000_softc *sc = iflib_get_softc(ctx);
3606 	struct em_tx_queue *tx_que = sc->tx_queues;
3607 	struct em_rx_queue *rx_que = sc->rx_queues;
3608 
3609 	if (tx_que != NULL) {
3610 		for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
3611 			struct tx_ring *txr = &tx_que->txr;
3612 			if (txr->tx_rsq == NULL)
3613 				break;
3614 
3615 			free(txr->tx_rsq, M_DEVBUF);
3616 			txr->tx_rsq = NULL;
3617 		}
3618 		free(sc->tx_queues, M_DEVBUF);
3619 		sc->tx_queues = NULL;
3620 	}
3621 
3622 	if (rx_que != NULL) {
3623 		free(sc->rx_queues, M_DEVBUF);
3624 		sc->rx_queues = NULL;
3625 	}
3626 }
3627 
3628 /*********************************************************************
3629  *
3630  *  Enable transmit unit.
3631  *
3632  **********************************************************************/
3633 static void
3634 em_initialize_transmit_unit(if_ctx_t ctx)
3635 {
3636 	struct e1000_softc *sc = iflib_get_softc(ctx);
3637 	if_softc_ctx_t scctx = sc->shared;
3638 	struct em_tx_queue *que;
3639 	struct tx_ring	*txr;
3640 	struct e1000_hw	*hw = &sc->hw;
3641 	u32 tctl, txdctl = 0, tarc, tipg = 0;
3642 
3643 	INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
3644 
3645 	for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
3646 		u64 bus_addr;
3647 		caddr_t offp, endp;
3648 
3649 		que = &sc->tx_queues[i];
3650 		txr = &que->txr;
3651 		bus_addr = txr->tx_paddr;
3652 
3653 		/* Clear checksum offload context. */
3654 		offp = (caddr_t)&txr->csum_flags;
3655 		endp = (caddr_t)(txr + 1);
3656 		bzero(offp, endp - offp);
3657 
3658 		/* Base and Len of TX Ring */
3659 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
3660 		    scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
3661 		E1000_WRITE_REG(hw, E1000_TDBAH(i), (u32)(bus_addr >> 32));
3662 		E1000_WRITE_REG(hw, E1000_TDBAL(i), (u32)bus_addr);
3663 		/* Init the HEAD/TAIL indices */
3664 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3665 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3666 
3667 		HW_DEBUGOUT2("Base = %x, Length = %x\n",
3668 		    E1000_READ_REG(hw, E1000_TDBAL(i)),
3669 		    E1000_READ_REG(hw, E1000_TDLEN(i)));
3670 
3671 		txdctl = 0; /* clear txdctl */
3672 		txdctl |= 0x1f; /* PTHRESH */
3673 		txdctl |= 1 << 8; /* HTHRESH */
3674 		txdctl |= 1 << 16;/* WTHRESH */
3675 		txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3676 		txdctl |= E1000_TXDCTL_GRAN;
3677 		txdctl |= 1 << 25; /* LWTHRESH */
3678 
3679 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3680 	}
3681 
3682 	/* Set the default values for the Tx Inter Packet Gap timer */
3683 	switch (hw->mac.type) {
3684 	case e1000_80003es2lan:
3685 		tipg = DEFAULT_82543_TIPG_IPGR1;
3686 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3687 		    E1000_TIPG_IPGR2_SHIFT;
3688 		break;
3689 	case e1000_82542:
3690 		tipg = DEFAULT_82542_TIPG_IPGT;
3691 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3692 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3693 		break;
3694 	default:
3695 		if (hw->phy.media_type == e1000_media_type_fiber ||
3696 		    hw->phy.media_type == e1000_media_type_internal_serdes)
3697 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3698 		else
3699 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3700 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3701 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3702 	}
3703 
3704 	if (hw->mac.type < igb_mac_min) {
3705 		E1000_WRITE_REG(hw, E1000_TIPG, tipg);
3706 		E1000_WRITE_REG(hw, E1000_TIDV, sc->tx_int_delay.value);
3707 
3708 		if (sc->tx_int_delay.value > 0)
3709 			sc->txd_cmd |= E1000_TXD_CMD_IDE;
3710 	}
3711 
3712 	if (hw->mac.type >= e1000_82540)
3713 		E1000_WRITE_REG(hw, E1000_TADV, sc->tx_abs_int_delay.value);
3714 
3715 	if (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572) {
3716 		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3717 		tarc |= TARC_SPEED_MODE_BIT;
3718 		E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3719 	} else if (hw->mac.type == e1000_80003es2lan) {
3720 		/* errata: program both queues to unweighted RR */
3721 		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3722 		tarc |= 1;
3723 		E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3724 		tarc = E1000_READ_REG(hw, E1000_TARC(1));
3725 		tarc |= 1;
3726 		E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3727 	} else if (hw->mac.type == e1000_82574) {
3728 		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3729 		tarc |= TARC_ERRATA_BIT;
3730 		if ( sc->tx_num_queues > 1) {
3731 			tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3732 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3733 			E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3734 		} else
3735 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3736 	}
3737 
3738 	/* Program the Transmit Control Register */
3739 	tctl = E1000_READ_REG(hw, E1000_TCTL);
3740 	tctl &= ~E1000_TCTL_CT;
3741 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3742 		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3743 
3744 	if (hw->mac.type >= e1000_82571 && hw->mac.type < igb_mac_min)
3745 		tctl |= E1000_TCTL_MULR;
3746 
3747 	/* This write will effectively turn on the transmit unit. */
3748 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
3749 
3750 	/* SPT and KBL errata workarounds */
3751 	if (hw->mac.type == e1000_pch_spt) {
3752 		u32 reg;
3753 		reg = E1000_READ_REG(hw, E1000_IOSFPC);
3754 		reg |= E1000_RCTL_RDMTS_HEX;
3755 		E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3756 		/* i218-i219 Specification Update 1.5.4.5 */
3757 		reg = E1000_READ_REG(hw, E1000_TARC(0));
3758 		reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3759 		reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3760 		E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3761 	}
3762 }
3763 
3764 /*********************************************************************
3765  *
3766  *  Enable receive unit.
3767  *
3768  **********************************************************************/
3769 #define BSIZEPKT_ROUNDUP ((1<<E1000_SRRCTL_BSIZEPKT_SHIFT)-1)
3770 
3771 static void
3772 em_initialize_receive_unit(if_ctx_t ctx)
3773 {
3774 	struct e1000_softc *sc = iflib_get_softc(ctx);
3775 	if_softc_ctx_t scctx = sc->shared;
3776 	if_t ifp = iflib_get_ifp(ctx);
3777 	struct e1000_hw *hw = &sc->hw;
3778 	struct em_rx_queue *que;
3779 	int i;
3780 	uint32_t rctl, rxcsum;
3781 
3782 	INIT_DEBUGOUT("em_initialize_receive_units: begin");
3783 
3784 	/*
3785 	 * Make sure receives are disabled while setting
3786 	 * up the descriptor ring
3787 	 */
3788 	rctl = E1000_READ_REG(hw, E1000_RCTL);
3789 	/* Do not disable if ever enabled on this hardware */
3790 	if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3791 		E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3792 
3793 	/* Setup the Receive Control Register */
3794 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3795 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3796 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3797 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3798 
3799 	/* Do not store bad packets */
3800 	rctl &= ~E1000_RCTL_SBP;
3801 
3802 	/* Enable Long Packet receive */
3803 	if (if_getmtu(ifp) > ETHERMTU)
3804 		rctl |= E1000_RCTL_LPE;
3805 	else
3806 		rctl &= ~E1000_RCTL_LPE;
3807 
3808 	/* Strip the CRC */
3809 	if (!em_disable_crc_stripping)
3810 		rctl |= E1000_RCTL_SECRC;
3811 
3812 	/* lem/em default interrupt moderation */
3813 	if (hw->mac.type < igb_mac_min) {
3814 		if (hw->mac.type >= e1000_82540) {
3815 			E1000_WRITE_REG(hw, E1000_RADV,
3816 			    sc->rx_abs_int_delay.value);
3817 
3818 			/* Set the default interrupt throttling rate */
3819 			E1000_WRITE_REG(hw, E1000_ITR,
3820 			    EM_INTS_TO_ITR(em_max_interrupt_rate));
3821 		}
3822 
3823 		/* XXX TEMPORARY WORKAROUND: on some systems with 82573
3824 		 * long latencies are observed, like Lenovo X60. This
3825 		 * change eliminates the problem, but since having positive
3826 		 * values in RDTR is a known source of problems on other
3827 		 * platforms another solution is being sought.
3828 		 */
3829 		if (hw->mac.type == e1000_82573)
3830 			E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3831 		else
3832 			E1000_WRITE_REG(hw, E1000_RDTR,
3833 			    sc->rx_int_delay.value);
3834 	}
3835 
3836 	if (hw->mac.type >= em_mac_min) {
3837 		uint32_t rfctl;
3838 		/* Use extended rx descriptor formats */
3839 		rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3840 		rfctl |= E1000_RFCTL_EXTEN;
3841 
3842 		/*
3843 		 * When using MSI-X interrupts we need to throttle
3844 		 * using the EITR register (82574 only)
3845 		 */
3846 		if (hw->mac.type == e1000_82574) {
3847 			for (int i = 0; i < 4; i++)
3848 				E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3849 				    EM_INTS_TO_ITR(em_max_interrupt_rate));
3850 			/* Disable accelerated acknowledge */
3851 			rfctl |= E1000_RFCTL_ACK_DIS;
3852 		}
3853 		E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3854 	}
3855 
3856 	/* Set up L3 and L4 csum Rx descriptor offloads */
3857 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3858 	if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3859 		rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3860 		if (hw->mac.type > e1000_82575)
3861 			rxcsum |= E1000_RXCSUM_CRCOFL;
3862 		else if (hw->mac.type < em_mac_min &&
3863 		    if_getcapenable(ifp) & IFCAP_HWCSUM_IPV6)
3864 			rxcsum |= E1000_RXCSUM_IPV6OFL;
3865 	} else {
3866 		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3867 		if (hw->mac.type > e1000_82575)
3868 			rxcsum &= ~E1000_RXCSUM_CRCOFL;
3869 		else if (hw->mac.type < em_mac_min)
3870 			rxcsum &= ~E1000_RXCSUM_IPV6OFL;
3871 	}
3872 
3873 	if (sc->rx_num_queues > 1) {
3874 		/* RSS hash needed in the Rx descriptor */
3875 		rxcsum |= E1000_RXCSUM_PCSD;
3876 
3877 		if (hw->mac.type >= igb_mac_min)
3878 			igb_initialize_rss_mapping(sc);
3879 		else
3880 			em_initialize_rss_mapping(sc);
3881 	}
3882 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3883 
3884 	for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) {
3885 		struct rx_ring *rxr = &que->rxr;
3886 		/* Setup the Base and Length of the Rx Descriptor Ring */
3887 		u64 bus_addr = rxr->rx_paddr;
3888 #if 0
3889 		u32 rdt = sc->rx_num_queues -1;  /* default */
3890 #endif
3891 
3892 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
3893 		    scctx->isc_nrxd[0] *
3894 		    sizeof(union e1000_rx_desc_extended));
3895 		E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3896 		E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3897 		/* Setup the Head and Tail Descriptor Pointers */
3898 		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3899 		E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3900 	}
3901 
3902 	/*
3903 	 * Set PTHRESH for improved jumbo performance
3904 	 * According to 10.2.5.11 of Intel 82574 Datasheet,
3905 	 * RXDCTL(1) is written whenever RXDCTL(0) is written.
3906 	 * Only write to RXDCTL(1) if there is a need for different
3907 	 * settings.
3908 	 */
3909 	if ((hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_pch2lan ||
3910 	    hw->mac.type == e1000_ich10lan) && if_getmtu(ifp) > ETHERMTU) {
3911 		u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3912 		E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3913 	} else if (hw->mac.type == e1000_82574) {
3914 		for (int i = 0; i < sc->rx_num_queues; i++) {
3915 			u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3916 			rxdctl |= 0x20; /* PTHRESH */
3917 			rxdctl |= 4 << 8; /* HTHRESH */
3918 			rxdctl |= 4 << 16;/* WTHRESH */
3919 			rxdctl |= 1 << 24; /* Switch to granularity */
3920 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3921 		}
3922 	} else if (hw->mac.type >= igb_mac_min) {
3923 		u32 psize, srrctl = 0;
3924 
3925 		if (if_getmtu(ifp) > ETHERMTU) {
3926 			psize = scctx->isc_max_frame_size;
3927 			/* are we on a vlan? */
3928 			if (if_vlantrunkinuse(ifp))
3929 				psize += VLAN_TAG_SIZE;
3930 
3931 			if (sc->vf_ifp)
3932 				e1000_rlpml_set_vf(hw, psize);
3933 			else
3934 				E1000_WRITE_REG(hw, E1000_RLPML, psize);
3935 		}
3936 
3937 		/* Set maximum packet buffer len */
3938 		srrctl |= (sc->rx_mbuf_sz + BSIZEPKT_ROUNDUP) >>
3939 		    E1000_SRRCTL_BSIZEPKT_SHIFT;
3940 
3941 		/*
3942 		 * If TX flow control is disabled and there's >1 queue
3943 		 * defined, enable DROP.
3944 		 *
3945 		 * This drops frames rather than hanging the RX MAC for all
3946 		 * queues.
3947 		 */
3948 		if ((sc->rx_num_queues > 1) &&
3949 		    (sc->fc == e1000_fc_none ||
3950 		     sc->fc == e1000_fc_rx_pause)) {
3951 			srrctl |= E1000_SRRCTL_DROP_EN;
3952 		}
3953 		/* Setup the Base and Length of the Rx Descriptor Rings */
3954 		for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues;
3955 		    i++, que++) {
3956 			struct rx_ring *rxr = &que->rxr;
3957 			u64 bus_addr = rxr->rx_paddr;
3958 			u32 rxdctl;
3959 
3960 #ifdef notyet
3961 			/* Configure for header split? -- ignore for now */
3962 			rxr->hdr_split = igb_header_split;
3963 #else
3964 			srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3965 #endif
3966 
3967 			E1000_WRITE_REG(hw, E1000_RDLEN(i),
3968 			    scctx->isc_nrxd[0] *
3969 			    sizeof(struct e1000_rx_desc));
3970 			E1000_WRITE_REG(hw, E1000_RDBAH(i),
3971 			    (uint32_t)(bus_addr >> 32));
3972 			E1000_WRITE_REG(hw, E1000_RDBAL(i),
3973 			    (uint32_t)bus_addr);
3974 			E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3975 			/* Enable this Queue */
3976 			rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3977 			rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3978 			rxdctl &= 0xFFF00000;
3979 			rxdctl |= IGB_RX_PTHRESH;
3980 			rxdctl |= IGB_RX_HTHRESH << 8;
3981 			rxdctl |= IGB_RX_WTHRESH << 16;
3982 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3983 		}
3984 	} else if (hw->mac.type >= e1000_pch2lan) {
3985 		if (if_getmtu(ifp) > ETHERMTU)
3986 			e1000_lv_jumbo_workaround_ich8lan(hw, true);
3987 		else
3988 			e1000_lv_jumbo_workaround_ich8lan(hw, false);
3989 	}
3990 
3991 	/* Make sure VLAN Filters are off */
3992 	rctl &= ~E1000_RCTL_VFE;
3993 
3994 	/* Set up packet buffer size, overridden by per queue srrctl on igb */
3995 	if (hw->mac.type < igb_mac_min) {
3996 		if (sc->rx_mbuf_sz > 2048 && sc->rx_mbuf_sz <= 4096)
3997 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3998 		else if (sc->rx_mbuf_sz > 4096 && sc->rx_mbuf_sz <= 8192)
3999 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
4000 		else if (sc->rx_mbuf_sz > 8192)
4001 			rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX;
4002 		else {
4003 			rctl |= E1000_RCTL_SZ_2048;
4004 			rctl &= ~E1000_RCTL_BSEX;
4005 		}
4006 	} else
4007 		rctl |= E1000_RCTL_SZ_2048;
4008 
4009 	/*
4010 	 * rctl bits 11:10 are as follows
4011 	 * lem: reserved
4012 	 * em: DTYPE
4013 	 * igb: reserved
4014 	 * and should be 00 on all of the above
4015 	 */
4016 	rctl &= ~0x00000C00;
4017 
4018 	/* Write out the settings */
4019 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4020 
4021 	return;
4022 }
4023 
4024 static void
4025 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
4026 {
4027 	struct e1000_softc *sc = iflib_get_softc(ctx);
4028 	u32 index, bit;
4029 
4030 	index = (vtag >> 5) & 0x7F;
4031 	bit = vtag & 0x1F;
4032 	sc->shadow_vfta[index] |= (1 << bit);
4033 	++sc->num_vlans;
4034 	em_if_vlan_filter_write(sc);
4035 }
4036 
4037 static void
4038 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
4039 {
4040 	struct e1000_softc *sc = iflib_get_softc(ctx);
4041 	u32 index, bit;
4042 
4043 	index = (vtag >> 5) & 0x7F;
4044 	bit = vtag & 0x1F;
4045 	sc->shadow_vfta[index] &= ~(1 << bit);
4046 	--sc->num_vlans;
4047 	em_if_vlan_filter_write(sc);
4048 }
4049 
4050 static bool
4051 em_if_vlan_filter_capable(if_ctx_t ctx)
4052 {
4053 	if_t ifp = iflib_get_ifp(ctx);
4054 
4055 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) &&
4056 	    !em_disable_crc_stripping)
4057 		return (true);
4058 
4059 	return (false);
4060 }
4061 
4062 static bool
4063 em_if_vlan_filter_used(if_ctx_t ctx)
4064 {
4065 	struct e1000_softc *sc = iflib_get_softc(ctx);
4066 
4067 	if (!em_if_vlan_filter_capable(ctx))
4068 		return (false);
4069 
4070 	for (int i = 0; i < EM_VFTA_SIZE; i++)
4071 		if (sc->shadow_vfta[i] != 0)
4072 			return (true);
4073 
4074 	return (false);
4075 }
4076 
4077 static void
4078 em_if_vlan_filter_enable(struct e1000_softc *sc)
4079 {
4080 	struct e1000_hw *hw = &sc->hw;
4081 	u32 reg;
4082 
4083 	reg = E1000_READ_REG(hw, E1000_RCTL);
4084 	reg &= ~E1000_RCTL_CFIEN;
4085 	reg |= E1000_RCTL_VFE;
4086 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
4087 }
4088 
4089 static void
4090 em_if_vlan_filter_disable(struct e1000_softc *sc)
4091 {
4092 	struct e1000_hw *hw = &sc->hw;
4093 	u32 reg;
4094 
4095 	reg = E1000_READ_REG(hw, E1000_RCTL);
4096 	reg &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
4097 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
4098 }
4099 
4100 static void
4101 em_if_vlan_filter_write(struct e1000_softc *sc)
4102 {
4103 	struct e1000_hw *hw = &sc->hw;
4104 
4105 	if (sc->vf_ifp)
4106 		return;
4107 
4108 	/* Disable interrupts for lem(4) devices during the filter change */
4109 	if (hw->mac.type < em_mac_min)
4110 		em_if_intr_disable(sc->ctx);
4111 
4112 	for (int i = 0; i < EM_VFTA_SIZE; i++)
4113 		if (sc->shadow_vfta[i] != 0) {
4114 			/* XXXKB: incomplete VF support, we returned above */
4115 			if (sc->vf_ifp)
4116 				e1000_vfta_set_vf(hw, sc->shadow_vfta[i],
4117 				    true);
4118 			else
4119 				e1000_write_vfta(hw, i, sc->shadow_vfta[i]);
4120 		}
4121 
4122 	/* Re-enable interrupts for lem-class devices */
4123 	if (hw->mac.type < em_mac_min)
4124 		em_if_intr_enable(sc->ctx);
4125 }
4126 
4127 static void
4128 em_setup_vlan_hw_support(if_ctx_t ctx)
4129 {
4130 	struct e1000_softc *sc = iflib_get_softc(ctx);
4131 	struct e1000_hw *hw = &sc->hw;
4132 	if_t ifp = iflib_get_ifp(ctx);
4133 	u32 reg;
4134 
4135 	/* XXXKB: Return early if we are a VF until VF decap and filter
4136 	 * management is ready and tested.
4137 	 */
4138 	if (sc->vf_ifp)
4139 		return;
4140 
4141 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
4142 	    !em_disable_crc_stripping) {
4143 		reg = E1000_READ_REG(hw, E1000_CTRL);
4144 		reg |= E1000_CTRL_VME;
4145 		E1000_WRITE_REG(hw, E1000_CTRL, reg);
4146 	} else {
4147 		reg = E1000_READ_REG(hw, E1000_CTRL);
4148 		reg &= ~E1000_CTRL_VME;
4149 		E1000_WRITE_REG(hw, E1000_CTRL, reg);
4150 	}
4151 
4152 	/* If we aren't doing HW filtering, we're done */
4153 	if (!em_if_vlan_filter_capable(ctx))  {
4154 		em_if_vlan_filter_disable(sc);
4155 		return;
4156 	}
4157 
4158 	/*
4159 	 * A soft reset zero's out the VFTA, so
4160 	 * we need to repopulate it now.
4161 	 * We also insert VLAN 0 in the filter list, so we pass VLAN 0 tagged
4162 	 * traffic through. This will write the entire table.
4163 	 */
4164 	em_if_vlan_register(ctx, 0);
4165 
4166 	/* Enable the Filter Table */
4167 	em_if_vlan_filter_enable(sc);
4168 }
4169 
4170 static void
4171 em_if_intr_enable(if_ctx_t ctx)
4172 {
4173 	struct e1000_softc *sc = iflib_get_softc(ctx);
4174 	struct e1000_hw *hw = &sc->hw;
4175 	u32 ims_mask = IMS_ENABLE_MASK;
4176 
4177 	if (sc->intr_type == IFLIB_INTR_MSIX) {
4178 		E1000_WRITE_REG(hw, EM_EIAC, sc->ims);
4179 		ims_mask |= sc->ims;
4180 	}
4181 
4182 	E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
4183 	E1000_WRITE_FLUSH(hw);
4184 }
4185 
4186 static void
4187 em_if_intr_disable(if_ctx_t ctx)
4188 {
4189 	struct e1000_softc *sc = iflib_get_softc(ctx);
4190 	struct e1000_hw *hw = &sc->hw;
4191 
4192 	if (sc->intr_type == IFLIB_INTR_MSIX)
4193 		E1000_WRITE_REG(hw, EM_EIAC, 0);
4194 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4195 	E1000_WRITE_FLUSH(hw);
4196 }
4197 
4198 static void
4199 igb_if_intr_enable(if_ctx_t ctx)
4200 {
4201 	struct e1000_softc *sc = iflib_get_softc(ctx);
4202 	struct e1000_hw *hw = &sc->hw;
4203 	u32 mask;
4204 
4205 	if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
4206 		mask = (sc->que_mask | sc->link_mask);
4207 		E1000_WRITE_REG(hw, E1000_EIAC, mask);
4208 		E1000_WRITE_REG(hw, E1000_EIAM, mask);
4209 		E1000_WRITE_REG(hw, E1000_EIMS, mask);
4210 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
4211 	} else
4212 		E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
4213 	E1000_WRITE_FLUSH(hw);
4214 }
4215 
4216 static void
4217 igb_if_intr_disable(if_ctx_t ctx)
4218 {
4219 	struct e1000_softc *sc = iflib_get_softc(ctx);
4220 	struct e1000_hw *hw = &sc->hw;
4221 
4222 	if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
4223 		E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
4224 		E1000_WRITE_REG(hw, E1000_EIAC, 0);
4225 	}
4226 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4227 	E1000_WRITE_FLUSH(hw);
4228 }
4229 
4230 /*
4231  * Bit of a misnomer, what this really means is
4232  * to enable OS management of the system... aka
4233  * to disable special hardware management features
4234  */
4235 static void
4236 em_init_manageability(struct e1000_softc *sc)
4237 {
4238 	/* A shared code workaround */
4239 #define E1000_82542_MANC2H E1000_MANC2H
4240 	if (sc->has_manage) {
4241 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
4242 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
4243 
4244 		/* disable hardware interception of ARP */
4245 		manc &= ~(E1000_MANC_ARP_EN);
4246 
4247 		/* enable receiving management packets to the host */
4248 		manc |= E1000_MANC_EN_MNG2HOST;
4249 #define E1000_MNG2HOST_PORT_623 (1 << 5)
4250 #define E1000_MNG2HOST_PORT_664 (1 << 6)
4251 		manc2h |= E1000_MNG2HOST_PORT_623;
4252 		manc2h |= E1000_MNG2HOST_PORT_664;
4253 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
4254 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
4255 	}
4256 }
4257 
4258 /*
4259  * Give control back to hardware management
4260  * controller if there is one.
4261  */
4262 static void
4263 em_release_manageability(struct e1000_softc *sc)
4264 {
4265 	if (sc->has_manage) {
4266 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
4267 
4268 		/* re-enable hardware interception of ARP */
4269 		manc |= E1000_MANC_ARP_EN;
4270 		manc &= ~E1000_MANC_EN_MNG2HOST;
4271 
4272 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
4273 	}
4274 }
4275 
4276 /*
4277  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
4278  * For ASF and Pass Through versions of f/w this means
4279  * that the driver is loaded. For AMT version type f/w
4280  * this means that the network i/f is open.
4281  */
4282 static void
4283 em_get_hw_control(struct e1000_softc *sc)
4284 {
4285 	u32 ctrl_ext, swsm;
4286 
4287 	if (sc->vf_ifp)
4288 		return;
4289 
4290 	if (sc->hw.mac.type == e1000_82573) {
4291 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
4292 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
4293 		    swsm | E1000_SWSM_DRV_LOAD);
4294 		return;
4295 	}
4296 	/* else */
4297 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
4298 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
4299 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
4300 }
4301 
4302 /*
4303  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
4304  * For ASF and Pass Through versions of f/w this means that
4305  * the driver is no longer loaded. For AMT versions of the
4306  * f/w this means that the network i/f is closed.
4307  */
4308 static void
4309 em_release_hw_control(struct e1000_softc *sc)
4310 {
4311 	u32 ctrl_ext, swsm;
4312 
4313 	if (!sc->has_manage)
4314 		return;
4315 
4316 	if (sc->hw.mac.type == e1000_82573) {
4317 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
4318 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
4319 		    swsm & ~E1000_SWSM_DRV_LOAD);
4320 		return;
4321 	}
4322 	/* else */
4323 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
4324 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
4325 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
4326 	return;
4327 }
4328 
4329 static int
4330 em_is_valid_ether_addr(u8 *addr)
4331 {
4332 	char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
4333 
4334 	if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
4335 		return (false);
4336 	}
4337 
4338 	return (true);
4339 }
4340 
4341 static bool
4342 em_automask_tso(if_ctx_t ctx)
4343 {
4344 	struct e1000_softc *sc = iflib_get_softc(ctx);
4345 	if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
4346 	if_t ifp = iflib_get_ifp(ctx);
4347 
4348 	if (!em_unsupported_tso && sc->link_speed &&
4349 	    sc->link_speed != SPEED_1000 &&
4350 	    scctx->isc_capenable & IFCAP_TSO) {
4351 		device_printf(sc->dev,
4352 		    "Disabling TSO for 10/100 Ethernet.\n");
4353 		sc->tso_automasked = scctx->isc_capenable & IFCAP_TSO;
4354 		scctx->isc_capenable &= ~IFCAP_TSO;
4355 		if_setcapenablebit(ifp, 0, IFCAP_TSO);
4356 		/* iflib_init_locked handles ifnet hwassistbits */
4357 		iflib_request_reset(ctx);
4358 		return true;
4359 	} else if (sc->link_speed == SPEED_1000 && sc->tso_automasked) {
4360 		device_printf(sc->dev, "Re-enabling TSO for GbE.\n");
4361 		scctx->isc_capenable |= sc->tso_automasked;
4362 		if_setcapenablebit(ifp, sc->tso_automasked, 0);
4363 		sc->tso_automasked = 0;
4364 		/* iflib_init_locked handles ifnet hwassistbits */
4365 		iflib_request_reset(ctx);
4366 		return true;
4367 	}
4368 
4369 	return false;
4370 }
4371 
4372 /*
4373 ** Parse the interface capabilities with regard
4374 ** to both system management and wake-on-lan for
4375 ** later use.
4376 */
4377 static void
4378 em_get_wakeup(if_ctx_t ctx)
4379 {
4380 	struct e1000_softc *sc = iflib_get_softc(ctx);
4381 	device_t dev = iflib_get_dev(ctx);
4382 	u16 eeprom_data = 0, device_id, apme_mask;
4383 
4384 	sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
4385 	apme_mask = EM_EEPROM_APME;
4386 
4387 	switch (sc->hw.mac.type) {
4388 	case e1000_82542:
4389 	case e1000_82543:
4390 		break;
4391 	case e1000_82544:
4392 		e1000_read_nvm(&sc->hw,
4393 		    NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
4394 		apme_mask = EM_82544_APME;
4395 		break;
4396 	case e1000_82546:
4397 	case e1000_82546_rev_3:
4398 		if (sc->hw.bus.func == 1) {
4399 			e1000_read_nvm(&sc->hw,
4400 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4401 			break;
4402 		} else
4403 			e1000_read_nvm(&sc->hw,
4404 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4405 		break;
4406 	case e1000_82573:
4407 	case e1000_82583:
4408 		sc->has_amt = true;
4409 		/* FALLTHROUGH */
4410 	case e1000_82571:
4411 	case e1000_82572:
4412 	case e1000_80003es2lan:
4413 		if (sc->hw.bus.func == 1) {
4414 			e1000_read_nvm(&sc->hw,
4415 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4416 			break;
4417 		} else
4418 			e1000_read_nvm(&sc->hw,
4419 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4420 		break;
4421 	case e1000_ich8lan:
4422 	case e1000_ich9lan:
4423 	case e1000_ich10lan:
4424 	case e1000_pchlan:
4425 	case e1000_pch2lan:
4426 	case e1000_pch_lpt:
4427 	case e1000_pch_spt:
4428 	case e1000_82575:	/* listing all igb devices */
4429 	case e1000_82576:
4430 	case e1000_82580:
4431 	case e1000_i350:
4432 	case e1000_i354:
4433 	case e1000_i210:
4434 	case e1000_i211:
4435 	case e1000_vfadapt:
4436 	case e1000_vfadapt_i350:
4437 		apme_mask = E1000_WUC_APME;
4438 		sc->has_amt = true;
4439 		eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC);
4440 		break;
4441 	default:
4442 		e1000_read_nvm(&sc->hw,
4443 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4444 		break;
4445 	}
4446 	if (eeprom_data & apme_mask)
4447 		sc->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
4448 	/*
4449 	 * We have the eeprom settings, now apply the special cases
4450 	 * where the eeprom may be wrong or the board won't support
4451 	 * wake on lan on a particular port
4452 	 */
4453 	device_id = pci_get_device(dev);
4454 	switch (device_id) {
4455 	case E1000_DEV_ID_82546GB_PCIE:
4456 		sc->wol = 0;
4457 		break;
4458 	case E1000_DEV_ID_82546EB_FIBER:
4459 	case E1000_DEV_ID_82546GB_FIBER:
4460 		/* Wake events only supported on port A for dual fiber
4461 		 * regardless of eeprom setting */
4462 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
4463 		    E1000_STATUS_FUNC_1)
4464 			sc->wol = 0;
4465 		break;
4466 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
4467 		/* if quad port adapter, disable WoL on all but port A */
4468 		if (global_quad_port_a != 0)
4469 			sc->wol = 0;
4470 		/* Reset for multiple quad port adapters */
4471 		if (++global_quad_port_a == 4)
4472 			global_quad_port_a = 0;
4473 		break;
4474 	case E1000_DEV_ID_82571EB_FIBER:
4475 		/* Wake events only supported on port A for dual fiber
4476 		 * regardless of eeprom setting */
4477 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
4478 		    E1000_STATUS_FUNC_1)
4479 			sc->wol = 0;
4480 		break;
4481 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
4482 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
4483 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
4484 		/* if quad port adapter, disable WoL on all but port A */
4485 		if (global_quad_port_a != 0)
4486 			sc->wol = 0;
4487 		/* Reset for multiple quad port adapters */
4488 		if (++global_quad_port_a == 4)
4489 			global_quad_port_a = 0;
4490 		break;
4491 	}
4492 	return;
4493 }
4494 
4495 
4496 /*
4497  * Enable PCI Wake On Lan capability
4498  */
4499 static void
4500 em_enable_wakeup(if_ctx_t ctx)
4501 {
4502 	struct e1000_softc *sc = iflib_get_softc(ctx);
4503 	device_t dev = iflib_get_dev(ctx);
4504 	if_t ifp = iflib_get_ifp(ctx);
4505 	int error = 0;
4506 	u32 pmc, ctrl, ctrl_ext, rctl;
4507 	u16 status;
4508 
4509 	if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
4510 		return;
4511 
4512 	/*
4513 	 * Determine type of Wakeup: note that wol
4514 	 * is set with all bits on by default.
4515 	 */
4516 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
4517 		sc->wol &= ~E1000_WUFC_MAG;
4518 
4519 	if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
4520 		sc->wol &= ~E1000_WUFC_EX;
4521 
4522 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
4523 		sc->wol &= ~E1000_WUFC_MC;
4524 	else {
4525 		rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
4526 		rctl |= E1000_RCTL_MPE;
4527 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
4528 	}
4529 
4530 	if (!(sc->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
4531 		goto pme;
4532 
4533 	/* Advertise the wakeup capability */
4534 	ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
4535 	ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
4536 	E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
4537 
4538 	/* Keep the laser running on Fiber adapters */
4539 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
4540 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
4541 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
4542 		ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
4543 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, ctrl_ext);
4544 	}
4545 
4546 	if ((sc->hw.mac.type == e1000_ich8lan) ||
4547 	    (sc->hw.mac.type == e1000_pchlan) ||
4548 	    (sc->hw.mac.type == e1000_ich9lan) ||
4549 	    (sc->hw.mac.type == e1000_ich10lan))
4550 		e1000_suspend_workarounds_ich8lan(&sc->hw);
4551 
4552 	if ( sc->hw.mac.type >= e1000_pchlan) {
4553 		error = em_enable_phy_wakeup(sc);
4554 		if (error)
4555 			goto pme;
4556 	} else {
4557 		/* Enable wakeup by the MAC */
4558 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
4559 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
4560 	}
4561 
4562 	if (sc->hw.phy.type == e1000_phy_igp_3)
4563 		e1000_igp3_phy_powerdown_workaround_ich8lan(&sc->hw);
4564 
4565 pme:
4566 	status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
4567 	status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
4568 	if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
4569 		status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
4570 	pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
4571 
4572 	return;
4573 }
4574 
4575 /*
4576  * WOL in the newer chipset interfaces (pchlan)
4577  * require thing to be copied into the phy
4578  */
4579 static int
4580 em_enable_phy_wakeup(struct e1000_softc *sc)
4581 {
4582 	struct e1000_hw *hw = &sc->hw;
4583 	u32 mreg, ret = 0;
4584 	u16 preg;
4585 
4586 	/* copy MAC RARs to PHY RARs */
4587 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
4588 
4589 	/* copy MAC MTA to PHY MTA */
4590 	for (int i = 0; i < hw->mac.mta_reg_count; i++) {
4591 		mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
4592 		e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
4593 		e1000_write_phy_reg(hw, BM_MTA(i) + 1,
4594 		    (u16)((mreg >> 16) & 0xFFFF));
4595 	}
4596 
4597 	/* configure PHY Rx Control register */
4598 	e1000_read_phy_reg(hw, BM_RCTL, &preg);
4599 	mreg = E1000_READ_REG(hw, E1000_RCTL);
4600 	if (mreg & E1000_RCTL_UPE)
4601 		preg |= BM_RCTL_UPE;
4602 	if (mreg & E1000_RCTL_MPE)
4603 		preg |= BM_RCTL_MPE;
4604 	preg &= ~(BM_RCTL_MO_MASK);
4605 	if (mreg & E1000_RCTL_MO_3)
4606 		preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
4607 				<< BM_RCTL_MO_SHIFT);
4608 	if (mreg & E1000_RCTL_BAM)
4609 		preg |= BM_RCTL_BAM;
4610 	if (mreg & E1000_RCTL_PMCF)
4611 		preg |= BM_RCTL_PMCF;
4612 	mreg = E1000_READ_REG(hw, E1000_CTRL);
4613 	if (mreg & E1000_CTRL_RFCE)
4614 		preg |= BM_RCTL_RFCE;
4615 	e1000_write_phy_reg(hw, BM_RCTL, preg);
4616 
4617 	/* enable PHY wakeup in MAC register */
4618 	E1000_WRITE_REG(hw, E1000_WUC,
4619 	    E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
4620 	E1000_WRITE_REG(hw, E1000_WUFC, sc->wol);
4621 
4622 	/* configure and enable PHY wakeup in PHY registers */
4623 	e1000_write_phy_reg(hw, BM_WUFC, sc->wol);
4624 	e1000_write_phy_reg(hw, BM_WUC, E1000_WUC_PME_EN);
4625 
4626 	/* activate PHY wakeup */
4627 	ret = hw->phy.ops.acquire(hw);
4628 	if (ret) {
4629 		printf("Could not acquire PHY\n");
4630 		return ret;
4631 	}
4632 	e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4633 	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
4634 	ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
4635 	if (ret) {
4636 		printf("Could not read PHY page 769\n");
4637 		goto out;
4638 	}
4639 	preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
4640 	ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
4641 	if (ret)
4642 		printf("Could not set PHY Host Wakeup bit\n");
4643 out:
4644 	hw->phy.ops.release(hw);
4645 
4646 	return ret;
4647 }
4648 
4649 static void
4650 em_if_led_func(if_ctx_t ctx, int onoff)
4651 {
4652 	struct e1000_softc *sc = iflib_get_softc(ctx);
4653 
4654 	if (onoff) {
4655 		e1000_setup_led(&sc->hw);
4656 		e1000_led_on(&sc->hw);
4657 	} else {
4658 		e1000_led_off(&sc->hw);
4659 		e1000_cleanup_led(&sc->hw);
4660 	}
4661 }
4662 
4663 /*
4664  * Disable the L0S and L1 LINK states
4665  */
4666 static void
4667 em_disable_aspm(struct e1000_softc *sc)
4668 {
4669 	int base, reg;
4670 	u16 link_cap,link_ctrl;
4671 	device_t dev = sc->dev;
4672 
4673 	switch (sc->hw.mac.type) {
4674 	case e1000_82573:
4675 	case e1000_82574:
4676 	case e1000_82583:
4677 		break;
4678 	default:
4679 		return;
4680 	}
4681 	if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
4682 		return;
4683 	reg = base + PCIER_LINK_CAP;
4684 	link_cap = pci_read_config(dev, reg, 2);
4685 	if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
4686 		return;
4687 	reg = base + PCIER_LINK_CTL;
4688 	link_ctrl = pci_read_config(dev, reg, 2);
4689 	link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
4690 	pci_write_config(dev, reg, link_ctrl, 2);
4691 	return;
4692 }
4693 
4694 /**********************************************************************
4695  *
4696  *  Update the board statistics counters.
4697  *
4698  **********************************************************************/
4699 static void
4700 em_update_stats_counters(struct e1000_softc *sc)
4701 {
4702 	u64 prev_xoffrxc = sc->stats.xoffrxc;
4703 
4704 	if(sc->hw.phy.media_type == e1000_media_type_copper ||
4705 	   (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
4706 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
4707 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
4708 	}
4709 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
4710 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
4711 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
4712 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
4713 
4714 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
4715 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
4716 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
4717 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
4718 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
4719 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
4720 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
4721 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
4722 	/*
4723 	 ** For watchdog management we need to know if we have been
4724 	 ** paused during the last interval, so capture that here.
4725 	*/
4726 	if (sc->stats.xoffrxc != prev_xoffrxc)
4727 		sc->shared->isc_pause_frames = 1;
4728 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
4729 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
4730 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
4731 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
4732 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
4733 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
4734 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
4735 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
4736 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
4737 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
4738 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
4739 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
4740 
4741 	/* For the 64-bit byte counters the low dword must be read first. */
4742 	/* Both registers clear on the read of the high dword */
4743 
4744 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCL) +
4745 	    ((u64)E1000_READ_REG(&sc->hw, E1000_GORCH) << 32);
4746 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCL) +
4747 	    ((u64)E1000_READ_REG(&sc->hw, E1000_GOTCH) << 32);
4748 
4749 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
4750 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
4751 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
4752 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
4753 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
4754 
4755 	sc->stats.mgprc += E1000_READ_REG(&sc->hw, E1000_MGTPRC);
4756 	sc->stats.mgpdc += E1000_READ_REG(&sc->hw, E1000_MGTPDC);
4757 	sc->stats.mgptc += E1000_READ_REG(&sc->hw, E1000_MGTPTC);
4758 
4759 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
4760 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
4761 
4762 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
4763 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
4764 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
4765 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
4766 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
4767 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
4768 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
4769 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
4770 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
4771 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
4772 
4773 	/* Interrupt Counts */
4774 
4775 	sc->stats.iac += E1000_READ_REG(&sc->hw, E1000_IAC);
4776 	sc->stats.icrxptc += E1000_READ_REG(&sc->hw, E1000_ICRXPTC);
4777 	sc->stats.icrxatc += E1000_READ_REG(&sc->hw, E1000_ICRXATC);
4778 	sc->stats.ictxptc += E1000_READ_REG(&sc->hw, E1000_ICTXPTC);
4779 	sc->stats.ictxatc += E1000_READ_REG(&sc->hw, E1000_ICTXATC);
4780 	sc->stats.ictxqec += E1000_READ_REG(&sc->hw, E1000_ICTXQEC);
4781 	sc->stats.ictxqmtc += E1000_READ_REG(&sc->hw, E1000_ICTXQMTC);
4782 	sc->stats.icrxdmtc += E1000_READ_REG(&sc->hw, E1000_ICRXDMTC);
4783 	sc->stats.icrxoc += E1000_READ_REG(&sc->hw, E1000_ICRXOC);
4784 
4785 	if (sc->hw.mac.type >= e1000_82543) {
4786 		sc->stats.algnerrc +=
4787 		E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
4788 		sc->stats.rxerrc +=
4789 		E1000_READ_REG(&sc->hw, E1000_RXERRC);
4790 		sc->stats.tncrs +=
4791 		E1000_READ_REG(&sc->hw, E1000_TNCRS);
4792 		sc->stats.cexterr +=
4793 		E1000_READ_REG(&sc->hw, E1000_CEXTERR);
4794 		sc->stats.tsctc +=
4795 		E1000_READ_REG(&sc->hw, E1000_TSCTC);
4796 		sc->stats.tsctfc +=
4797 		E1000_READ_REG(&sc->hw, E1000_TSCTFC);
4798 	}
4799 }
4800 
4801 static uint64_t
4802 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4803 {
4804 	struct e1000_softc *sc = iflib_get_softc(ctx);
4805 	if_t ifp = iflib_get_ifp(ctx);
4806 
4807 	switch (cnt) {
4808 	case IFCOUNTER_COLLISIONS:
4809 		return (sc->stats.colc);
4810 	case IFCOUNTER_IERRORS:
4811 		return (sc->dropped_pkts + sc->stats.rxerrc +
4812 		    sc->stats.crcerrs + sc->stats.algnerrc +
4813 		    sc->stats.ruc + sc->stats.roc +
4814 		    sc->stats.mpc + sc->stats.cexterr);
4815 	case IFCOUNTER_OERRORS:
4816 		return (sc->stats.ecol + sc->stats.latecol +
4817 		    sc->watchdog_events);
4818 	default:
4819 		return (if_get_counter_default(ifp, cnt));
4820 	}
4821 }
4822 
4823 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized
4824  * @ctx: iflib context
4825  * @event: event code to check
4826  *
4827  * Defaults to returning false for unknown events.
4828  *
4829  * @returns true if iflib needs to reinit the interface
4830  */
4831 static bool
4832 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
4833 {
4834 	switch (event) {
4835 	case IFLIB_RESTART_VLAN_CONFIG:
4836 	default:
4837 		return (false);
4838 	}
4839 }
4840 
4841 /* Export a single 32-bit register via a read-only sysctl. */
4842 static int
4843 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4844 {
4845 	struct e1000_softc *sc;
4846 	u_int val;
4847 
4848 	sc = oidp->oid_arg1;
4849 	val = E1000_READ_REG(&sc->hw, oidp->oid_arg2);
4850 	return (sysctl_handle_int(oidp, &val, 0, req));
4851 }
4852 
4853 /* Per queue holdoff interrupt rate handler */
4854 static int
4855 em_sysctl_interrupt_rate_handler(SYSCTL_HANDLER_ARGS)
4856 {
4857 	struct em_rx_queue *rque;
4858 	struct em_tx_queue *tque;
4859 	struct e1000_hw *hw;
4860 	int error;
4861 	u32 reg, usec, rate;
4862 
4863 	bool tx = oidp->oid_arg2;
4864 
4865 	if (tx) {
4866 		tque = oidp->oid_arg1;
4867 		hw = &tque->sc->hw;
4868 		if (hw->mac.type >= igb_mac_min)
4869 			reg = E1000_READ_REG(hw, E1000_EITR(tque->me));
4870 		else if (hw->mac.type == e1000_82574 && tque->msix)
4871 			reg = E1000_READ_REG(hw, E1000_EITR_82574(tque->me));
4872 		else
4873 			reg = E1000_READ_REG(hw, E1000_ITR);
4874 	} else {
4875 		rque = oidp->oid_arg1;
4876 		hw = &rque->sc->hw;
4877 		if (hw->mac.type >= igb_mac_min)
4878 			reg = E1000_READ_REG(hw, E1000_EITR(rque->msix));
4879 		else if (hw->mac.type == e1000_82574 && rque->msix)
4880 			reg = E1000_READ_REG(hw,
4881 			    E1000_EITR_82574(rque->msix));
4882 		else
4883 			reg = E1000_READ_REG(hw, E1000_ITR);
4884 	}
4885 
4886 	if (hw->mac.type < igb_mac_min) {
4887 		if (reg > 0)
4888 			rate = EM_INTS_TO_ITR(reg);
4889 		else
4890 			rate = 0;
4891 	} else {
4892 		usec = (reg & IGB_QVECTOR_MASK);
4893 		if (usec > 0)
4894 			rate = IGB_INTS_TO_EITR(usec);
4895 		else
4896 			rate = 0;
4897 	}
4898 
4899 	error = sysctl_handle_int(oidp, &rate, 0, req);
4900 	if (error || !req->newptr)
4901 		return error;
4902 	return 0;
4903 }
4904 
4905 /*
4906  * Add sysctl variables, one per statistic, to the system.
4907  */
4908 static void
4909 em_add_hw_stats(struct e1000_softc *sc)
4910 {
4911 	device_t dev = iflib_get_dev(sc->ctx);
4912 	struct em_tx_queue *tx_que = sc->tx_queues;
4913 	struct em_rx_queue *rx_que = sc->rx_queues;
4914 
4915 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4916 	struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4917 	struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4918 	struct e1000_hw_stats *stats = &sc->stats;
4919 
4920 	struct sysctl_oid *stat_node, *queue_node, *int_node;
4921 	struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4922 
4923 #define QUEUE_NAME_LEN 32
4924 	char namebuf[QUEUE_NAME_LEN];
4925 
4926 	/* Driver Statistics */
4927 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4928 	    CTLFLAG_RD, &sc->dropped_pkts,
4929 	    "Driver dropped packets");
4930 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4931 	    CTLFLAG_RD, &sc->link_irq,
4932 	    "Link MSI-X IRQ Handled");
4933 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4934 	    CTLFLAG_RD, &sc->rx_overruns,
4935 	    "RX overruns");
4936 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4937 	    CTLFLAG_RD, &sc->watchdog_events,
4938 	    "Watchdog timeouts");
4939 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4940 	    CTLTYPE_UINT | CTLFLAG_RD,
4941 	    sc, E1000_CTRL, em_sysctl_reg_handler, "IU",
4942 	    "Device Control Register");
4943 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4944 	    CTLTYPE_UINT | CTLFLAG_RD,
4945 	    sc, E1000_RCTL, em_sysctl_reg_handler, "IU",
4946 	    "Receiver Control Register");
4947 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4948 	    CTLFLAG_RD, &sc->hw.fc.high_water, 0,
4949 	    "Flow Control High Watermark");
4950 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4951 	    CTLFLAG_RD, &sc->hw.fc.low_water, 0,
4952 	    "Flow Control Low Watermark");
4953 
4954 	for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
4955 		struct tx_ring *txr = &tx_que->txr;
4956 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4957 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4958 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
4959 		queue_list = SYSCTL_CHILDREN(queue_node);
4960 
4961 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "interrupt_rate",
4962 		    CTLTYPE_UINT | CTLFLAG_RD, tx_que,
4963 		    true, em_sysctl_interrupt_rate_handler,
4964 		    "IU", "Interrupt Rate");
4965 
4966 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4967 		    CTLTYPE_UINT | CTLFLAG_RD, sc,
4968 		    E1000_TDH(txr->me), em_sysctl_reg_handler, "IU",
4969 		    "Transmit Descriptor Head");
4970 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4971 		    CTLTYPE_UINT | CTLFLAG_RD, sc,
4972 		    E1000_TDT(txr->me), em_sysctl_reg_handler, "IU",
4973 		    "Transmit Descriptor Tail");
4974 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4975 		    CTLFLAG_RD, &txr->tx_irq,
4976 		    "Queue MSI-X Transmit Interrupts");
4977 	}
4978 
4979 	for (int j = 0; j < sc->rx_num_queues; j++, rx_que++) {
4980 		struct rx_ring *rxr = &rx_que->rxr;
4981 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4982 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4983 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
4984 		queue_list = SYSCTL_CHILDREN(queue_node);
4985 
4986 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "interrupt_rate",
4987 		    CTLTYPE_UINT | CTLFLAG_RD, rx_que,
4988 		    false, em_sysctl_interrupt_rate_handler,
4989 		    "IU", "Interrupt Rate");
4990 
4991 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4992 		    CTLTYPE_UINT | CTLFLAG_RD, sc,
4993 		    E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU",
4994 		    "Receive Descriptor Head");
4995 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4996 		    CTLTYPE_UINT | CTLFLAG_RD, sc,
4997 		    E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU",
4998 		    "Receive Descriptor Tail");
4999 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
5000 		    CTLFLAG_RD, &rxr->rx_irq,
5001 		    "Queue MSI-X Receive Interrupts");
5002 	}
5003 
5004 	/* MAC stats get their own sub node */
5005 	stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
5006 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
5007 	stat_list = SYSCTL_CHILDREN(stat_node);
5008 
5009 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
5010 	    CTLFLAG_RD, &stats->ecol,
5011 	    "Excessive collisions");
5012 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
5013 	    CTLFLAG_RD, &stats->scc,
5014 	    "Single collisions");
5015 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
5016 	    CTLFLAG_RD, &stats->mcc,
5017 	    "Multiple collisions");
5018 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
5019 	    CTLFLAG_RD, &stats->latecol,
5020 	    "Late collisions");
5021 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
5022 	    CTLFLAG_RD, &stats->colc,
5023 	    "Collision Count");
5024 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
5025 	    CTLFLAG_RD, &sc->stats.symerrs,
5026 	    "Symbol Errors");
5027 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
5028 	    CTLFLAG_RD, &sc->stats.sec,
5029 	    "Sequence Errors");
5030 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
5031 	    CTLFLAG_RD, &sc->stats.dc,
5032 	    "Defer Count");
5033 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
5034 	    CTLFLAG_RD, &sc->stats.mpc,
5035 	    "Missed Packets");
5036 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_length_errors",
5037 	    CTLFLAG_RD, &sc->stats.rlec,
5038 	    "Receive Length Errors");
5039 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
5040 	    CTLFLAG_RD, &sc->stats.rnbc,
5041 	    "Receive No Buffers");
5042 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
5043 	    CTLFLAG_RD, &sc->stats.ruc,
5044 	    "Receive Undersize");
5045 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
5046 	    CTLFLAG_RD, &sc->stats.rfc,
5047 	    "Fragmented Packets Received ");
5048 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
5049 	    CTLFLAG_RD, &sc->stats.roc,
5050 	    "Oversized Packets Received");
5051 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
5052 	    CTLFLAG_RD, &sc->stats.rjc,
5053 	    "Recevied Jabber");
5054 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
5055 	    CTLFLAG_RD, &sc->stats.rxerrc,
5056 	    "Receive Errors");
5057 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
5058 	    CTLFLAG_RD, &sc->stats.crcerrs,
5059 	    "CRC errors");
5060 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
5061 	    CTLFLAG_RD, &sc->stats.algnerrc,
5062 	    "Alignment Errors");
5063 	/* On 82575 these are collision counts */
5064 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
5065 	    CTLFLAG_RD, &sc->stats.cexterr,
5066 	    "Collision/Carrier extension errors");
5067 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
5068 	    CTLFLAG_RD, &sc->stats.xonrxc,
5069 	    "XON Received");
5070 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
5071 	    CTLFLAG_RD, &sc->stats.xontxc,
5072 	    "XON Transmitted");
5073 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
5074 	    CTLFLAG_RD, &sc->stats.xoffrxc,
5075 	    "XOFF Received");
5076 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
5077 	    CTLFLAG_RD, &sc->stats.xofftxc,
5078 	    "XOFF Transmitted");
5079 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "unsupported_fc_recvd",
5080 	    CTLFLAG_RD, &sc->stats.fcruc,
5081 	    "Unsupported Flow Control Received");
5082 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_recvd",
5083 	    CTLFLAG_RD, &sc->stats.mgprc,
5084 	    "Management Packets Received");
5085 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_drop",
5086 	    CTLFLAG_RD, &sc->stats.mgpdc,
5087 	    "Management Packets Dropped");
5088 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_txd",
5089 	    CTLFLAG_RD, &sc->stats.mgptc,
5090 	    "Management Packets Transmitted");
5091 
5092 	/* Packet Reception Stats */
5093 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
5094 	    CTLFLAG_RD, &sc->stats.tpr,
5095 	    "Total Packets Received ");
5096 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
5097 	    CTLFLAG_RD, &sc->stats.gprc,
5098 	    "Good Packets Received");
5099 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
5100 	    CTLFLAG_RD, &sc->stats.bprc,
5101 	    "Broadcast Packets Received");
5102 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
5103 	    CTLFLAG_RD, &sc->stats.mprc,
5104 	    "Multicast Packets Received");
5105 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
5106 	    CTLFLAG_RD, &sc->stats.prc64,
5107 	    "64 byte frames received ");
5108 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
5109 	    CTLFLAG_RD, &sc->stats.prc127,
5110 	    "65-127 byte frames received");
5111 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
5112 	    CTLFLAG_RD, &sc->stats.prc255,
5113 	    "128-255 byte frames received");
5114 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
5115 	    CTLFLAG_RD, &sc->stats.prc511,
5116 	    "256-511 byte frames received");
5117 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
5118 	    CTLFLAG_RD, &sc->stats.prc1023,
5119 	    "512-1023 byte frames received");
5120 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
5121 	    CTLFLAG_RD, &sc->stats.prc1522,
5122 	    "1023-1522 byte frames received");
5123 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
5124 	    CTLFLAG_RD, &sc->stats.gorc,
5125 	    "Good Octets Received");
5126 
5127 	/* Packet Transmission Stats */
5128 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
5129 	    CTLFLAG_RD, &sc->stats.gotc,
5130 	    "Good Octets Transmitted");
5131 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
5132 	    CTLFLAG_RD, &sc->stats.tpt,
5133 	    "Total Packets Transmitted");
5134 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
5135 	    CTLFLAG_RD, &sc->stats.gptc,
5136 	    "Good Packets Transmitted");
5137 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
5138 	    CTLFLAG_RD, &sc->stats.bptc,
5139 	    "Broadcast Packets Transmitted");
5140 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
5141 	    CTLFLAG_RD, &sc->stats.mptc,
5142 	    "Multicast Packets Transmitted");
5143 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
5144 	    CTLFLAG_RD, &sc->stats.ptc64,
5145 	    "64 byte frames transmitted ");
5146 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
5147 	    CTLFLAG_RD, &sc->stats.ptc127,
5148 	    "65-127 byte frames transmitted");
5149 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
5150 	    CTLFLAG_RD, &sc->stats.ptc255,
5151 	    "128-255 byte frames transmitted");
5152 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
5153 	    CTLFLAG_RD, &sc->stats.ptc511,
5154 	    "256-511 byte frames transmitted");
5155 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
5156 	    CTLFLAG_RD, &sc->stats.ptc1023,
5157 	    "512-1023 byte frames transmitted");
5158 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
5159 	    CTLFLAG_RD, &sc->stats.ptc1522,
5160 	    "1024-1522 byte frames transmitted");
5161 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
5162 	    CTLFLAG_RD, &sc->stats.tsctc,
5163 	    "TSO Contexts Transmitted");
5164 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
5165 	    CTLFLAG_RD, &sc->stats.tsctfc,
5166 	    "TSO Contexts Failed");
5167 
5168 	/* Interrupt Stats */
5169 	int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
5170 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
5171 	int_list = SYSCTL_CHILDREN(int_node);
5172 
5173 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
5174 	    CTLFLAG_RD, &sc->stats.iac,
5175 	    "Interrupt Assertion Count");
5176 
5177 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
5178 	    CTLFLAG_RD, &sc->stats.icrxptc,
5179 	    "Interrupt Cause Rx Pkt Timer Expire Count");
5180 
5181 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
5182 	    CTLFLAG_RD, &sc->stats.icrxatc,
5183 	    "Interrupt Cause Rx Abs Timer Expire Count");
5184 
5185 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
5186 	    CTLFLAG_RD, &sc->stats.ictxptc,
5187 	    "Interrupt Cause Tx Pkt Timer Expire Count");
5188 
5189 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
5190 	    CTLFLAG_RD, &sc->stats.ictxatc,
5191 	    "Interrupt Cause Tx Abs Timer Expire Count");
5192 
5193 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
5194 	    CTLFLAG_RD, &sc->stats.ictxqec,
5195 	    "Interrupt Cause Tx Queue Empty Count");
5196 
5197 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
5198 	    CTLFLAG_RD, &sc->stats.ictxqmtc,
5199 	    "Interrupt Cause Tx Queue Min Thresh Count");
5200 
5201 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
5202 	    CTLFLAG_RD, &sc->stats.icrxdmtc,
5203 	    "Interrupt Cause Rx Desc Min Thresh Count");
5204 
5205 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
5206 	    CTLFLAG_RD, &sc->stats.icrxoc,
5207 	    "Interrupt Cause Receiver Overrun Count");
5208 }
5209 
5210 static void
5211 em_fw_version_locked(if_ctx_t ctx)
5212 {
5213 	struct e1000_softc *sc = iflib_get_softc(ctx);
5214 	struct e1000_hw *hw = &sc->hw;
5215 	struct e1000_fw_version *fw_ver = &sc->fw_ver;
5216 	uint16_t eep = 0;
5217 
5218 	/*
5219 	 * em_fw_version_locked() must run under the IFLIB_CTX_LOCK to meet
5220 	 * the NVM locking model, so we do it in em_if_attach_pre() and store
5221 	 * the info in the softc
5222 	 */
5223 	ASSERT_CTX_LOCK_HELD(hw);
5224 
5225 	*fw_ver = (struct e1000_fw_version){0};
5226 
5227 	if (hw->mac.type >= igb_mac_min) {
5228 		/*
5229 		 * Use the Shared Code for igb(4)
5230 		 */
5231 		e1000_get_fw_version(hw, fw_ver);
5232 	} else {
5233 		/*
5234 		 * Otherwise, EEPROM version should be present on (almost?)
5235 		 * all devices here
5236 		 */
5237 		if(e1000_read_nvm(hw, NVM_VERSION, 1, &eep)) {
5238 			INIT_DEBUGOUT("can't get EEPROM version");
5239 			return;
5240 		}
5241 
5242 		fw_ver->eep_major = (eep & NVM_MAJOR_MASK) >> NVM_MAJOR_SHIFT;
5243 		fw_ver->eep_minor = (eep & NVM_MINOR_MASK) >> NVM_MINOR_SHIFT;
5244 		fw_ver->eep_build = (eep & NVM_IMAGE_ID_MASK);
5245 	}
5246 }
5247 
5248 static void
5249 em_sbuf_fw_version(struct e1000_fw_version *fw_ver, struct sbuf *buf)
5250 {
5251 	const char *space = "";
5252 
5253 	if (fw_ver->eep_major || fw_ver->eep_minor || fw_ver->eep_build) {
5254 		sbuf_printf(buf, "EEPROM V%d.%d-%d", fw_ver->eep_major,
5255 			    fw_ver->eep_minor, fw_ver->eep_build);
5256 		space = " ";
5257 	}
5258 
5259 	if (fw_ver->invm_major || fw_ver->invm_minor ||
5260 	    fw_ver->invm_img_type) {
5261 		sbuf_printf(buf, "%sNVM V%d.%d imgtype%d",
5262 		    space, fw_ver->invm_major, fw_ver->invm_minor,
5263 		    fw_ver->invm_img_type);
5264 		space = " ";
5265 	}
5266 
5267 	if (fw_ver->or_valid) {
5268 		sbuf_printf(buf, "%sOption ROM V%d-b%d-p%d",
5269 		    space, fw_ver->or_major, fw_ver->or_build,
5270 		    fw_ver->or_patch);
5271 		space = " ";
5272 	}
5273 
5274 	if (fw_ver->etrack_id)
5275 		sbuf_printf(buf, "%seTrack 0x%08x", space, fw_ver->etrack_id);
5276 }
5277 
5278 static void
5279 em_print_fw_version(struct e1000_softc *sc )
5280 {
5281 	device_t dev = sc->dev;
5282 	struct sbuf *buf;
5283 	int error = 0;
5284 
5285 	buf = sbuf_new_auto();
5286 	if (!buf) {
5287 		device_printf(dev, "Could not allocate sbuf for output.\n");
5288 		return;
5289 	}
5290 
5291 	em_sbuf_fw_version(&sc->fw_ver, buf);
5292 
5293 	error = sbuf_finish(buf);
5294 	if (error)
5295 		device_printf(dev, "Error finishing sbuf: %d\n", error);
5296 	else if (sbuf_len(buf))
5297 		device_printf(dev, "%s\n", sbuf_data(buf));
5298 
5299 	sbuf_delete(buf);
5300 }
5301 
5302 static int
5303 em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS)
5304 {
5305 	struct e1000_softc *sc = (struct e1000_softc *)arg1;
5306 	device_t dev = sc->dev;
5307 	struct sbuf *buf;
5308 	int error = 0;
5309 
5310 	buf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
5311 	if (!buf) {
5312 		device_printf(dev, "Could not allocate sbuf for output.\n");
5313 		return (ENOMEM);
5314 	}
5315 
5316 	em_sbuf_fw_version(&sc->fw_ver, buf);
5317 
5318 	error = sbuf_finish(buf);
5319 	if (error)
5320 		device_printf(dev, "Error finishing sbuf: %d\n", error);
5321 
5322 	sbuf_delete(buf);
5323 
5324 	return (0);
5325 }
5326 
5327 /**********************************************************************
5328  *
5329  *  This routine provides a way to dump out the adapter eeprom,
5330  *  often a useful debug/service tool. This only dumps the first
5331  *  32 words, stuff that matters is in that extent.
5332  *
5333  **********************************************************************/
5334 static int
5335 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
5336 {
5337 	struct e1000_softc *sc = (struct e1000_softc *)arg1;
5338 	int error;
5339 	int result;
5340 
5341 	result = -1;
5342 	error = sysctl_handle_int(oidp, &result, 0, req);
5343 
5344 	if (error || !req->newptr)
5345 		return (error);
5346 
5347 	/*
5348 	 * This value will cause a hex dump of the
5349 	 * first 32 16-bit words of the EEPROM to
5350 	 * the screen.
5351 	 */
5352 	if (result == 1)
5353 		em_print_nvm_info(sc);
5354 
5355 	return (error);
5356 }
5357 
5358 static void
5359 em_print_nvm_info(struct e1000_softc *sc)
5360 {
5361 	struct e1000_hw *hw = &sc->hw;
5362 	struct sx *iflib_ctx_lock = iflib_ctx_lock_get(sc->ctx);
5363 	u16 eeprom_data;
5364 	int i, j, row = 0;
5365 
5366 	/* Its a bit crude, but it gets the job done */
5367 	printf("\nInterface EEPROM Dump:\n");
5368 	printf("Offset\n0x0000  ");
5369 
5370 	/* We rely on the IFLIB_CTX_LOCK as part of NVM locking model */
5371 	sx_xlock(iflib_ctx_lock);
5372 	ASSERT_CTX_LOCK_HELD(hw);
5373 	for (i = 0, j = 0; i < 32; i++, j++) {
5374 		if (j == 8) { /* Make the offset block */
5375 			j = 0; ++row;
5376 			printf("\n0x00%x0  ",row);
5377 		}
5378 		e1000_read_nvm(hw, i, 1, &eeprom_data);
5379 		printf("%04x ", eeprom_data);
5380 	}
5381 	sx_xunlock(iflib_ctx_lock);
5382 	printf("\n");
5383 }
5384 
5385 static int
5386 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
5387 {
5388 	struct em_int_delay_info *info;
5389 	struct e1000_softc *sc;
5390 	u32 regval;
5391 	int error, usecs, ticks;
5392 
5393 	info = (struct em_int_delay_info *) arg1;
5394 	usecs = info->value;
5395 	error = sysctl_handle_int(oidp, &usecs, 0, req);
5396 	if (error != 0 || req->newptr == NULL)
5397 		return (error);
5398 	if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
5399 		return (EINVAL);
5400 	info->value = usecs;
5401 	ticks = EM_USECS_TO_TICKS(usecs);
5402 
5403 	sc = info->sc;
5404 
5405 	regval = E1000_READ_OFFSET(&sc->hw, info->offset);
5406 	regval = (regval & ~0xffff) | (ticks & 0xffff);
5407 	/* Handle a few special cases. */
5408 	switch (info->offset) {
5409 	case E1000_RDTR:
5410 		break;
5411 	case E1000_TIDV:
5412 		if (ticks == 0) {
5413 			sc->txd_cmd &= ~E1000_TXD_CMD_IDE;
5414 			/* Don't write 0 into the TIDV register. */
5415 			regval++;
5416 		} else
5417 			sc->txd_cmd |= E1000_TXD_CMD_IDE;
5418 		break;
5419 	}
5420 	E1000_WRITE_OFFSET(&sc->hw, info->offset, regval);
5421 	return (0);
5422 }
5423 
5424 static int
5425 em_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS)
5426 {
5427 	struct e1000_softc *sc;
5428 	u32 reg, val, shift;
5429 	int error, mask;
5430 
5431 	sc = oidp->oid_arg1;
5432 	switch (oidp->oid_arg2) {
5433 	case 0:
5434 		reg = E1000_DTXTCPFLGL;
5435 		shift = 0;
5436 		break;
5437 	case 1:
5438 		reg = E1000_DTXTCPFLGL;
5439 		shift = 16;
5440 		break;
5441 	case 2:
5442 		reg = E1000_DTXTCPFLGH;
5443 		shift = 0;
5444 		break;
5445 	default:
5446 		return (EINVAL);
5447 		break;
5448 	}
5449 	val = E1000_READ_REG(&sc->hw, reg);
5450 	mask = (val >> shift) & 0xfff;
5451 	error = sysctl_handle_int(oidp, &mask, 0, req);
5452 	if (error != 0 || req->newptr == NULL)
5453 		return (error);
5454 	if (mask < 0 || mask > 0xfff)
5455 		return (EINVAL);
5456 	val = (val & ~(0xfff << shift)) | (mask << shift);
5457 	E1000_WRITE_REG(&sc->hw, reg, val);
5458 	return (0);
5459 }
5460 
5461 static void
5462 em_add_int_delay_sysctl(struct e1000_softc *sc, const char *name,
5463     const char *description, struct em_int_delay_info *info, int offset,
5464     int value)
5465 {
5466 	info->sc = sc;
5467 	info->offset = offset;
5468 	info->value = value;
5469 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
5470 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
5471 	    OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
5472 	    info, 0, em_sysctl_int_delay, "I", description);
5473 }
5474 
5475 /*
5476  * Set flow control using sysctl:
5477  * Flow control values:
5478  *      0 - off
5479  *      1 - rx pause
5480  *      2 - tx pause
5481  *      3 - full
5482  */
5483 static int
5484 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
5485 {
5486 	int error;
5487 	static int input = 3; /* default is full */
5488 	struct e1000_softc *sc = (struct e1000_softc *) arg1;
5489 
5490 	error = sysctl_handle_int(oidp, &input, 0, req);
5491 
5492 	if ((error) || (req->newptr == NULL))
5493 		return (error);
5494 
5495 	if (input == sc->fc) /* no change? */
5496 		return (error);
5497 
5498 	switch (input) {
5499 	case e1000_fc_rx_pause:
5500 	case e1000_fc_tx_pause:
5501 	case e1000_fc_full:
5502 	case e1000_fc_none:
5503 		sc->hw.fc.requested_mode = input;
5504 		sc->fc = input;
5505 		break;
5506 	default:
5507 		/* Do nothing */
5508 		return (error);
5509 	}
5510 
5511 	sc->hw.fc.current_mode = sc->hw.fc.requested_mode;
5512 	e1000_force_mac_fc(&sc->hw);
5513 	return (error);
5514 }
5515 
5516 /*
5517  * Manage DMA Coalesce:
5518  * Control values:
5519  * 	0/1 - off/on
5520  *	Legal timer values are:
5521  *	250,500,1000-10000 in thousands
5522  */
5523 static int
5524 igb_sysctl_dmac(SYSCTL_HANDLER_ARGS)
5525 {
5526 	struct e1000_softc *sc = (struct e1000_softc *) arg1;
5527 	int error;
5528 
5529 	error = sysctl_handle_int(oidp, &sc->dmac, 0, req);
5530 
5531 	if ((error) || (req->newptr == NULL))
5532 		return (error);
5533 
5534 	switch (sc->dmac) {
5535 		case 0:
5536 			/* Disabling */
5537 			break;
5538 		case 1: /* Just enable and use default */
5539 			sc->dmac = 1000;
5540 			break;
5541 		case 250:
5542 		case 500:
5543 		case 1000:
5544 		case 2000:
5545 		case 3000:
5546 		case 4000:
5547 		case 5000:
5548 		case 6000:
5549 		case 7000:
5550 		case 8000:
5551 		case 9000:
5552 		case 10000:
5553 			/* Legal values - allow */
5554 			break;
5555 		default:
5556 			/* Do nothing, illegal value */
5557 			sc->dmac = 0;
5558 			return (EINVAL);
5559 	}
5560 	/* Reinit the interface */
5561 	em_if_init(sc->ctx);
5562 	return (error);
5563 }
5564 
5565 /*
5566  * Manage Energy Efficient Ethernet:
5567  * Control values:
5568  *     0/1 - enabled/disabled
5569  */
5570 static int
5571 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
5572 {
5573 	struct e1000_softc *sc = (struct e1000_softc *) arg1;
5574 	int error, value;
5575 
5576 	if (sc->hw.mac.type < igb_mac_min)
5577 		value = sc->hw.dev_spec.ich8lan.eee_disable;
5578 	else
5579 		value = sc->hw.dev_spec._82575.eee_disable;
5580 	error = sysctl_handle_int(oidp, &value, 0, req);
5581 	if (error || req->newptr == NULL)
5582 		return (error);
5583 	if (sc->hw.mac.type < igb_mac_min)
5584 		sc->hw.dev_spec.ich8lan.eee_disable = (value != 0);
5585 	else
5586 		sc->hw.dev_spec._82575.eee_disable = (value != 0);
5587 	em_if_init(sc->ctx);
5588 
5589 	return (0);
5590 }
5591 
5592 static int
5593 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
5594 {
5595 	struct e1000_softc *sc;
5596 	int error;
5597 	int result;
5598 
5599 	result = -1;
5600 	error = sysctl_handle_int(oidp, &result, 0, req);
5601 
5602 	if (error || !req->newptr)
5603 		return (error);
5604 
5605 	if (result == 1) {
5606 		sc = (struct e1000_softc *) arg1;
5607 		em_print_debug_info(sc);
5608 	}
5609 
5610 	return (error);
5611 }
5612 
5613 static int
5614 em_get_rs(SYSCTL_HANDLER_ARGS)
5615 {
5616 	struct e1000_softc *sc = (struct e1000_softc *) arg1;
5617 	int error;
5618 	int result;
5619 
5620 	result = 0;
5621 	error = sysctl_handle_int(oidp, &result, 0, req);
5622 
5623 	if (error || !req->newptr || result != 1)
5624 		return (error);
5625 	em_dump_rs(sc);
5626 
5627 	return (error);
5628 }
5629 
5630 static void
5631 em_if_debug(if_ctx_t ctx)
5632 {
5633 	em_dump_rs(iflib_get_softc(ctx));
5634 }
5635 
5636 /*
5637  * This routine is meant to be fluid, add whatever is
5638  * needed for debugging a problem.  -jfv
5639  */
5640 static void
5641 em_print_debug_info(struct e1000_softc *sc)
5642 {
5643 	device_t dev = iflib_get_dev(sc->ctx);
5644 	if_t ifp = iflib_get_ifp(sc->ctx);
5645 	struct tx_ring *txr = &sc->tx_queues->txr;
5646 	struct rx_ring *rxr = &sc->rx_queues->rxr;
5647 
5648 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
5649 		printf("Interface is RUNNING ");
5650 	else
5651 		printf("Interface is NOT RUNNING\n");
5652 
5653 	if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
5654 		printf("and INACTIVE\n");
5655 	else
5656 		printf("and ACTIVE\n");
5657 
5658 	for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
5659 		device_printf(dev, "TX Queue %d ------\n", i);
5660 		device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
5661 		    E1000_READ_REG(&sc->hw, E1000_TDH(i)),
5662 		    E1000_READ_REG(&sc->hw, E1000_TDT(i)));
5663 
5664 	}
5665 	for (int j=0; j < sc->rx_num_queues; j++, rxr++) {
5666 		device_printf(dev, "RX Queue %d ------\n", j);
5667 		device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
5668 		    E1000_READ_REG(&sc->hw, E1000_RDH(j)),
5669 		    E1000_READ_REG(&sc->hw, E1000_RDT(j)));
5670 	}
5671 }
5672 
5673 /*
5674  * 82574 only:
5675  * Write a new value to the EEPROM increasing the number of MSI-X
5676  * vectors from 3 to 5, for proper multiqueue support.
5677  */
5678 static void
5679 em_enable_vectors_82574(if_ctx_t ctx)
5680 {
5681 	struct e1000_softc *sc = iflib_get_softc(ctx);
5682 	struct e1000_hw *hw = &sc->hw;
5683 	device_t dev = iflib_get_dev(ctx);
5684 	u16 edata;
5685 
5686 	e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
5687 	if (bootverbose)
5688 		device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
5689 	if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
5690 		device_printf(dev, "Writing to eeprom: increasing "
5691 		    "reported MSI-X vectors from 3 to 5...\n");
5692 		edata &= ~(EM_NVM_MSIX_N_MASK);
5693 		edata |= 4 << EM_NVM_MSIX_N_SHIFT;
5694 		e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
5695 		e1000_update_nvm_checksum(hw);
5696 		device_printf(dev, "Writing to eeprom: done\n");
5697 	}
5698 }
5699