xref: /freebsd/sys/dev/e1000/if_em.c (revision 93a065e7496dfbfbd0a5b0208ef763f37ea975c7)
1 /*-
2  * Copyright (c) 2016 Matt Macy <mmacy@nextbsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /* $FreeBSD$ */
28 #include "if_em.h"
29 #include <sys/sbuf.h>
30 #include <machine/_inttypes.h>
31 
32 #define em_mac_min e1000_82547
33 #define igb_mac_min e1000_82575
34 
35 /*********************************************************************
36  *  Driver version:
37  *********************************************************************/
38 char em_driver_version[] = "7.6.1-k";
39 
40 /*********************************************************************
41  *  PCI Device ID Table
42  *
43  *  Used by probe to select devices to load on
44  *  Last field stores an index into e1000_strings
45  *  Last entry must be all 0s
46  *
47  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
48  *********************************************************************/
49 
50 static pci_vendor_info_t em_vendor_info_array[] =
51 {
52 	/* Intel(R) PRO/1000 Network Connection - Legacy em*/
53 	PVID(0x8086, E1000_DEV_ID_82540EM,  "Intel(R) PRO/1000 Network Connection"),
54 	PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) PRO/1000 Network Connection"),
55 	PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) PRO/1000 Network Connection"),
56 	PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) PRO/1000 Network Connection"),
57 	PVID(0x8086, E1000_DEV_ID_82540EP_LP,  "Intel(R) PRO/1000 Network Connection"),
58 
59 	PVID(0x8086, E1000_DEV_ID_82541EI,  "Intel(R) PRO/1000 Network Connection"),
60 	PVID(0x8086, E1000_DEV_ID_82541ER,  "Intel(R) PRO/1000 Network Connection"),
61 	PVID(0x8086, E1000_DEV_ID_82541ER_LOM,  "Intel(R) PRO/1000 Network Connection"),
62 	PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE,   "Intel(R) PRO/1000 Network Connection"),
63 	PVID(0x8086, E1000_DEV_ID_82541GI,   "Intel(R) PRO/1000 Network Connection"),
64 	PVID(0x8086, E1000_DEV_ID_82541GI_LF,   "Intel(R) PRO/1000 Network Connection"),
65 	PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE,  "Intel(R) PRO/1000 Network Connection"),
66 
67 	PVID(0x8086, E1000_DEV_ID_82542,  "Intel(R) PRO/1000 Network Connection"),
68 
69 	PVID(0x8086, E1000_DEV_ID_82543GC_FIBER,  "Intel(R) PRO/1000 Network Connection"),
70 	PVID(0x8086, E1000_DEV_ID_82543GC_COPPER,  "Intel(R) PRO/1000 Network Connection"),
71 
72 	PVID(0x8086, E1000_DEV_ID_82544EI_COPPER,  "Intel(R) PRO/1000 Network Connection"),
73 	PVID(0x8086, E1000_DEV_ID_82544EI_FIBER,  "Intel(R) PRO/1000 Network Connection"),
74 	PVID(0x8086, E1000_DEV_ID_82544GC_COPPER,  "Intel(R) PRO/1000 Network Connection"),
75 	PVID(0x8086, E1000_DEV_ID_82544GC_LOM,  "Intel(R) PRO/1000 Network Connection"),
76 
77 	PVID(0x8086, E1000_DEV_ID_82545EM_COPPER,  "Intel(R) PRO/1000 Network Connection"),
78 	PVID(0x8086, E1000_DEV_ID_82545EM_FIBER,  "Intel(R) PRO/1000 Network Connection"),
79 	PVID(0x8086, E1000_DEV_ID_82545GM_COPPER,  "Intel(R) PRO/1000 Network Connection"),
80 	PVID(0x8086, E1000_DEV_ID_82545GM_FIBER,  "Intel(R) PRO/1000 Network Connection"),
81 	PVID(0x8086, E1000_DEV_ID_82545GM_SERDES,  "Intel(R) PRO/1000 Network Connection"),
82 
83 	PVID(0x8086, E1000_DEV_ID_82546EB_COPPER,  "Intel(R) PRO/1000 Network Connection"),
84 	PVID(0x8086, E1000_DEV_ID_82546EB_FIBER,  "Intel(R) PRO/1000 Network Connection"),
85 	PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER,  "Intel(R) PRO/1000 Network Connection"),
86 	PVID(0x8086, E1000_DEV_ID_82546GB_COPPER,  "Intel(R) PRO/1000 Network Connection"),
87 	PVID(0x8086, E1000_DEV_ID_82546GB_FIBER,  "Intel(R) PRO/1000 Network Connection"),
88 	PVID(0x8086, E1000_DEV_ID_82546GB_SERDES,  "Intel(R) PRO/1000 Network Connection"),
89 	PVID(0x8086, E1000_DEV_ID_82546GB_PCIE,  "Intel(R) PRO/1000 Network Connection"),
90 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER,  "Intel(R) PRO/1000 Network Connection"),
91 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3,  "Intel(R) PRO/1000 Network Connection"),
92 
93 	PVID(0x8086, E1000_DEV_ID_82547EI,  "Intel(R) PRO/1000 Network Connection"),
94 	PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE,  "Intel(R) PRO/1000 Network Connection"),
95 	PVID(0x8086, E1000_DEV_ID_82547GI,  "Intel(R) PRO/1000 Network Connection"),
96 
97 	/* Intel(R) PRO/1000 Network Connection - em */
98         PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
99 	PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
100         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 Network Connection"),
101 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 Network Connection"),
102 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 Network Connection"),
103 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
104 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 Network Connection"),
105 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 Network Connection"),
106 	PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
107 	PVID(0x8086, E1000_DEV_ID_82572EI_COPPER,	"Intel(R) PRO/1000 Network Connection"),
108 	PVID(0x8086, E1000_DEV_ID_82572EI_FIBER,	"Intel(R) PRO/1000 Network Connection"),
109 	PVID(0x8086, E1000_DEV_ID_82572EI_SERDES,	"Intel(R) PRO/1000 Network Connection"),
110 	PVID(0x8086, E1000_DEV_ID_82573E,		"Intel(R) PRO/1000 Network Connection"),
111 	PVID(0x8086, E1000_DEV_ID_82573E_IAMT,	"Intel(R) PRO/1000 Network Connection"),
112 	PVID(0x8086, E1000_DEV_ID_82573L,		"Intel(R) PRO/1000 Network Connection"),
113 	PVID(0x8086, E1000_DEV_ID_82583V,		"Intel(R) PRO/1000 Network Connection"),
114 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) PRO/1000 Network Connection"),
115 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) PRO/1000 Network Connection"),
116 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) PRO/1000 Network Connection"),
117 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) PRO/1000 Network Connection"),
118 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT,	"Intel(R) PRO/1000 Network Connection"),
119 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT,	"Intel(R) PRO/1000 Network Connection"),
120 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C,	"Intel(R) PRO/1000 Network Connection"),
121 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE,	"Intel(R) PRO/1000 Network Connection"),
122 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT,	"Intel(R) PRO/1000 Network Connection"),
123 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G,	"Intel(R) PRO/1000 Network Connection"),
124 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M,	"Intel(R) PRO/1000 Network Connection"),
125 	PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3,	"Intel(R) PRO/1000 Network Connection"),
126 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT,	"Intel(R) PRO/1000 Network Connection"),
127 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT,	"Intel(R) PRO/1000 Network Connection"),
128 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C,	"Intel(R) PRO/1000 Network Connection"),
129 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M,	"Intel(R) PRO/1000 Network Connection"),
130 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V,	"Intel(R) PRO/1000 Network Connection"),
131 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE,	"Intel(R) PRO/1000 Network Connection"),
132 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT,	"Intel(R) PRO/1000 Network Connection"),
133 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G,	"Intel(R) PRO/1000 Network Connection"),
134 	PVID(0x8086, E1000_DEV_ID_ICH9_BM,		"Intel(R) PRO/1000 Network Connection"),
135 	PVID(0x8086, E1000_DEV_ID_82574L,		"Intel(R) PRO/1000 Network Connection"),
136 	PVID(0x8086, E1000_DEV_ID_82574LA,		"Intel(R) PRO/1000 Network Connection"),
137 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM,	"Intel(R) PRO/1000 Network Connection"),
138 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF,	"Intel(R) PRO/1000 Network Connection"),
139 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V,	"Intel(R) PRO/1000 Network Connection"),
140 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM,	"Intel(R) PRO/1000 Network Connection"),
141 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF,	"Intel(R) PRO/1000 Network Connection"),
142 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V,	"Intel(R) PRO/1000 Network Connection"),
143 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM,	"Intel(R) PRO/1000 Network Connection"),
144 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC,	"Intel(R) PRO/1000 Network Connection"),
145 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM,	"Intel(R) PRO/1000 Network Connection"),
146 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC,	"Intel(R) PRO/1000 Network Connection"),
147 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM,	"Intel(R) PRO/1000 Network Connection"),
148 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_V,	"Intel(R) PRO/1000 Network Connection"),
149 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM,	"Intel(R) PRO/1000 Network Connection"),
150 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V,	"Intel(R) PRO/1000 Network Connection"),
151 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) PRO/1000 Network Connection"),
152 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) PRO/1000 Network Connection"),
153 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2,	"Intel(R) PRO/1000 Network Connection"),
154 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V2,	"Intel(R) PRO/1000 Network Connection"),
155 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3,	"Intel(R) PRO/1000 Network Connection"),
156 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V3,	"Intel(R) PRO/1000 Network Connection"),
157 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) PRO/1000 Network Connection"),
158 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V,  "Intel(R) PRO/1000 Network Connection"),
159 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) PRO/1000 Network Connection"),
160 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) PRO/1000 Network Connection"),
161 	PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) PRO/1000 Network Connection"),
162 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) PRO/1000 Network Connection"),
163 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) PRO/1000 Network Connection"),
164 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) PRO/1000 Network Connection"),
165 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) PRO/1000 Network Connection"),
166 	/* required last entry */
167 	PVID_END
168 };
169 
170 static pci_vendor_info_t igb_vendor_info_array[] =
171 {
172 	/* Intel(R) PRO/1000 Network Connection - em */
173 	PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
174 	PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
175 	PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
176 	PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 PCI-Express Network Driver"),
177 	PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
178 	PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
179 	PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
180 	PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
181 	PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 PCI-Express Network Driver"),
182 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
183 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 PCI-Express Network Driver"),
184 	PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
185 	PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
186 	PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
187 	PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
188 	PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
189 	PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) PRO/1000 PCI-Express Network Driver"),
190 	PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
191 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
192 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
193 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) PRO/1000 PCI-Express Network Driver"),
194 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) PRO/1000 PCI-Express Network Driver"),
195 	PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
196 	PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
197 	PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
198 	PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
199 	PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
200 	PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
201 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) PRO/1000 PCI-Express Network Driver"),
202 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) PRO/1000 PCI-Express Network Driver"),
203 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
204 	PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
205 	PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
206 	PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
207 	PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
208 	PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
209 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
210 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
211 	PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
212 	/* required last entry */
213 	PVID_END
214 };
215 
216 /*********************************************************************
217  *  Function prototypes
218  *********************************************************************/
219 static void     *em_register(device_t dev);
220 static void     *igb_register(device_t dev);
221 static int	em_if_attach_pre(if_ctx_t ctx);
222 static int	em_if_attach_post(if_ctx_t ctx);
223 static int	em_if_detach(if_ctx_t ctx);
224 static int	em_if_shutdown(if_ctx_t ctx);
225 static int	em_if_suspend(if_ctx_t ctx);
226 static int	em_if_resume(if_ctx_t ctx);
227 
228 static int      em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets);
229 static int      em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets);
230 static void     em_if_queues_free(if_ctx_t ctx);
231 
232 static uint64_t	em_if_get_counter(if_ctx_t, ift_counter);
233 static void	em_if_init(if_ctx_t ctx);
234 static void	em_if_stop(if_ctx_t ctx);
235 static void	em_if_media_status(if_ctx_t, struct ifmediareq *);
236 static int	em_if_media_change(if_ctx_t ctx);
237 static int      em_if_mtu_set(if_ctx_t ctx, uint32_t mtu);
238 static void     em_if_timer(if_ctx_t ctx, uint16_t qid);
239 static void     em_if_vlan_register(if_ctx_t ctx, u16 vtag);
240 static void     em_if_vlan_unregister(if_ctx_t ctx, u16 vtag);
241 
242 static void	em_identify_hardware(if_ctx_t ctx);
243 static int	em_allocate_pci_resources(if_ctx_t ctx);
244 static void	em_free_pci_resources(if_ctx_t ctx);
245 static void	em_reset(if_ctx_t ctx);
246 static int	em_setup_interface(if_ctx_t ctx);
247 static int      em_setup_msix(if_ctx_t ctx);
248 
249 static void	em_initialize_transmit_unit(if_ctx_t ctx);
250 static void	em_initialize_receive_unit(if_ctx_t ctx);
251 
252 static void	em_if_enable_intr(if_ctx_t ctx);
253 static void	em_if_disable_intr(if_ctx_t ctx);
254 static int      em_if_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
255 static void     em_if_multi_set(if_ctx_t ctx);
256 static void     em_if_update_admin_status(if_ctx_t ctx);
257 static void	em_update_stats_counters(struct adapter *);
258 static void	em_add_hw_stats(struct adapter *adapter);
259 static int	em_if_set_promisc(if_ctx_t ctx, int flags);
260 static void	em_setup_vlan_hw_support(struct adapter *);
261 static int	em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
262 static void	em_print_nvm_info(struct adapter *);
263 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
264 static void	em_print_debug_info(struct adapter *);
265 static int 	em_is_valid_ether_addr(u8 *);
266 static int	em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
267 static void	em_add_int_delay_sysctl(struct adapter *, const char *,
268 		    const char *, struct em_int_delay_info *, int, int);
269 /* Management and WOL Support */
270 static void	em_init_manageability(struct adapter *);
271 static void	em_release_manageability(struct adapter *);
272 static void     em_get_hw_control(struct adapter *);
273 static void     em_release_hw_control(struct adapter *);
274 static void	em_get_wakeup(if_ctx_t ctx);
275 static void     em_enable_wakeup(if_ctx_t ctx);
276 static int	em_enable_phy_wakeup(struct adapter *);
277 static void	em_disable_aspm(struct adapter *);
278 
279 int             em_intr(void *arg);
280 static void     em_disable_promisc(if_ctx_t ctx);
281 
282 /* MSIX handlers */
283 static int      em_if_msix_intr_assign(if_ctx_t, int);
284 static int	em_msix_link(void *);
285 static void	em_handle_link(void *context);
286 
287 static void	em_enable_vectors_82574(if_ctx_t);
288 
289 static void	em_set_sysctl_value(struct adapter *, const char *,
290 		    const char *, int *, int);
291 static int	em_set_flowcntl(SYSCTL_HANDLER_ARGS);
292 static int	em_sysctl_eee(SYSCTL_HANDLER_ARGS);
293 static void     em_if_led_func(if_ctx_t ctx, int onoff);
294 
295 static void	em_init_tx_ring(struct em_tx_queue *que);
296 static int	em_get_regs(SYSCTL_HANDLER_ARGS);
297 
298 static void	lem_smartspeed(struct adapter *adapter);
299 static void	igb_configure_queues(struct adapter *adapter);
300 
301 
302 /*********************************************************************
303  *  FreeBSD Device Interface Entry Points
304  *********************************************************************/
305 static device_method_t em_methods[] = {
306 	/* Device interface */
307   DEVMETHOD(device_register, em_register),
308   DEVMETHOD(device_probe, iflib_device_probe),
309   DEVMETHOD(device_attach, iflib_device_attach),
310   DEVMETHOD(device_detach, iflib_device_detach),
311   DEVMETHOD(device_shutdown, iflib_device_shutdown),
312   DEVMETHOD(device_suspend, iflib_device_suspend),
313   DEVMETHOD(device_resume, iflib_device_resume),
314   DEVMETHOD_END
315 };
316 
317 static device_method_t igb_methods[] = {
318 	/* Device interface */
319   DEVMETHOD(device_register, igb_register),
320   DEVMETHOD(device_probe, iflib_device_probe),
321   DEVMETHOD(device_attach, iflib_device_attach),
322   DEVMETHOD(device_detach, iflib_device_detach),
323   DEVMETHOD(device_shutdown, iflib_device_shutdown),
324   DEVMETHOD(device_suspend, iflib_device_suspend),
325   DEVMETHOD(device_resume, iflib_device_resume),
326   DEVMETHOD_END
327 };
328 
329 
330 static driver_t em_driver = {
331 	"em", em_methods, sizeof(struct adapter),
332 };
333 
334 static devclass_t em_devclass;
335 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
336 
337 MODULE_DEPEND(em, pci, 1, 1, 1);
338 MODULE_DEPEND(em, ether, 1, 1, 1);
339 MODULE_DEPEND(em, iflib, 1, 1, 1);
340 
341 static driver_t igb_driver = {
342 	"igb", igb_methods, sizeof(struct adapter),
343 };
344 
345 static devclass_t igb_devclass;
346 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
347 
348 MODULE_DEPEND(igb, pci, 1, 1, 1);
349 MODULE_DEPEND(igb, ether, 1, 1, 1);
350 MODULE_DEPEND(igb, iflib, 1, 1, 1);
351 
352 
353 static device_method_t em_if_methods[] = {
354         DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
355   	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
356 	DEVMETHOD(ifdi_detach, em_if_detach),
357 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
358 	DEVMETHOD(ifdi_suspend, em_if_suspend),
359 	DEVMETHOD(ifdi_resume, em_if_resume),
360 	DEVMETHOD(ifdi_init, em_if_init),
361 	DEVMETHOD(ifdi_stop, em_if_stop),
362 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
363 	DEVMETHOD(ifdi_intr_enable, em_if_enable_intr),
364 	DEVMETHOD(ifdi_intr_disable, em_if_disable_intr),
365 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
366 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
367 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
368 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
369 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
370 	DEVMETHOD(ifdi_media_status, em_if_media_status),
371 	DEVMETHOD(ifdi_media_change, em_if_media_change),
372 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
373 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
374 	DEVMETHOD(ifdi_timer, em_if_timer),
375 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
376 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
377 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
378 	DEVMETHOD(ifdi_led_func, em_if_led_func),
379 	DEVMETHOD(ifdi_queue_intr_enable, em_if_queue_intr_enable),
380 	DEVMETHOD_END
381 };
382 
383   /*
384  * note that if (adapter->msix_mem) is replaced by:
385  * if (adapter->intr_type == IFLIB_INTR_MSIX)
386  */
387 static driver_t em_if_driver = {
388   "em_if", em_if_methods, sizeof(struct adapter)
389 };
390 
391 /*********************************************************************
392  *  Tunable default values.
393  *********************************************************************/
394 
395 #define EM_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
396 #define EM_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
397 #define M_TSO_LEN			66
398 
399 #define MAX_INTS_PER_SEC	8000
400 #define DEFAULT_ITR		(1000000000/(MAX_INTS_PER_SEC * 256))
401 
402 /* Allow common code without TSO */
403 #ifndef CSUM_TSO
404 #define CSUM_TSO	0
405 #endif
406 
407 #define TSO_WORKAROUND	4
408 
409 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD, 0, "EM driver parameters");
410 
411 static int em_disable_crc_stripping = 0;
412 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
413     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
414 
415 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
416 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
417 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
418     0, "Default transmit interrupt delay in usecs");
419 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
420     0, "Default receive interrupt delay in usecs");
421 
422 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
423 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
424 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
425     &em_tx_abs_int_delay_dflt, 0,
426     "Default transmit interrupt delay limit in usecs");
427 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
428     &em_rx_abs_int_delay_dflt, 0,
429     "Default receive interrupt delay limit in usecs");
430 
431 static int em_smart_pwr_down = FALSE;
432 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
433     0, "Set to true to leave smart power down enabled on newer adapters");
434 
435 /* Controls whether promiscuous also shows bad packets */
436 static int em_debug_sbp = TRUE;
437 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
438     "Show bad packets in promiscuous mode");
439 
440 /* How many packets rxeof tries to clean at a time */
441 static int em_rx_process_limit = 100;
442 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
443     &em_rx_process_limit, 0,
444     "Maximum number of received packets to process "
445     "at a time, -1 means unlimited");
446 
447 /* Energy efficient ethernet - default to OFF */
448 static int eee_setting = 1;
449 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
450     "Enable Energy Efficient Ethernet");
451 
452 /*
453 ** Tuneable Interrupt rate
454 */
455 static int em_max_interrupt_rate = 8000;
456 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
457     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
458 
459 
460 
461 /* Global used in WOL setup with multiport cards */
462 static int global_quad_port_a = 0;
463 
464 extern struct if_txrx igb_txrx;
465 extern struct if_txrx em_txrx;
466 extern struct if_txrx lem_txrx;
467 
468 static struct if_shared_ctx em_sctx_init = {
469     	.isc_magic = IFLIB_MAGIC,
470 	.isc_q_align = PAGE_SIZE,
471 	.isc_tx_maxsize = EM_TSO_SIZE,
472 	.isc_tx_maxsegsize = PAGE_SIZE,
473 	.isc_rx_maxsize = MJUM9BYTES,
474 	.isc_rx_nsegments = 1,
475 	.isc_rx_maxsegsize = MJUM9BYTES,
476 	.isc_nfl = 1,
477 	.isc_nrxqs = 1,
478 	.isc_ntxqs = 1,
479 	.isc_admin_intrcnt = 1,
480 	.isc_vendor_info = em_vendor_info_array,
481 	.isc_driver_version = em_driver_version,
482 	.isc_driver = &em_if_driver,
483 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP,
484 
485 	.isc_nrxd_min = {EM_MIN_RXD},
486 	.isc_ntxd_min = {EM_MIN_TXD},
487 	.isc_nrxd_max = {EM_MAX_RXD},
488 	.isc_ntxd_max = {EM_MAX_TXD},
489 	.isc_nrxd_default = {EM_DEFAULT_RXD},
490 	.isc_ntxd_default = {EM_DEFAULT_TXD},
491 };
492 
493 if_shared_ctx_t em_sctx = &em_sctx_init;
494 
495 
496 static struct if_shared_ctx igb_sctx_init = {
497     	.isc_magic = IFLIB_MAGIC,
498 	.isc_q_align = PAGE_SIZE,
499 	.isc_tx_maxsize = EM_TSO_SIZE,
500 	.isc_tx_maxsegsize = PAGE_SIZE,
501 	.isc_rx_maxsize = MJUM9BYTES,
502 	.isc_rx_nsegments = 1,
503 	.isc_rx_maxsegsize = MJUM9BYTES,
504 	.isc_nfl = 1,
505 	.isc_nrxqs = 1,
506 	.isc_ntxqs = 1,
507 	.isc_admin_intrcnt = 1,
508 	.isc_vendor_info = igb_vendor_info_array,
509 	.isc_driver_version = em_driver_version,
510 	.isc_driver = &em_if_driver,
511 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP,
512 
513 	.isc_nrxd_min = {EM_MIN_RXD},
514 	.isc_ntxd_min = {EM_MIN_TXD},
515 	.isc_nrxd_max = {EM_MAX_RXD},
516 	.isc_ntxd_max = {EM_MAX_TXD},
517 	.isc_nrxd_default = {EM_DEFAULT_RXD},
518 	.isc_ntxd_default = {EM_DEFAULT_TXD},
519 };
520 
521 if_shared_ctx_t igb_sctx = &igb_sctx_init;
522 
523 /*****************************************************************
524  *
525  * Dump Registers
526  *
527  ****************************************************************/
528 #define IGB_REGS_LEN 739
529 
530 static int em_get_regs(SYSCTL_HANDLER_ARGS)
531 {
532 	struct adapter *adapter = (struct adapter *)arg1;
533 	struct e1000_hw *hw = &adapter->hw;
534 
535 	struct sbuf *sb;
536 	u32 *regs_buff = (u32 *)malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_NOWAIT);
537 	int rc;
538 
539 	memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
540 
541 	rc = sysctl_wire_old_buffer(req, 0);
542 	MPASS(rc == 0);
543 	if (rc != 0)
544 	  return (rc);
545 
546 	sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
547 	MPASS(sb != NULL);
548 	if (sb == NULL)
549 		return (ENOMEM);
550 
551 	/* General Registers */
552 	regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
553 	regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
554 	regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
555 	regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
556 	regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
557 	regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
558 	regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
559 	regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
560 	regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
561 	regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
562 	regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
563 	regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
564 	regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
565 	regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
566 	regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
567 	regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
568 	regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
569 	regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
570 	regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
571 	regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
572 	regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
573 	regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
574 
575 	sbuf_printf(sb, "General Registers\n");
576 	sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
577 	sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
578 	sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]);
579 
580 	sbuf_printf(sb, "Interrupt Registers\n");
581 	sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
582 
583 	sbuf_printf(sb, "RX Registers\n");
584 	sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
585 	sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
586 	sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
587 	sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
588 	sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
589 	sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
590 	sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
591 
592 	sbuf_printf(sb, "TX Registers\n");
593 	sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
594 	sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
595 	sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
596 	sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
597 	sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
598 	sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
599 	sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
600 	sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
601 	sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
602 	sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
603 	sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
604 
605 #ifdef DUMP_DESCS
606 	{
607 		if_softc_ctx_t scctx = adapter->shared;
608 		struct rx_ring *rxr = &rx_que->rxr;
609 		struct tx_ring *txr = &tx_que->txr;
610 		int ntxd = scctx->isc_ntxd[0];
611 		int nrxd = scctx->isc_nrxd[0];
612 		int j;
613 
614 	for (j = 0; j < nrxd; j++) {
615 		u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
616 		u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
617 		sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
618 	}
619 
620 	for (j = 0; j < min(ntxd, 256); j++) {
621 		struct em_txbuffer *buf = &txr->tx_buffers[j];
622 		unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
623 
624 		sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
625 			    j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
626 			    buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
627 
628 	}
629 	}
630 #endif
631 
632         rc = sbuf_finish(sb);
633 	sbuf_delete(sb);
634         return(rc);
635 }
636 
637 static void *
638 em_register(device_t dev)
639 {
640 	return (em_sctx);
641 }
642 
643 static void *
644 igb_register(device_t dev)
645 {
646 	return (igb_sctx);
647 }
648 
649 static void
650 em_init_tx_ring(struct em_tx_queue *que)
651 {
652 	struct adapter *sc = que->adapter;
653 	if_softc_ctx_t scctx = sc->shared;
654 	struct tx_ring *txr = &que->txr;
655 	struct em_txbuffer *tx_buffer;
656 
657 	tx_buffer = txr->tx_buffers;
658 	for (int i = 0; i < scctx->isc_ntxd[0]; i++, tx_buffer++) {
659 		tx_buffer->eop = -1;
660 	}
661 }
662 
663 static int
664 em_set_num_queues(if_ctx_t ctx)
665 {
666 	struct adapter *adapter = iflib_get_softc(ctx);
667 	int maxqueues;
668 
669 	/* Sanity check based on HW */
670 	switch (adapter->hw.mac.type) {
671 		case e1000_82576:
672 		case e1000_82580:
673 		case e1000_i350:
674 		case e1000_i354:
675 			maxqueues = 8;
676 			break;
677 		case e1000_i210:
678 		case e1000_82575:
679 			maxqueues = 4;
680 			break;
681 		case e1000_i211:
682 		case e1000_82574:
683 			maxqueues = 2;
684 			break;
685 		default:
686 			maxqueues = 1;
687 			break;
688 	}
689 
690 	return (maxqueues);
691 }
692 
693 
694 #define EM_CAPS								\
695 	IFCAP_TSO4 | IFCAP_TXCSUM | IFCAP_LRO | IFCAP_RXCSUM | IFCAP_VLAN_HWFILTER | IFCAP_WOL_MAGIC | \
696 	IFCAP_WOL_MCAST | IFCAP_WOL | IFCAP_VLAN_HWTSO | IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | \
697 	IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU;
698 
699 #define IGB_CAPS							\
700 	IFCAP_TSO4 | IFCAP_TXCSUM | IFCAP_LRO | IFCAP_RXCSUM | IFCAP_VLAN_HWFILTER | IFCAP_WOL_MAGIC | \
701 	IFCAP_WOL_MCAST | IFCAP_WOL | IFCAP_VLAN_HWTSO | IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM | \
702 	IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU | IFCAP_TXCSUM_IPV6 | IFCAP_HWCSUM_IPV6 | IFCAP_JUMBO_MTU;
703 
704 /*********************************************************************
705  *  Device initialization routine
706  *
707  *  The attach entry point is called when the driver is being loaded.
708  *  This routine identifies the type of hardware, allocates all resources
709  *  and initializes the hardware.
710  *
711  *  return 0 on success, positive on failure
712  *********************************************************************/
713 
714 static int
715 em_if_attach_pre(if_ctx_t ctx)
716 {
717         struct adapter	*adapter;
718 	if_softc_ctx_t scctx;
719         device_t        dev;
720 	struct e1000_hw	*hw;
721 	int		error = 0;
722 
723 	INIT_DEBUGOUT("em_if_attach_pre begin");
724         dev = iflib_get_dev(ctx);
725 	adapter = iflib_get_softc(ctx);
726 
727 	if (resource_disabled("em", device_get_unit(dev))) {
728 		device_printf(dev, "Disabled by device hint\n");
729 		return (ENXIO);
730 	}
731 
732 	adapter->ctx = ctx;
733 	adapter->dev = adapter->osdep.dev = dev;
734 	scctx = adapter->shared = iflib_get_softc_ctx(ctx);
735 	adapter->media = iflib_get_media(ctx);
736         hw = &adapter->hw;
737 
738 	adapter->tx_process_limit = scctx->isc_ntxd[0];
739 
740 	/* SYSCTL stuff */
741 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
742 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
743 	    OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
744 	    em_sysctl_nvm_info, "I", "NVM Information");
745 
746 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
747 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
748 	    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
749 	    em_sysctl_debug_info, "I", "Debug Information");
750 
751 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
752 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
753 	    OID_AUTO, "fc", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
754 	    em_set_flowcntl, "I", "Flow Control");
755 
756 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
757 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
758 	    OID_AUTO, "reg_dump", CTLTYPE_STRING | CTLFLAG_RD, adapter, 0,
759 	    em_get_regs, "A", "Dump Registers");
760 
761 	/* Determine hardware and mac info */
762 	em_identify_hardware(ctx);
763 
764         /* Set isc_msix_bar */
765 	scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR);
766 	scctx->isc_tx_nsegments = EM_MAX_SCATTER;
767 	scctx->isc_tx_tso_segments_max = scctx->isc_tx_nsegments;
768 	scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
769 	scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
770 	scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
771 	device_printf(dev, "attach_pre capping queues at %d\n", scctx->isc_ntxqsets_max);
772 
773 	scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
774 
775 
776 	if (adapter->hw.mac.type >= igb_mac_min) {
777 		int try_second_bar;
778 
779 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
780 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
781 		scctx->isc_txrx = &igb_txrx;
782 		scctx->isc_capenable = IGB_CAPS;
783 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO | CSUM_IP6_TCP \
784 			| CSUM_IP6_UDP | CSUM_IP6_TCP;
785 		if (adapter->hw.mac.type != e1000_82575)
786 			scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
787 
788 		/*
789 		** Some new devices, as with ixgbe, now may
790 		** use a different BAR, so we need to keep
791 		** track of which is used.
792 		*/
793 		try_second_bar = pci_read_config(dev, scctx->isc_msix_bar, 4);
794 		if (try_second_bar == 0)
795 			scctx->isc_msix_bar += 4;
796 
797 	} else if (adapter->hw.mac.type >= em_mac_min) {
798 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
799 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
800 		scctx->isc_txrx = &em_txrx;
801 		scctx->isc_capenable = EM_CAPS;
802 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
803 	} else {
804 		scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
805 		scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
806 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
807 		scctx->isc_txrx = &lem_txrx;
808 		scctx->isc_capenable = EM_CAPS;
809 		if (adapter->hw.mac.type < e1000_82543)
810 			scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM);
811 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
812 		scctx->isc_msix_bar = 0;
813 	}
814 
815 	/* Setup PCI resources */
816 	if (em_allocate_pci_resources(ctx)) {
817 		device_printf(dev, "Allocation of PCI resources failed\n");
818 		error = ENXIO;
819 		goto err_pci;
820 	}
821 
822 	/*
823 	** For ICH8 and family we need to
824 	** map the flash memory, and this
825 	** must happen after the MAC is
826 	** identified
827 	*/
828 	if ((hw->mac.type == e1000_ich8lan) ||
829 	    (hw->mac.type == e1000_ich9lan) ||
830 	    (hw->mac.type == e1000_ich10lan) ||
831 	    (hw->mac.type == e1000_pchlan) ||
832 	    (hw->mac.type == e1000_pch2lan) ||
833 	    (hw->mac.type == e1000_pch_lpt)) {
834 		int rid = EM_BAR_TYPE_FLASH;
835 		adapter->flash = bus_alloc_resource_any(dev,
836 		    SYS_RES_MEMORY, &rid, RF_ACTIVE);
837 		if (adapter->flash == NULL) {
838 			device_printf(dev, "Mapping of Flash failed\n");
839 			error = ENXIO;
840 			goto err_pci;
841 		}
842 		/* This is used in the shared code */
843 		hw->flash_address = (u8 *)adapter->flash;
844 		adapter->osdep.flash_bus_space_tag =
845 		    rman_get_bustag(adapter->flash);
846 		adapter->osdep.flash_bus_space_handle =
847 		    rman_get_bushandle(adapter->flash);
848 	}
849 	/*
850 	** In the new SPT device flash is not  a
851 	** separate BAR, rather it is also in BAR0,
852 	** so use the same tag and an offset handle for the
853 	** FLASH read/write macros in the shared code.
854 	*/
855 	else if (hw->mac.type == e1000_pch_spt) {
856 		adapter->osdep.flash_bus_space_tag =
857 		    adapter->osdep.mem_bus_space_tag;
858 		adapter->osdep.flash_bus_space_handle =
859 		    adapter->osdep.mem_bus_space_handle
860 		    + E1000_FLASH_BASE_ADDR;
861 	}
862 
863 	/* Do Shared Code initialization */
864 	error = e1000_setup_init_funcs(hw, TRUE);
865 	if (error) {
866 		device_printf(dev, "Setup of Shared code failed, error %d\n",
867 		    error);
868 		error = ENXIO;
869 		goto err_pci;
870 	}
871 
872 	em_setup_msix(ctx);
873 	e1000_get_bus_info(hw);
874 
875 	/* Set up some sysctls for the tunable interrupt delays */
876 	em_add_int_delay_sysctl(adapter, "rx_int_delay",
877 	    "receive interrupt delay in usecs", &adapter->rx_int_delay,
878 	    E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
879 	em_add_int_delay_sysctl(adapter, "tx_int_delay",
880 	    "transmit interrupt delay in usecs", &adapter->tx_int_delay,
881 	    E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
882 	em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
883 	    "receive interrupt delay limit in usecs",
884 	    &adapter->rx_abs_int_delay,
885 	    E1000_REGISTER(hw, E1000_RADV),
886 	    em_rx_abs_int_delay_dflt);
887 	em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
888 	    "transmit interrupt delay limit in usecs",
889 	    &adapter->tx_abs_int_delay,
890 	    E1000_REGISTER(hw, E1000_TADV),
891 	    em_tx_abs_int_delay_dflt);
892 	em_add_int_delay_sysctl(adapter, "itr",
893 	    "interrupt delay limit in usecs/4",
894 	    &adapter->tx_itr,
895 	    E1000_REGISTER(hw, E1000_ITR),
896 	    DEFAULT_ITR);
897 
898 	/* Sysctl for limiting the amount of work done in the taskqueue */
899 	em_set_sysctl_value(adapter, "rx_processing_limit",
900 	    "max number of rx packets to process", &adapter->rx_process_limit,
901 	    em_rx_process_limit);
902 
903 	hw->mac.autoneg = DO_AUTO_NEG;
904 	hw->phy.autoneg_wait_to_complete = FALSE;
905 	hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
906 
907 	if (adapter->hw.mac.type < em_mac_min) {
908 		e1000_init_script_state_82541(&adapter->hw, TRUE);
909 		e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
910 	}
911 	/* Copper options */
912 	if (hw->phy.media_type == e1000_media_type_copper) {
913 		hw->phy.mdix = AUTO_ALL_MODES;
914 		hw->phy.disable_polarity_correction = FALSE;
915 		hw->phy.ms_type = EM_MASTER_SLAVE;
916 	}
917 
918 	/*
919 	 * Set the frame limits assuming
920 	 * standard ethernet sized frames.
921 	 */
922 	adapter->hw.mac.max_frame_size =
923 	    ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
924 
925 	/*
926 	 * This controls when hardware reports transmit completion
927 	 * status.
928 	 */
929 	hw->mac.report_tx_early = 1;
930 
931 	/* Allocate multicast array memory. */
932 	adapter->mta = malloc(sizeof(u8) * ETH_ADDR_LEN *
933 	    MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
934 	if (adapter->mta == NULL) {
935 		device_printf(dev, "Can not allocate multicast setup array\n");
936 		error = ENOMEM;
937 		goto err_late;
938 	}
939 
940 	/* Check SOL/IDER usage */
941 	if (e1000_check_reset_block(hw))
942 		device_printf(dev, "PHY reset is blocked"
943 		    " due to SOL/IDER session.\n");
944 
945 	/* Sysctl for setting Energy Efficient Ethernet */
946 	hw->dev_spec.ich8lan.eee_disable = eee_setting;
947 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
948 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
949 	    OID_AUTO, "eee_control", CTLTYPE_INT|CTLFLAG_RW,
950 	    adapter, 0, em_sysctl_eee, "I",
951 	    "Disable Energy Efficient Ethernet");
952 
953 	/*
954 	** Start from a known state, this is
955 	** important in reading the nvm and
956 	** mac from that.
957 	*/
958 	e1000_reset_hw(hw);
959 
960 	/* Make sure we have a good EEPROM before we read from it */
961 	if (e1000_validate_nvm_checksum(hw) < 0) {
962 		/*
963 		** Some PCI-E parts fail the first check due to
964 		** the link being in sleep state, call it again,
965 		** if it fails a second time its a real issue.
966 		*/
967 		if (e1000_validate_nvm_checksum(hw) < 0) {
968 			device_printf(dev,
969 			    "The EEPROM Checksum Is Not Valid\n");
970 			error = EIO;
971 			goto err_late;
972 		}
973 	}
974 
975 	/* Copy the permanent MAC address out of the EEPROM */
976 	if (e1000_read_mac_addr(hw) < 0) {
977 		device_printf(dev, "EEPROM read error while reading MAC"
978 		    " address\n");
979 		error = EIO;
980 		goto err_late;
981 	}
982 
983 	if (!em_is_valid_ether_addr(hw->mac.addr)) {
984 		device_printf(dev, "Invalid MAC address\n");
985 		error = EIO;
986 		goto err_late;
987 	}
988 
989 	/* Disable ULP support */
990 	e1000_disable_ulp_lpt_lp(hw, TRUE);
991 
992         /*
993 	 * Get Wake-on-Lan and Management info for later use
994 	 */
995 	em_get_wakeup(ctx);
996 
997 	iflib_set_mac(ctx, hw->mac.addr);
998 
999 	return (0);
1000 
1001 err_late:
1002 	em_release_hw_control(adapter);
1003 err_pci:
1004 	em_free_pci_resources(ctx);
1005 	free(adapter->mta, M_DEVBUF);
1006 
1007 	return (error);
1008 }
1009 
1010 static int
1011 em_if_attach_post(if_ctx_t ctx)
1012 {
1013         struct adapter *adapter = iflib_get_softc(ctx);
1014 	struct e1000_hw *hw = &adapter->hw;
1015  	int error = 0;
1016 
1017 	/* Setup OS specific network interface */
1018 	error = em_setup_interface(ctx);
1019 	if (error != 0) {
1020 		goto err_late;
1021 	}
1022 
1023 	em_reset(ctx);
1024 
1025 	/* Initialize statistics */
1026 	em_update_stats_counters(adapter);
1027 	hw->mac.get_link_status = 1;
1028 	em_if_update_admin_status(ctx);
1029 	em_add_hw_stats(adapter);
1030 
1031 	/* Non-AMT based hardware can now take control from firmware */
1032 	if (adapter->has_manage && !adapter->has_amt)
1033 		em_get_hw_control(adapter);
1034 
1035 	INIT_DEBUGOUT("em_if_attach_post: end");
1036 
1037 	return (error);
1038 
1039 err_late:
1040 	em_release_hw_control(adapter);
1041 	em_free_pci_resources(ctx);
1042 	em_if_queues_free(ctx);
1043 	free(adapter->mta, M_DEVBUF);
1044 
1045 	return (error);
1046 }
1047 
1048 /*********************************************************************
1049  *  Device removal routine
1050  *
1051  *  The detach entry point is called when the driver is being removed.
1052  *  This routine stops the adapter and deallocates all the resources
1053  *  that were allocated for driver operation.
1054  *
1055  *  return 0 on success, positive on failure
1056  *********************************************************************/
1057 
1058 static int
1059 em_if_detach(if_ctx_t ctx)
1060 {
1061 	struct adapter	*adapter = iflib_get_softc(ctx);
1062 
1063 	INIT_DEBUGOUT("em_detach: begin");
1064 
1065 	e1000_phy_hw_reset(&adapter->hw);
1066 
1067 	em_release_manageability(adapter);
1068 	em_release_hw_control(adapter);
1069 	em_free_pci_resources(ctx);
1070 
1071 	return (0);
1072 }
1073 
1074 /*********************************************************************
1075  *
1076  *  Shutdown entry point
1077  *
1078  **********************************************************************/
1079 
1080 static int
1081 em_if_shutdown(if_ctx_t ctx)
1082 {
1083 	return em_if_suspend(ctx);
1084 }
1085 
1086 /*
1087  * Suspend/resume device methods.
1088  */
1089 static int
1090 em_if_suspend(if_ctx_t ctx)
1091 {
1092 	struct adapter *adapter = iflib_get_softc(ctx);
1093 
1094         em_release_manageability(adapter);
1095 	em_release_hw_control(adapter);
1096 	em_enable_wakeup(ctx);
1097 	return (0);
1098 }
1099 
1100 static int
1101 em_if_resume(if_ctx_t ctx)
1102 {
1103 	struct adapter *adapter = iflib_get_softc(ctx);
1104 
1105 	if (adapter->hw.mac.type == e1000_pch2lan)
1106 		e1000_resume_workarounds_pchlan(&adapter->hw);
1107 	em_if_init(ctx);
1108 	em_init_manageability(adapter);
1109 
1110 	return(0);
1111 }
1112 
1113 static int
1114 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1115 {
1116   int max_frame_size;
1117   struct adapter *adapter = iflib_get_softc(ctx);
1118   struct ifnet *ifp = iflib_get_ifp(ctx);
1119 
1120   IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1121 
1122   switch (adapter->hw.mac.type) {
1123   case e1000_82571:
1124   case e1000_82572:
1125   case e1000_ich9lan:
1126   case e1000_ich10lan:
1127   case e1000_pch2lan:
1128   case e1000_pch_lpt:
1129   case e1000_pch_spt:
1130   case e1000_82574:
1131   case e1000_82583:
1132   case e1000_80003es2lan:	/* 9K Jumbo Frame size */
1133 	  max_frame_size = 9234;
1134 	  break;
1135   case e1000_pchlan:
1136 	  max_frame_size = 4096;
1137 	  break;
1138 	  /* Adapters that do not support jumbo frames */
1139   case e1000_ich8lan:
1140 	  max_frame_size = ETHER_MAX_LEN;
1141 	  break;
1142   default:
1143 	  max_frame_size = MAX_JUMBO_FRAME_SIZE;
1144   }
1145   if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1146 	  return (EINVAL);
1147   }
1148 
1149   adapter->hw.mac.max_frame_size = if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN;
1150   return (0);
1151 }
1152 
1153 /*********************************************************************
1154  *  Init entry point
1155  *
1156  *  This routine is used in two ways. It is used by the stack as
1157  *  init entry point in network interface structure. It is also used
1158  *  by the driver as a hw/sw initialization routine to get to a
1159  *  consistent state.
1160  *
1161  *  return 0 on success, positive on failure
1162  **********************************************************************/
1163 
1164 static void
1165 em_if_init(if_ctx_t ctx)
1166 {
1167         struct adapter *adapter = iflib_get_softc(ctx);
1168 	struct ifnet *ifp = iflib_get_ifp(ctx);
1169 
1170 	INIT_DEBUGOUT("em_if_init: begin");
1171 
1172 	/* Get the latest mac address, User can use a LAA */
1173         bcopy(if_getlladdr(ifp), adapter->hw.mac.addr,
1174               ETHER_ADDR_LEN);
1175 
1176 	/* Put the address into the Receive Address Array */
1177 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1178 
1179 	/*
1180 	 * With the 82571 adapter, RAR[0] may be overwritten
1181 	 * when the other port is reset, we make a duplicate
1182 	 * in RAR[14] for that eventuality, this assures
1183 	 * the interface continues to function.
1184 	 */
1185 	if (adapter->hw.mac.type == e1000_82571) {
1186 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1187 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1188 		    E1000_RAR_ENTRIES - 1);
1189 	}
1190 
1191 	/* Initialize the hardware */
1192 	em_reset(ctx);
1193 	em_if_update_admin_status(ctx);
1194 
1195 	/* Setup VLAN support, basic and offload if available */
1196 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1197 
1198 	/* Clear bad data from Rx FIFOs */
1199 	if (adapter->hw.mac.type >= igb_mac_min)
1200 		e1000_rx_fifo_flush_82575(&adapter->hw);
1201 
1202 	/* Configure for OS presence */
1203 	em_init_manageability(adapter);
1204 
1205 	/* Prepare transmit descriptors and buffers */
1206 	em_initialize_transmit_unit(ctx);
1207 
1208 	/* Setup Multicast table */
1209 	em_if_multi_set(ctx);
1210 
1211 	/*
1212 	** Figure out the desired mbuf
1213 	** pool for doing jumbos
1214 	*/
1215 	if (adapter->hw.mac.max_frame_size <= 2048)
1216 		adapter->rx_mbuf_sz = MCLBYTES;
1217 	else if (adapter->hw.mac.max_frame_size <= 4096)
1218 		adapter->rx_mbuf_sz = MJUMPAGESIZE;
1219 	else
1220 		adapter->rx_mbuf_sz = MJUM9BYTES;
1221 
1222 	em_initialize_receive_unit(ctx);
1223 
1224 	/* Use real VLAN Filter support? */
1225 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
1226 		if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
1227 			/* Use real VLAN Filter support */
1228 			em_setup_vlan_hw_support(adapter);
1229 		else {
1230 			u32 ctrl;
1231 			ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1232 			ctrl |= E1000_CTRL_VME;
1233 			E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1234 		}
1235 	}
1236 
1237 	/* Don't lose promiscuous settings */
1238 	em_if_set_promisc(ctx, IFF_PROMISC);
1239 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1240 
1241 	/* MSI/X configuration for 82574 */
1242 	if (adapter->hw.mac.type == e1000_82574) {
1243 		int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1244 
1245 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1246 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1247 		/* Set the IVAR - interrupt vector routing. */
1248 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars);
1249 	} else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1250 		igb_configure_queues(adapter);
1251 
1252 	/* this clears any pending interrupts */
1253 	E1000_READ_REG(&adapter->hw, E1000_ICR);
1254 	E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
1255 
1256 	/* AMT based hardware can now take control from firmware */
1257 	if (adapter->has_manage && adapter->has_amt)
1258 		em_get_hw_control(adapter);
1259 
1260 	/* Set Energy Efficient Ethernet */
1261 	if (adapter->hw.mac.type >= igb_mac_min &&
1262 	    adapter->hw.phy.media_type == e1000_media_type_copper) {
1263 		if (adapter->hw.mac.type == e1000_i354)
1264 			e1000_set_eee_i354(&adapter->hw, TRUE, TRUE);
1265 		else
1266 			e1000_set_eee_i350(&adapter->hw, TRUE, TRUE);
1267 	}
1268 }
1269 
1270 /*********************************************************************
1271  *
1272  *  Fast Legacy/MSI Combined Interrupt Service routine
1273  *
1274  *********************************************************************/
1275 int
1276 em_intr(void *arg)
1277 {
1278         struct adapter	*adapter = arg;
1279 	if_ctx_t ctx = adapter->ctx;
1280 	u32		reg_icr;
1281 
1282 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1283 
1284 	if (adapter->intr_type != IFLIB_INTR_LEGACY)
1285 		goto skip_stray;
1286 	/* Hot eject?  */
1287 	if (reg_icr == 0xffffffff)
1288 		return FILTER_STRAY;
1289 
1290 	/* Definitely not our interrupt.  */
1291 	if (reg_icr == 0x0)
1292 		return FILTER_STRAY;
1293 
1294 	/*
1295 	 * Starting with the 82571 chip, bit 31 should be used to
1296 	 * determine whether the interrupt belongs to us.
1297 	 */
1298 	if (adapter->hw.mac.type >= e1000_82571 &&
1299 	    (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1300 		return FILTER_STRAY;
1301 
1302 skip_stray:
1303 	/* Link status change */
1304 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1305 		adapter->hw.mac.get_link_status = 1;
1306 		iflib_admin_intr_deferred(ctx);
1307 	}
1308 
1309 	if (reg_icr & E1000_ICR_RXO)
1310 		adapter->rx_overruns++;
1311 
1312 	return (FILTER_SCHEDULE_THREAD);
1313 }
1314 
1315 static void
1316 igb_enable_queue(struct adapter *adapter, struct em_rx_queue *rxq)
1317 {
1318 	E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims);
1319 }
1320 
1321 static void
1322 em_enable_queue(struct adapter *adapter, struct em_rx_queue *rxq)
1323 {
1324 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims);
1325 }
1326 
1327 static int
1328 em_if_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1329 {
1330         struct adapter	*adapter = iflib_get_softc(ctx);
1331 	struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1332 
1333 	if (adapter->hw.mac.type >= igb_mac_min)
1334 		igb_enable_queue(adapter, rxq);
1335 	else
1336 		em_enable_queue(adapter, rxq);
1337 	return (0);
1338 }
1339 
1340 /*********************************************************************
1341  *
1342  *  MSIX RX Interrupt Service routine
1343  *
1344  **********************************************************************/
1345 static int
1346 em_msix_que(void *arg)
1347 {
1348 	struct em_rx_queue *que = arg;
1349 
1350 	++que->irqs;
1351 
1352         return (FILTER_SCHEDULE_THREAD);
1353 }
1354 
1355 /*********************************************************************
1356  *
1357  *  MSIX Link Fast Interrupt Service routine
1358  *
1359  **********************************************************************/
1360 static int
1361 em_msix_link(void *arg)
1362 {
1363 	struct adapter	*adapter = arg;
1364 	u32		reg_icr;
1365 
1366 	++adapter->link_irq;
1367 	MPASS(adapter->hw.back != NULL);
1368 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1369 
1370 	if (reg_icr & E1000_ICR_RXO)
1371 		adapter->rx_overruns++;
1372 
1373 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1374 		em_handle_link(adapter->ctx);
1375 	} else {
1376 		E1000_WRITE_REG(&adapter->hw, E1000_IMS,
1377 				EM_MSIX_LINK | E1000_IMS_LSC);
1378 		if (adapter->hw.mac.type >= igb_mac_min)
1379 			E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
1380 
1381 	}
1382 
1383 	/*
1384  	** Because we must read the ICR for this interrupt
1385  	** it may clear other causes using autoclear, for
1386  	** this reason we simply create a soft interrupt
1387  	** for all these vectors.
1388  	*/
1389 	if (reg_icr && adapter->hw.mac.type < igb_mac_min) {
1390 		E1000_WRITE_REG(&adapter->hw,
1391 			E1000_ICS, adapter->ims);
1392 	}
1393 
1394 	return (FILTER_HANDLED);
1395 }
1396 
1397 static void
1398 em_handle_link(void *context)
1399 {
1400         if_ctx_t ctx = context;
1401 	struct adapter	*adapter = iflib_get_softc(ctx);
1402 
1403 	adapter->hw.mac.get_link_status = 1;
1404 	iflib_admin_intr_deferred(ctx);
1405 }
1406 
1407 
1408 /*********************************************************************
1409  *
1410  *  Media Ioctl callback
1411  *
1412  *  This routine is called whenever the user queries the status of
1413  *  the interface using ifconfig.
1414  *
1415  **********************************************************************/
1416 static void
1417 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1418 {
1419   struct adapter *adapter = iflib_get_softc(ctx);
1420   u_char fiber_type = IFM_1000_SX;
1421 
1422   INIT_DEBUGOUT("em_if_media_status: begin");
1423 
1424         iflib_admin_intr_deferred(ctx);
1425 
1426 	ifmr->ifm_status = IFM_AVALID;
1427 	ifmr->ifm_active = IFM_ETHER;
1428 
1429 	if (!adapter->link_active) {
1430 		return;
1431 	}
1432 
1433 	ifmr->ifm_status |= IFM_ACTIVE;
1434 
1435 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
1436 	    (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1437 		if (adapter->hw.mac.type == e1000_82545)
1438 			fiber_type = IFM_1000_LX;
1439 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1440 	} else {
1441 		switch (adapter->link_speed) {
1442 		case 10:
1443 			ifmr->ifm_active |= IFM_10_T;
1444 			break;
1445 		case 100:
1446 			ifmr->ifm_active |= IFM_100_TX;
1447 			break;
1448 		case 1000:
1449 			ifmr->ifm_active |= IFM_1000_T;
1450 			break;
1451 		}
1452 		if (adapter->link_duplex == FULL_DUPLEX)
1453 			ifmr->ifm_active |= IFM_FDX;
1454 		else
1455 			ifmr->ifm_active |= IFM_HDX;
1456 	}
1457 }
1458 
1459 /*********************************************************************
1460  *
1461  *  Media Ioctl callback
1462  *
1463  *  This routine is called when the user changes speed/duplex using
1464  *  media/mediopt option with ifconfig.
1465  *
1466  **********************************************************************/
1467 static int
1468 em_if_media_change(if_ctx_t ctx)
1469 {
1470 	struct adapter *adapter = iflib_get_softc(ctx);
1471 	struct ifmedia  *ifm = iflib_get_media(ctx);
1472 
1473 	INIT_DEBUGOUT("em_if_media_change: begin");
1474 
1475 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1476 		return (EINVAL);
1477 
1478 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1479 	case IFM_AUTO:
1480 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1481 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1482 		break;
1483 	case IFM_1000_LX:
1484 	case IFM_1000_SX:
1485 	case IFM_1000_T:
1486 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1487 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1488 		break;
1489 	case IFM_100_TX:
1490 		adapter->hw.mac.autoneg = FALSE;
1491 		adapter->hw.phy.autoneg_advertised = 0;
1492 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1493 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1494 		else
1495 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1496 		break;
1497 	case IFM_10_T:
1498 		adapter->hw.mac.autoneg = FALSE;
1499 		adapter->hw.phy.autoneg_advertised = 0;
1500 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1501 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1502 		else
1503 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1504 		break;
1505 	default:
1506 		device_printf(adapter->dev, "Unsupported media type\n");
1507 	}
1508 
1509 	em_if_init(ctx);
1510 
1511 	return (0);
1512 }
1513 
1514 static int
1515 em_if_set_promisc(if_ctx_t ctx, int flags)
1516 {
1517         struct adapter *adapter = iflib_get_softc(ctx);
1518 	u32		reg_rctl;
1519 
1520 	em_disable_promisc(ctx);
1521 
1522 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1523 
1524 	if (flags & IFF_PROMISC) {
1525 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1526 		/* Turn this on if you want to see bad packets */
1527 		if (em_debug_sbp)
1528 			reg_rctl |= E1000_RCTL_SBP;
1529 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1530 	} else if (flags & IFF_ALLMULTI) {
1531 		reg_rctl |= E1000_RCTL_MPE;
1532 		reg_rctl &= ~E1000_RCTL_UPE;
1533 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1534 	}
1535 	return (0);
1536 }
1537 
1538 static void
1539 em_disable_promisc(if_ctx_t ctx)
1540 {
1541         struct adapter *adapter = iflib_get_softc(ctx);
1542 	struct ifnet *ifp = iflib_get_ifp(ctx);
1543 	u32		reg_rctl;
1544 	int		mcnt = 0;
1545 
1546 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1547 	reg_rctl &=  (~E1000_RCTL_UPE);
1548 	if (if_getflags(ifp) & IFF_ALLMULTI)
1549 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1550 	else
1551 		mcnt = if_multiaddr_count(ifp, MAX_NUM_MULTICAST_ADDRESSES);
1552 	/* Don't disable if in MAX groups */
1553 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1554 		reg_rctl &=  (~E1000_RCTL_MPE);
1555 	reg_rctl &=  (~E1000_RCTL_SBP);
1556 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1557 }
1558 
1559 
1560 /*********************************************************************
1561  *  Multicast Update
1562  *
1563  *  This routine is called whenever multicast address list is updated.
1564  *
1565  **********************************************************************/
1566 
1567 static void
1568 em_if_multi_set(if_ctx_t ctx)
1569 {
1570         struct adapter *adapter = iflib_get_softc(ctx);
1571 	struct ifnet *ifp = iflib_get_ifp(ctx);
1572 	u32 reg_rctl = 0;
1573 	u8  *mta; /* Multicast array memory */
1574 	int mcnt = 0;
1575 
1576 	IOCTL_DEBUGOUT("em_set_multi: begin");
1577 
1578 	mta = adapter->mta;
1579 	bzero(mta, sizeof(u8) * ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1580 
1581 	if (adapter->hw.mac.type == e1000_82542 &&
1582 	    adapter->hw.revision_id == E1000_REVISION_2) {
1583 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1584 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1585 			e1000_pci_clear_mwi(&adapter->hw);
1586 		reg_rctl |= E1000_RCTL_RST;
1587 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1588 		msec_delay(5);
1589 	}
1590 
1591 	if_multiaddr_array(ifp, mta, &mcnt, MAX_NUM_MULTICAST_ADDRESSES);
1592 
1593 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1594 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1595 		reg_rctl |= E1000_RCTL_MPE;
1596 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1597 	} else
1598 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1599 
1600 	if (adapter->hw.mac.type == e1000_82542 &&
1601 	    adapter->hw.revision_id == E1000_REVISION_2) {
1602 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1603 		reg_rctl &= ~E1000_RCTL_RST;
1604 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1605 		msec_delay(5);
1606 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1607 			e1000_pci_set_mwi(&adapter->hw);
1608 	}
1609 }
1610 
1611 
1612 /*********************************************************************
1613  *  Timer routine
1614  *
1615  *  This routine checks for link status and updates statistics.
1616  *
1617  **********************************************************************/
1618 
1619 static void
1620 em_if_timer(if_ctx_t ctx, uint16_t qid)
1621 {
1622         struct adapter	*adapter = iflib_get_softc(ctx);
1623 	struct em_rx_queue *que;
1624 	int i;
1625 	int trigger = 0;
1626 
1627 	em_if_update_admin_status(ctx);
1628 	em_update_stats_counters(adapter);
1629 
1630 	/* Reset LAA into RAR[0] on 82571 */
1631 	if ((adapter->hw.mac.type == e1000_82571) &&
1632 	    e1000_get_laa_state_82571(&adapter->hw))
1633 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1634 
1635 	if (adapter->hw.mac.type < em_mac_min)
1636 		lem_smartspeed(adapter);
1637 
1638 	/* Mask to use in the irq trigger */
1639 	if (adapter->intr_type == IFLIB_INTR_MSIX) {
1640 		for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++)
1641 			trigger |= que->eims;
1642 	} else {
1643 		trigger = E1000_ICS_RXDMT0;
1644 	}
1645 }
1646 
1647 
1648 static void
1649 em_if_update_admin_status(if_ctx_t ctx)
1650 {
1651         struct adapter *adapter = iflib_get_softc(ctx);
1652 	struct e1000_hw *hw = &adapter->hw;
1653         struct ifnet *ifp = iflib_get_ifp(ctx);
1654 	device_t dev = iflib_get_dev(ctx);
1655 	u32 link_check = 0;
1656 
1657 	/* Get the cached link value or read phy for real */
1658 	switch (hw->phy.media_type) {
1659 	case e1000_media_type_copper:
1660 		if (hw->mac.get_link_status) {
1661 			if (hw->mac.type == e1000_pch_spt)
1662 				msec_delay(50);
1663 			/* Do the work to read phy */
1664 			e1000_check_for_link(hw);
1665 			link_check = !hw->mac.get_link_status;
1666 			if (link_check) /* ESB2 fix */
1667 				e1000_cfg_on_link_up(hw);
1668 		} else {
1669 			link_check = TRUE;
1670 		}
1671 		break;
1672 	case e1000_media_type_fiber:
1673 		e1000_check_for_link(hw);
1674 		link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1675                                  E1000_STATUS_LU);
1676 		break;
1677 	case e1000_media_type_internal_serdes:
1678 		e1000_check_for_link(hw);
1679 		link_check = adapter->hw.mac.serdes_has_link;
1680 		break;
1681 	default:
1682 	case e1000_media_type_unknown:
1683 		break;
1684 	}
1685 
1686 	/* Now check for a transition */
1687 	if (link_check && (adapter->link_active == 0)) {
1688 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
1689 		    &adapter->link_duplex);
1690 		/* Check if we must disable SPEED_MODE bit on PCI-E */
1691 		if ((adapter->link_speed != SPEED_1000) &&
1692 		    ((hw->mac.type == e1000_82571) ||
1693 		    (hw->mac.type == e1000_82572))) {
1694 			int tarc0;
1695 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1696 			tarc0 &= ~TARC_SPEED_MODE_BIT;
1697 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1698 		}
1699 		if (bootverbose)
1700 			device_printf(dev, "Link is up %d Mbps %s\n",
1701 			    adapter->link_speed,
1702 			    ((adapter->link_duplex == FULL_DUPLEX) ?
1703 			    "Full Duplex" : "Half Duplex"));
1704 		adapter->link_active = 1;
1705 		adapter->smartspeed = 0;
1706 		if_setbaudrate(ifp, adapter->link_speed * 1000000);
1707 		iflib_link_state_change(ctx, LINK_STATE_UP, ifp->if_baudrate);
1708 		printf("Link state changed to up\n");
1709 	} else if (!link_check && (adapter->link_active == 1)) {
1710 		if_setbaudrate(ifp, 0);
1711 		adapter->link_speed = 0;
1712 		adapter->link_duplex = 0;
1713 		if (bootverbose)
1714 			device_printf(dev, "Link is Down\n");
1715 		adapter->link_active = 0;
1716 		iflib_link_state_change(ctx, LINK_STATE_DOWN, ifp->if_baudrate);
1717 		printf("link state changed to down\n");
1718 	}
1719 
1720 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK | E1000_IMS_LSC);
1721 }
1722 
1723 /*********************************************************************
1724  *
1725  *  This routine disables all traffic on the adapter by issuing a
1726  *  global reset on the MAC and deallocates TX/RX buffers.
1727  *
1728  *  This routine should always be called with BOTH the CORE
1729  *  and TX locks.
1730  **********************************************************************/
1731 
1732 static void
1733 em_if_stop(if_ctx_t ctx)
1734 {
1735         struct adapter *adapter = iflib_get_softc(ctx);
1736 
1737 	INIT_DEBUGOUT("em_stop: begin");
1738 
1739 	e1000_reset_hw(&adapter->hw);
1740 	if (adapter->hw.mac.type >= e1000_82544)
1741 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0);
1742 
1743 	e1000_led_off(&adapter->hw);
1744 	e1000_cleanup_led(&adapter->hw);
1745 }
1746 
1747 
1748 /*********************************************************************
1749  *
1750  *  Determine hardware revision.
1751  *
1752  **********************************************************************/
1753 static void
1754 em_identify_hardware(if_ctx_t ctx)
1755 {
1756         device_t dev = iflib_get_dev(ctx);
1757         struct adapter *adapter = iflib_get_softc(ctx);
1758 
1759 	/* Make sure our PCI config space has the necessary stuff set */
1760 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1761 
1762 	/* Save off the information about this board */
1763 	adapter->hw.vendor_id = pci_get_vendor(dev);
1764 	adapter->hw.device_id = pci_get_device(dev);
1765 	adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1766 	adapter->hw.subsystem_vendor_id =
1767 	    pci_read_config(dev, PCIR_SUBVEND_0, 2);
1768 	adapter->hw.subsystem_device_id =
1769 	    pci_read_config(dev, PCIR_SUBDEV_0, 2);
1770 
1771 	/* Do Shared Code Init and Setup */
1772 	if (e1000_set_mac_type(&adapter->hw)) {
1773 		device_printf(dev, "Setup init failure\n");
1774 		return;
1775 	}
1776 }
1777 
1778 static int
1779 em_allocate_pci_resources(if_ctx_t ctx)
1780 {
1781         struct adapter *adapter = iflib_get_softc(ctx);
1782         device_t	dev = iflib_get_dev(ctx);
1783 	int		rid, val;
1784 
1785 	rid = PCIR_BAR(0);
1786 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1787 	    &rid, RF_ACTIVE);
1788 	if (adapter->memory == NULL) {
1789 		device_printf(dev, "Unable to allocate bus resource: memory\n");
1790 		return (ENXIO);
1791 	}
1792 	adapter->osdep.mem_bus_space_tag =
1793 	    rman_get_bustag(adapter->memory);
1794 	adapter->osdep.mem_bus_space_handle =
1795 	    rman_get_bushandle(adapter->memory);
1796 	adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
1797 
1798 	/* Only older adapters use IO mapping */
1799 	if (adapter->hw.mac.type < em_mac_min &&
1800 	    adapter->hw.mac.type > e1000_82543) {
1801 		/* Figure our where our IO BAR is ? */
1802 		for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1803 			val = pci_read_config(dev, rid, 4);
1804 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1805 				adapter->io_rid = rid;
1806 				break;
1807 			}
1808 			rid += 4;
1809 			/* check for 64bit BAR */
1810 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1811 				rid += 4;
1812 		}
1813 		if (rid >= PCIR_CIS) {
1814 			device_printf(dev, "Unable to locate IO BAR\n");
1815 			return (ENXIO);
1816 		}
1817 		adapter->ioport = bus_alloc_resource_any(dev,
1818 		    SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE);
1819 		if (adapter->ioport == NULL) {
1820 			device_printf(dev, "Unable to allocate bus resource: "
1821 			    "ioport\n");
1822 			return (ENXIO);
1823 		}
1824 		adapter->hw.io_base = 0;
1825 		adapter->osdep.io_bus_space_tag =
1826 		    rman_get_bustag(adapter->ioport);
1827 		adapter->osdep.io_bus_space_handle =
1828 		    rman_get_bushandle(adapter->ioport);
1829 	}
1830 
1831 	adapter->hw.back = &adapter->osdep;
1832 
1833 	return (0);
1834 }
1835 
1836 /*********************************************************************
1837  *
1838  *  Setup the MSIX Interrupt handlers
1839  *
1840  **********************************************************************/
1841 static int
1842 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
1843 {
1844         struct adapter     *adapter = iflib_get_softc(ctx);
1845 	struct em_rx_queue *rx_que = adapter->rx_queues;
1846 	struct em_tx_queue *tx_que = adapter->tx_queues;
1847 	int		   error, rid, i, vector = 0;
1848 	char buf[16];
1849 
1850 	/* First set up ring resources */
1851 	for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) {
1852 		rid = vector +1;
1853 		snprintf(buf, sizeof(buf), "rxq%d", i);
1854 		error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RX, em_msix_que, rx_que, rx_que->me, buf);
1855                 if (error) {
1856 		  	device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
1857 			adapter->rx_num_queues = i + 1;
1858 			goto fail;
1859 		}
1860 
1861 		rx_que->msix =  vector;
1862 
1863 		/*
1864 		** Set the bit to enable interrupt
1865 		** in E1000_IMS -- bits 20 and 21
1866 		** are for RX0 and RX1, note this has
1867 		** NOTHING to do with the MSIX vector
1868 		*/
1869 		if (adapter->hw.mac.type == e1000_82574) {
1870 			rx_que->eims = 1 << (20 + i);
1871 			adapter->ims |= rx_que->eims;
1872 			adapter->ivars |= (8 | rx_que->msix) << (i * 4);
1873 		} else if (adapter->hw.mac.type == e1000_82575)
1874 			rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
1875 		else
1876 			rx_que->eims = 1 << vector;
1877 	}
1878 
1879 	for (i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
1880 		rid = vector + 1;
1881 		snprintf(buf, sizeof(buf), "txq%d", i);
1882 		tx_que = &adapter->tx_queues[i];
1883 		iflib_softirq_alloc_generic(ctx, rid, IFLIB_INTR_TX, tx_que, tx_que->me, buf);
1884 
1885 		tx_que->msix = vector;
1886 
1887 		  /*
1888 		** Set the bit to enable interrupt
1889 		** in E1000_IMS -- bits 22 and 23
1890 		** are for TX0 and TX1, note this has
1891 		** NOTHING to do with the MSIX vector
1892 		*/
1893 		if (adapter->hw.mac.type < igb_mac_min) {
1894 			tx_que->eims = 1 << (22 + i);
1895 			adapter->ims |= tx_que->eims;
1896 			adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
1897 		} if (adapter->hw.mac.type == e1000_82575)
1898 			tx_que->eims = E1000_EICR_TX_QUEUE0 << (i %  adapter->tx_num_queues);
1899 		else
1900 			tx_que->eims = 1 << (i %  adapter->tx_num_queues);
1901 	}
1902 
1903 	/* Link interrupt */
1904 	rid = vector + 1;
1905         error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq");
1906 
1907 	if (error) {
1908 		device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
1909 		goto fail;
1910 	}
1911 	adapter->linkvec = vector;
1912 	if (adapter->hw.mac.type < igb_mac_min) {
1913 		adapter->ivars |=  (8 | vector) << 16;
1914 		adapter->ivars |= 0x80000000;
1915 	}
1916 	return (0);
1917  fail:
1918 	iflib_irq_free(ctx, &adapter->irq);
1919 	rx_que = adapter->rx_queues;
1920 	for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++)
1921 		iflib_irq_free(ctx, &rx_que->que_irq);
1922 	return (error);
1923 }
1924 
1925 static void
1926 igb_configure_queues(struct adapter *adapter)
1927 {
1928 	struct	e1000_hw	*hw = &adapter->hw;
1929 	struct	em_rx_queue	*rx_que;
1930 	struct  em_tx_queue    *tx_que;
1931 	u32			tmp, ivar = 0, newitr = 0;
1932 
1933 	/* First turn on RSS capability */
1934 	if (adapter->hw.mac.type != e1000_82575)
1935 		E1000_WRITE_REG(hw, E1000_GPIE,
1936 		    E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
1937 		    E1000_GPIE_PBA | E1000_GPIE_NSICR);
1938 
1939 	/* Turn on MSIX */
1940 	switch (adapter->hw.mac.type) {
1941 	case e1000_82580:
1942 	case e1000_i350:
1943 	case e1000_i354:
1944 	case e1000_i210:
1945 	case e1000_i211:
1946 	case e1000_vfadapt:
1947 	case e1000_vfadapt_i350:
1948 		/* RX entries */
1949 		for (int i = 0; i < adapter->rx_num_queues; i++) {
1950 			u32 index = i >> 1;
1951 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
1952 			rx_que = &adapter->rx_queues[i];
1953 			if (i & 1) {
1954 				ivar &= 0xFF00FFFF;
1955 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
1956 			} else {
1957 				ivar &= 0xFFFFFF00;
1958 				ivar |= rx_que->msix | E1000_IVAR_VALID;
1959 			}
1960 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
1961 		}
1962 		/* TX entries */
1963 		for (int i = 0; i < adapter->tx_num_queues; i++) {
1964 			u32 index = i >> 1;
1965 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
1966 			tx_que = &adapter->tx_queues[i];
1967 			if (i & 1) {
1968 				ivar &= 0x00FFFFFF;
1969 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
1970 			} else {
1971 				ivar &= 0xFFFF00FF;
1972 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
1973 			}
1974 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
1975 			adapter->que_mask |= tx_que->eims;
1976 		}
1977 
1978 		/* And for the link interrupt */
1979 		ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
1980 		adapter->link_mask = 1 << adapter->linkvec;
1981 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
1982 		break;
1983 	case e1000_82576:
1984 		/* RX entries */
1985 		for (int i = 0; i < adapter->rx_num_queues; i++) {
1986 			u32 index = i & 0x7; /* Each IVAR has two entries */
1987 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
1988 			rx_que = &adapter->rx_queues[i];
1989 			if (i < 8) {
1990 				ivar &= 0xFFFFFF00;
1991 				ivar |= rx_que->msix | E1000_IVAR_VALID;
1992 			} else {
1993 				ivar &= 0xFF00FFFF;
1994 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
1995 			}
1996 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
1997 			adapter->que_mask |= rx_que->eims;
1998 		}
1999 		/* TX entries */
2000 		for (int i = 0; i < adapter->tx_num_queues; i++) {
2001 			u32 index = i & 0x7; /* Each IVAR has two entries */
2002 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2003 			tx_que = &adapter->tx_queues[i];
2004 			if (i < 8) {
2005 				ivar &= 0xFFFF00FF;
2006 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2007 			} else {
2008 				ivar &= 0x00FFFFFF;
2009 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2010 			}
2011 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2012 			adapter->que_mask |= tx_que->eims;
2013 		}
2014 
2015 		/* And for the link interrupt */
2016 		ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2017 		adapter->link_mask = 1 << adapter->linkvec;
2018 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2019 		break;
2020 
2021 	case e1000_82575:
2022                 /* enable MSI-X support*/
2023 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2024                 tmp |= E1000_CTRL_EXT_PBA_CLR;
2025                 /* Auto-Mask interrupts upon ICR read. */
2026                 tmp |= E1000_CTRL_EXT_EIAME;
2027                 tmp |= E1000_CTRL_EXT_IRCA;
2028                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2029 
2030 		/* Queues */
2031 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2032 			rx_que = &adapter->rx_queues[i];
2033 			tmp = E1000_EICR_RX_QUEUE0 << i;
2034 			tmp |= E1000_EICR_TX_QUEUE0 << i;
2035 			rx_que->eims = tmp;
2036 			E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2037 			    i, rx_que->eims);
2038 			adapter->que_mask |= rx_que->eims;
2039 		}
2040 
2041 		/* Link */
2042 		E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
2043 		    E1000_EIMS_OTHER);
2044 		adapter->link_mask |= E1000_EIMS_OTHER;
2045 	default:
2046 		break;
2047 	}
2048 
2049 	/* Set the starting interrupt rate */
2050 	if (em_max_interrupt_rate > 0)
2051 		newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2052 
2053         if (hw->mac.type == e1000_82575)
2054                 newitr |= newitr << 16;
2055         else
2056                 newitr |= E1000_EITR_CNT_IGNR;
2057 
2058 	for (int i = 0; i < adapter->rx_num_queues; i++) {
2059 		rx_que = &adapter->rx_queues[i];
2060 		E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2061 	}
2062 
2063 	return;
2064 }
2065 
2066 static void
2067 em_free_pci_resources(if_ctx_t ctx)
2068 {
2069 	struct adapter *adapter = iflib_get_softc(ctx);
2070         struct 		em_rx_queue *que = adapter->rx_queues;
2071 	device_t	dev = iflib_get_dev(ctx);
2072 
2073 	/* Release all msix queue resources */
2074 	if (adapter->intr_type == IFLIB_INTR_MSIX)
2075 		iflib_irq_free(ctx, &adapter->irq);
2076 
2077 	for (int i = 0; i < adapter->rx_num_queues; i++, que++) {
2078 		iflib_irq_free(ctx, &que->que_irq);
2079 	}
2080 
2081 
2082 	/* First release all the interrupt resources */
2083 	if (adapter->memory != NULL) {
2084 		bus_release_resource(dev, SYS_RES_MEMORY,
2085 				     PCIR_BAR(0), adapter->memory);
2086 		adapter->memory = NULL;
2087 	}
2088 
2089 	if (adapter->flash != NULL) {
2090 		bus_release_resource(dev, SYS_RES_MEMORY,
2091 				     EM_FLASH, adapter->flash);
2092 		adapter->flash = NULL;
2093 	}
2094 	if (adapter->ioport != NULL)
2095 		bus_release_resource(dev, SYS_RES_IOPORT,
2096 		    adapter->io_rid, adapter->ioport);
2097 }
2098 
2099 /* Setup MSI or MSI/X */
2100 static int
2101 em_setup_msix(if_ctx_t ctx)
2102 {
2103 	struct adapter *adapter = iflib_get_softc(ctx);
2104 
2105 	if (adapter->hw.mac.type == e1000_82574) {
2106 		em_enable_vectors_82574(ctx);
2107 	}
2108 	return (0);
2109 }
2110 
2111 /*********************************************************************
2112  *
2113  *  Initialize the hardware to a configuration
2114  *  as specified by the adapter structure.
2115  *
2116  **********************************************************************/
2117 
2118 static void
2119 lem_smartspeed(struct adapter *adapter)
2120 {
2121 	u16 phy_tmp;
2122 
2123 	if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
2124 	    adapter->hw.mac.autoneg == 0 ||
2125 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2126 		return;
2127 
2128 	if (adapter->smartspeed == 0) {
2129 		/* If Master/Slave config fault is asserted twice,
2130 		 * we assume back-to-back */
2131 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2132 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2133 			return;
2134 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2135 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2136 			e1000_read_phy_reg(&adapter->hw,
2137 			    PHY_1000T_CTRL, &phy_tmp);
2138 			if(phy_tmp & CR_1000T_MS_ENABLE) {
2139 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2140 				e1000_write_phy_reg(&adapter->hw,
2141 				    PHY_1000T_CTRL, phy_tmp);
2142 				adapter->smartspeed++;
2143 				if(adapter->hw.mac.autoneg &&
2144 				   !e1000_copper_link_autoneg(&adapter->hw) &&
2145 				   !e1000_read_phy_reg(&adapter->hw,
2146 				    PHY_CONTROL, &phy_tmp)) {
2147 					phy_tmp |= (MII_CR_AUTO_NEG_EN |
2148 						    MII_CR_RESTART_AUTO_NEG);
2149 					e1000_write_phy_reg(&adapter->hw,
2150 					    PHY_CONTROL, phy_tmp);
2151 				}
2152 			}
2153 		}
2154 		return;
2155 	} else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2156 		/* If still no link, perhaps using 2/3 pair cable */
2157 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2158 		phy_tmp |= CR_1000T_MS_ENABLE;
2159 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2160 		if(adapter->hw.mac.autoneg &&
2161 		   !e1000_copper_link_autoneg(&adapter->hw) &&
2162 		   !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2163 			phy_tmp |= (MII_CR_AUTO_NEG_EN |
2164 				    MII_CR_RESTART_AUTO_NEG);
2165 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2166 		}
2167 	}
2168 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2169 	if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2170 		adapter->smartspeed = 0;
2171 }
2172 
2173 
2174 static void
2175 em_reset(if_ctx_t ctx)
2176 {
2177         device_t	dev = iflib_get_dev(ctx);
2178 	struct adapter *adapter = iflib_get_softc(ctx);
2179 	struct ifnet *ifp = iflib_get_ifp(ctx);
2180 	struct e1000_hw	*hw = &adapter->hw;
2181 	u16		rx_buffer_size;
2182 	u32		pba;
2183 
2184 	INIT_DEBUGOUT("em_reset: begin");
2185 
2186 	/* Set up smart power down as default off on newer adapters. */
2187 	if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2188 	    hw->mac.type == e1000_82572)) {
2189 		u16 phy_tmp = 0;
2190 
2191 		/* Speed up time to link by disabling smart power down. */
2192 		e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2193 		phy_tmp &= ~IGP02E1000_PM_SPD;
2194 		e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2195 	}
2196 
2197 	/*
2198 	 * Packet Buffer Allocation (PBA)
2199 	 * Writing PBA sets the receive portion of the buffer
2200 	 * the remainder is used for the transmit buffer.
2201 	 */
2202 	switch (hw->mac.type) {
2203 	/* Total Packet Buffer on these is 48K */
2204 	case e1000_82571:
2205 	case e1000_82572:
2206 	case e1000_80003es2lan:
2207 			pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2208 		break;
2209 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2210 			pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2211 		break;
2212 	case e1000_82574:
2213 	case e1000_82583:
2214 			pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2215 		break;
2216 	case e1000_ich8lan:
2217 		pba = E1000_PBA_8K;
2218 		break;
2219 	case e1000_ich9lan:
2220 	case e1000_ich10lan:
2221 		/* Boost Receive side for jumbo frames */
2222 		if (adapter->hw.mac.max_frame_size > 4096)
2223 			pba = E1000_PBA_14K;
2224 		else
2225 			pba = E1000_PBA_10K;
2226 		break;
2227 	case e1000_pchlan:
2228 	case e1000_pch2lan:
2229 	case e1000_pch_lpt:
2230 	case e1000_pch_spt:
2231 		pba = E1000_PBA_26K;
2232 		break;
2233 	default:
2234 		if (adapter->hw.mac.max_frame_size > 8192)
2235 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2236 		else
2237 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2238 	}
2239 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2240 
2241 	/*
2242 	 * These parameters control the automatic generation (Tx) and
2243 	 * response (Rx) to Ethernet PAUSE frames.
2244 	 * - High water mark should allow for at least two frames to be
2245 	 *   received after sending an XOFF.
2246 	 * - Low water mark works best when it is very near the high water mark.
2247 	 *   This allows the receiver to restart by sending XON when it has
2248 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
2249 	 *   restart after one full frame is pulled from the buffer. There
2250 	 *   could be several smaller frames in the buffer and if so they will
2251 	 *   not trigger the XON until their total number reduces the buffer
2252 	 *   by 1500.
2253 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2254 	 */
2255 	rx_buffer_size = ((E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10 );
2256 	hw->fc.high_water = rx_buffer_size -
2257 	    roundup2(adapter->hw.mac.max_frame_size, 1024);
2258 	hw->fc.low_water = hw->fc.high_water - 1500;
2259 
2260 	if (adapter->fc) /* locally set flow control value? */
2261 		hw->fc.requested_mode = adapter->fc;
2262 	else
2263 		hw->fc.requested_mode = e1000_fc_full;
2264 
2265 	if (hw->mac.type == e1000_80003es2lan)
2266 		hw->fc.pause_time = 0xFFFF;
2267 	else
2268 		hw->fc.pause_time = EM_FC_PAUSE_TIME;
2269 
2270 	hw->fc.send_xon = TRUE;
2271 
2272 	/* Device specific overrides/settings */
2273 	switch (hw->mac.type) {
2274 	case e1000_pchlan:
2275 		/* Workaround: no TX flow ctrl for PCH */
2276                 hw->fc.requested_mode = e1000_fc_rx_pause;
2277 		hw->fc.pause_time = 0xFFFF; /* override */
2278 		if (if_getmtu(ifp) > ETHERMTU) {
2279 			hw->fc.high_water = 0x3500;
2280 			hw->fc.low_water = 0x1500;
2281 		} else {
2282 			hw->fc.high_water = 0x5000;
2283 			hw->fc.low_water = 0x3000;
2284 		}
2285 		hw->fc.refresh_time = 0x1000;
2286 		break;
2287 	case e1000_pch2lan:
2288 	case e1000_pch_lpt:
2289 	case e1000_pch_spt:
2290 		hw->fc.high_water = 0x5C20;
2291 		hw->fc.low_water = 0x5048;
2292 		hw->fc.pause_time = 0x0650;
2293 		hw->fc.refresh_time = 0x0400;
2294 		/* Jumbos need adjusted PBA */
2295 		if (if_getmtu(ifp) > ETHERMTU)
2296 			E1000_WRITE_REG(hw, E1000_PBA, 12);
2297 		else
2298 			E1000_WRITE_REG(hw, E1000_PBA, 26);
2299 		break;
2300         case e1000_ich9lan:
2301         case e1000_ich10lan:
2302 		if (if_getmtu(ifp) > ETHERMTU) {
2303 			hw->fc.high_water = 0x2800;
2304 			hw->fc.low_water = hw->fc.high_water - 8;
2305 			break;
2306 		}
2307 		/* else fall thru */
2308 	default:
2309 		if (hw->mac.type == e1000_80003es2lan)
2310 			hw->fc.pause_time = 0xFFFF;
2311 		break;
2312 	}
2313 
2314 	/* Issue a global reset */
2315 	e1000_reset_hw(hw);
2316 	E1000_WRITE_REG(hw, E1000_WUFC, 0);
2317 	em_disable_aspm(adapter);
2318 	/* and a re-init */
2319 	if (e1000_init_hw(hw) < 0) {
2320 		device_printf(dev, "Hardware Initialization Failed\n");
2321 		return;
2322 	}
2323 
2324 	E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2325 	e1000_get_phy_info(hw);
2326 	e1000_check_for_link(hw);
2327 }
2328 
2329 #define RSSKEYLEN 10
2330 static void
2331 em_initialize_rss_mapping(struct adapter *adapter)
2332 {
2333 	uint8_t  rss_key[4 * RSSKEYLEN];
2334 	uint32_t reta = 0;
2335 	struct e1000_hw	*hw = &adapter->hw;
2336 	int i;
2337 
2338 	/*
2339 	 * Configure RSS key
2340 	 */
2341 	arc4rand(rss_key, sizeof(rss_key), 0);
2342 	for (i = 0; i < RSSKEYLEN; ++i) {
2343 		uint32_t rssrk = 0;
2344 
2345 		rssrk = EM_RSSRK_VAL(rss_key, i);
2346 		E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2347 	}
2348 
2349 	/*
2350 	 * Configure RSS redirect table in following fashion:
2351 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2352 	 */
2353 	for (i = 0; i < sizeof(reta); ++i) {
2354 		uint32_t q;
2355 
2356 		q = (i % adapter->rx_num_queues) << 7;
2357 		reta |= q << (8 * i);
2358 	}
2359 
2360 	for (i = 0; i < 32; ++i)
2361 		E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2362 
2363 	E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
2364 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2365 			E1000_MRQC_RSS_FIELD_IPV4 |
2366 			E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2367 			E1000_MRQC_RSS_FIELD_IPV6_EX |
2368 			E1000_MRQC_RSS_FIELD_IPV6);
2369 
2370 }
2371 
2372 static void
2373 igb_initialize_rss_mapping(struct adapter *adapter)
2374 {
2375 	struct e1000_hw *hw = &adapter->hw;
2376 	int i;
2377 	int queue_id;
2378 	u32 reta;
2379 	u32 rss_key[10], mrqc, shift = 0;
2380 
2381 	/* XXX? */
2382 	if (adapter->hw.mac.type == e1000_82575)
2383 		shift = 6;
2384 
2385 	/*
2386 	 * The redirection table controls which destination
2387 	 * queue each bucket redirects traffic to.
2388 	 * Each DWORD represents four queues, with the LSB
2389 	 * being the first queue in the DWORD.
2390 	 *
2391 	 * This just allocates buckets to queues using round-robin
2392 	 * allocation.
2393 	 *
2394 	 * NOTE: It Just Happens to line up with the default
2395 	 * RSS allocation method.
2396 	 */
2397 
2398 	/* Warning FM follows */
2399 	reta = 0;
2400 	for (i = 0; i < 128; i++) {
2401 #ifdef	RSS
2402 		queue_id = rss_get_indirection_to_bucket(i);
2403 		/*
2404 		 * If we have more queues than buckets, we'll
2405 		 * end up mapping buckets to a subset of the
2406 		 * queues.
2407 		 *
2408 		 * If we have more buckets than queues, we'll
2409 		 * end up instead assigning multiple buckets
2410 		 * to queues.
2411 		 *
2412 		 * Both are suboptimal, but we need to handle
2413 		 * the case so we don't go out of bounds
2414 		 * indexing arrays and such.
2415 		 */
2416 		queue_id = queue_id % adapter->rx_num_queues;
2417 #else
2418 		queue_id = (i % adapter->rx_num_queues);
2419 #endif
2420 		/* Adjust if required */
2421 		queue_id = queue_id << shift;
2422 
2423 		/*
2424 		 * The low 8 bits are for hash value (n+0);
2425 		 * The next 8 bits are for hash value (n+1), etc.
2426 		 */
2427 		reta = reta >> 8;
2428 		reta = reta | ( ((uint32_t) queue_id) << 24);
2429 		if ((i & 3) == 3) {
2430 			E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2431 			reta = 0;
2432 		}
2433 	}
2434 
2435 	/* Now fill in hash table */
2436 
2437 	/*
2438 	 * MRQC: Multiple Receive Queues Command
2439 	 * Set queuing to RSS control, number depends on the device.
2440 	 */
2441 	mrqc = E1000_MRQC_ENABLE_RSS_8Q;
2442 
2443 #ifdef	RSS
2444 	/* XXX ew typecasting */
2445 	rss_getkey((uint8_t *) &rss_key);
2446 #else
2447 	arc4rand(&rss_key, sizeof(rss_key), 0);
2448 #endif
2449 	for (i = 0; i < 10; i++)
2450 		E1000_WRITE_REG_ARRAY(hw,
2451 		    E1000_RSSRK(0), i, rss_key[i]);
2452 
2453 	/*
2454 	 * Configure the RSS fields to hash upon.
2455 	 */
2456 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2457 	    E1000_MRQC_RSS_FIELD_IPV4_TCP);
2458 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2459 	    E1000_MRQC_RSS_FIELD_IPV6_TCP);
2460 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2461 	    E1000_MRQC_RSS_FIELD_IPV6_UDP);
2462 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2463 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2464 
2465 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2466 }
2467 
2468 /*********************************************************************
2469  *
2470  *  Setup networking device structure and register an interface.
2471  *
2472  **********************************************************************/
2473 static int
2474 em_setup_interface(if_ctx_t ctx)
2475 {
2476         struct ifnet *ifp = iflib_get_ifp(ctx);
2477         struct adapter *adapter = iflib_get_softc(ctx);
2478 	if_softc_ctx_t scctx = adapter->shared;
2479 	uint64_t cap = 0;
2480 
2481 	INIT_DEBUGOUT("em_setup_interface: begin");
2482 
2483 	/* TSO parameters */
2484 	if_sethwtsomax(ifp, IP_MAXPACKET);
2485 	/* Take m_pullup(9)'s in em_xmit() w/ TSO into acount. */
2486 	if_sethwtsomaxsegcount(ifp, EM_MAX_SCATTER - 5);
2487 	if_sethwtsomaxsegsize(ifp, EM_TSO_SEG_SIZE);
2488 
2489 	/* Single Queue */
2490         if (adapter->tx_num_queues == 1) {
2491 	  if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
2492 	  if_setsendqready(ifp);
2493 	}
2494 
2495         cap = IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM | IFCAP_TSO4;
2496 	cap |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU;
2497 
2498 	/*
2499 	 * Tell the upper layer(s) we
2500 	 * support full VLAN capability
2501 	 */
2502 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
2503 	if_setcapabilitiesbit(ifp, cap, 0);
2504 
2505 	/*
2506 	** Don't turn this on by default, if vlans are
2507 	** created on another pseudo device (eg. lagg)
2508 	** then vlan events are not passed thru, breaking
2509 	** operation, but with HW FILTER off it works. If
2510 	** using vlans directly on the em driver you can
2511 	** enable this and get full hardware tag filtering.
2512 	*/
2513 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWFILTER,0);
2514 
2515 	/* Enable only WOL MAGIC by default */
2516 	if (adapter->wol) {
2517 		if_setcapenablebit(ifp, IFCAP_WOL_MAGIC,
2518 			     IFCAP_WOL_MCAST| IFCAP_WOL_UCAST);
2519 	} else {
2520 		if_setcapenablebit(ifp, 0, IFCAP_WOL_MAGIC |
2521 			     IFCAP_WOL_MCAST| IFCAP_WOL_UCAST);
2522 	}
2523 
2524 	/*
2525 	 * Specify the media types supported by this adapter and register
2526 	 * callbacks to update media and link information
2527 	 */
2528 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
2529 	    (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
2530 		u_char fiber_type = IFM_1000_SX;	/* default type */
2531 
2532 		if (adapter->hw.mac.type == e1000_82545)
2533 			fiber_type = IFM_1000_LX;
2534 		ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
2535 		ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2536 	} else {
2537 		ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2538 		ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
2539 		ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2540 		ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
2541 		if (adapter->hw.phy.type != e1000_phy_ife) {
2542 			ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2543 			ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2544 		}
2545 	}
2546 	ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2547 	ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO);
2548 	return (0);
2549 }
2550 
2551 static int
2552 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
2553 {
2554 	struct adapter *adapter = iflib_get_softc(ctx);
2555 	if_softc_ctx_t scctx = adapter->shared;
2556 	int error = E1000_SUCCESS;
2557 	struct em_tx_queue *que;
2558         int i;
2559 
2560 	MPASS(adapter->tx_num_queues > 0);
2561 	MPASS(adapter->tx_num_queues == ntxqsets);
2562 
2563 	/* First allocate the top level queue structs */
2564 	if (!(adapter->tx_queues =
2565 	    (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
2566 	    adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2567 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2568 		return(ENOMEM);
2569 	}
2570 
2571 	for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) {
2572 	     /* Set up some basics */
2573 	     struct tx_ring *txr = &que->txr;
2574 	     txr->adapter = que->adapter = adapter;
2575 	     txr->que = que;
2576 	     que->me = txr->me =  i;
2577 
2578 	     /* Allocate transmit buffer memory */
2579 	  if (!(txr->tx_buffers = (struct em_txbuffer *) malloc(sizeof(struct em_txbuffer) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2580 	       device_printf(iflib_get_dev(ctx), "failed to allocate tx_buffer memory\n");
2581 	       error = ENOMEM;
2582 	       goto fail;
2583 	  }
2584 
2585 	  /* get the virtual and physical address of the hardware queues */
2586 	  txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
2587 	  txr->tx_paddr = paddrs[i*ntxqs];
2588 
2589 	}
2590 
2591 	device_printf(iflib_get_dev(ctx), "allocated for %d tx_queues\n", adapter->tx_num_queues);
2592 	return (0);
2593  fail:
2594 	em_if_queues_free(ctx);
2595 	return (error);
2596 }
2597 
2598 static int
2599 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
2600 {
2601         struct adapter *adapter = iflib_get_softc(ctx);
2602 	int error = E1000_SUCCESS;
2603 	struct em_rx_queue *que;
2604         int i;
2605 
2606 	MPASS(adapter->rx_num_queues > 0);
2607 	MPASS(adapter->rx_num_queues == nrxqsets);
2608 
2609 	/* First allocate the top level queue structs */
2610 	if (!(adapter->rx_queues =
2611 	    (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
2612 	    adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2613 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2614 		error = ENOMEM;
2615 		goto fail;
2616 	}
2617 
2618 	for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) {
2619 		/* Set up some basics */
2620 		struct rx_ring *rxr = &que->rxr;
2621 		rxr->adapter = que->adapter = adapter;
2622 		rxr->que = que;
2623 		que->me = rxr->me =  i;
2624 
2625 		/* get the virtual and physical address of the hardware queues */
2626 		rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
2627 		rxr->rx_paddr = paddrs[i*nrxqs];
2628 	}
2629 
2630 	device_printf(iflib_get_dev(ctx), "allocated for %d rx_queues\n", adapter->rx_num_queues);
2631 
2632 	return (0);
2633 fail:
2634 	em_if_queues_free(ctx);
2635 	return (error);
2636 }
2637 
2638 static void
2639 em_if_queues_free(if_ctx_t ctx)
2640 {
2641     	struct adapter *adapter = iflib_get_softc(ctx);
2642 	struct em_tx_queue *tx_que = adapter->tx_queues;
2643 	struct em_rx_queue *rx_que = adapter->rx_queues;
2644 
2645 	if (tx_que != NULL) {
2646 	  for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
2647 		struct tx_ring *txr = &tx_que->txr;
2648 		if (txr->tx_buffers == NULL)
2649 			break;
2650 
2651 		free(txr->tx_buffers, M_DEVBUF);
2652 		txr->tx_buffers = NULL;
2653 	  }
2654 	  free(adapter->tx_queues, M_DEVBUF);
2655 	  adapter->tx_queues = NULL;
2656 	}
2657 
2658 	if (rx_que != NULL) {
2659 	  free(adapter->rx_queues, M_DEVBUF);
2660 	  adapter->rx_queues = NULL;
2661 	}
2662 
2663 	em_release_hw_control(adapter);
2664 
2665 	if (adapter->mta != NULL) {
2666 		free(adapter->mta, M_DEVBUF);
2667 	}
2668 }
2669 
2670 /*********************************************************************
2671  *
2672  *  Enable transmit unit.
2673  *
2674  **********************************************************************/
2675 static void
2676 em_initialize_transmit_unit(if_ctx_t ctx)
2677 {
2678         struct adapter *adapter = iflib_get_softc(ctx);
2679 	if_softc_ctx_t scctx = adapter->shared;
2680 	struct em_tx_queue *que;
2681 	struct tx_ring	*txr;
2682 	struct e1000_hw	*hw = &adapter->hw;
2683 	u32 tctl, txdctl = 0, tarc, tipg = 0;
2684 
2685 	 INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
2686 
2687 	for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
2688 		u64 bus_addr;
2689 		caddr_t offp, endp;
2690 
2691 	        que = &adapter->tx_queues[i];
2692 		txr = &que->txr;
2693 		bus_addr = txr->tx_paddr;
2694 
2695                 /*Enable all queues */
2696 		em_init_tx_ring(que);
2697 
2698 		/* Clear checksum offload context. */
2699 		offp = (caddr_t)&txr->csum_flags;
2700 		endp = (caddr_t)(txr + 1);
2701 		bzero(offp, endp - offp);
2702 
2703 		/* Base and Len of TX Ring */
2704 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
2705 		    scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
2706 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
2707 	    	    (u32)(bus_addr >> 32));
2708 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
2709 	    	    (u32)bus_addr);
2710 		/* Init the HEAD/TAIL indices */
2711 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
2712 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
2713 
2714 		HW_DEBUGOUT2("Base = %x, Length = %x\n",
2715 		    E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)),
2716 		    E1000_READ_REG(&adapter->hw, E1000_TDLEN(i)));
2717 
2718 		txdctl = 0; /* clear txdctl */
2719                 txdctl |= 0x1f; /* PTHRESH */
2720                 txdctl |= 1 << 8; /* HTHRESH */
2721                 txdctl |= 1 << 16;/* WTHRESH */
2722 		txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
2723 		txdctl |= E1000_TXDCTL_GRAN;
2724                 txdctl |= 1 << 25; /* LWTHRESH */
2725 
2726                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
2727 	}
2728 
2729 	/* Set the default values for the Tx Inter Packet Gap timer */
2730 	switch (adapter->hw.mac.type) {
2731 	case e1000_80003es2lan:
2732 		tipg = DEFAULT_82543_TIPG_IPGR1;
2733 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2734 		    E1000_TIPG_IPGR2_SHIFT;
2735 		break;
2736 	case e1000_82542:
2737 		tipg = DEFAULT_82542_TIPG_IPGT;
2738 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2739 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2740 		break;
2741 	default:
2742 		if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
2743 		    (adapter->hw.phy.media_type ==
2744 		    e1000_media_type_internal_serdes))
2745 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2746 		else
2747 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2748 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2749 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2750 	}
2751 
2752 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2753 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value);
2754 
2755 	if(adapter->hw.mac.type >= e1000_82540)
2756 		E1000_WRITE_REG(&adapter->hw, E1000_TADV,
2757 		    adapter->tx_abs_int_delay.value);
2758 
2759 	if ((adapter->hw.mac.type == e1000_82571) ||
2760 	    (adapter->hw.mac.type == e1000_82572)) {
2761 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2762 		tarc |= TARC_SPEED_MODE_BIT;
2763 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2764 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2765 		/* errata: program both queues to unweighted RR */
2766 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2767 		tarc |= 1;
2768 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2769 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2770 		tarc |= 1;
2771 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2772 	} else if (adapter->hw.mac.type == e1000_82574) {
2773 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2774 		tarc |= TARC_ERRATA_BIT;
2775 		if ( adapter->tx_num_queues > 1) {
2776 			tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
2777 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2778 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2779 		} else
2780 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2781 	}
2782 
2783 	if (adapter->tx_int_delay.value > 0)
2784 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2785 
2786 	/* Program the Transmit Control Register */
2787 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2788 	tctl &= ~E1000_TCTL_CT;
2789 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2790 		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2791 
2792 	if (adapter->hw.mac.type >= e1000_82571)
2793 		tctl |= E1000_TCTL_MULR;
2794 
2795 	/* This write will effectively turn on the transmit unit. */
2796 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2797 
2798 	if (hw->mac.type == e1000_pch_spt) {
2799 		u32 reg;
2800 		reg = E1000_READ_REG(hw, E1000_IOSFPC);
2801 		reg |= E1000_RCTL_RDMTS_HEX;
2802 		E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
2803 		reg = E1000_READ_REG(hw, E1000_TARC(0));
2804 		reg |= E1000_TARC0_CB_MULTIQ_3_REQ;
2805 		E1000_WRITE_REG(hw, E1000_TARC(0), reg);
2806 	}
2807 }
2808 
2809 /*********************************************************************
2810  *
2811  *  Enable receive unit.
2812  *
2813  **********************************************************************/
2814 
2815 static void
2816 em_initialize_receive_unit(if_ctx_t ctx)
2817 {
2818         struct adapter *adapter = iflib_get_softc(ctx);
2819 	if_softc_ctx_t scctx = adapter->shared;
2820 	struct ifnet *ifp = iflib_get_ifp(ctx);
2821 	struct e1000_hw	*hw = &adapter->hw;
2822 	struct em_rx_queue *que;
2823 	int i;
2824 	u32	rctl, rxcsum, rfctl;
2825 
2826 	INIT_DEBUGOUT("em_initialize_receive_units: begin");
2827 
2828 	/*
2829 	 * Make sure receives are disabled while setting
2830 	 * up the descriptor ring
2831 	 */
2832 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2833 	/* Do not disable if ever enabled on this hardware */
2834 	if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
2835 		E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2836 
2837 	/* Setup the Receive Control Register */
2838 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2839 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2840 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2841 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2842 
2843 	/* Do not store bad packets */
2844 	rctl &= ~E1000_RCTL_SBP;
2845 
2846 	/* Enable Long Packet receive */
2847 	if (if_getmtu(ifp) > ETHERMTU)
2848 		rctl |= E1000_RCTL_LPE;
2849 	else
2850 		rctl &= ~E1000_RCTL_LPE;
2851 
2852         /* Strip the CRC */
2853         if (!em_disable_crc_stripping)
2854 		rctl |= E1000_RCTL_SECRC;
2855 
2856 	if (adapter->hw.mac.type >= e1000_82540) {
2857 		E1000_WRITE_REG(&adapter->hw, E1000_RADV,
2858 				adapter->rx_abs_int_delay.value);
2859 
2860 		/*
2861 		 * Set the interrupt throttling rate. Value is calculated
2862 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
2863 		 */
2864 		E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
2865 	}
2866 	E1000_WRITE_REG(&adapter->hw, E1000_RDTR,
2867 	    adapter->rx_int_delay.value);
2868 
2869 	/* Use extended rx descriptor formats */
2870 	rfctl = E1000_READ_REG(hw, E1000_RFCTL);
2871 	rfctl |= E1000_RFCTL_EXTEN;
2872 	/*
2873 	** When using MSIX interrupts we need to throttle
2874 	** using the EITR register (82574 only)
2875 	*/
2876 	if (hw->mac.type == e1000_82574) {
2877 		for (int i = 0; i < 4; i++)
2878 			E1000_WRITE_REG(hw, E1000_EITR_82574(i),
2879 			    DEFAULT_ITR);
2880 		/* Disable accelerated acknowledge */
2881 		rfctl |= E1000_RFCTL_ACK_DIS;
2882 	}
2883 	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
2884 
2885 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2886 	if (if_getcapenable(ifp) & IFCAP_RXCSUM &&
2887 	    adapter->hw.mac.type >= e1000_82543) {
2888 		if (adapter->tx_num_queues > 1) {
2889 			if (adapter->hw.mac.type >= igb_mac_min) {
2890 				rxcsum |= E1000_RXCSUM_PCSD;
2891 				if (hw->mac.type != e1000_82575)
2892 					rxcsum |= E1000_RXCSUM_CRCOFL;
2893 			} else
2894 				rxcsum |= E1000_RXCSUM_TUOFL |
2895 					E1000_RXCSUM_IPOFL |
2896 					E1000_RXCSUM_PCSD;
2897 		} else {
2898 			if (adapter->hw.mac.type >= igb_mac_min)
2899 				rxcsum |= E1000_RXCSUM_IPPCSE;
2900 			else
2901 				rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
2902 			if (adapter->hw.mac.type > e1000_82575)
2903 				rxcsum |= E1000_RXCSUM_CRCOFL;
2904 		}
2905 	} else
2906 		rxcsum &= ~E1000_RXCSUM_TUOFL;
2907 
2908 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2909 
2910 	if (adapter->rx_num_queues > 1) {
2911 		if (adapter->hw.mac.type >= igb_mac_min)
2912 			igb_initialize_rss_mapping(adapter);
2913 		else
2914 			em_initialize_rss_mapping(adapter);
2915 	}
2916 
2917 	/*
2918 	** XXX TEMPORARY WORKAROUND: on some systems with 82573
2919 	** long latencies are observed, like Lenovo X60. This
2920 	** change eliminates the problem, but since having positive
2921 	** values in RDTR is a known source of problems on other
2922 	** platforms another solution is being sought.
2923 	*/
2924 	if (hw->mac.type == e1000_82573)
2925 		E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
2926 
2927 	for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
2928 	        struct rx_ring *rxr = &que->rxr;
2929 		/* Setup the Base and Length of the Rx Descriptor Ring */
2930 		u64 bus_addr = rxr->rx_paddr;
2931 #if 0
2932 		u32 rdt = adapter->rx_num_queues -1;  /* default */
2933 #endif
2934 
2935 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
2936 		    scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
2937 		E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
2938 		E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
2939 		/* Setup the Head and Tail Descriptor Pointers */
2940 		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
2941 		E1000_WRITE_REG(hw, E1000_RDT(i), 0);
2942 	}
2943 
2944 	/*
2945 	 * Set PTHRESH for improved jumbo performance
2946 	 * According to 10.2.5.11 of Intel 82574 Datasheet,
2947 	 * RXDCTL(1) is written whenever RXDCTL(0) is written.
2948 	 * Only write to RXDCTL(1) if there is a need for different
2949 	 * settings.
2950 	 */
2951 
2952 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
2953 	    (adapter->hw.mac.type == e1000_pch2lan) ||
2954 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
2955 	    (if_getmtu(ifp) > ETHERMTU)) {
2956 		u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
2957 		E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
2958 	} else if (adapter->hw.mac.type == e1000_82574) {
2959 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2960 			u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2961 			rxdctl |= 0x20; /* PTHRESH */
2962 			rxdctl |= 4 << 8; /* HTHRESH */
2963 			rxdctl |= 4 << 16;/* WTHRESH */
2964 			rxdctl |= 1 << 24; /* Switch to granularity */
2965 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2966 		}
2967 	} else if (adapter->hw.mac.type >= igb_mac_min) {
2968 		u32 psize, srrctl = 0;
2969 
2970 		if (ifp->if_mtu > ETHERMTU) {
2971 			rctl |= E1000_RCTL_LPE;
2972 
2973 			/* Set maximum packet len */
2974 			psize = scctx->isc_max_frame_size;
2975 			if (psize <= 4096) {
2976 				srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2977 				rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
2978 			} else if (psize > 4096) {
2979 				srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2980 				rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
2981 			}
2982 
2983 			/* are we on a vlan? */
2984 			if (ifp->if_vlantrunk != NULL)
2985 				psize += VLAN_TAG_SIZE;
2986 			E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
2987 		} else {
2988 			rctl &= ~E1000_RCTL_LPE;
2989 			srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2990 			rctl |= E1000_RCTL_SZ_2048;
2991 		}
2992 
2993 		/*
2994 		 * If TX flow control is disabled and there's >1 queue defined,
2995 		 * enable DROP.
2996 		 *
2997 		 * This drops frames rather than hanging the RX MAC for all queues.
2998 		 */
2999 		if ((adapter->rx_num_queues > 1) &&
3000 		    (adapter->fc == e1000_fc_none ||
3001 		     adapter->fc == e1000_fc_rx_pause)) {
3002 			srrctl |= E1000_SRRCTL_DROP_EN;
3003 		}
3004 			/* Setup the Base and Length of the Rx Descriptor Rings */
3005 		for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3006 			struct rx_ring *rxr = &que->rxr;
3007 			u64 bus_addr = rxr->rx_paddr;
3008 			u32 rxdctl;
3009 
3010 #ifdef notyet
3011 			/* Configure for header split? -- ignore for now */
3012 			rxr->hdr_split = igb_header_split;
3013 #else
3014 			srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3015 #endif
3016 
3017 
3018 			E1000_WRITE_REG(hw, E1000_RDLEN(i),
3019 					scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3020 			E1000_WRITE_REG(hw, E1000_RDBAH(i),
3021 					(uint32_t)(bus_addr >> 32));
3022 			E1000_WRITE_REG(hw, E1000_RDBAL(i),
3023 					(uint32_t)bus_addr);
3024 			E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3025 			/* Enable this Queue */
3026 			rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3027 			rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3028 			rxdctl &= 0xFFF00000;
3029 			rxdctl |= IGB_RX_PTHRESH;
3030 			rxdctl |= IGB_RX_HTHRESH << 8;
3031 			rxdctl |= IGB_RX_WTHRESH << 16;
3032 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3033 		}
3034 	}
3035 	if (adapter->hw.mac.type >= e1000_pch2lan) {
3036 		if (if_getmtu(ifp) > ETHERMTU)
3037 			e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
3038 		else
3039 			e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
3040 	}
3041 
3042         /* Make sure VLAN Filters are off */
3043         rctl &= ~E1000_RCTL_VFE;
3044 
3045 	if (adapter->rx_mbuf_sz == MCLBYTES)
3046 		rctl |= E1000_RCTL_SZ_2048;
3047 	else if (adapter->rx_mbuf_sz == MJUMPAGESIZE)
3048 		rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3049 	else if (adapter->rx_mbuf_sz > MJUMPAGESIZE)
3050 		rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3051 
3052 	/* ensure we clear use DTYPE of 00 here */
3053 	rctl &= ~0x00000C00;
3054 	/* Write out the settings */
3055 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3056 
3057 	return;
3058 }
3059 
3060 static void
3061 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3062 {
3063         struct adapter  *adapter = iflib_get_softc(ctx);
3064 	u32		index, bit;
3065 
3066 	index = (vtag >> 5) & 0x7F;
3067 	bit = vtag & 0x1F;
3068 	adapter->shadow_vfta[index] |= (1 << bit);
3069 	++adapter->num_vlans;
3070 }
3071 
3072 static void
3073 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3074 {
3075         struct adapter	*adapter = iflib_get_softc(ctx);
3076 	u32		index, bit;
3077 
3078 	index = (vtag >> 5) & 0x7F;
3079 	bit = vtag & 0x1F;
3080 	adapter->shadow_vfta[index] &= ~(1 << bit);
3081 	--adapter->num_vlans;
3082 }
3083 
3084 static void
3085 em_setup_vlan_hw_support(struct adapter *adapter)
3086 {
3087 	struct e1000_hw *hw = &adapter->hw;
3088 	u32             reg;
3089 
3090 	/*
3091 	** We get here thru init_locked, meaning
3092 	** a soft reset, this has already cleared
3093 	** the VFTA and other state, so if there
3094 	** have been no vlan's registered do nothing.
3095 	*/
3096 	if (adapter->num_vlans == 0)
3097                 return;
3098 
3099 	/*
3100 	** A soft reset zero's out the VFTA, so
3101 	** we need to repopulate it now.
3102 	*/
3103 	for (int i = 0; i < EM_VFTA_SIZE; i++)
3104                 if (adapter->shadow_vfta[i] != 0)
3105 			E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
3106                             i, adapter->shadow_vfta[i]);
3107 
3108 	reg = E1000_READ_REG(hw, E1000_CTRL);
3109 	reg |= E1000_CTRL_VME;
3110 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
3111 
3112 	/* Enable the Filter Table */
3113 	reg = E1000_READ_REG(hw, E1000_RCTL);
3114 	reg &= ~E1000_RCTL_CFIEN;
3115 	reg |= E1000_RCTL_VFE;
3116 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
3117 }
3118 
3119 static void
3120 em_if_enable_intr(if_ctx_t ctx)
3121 {
3122         struct adapter *adapter = iflib_get_softc(ctx);
3123 	struct e1000_hw *hw = &adapter->hw;
3124 	u32 ims_mask = IMS_ENABLE_MASK;
3125 
3126 	if (hw->mac.type == e1000_82574) {
3127 		E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK);
3128 		ims_mask |= adapter->ims;
3129 	} if (adapter->intr_type == IFLIB_INTR_MSIX && hw->mac.type >= igb_mac_min)  {
3130 		u32 mask = (adapter->que_mask | adapter->link_mask);
3131 
3132 		E1000_WRITE_REG(&adapter->hw, E1000_EIAC, mask);
3133 		E1000_WRITE_REG(&adapter->hw, E1000_EIAM, mask);
3134 		E1000_WRITE_REG(&adapter->hw, E1000_EIMS, mask);
3135 		ims_mask = E1000_IMS_LSC;
3136 	}
3137 
3138 	E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3139 }
3140 
3141 static void
3142 em_if_disable_intr(if_ctx_t ctx)
3143 {
3144         struct adapter *adapter = iflib_get_softc(ctx);
3145 	struct e1000_hw *hw = &adapter->hw;
3146 
3147 	if (adapter->intr_type == IFLIB_INTR_MSIX) {
3148 		if (hw->mac.type >= igb_mac_min)
3149 			E1000_WRITE_REG(&adapter->hw, E1000_EIMC, ~0);
3150 		E1000_WRITE_REG(&adapter->hw, E1000_EIAC, 0);
3151 	}
3152 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
3153 }
3154 
3155 /*
3156  * Bit of a misnomer, what this really means is
3157  * to enable OS management of the system... aka
3158  * to disable special hardware management features
3159  */
3160 static void
3161 em_init_manageability(struct adapter *adapter)
3162 {
3163 	/* A shared code workaround */
3164 #define E1000_82542_MANC2H E1000_MANC2H
3165 	if (adapter->has_manage) {
3166 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3167 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3168 
3169 		/* disable hardware interception of ARP */
3170 		manc &= ~(E1000_MANC_ARP_EN);
3171 
3172                 /* enable receiving management packets to the host */
3173 		manc |= E1000_MANC_EN_MNG2HOST;
3174 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3175 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3176 		manc2h |= E1000_MNG2HOST_PORT_623;
3177 		manc2h |= E1000_MNG2HOST_PORT_664;
3178 		E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3179 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3180 	}
3181 }
3182 
3183 /*
3184  * Give control back to hardware management
3185  * controller if there is one.
3186  */
3187 static void
3188 em_release_manageability(struct adapter *adapter)
3189 {
3190 	if (adapter->has_manage) {
3191 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3192 
3193 		/* re-enable hardware interception of ARP */
3194 		manc |= E1000_MANC_ARP_EN;
3195 		manc &= ~E1000_MANC_EN_MNG2HOST;
3196 
3197 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3198 	}
3199 }
3200 
3201 /*
3202  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3203  * For ASF and Pass Through versions of f/w this means
3204  * that the driver is loaded. For AMT version type f/w
3205  * this means that the network i/f is open.
3206  */
3207 static void
3208 em_get_hw_control(struct adapter *adapter)
3209 {
3210 	u32 ctrl_ext, swsm;
3211 
3212 	if (adapter->hw.mac.type == e1000_82573) {
3213 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3214 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3215 		    swsm | E1000_SWSM_DRV_LOAD);
3216 		return;
3217 	}
3218 	/* else */
3219 	ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3220 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3221 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3222 	return;
3223 }
3224 
3225 /*
3226  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3227  * For ASF and Pass Through versions of f/w this means that
3228  * the driver is no longer loaded. For AMT versions of the
3229  * f/w this means that the network i/f is closed.
3230  */
3231 static void
3232 em_release_hw_control(struct adapter *adapter)
3233 {
3234 	u32 ctrl_ext, swsm;
3235 
3236 	if (!adapter->has_manage)
3237 		return;
3238 
3239 	if (adapter->hw.mac.type == e1000_82573) {
3240 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3241 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3242 		    swsm & ~E1000_SWSM_DRV_LOAD);
3243 		return;
3244 	}
3245 	/* else */
3246 	ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3247 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3248 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3249 	return;
3250 }
3251 
3252 static int
3253 em_is_valid_ether_addr(u8 *addr)
3254 {
3255 	char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3256 
3257 	if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3258 		return (FALSE);
3259 	}
3260 
3261 	return (TRUE);
3262 }
3263 
3264 /*
3265 ** Parse the interface capabilities with regard
3266 ** to both system management and wake-on-lan for
3267 ** later use.
3268 */
3269 static void
3270 em_get_wakeup(if_ctx_t ctx)
3271 {
3272 	struct adapter	*adapter = iflib_get_softc(ctx);
3273 	device_t dev = iflib_get_dev(ctx);
3274 	u16		eeprom_data = 0, device_id, apme_mask;
3275 
3276 	adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
3277 	apme_mask = EM_EEPROM_APME;
3278 
3279 	switch (adapter->hw.mac.type) {
3280 	case e1000_82542:
3281 	case e1000_82543:
3282 		break;
3283 	case e1000_82544:
3284 		e1000_read_nvm(&adapter->hw,
3285 		    NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3286 		apme_mask = EM_82544_APME;
3287 		break;
3288 	case e1000_82546:
3289 	case e1000_82546_rev_3:
3290 		if (adapter->hw.bus.func == 1) {
3291 			e1000_read_nvm(&adapter->hw,
3292 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3293 			break;
3294 		} else
3295 			e1000_read_nvm(&adapter->hw,
3296 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3297 		break;
3298 	case e1000_82573:
3299 	case e1000_82583:
3300 		adapter->has_amt = TRUE;
3301 		/* Falls thru */
3302 	case e1000_82571:
3303 	case e1000_82572:
3304 	case e1000_80003es2lan:
3305 		if (adapter->hw.bus.func == 1) {
3306 			e1000_read_nvm(&adapter->hw,
3307 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3308 			break;
3309 		} else
3310 			e1000_read_nvm(&adapter->hw,
3311 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3312 		break;
3313 	case e1000_ich8lan:
3314 	case e1000_ich9lan:
3315 	case e1000_ich10lan:
3316 	case e1000_pchlan:
3317 	case e1000_pch2lan:
3318 	case e1000_pch_lpt:
3319 	case e1000_pch_spt:
3320 	case e1000_82575:	/* listing all igb devices */
3321 	case e1000_82576:
3322 	case e1000_82580:
3323 	case e1000_i350:
3324 	case e1000_i354:
3325 	case e1000_i210:
3326 	case e1000_i211:
3327 	case e1000_vfadapt:
3328 	case e1000_vfadapt_i350:
3329 		apme_mask = E1000_WUC_APME;
3330 		adapter->has_amt = TRUE;
3331 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
3332 		break;
3333 	default:
3334 		e1000_read_nvm(&adapter->hw,
3335 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3336 		break;
3337 	}
3338 	if (eeprom_data & apme_mask)
3339 		adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
3340 	/*
3341          * We have the eeprom settings, now apply the special cases
3342          * where the eeprom may be wrong or the board won't support
3343          * wake on lan on a particular port
3344 	 */
3345 	device_id = pci_get_device(dev);
3346         switch (device_id) {
3347 	case E1000_DEV_ID_82546GB_PCIE:
3348 		adapter->wol = 0;
3349 		break;
3350 	case E1000_DEV_ID_82546EB_FIBER:
3351 	case E1000_DEV_ID_82546GB_FIBER:
3352 		/* Wake events only supported on port A for dual fiber
3353 		 * regardless of eeprom setting */
3354 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3355 		    E1000_STATUS_FUNC_1)
3356 			adapter->wol = 0;
3357 		break;
3358 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
3359                 /* if quad port adapter, disable WoL on all but port A */
3360 		if (global_quad_port_a != 0)
3361 			adapter->wol = 0;
3362 		/* Reset for multiple quad port adapters */
3363 		if (++global_quad_port_a == 4)
3364 			global_quad_port_a = 0;
3365                 break;
3366 	case E1000_DEV_ID_82571EB_FIBER:
3367 		/* Wake events only supported on port A for dual fiber
3368 		 * regardless of eeprom setting */
3369 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3370 		    E1000_STATUS_FUNC_1)
3371 			adapter->wol = 0;
3372 		break;
3373 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
3374 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
3375 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
3376                 /* if quad port adapter, disable WoL on all but port A */
3377 		if (global_quad_port_a != 0)
3378 			adapter->wol = 0;
3379 		/* Reset for multiple quad port adapters */
3380 		if (++global_quad_port_a == 4)
3381 			global_quad_port_a = 0;
3382                 break;
3383 	}
3384 	return;
3385 }
3386 
3387 
3388 /*
3389  * Enable PCI Wake On Lan capability
3390  */
3391 static void
3392 em_enable_wakeup(if_ctx_t ctx)
3393 {
3394 	struct adapter	*adapter = iflib_get_softc(ctx);
3395 	device_t dev = iflib_get_dev(ctx);
3396 	if_t ifp = iflib_get_ifp(ctx);
3397 	u32		pmc, ctrl, ctrl_ext, rctl, wuc;
3398 	u16     	status;
3399 
3400 	if ((pci_find_cap(dev, PCIY_PMG, &pmc) != 0))
3401 		return;
3402 
3403 	/* Advertise the wakeup capability */
3404 	ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
3405 	ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
3406 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
3407 	wuc = E1000_READ_REG(&adapter->hw, E1000_WUC);
3408 	wuc |= (E1000_WUC_PME_EN | E1000_WUC_APME);
3409 	E1000_WRITE_REG(&adapter->hw, E1000_WUC, wuc);
3410 
3411 	if ((adapter->hw.mac.type == e1000_ich8lan) ||
3412 	    (adapter->hw.mac.type == e1000_pchlan) ||
3413 	    (adapter->hw.mac.type == e1000_ich9lan) ||
3414 	    (adapter->hw.mac.type == e1000_ich10lan))
3415 		e1000_suspend_workarounds_ich8lan(&adapter->hw);
3416 
3417 	/* Keep the laser running on Fiber adapters */
3418 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3419 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
3420 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3421 		ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
3422 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext);
3423 	}
3424 
3425 	/*
3426 	** Determine type of Wakeup: note that wol
3427 	** is set with all bits on by default.
3428 	*/
3429 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
3430 		adapter->wol &= ~E1000_WUFC_MAG;
3431 
3432 	if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
3433 		adapter->wol &= ~E1000_WUFC_EX;
3434 
3435 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
3436 		adapter->wol &= ~E1000_WUFC_MC;
3437 	else {
3438 		rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3439 		rctl |= E1000_RCTL_MPE;
3440 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3441 	}
3442 
3443 	if ( adapter->hw.mac.type >= e1000_pchlan) {
3444 		if (em_enable_phy_wakeup(adapter))
3445 			return;
3446 	} else {
3447 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
3448 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
3449 	}
3450 
3451 	if (adapter->hw.phy.type == e1000_phy_igp_3)
3452 		e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3453 
3454         /* Request PME */
3455         status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
3456 	status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3457 	if (if_getcapenable(ifp) & IFCAP_WOL)
3458 		status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3459         pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
3460 
3461 	return;
3462 }
3463 
3464 /*
3465 ** WOL in the newer chipset interfaces (pchlan)
3466 ** require thing to be copied into the phy
3467 */
3468 static int
3469 em_enable_phy_wakeup(struct adapter *adapter)
3470 {
3471 	struct e1000_hw *hw = &adapter->hw;
3472 	u32 mreg, ret = 0;
3473 	u16 preg;
3474 
3475 	/* copy MAC RARs to PHY RARs */
3476 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
3477 
3478 	/* copy MAC MTA to PHY MTA */
3479 	for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
3480 		mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
3481 		e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
3482 		e1000_write_phy_reg(hw, BM_MTA(i) + 1,
3483 		    (u16)((mreg >> 16) & 0xFFFF));
3484 	}
3485 
3486 	/* configure PHY Rx Control register */
3487 	e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg);
3488 	mreg = E1000_READ_REG(hw, E1000_RCTL);
3489 	if (mreg & E1000_RCTL_UPE)
3490 		preg |= BM_RCTL_UPE;
3491 	if (mreg & E1000_RCTL_MPE)
3492 		preg |= BM_RCTL_MPE;
3493 	preg &= ~(BM_RCTL_MO_MASK);
3494 	if (mreg & E1000_RCTL_MO_3)
3495 		preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
3496 				<< BM_RCTL_MO_SHIFT);
3497 	if (mreg & E1000_RCTL_BAM)
3498 		preg |= BM_RCTL_BAM;
3499 	if (mreg & E1000_RCTL_PMCF)
3500 		preg |= BM_RCTL_PMCF;
3501 	mreg = E1000_READ_REG(hw, E1000_CTRL);
3502 	if (mreg & E1000_CTRL_RFCE)
3503 		preg |= BM_RCTL_RFCE;
3504 	e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg);
3505 
3506 	/* enable PHY wakeup in MAC register */
3507 	E1000_WRITE_REG(hw, E1000_WUC,
3508 	    E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
3509 	E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol);
3510 
3511 	/* configure and enable PHY wakeup in PHY registers */
3512 	e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol);
3513 	e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
3514 
3515 	/* activate PHY wakeup */
3516 	ret = hw->phy.ops.acquire(hw);
3517 	if (ret) {
3518 		printf("Could not acquire PHY\n");
3519 		return ret;
3520 	}
3521 	e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3522 	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
3523 	ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
3524 	if (ret) {
3525 		printf("Could not read PHY page 769\n");
3526 		goto out;
3527 	}
3528 	preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
3529 	ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
3530 	if (ret)
3531 		printf("Could not set PHY Host Wakeup bit\n");
3532 out:
3533 	hw->phy.ops.release(hw);
3534 
3535 	return ret;
3536 }
3537 
3538 static void
3539 em_if_led_func(if_ctx_t ctx, int onoff)
3540 {
3541 	struct adapter	*adapter = iflib_get_softc(ctx);
3542 
3543 	if (onoff) {
3544 		e1000_setup_led(&adapter->hw);
3545 		e1000_led_on(&adapter->hw);
3546 	} else {
3547 		e1000_led_off(&adapter->hw);
3548 		e1000_cleanup_led(&adapter->hw);
3549 	}
3550 }
3551 
3552 /*
3553 ** Disable the L0S and L1 LINK states
3554 */
3555 static void
3556 em_disable_aspm(struct adapter *adapter)
3557 {
3558 	int		base, reg;
3559 	u16		link_cap,link_ctrl;
3560 	device_t	dev = adapter->dev;
3561 
3562 	switch (adapter->hw.mac.type) {
3563 		case e1000_82573:
3564 		case e1000_82574:
3565 		case e1000_82583:
3566 			break;
3567 		default:
3568 			return;
3569 	}
3570 	if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
3571 		return;
3572 	reg = base + PCIER_LINK_CAP;
3573 	link_cap = pci_read_config(dev, reg, 2);
3574 	if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
3575 		return;
3576 	reg = base + PCIER_LINK_CTL;
3577 	link_ctrl = pci_read_config(dev, reg, 2);
3578 	link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
3579 	pci_write_config(dev, reg, link_ctrl, 2);
3580 	return;
3581 }
3582 
3583 /**********************************************************************
3584  *
3585  *  Update the board statistics counters.
3586  *
3587  **********************************************************************/
3588 static void
3589 em_update_stats_counters(struct adapter *adapter)
3590 {
3591 
3592 	if(adapter->hw.phy.media_type == e1000_media_type_copper ||
3593 	   (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3594 		adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3595 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3596 	}
3597 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3598 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3599 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3600 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3601 
3602 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3603 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3604 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3605 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3606 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3607 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3608 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3609 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3610 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3611 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3612 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3613 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3614 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3615 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3616 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3617 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3618 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3619 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3620 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3621 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3622 
3623 	/* For the 64-bit byte counters the low dword must be read first. */
3624 	/* Both registers clear on the read of the high dword */
3625 
3626 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) +
3627 	    ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32);
3628 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) +
3629 	    ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32);
3630 
3631 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3632 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3633 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3634 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3635 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3636 
3637 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3638 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3639 
3640 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3641 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3642 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3643 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3644 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3645 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3646 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3647 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3648 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3649 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3650 
3651 	/* Interrupt Counts */
3652 
3653 	adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC);
3654 	adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC);
3655 	adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC);
3656 	adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC);
3657 	adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC);
3658 	adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC);
3659 	adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC);
3660 	adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC);
3661 	adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC);
3662 
3663 	if (adapter->hw.mac.type >= e1000_82543) {
3664 		adapter->stats.algnerrc +=
3665 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3666 		adapter->stats.rxerrc +=
3667 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3668 		adapter->stats.tncrs +=
3669 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3670 		adapter->stats.cexterr +=
3671 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3672 		adapter->stats.tsctc +=
3673 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3674 		adapter->stats.tsctfc +=
3675 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3676 	}
3677 }
3678 
3679 static uint64_t
3680 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
3681 {
3682 	struct adapter *adapter = iflib_get_softc(ctx);
3683 	struct ifnet *ifp = iflib_get_ifp(ctx);
3684 
3685 	switch (cnt) {
3686 	case IFCOUNTER_COLLISIONS:
3687 		return (adapter->stats.colc);
3688 	case IFCOUNTER_IERRORS:
3689 		return (adapter->dropped_pkts + adapter->stats.rxerrc +
3690 		    adapter->stats.crcerrs + adapter->stats.algnerrc +
3691 		    adapter->stats.ruc + adapter->stats.roc +
3692 		    adapter->stats.mpc + adapter->stats.cexterr);
3693 	case IFCOUNTER_OERRORS:
3694 		return (adapter->stats.ecol + adapter->stats.latecol +
3695 		    adapter->watchdog_events);
3696 	default:
3697 		return (if_get_counter_default(ifp, cnt));
3698 	}
3699 }
3700 
3701 /* Export a single 32-bit register via a read-only sysctl. */
3702 static int
3703 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
3704 {
3705 	struct adapter *adapter;
3706 	u_int val;
3707 
3708 	adapter = oidp->oid_arg1;
3709 	val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
3710 	return (sysctl_handle_int(oidp, &val, 0, req));
3711 }
3712 
3713 /*
3714  * Add sysctl variables, one per statistic, to the system.
3715  */
3716 static void
3717 em_add_hw_stats(struct adapter *adapter)
3718 {
3719 	device_t dev = iflib_get_dev(adapter->ctx);
3720         struct em_tx_queue *tx_que = adapter->tx_queues;
3721 	struct em_rx_queue *rx_que = adapter->rx_queues;
3722 
3723 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
3724 	struct sysctl_oid *tree = device_get_sysctl_tree(dev);
3725 	struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
3726 	struct e1000_hw_stats *stats = &adapter->stats;
3727 
3728 	struct sysctl_oid *stat_node, *queue_node, *int_node;
3729 	struct sysctl_oid_list *stat_list, *queue_list, *int_list;
3730 
3731 #define QUEUE_NAME_LEN 32
3732 	char namebuf[QUEUE_NAME_LEN];
3733 
3734 	/* Driver Statistics */
3735 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
3736 			CTLFLAG_RD, &adapter->dropped_pkts,
3737 			"Driver dropped packets");
3738 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
3739 			CTLFLAG_RD, &adapter->link_irq,
3740 			"Link MSIX IRQ Handled");
3741 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "mbuf_defrag_fail",
3742 			 CTLFLAG_RD, &adapter->mbuf_defrag_failed,
3743 			 "Defragmenting mbuf chain failed");
3744 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_dma_fail",
3745 			CTLFLAG_RD, &adapter->no_tx_dma_setup,
3746 			"Driver tx dma failure in xmit");
3747 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
3748 			CTLFLAG_RD, &adapter->rx_overruns,
3749 			"RX overruns");
3750 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
3751 			CTLFLAG_RD, &adapter->watchdog_events,
3752 			"Watchdog timeouts");
3753 
3754 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
3755 			CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_CTRL,
3756 			em_sysctl_reg_handler, "IU",
3757 			"Device Control Register");
3758 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
3759 			CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_RCTL,
3760 			em_sysctl_reg_handler, "IU",
3761 			"Receiver Control Register");
3762 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
3763 			CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
3764 			"Flow Control High Watermark");
3765 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
3766 			CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
3767 			"Flow Control Low Watermark");
3768 
3769 	for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
3770 	        struct tx_ring *txr = &tx_que->txr;
3771 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
3772 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
3773 					    CTLFLAG_RD, NULL, "TX Queue Name");
3774 		queue_list = SYSCTL_CHILDREN(queue_node);
3775 
3776 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
3777 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
3778 				E1000_TDH(txr->me),
3779 				em_sysctl_reg_handler, "IU",
3780  				"Transmit Descriptor Head");
3781 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
3782 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
3783 				E1000_TDT(txr->me),
3784 				em_sysctl_reg_handler, "IU",
3785  				"Transmit Descriptor Tail");
3786 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
3787 				CTLFLAG_RD, &txr->tx_irq,
3788 				"Queue MSI-X Transmit Interrupts");
3789 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "no_desc_avail",
3790 				CTLFLAG_RD, &txr->no_desc_avail,
3791 				"Queue No Descriptor Available");
3792 	}
3793 
3794 	for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) {
3795 	        struct rx_ring *rxr = &rx_que->rxr;
3796 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
3797 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
3798 					    CTLFLAG_RD, NULL, "RX Queue Name");
3799 		queue_list = SYSCTL_CHILDREN(queue_node);
3800 
3801 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
3802 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
3803 				E1000_RDH(rxr->me),
3804 				em_sysctl_reg_handler, "IU",
3805 				"Receive Descriptor Head");
3806 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
3807 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
3808 				E1000_RDT(rxr->me),
3809 				em_sysctl_reg_handler, "IU",
3810 				"Receive Descriptor Tail");
3811 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
3812 				CTLFLAG_RD, &rxr->rx_irq,
3813 				"Queue MSI-X Receive Interrupts");
3814 	}
3815 
3816 	/* MAC stats get their own sub node */
3817 
3818 	stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
3819 				    CTLFLAG_RD, NULL, "Statistics");
3820 	stat_list = SYSCTL_CHILDREN(stat_node);
3821 
3822 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
3823 			CTLFLAG_RD, &stats->ecol,
3824 			"Excessive collisions");
3825 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
3826 			CTLFLAG_RD, &stats->scc,
3827 			"Single collisions");
3828 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
3829 			CTLFLAG_RD, &stats->mcc,
3830 			"Multiple collisions");
3831 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
3832 			CTLFLAG_RD, &stats->latecol,
3833 			"Late collisions");
3834 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
3835 			CTLFLAG_RD, &stats->colc,
3836 			"Collision Count");
3837 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
3838 			CTLFLAG_RD, &adapter->stats.symerrs,
3839 			"Symbol Errors");
3840 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
3841 			CTLFLAG_RD, &adapter->stats.sec,
3842 			"Sequence Errors");
3843 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
3844 			CTLFLAG_RD, &adapter->stats.dc,
3845 			"Defer Count");
3846 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
3847 			CTLFLAG_RD, &adapter->stats.mpc,
3848 			"Missed Packets");
3849 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
3850 			CTLFLAG_RD, &adapter->stats.rnbc,
3851 			"Receive No Buffers");
3852 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
3853 			CTLFLAG_RD, &adapter->stats.ruc,
3854 			"Receive Undersize");
3855 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
3856 			CTLFLAG_RD, &adapter->stats.rfc,
3857 			"Fragmented Packets Received ");
3858 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
3859 			CTLFLAG_RD, &adapter->stats.roc,
3860 			"Oversized Packets Received");
3861 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
3862 			CTLFLAG_RD, &adapter->stats.rjc,
3863 			"Recevied Jabber");
3864 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
3865 			CTLFLAG_RD, &adapter->stats.rxerrc,
3866 			"Receive Errors");
3867 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
3868 			CTLFLAG_RD, &adapter->stats.crcerrs,
3869 			"CRC errors");
3870 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
3871 			CTLFLAG_RD, &adapter->stats.algnerrc,
3872 			"Alignment Errors");
3873 	/* On 82575 these are collision counts */
3874 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
3875 			CTLFLAG_RD, &adapter->stats.cexterr,
3876 			"Collision/Carrier extension errors");
3877 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
3878 			CTLFLAG_RD, &adapter->stats.xonrxc,
3879 			"XON Received");
3880 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
3881 			CTLFLAG_RD, &adapter->stats.xontxc,
3882 			"XON Transmitted");
3883 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
3884 			CTLFLAG_RD, &adapter->stats.xoffrxc,
3885 			"XOFF Received");
3886 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
3887 			CTLFLAG_RD, &adapter->stats.xofftxc,
3888 			"XOFF Transmitted");
3889 
3890 	/* Packet Reception Stats */
3891 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
3892 			CTLFLAG_RD, &adapter->stats.tpr,
3893 			"Total Packets Received ");
3894 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
3895 			CTLFLAG_RD, &adapter->stats.gprc,
3896 			"Good Packets Received");
3897 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
3898 			CTLFLAG_RD, &adapter->stats.bprc,
3899 			"Broadcast Packets Received");
3900 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
3901 			CTLFLAG_RD, &adapter->stats.mprc,
3902 			"Multicast Packets Received");
3903 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
3904 			CTLFLAG_RD, &adapter->stats.prc64,
3905 			"64 byte frames received ");
3906 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
3907 			CTLFLAG_RD, &adapter->stats.prc127,
3908 			"65-127 byte frames received");
3909 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
3910 			CTLFLAG_RD, &adapter->stats.prc255,
3911 			"128-255 byte frames received");
3912 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
3913 			CTLFLAG_RD, &adapter->stats.prc511,
3914 			"256-511 byte frames received");
3915 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
3916 			CTLFLAG_RD, &adapter->stats.prc1023,
3917 			"512-1023 byte frames received");
3918 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
3919 			CTLFLAG_RD, &adapter->stats.prc1522,
3920 			"1023-1522 byte frames received");
3921  	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
3922  			CTLFLAG_RD, &adapter->stats.gorc,
3923  			"Good Octets Received");
3924 
3925 	/* Packet Transmission Stats */
3926  	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
3927  			CTLFLAG_RD, &adapter->stats.gotc,
3928  			"Good Octets Transmitted");
3929 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
3930 			CTLFLAG_RD, &adapter->stats.tpt,
3931 			"Total Packets Transmitted");
3932 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
3933 			CTLFLAG_RD, &adapter->stats.gptc,
3934 			"Good Packets Transmitted");
3935 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
3936 			CTLFLAG_RD, &adapter->stats.bptc,
3937 			"Broadcast Packets Transmitted");
3938 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
3939 			CTLFLAG_RD, &adapter->stats.mptc,
3940 			"Multicast Packets Transmitted");
3941 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
3942 			CTLFLAG_RD, &adapter->stats.ptc64,
3943 			"64 byte frames transmitted ");
3944 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
3945 			CTLFLAG_RD, &adapter->stats.ptc127,
3946 			"65-127 byte frames transmitted");
3947 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
3948 			CTLFLAG_RD, &adapter->stats.ptc255,
3949 			"128-255 byte frames transmitted");
3950 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
3951 			CTLFLAG_RD, &adapter->stats.ptc511,
3952 			"256-511 byte frames transmitted");
3953 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
3954 			CTLFLAG_RD, &adapter->stats.ptc1023,
3955 			"512-1023 byte frames transmitted");
3956 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
3957 			CTLFLAG_RD, &adapter->stats.ptc1522,
3958 			"1024-1522 byte frames transmitted");
3959 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
3960 			CTLFLAG_RD, &adapter->stats.tsctc,
3961 			"TSO Contexts Transmitted");
3962 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
3963 			CTLFLAG_RD, &adapter->stats.tsctfc,
3964 			"TSO Contexts Failed");
3965 
3966 
3967 	/* Interrupt Stats */
3968 
3969 	int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
3970 				    CTLFLAG_RD, NULL, "Interrupt Statistics");
3971 	int_list = SYSCTL_CHILDREN(int_node);
3972 
3973 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
3974 			CTLFLAG_RD, &adapter->stats.iac,
3975 			"Interrupt Assertion Count");
3976 
3977 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
3978 			CTLFLAG_RD, &adapter->stats.icrxptc,
3979 			"Interrupt Cause Rx Pkt Timer Expire Count");
3980 
3981 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
3982 			CTLFLAG_RD, &adapter->stats.icrxatc,
3983 			"Interrupt Cause Rx Abs Timer Expire Count");
3984 
3985 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
3986 			CTLFLAG_RD, &adapter->stats.ictxptc,
3987 			"Interrupt Cause Tx Pkt Timer Expire Count");
3988 
3989 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
3990 			CTLFLAG_RD, &adapter->stats.ictxatc,
3991 			"Interrupt Cause Tx Abs Timer Expire Count");
3992 
3993 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
3994 			CTLFLAG_RD, &adapter->stats.ictxqec,
3995 			"Interrupt Cause Tx Queue Empty Count");
3996 
3997 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
3998 			CTLFLAG_RD, &adapter->stats.ictxqmtc,
3999 			"Interrupt Cause Tx Queue Min Thresh Count");
4000 
4001 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4002 			CTLFLAG_RD, &adapter->stats.icrxdmtc,
4003 			"Interrupt Cause Rx Desc Min Thresh Count");
4004 
4005 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4006 			CTLFLAG_RD, &adapter->stats.icrxoc,
4007 			"Interrupt Cause Receiver Overrun Count");
4008 }
4009 
4010 /**********************************************************************
4011  *
4012  *  This routine provides a way to dump out the adapter eeprom,
4013  *  often a useful debug/service tool. This only dumps the first
4014  *  32 words, stuff that matters is in that extent.
4015  *
4016  **********************************************************************/
4017 static int
4018 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4019 {
4020 	struct adapter *adapter = (struct adapter *)arg1;
4021 	int error;
4022 	int result;
4023 
4024 	result = -1;
4025 	error = sysctl_handle_int(oidp, &result, 0, req);
4026 
4027 	if (error || !req->newptr)
4028 		return (error);
4029 
4030 	/*
4031 	 * This value will cause a hex dump of the
4032 	 * first 32 16-bit words of the EEPROM to
4033 	 * the screen.
4034 	 */
4035 	if (result == 1)
4036 		em_print_nvm_info(adapter);
4037 
4038 	return (error);
4039 }
4040 
4041 static void
4042 em_print_nvm_info(struct adapter *adapter)
4043 {
4044 	u16	eeprom_data;
4045 	int	i, j, row = 0;
4046 
4047 	/* Its a bit crude, but it gets the job done */
4048 	printf("\nInterface EEPROM Dump:\n");
4049 	printf("Offset\n0x0000  ");
4050 	for (i = 0, j = 0; i < 32; i++, j++) {
4051 		if (j == 8) { /* Make the offset block */
4052 			j = 0; ++row;
4053 			printf("\n0x00%x0  ",row);
4054 		}
4055 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4056 		printf("%04x ", eeprom_data);
4057 	}
4058 	printf("\n");
4059 }
4060 
4061 static int
4062 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4063 {
4064 	struct em_int_delay_info *info;
4065 	struct adapter *adapter;
4066 	u32 regval;
4067 	int error, usecs, ticks;
4068 
4069 	info = (struct em_int_delay_info *)arg1;
4070 	usecs = info->value;
4071 	error = sysctl_handle_int(oidp, &usecs, 0, req);
4072 	if (error != 0 || req->newptr == NULL)
4073 		return (error);
4074 	if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4075 		return (EINVAL);
4076 	info->value = usecs;
4077 	ticks = EM_USECS_TO_TICKS(usecs);
4078 	if (info->offset == E1000_ITR)	/* units are 256ns here */
4079 		ticks *= 4;
4080 
4081 	adapter = info->adapter;
4082 
4083 	regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
4084 	regval = (regval & ~0xffff) | (ticks & 0xffff);
4085 	/* Handle a few special cases. */
4086 	switch (info->offset) {
4087 	case E1000_RDTR:
4088 		break;
4089 	case E1000_TIDV:
4090 		if (ticks == 0) {
4091 			adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
4092 			/* Don't write 0 into the TIDV register. */
4093 			regval++;
4094 		} else
4095 			adapter->txd_cmd |= E1000_TXD_CMD_IDE;
4096 		break;
4097 	}
4098 	E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
4099 	return (0);
4100 }
4101 
4102 static void
4103 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
4104 	const char *description, struct em_int_delay_info *info,
4105 	int offset, int value)
4106 {
4107 	info->adapter = adapter;
4108 	info->offset = offset;
4109 	info->value = value;
4110 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
4111 	    SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
4112 	    OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
4113 	    info, 0, em_sysctl_int_delay, "I", description);
4114 }
4115 
4116 static void
4117 em_set_sysctl_value(struct adapter *adapter, const char *name,
4118 	const char *description, int *limit, int value)
4119 {
4120 	*limit = value;
4121 	SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev),
4122 	    SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
4123 	    OID_AUTO, name, CTLFLAG_RW, limit, value, description);
4124 }
4125 
4126 
4127 /*
4128 ** Set flow control using sysctl:
4129 ** Flow control values:
4130 **      0 - off
4131 **      1 - rx pause
4132 **      2 - tx pause
4133 **      3 - full
4134 */
4135 static int
4136 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4137 {
4138         int		error;
4139 	static int	input = 3; /* default is full */
4140         struct adapter	*adapter = (struct adapter *) arg1;
4141 
4142         error = sysctl_handle_int(oidp, &input, 0, req);
4143 
4144         if ((error) || (req->newptr == NULL))
4145                 return (error);
4146 
4147 	if (input == adapter->fc) /* no change? */
4148 		return (error);
4149 
4150         switch (input) {
4151                 case e1000_fc_rx_pause:
4152                 case e1000_fc_tx_pause:
4153                 case e1000_fc_full:
4154                 case e1000_fc_none:
4155                         adapter->hw.fc.requested_mode = input;
4156 			adapter->fc = input;
4157                         break;
4158                 default:
4159 			/* Do nothing */
4160 			return (error);
4161         }
4162 
4163         adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
4164         e1000_force_mac_fc(&adapter->hw);
4165         return (error);
4166 }
4167 
4168 /*
4169 ** Manage Energy Efficient Ethernet:
4170 ** Control values:
4171 **     0/1 - enabled/disabled
4172 */
4173 static int
4174 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
4175 {
4176        struct adapter *adapter = (struct adapter *) arg1;
4177        int             error, value;
4178 
4179        value = adapter->hw.dev_spec.ich8lan.eee_disable;
4180        error = sysctl_handle_int(oidp, &value, 0, req);
4181        if (error || req->newptr == NULL)
4182                return (error);
4183        adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0);
4184        em_if_init(adapter->ctx);
4185 
4186        return (0);
4187 }
4188 
4189 static int
4190 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4191 {
4192 	struct adapter *adapter;
4193 	int error;
4194 	int result;
4195 
4196 	result = -1;
4197 	error = sysctl_handle_int(oidp, &result, 0, req);
4198 
4199 	if (error || !req->newptr)
4200 		return (error);
4201 
4202 	if (result == 1) {
4203 		adapter = (struct adapter *)arg1;
4204 		em_print_debug_info(adapter);
4205         }
4206 
4207 	return (error);
4208 }
4209 
4210 /*
4211 ** This routine is meant to be fluid, add whatever is
4212 ** needed for debugging a problem.  -jfv
4213 */
4214 static void
4215 em_print_debug_info(struct adapter *adapter)
4216 {
4217 	device_t dev = adapter->dev;
4218 	struct tx_ring *txr = &adapter->tx_queues->txr;
4219 	struct rx_ring *rxr = &adapter->rx_queues->rxr;
4220 
4221 	if (if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING)
4222 		printf("Interface is RUNNING ");
4223 	else
4224 		printf("Interface is NOT RUNNING\n");
4225 
4226 	if (if_getdrvflags(adapter->ifp) & IFF_DRV_OACTIVE)
4227 		printf("and INACTIVE\n");
4228 	else
4229 		printf("and ACTIVE\n");
4230 
4231 	for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
4232 		device_printf(dev, "TX Queue %d ------\n", i);
4233 		device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4234 	    		E1000_READ_REG(&adapter->hw, E1000_TDH(i)),
4235 	    		E1000_READ_REG(&adapter->hw, E1000_TDT(i)));
4236 
4237 	}
4238 	for (int j=0; j < adapter->rx_num_queues; j++, rxr++) {
4239 		device_printf(dev, "RX Queue %d ------\n", j);
4240 		device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4241 	    		E1000_READ_REG(&adapter->hw, E1000_RDH(j)),
4242 	    		E1000_READ_REG(&adapter->hw, E1000_RDT(j)));
4243 	}
4244 }
4245 
4246 
4247 /*
4248  * 82574 only:
4249  * Write a new value to the EEPROM increasing the number of MSIX
4250  * vectors from 3 to 5, for proper multiqueue support.
4251  */
4252 static void
4253 em_enable_vectors_82574(if_ctx_t ctx)
4254 {
4255 	struct adapter *adapter = iflib_get_softc(ctx);
4256 	struct e1000_hw *hw = &adapter->hw;
4257 	device_t dev = iflib_get_dev(ctx);
4258 	u16 edata;
4259 
4260 	e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4261 	printf("Current cap: %#06x\n", edata);
4262 	if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
4263 		device_printf(dev, "Writing to eeprom: increasing "
4264 		    "reported MSIX vectors from 3 to 5...\n");
4265 		edata &= ~(EM_NVM_MSIX_N_MASK);
4266 		edata |= 4 << EM_NVM_MSIX_N_SHIFT;
4267 		e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4268 		e1000_update_nvm_checksum(hw);
4269 		device_printf(dev, "Writing to eeprom: done\n");
4270 	}
4271 }
4272 
4273 
4274 #ifdef DDB
4275 DB_COMMAND(em_reset_dev, em_ddb_reset_dev)
4276 {
4277 	devclass_t	dc;
4278 	int max_em;
4279 
4280 	dc = devclass_find("em");
4281 	max_em = devclass_get_maxunit(dc);
4282 
4283 	for (int index = 0; index < (max_em - 1); index++) {
4284 		device_t dev;
4285 		dev = devclass_get_device(dc, index);
4286 		if (device_get_driver(dev) == &em_driver) {
4287 			struct adapter *adapter = device_get_softc(dev);
4288 			em_if_init(adapter->ctx);
4289 		}
4290 	}
4291 }
4292 DB_COMMAND(em_dump_queue, em_ddb_dump_queue)
4293 {
4294 	devclass_t	dc;
4295 	int max_em;
4296 
4297 	dc = devclass_find("em");
4298 	max_em = devclass_get_maxunit(dc);
4299 
4300 	for (int index = 0; index < (max_em - 1); index++) {
4301 		device_t dev;
4302 		dev = devclass_get_device(dc, index);
4303 		if (device_get_driver(dev) == &em_driver)
4304 			em_print_debug_info(device_get_softc(dev));
4305 	}
4306 
4307 }
4308 #endif
4309