xref: /freebsd/sys/dev/e1000/if_em.c (revision 92b14858b44dc4b3b57154a10e9de1b39d791e41)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* $FreeBSD$ */
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33 
34 #define em_mac_min e1000_82547
35 #define igb_mac_min e1000_82575
36 
37 /*********************************************************************
38  *  Driver version:
39  *********************************************************************/
40 char em_driver_version[] = "7.6.1-k";
41 
42 /*********************************************************************
43  *  PCI Device ID Table
44  *
45  *  Used by probe to select devices to load on
46  *  Last field stores an index into e1000_strings
47  *  Last entry must be all 0s
48  *
49  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
50  *********************************************************************/
51 
52 static pci_vendor_info_t em_vendor_info_array[] =
53 {
54 	/* Intel(R) PRO/1000 Network Connection - Legacy em*/
55 	PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) PRO/1000 Network Connection"),
56 	PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) PRO/1000 Network Connection"),
57 	PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) PRO/1000 Network Connection"),
58 	PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) PRO/1000 Network Connection"),
59 	PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) PRO/1000 Network Connection"),
60 
61 	PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) PRO/1000 Network Connection"),
62 	PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) PRO/1000 Network Connection"),
63 	PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) PRO/1000 Network Connection"),
64 	PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
65 	PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) PRO/1000 Network Connection"),
66 	PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) PRO/1000 Network Connection"),
67 	PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
68 
69 	PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) PRO/1000 Network Connection"),
70 
71 	PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) PRO/1000 Network Connection"),
72 	PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
73 
74 	PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
75 	PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
76 	PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
77 	PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) PRO/1000 Network Connection"),
78 
79 	PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) PRO/1000 Network Connection"),
80 	PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) PRO/1000 Network Connection"),
81 	PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) PRO/1000 Network Connection"),
82 	PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) PRO/1000 Network Connection"),
83 	PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) PRO/1000 Network Connection"),
84 
85 	PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
86 	PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
87 	PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
88 	PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) PRO/1000 Network Connection"),
89 	PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) PRO/1000 Network Connection"),
90 	PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) PRO/1000 Network Connection"),
91 	PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) PRO/1000 Network Connection"),
92 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
93 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) PRO/1000 Network Connection"),
94 
95 	PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) PRO/1000 Network Connection"),
96 	PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
97 	PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) PRO/1000 Network Connection"),
98 
99 	/* Intel(R) PRO/1000 Network Connection - em */
100 	PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
101 	PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
102 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 Network Connection"),
103 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 Network Connection"),
104 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 Network Connection"),
105 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
106 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 Network Connection"),
107 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 Network Connection"),
108 	PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
109 	PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 Network Connection"),
110 	PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
111 	PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
112 	PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 Network Connection"),
113 	PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 Network Connection"),
114 	PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 Network Connection"),
115 	PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 Network Connection"),
116 	PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) PRO/1000 Network Connection"),
117 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) PRO/1000 Network Connection"),
118 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) PRO/1000 Network Connection"),
119 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) PRO/1000 Network Connection"),
120 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) PRO/1000 Network Connection"),
121 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
122 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
123 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) PRO/1000 Network Connection"),
124 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) PRO/1000 Network Connection"),
125 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
126 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) PRO/1000 Network Connection"),
127 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) PRO/1000 Network Connection"),
128 	PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) PRO/1000 Network Connection"),
129 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
130 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
131 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) PRO/1000 Network Connection"),
132 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) PRO/1000 Network Connection"),
133 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) PRO/1000 Network Connection"),
134 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) PRO/1000 Network Connection"),
135 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
136 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) PRO/1000 Network Connection"),
137 	PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) PRO/1000 Network Connection"),
138 	PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) PRO/1000 Network Connection"),
139 	PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) PRO/1000 Network Connection"),
140 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) PRO/1000 Network Connection"),
141 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) PRO/1000 Network Connection"),
142 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) PRO/1000 Network Connection"),
143 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) PRO/1000 Network Connection"),
144 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) PRO/1000 Network Connection"),
145 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) PRO/1000 Network Connection"),
146 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) PRO/1000 Network Connection"),
147 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) PRO/1000 Network Connection"),
148 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) PRO/1000 Network Connection"),
149 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) PRO/1000 Network Connection"),
150 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) PRO/1000 Network Connection"),
151 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) PRO/1000 Network Connection"),
152 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) PRO/1000 Network Connection"),
153 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) PRO/1000 Network Connection"),
154 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) PRO/1000 Network Connection"),
155 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) PRO/1000 Network Connection"),
156 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) PRO/1000 Network Connection"),
157 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) PRO/1000 Network Connection"),
158 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) PRO/1000 Network Connection"),
159 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) PRO/1000 Network Connection"),
160 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) PRO/1000 Network Connection"),
161 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) PRO/1000 Network Connection"),
162 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) PRO/1000 Network Connection"),
163 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) PRO/1000 Network Connection"),
164 	PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) PRO/1000 Network Connection"),
165 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) PRO/1000 Network Connection"),
166 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) PRO/1000 Network Connection"),
167 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) PRO/1000 Network Connection"),
168 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) PRO/1000 Network Connection"),
169 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) PRO/1000 Network Connection"),
170 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) PRO/1000 Network Connection"),
171 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) PRO/1000 Network Connection"),
172 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) PRO/1000 Network Connection"),
173 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) PRO/1000 Network Connection"),
174 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) PRO/1000 Network Connection"),
175 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) PRO/1000 Network Connection"),
176 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) PRO/1000 Network Connection"),
177 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V10, "Intel(R) PRO/1000 Network Connection"),
178 	/* required last entry */
179 	PVID_END
180 };
181 
182 static pci_vendor_info_t igb_vendor_info_array[] =
183 {
184 	/* Intel(R) PRO/1000 Network Connection - igb */
185 	PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
186 	PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
187 	PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
188 	PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 PCI-Express Network Driver"),
189 	PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
190 	PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
191 	PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
192 	PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
193 	PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 PCI-Express Network Driver"),
194 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
195 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 PCI-Express Network Driver"),
196 	PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
197 	PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
198 	PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
199 	PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
200 	PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
201 	PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) PRO/1000 PCI-Express Network Driver"),
202 	PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
203 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
204 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
205 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) PRO/1000 PCI-Express Network Driver"),
206 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) PRO/1000 PCI-Express Network Driver"),
207 	PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
208 	PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
209 	PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
210 	PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
211 	PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
212 	PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
213 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) PRO/1000 PCI-Express Network Driver"),
214 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) PRO/1000 PCI-Express Network Driver"),
215 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
216 	PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
217 	PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
218 	PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
219 	PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
220 	PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
221 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
222 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
223 	PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
224 	/* required last entry */
225 	PVID_END
226 };
227 
228 /*********************************************************************
229  *  Function prototypes
230  *********************************************************************/
231 static void	*em_register(device_t dev);
232 static void	*igb_register(device_t dev);
233 static int	em_if_attach_pre(if_ctx_t ctx);
234 static int	em_if_attach_post(if_ctx_t ctx);
235 static int	em_if_detach(if_ctx_t ctx);
236 static int	em_if_shutdown(if_ctx_t ctx);
237 static int	em_if_suspend(if_ctx_t ctx);
238 static int	em_if_resume(if_ctx_t ctx);
239 
240 static int	em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets);
241 static int	em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets);
242 static void	em_if_queues_free(if_ctx_t ctx);
243 
244 static uint64_t	em_if_get_counter(if_ctx_t, ift_counter);
245 static void	em_if_init(if_ctx_t ctx);
246 static void	em_if_stop(if_ctx_t ctx);
247 static void	em_if_media_status(if_ctx_t, struct ifmediareq *);
248 static int	em_if_media_change(if_ctx_t ctx);
249 static int	em_if_mtu_set(if_ctx_t ctx, uint32_t mtu);
250 static void	em_if_timer(if_ctx_t ctx, uint16_t qid);
251 static void	em_if_vlan_register(if_ctx_t ctx, u16 vtag);
252 static void	em_if_vlan_unregister(if_ctx_t ctx, u16 vtag);
253 static void	em_if_watchdog_reset(if_ctx_t ctx);
254 
255 static void	em_identify_hardware(if_ctx_t ctx);
256 static int	em_allocate_pci_resources(if_ctx_t ctx);
257 static void	em_free_pci_resources(if_ctx_t ctx);
258 static void	em_reset(if_ctx_t ctx);
259 static int	em_setup_interface(if_ctx_t ctx);
260 static int	em_setup_msix(if_ctx_t ctx);
261 
262 static void	em_initialize_transmit_unit(if_ctx_t ctx);
263 static void	em_initialize_receive_unit(if_ctx_t ctx);
264 
265 static void	em_if_intr_enable(if_ctx_t ctx);
266 static void	em_if_intr_disable(if_ctx_t ctx);
267 static void	igb_if_intr_enable(if_ctx_t ctx);
268 static void	igb_if_intr_disable(if_ctx_t ctx);
269 static int	em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
270 static int	em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
271 static int	igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
272 static int	igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
273 static void	em_if_multi_set(if_ctx_t ctx);
274 static void	em_if_update_admin_status(if_ctx_t ctx);
275 static void	em_if_debug(if_ctx_t ctx);
276 static void	em_update_stats_counters(struct adapter *);
277 static void	em_add_hw_stats(struct adapter *adapter);
278 static int	em_if_set_promisc(if_ctx_t ctx, int flags);
279 static void	em_setup_vlan_hw_support(struct adapter *);
280 static int	em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
281 static void	em_print_nvm_info(struct adapter *);
282 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
283 static int	em_get_rs(SYSCTL_HANDLER_ARGS);
284 static void	em_print_debug_info(struct adapter *);
285 static int 	em_is_valid_ether_addr(u8 *);
286 static int	em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
287 static void	em_add_int_delay_sysctl(struct adapter *, const char *,
288 		    const char *, struct em_int_delay_info *, int, int);
289 /* Management and WOL Support */
290 static void	em_init_manageability(struct adapter *);
291 static void	em_release_manageability(struct adapter *);
292 static void	em_get_hw_control(struct adapter *);
293 static void	em_release_hw_control(struct adapter *);
294 static void	em_get_wakeup(if_ctx_t ctx);
295 static void	em_enable_wakeup(if_ctx_t ctx);
296 static int	em_enable_phy_wakeup(struct adapter *);
297 static void	em_disable_aspm(struct adapter *);
298 
299 int		em_intr(void *arg);
300 static void	em_disable_promisc(if_ctx_t ctx);
301 
302 /* MSI-X handlers */
303 static int	em_if_msix_intr_assign(if_ctx_t, int);
304 static int	em_msix_link(void *);
305 static void	em_handle_link(void *context);
306 
307 static void	em_enable_vectors_82574(if_ctx_t);
308 
309 static int	em_set_flowcntl(SYSCTL_HANDLER_ARGS);
310 static int	em_sysctl_eee(SYSCTL_HANDLER_ARGS);
311 static void	em_if_led_func(if_ctx_t ctx, int onoff);
312 
313 static int	em_get_regs(SYSCTL_HANDLER_ARGS);
314 
315 static void	lem_smartspeed(struct adapter *adapter);
316 static void	igb_configure_queues(struct adapter *adapter);
317 
318 
319 /*********************************************************************
320  *  FreeBSD Device Interface Entry Points
321  *********************************************************************/
322 static device_method_t em_methods[] = {
323 	/* Device interface */
324 	DEVMETHOD(device_register, em_register),
325 	DEVMETHOD(device_probe, iflib_device_probe),
326 	DEVMETHOD(device_attach, iflib_device_attach),
327 	DEVMETHOD(device_detach, iflib_device_detach),
328 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
329 	DEVMETHOD(device_suspend, iflib_device_suspend),
330 	DEVMETHOD(device_resume, iflib_device_resume),
331 	DEVMETHOD_END
332 };
333 
334 static device_method_t igb_methods[] = {
335 	/* Device interface */
336 	DEVMETHOD(device_register, igb_register),
337 	DEVMETHOD(device_probe, iflib_device_probe),
338 	DEVMETHOD(device_attach, iflib_device_attach),
339 	DEVMETHOD(device_detach, iflib_device_detach),
340 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
341 	DEVMETHOD(device_suspend, iflib_device_suspend),
342 	DEVMETHOD(device_resume, iflib_device_resume),
343 	DEVMETHOD_END
344 };
345 
346 
347 static driver_t em_driver = {
348 	"em", em_methods, sizeof(struct adapter),
349 };
350 
351 static devclass_t em_devclass;
352 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
353 
354 MODULE_DEPEND(em, pci, 1, 1, 1);
355 MODULE_DEPEND(em, ether, 1, 1, 1);
356 MODULE_DEPEND(em, iflib, 1, 1, 1);
357 
358 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
359 
360 static driver_t igb_driver = {
361 	"igb", igb_methods, sizeof(struct adapter),
362 };
363 
364 static devclass_t igb_devclass;
365 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
366 
367 MODULE_DEPEND(igb, pci, 1, 1, 1);
368 MODULE_DEPEND(igb, ether, 1, 1, 1);
369 MODULE_DEPEND(igb, iflib, 1, 1, 1);
370 
371 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
372 
373 static device_method_t em_if_methods[] = {
374 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
375 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
376 	DEVMETHOD(ifdi_detach, em_if_detach),
377 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
378 	DEVMETHOD(ifdi_suspend, em_if_suspend),
379 	DEVMETHOD(ifdi_resume, em_if_resume),
380 	DEVMETHOD(ifdi_init, em_if_init),
381 	DEVMETHOD(ifdi_stop, em_if_stop),
382 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
383 	DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
384 	DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
385 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
386 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
387 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
388 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
389 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
390 	DEVMETHOD(ifdi_media_status, em_if_media_status),
391 	DEVMETHOD(ifdi_media_change, em_if_media_change),
392 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
393 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
394 	DEVMETHOD(ifdi_timer, em_if_timer),
395 	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
396 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
397 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
398 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
399 	DEVMETHOD(ifdi_led_func, em_if_led_func),
400 	DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
401 	DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
402 	DEVMETHOD(ifdi_debug, em_if_debug),
403 	DEVMETHOD_END
404 };
405 
406 static driver_t em_if_driver = {
407 	"em_if", em_if_methods, sizeof(struct adapter)
408 };
409 
410 static device_method_t igb_if_methods[] = {
411 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
412 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
413 	DEVMETHOD(ifdi_detach, em_if_detach),
414 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
415 	DEVMETHOD(ifdi_suspend, em_if_suspend),
416 	DEVMETHOD(ifdi_resume, em_if_resume),
417 	DEVMETHOD(ifdi_init, em_if_init),
418 	DEVMETHOD(ifdi_stop, em_if_stop),
419 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
420 	DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
421 	DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
422 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
423 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
424 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
425 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
426 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
427 	DEVMETHOD(ifdi_media_status, em_if_media_status),
428 	DEVMETHOD(ifdi_media_change, em_if_media_change),
429 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
430 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
431 	DEVMETHOD(ifdi_timer, em_if_timer),
432 	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
433 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
434 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
435 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
436 	DEVMETHOD(ifdi_led_func, em_if_led_func),
437 	DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
438 	DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
439 	DEVMETHOD(ifdi_debug, em_if_debug),
440 	DEVMETHOD_END
441 };
442 
443 static driver_t igb_if_driver = {
444 	"igb_if", igb_if_methods, sizeof(struct adapter)
445 };
446 
447 /*********************************************************************
448  *  Tunable default values.
449  *********************************************************************/
450 
451 #define EM_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
452 #define EM_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
453 
454 #define MAX_INTS_PER_SEC	8000
455 #define DEFAULT_ITR		(1000000000/(MAX_INTS_PER_SEC * 256))
456 
457 /* Allow common code without TSO */
458 #ifndef CSUM_TSO
459 #define CSUM_TSO	0
460 #endif
461 
462 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
463     "EM driver parameters");
464 
465 static int em_disable_crc_stripping = 0;
466 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
467     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
468 
469 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
470 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
471 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
472     0, "Default transmit interrupt delay in usecs");
473 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
474     0, "Default receive interrupt delay in usecs");
475 
476 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
477 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
478 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
479     &em_tx_abs_int_delay_dflt, 0,
480     "Default transmit interrupt delay limit in usecs");
481 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
482     &em_rx_abs_int_delay_dflt, 0,
483     "Default receive interrupt delay limit in usecs");
484 
485 static int em_smart_pwr_down = FALSE;
486 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
487     0, "Set to true to leave smart power down enabled on newer adapters");
488 
489 /* Controls whether promiscuous also shows bad packets */
490 static int em_debug_sbp = TRUE;
491 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
492     "Show bad packets in promiscuous mode");
493 
494 /* How many packets rxeof tries to clean at a time */
495 static int em_rx_process_limit = 100;
496 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
497     &em_rx_process_limit, 0,
498     "Maximum number of received packets to process "
499     "at a time, -1 means unlimited");
500 
501 /* Energy efficient ethernet - default to OFF */
502 static int eee_setting = 1;
503 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
504     "Enable Energy Efficient Ethernet");
505 
506 /*
507 ** Tuneable Interrupt rate
508 */
509 static int em_max_interrupt_rate = 8000;
510 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
511     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
512 
513 
514 
515 /* Global used in WOL setup with multiport cards */
516 static int global_quad_port_a = 0;
517 
518 extern struct if_txrx igb_txrx;
519 extern struct if_txrx em_txrx;
520 extern struct if_txrx lem_txrx;
521 
522 static struct if_shared_ctx em_sctx_init = {
523 	.isc_magic = IFLIB_MAGIC,
524 	.isc_q_align = PAGE_SIZE,
525 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
526 	.isc_tx_maxsegsize = PAGE_SIZE,
527 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
528 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
529 	.isc_rx_maxsize = MJUM9BYTES,
530 	.isc_rx_nsegments = 1,
531 	.isc_rx_maxsegsize = MJUM9BYTES,
532 	.isc_nfl = 1,
533 	.isc_nrxqs = 1,
534 	.isc_ntxqs = 1,
535 	.isc_admin_intrcnt = 1,
536 	.isc_vendor_info = em_vendor_info_array,
537 	.isc_driver_version = em_driver_version,
538 	.isc_driver = &em_if_driver,
539 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
540 
541 	.isc_nrxd_min = {EM_MIN_RXD},
542 	.isc_ntxd_min = {EM_MIN_TXD},
543 	.isc_nrxd_max = {EM_MAX_RXD},
544 	.isc_ntxd_max = {EM_MAX_TXD},
545 	.isc_nrxd_default = {EM_DEFAULT_RXD},
546 	.isc_ntxd_default = {EM_DEFAULT_TXD},
547 };
548 
549 if_shared_ctx_t em_sctx = &em_sctx_init;
550 
551 static struct if_shared_ctx igb_sctx_init = {
552 	.isc_magic = IFLIB_MAGIC,
553 	.isc_q_align = PAGE_SIZE,
554 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
555 	.isc_tx_maxsegsize = PAGE_SIZE,
556 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
557 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
558 	.isc_rx_maxsize = MJUM9BYTES,
559 	.isc_rx_nsegments = 1,
560 	.isc_rx_maxsegsize = MJUM9BYTES,
561 	.isc_nfl = 1,
562 	.isc_nrxqs = 1,
563 	.isc_ntxqs = 1,
564 	.isc_admin_intrcnt = 1,
565 	.isc_vendor_info = igb_vendor_info_array,
566 	.isc_driver_version = em_driver_version,
567 	.isc_driver = &igb_if_driver,
568 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
569 
570 	.isc_nrxd_min = {EM_MIN_RXD},
571 	.isc_ntxd_min = {EM_MIN_TXD},
572 	.isc_nrxd_max = {IGB_MAX_RXD},
573 	.isc_ntxd_max = {IGB_MAX_TXD},
574 	.isc_nrxd_default = {EM_DEFAULT_RXD},
575 	.isc_ntxd_default = {EM_DEFAULT_TXD},
576 };
577 
578 if_shared_ctx_t igb_sctx = &igb_sctx_init;
579 
580 /*****************************************************************
581  *
582  * Dump Registers
583  *
584  ****************************************************************/
585 #define IGB_REGS_LEN 739
586 
587 static int em_get_regs(SYSCTL_HANDLER_ARGS)
588 {
589 	struct adapter *adapter = (struct adapter *)arg1;
590 	struct e1000_hw *hw = &adapter->hw;
591 	struct sbuf *sb;
592 	u32 *regs_buff;
593 	int rc;
594 
595 	regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
596 	memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
597 
598 	rc = sysctl_wire_old_buffer(req, 0);
599 	MPASS(rc == 0);
600 	if (rc != 0) {
601 		free(regs_buff, M_DEVBUF);
602 		return (rc);
603 	}
604 
605 	sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
606 	MPASS(sb != NULL);
607 	if (sb == NULL) {
608 		free(regs_buff, M_DEVBUF);
609 		return (ENOMEM);
610 	}
611 
612 	/* General Registers */
613 	regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
614 	regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
615 	regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
616 	regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
617 	regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
618 	regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
619 	regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
620 	regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
621 	regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
622 	regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
623 	regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
624 	regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
625 	regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
626 	regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
627 	regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
628 	regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
629 	regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
630 	regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
631 	regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
632 	regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
633 	regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
634 	regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
635 
636 	sbuf_printf(sb, "General Registers\n");
637 	sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
638 	sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
639 	sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]);
640 
641 	sbuf_printf(sb, "Interrupt Registers\n");
642 	sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
643 
644 	sbuf_printf(sb, "RX Registers\n");
645 	sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
646 	sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
647 	sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
648 	sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
649 	sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
650 	sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
651 	sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
652 
653 	sbuf_printf(sb, "TX Registers\n");
654 	sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
655 	sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
656 	sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
657 	sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
658 	sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
659 	sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
660 	sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
661 	sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
662 	sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
663 	sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
664 	sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
665 
666 	free(regs_buff, M_DEVBUF);
667 
668 #ifdef DUMP_DESCS
669 	{
670 		if_softc_ctx_t scctx = adapter->shared;
671 		struct rx_ring *rxr = &rx_que->rxr;
672 		struct tx_ring *txr = &tx_que->txr;
673 		int ntxd = scctx->isc_ntxd[0];
674 		int nrxd = scctx->isc_nrxd[0];
675 		int j;
676 
677 	for (j = 0; j < nrxd; j++) {
678 		u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
679 		u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
680 		sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
681 	}
682 
683 	for (j = 0; j < min(ntxd, 256); j++) {
684 		unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
685 
686 		sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
687 			    j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
688 			    buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
689 
690 	}
691 	}
692 #endif
693 
694 	rc = sbuf_finish(sb);
695 	sbuf_delete(sb);
696 	return(rc);
697 }
698 
699 static void *
700 em_register(device_t dev)
701 {
702 	return (em_sctx);
703 }
704 
705 static void *
706 igb_register(device_t dev)
707 {
708 	return (igb_sctx);
709 }
710 
711 static int
712 em_set_num_queues(if_ctx_t ctx)
713 {
714 	struct adapter *adapter = iflib_get_softc(ctx);
715 	int maxqueues;
716 
717 	/* Sanity check based on HW */
718 	switch (adapter->hw.mac.type) {
719 	case e1000_82576:
720 	case e1000_82580:
721 	case e1000_i350:
722 	case e1000_i354:
723 		maxqueues = 8;
724 		break;
725 	case e1000_i210:
726 	case e1000_82575:
727 		maxqueues = 4;
728 		break;
729 	case e1000_i211:
730 	case e1000_82574:
731 		maxqueues = 2;
732 		break;
733 	default:
734 		maxqueues = 1;
735 		break;
736 	}
737 
738 	return (maxqueues);
739 }
740 
741 #define	LEM_CAPS							\
742     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
743     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER
744 
745 #define	EM_CAPS								\
746     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
747     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |	\
748     IFCAP_LRO | IFCAP_VLAN_HWTSO
749 
750 #define	IGB_CAPS							\
751     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
752     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |	\
753     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 |\
754     IFCAP_TSO6
755 
756 /*********************************************************************
757  *  Device initialization routine
758  *
759  *  The attach entry point is called when the driver is being loaded.
760  *  This routine identifies the type of hardware, allocates all resources
761  *  and initializes the hardware.
762  *
763  *  return 0 on success, positive on failure
764  *********************************************************************/
765 static int
766 em_if_attach_pre(if_ctx_t ctx)
767 {
768 	struct adapter *adapter;
769 	if_softc_ctx_t scctx;
770 	device_t dev;
771 	struct e1000_hw *hw;
772 	int error = 0;
773 
774 	INIT_DEBUGOUT("em_if_attach_pre: begin");
775 	dev = iflib_get_dev(ctx);
776 	adapter = iflib_get_softc(ctx);
777 
778 	adapter->ctx = adapter->osdep.ctx = ctx;
779 	adapter->dev = adapter->osdep.dev = dev;
780 	scctx = adapter->shared = iflib_get_softc_ctx(ctx);
781 	adapter->media = iflib_get_media(ctx);
782 	hw = &adapter->hw;
783 
784 	adapter->tx_process_limit = scctx->isc_ntxd[0];
785 
786 	/* SYSCTL stuff */
787 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
788 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
789 	    OID_AUTO, "nvm", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
790 	    adapter, 0, em_sysctl_nvm_info, "I", "NVM Information");
791 
792 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
793 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
794 	    OID_AUTO, "debug", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
795 	    adapter, 0, em_sysctl_debug_info, "I", "Debug Information");
796 
797 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
798 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
799 	    OID_AUTO, "fc", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
800 	    adapter, 0, em_set_flowcntl, "I", "Flow Control");
801 
802 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
803 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
804 	    OID_AUTO, "reg_dump",
805 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter, 0,
806 	    em_get_regs, "A", "Dump Registers");
807 
808 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
809 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
810 	    OID_AUTO, "rs_dump",
811 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, adapter, 0,
812 	    em_get_rs, "I", "Dump RS indexes");
813 
814 	/* Determine hardware and mac info */
815 	em_identify_hardware(ctx);
816 
817 	scctx->isc_tx_nsegments = EM_MAX_SCATTER;
818 	scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
819 	if (bootverbose)
820 		device_printf(dev, "attach_pre capping queues at %d\n",
821 		    scctx->isc_ntxqsets_max);
822 
823 	if (adapter->hw.mac.type >= igb_mac_min) {
824 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
825 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
826 		scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
827 		scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
828 		scctx->isc_txrx = &igb_txrx;
829 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
830 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
831 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
832 		scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
833 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
834 		     CSUM_IP6_TCP | CSUM_IP6_UDP;
835 		if (adapter->hw.mac.type != e1000_82575)
836 			scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
837 		/*
838 		** Some new devices, as with ixgbe, now may
839 		** use a different BAR, so we need to keep
840 		** track of which is used.
841 		*/
842 		scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR);
843 		if (pci_read_config(dev, scctx->isc_msix_bar, 4) == 0)
844 			scctx->isc_msix_bar += 4;
845 	} else if (adapter->hw.mac.type >= em_mac_min) {
846 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
847 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
848 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
849 		scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
850 		scctx->isc_txrx = &em_txrx;
851 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
852 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
853 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
854 		scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
855 		/*
856 		 * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO}
857 		 * by default as we don't have workarounds for all associated
858 		 * silicon errata.  E. g., with several MACs such as 82573E,
859 		 * TSO only works at Gigabit speed and otherwise can cause the
860 		 * hardware to hang (which also would be next to impossible to
861 		 * work around given that already queued TSO-using descriptors
862 		 * would need to be flushed and vlan(4) reconfigured at runtime
863 		 * in case of a link speed change).  Moreover, MACs like 82579
864 		 * still can hang at Gigabit even with all publicly documented
865 		 * TSO workarounds implemented.  Generally, the penality of
866 		 * these workarounds is rather high and may involve copying
867 		 * mbuf data around so advantages of TSO lapse.  Still, TSO may
868 		 * work for a few MACs of this class - at least when sticking
869 		 * with Gigabit - in which case users may enable TSO manually.
870 		 */
871 		scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
872 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
873 		/*
874 		 * We support MSI-X with 82574 only, but indicate to iflib(4)
875 		 * that it shall give MSI at least a try with other devices.
876 		 */
877 		if (adapter->hw.mac.type == e1000_82574) {
878 			scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR);
879 		} else {
880 			scctx->isc_msix_bar = -1;
881 			scctx->isc_disable_msix = 1;
882 		}
883 	} else {
884 		scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
885 		scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
886 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
887 		scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
888 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP;
889 		scctx->isc_txrx = &lem_txrx;
890 		scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
891 		if (adapter->hw.mac.type < e1000_82543)
892 			scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM);
893 		/* INTx only */
894 		scctx->isc_msix_bar = 0;
895 	}
896 
897 	/* Setup PCI resources */
898 	if (em_allocate_pci_resources(ctx)) {
899 		device_printf(dev, "Allocation of PCI resources failed\n");
900 		error = ENXIO;
901 		goto err_pci;
902 	}
903 
904 	/*
905 	** For ICH8 and family we need to
906 	** map the flash memory, and this
907 	** must happen after the MAC is
908 	** identified
909 	*/
910 	if ((hw->mac.type == e1000_ich8lan) ||
911 	    (hw->mac.type == e1000_ich9lan) ||
912 	    (hw->mac.type == e1000_ich10lan) ||
913 	    (hw->mac.type == e1000_pchlan) ||
914 	    (hw->mac.type == e1000_pch2lan) ||
915 	    (hw->mac.type == e1000_pch_lpt)) {
916 		int rid = EM_BAR_TYPE_FLASH;
917 		adapter->flash = bus_alloc_resource_any(dev,
918 		    SYS_RES_MEMORY, &rid, RF_ACTIVE);
919 		if (adapter->flash == NULL) {
920 			device_printf(dev, "Mapping of Flash failed\n");
921 			error = ENXIO;
922 			goto err_pci;
923 		}
924 		/* This is used in the shared code */
925 		hw->flash_address = (u8 *)adapter->flash;
926 		adapter->osdep.flash_bus_space_tag =
927 		    rman_get_bustag(adapter->flash);
928 		adapter->osdep.flash_bus_space_handle =
929 		    rman_get_bushandle(adapter->flash);
930 	}
931 	/*
932 	** In the new SPT device flash is not  a
933 	** separate BAR, rather it is also in BAR0,
934 	** so use the same tag and an offset handle for the
935 	** FLASH read/write macros in the shared code.
936 	*/
937 	else if (hw->mac.type >= e1000_pch_spt) {
938 		adapter->osdep.flash_bus_space_tag =
939 		    adapter->osdep.mem_bus_space_tag;
940 		adapter->osdep.flash_bus_space_handle =
941 		    adapter->osdep.mem_bus_space_handle
942 		    + E1000_FLASH_BASE_ADDR;
943 	}
944 
945 	/* Do Shared Code initialization */
946 	error = e1000_setup_init_funcs(hw, TRUE);
947 	if (error) {
948 		device_printf(dev, "Setup of Shared code failed, error %d\n",
949 		    error);
950 		error = ENXIO;
951 		goto err_pci;
952 	}
953 
954 	em_setup_msix(ctx);
955 	e1000_get_bus_info(hw);
956 
957 	/* Set up some sysctls for the tunable interrupt delays */
958 	em_add_int_delay_sysctl(adapter, "rx_int_delay",
959 	    "receive interrupt delay in usecs", &adapter->rx_int_delay,
960 	    E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
961 	em_add_int_delay_sysctl(adapter, "tx_int_delay",
962 	    "transmit interrupt delay in usecs", &adapter->tx_int_delay,
963 	    E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
964 	em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
965 	    "receive interrupt delay limit in usecs",
966 	    &adapter->rx_abs_int_delay,
967 	    E1000_REGISTER(hw, E1000_RADV),
968 	    em_rx_abs_int_delay_dflt);
969 	em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
970 	    "transmit interrupt delay limit in usecs",
971 	    &adapter->tx_abs_int_delay,
972 	    E1000_REGISTER(hw, E1000_TADV),
973 	    em_tx_abs_int_delay_dflt);
974 	em_add_int_delay_sysctl(adapter, "itr",
975 	    "interrupt delay limit in usecs/4",
976 	    &adapter->tx_itr,
977 	    E1000_REGISTER(hw, E1000_ITR),
978 	    DEFAULT_ITR);
979 
980 	hw->mac.autoneg = DO_AUTO_NEG;
981 	hw->phy.autoneg_wait_to_complete = FALSE;
982 	hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
983 
984 	if (adapter->hw.mac.type < em_mac_min) {
985 		e1000_init_script_state_82541(&adapter->hw, TRUE);
986 		e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
987 	}
988 	/* Copper options */
989 	if (hw->phy.media_type == e1000_media_type_copper) {
990 		hw->phy.mdix = AUTO_ALL_MODES;
991 		hw->phy.disable_polarity_correction = FALSE;
992 		hw->phy.ms_type = EM_MASTER_SLAVE;
993 	}
994 
995 	/*
996 	 * Set the frame limits assuming
997 	 * standard ethernet sized frames.
998 	 */
999 	scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
1000 	    ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
1001 
1002 	/*
1003 	 * This controls when hardware reports transmit completion
1004 	 * status.
1005 	 */
1006 	hw->mac.report_tx_early = 1;
1007 
1008 	/* Allocate multicast array memory. */
1009 	adapter->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
1010 	    MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1011 	if (adapter->mta == NULL) {
1012 		device_printf(dev, "Can not allocate multicast setup array\n");
1013 		error = ENOMEM;
1014 		goto err_late;
1015 	}
1016 
1017 	/* Check SOL/IDER usage */
1018 	if (e1000_check_reset_block(hw))
1019 		device_printf(dev, "PHY reset is blocked"
1020 			      " due to SOL/IDER session.\n");
1021 
1022 	/* Sysctl for setting Energy Efficient Ethernet */
1023 	hw->dev_spec.ich8lan.eee_disable = eee_setting;
1024 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1025 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1026 	    OID_AUTO, "eee_control",
1027 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1028 	    adapter, 0, em_sysctl_eee, "I",
1029 	    "Disable Energy Efficient Ethernet");
1030 
1031 	/*
1032 	** Start from a known state, this is
1033 	** important in reading the nvm and
1034 	** mac from that.
1035 	*/
1036 	e1000_reset_hw(hw);
1037 
1038 	/* Make sure we have a good EEPROM before we read from it */
1039 	if (e1000_validate_nvm_checksum(hw) < 0) {
1040 		/*
1041 		** Some PCI-E parts fail the first check due to
1042 		** the link being in sleep state, call it again,
1043 		** if it fails a second time its a real issue.
1044 		*/
1045 		if (e1000_validate_nvm_checksum(hw) < 0) {
1046 			device_printf(dev,
1047 			    "The EEPROM Checksum Is Not Valid\n");
1048 			error = EIO;
1049 			goto err_late;
1050 		}
1051 	}
1052 
1053 	/* Copy the permanent MAC address out of the EEPROM */
1054 	if (e1000_read_mac_addr(hw) < 0) {
1055 		device_printf(dev, "EEPROM read error while reading MAC"
1056 			      " address\n");
1057 		error = EIO;
1058 		goto err_late;
1059 	}
1060 
1061 	if (!em_is_valid_ether_addr(hw->mac.addr)) {
1062 		device_printf(dev, "Invalid MAC address\n");
1063 		error = EIO;
1064 		goto err_late;
1065 	}
1066 
1067 	/* Disable ULP support */
1068 	e1000_disable_ulp_lpt_lp(hw, TRUE);
1069 
1070 	/*
1071 	 * Get Wake-on-Lan and Management info for later use
1072 	 */
1073 	em_get_wakeup(ctx);
1074 
1075 	/* Enable only WOL MAGIC by default */
1076 	scctx->isc_capenable &= ~IFCAP_WOL;
1077 	if (adapter->wol != 0)
1078 		scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1079 
1080 	iflib_set_mac(ctx, hw->mac.addr);
1081 
1082 	return (0);
1083 
1084 err_late:
1085 	em_release_hw_control(adapter);
1086 err_pci:
1087 	em_free_pci_resources(ctx);
1088 	free(adapter->mta, M_DEVBUF);
1089 
1090 	return (error);
1091 }
1092 
1093 static int
1094 em_if_attach_post(if_ctx_t ctx)
1095 {
1096 	struct adapter *adapter = iflib_get_softc(ctx);
1097 	struct e1000_hw *hw = &adapter->hw;
1098 	int error = 0;
1099 
1100 	/* Setup OS specific network interface */
1101 	error = em_setup_interface(ctx);
1102 	if (error != 0) {
1103 		goto err_late;
1104 	}
1105 
1106 	em_reset(ctx);
1107 
1108 	/* Initialize statistics */
1109 	em_update_stats_counters(adapter);
1110 	hw->mac.get_link_status = 1;
1111 	em_if_update_admin_status(ctx);
1112 	em_add_hw_stats(adapter);
1113 
1114 	/* Non-AMT based hardware can now take control from firmware */
1115 	if (adapter->has_manage && !adapter->has_amt)
1116 		em_get_hw_control(adapter);
1117 
1118 	INIT_DEBUGOUT("em_if_attach_post: end");
1119 
1120 	return (error);
1121 
1122 err_late:
1123 	em_release_hw_control(adapter);
1124 	em_free_pci_resources(ctx);
1125 	em_if_queues_free(ctx);
1126 	free(adapter->mta, M_DEVBUF);
1127 
1128 	return (error);
1129 }
1130 
1131 /*********************************************************************
1132  *  Device removal routine
1133  *
1134  *  The detach entry point is called when the driver is being removed.
1135  *  This routine stops the adapter and deallocates all the resources
1136  *  that were allocated for driver operation.
1137  *
1138  *  return 0 on success, positive on failure
1139  *********************************************************************/
1140 static int
1141 em_if_detach(if_ctx_t ctx)
1142 {
1143 	struct adapter	*adapter = iflib_get_softc(ctx);
1144 
1145 	INIT_DEBUGOUT("em_if_detach: begin");
1146 
1147 	e1000_phy_hw_reset(&adapter->hw);
1148 
1149 	em_release_manageability(adapter);
1150 	em_release_hw_control(adapter);
1151 	em_free_pci_resources(ctx);
1152 
1153 	return (0);
1154 }
1155 
1156 /*********************************************************************
1157  *
1158  *  Shutdown entry point
1159  *
1160  **********************************************************************/
1161 
1162 static int
1163 em_if_shutdown(if_ctx_t ctx)
1164 {
1165 	return em_if_suspend(ctx);
1166 }
1167 
1168 /*
1169  * Suspend/resume device methods.
1170  */
1171 static int
1172 em_if_suspend(if_ctx_t ctx)
1173 {
1174 	struct adapter *adapter = iflib_get_softc(ctx);
1175 
1176 	em_release_manageability(adapter);
1177 	em_release_hw_control(adapter);
1178 	em_enable_wakeup(ctx);
1179 	return (0);
1180 }
1181 
1182 static int
1183 em_if_resume(if_ctx_t ctx)
1184 {
1185 	struct adapter *adapter = iflib_get_softc(ctx);
1186 
1187 	if (adapter->hw.mac.type == e1000_pch2lan)
1188 		e1000_resume_workarounds_pchlan(&adapter->hw);
1189 	em_if_init(ctx);
1190 	em_init_manageability(adapter);
1191 
1192 	return(0);
1193 }
1194 
1195 static int
1196 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1197 {
1198 	int max_frame_size;
1199 	struct adapter *adapter = iflib_get_softc(ctx);
1200 	if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1201 
1202 	 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1203 
1204 	switch (adapter->hw.mac.type) {
1205 	case e1000_82571:
1206 	case e1000_82572:
1207 	case e1000_ich9lan:
1208 	case e1000_ich10lan:
1209 	case e1000_pch2lan:
1210 	case e1000_pch_lpt:
1211 	case e1000_pch_spt:
1212 	case e1000_pch_cnp:
1213 	case e1000_82574:
1214 	case e1000_82583:
1215 	case e1000_80003es2lan:
1216 		/* 9K Jumbo Frame size */
1217 		max_frame_size = 9234;
1218 		break;
1219 	case e1000_pchlan:
1220 		max_frame_size = 4096;
1221 		break;
1222 	case e1000_82542:
1223 	case e1000_ich8lan:
1224 		/* Adapters that do not support jumbo frames */
1225 		max_frame_size = ETHER_MAX_LEN;
1226 		break;
1227 	default:
1228 		if (adapter->hw.mac.type >= igb_mac_min)
1229 			max_frame_size = 9234;
1230 		else /* lem */
1231 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1232 	}
1233 	if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1234 		return (EINVAL);
1235 	}
1236 
1237 	scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
1238 	    mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1239 	return (0);
1240 }
1241 
1242 /*********************************************************************
1243  *  Init entry point
1244  *
1245  *  This routine is used in two ways. It is used by the stack as
1246  *  init entry point in network interface structure. It is also used
1247  *  by the driver as a hw/sw initialization routine to get to a
1248  *  consistent state.
1249  *
1250  **********************************************************************/
1251 static void
1252 em_if_init(if_ctx_t ctx)
1253 {
1254 	struct adapter *adapter = iflib_get_softc(ctx);
1255 	if_softc_ctx_t scctx = adapter->shared;
1256 	struct ifnet *ifp = iflib_get_ifp(ctx);
1257 	struct em_tx_queue *tx_que;
1258 	int i;
1259 
1260 	INIT_DEBUGOUT("em_if_init: begin");
1261 
1262 	/* Get the latest mac address, User can use a LAA */
1263 	bcopy(if_getlladdr(ifp), adapter->hw.mac.addr,
1264 	    ETHER_ADDR_LEN);
1265 
1266 	/* Put the address into the Receive Address Array */
1267 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1268 
1269 	/*
1270 	 * With the 82571 adapter, RAR[0] may be overwritten
1271 	 * when the other port is reset, we make a duplicate
1272 	 * in RAR[14] for that eventuality, this assures
1273 	 * the interface continues to function.
1274 	 */
1275 	if (adapter->hw.mac.type == e1000_82571) {
1276 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1277 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1278 		    E1000_RAR_ENTRIES - 1);
1279 	}
1280 
1281 
1282 	/* Initialize the hardware */
1283 	em_reset(ctx);
1284 	em_if_update_admin_status(ctx);
1285 
1286 	for (i = 0, tx_que = adapter->tx_queues; i < adapter->tx_num_queues; i++, tx_que++) {
1287 		struct tx_ring *txr = &tx_que->txr;
1288 
1289 		txr->tx_rs_cidx = txr->tx_rs_pidx;
1290 
1291 		/* Initialize the last processed descriptor to be the end of
1292 		 * the ring, rather than the start, so that we avoid an
1293 		 * off-by-one error when calculating how many descriptors are
1294 		 * done in the credits_update function.
1295 		 */
1296 		txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1297 	}
1298 
1299 	/* Setup VLAN support, basic and offload if available */
1300 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1301 
1302 	/* Clear bad data from Rx FIFOs */
1303 	if (adapter->hw.mac.type >= igb_mac_min)
1304 		e1000_rx_fifo_flush_82575(&adapter->hw);
1305 
1306 	/* Configure for OS presence */
1307 	em_init_manageability(adapter);
1308 
1309 	/* Prepare transmit descriptors and buffers */
1310 	em_initialize_transmit_unit(ctx);
1311 
1312 	/* Setup Multicast table */
1313 	em_if_multi_set(ctx);
1314 
1315 	adapter->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1316 	em_initialize_receive_unit(ctx);
1317 
1318 	/* Use real VLAN Filter support? */
1319 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
1320 		if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
1321 			/* Use real VLAN Filter support */
1322 			em_setup_vlan_hw_support(adapter);
1323 		else {
1324 			u32 ctrl;
1325 			ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1326 			ctrl |= E1000_CTRL_VME;
1327 			E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1328 		}
1329 	}
1330 
1331 	/* Don't lose promiscuous settings */
1332 	em_if_set_promisc(ctx, IFF_PROMISC);
1333 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1334 
1335 	/* MSI-X configuration for 82574 */
1336 	if (adapter->hw.mac.type == e1000_82574) {
1337 		int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1338 
1339 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1340 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1341 		/* Set the IVAR - interrupt vector routing. */
1342 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars);
1343 	} else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1344 		igb_configure_queues(adapter);
1345 
1346 	/* this clears any pending interrupts */
1347 	E1000_READ_REG(&adapter->hw, E1000_ICR);
1348 	E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
1349 
1350 	/* AMT based hardware can now take control from firmware */
1351 	if (adapter->has_manage && adapter->has_amt)
1352 		em_get_hw_control(adapter);
1353 
1354 	/* Set Energy Efficient Ethernet */
1355 	if (adapter->hw.mac.type >= igb_mac_min &&
1356 	    adapter->hw.phy.media_type == e1000_media_type_copper) {
1357 		if (adapter->hw.mac.type == e1000_i354)
1358 			e1000_set_eee_i354(&adapter->hw, TRUE, TRUE);
1359 		else
1360 			e1000_set_eee_i350(&adapter->hw, TRUE, TRUE);
1361 	}
1362 }
1363 
1364 /*********************************************************************
1365  *
1366  *  Fast Legacy/MSI Combined Interrupt Service routine
1367  *
1368  *********************************************************************/
1369 int
1370 em_intr(void *arg)
1371 {
1372 	struct adapter *adapter = arg;
1373 	if_ctx_t ctx = adapter->ctx;
1374 	u32 reg_icr;
1375 
1376 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1377 
1378 	/* Hot eject? */
1379 	if (reg_icr == 0xffffffff)
1380 		return FILTER_STRAY;
1381 
1382 	/* Definitely not our interrupt. */
1383 	if (reg_icr == 0x0)
1384 		return FILTER_STRAY;
1385 
1386 	/*
1387 	 * Starting with the 82571 chip, bit 31 should be used to
1388 	 * determine whether the interrupt belongs to us.
1389 	 */
1390 	if (adapter->hw.mac.type >= e1000_82571 &&
1391 	    (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1392 		return FILTER_STRAY;
1393 
1394 	/*
1395 	 * Only MSI-X interrupts have one-shot behavior by taking advantage
1396 	 * of the EIAC register.  Thus, explicitly disable interrupts.  This
1397 	 * also works around the MSI message reordering errata on certain
1398 	 * systems.
1399 	 */
1400 	IFDI_INTR_DISABLE(ctx);
1401 
1402 	/* Link status change */
1403 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1404 		em_handle_link(ctx);
1405 
1406 	if (reg_icr & E1000_ICR_RXO)
1407 		adapter->rx_overruns++;
1408 
1409 	return (FILTER_SCHEDULE_THREAD);
1410 }
1411 
1412 static int
1413 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1414 {
1415 	struct adapter *adapter = iflib_get_softc(ctx);
1416 	struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1417 
1418 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims);
1419 	return (0);
1420 }
1421 
1422 static int
1423 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1424 {
1425 	struct adapter *adapter = iflib_get_softc(ctx);
1426 	struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1427 
1428 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, txq->eims);
1429 	return (0);
1430 }
1431 
1432 static int
1433 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1434 {
1435 	struct adapter *adapter = iflib_get_softc(ctx);
1436 	struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1437 
1438 	E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims);
1439 	return (0);
1440 }
1441 
1442 static int
1443 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1444 {
1445 	struct adapter *adapter = iflib_get_softc(ctx);
1446 	struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1447 
1448 	E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txq->eims);
1449 	return (0);
1450 }
1451 
1452 /*********************************************************************
1453  *
1454  *  MSI-X RX Interrupt Service routine
1455  *
1456  **********************************************************************/
1457 static int
1458 em_msix_que(void *arg)
1459 {
1460 	struct em_rx_queue *que = arg;
1461 
1462 	++que->irqs;
1463 
1464 	return (FILTER_SCHEDULE_THREAD);
1465 }
1466 
1467 /*********************************************************************
1468  *
1469  *  MSI-X Link Fast Interrupt Service routine
1470  *
1471  **********************************************************************/
1472 static int
1473 em_msix_link(void *arg)
1474 {
1475 	struct adapter *adapter = arg;
1476 	u32 reg_icr;
1477 
1478 	++adapter->link_irq;
1479 	MPASS(adapter->hw.back != NULL);
1480 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1481 
1482 	if (reg_icr & E1000_ICR_RXO)
1483 		adapter->rx_overruns++;
1484 
1485 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1486 		em_handle_link(adapter->ctx);
1487 	} else if (adapter->hw.mac.type == e1000_82574) {
1488 		/* Only re-arm 82574 if em_if_update_admin_status() won't. */
1489 		E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK |
1490 		    E1000_IMS_LSC);
1491 	}
1492 
1493 	if (adapter->hw.mac.type == e1000_82574) {
1494 		/*
1495 		 * Because we must read the ICR for this interrupt it may
1496 		 * clear other causes using autoclear, for this reason we
1497 		 * simply create a soft interrupt for all these vectors.
1498 		 */
1499 		if (reg_icr)
1500 			E1000_WRITE_REG(&adapter->hw, E1000_ICS, adapter->ims);
1501 	} else {
1502 		/* Re-arm unconditionally */
1503 		E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC);
1504 		E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
1505 	}
1506 
1507 	return (FILTER_HANDLED);
1508 }
1509 
1510 static void
1511 em_handle_link(void *context)
1512 {
1513 	if_ctx_t ctx = context;
1514 	struct adapter *adapter = iflib_get_softc(ctx);
1515 
1516 	adapter->hw.mac.get_link_status = 1;
1517 	iflib_admin_intr_deferred(ctx);
1518 }
1519 
1520 /*********************************************************************
1521  *
1522  *  Media Ioctl callback
1523  *
1524  *  This routine is called whenever the user queries the status of
1525  *  the interface using ifconfig.
1526  *
1527  **********************************************************************/
1528 static void
1529 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1530 {
1531 	struct adapter *adapter = iflib_get_softc(ctx);
1532 	u_char fiber_type = IFM_1000_SX;
1533 
1534 	INIT_DEBUGOUT("em_if_media_status: begin");
1535 
1536 	iflib_admin_intr_deferred(ctx);
1537 
1538 	ifmr->ifm_status = IFM_AVALID;
1539 	ifmr->ifm_active = IFM_ETHER;
1540 
1541 	if (!adapter->link_active) {
1542 		return;
1543 	}
1544 
1545 	ifmr->ifm_status |= IFM_ACTIVE;
1546 
1547 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
1548 	    (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1549 		if (adapter->hw.mac.type == e1000_82545)
1550 			fiber_type = IFM_1000_LX;
1551 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1552 	} else {
1553 		switch (adapter->link_speed) {
1554 		case 10:
1555 			ifmr->ifm_active |= IFM_10_T;
1556 			break;
1557 		case 100:
1558 			ifmr->ifm_active |= IFM_100_TX;
1559 			break;
1560 		case 1000:
1561 			ifmr->ifm_active |= IFM_1000_T;
1562 			break;
1563 		}
1564 		if (adapter->link_duplex == FULL_DUPLEX)
1565 			ifmr->ifm_active |= IFM_FDX;
1566 		else
1567 			ifmr->ifm_active |= IFM_HDX;
1568 	}
1569 }
1570 
1571 /*********************************************************************
1572  *
1573  *  Media Ioctl callback
1574  *
1575  *  This routine is called when the user changes speed/duplex using
1576  *  media/mediopt option with ifconfig.
1577  *
1578  **********************************************************************/
1579 static int
1580 em_if_media_change(if_ctx_t ctx)
1581 {
1582 	struct adapter *adapter = iflib_get_softc(ctx);
1583 	struct ifmedia *ifm = iflib_get_media(ctx);
1584 
1585 	INIT_DEBUGOUT("em_if_media_change: begin");
1586 
1587 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1588 		return (EINVAL);
1589 
1590 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1591 	case IFM_AUTO:
1592 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1593 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1594 		break;
1595 	case IFM_1000_LX:
1596 	case IFM_1000_SX:
1597 	case IFM_1000_T:
1598 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1599 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1600 		break;
1601 	case IFM_100_TX:
1602 		adapter->hw.mac.autoneg = FALSE;
1603 		adapter->hw.phy.autoneg_advertised = 0;
1604 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1605 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1606 		else
1607 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1608 		break;
1609 	case IFM_10_T:
1610 		adapter->hw.mac.autoneg = FALSE;
1611 		adapter->hw.phy.autoneg_advertised = 0;
1612 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1613 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1614 		else
1615 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1616 		break;
1617 	default:
1618 		device_printf(adapter->dev, "Unsupported media type\n");
1619 	}
1620 
1621 	em_if_init(ctx);
1622 
1623 	return (0);
1624 }
1625 
1626 static int
1627 em_if_set_promisc(if_ctx_t ctx, int flags)
1628 {
1629 	struct adapter *adapter = iflib_get_softc(ctx);
1630 	u32 reg_rctl;
1631 
1632 	em_disable_promisc(ctx);
1633 
1634 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1635 
1636 	if (flags & IFF_PROMISC) {
1637 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1638 		/* Turn this on if you want to see bad packets */
1639 		if (em_debug_sbp)
1640 			reg_rctl |= E1000_RCTL_SBP;
1641 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1642 	} else if (flags & IFF_ALLMULTI) {
1643 		reg_rctl |= E1000_RCTL_MPE;
1644 		reg_rctl &= ~E1000_RCTL_UPE;
1645 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1646 	}
1647 	return (0);
1648 }
1649 
1650 static void
1651 em_disable_promisc(if_ctx_t ctx)
1652 {
1653 	struct adapter *adapter = iflib_get_softc(ctx);
1654 	struct ifnet *ifp = iflib_get_ifp(ctx);
1655 	u32 reg_rctl;
1656 	int mcnt = 0;
1657 
1658 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1659 	reg_rctl &= (~E1000_RCTL_UPE);
1660 	if (if_getflags(ifp) & IFF_ALLMULTI)
1661 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1662 	else
1663 		mcnt = if_llmaddr_count(ifp);
1664 	/* Don't disable if in MAX groups */
1665 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1666 		reg_rctl &=  (~E1000_RCTL_MPE);
1667 	reg_rctl &=  (~E1000_RCTL_SBP);
1668 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1669 }
1670 
1671 
1672 static u_int
1673 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1674 {
1675 	u8 *mta = arg;
1676 
1677 	if (cnt == MAX_NUM_MULTICAST_ADDRESSES)
1678 		return (1);
1679 
1680 	bcopy(LLADDR(sdl), &mta[cnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1681 
1682 	return (1);
1683 }
1684 
1685 /*********************************************************************
1686  *  Multicast Update
1687  *
1688  *  This routine is called whenever multicast address list is updated.
1689  *
1690  **********************************************************************/
1691 
1692 static void
1693 em_if_multi_set(if_ctx_t ctx)
1694 {
1695 	struct adapter *adapter = iflib_get_softc(ctx);
1696 	struct ifnet *ifp = iflib_get_ifp(ctx);
1697 	u32 reg_rctl = 0;
1698 	u8  *mta; /* Multicast array memory */
1699 	int mcnt = 0;
1700 
1701 	IOCTL_DEBUGOUT("em_set_multi: begin");
1702 
1703 	mta = adapter->mta;
1704 	bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1705 
1706 	if (adapter->hw.mac.type == e1000_82542 &&
1707 	    adapter->hw.revision_id == E1000_REVISION_2) {
1708 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1709 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1710 			e1000_pci_clear_mwi(&adapter->hw);
1711 		reg_rctl |= E1000_RCTL_RST;
1712 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1713 		msec_delay(5);
1714 	}
1715 
1716 	mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
1717 
1718 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1719 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1720 		reg_rctl |= E1000_RCTL_MPE;
1721 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1722 	} else
1723 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1724 
1725 	if (adapter->hw.mac.type == e1000_82542 &&
1726 	    adapter->hw.revision_id == E1000_REVISION_2) {
1727 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1728 		reg_rctl &= ~E1000_RCTL_RST;
1729 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1730 		msec_delay(5);
1731 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1732 			e1000_pci_set_mwi(&adapter->hw);
1733 	}
1734 }
1735 
1736 /*********************************************************************
1737  *  Timer routine
1738  *
1739  *  This routine schedules em_if_update_admin_status() to check for
1740  *  link status and to gather statistics as well as to perform some
1741  *  controller-specific hardware patting.
1742  *
1743  **********************************************************************/
1744 static void
1745 em_if_timer(if_ctx_t ctx, uint16_t qid)
1746 {
1747 
1748 	if (qid != 0)
1749 		return;
1750 
1751 	iflib_admin_intr_deferred(ctx);
1752 }
1753 
1754 static void
1755 em_if_update_admin_status(if_ctx_t ctx)
1756 {
1757 	struct adapter *adapter = iflib_get_softc(ctx);
1758 	struct e1000_hw *hw = &adapter->hw;
1759 	device_t dev = iflib_get_dev(ctx);
1760 	u32 link_check, thstat, ctrl;
1761 
1762 	link_check = thstat = ctrl = 0;
1763 	/* Get the cached link value or read phy for real */
1764 	switch (hw->phy.media_type) {
1765 	case e1000_media_type_copper:
1766 		if (hw->mac.get_link_status) {
1767 			if (hw->mac.type == e1000_pch_spt)
1768 				msec_delay(50);
1769 			/* Do the work to read phy */
1770 			e1000_check_for_link(hw);
1771 			link_check = !hw->mac.get_link_status;
1772 			if (link_check) /* ESB2 fix */
1773 				e1000_cfg_on_link_up(hw);
1774 		} else {
1775 			link_check = TRUE;
1776 		}
1777 		break;
1778 	case e1000_media_type_fiber:
1779 		e1000_check_for_link(hw);
1780 		link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1781 			    E1000_STATUS_LU);
1782 		break;
1783 	case e1000_media_type_internal_serdes:
1784 		e1000_check_for_link(hw);
1785 		link_check = adapter->hw.mac.serdes_has_link;
1786 		break;
1787 	/* VF device is type_unknown */
1788 	case e1000_media_type_unknown:
1789 		e1000_check_for_link(hw);
1790 		link_check = !hw->mac.get_link_status;
1791 		/* FALLTHROUGH */
1792 	default:
1793 		break;
1794 	}
1795 
1796 	/* Check for thermal downshift or shutdown */
1797 	if (hw->mac.type == e1000_i350) {
1798 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1799 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1800 	}
1801 
1802 	/* Now check for a transition */
1803 	if (link_check && (adapter->link_active == 0)) {
1804 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
1805 		    &adapter->link_duplex);
1806 		/* Check if we must disable SPEED_MODE bit on PCI-E */
1807 		if ((adapter->link_speed != SPEED_1000) &&
1808 		    ((hw->mac.type == e1000_82571) ||
1809 		    (hw->mac.type == e1000_82572))) {
1810 			int tarc0;
1811 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1812 			tarc0 &= ~TARC_SPEED_MODE_BIT;
1813 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1814 		}
1815 		if (bootverbose)
1816 			device_printf(dev, "Link is up %d Mbps %s\n",
1817 			    adapter->link_speed,
1818 			    ((adapter->link_duplex == FULL_DUPLEX) ?
1819 			    "Full Duplex" : "Half Duplex"));
1820 		adapter->link_active = 1;
1821 		adapter->smartspeed = 0;
1822 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
1823 		    E1000_CTRL_EXT_LINK_MODE_GMII &&
1824 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1825 			device_printf(dev, "Link: thermal downshift\n");
1826 		/* Delay Link Up for Phy update */
1827 		if (((hw->mac.type == e1000_i210) ||
1828 		    (hw->mac.type == e1000_i211)) &&
1829 		    (hw->phy.id == I210_I_PHY_ID))
1830 			msec_delay(I210_LINK_DELAY);
1831 		/* Reset if the media type changed. */
1832 		if ((hw->dev_spec._82575.media_changed) &&
1833 			(adapter->hw.mac.type >= igb_mac_min)) {
1834 			hw->dev_spec._82575.media_changed = false;
1835 			adapter->flags |= IGB_MEDIA_RESET;
1836 			em_reset(ctx);
1837 		}
1838 		iflib_link_state_change(ctx, LINK_STATE_UP,
1839 		    IF_Mbps(adapter->link_speed));
1840 	} else if (!link_check && (adapter->link_active == 1)) {
1841 		adapter->link_speed = 0;
1842 		adapter->link_duplex = 0;
1843 		adapter->link_active = 0;
1844 		iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
1845 	}
1846 	em_update_stats_counters(adapter);
1847 
1848 	/* Reset LAA into RAR[0] on 82571 */
1849 	if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
1850 		e1000_rar_set(hw, hw->mac.addr, 0);
1851 
1852 	if (hw->mac.type < em_mac_min)
1853 		lem_smartspeed(adapter);
1854 	else if (hw->mac.type == e1000_82574 &&
1855 	    adapter->intr_type == IFLIB_INTR_MSIX)
1856 		E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK |
1857 		    E1000_IMS_LSC);
1858 }
1859 
1860 static void
1861 em_if_watchdog_reset(if_ctx_t ctx)
1862 {
1863 	struct adapter *adapter = iflib_get_softc(ctx);
1864 
1865 	/*
1866 	 * Just count the event; iflib(4) will already trigger a
1867 	 * sufficient reset of the controller.
1868 	 */
1869 	adapter->watchdog_events++;
1870 }
1871 
1872 /*********************************************************************
1873  *
1874  *  This routine disables all traffic on the adapter by issuing a
1875  *  global reset on the MAC.
1876  *
1877  **********************************************************************/
1878 static void
1879 em_if_stop(if_ctx_t ctx)
1880 {
1881 	struct adapter *adapter = iflib_get_softc(ctx);
1882 
1883 	INIT_DEBUGOUT("em_if_stop: begin");
1884 
1885 	e1000_reset_hw(&adapter->hw);
1886 	if (adapter->hw.mac.type >= e1000_82544)
1887 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0);
1888 
1889 	e1000_led_off(&adapter->hw);
1890 	e1000_cleanup_led(&adapter->hw);
1891 }
1892 
1893 /*********************************************************************
1894  *
1895  *  Determine hardware revision.
1896  *
1897  **********************************************************************/
1898 static void
1899 em_identify_hardware(if_ctx_t ctx)
1900 {
1901 	device_t dev = iflib_get_dev(ctx);
1902 	struct adapter *adapter = iflib_get_softc(ctx);
1903 
1904 	/* Make sure our PCI config space has the necessary stuff set */
1905 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1906 
1907 	/* Save off the information about this board */
1908 	adapter->hw.vendor_id = pci_get_vendor(dev);
1909 	adapter->hw.device_id = pci_get_device(dev);
1910 	adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1911 	adapter->hw.subsystem_vendor_id =
1912 	    pci_read_config(dev, PCIR_SUBVEND_0, 2);
1913 	adapter->hw.subsystem_device_id =
1914 	    pci_read_config(dev, PCIR_SUBDEV_0, 2);
1915 
1916 	/* Do Shared Code Init and Setup */
1917 	if (e1000_set_mac_type(&adapter->hw)) {
1918 		device_printf(dev, "Setup init failure\n");
1919 		return;
1920 	}
1921 }
1922 
1923 static int
1924 em_allocate_pci_resources(if_ctx_t ctx)
1925 {
1926 	struct adapter *adapter = iflib_get_softc(ctx);
1927 	device_t dev = iflib_get_dev(ctx);
1928 	int rid, val;
1929 
1930 	rid = PCIR_BAR(0);
1931 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1932 	    &rid, RF_ACTIVE);
1933 	if (adapter->memory == NULL) {
1934 		device_printf(dev, "Unable to allocate bus resource: memory\n");
1935 		return (ENXIO);
1936 	}
1937 	adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->memory);
1938 	adapter->osdep.mem_bus_space_handle =
1939 	    rman_get_bushandle(adapter->memory);
1940 	adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
1941 
1942 	/* Only older adapters use IO mapping */
1943 	if (adapter->hw.mac.type < em_mac_min &&
1944 	    adapter->hw.mac.type > e1000_82543) {
1945 		/* Figure our where our IO BAR is ? */
1946 		for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1947 			val = pci_read_config(dev, rid, 4);
1948 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1949 				break;
1950 			}
1951 			rid += 4;
1952 			/* check for 64bit BAR */
1953 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1954 				rid += 4;
1955 		}
1956 		if (rid >= PCIR_CIS) {
1957 			device_printf(dev, "Unable to locate IO BAR\n");
1958 			return (ENXIO);
1959 		}
1960 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
1961 		    &rid, RF_ACTIVE);
1962 		if (adapter->ioport == NULL) {
1963 			device_printf(dev, "Unable to allocate bus resource: "
1964 			    "ioport\n");
1965 			return (ENXIO);
1966 		}
1967 		adapter->hw.io_base = 0;
1968 		adapter->osdep.io_bus_space_tag =
1969 		    rman_get_bustag(adapter->ioport);
1970 		adapter->osdep.io_bus_space_handle =
1971 		    rman_get_bushandle(adapter->ioport);
1972 	}
1973 
1974 	adapter->hw.back = &adapter->osdep;
1975 
1976 	return (0);
1977 }
1978 
1979 /*********************************************************************
1980  *
1981  *  Set up the MSI-X Interrupt handlers
1982  *
1983  **********************************************************************/
1984 static int
1985 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
1986 {
1987 	struct adapter *adapter = iflib_get_softc(ctx);
1988 	struct em_rx_queue *rx_que = adapter->rx_queues;
1989 	struct em_tx_queue *tx_que = adapter->tx_queues;
1990 	int error, rid, i, vector = 0, rx_vectors;
1991 	char buf[16];
1992 
1993 	/* First set up ring resources */
1994 	for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) {
1995 		rid = vector + 1;
1996 		snprintf(buf, sizeof(buf), "rxq%d", i);
1997 		error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
1998 		if (error) {
1999 			device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
2000 			adapter->rx_num_queues = i + 1;
2001 			goto fail;
2002 		}
2003 
2004 		rx_que->msix =  vector;
2005 
2006 		/*
2007 		 * Set the bit to enable interrupt
2008 		 * in E1000_IMS -- bits 20 and 21
2009 		 * are for RX0 and RX1, note this has
2010 		 * NOTHING to do with the MSI-X vector
2011 		 */
2012 		if (adapter->hw.mac.type == e1000_82574) {
2013 			rx_que->eims = 1 << (20 + i);
2014 			adapter->ims |= rx_que->eims;
2015 			adapter->ivars |= (8 | rx_que->msix) << (i * 4);
2016 		} else if (adapter->hw.mac.type == e1000_82575)
2017 			rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2018 		else
2019 			rx_que->eims = 1 << vector;
2020 	}
2021 	rx_vectors = vector;
2022 
2023 	vector = 0;
2024 	for (i = 0; i < adapter->tx_num_queues; i++, tx_que++, vector++) {
2025 		snprintf(buf, sizeof(buf), "txq%d", i);
2026 		tx_que = &adapter->tx_queues[i];
2027 		iflib_softirq_alloc_generic(ctx,
2028 		    &adapter->rx_queues[i % adapter->rx_num_queues].que_irq,
2029 		    IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2030 
2031 		tx_que->msix = (vector % adapter->rx_num_queues);
2032 
2033 		/*
2034 		 * Set the bit to enable interrupt
2035 		 * in E1000_IMS -- bits 22 and 23
2036 		 * are for TX0 and TX1, note this has
2037 		 * NOTHING to do with the MSI-X vector
2038 		 */
2039 		if (adapter->hw.mac.type == e1000_82574) {
2040 			tx_que->eims = 1 << (22 + i);
2041 			adapter->ims |= tx_que->eims;
2042 			adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2043 		} else if (adapter->hw.mac.type == e1000_82575) {
2044 			tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2045 		} else {
2046 			tx_que->eims = 1 << i;
2047 		}
2048 	}
2049 
2050 	/* Link interrupt */
2051 	rid = rx_vectors + 1;
2052 	error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq");
2053 
2054 	if (error) {
2055 		device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
2056 		goto fail;
2057 	}
2058 	adapter->linkvec = rx_vectors;
2059 	if (adapter->hw.mac.type < igb_mac_min) {
2060 		adapter->ivars |=  (8 | rx_vectors) << 16;
2061 		adapter->ivars |= 0x80000000;
2062 	}
2063 	return (0);
2064 fail:
2065 	iflib_irq_free(ctx, &adapter->irq);
2066 	rx_que = adapter->rx_queues;
2067 	for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++)
2068 		iflib_irq_free(ctx, &rx_que->que_irq);
2069 	return (error);
2070 }
2071 
2072 static void
2073 igb_configure_queues(struct adapter *adapter)
2074 {
2075 	struct e1000_hw *hw = &adapter->hw;
2076 	struct em_rx_queue *rx_que;
2077 	struct em_tx_queue *tx_que;
2078 	u32 tmp, ivar = 0, newitr = 0;
2079 
2080 	/* First turn on RSS capability */
2081 	if (adapter->hw.mac.type != e1000_82575)
2082 		E1000_WRITE_REG(hw, E1000_GPIE,
2083 		    E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2084 		    E1000_GPIE_PBA | E1000_GPIE_NSICR);
2085 
2086 	/* Turn on MSI-X */
2087 	switch (adapter->hw.mac.type) {
2088 	case e1000_82580:
2089 	case e1000_i350:
2090 	case e1000_i354:
2091 	case e1000_i210:
2092 	case e1000_i211:
2093 	case e1000_vfadapt:
2094 	case e1000_vfadapt_i350:
2095 		/* RX entries */
2096 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2097 			u32 index = i >> 1;
2098 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2099 			rx_que = &adapter->rx_queues[i];
2100 			if (i & 1) {
2101 				ivar &= 0xFF00FFFF;
2102 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2103 			} else {
2104 				ivar &= 0xFFFFFF00;
2105 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2106 			}
2107 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2108 		}
2109 		/* TX entries */
2110 		for (int i = 0; i < adapter->tx_num_queues; i++) {
2111 			u32 index = i >> 1;
2112 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2113 			tx_que = &adapter->tx_queues[i];
2114 			if (i & 1) {
2115 				ivar &= 0x00FFFFFF;
2116 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2117 			} else {
2118 				ivar &= 0xFFFF00FF;
2119 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2120 			}
2121 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2122 			adapter->que_mask |= tx_que->eims;
2123 		}
2124 
2125 		/* And for the link interrupt */
2126 		ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2127 		adapter->link_mask = 1 << adapter->linkvec;
2128 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2129 		break;
2130 	case e1000_82576:
2131 		/* RX entries */
2132 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2133 			u32 index = i & 0x7; /* Each IVAR has two entries */
2134 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2135 			rx_que = &adapter->rx_queues[i];
2136 			if (i < 8) {
2137 				ivar &= 0xFFFFFF00;
2138 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2139 			} else {
2140 				ivar &= 0xFF00FFFF;
2141 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2142 			}
2143 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2144 			adapter->que_mask |= rx_que->eims;
2145 		}
2146 		/* TX entries */
2147 		for (int i = 0; i < adapter->tx_num_queues; i++) {
2148 			u32 index = i & 0x7; /* Each IVAR has two entries */
2149 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2150 			tx_que = &adapter->tx_queues[i];
2151 			if (i < 8) {
2152 				ivar &= 0xFFFF00FF;
2153 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2154 			} else {
2155 				ivar &= 0x00FFFFFF;
2156 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2157 			}
2158 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2159 			adapter->que_mask |= tx_que->eims;
2160 		}
2161 
2162 		/* And for the link interrupt */
2163 		ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2164 		adapter->link_mask = 1 << adapter->linkvec;
2165 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2166 		break;
2167 
2168 	case e1000_82575:
2169 		/* enable MSI-X support*/
2170 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2171 		tmp |= E1000_CTRL_EXT_PBA_CLR;
2172 		/* Auto-Mask interrupts upon ICR read. */
2173 		tmp |= E1000_CTRL_EXT_EIAME;
2174 		tmp |= E1000_CTRL_EXT_IRCA;
2175 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2176 
2177 		/* Queues */
2178 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2179 			rx_que = &adapter->rx_queues[i];
2180 			tmp = E1000_EICR_RX_QUEUE0 << i;
2181 			tmp |= E1000_EICR_TX_QUEUE0 << i;
2182 			rx_que->eims = tmp;
2183 			E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2184 			    i, rx_que->eims);
2185 			adapter->que_mask |= rx_que->eims;
2186 		}
2187 
2188 		/* Link */
2189 		E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
2190 		    E1000_EIMS_OTHER);
2191 		adapter->link_mask |= E1000_EIMS_OTHER;
2192 	default:
2193 		break;
2194 	}
2195 
2196 	/* Set the starting interrupt rate */
2197 	if (em_max_interrupt_rate > 0)
2198 		newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2199 
2200 	if (hw->mac.type == e1000_82575)
2201 		newitr |= newitr << 16;
2202 	else
2203 		newitr |= E1000_EITR_CNT_IGNR;
2204 
2205 	for (int i = 0; i < adapter->rx_num_queues; i++) {
2206 		rx_que = &adapter->rx_queues[i];
2207 		E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2208 	}
2209 
2210 	return;
2211 }
2212 
2213 static void
2214 em_free_pci_resources(if_ctx_t ctx)
2215 {
2216 	struct adapter *adapter = iflib_get_softc(ctx);
2217 	struct em_rx_queue *que = adapter->rx_queues;
2218 	device_t dev = iflib_get_dev(ctx);
2219 
2220 	/* Release all MSI-X queue resources */
2221 	if (adapter->intr_type == IFLIB_INTR_MSIX)
2222 		iflib_irq_free(ctx, &adapter->irq);
2223 
2224 	for (int i = 0; i < adapter->rx_num_queues; i++, que++) {
2225 		iflib_irq_free(ctx, &que->que_irq);
2226 	}
2227 
2228 	if (adapter->memory != NULL) {
2229 		bus_release_resource(dev, SYS_RES_MEMORY,
2230 		    rman_get_rid(adapter->memory), adapter->memory);
2231 		adapter->memory = NULL;
2232 	}
2233 
2234 	if (adapter->flash != NULL) {
2235 		bus_release_resource(dev, SYS_RES_MEMORY,
2236 		    rman_get_rid(adapter->flash), adapter->flash);
2237 		adapter->flash = NULL;
2238 	}
2239 
2240 	if (adapter->ioport != NULL) {
2241 		bus_release_resource(dev, SYS_RES_IOPORT,
2242 		    rman_get_rid(adapter->ioport), adapter->ioport);
2243 		adapter->ioport = NULL;
2244 	}
2245 }
2246 
2247 /* Set up MSI or MSI-X */
2248 static int
2249 em_setup_msix(if_ctx_t ctx)
2250 {
2251 	struct adapter *adapter = iflib_get_softc(ctx);
2252 
2253 	if (adapter->hw.mac.type == e1000_82574) {
2254 		em_enable_vectors_82574(ctx);
2255 	}
2256 	return (0);
2257 }
2258 
2259 /*********************************************************************
2260  *
2261  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2262  *
2263  **********************************************************************/
2264 static void
2265 lem_smartspeed(struct adapter *adapter)
2266 {
2267 	u16 phy_tmp;
2268 
2269 	if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
2270 	    adapter->hw.mac.autoneg == 0 ||
2271 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2272 		return;
2273 
2274 	if (adapter->smartspeed == 0) {
2275 		/* If Master/Slave config fault is asserted twice,
2276 		 * we assume back-to-back */
2277 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2278 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2279 			return;
2280 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2281 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2282 			e1000_read_phy_reg(&adapter->hw,
2283 			    PHY_1000T_CTRL, &phy_tmp);
2284 			if(phy_tmp & CR_1000T_MS_ENABLE) {
2285 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2286 				e1000_write_phy_reg(&adapter->hw,
2287 				    PHY_1000T_CTRL, phy_tmp);
2288 				adapter->smartspeed++;
2289 				if(adapter->hw.mac.autoneg &&
2290 				   !e1000_copper_link_autoneg(&adapter->hw) &&
2291 				   !e1000_read_phy_reg(&adapter->hw,
2292 				    PHY_CONTROL, &phy_tmp)) {
2293 					phy_tmp |= (MII_CR_AUTO_NEG_EN |
2294 						    MII_CR_RESTART_AUTO_NEG);
2295 					e1000_write_phy_reg(&adapter->hw,
2296 					    PHY_CONTROL, phy_tmp);
2297 				}
2298 			}
2299 		}
2300 		return;
2301 	} else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2302 		/* If still no link, perhaps using 2/3 pair cable */
2303 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2304 		phy_tmp |= CR_1000T_MS_ENABLE;
2305 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2306 		if(adapter->hw.mac.autoneg &&
2307 		   !e1000_copper_link_autoneg(&adapter->hw) &&
2308 		   !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2309 			phy_tmp |= (MII_CR_AUTO_NEG_EN |
2310 				    MII_CR_RESTART_AUTO_NEG);
2311 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2312 		}
2313 	}
2314 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2315 	if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2316 		adapter->smartspeed = 0;
2317 }
2318 
2319 /*********************************************************************
2320  *
2321  *  Initialize the DMA Coalescing feature
2322  *
2323  **********************************************************************/
2324 static void
2325 igb_init_dmac(struct adapter *adapter, u32 pba)
2326 {
2327 	device_t	dev = adapter->dev;
2328 	struct e1000_hw *hw = &adapter->hw;
2329 	u32 		dmac, reg = ~E1000_DMACR_DMAC_EN;
2330 	u16		hwm;
2331 	u16		max_frame_size;
2332 
2333 	if (hw->mac.type == e1000_i211)
2334 		return;
2335 
2336 	max_frame_size = adapter->shared->isc_max_frame_size;
2337 	if (hw->mac.type > e1000_82580) {
2338 
2339 		if (adapter->dmac == 0) { /* Disabling it */
2340 			E1000_WRITE_REG(hw, E1000_DMACR, reg);
2341 			return;
2342 		} else
2343 			device_printf(dev, "DMA Coalescing enabled\n");
2344 
2345 		/* Set starting threshold */
2346 		E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2347 
2348 		hwm = 64 * pba - max_frame_size / 16;
2349 		if (hwm < 64 * (pba - 6))
2350 			hwm = 64 * (pba - 6);
2351 		reg = E1000_READ_REG(hw, E1000_FCRTC);
2352 		reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2353 		reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2354 		    & E1000_FCRTC_RTH_COAL_MASK);
2355 		E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2356 
2357 
2358 		dmac = pba - max_frame_size / 512;
2359 		if (dmac < pba - 10)
2360 			dmac = pba - 10;
2361 		reg = E1000_READ_REG(hw, E1000_DMACR);
2362 		reg &= ~E1000_DMACR_DMACTHR_MASK;
2363 		reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2364 		    & E1000_DMACR_DMACTHR_MASK);
2365 
2366 		/* transition to L0x or L1 if available..*/
2367 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2368 
2369 		/* Check if status is 2.5Gb backplane connection
2370 		* before configuration of watchdog timer, which is
2371 		* in msec values in 12.8usec intervals
2372 		* watchdog timer= msec values in 32usec intervals
2373 		* for non 2.5Gb connection
2374 		*/
2375 		if (hw->mac.type == e1000_i354) {
2376 			int status = E1000_READ_REG(hw, E1000_STATUS);
2377 			if ((status & E1000_STATUS_2P5_SKU) &&
2378 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2379 				reg |= ((adapter->dmac * 5) >> 6);
2380 			else
2381 				reg |= (adapter->dmac >> 5);
2382 		} else {
2383 			reg |= (adapter->dmac >> 5);
2384 		}
2385 
2386 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
2387 
2388 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2389 
2390 		/* Set the interval before transition */
2391 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
2392 		if (hw->mac.type == e1000_i350)
2393 			reg |= IGB_DMCTLX_DCFLUSH_DIS;
2394 		/*
2395 		** in 2.5Gb connection, TTLX unit is 0.4 usec
2396 		** which is 0x4*2 = 0xA. But delay is still 4 usec
2397 		*/
2398 		if (hw->mac.type == e1000_i354) {
2399 			int status = E1000_READ_REG(hw, E1000_STATUS);
2400 			if ((status & E1000_STATUS_2P5_SKU) &&
2401 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2402 				reg |= 0xA;
2403 			else
2404 				reg |= 0x4;
2405 		} else {
2406 			reg |= 0x4;
2407 		}
2408 
2409 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2410 
2411 		/* free space in tx packet buffer to wake from DMA coal */
2412 		E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2413 		    (2 * max_frame_size)) >> 6);
2414 
2415 		/* make low power state decision controlled by DMA coal */
2416 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2417 		reg &= ~E1000_PCIEMISC_LX_DECISION;
2418 		E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2419 
2420 	} else if (hw->mac.type == e1000_82580) {
2421 		u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2422 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
2423 		    reg & ~E1000_PCIEMISC_LX_DECISION);
2424 		E1000_WRITE_REG(hw, E1000_DMACR, 0);
2425 	}
2426 }
2427 
2428 /*********************************************************************
2429  *
2430  *  Initialize the hardware to a configuration as specified by the
2431  *  adapter structure.
2432  *
2433  **********************************************************************/
2434 static void
2435 em_reset(if_ctx_t ctx)
2436 {
2437 	device_t dev = iflib_get_dev(ctx);
2438 	struct adapter *adapter = iflib_get_softc(ctx);
2439 	struct ifnet *ifp = iflib_get_ifp(ctx);
2440 	struct e1000_hw *hw = &adapter->hw;
2441 	u16 rx_buffer_size;
2442 	u32 pba;
2443 
2444 	INIT_DEBUGOUT("em_reset: begin");
2445 	/* Let the firmware know the OS is in control */
2446 	em_get_hw_control(adapter);
2447 
2448 	/* Set up smart power down as default off on newer adapters. */
2449 	if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2450 	    hw->mac.type == e1000_82572)) {
2451 		u16 phy_tmp = 0;
2452 
2453 		/* Speed up time to link by disabling smart power down. */
2454 		e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2455 		phy_tmp &= ~IGP02E1000_PM_SPD;
2456 		e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2457 	}
2458 
2459 	/*
2460 	 * Packet Buffer Allocation (PBA)
2461 	 * Writing PBA sets the receive portion of the buffer
2462 	 * the remainder is used for the transmit buffer.
2463 	 */
2464 	switch (hw->mac.type) {
2465 	/* Total Packet Buffer on these is 48K */
2466 	case e1000_82571:
2467 	case e1000_82572:
2468 	case e1000_80003es2lan:
2469 			pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2470 		break;
2471 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2472 			pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2473 		break;
2474 	case e1000_82574:
2475 	case e1000_82583:
2476 			pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2477 		break;
2478 	case e1000_ich8lan:
2479 		pba = E1000_PBA_8K;
2480 		break;
2481 	case e1000_ich9lan:
2482 	case e1000_ich10lan:
2483 		/* Boost Receive side for jumbo frames */
2484 		if (adapter->hw.mac.max_frame_size > 4096)
2485 			pba = E1000_PBA_14K;
2486 		else
2487 			pba = E1000_PBA_10K;
2488 		break;
2489 	case e1000_pchlan:
2490 	case e1000_pch2lan:
2491 	case e1000_pch_lpt:
2492 	case e1000_pch_spt:
2493 	case e1000_pch_cnp:
2494 		pba = E1000_PBA_26K;
2495 		break;
2496 	case e1000_82575:
2497 		pba = E1000_PBA_32K;
2498 		break;
2499 	case e1000_82576:
2500 	case e1000_vfadapt:
2501 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2502 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2503 		break;
2504 	case e1000_82580:
2505 	case e1000_i350:
2506 	case e1000_i354:
2507 	case e1000_vfadapt_i350:
2508 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2509 		pba = e1000_rxpbs_adjust_82580(pba);
2510 		break;
2511 	case e1000_i210:
2512 	case e1000_i211:
2513 		pba = E1000_PBA_34K;
2514 		break;
2515 	default:
2516 		if (adapter->hw.mac.max_frame_size > 8192)
2517 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2518 		else
2519 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2520 	}
2521 
2522 	/* Special needs in case of Jumbo frames */
2523 	if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
2524 		u32 tx_space, min_tx, min_rx;
2525 		pba = E1000_READ_REG(hw, E1000_PBA);
2526 		tx_space = pba >> 16;
2527 		pba &= 0xffff;
2528 		min_tx = (adapter->hw.mac.max_frame_size +
2529 		    sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
2530 		min_tx = roundup2(min_tx, 1024);
2531 		min_tx >>= 10;
2532 		min_rx = adapter->hw.mac.max_frame_size;
2533 		min_rx = roundup2(min_rx, 1024);
2534 		min_rx >>= 10;
2535 		if (tx_space < min_tx &&
2536 		    ((min_tx - tx_space) < pba)) {
2537 			pba = pba - (min_tx - tx_space);
2538 			/*
2539 			 * if short on rx space, rx wins
2540 			 * and must trump tx adjustment
2541 			 */
2542 			if (pba < min_rx)
2543 				pba = min_rx;
2544 		}
2545 		E1000_WRITE_REG(hw, E1000_PBA, pba);
2546 	}
2547 
2548 	if (hw->mac.type < igb_mac_min)
2549 		E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2550 
2551 	INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
2552 
2553 	/*
2554 	 * These parameters control the automatic generation (Tx) and
2555 	 * response (Rx) to Ethernet PAUSE frames.
2556 	 * - High water mark should allow for at least two frames to be
2557 	 *   received after sending an XOFF.
2558 	 * - Low water mark works best when it is very near the high water mark.
2559 	 *   This allows the receiver to restart by sending XON when it has
2560 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
2561 	 *   restart after one full frame is pulled from the buffer. There
2562 	 *   could be several smaller frames in the buffer and if so they will
2563 	 *   not trigger the XON until their total number reduces the buffer
2564 	 *   by 1500.
2565 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2566 	 */
2567 	rx_buffer_size = (pba & 0xffff) << 10;
2568 	hw->fc.high_water = rx_buffer_size -
2569 	    roundup2(adapter->hw.mac.max_frame_size, 1024);
2570 	hw->fc.low_water = hw->fc.high_water - 1500;
2571 
2572 	if (adapter->fc) /* locally set flow control value? */
2573 		hw->fc.requested_mode = adapter->fc;
2574 	else
2575 		hw->fc.requested_mode = e1000_fc_full;
2576 
2577 	if (hw->mac.type == e1000_80003es2lan)
2578 		hw->fc.pause_time = 0xFFFF;
2579 	else
2580 		hw->fc.pause_time = EM_FC_PAUSE_TIME;
2581 
2582 	hw->fc.send_xon = TRUE;
2583 
2584 	/* Device specific overrides/settings */
2585 	switch (hw->mac.type) {
2586 	case e1000_pchlan:
2587 		/* Workaround: no TX flow ctrl for PCH */
2588 		hw->fc.requested_mode = e1000_fc_rx_pause;
2589 		hw->fc.pause_time = 0xFFFF; /* override */
2590 		if (if_getmtu(ifp) > ETHERMTU) {
2591 			hw->fc.high_water = 0x3500;
2592 			hw->fc.low_water = 0x1500;
2593 		} else {
2594 			hw->fc.high_water = 0x5000;
2595 			hw->fc.low_water = 0x3000;
2596 		}
2597 		hw->fc.refresh_time = 0x1000;
2598 		break;
2599 	case e1000_pch2lan:
2600 	case e1000_pch_lpt:
2601 	case e1000_pch_spt:
2602 	case e1000_pch_cnp:
2603 		hw->fc.high_water = 0x5C20;
2604 		hw->fc.low_water = 0x5048;
2605 		hw->fc.pause_time = 0x0650;
2606 		hw->fc.refresh_time = 0x0400;
2607 		/* Jumbos need adjusted PBA */
2608 		if (if_getmtu(ifp) > ETHERMTU)
2609 			E1000_WRITE_REG(hw, E1000_PBA, 12);
2610 		else
2611 			E1000_WRITE_REG(hw, E1000_PBA, 26);
2612 		break;
2613 	case e1000_82575:
2614 	case e1000_82576:
2615 		/* 8-byte granularity */
2616 		hw->fc.low_water = hw->fc.high_water - 8;
2617 		break;
2618 	case e1000_82580:
2619 	case e1000_i350:
2620 	case e1000_i354:
2621 	case e1000_i210:
2622 	case e1000_i211:
2623 	case e1000_vfadapt:
2624 	case e1000_vfadapt_i350:
2625 		/* 16-byte granularity */
2626 		hw->fc.low_water = hw->fc.high_water - 16;
2627 		break;
2628 	case e1000_ich9lan:
2629 	case e1000_ich10lan:
2630 		if (if_getmtu(ifp) > ETHERMTU) {
2631 			hw->fc.high_water = 0x2800;
2632 			hw->fc.low_water = hw->fc.high_water - 8;
2633 			break;
2634 		}
2635 		/* FALLTHROUGH */
2636 	default:
2637 		if (hw->mac.type == e1000_80003es2lan)
2638 			hw->fc.pause_time = 0xFFFF;
2639 		break;
2640 	}
2641 
2642 	/* Issue a global reset */
2643 	e1000_reset_hw(hw);
2644 	if (adapter->hw.mac.type >= igb_mac_min) {
2645 		E1000_WRITE_REG(hw, E1000_WUC, 0);
2646 	} else {
2647 		E1000_WRITE_REG(hw, E1000_WUFC, 0);
2648 		em_disable_aspm(adapter);
2649 	}
2650 	if (adapter->flags & IGB_MEDIA_RESET) {
2651 		e1000_setup_init_funcs(hw, TRUE);
2652 		e1000_get_bus_info(hw);
2653 		adapter->flags &= ~IGB_MEDIA_RESET;
2654 	}
2655 	/* and a re-init */
2656 	if (e1000_init_hw(hw) < 0) {
2657 		device_printf(dev, "Hardware Initialization Failed\n");
2658 		return;
2659 	}
2660 	if (adapter->hw.mac.type >= igb_mac_min)
2661 		igb_init_dmac(adapter, pba);
2662 
2663 	E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2664 	e1000_get_phy_info(hw);
2665 	e1000_check_for_link(hw);
2666 }
2667 
2668 /*
2669  * Initialise the RSS mapping for NICs that support multiple transmit/
2670  * receive rings.
2671  */
2672 
2673 #define RSSKEYLEN 10
2674 static void
2675 em_initialize_rss_mapping(struct adapter *adapter)
2676 {
2677 	uint8_t  rss_key[4 * RSSKEYLEN];
2678 	uint32_t reta = 0;
2679 	struct e1000_hw	*hw = &adapter->hw;
2680 	int i;
2681 
2682 	/*
2683 	 * Configure RSS key
2684 	 */
2685 	arc4rand(rss_key, sizeof(rss_key), 0);
2686 	for (i = 0; i < RSSKEYLEN; ++i) {
2687 		uint32_t rssrk = 0;
2688 
2689 		rssrk = EM_RSSRK_VAL(rss_key, i);
2690 		E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2691 	}
2692 
2693 	/*
2694 	 * Configure RSS redirect table in following fashion:
2695 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2696 	 */
2697 	for (i = 0; i < sizeof(reta); ++i) {
2698 		uint32_t q;
2699 
2700 		q = (i % adapter->rx_num_queues) << 7;
2701 		reta |= q << (8 * i);
2702 	}
2703 
2704 	for (i = 0; i < 32; ++i)
2705 		E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2706 
2707 	E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
2708 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2709 			E1000_MRQC_RSS_FIELD_IPV4 |
2710 			E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2711 			E1000_MRQC_RSS_FIELD_IPV6_EX |
2712 			E1000_MRQC_RSS_FIELD_IPV6);
2713 }
2714 
2715 static void
2716 igb_initialize_rss_mapping(struct adapter *adapter)
2717 {
2718 	struct e1000_hw *hw = &adapter->hw;
2719 	int i;
2720 	int queue_id;
2721 	u32 reta;
2722 	u32 rss_key[10], mrqc, shift = 0;
2723 
2724 	/* XXX? */
2725 	if (adapter->hw.mac.type == e1000_82575)
2726 		shift = 6;
2727 
2728 	/*
2729 	 * The redirection table controls which destination
2730 	 * queue each bucket redirects traffic to.
2731 	 * Each DWORD represents four queues, with the LSB
2732 	 * being the first queue in the DWORD.
2733 	 *
2734 	 * This just allocates buckets to queues using round-robin
2735 	 * allocation.
2736 	 *
2737 	 * NOTE: It Just Happens to line up with the default
2738 	 * RSS allocation method.
2739 	 */
2740 
2741 	/* Warning FM follows */
2742 	reta = 0;
2743 	for (i = 0; i < 128; i++) {
2744 #ifdef RSS
2745 		queue_id = rss_get_indirection_to_bucket(i);
2746 		/*
2747 		 * If we have more queues than buckets, we'll
2748 		 * end up mapping buckets to a subset of the
2749 		 * queues.
2750 		 *
2751 		 * If we have more buckets than queues, we'll
2752 		 * end up instead assigning multiple buckets
2753 		 * to queues.
2754 		 *
2755 		 * Both are suboptimal, but we need to handle
2756 		 * the case so we don't go out of bounds
2757 		 * indexing arrays and such.
2758 		 */
2759 		queue_id = queue_id % adapter->rx_num_queues;
2760 #else
2761 		queue_id = (i % adapter->rx_num_queues);
2762 #endif
2763 		/* Adjust if required */
2764 		queue_id = queue_id << shift;
2765 
2766 		/*
2767 		 * The low 8 bits are for hash value (n+0);
2768 		 * The next 8 bits are for hash value (n+1), etc.
2769 		 */
2770 		reta = reta >> 8;
2771 		reta = reta | ( ((uint32_t) queue_id) << 24);
2772 		if ((i & 3) == 3) {
2773 			E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2774 			reta = 0;
2775 		}
2776 	}
2777 
2778 	/* Now fill in hash table */
2779 
2780 	/*
2781 	 * MRQC: Multiple Receive Queues Command
2782 	 * Set queuing to RSS control, number depends on the device.
2783 	 */
2784 	mrqc = E1000_MRQC_ENABLE_RSS_8Q;
2785 
2786 #ifdef RSS
2787 	/* XXX ew typecasting */
2788 	rss_getkey((uint8_t *) &rss_key);
2789 #else
2790 	arc4rand(&rss_key, sizeof(rss_key), 0);
2791 #endif
2792 	for (i = 0; i < 10; i++)
2793 		E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
2794 
2795 	/*
2796 	 * Configure the RSS fields to hash upon.
2797 	 */
2798 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2799 	    E1000_MRQC_RSS_FIELD_IPV4_TCP);
2800 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2801 	    E1000_MRQC_RSS_FIELD_IPV6_TCP);
2802 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2803 	    E1000_MRQC_RSS_FIELD_IPV6_UDP);
2804 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2805 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2806 
2807 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2808 }
2809 
2810 /*********************************************************************
2811  *
2812  *  Setup networking device structure and register interface media.
2813  *
2814  **********************************************************************/
2815 static int
2816 em_setup_interface(if_ctx_t ctx)
2817 {
2818 	struct ifnet *ifp = iflib_get_ifp(ctx);
2819 	struct adapter *adapter = iflib_get_softc(ctx);
2820 	if_softc_ctx_t scctx = adapter->shared;
2821 
2822 	INIT_DEBUGOUT("em_setup_interface: begin");
2823 
2824 	/* Single Queue */
2825 	if (adapter->tx_num_queues == 1) {
2826 		if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
2827 		if_setsendqready(ifp);
2828 	}
2829 
2830 	/*
2831 	 * Specify the media types supported by this adapter and register
2832 	 * callbacks to update media and link information
2833 	 */
2834 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
2835 	    (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
2836 		u_char fiber_type = IFM_1000_SX;	/* default type */
2837 
2838 		if (adapter->hw.mac.type == e1000_82545)
2839 			fiber_type = IFM_1000_LX;
2840 		ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
2841 		ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2842 	} else {
2843 		ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2844 		ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
2845 		ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2846 		ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
2847 		if (adapter->hw.phy.type != e1000_phy_ife) {
2848 			ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2849 			ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2850 		}
2851 	}
2852 	ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2853 	ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO);
2854 	return (0);
2855 }
2856 
2857 static int
2858 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
2859 {
2860 	struct adapter *adapter = iflib_get_softc(ctx);
2861 	if_softc_ctx_t scctx = adapter->shared;
2862 	int error = E1000_SUCCESS;
2863 	struct em_tx_queue *que;
2864 	int i, j;
2865 
2866 	MPASS(adapter->tx_num_queues > 0);
2867 	MPASS(adapter->tx_num_queues == ntxqsets);
2868 
2869 	/* First allocate the top level queue structs */
2870 	if (!(adapter->tx_queues =
2871 	    (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
2872 	    adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2873 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2874 		return(ENOMEM);
2875 	}
2876 
2877 	for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) {
2878 		/* Set up some basics */
2879 
2880 		struct tx_ring *txr = &que->txr;
2881 		txr->adapter = que->adapter = adapter;
2882 		que->me = txr->me =  i;
2883 
2884 		/* Allocate report status array */
2885 		if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2886 			device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
2887 			error = ENOMEM;
2888 			goto fail;
2889 		}
2890 		for (j = 0; j < scctx->isc_ntxd[0]; j++)
2891 			txr->tx_rsq[j] = QIDX_INVALID;
2892 		/* get the virtual and physical address of the hardware queues */
2893 		txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
2894 		txr->tx_paddr = paddrs[i*ntxqs];
2895 	}
2896 
2897 	if (bootverbose)
2898 		device_printf(iflib_get_dev(ctx),
2899 		    "allocated for %d tx_queues\n", adapter->tx_num_queues);
2900 	return (0);
2901 fail:
2902 	em_if_queues_free(ctx);
2903 	return (error);
2904 }
2905 
2906 static int
2907 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
2908 {
2909 	struct adapter *adapter = iflib_get_softc(ctx);
2910 	int error = E1000_SUCCESS;
2911 	struct em_rx_queue *que;
2912 	int i;
2913 
2914 	MPASS(adapter->rx_num_queues > 0);
2915 	MPASS(adapter->rx_num_queues == nrxqsets);
2916 
2917 	/* First allocate the top level queue structs */
2918 	if (!(adapter->rx_queues =
2919 	    (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
2920 	    adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2921 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2922 		error = ENOMEM;
2923 		goto fail;
2924 	}
2925 
2926 	for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) {
2927 		/* Set up some basics */
2928 		struct rx_ring *rxr = &que->rxr;
2929 		rxr->adapter = que->adapter = adapter;
2930 		rxr->que = que;
2931 		que->me = rxr->me =  i;
2932 
2933 		/* get the virtual and physical address of the hardware queues */
2934 		rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
2935 		rxr->rx_paddr = paddrs[i*nrxqs];
2936 	}
2937 
2938 	if (bootverbose)
2939 		device_printf(iflib_get_dev(ctx),
2940 		    "allocated for %d rx_queues\n", adapter->rx_num_queues);
2941 
2942 	return (0);
2943 fail:
2944 	em_if_queues_free(ctx);
2945 	return (error);
2946 }
2947 
2948 static void
2949 em_if_queues_free(if_ctx_t ctx)
2950 {
2951 	struct adapter *adapter = iflib_get_softc(ctx);
2952 	struct em_tx_queue *tx_que = adapter->tx_queues;
2953 	struct em_rx_queue *rx_que = adapter->rx_queues;
2954 
2955 	if (tx_que != NULL) {
2956 		for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
2957 			struct tx_ring *txr = &tx_que->txr;
2958 			if (txr->tx_rsq == NULL)
2959 				break;
2960 
2961 			free(txr->tx_rsq, M_DEVBUF);
2962 			txr->tx_rsq = NULL;
2963 		}
2964 		free(adapter->tx_queues, M_DEVBUF);
2965 		adapter->tx_queues = NULL;
2966 	}
2967 
2968 	if (rx_que != NULL) {
2969 		free(adapter->rx_queues, M_DEVBUF);
2970 		adapter->rx_queues = NULL;
2971 	}
2972 
2973 	em_release_hw_control(adapter);
2974 
2975 	if (adapter->mta != NULL) {
2976 		free(adapter->mta, M_DEVBUF);
2977 	}
2978 }
2979 
2980 /*********************************************************************
2981  *
2982  *  Enable transmit unit.
2983  *
2984  **********************************************************************/
2985 static void
2986 em_initialize_transmit_unit(if_ctx_t ctx)
2987 {
2988 	struct adapter *adapter = iflib_get_softc(ctx);
2989 	if_softc_ctx_t scctx = adapter->shared;
2990 	struct em_tx_queue *que;
2991 	struct tx_ring	*txr;
2992 	struct e1000_hw	*hw = &adapter->hw;
2993 	u32 tctl, txdctl = 0, tarc, tipg = 0;
2994 
2995 	INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
2996 
2997 	for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
2998 		u64 bus_addr;
2999 		caddr_t offp, endp;
3000 
3001 		que = &adapter->tx_queues[i];
3002 		txr = &que->txr;
3003 		bus_addr = txr->tx_paddr;
3004 
3005 		/* Clear checksum offload context. */
3006 		offp = (caddr_t)&txr->csum_flags;
3007 		endp = (caddr_t)(txr + 1);
3008 		bzero(offp, endp - offp);
3009 
3010 		/* Base and Len of TX Ring */
3011 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
3012 		    scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
3013 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
3014 		    (u32)(bus_addr >> 32));
3015 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
3016 		    (u32)bus_addr);
3017 		/* Init the HEAD/TAIL indices */
3018 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3019 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3020 
3021 		HW_DEBUGOUT2("Base = %x, Length = %x\n",
3022 		    E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)),
3023 		    E1000_READ_REG(&adapter->hw, E1000_TDLEN(i)));
3024 
3025 		txdctl = 0; /* clear txdctl */
3026 		txdctl |= 0x1f; /* PTHRESH */
3027 		txdctl |= 1 << 8; /* HTHRESH */
3028 		txdctl |= 1 << 16;/* WTHRESH */
3029 		txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3030 		txdctl |= E1000_TXDCTL_GRAN;
3031 		txdctl |= 1 << 25; /* LWTHRESH */
3032 
3033 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3034 	}
3035 
3036 	/* Set the default values for the Tx Inter Packet Gap timer */
3037 	switch (adapter->hw.mac.type) {
3038 	case e1000_80003es2lan:
3039 		tipg = DEFAULT_82543_TIPG_IPGR1;
3040 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3041 		    E1000_TIPG_IPGR2_SHIFT;
3042 		break;
3043 	case e1000_82542:
3044 		tipg = DEFAULT_82542_TIPG_IPGT;
3045 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3046 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3047 		break;
3048 	default:
3049 		if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
3050 		    (adapter->hw.phy.media_type ==
3051 		    e1000_media_type_internal_serdes))
3052 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3053 		else
3054 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3055 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3056 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3057 	}
3058 
3059 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
3060 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value);
3061 
3062 	if(adapter->hw.mac.type >= e1000_82540)
3063 		E1000_WRITE_REG(&adapter->hw, E1000_TADV,
3064 		    adapter->tx_abs_int_delay.value);
3065 
3066 	if ((adapter->hw.mac.type == e1000_82571) ||
3067 	    (adapter->hw.mac.type == e1000_82572)) {
3068 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3069 		tarc |= TARC_SPEED_MODE_BIT;
3070 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3071 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
3072 		/* errata: program both queues to unweighted RR */
3073 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3074 		tarc |= 1;
3075 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3076 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
3077 		tarc |= 1;
3078 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3079 	} else if (adapter->hw.mac.type == e1000_82574) {
3080 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3081 		tarc |= TARC_ERRATA_BIT;
3082 		if ( adapter->tx_num_queues > 1) {
3083 			tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3084 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3085 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3086 		} else
3087 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3088 	}
3089 
3090 	if (adapter->tx_int_delay.value > 0)
3091 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3092 
3093 	/* Program the Transmit Control Register */
3094 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
3095 	tctl &= ~E1000_TCTL_CT;
3096 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3097 		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3098 
3099 	if (adapter->hw.mac.type >= e1000_82571)
3100 		tctl |= E1000_TCTL_MULR;
3101 
3102 	/* This write will effectively turn on the transmit unit. */
3103 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
3104 
3105 	/* SPT and KBL errata workarounds */
3106 	if (hw->mac.type == e1000_pch_spt) {
3107 		u32 reg;
3108 		reg = E1000_READ_REG(hw, E1000_IOSFPC);
3109 		reg |= E1000_RCTL_RDMTS_HEX;
3110 		E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3111 		/* i218-i219 Specification Update 1.5.4.5 */
3112 		reg = E1000_READ_REG(hw, E1000_TARC(0));
3113 		reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3114 		reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3115 		E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3116 	}
3117 }
3118 
3119 /*********************************************************************
3120  *
3121  *  Enable receive unit.
3122  *
3123  **********************************************************************/
3124 
3125 static void
3126 em_initialize_receive_unit(if_ctx_t ctx)
3127 {
3128 	struct adapter *adapter = iflib_get_softc(ctx);
3129 	if_softc_ctx_t scctx = adapter->shared;
3130 	struct ifnet *ifp = iflib_get_ifp(ctx);
3131 	struct e1000_hw	*hw = &adapter->hw;
3132 	struct em_rx_queue *que;
3133 	int i;
3134 	u32 rctl, rxcsum, rfctl;
3135 
3136 	INIT_DEBUGOUT("em_initialize_receive_units: begin");
3137 
3138 	/*
3139 	 * Make sure receives are disabled while setting
3140 	 * up the descriptor ring
3141 	 */
3142 	rctl = E1000_READ_REG(hw, E1000_RCTL);
3143 	/* Do not disable if ever enabled on this hardware */
3144 	if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3145 		E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3146 
3147 	/* Setup the Receive Control Register */
3148 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3149 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3150 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3151 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3152 
3153 	/* Do not store bad packets */
3154 	rctl &= ~E1000_RCTL_SBP;
3155 
3156 	/* Enable Long Packet receive */
3157 	if (if_getmtu(ifp) > ETHERMTU)
3158 		rctl |= E1000_RCTL_LPE;
3159 	else
3160 		rctl &= ~E1000_RCTL_LPE;
3161 
3162 	/* Strip the CRC */
3163 	if (!em_disable_crc_stripping)
3164 		rctl |= E1000_RCTL_SECRC;
3165 
3166 	if (adapter->hw.mac.type >= e1000_82540) {
3167 		E1000_WRITE_REG(&adapter->hw, E1000_RADV,
3168 			    adapter->rx_abs_int_delay.value);
3169 
3170 		/*
3171 		 * Set the interrupt throttling rate. Value is calculated
3172 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3173 		 */
3174 		E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
3175 	}
3176 	E1000_WRITE_REG(&adapter->hw, E1000_RDTR,
3177 	    adapter->rx_int_delay.value);
3178 
3179 	/* Use extended rx descriptor formats */
3180 	rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3181 	rfctl |= E1000_RFCTL_EXTEN;
3182 	/*
3183 	 * When using MSI-X interrupts we need to throttle
3184 	 * using the EITR register (82574 only)
3185 	 */
3186 	if (hw->mac.type == e1000_82574) {
3187 		for (int i = 0; i < 4; i++)
3188 			E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3189 			    DEFAULT_ITR);
3190 		/* Disable accelerated acknowledge */
3191 		rfctl |= E1000_RFCTL_ACK_DIS;
3192 	}
3193 	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3194 
3195 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3196 	if (if_getcapenable(ifp) & IFCAP_RXCSUM &&
3197 	    adapter->hw.mac.type >= e1000_82543) {
3198 		if (adapter->tx_num_queues > 1) {
3199 			if (adapter->hw.mac.type >= igb_mac_min) {
3200 				rxcsum |= E1000_RXCSUM_PCSD;
3201 				if (hw->mac.type != e1000_82575)
3202 					rxcsum |= E1000_RXCSUM_CRCOFL;
3203 			} else
3204 				rxcsum |= E1000_RXCSUM_TUOFL |
3205 					E1000_RXCSUM_IPOFL |
3206 					E1000_RXCSUM_PCSD;
3207 		} else {
3208 			if (adapter->hw.mac.type >= igb_mac_min)
3209 				rxcsum |= E1000_RXCSUM_IPPCSE;
3210 			else
3211 				rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3212 			if (adapter->hw.mac.type > e1000_82575)
3213 				rxcsum |= E1000_RXCSUM_CRCOFL;
3214 		}
3215 	} else
3216 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3217 
3218 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3219 
3220 	if (adapter->rx_num_queues > 1) {
3221 		if (adapter->hw.mac.type >= igb_mac_min)
3222 			igb_initialize_rss_mapping(adapter);
3223 		else
3224 			em_initialize_rss_mapping(adapter);
3225 	}
3226 
3227 	/*
3228 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3229 	 * long latencies are observed, like Lenovo X60. This
3230 	 * change eliminates the problem, but since having positive
3231 	 * values in RDTR is a known source of problems on other
3232 	 * platforms another solution is being sought.
3233 	 */
3234 	if (hw->mac.type == e1000_82573)
3235 		E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3236 
3237 	for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3238 		struct rx_ring *rxr = &que->rxr;
3239 		/* Setup the Base and Length of the Rx Descriptor Ring */
3240 		u64 bus_addr = rxr->rx_paddr;
3241 #if 0
3242 		u32 rdt = adapter->rx_num_queues -1;  /* default */
3243 #endif
3244 
3245 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
3246 		    scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
3247 		E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3248 		E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3249 		/* Setup the Head and Tail Descriptor Pointers */
3250 		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3251 		E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3252 	}
3253 
3254 	/*
3255 	 * Set PTHRESH for improved jumbo performance
3256 	 * According to 10.2.5.11 of Intel 82574 Datasheet,
3257 	 * RXDCTL(1) is written whenever RXDCTL(0) is written.
3258 	 * Only write to RXDCTL(1) if there is a need for different
3259 	 * settings.
3260 	 */
3261 
3262 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3263 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3264 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3265 	    (if_getmtu(ifp) > ETHERMTU)) {
3266 		u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3267 		E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3268 	} else if (adapter->hw.mac.type == e1000_82574) {
3269 		for (int i = 0; i < adapter->rx_num_queues; i++) {
3270 			u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3271 			rxdctl |= 0x20; /* PTHRESH */
3272 			rxdctl |= 4 << 8; /* HTHRESH */
3273 			rxdctl |= 4 << 16;/* WTHRESH */
3274 			rxdctl |= 1 << 24; /* Switch to granularity */
3275 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3276 		}
3277 	} else if (adapter->hw.mac.type >= igb_mac_min) {
3278 		u32 psize, srrctl = 0;
3279 
3280 		if (if_getmtu(ifp) > ETHERMTU) {
3281 			/* Set maximum packet len */
3282 			if (adapter->rx_mbuf_sz <= 4096) {
3283 				srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3284 				rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3285 			} else if (adapter->rx_mbuf_sz > 4096) {
3286 				srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3287 				rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3288 			}
3289 			psize = scctx->isc_max_frame_size;
3290 			/* are we on a vlan? */
3291 			if (ifp->if_vlantrunk != NULL)
3292 				psize += VLAN_TAG_SIZE;
3293 			E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
3294 		} else {
3295 			srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3296 			rctl |= E1000_RCTL_SZ_2048;
3297 		}
3298 
3299 		/*
3300 		 * If TX flow control is disabled and there's >1 queue defined,
3301 		 * enable DROP.
3302 		 *
3303 		 * This drops frames rather than hanging the RX MAC for all queues.
3304 		 */
3305 		if ((adapter->rx_num_queues > 1) &&
3306 		    (adapter->fc == e1000_fc_none ||
3307 		     adapter->fc == e1000_fc_rx_pause)) {
3308 			srrctl |= E1000_SRRCTL_DROP_EN;
3309 		}
3310 			/* Setup the Base and Length of the Rx Descriptor Rings */
3311 		for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3312 			struct rx_ring *rxr = &que->rxr;
3313 			u64 bus_addr = rxr->rx_paddr;
3314 			u32 rxdctl;
3315 
3316 #ifdef notyet
3317 			/* Configure for header split? -- ignore for now */
3318 			rxr->hdr_split = igb_header_split;
3319 #else
3320 			srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3321 #endif
3322 
3323 			E1000_WRITE_REG(hw, E1000_RDLEN(i),
3324 					scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3325 			E1000_WRITE_REG(hw, E1000_RDBAH(i),
3326 					(uint32_t)(bus_addr >> 32));
3327 			E1000_WRITE_REG(hw, E1000_RDBAL(i),
3328 					(uint32_t)bus_addr);
3329 			E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3330 			/* Enable this Queue */
3331 			rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3332 			rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3333 			rxdctl &= 0xFFF00000;
3334 			rxdctl |= IGB_RX_PTHRESH;
3335 			rxdctl |= IGB_RX_HTHRESH << 8;
3336 			rxdctl |= IGB_RX_WTHRESH << 16;
3337 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3338 		}
3339 	} else if (adapter->hw.mac.type >= e1000_pch2lan) {
3340 		if (if_getmtu(ifp) > ETHERMTU)
3341 			e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
3342 		else
3343 			e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
3344 	}
3345 
3346 	/* Make sure VLAN Filters are off */
3347 	rctl &= ~E1000_RCTL_VFE;
3348 
3349 	if (adapter->hw.mac.type < igb_mac_min) {
3350 		if (adapter->rx_mbuf_sz == MCLBYTES)
3351 			rctl |= E1000_RCTL_SZ_2048;
3352 		else if (adapter->rx_mbuf_sz == MJUMPAGESIZE)
3353 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3354 		else if (adapter->rx_mbuf_sz > MJUMPAGESIZE)
3355 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3356 
3357 		/* ensure we clear use DTYPE of 00 here */
3358 		rctl &= ~0x00000C00;
3359 	}
3360 
3361 	/* Write out the settings */
3362 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3363 
3364 	return;
3365 }
3366 
3367 static void
3368 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3369 {
3370 	struct adapter *adapter = iflib_get_softc(ctx);
3371 	u32 index, bit;
3372 
3373 	index = (vtag >> 5) & 0x7F;
3374 	bit = vtag & 0x1F;
3375 	adapter->shadow_vfta[index] |= (1 << bit);
3376 	++adapter->num_vlans;
3377 }
3378 
3379 static void
3380 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3381 {
3382 	struct adapter *adapter = iflib_get_softc(ctx);
3383 	u32 index, bit;
3384 
3385 	index = (vtag >> 5) & 0x7F;
3386 	bit = vtag & 0x1F;
3387 	adapter->shadow_vfta[index] &= ~(1 << bit);
3388 	--adapter->num_vlans;
3389 }
3390 
3391 static void
3392 em_setup_vlan_hw_support(struct adapter *adapter)
3393 {
3394 	struct e1000_hw *hw = &adapter->hw;
3395 	u32 reg;
3396 
3397 	/*
3398 	 * We get here thru init_locked, meaning
3399 	 * a soft reset, this has already cleared
3400 	 * the VFTA and other state, so if there
3401 	 * have been no vlan's registered do nothing.
3402 	 */
3403 	if (adapter->num_vlans == 0)
3404 		return;
3405 
3406 	/*
3407 	 * A soft reset zero's out the VFTA, so
3408 	 * we need to repopulate it now.
3409 	 */
3410 	for (int i = 0; i < EM_VFTA_SIZE; i++)
3411 		if (adapter->shadow_vfta[i] != 0)
3412 			E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
3413 			    i, adapter->shadow_vfta[i]);
3414 
3415 	reg = E1000_READ_REG(hw, E1000_CTRL);
3416 	reg |= E1000_CTRL_VME;
3417 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
3418 
3419 	/* Enable the Filter Table */
3420 	reg = E1000_READ_REG(hw, E1000_RCTL);
3421 	reg &= ~E1000_RCTL_CFIEN;
3422 	reg |= E1000_RCTL_VFE;
3423 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
3424 }
3425 
3426 static void
3427 em_if_intr_enable(if_ctx_t ctx)
3428 {
3429 	struct adapter *adapter = iflib_get_softc(ctx);
3430 	struct e1000_hw *hw = &adapter->hw;
3431 	u32 ims_mask = IMS_ENABLE_MASK;
3432 
3433 	if (hw->mac.type == e1000_82574) {
3434 		E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK);
3435 		ims_mask |= adapter->ims;
3436 	}
3437 	E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3438 }
3439 
3440 static void
3441 em_if_intr_disable(if_ctx_t ctx)
3442 {
3443 	struct adapter *adapter = iflib_get_softc(ctx);
3444 	struct e1000_hw *hw = &adapter->hw;
3445 
3446 	if (hw->mac.type == e1000_82574)
3447 		E1000_WRITE_REG(hw, EM_EIAC, 0);
3448 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3449 }
3450 
3451 static void
3452 igb_if_intr_enable(if_ctx_t ctx)
3453 {
3454 	struct adapter *adapter = iflib_get_softc(ctx);
3455 	struct e1000_hw *hw = &adapter->hw;
3456 	u32 mask;
3457 
3458 	if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3459 		mask = (adapter->que_mask | adapter->link_mask);
3460 		E1000_WRITE_REG(hw, E1000_EIAC, mask);
3461 		E1000_WRITE_REG(hw, E1000_EIAM, mask);
3462 		E1000_WRITE_REG(hw, E1000_EIMS, mask);
3463 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3464 	} else
3465 		E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3466 	E1000_WRITE_FLUSH(hw);
3467 }
3468 
3469 static void
3470 igb_if_intr_disable(if_ctx_t ctx)
3471 {
3472 	struct adapter *adapter = iflib_get_softc(ctx);
3473 	struct e1000_hw *hw = &adapter->hw;
3474 
3475 	if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3476 		E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
3477 		E1000_WRITE_REG(hw, E1000_EIAC, 0);
3478 	}
3479 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3480 	E1000_WRITE_FLUSH(hw);
3481 }
3482 
3483 /*
3484  * Bit of a misnomer, what this really means is
3485  * to enable OS management of the system... aka
3486  * to disable special hardware management features
3487  */
3488 static void
3489 em_init_manageability(struct adapter *adapter)
3490 {
3491 	/* A shared code workaround */
3492 #define E1000_82542_MANC2H E1000_MANC2H
3493 	if (adapter->has_manage) {
3494 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3495 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3496 
3497 		/* disable hardware interception of ARP */
3498 		manc &= ~(E1000_MANC_ARP_EN);
3499 
3500 		/* enable receiving management packets to the host */
3501 		manc |= E1000_MANC_EN_MNG2HOST;
3502 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3503 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3504 		manc2h |= E1000_MNG2HOST_PORT_623;
3505 		manc2h |= E1000_MNG2HOST_PORT_664;
3506 		E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3507 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3508 	}
3509 }
3510 
3511 /*
3512  * Give control back to hardware management
3513  * controller if there is one.
3514  */
3515 static void
3516 em_release_manageability(struct adapter *adapter)
3517 {
3518 	if (adapter->has_manage) {
3519 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3520 
3521 		/* re-enable hardware interception of ARP */
3522 		manc |= E1000_MANC_ARP_EN;
3523 		manc &= ~E1000_MANC_EN_MNG2HOST;
3524 
3525 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3526 	}
3527 }
3528 
3529 /*
3530  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3531  * For ASF and Pass Through versions of f/w this means
3532  * that the driver is loaded. For AMT version type f/w
3533  * this means that the network i/f is open.
3534  */
3535 static void
3536 em_get_hw_control(struct adapter *adapter)
3537 {
3538 	u32 ctrl_ext, swsm;
3539 
3540 	if (adapter->vf_ifp)
3541 		return;
3542 
3543 	if (adapter->hw.mac.type == e1000_82573) {
3544 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3545 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3546 		    swsm | E1000_SWSM_DRV_LOAD);
3547 		return;
3548 	}
3549 	/* else */
3550 	ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3551 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3552 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3553 }
3554 
3555 /*
3556  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3557  * For ASF and Pass Through versions of f/w this means that
3558  * the driver is no longer loaded. For AMT versions of the
3559  * f/w this means that the network i/f is closed.
3560  */
3561 static void
3562 em_release_hw_control(struct adapter *adapter)
3563 {
3564 	u32 ctrl_ext, swsm;
3565 
3566 	if (!adapter->has_manage)
3567 		return;
3568 
3569 	if (adapter->hw.mac.type == e1000_82573) {
3570 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3571 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3572 		    swsm & ~E1000_SWSM_DRV_LOAD);
3573 		return;
3574 	}
3575 	/* else */
3576 	ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3577 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3578 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3579 	return;
3580 }
3581 
3582 static int
3583 em_is_valid_ether_addr(u8 *addr)
3584 {
3585 	char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3586 
3587 	if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3588 		return (FALSE);
3589 	}
3590 
3591 	return (TRUE);
3592 }
3593 
3594 /*
3595 ** Parse the interface capabilities with regard
3596 ** to both system management and wake-on-lan for
3597 ** later use.
3598 */
3599 static void
3600 em_get_wakeup(if_ctx_t ctx)
3601 {
3602 	struct adapter *adapter = iflib_get_softc(ctx);
3603 	device_t dev = iflib_get_dev(ctx);
3604 	u16 eeprom_data = 0, device_id, apme_mask;
3605 
3606 	adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
3607 	apme_mask = EM_EEPROM_APME;
3608 
3609 	switch (adapter->hw.mac.type) {
3610 	case e1000_82542:
3611 	case e1000_82543:
3612 		break;
3613 	case e1000_82544:
3614 		e1000_read_nvm(&adapter->hw,
3615 		    NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3616 		apme_mask = EM_82544_APME;
3617 		break;
3618 	case e1000_82546:
3619 	case e1000_82546_rev_3:
3620 		if (adapter->hw.bus.func == 1) {
3621 			e1000_read_nvm(&adapter->hw,
3622 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3623 			break;
3624 		} else
3625 			e1000_read_nvm(&adapter->hw,
3626 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3627 		break;
3628 	case e1000_82573:
3629 	case e1000_82583:
3630 		adapter->has_amt = TRUE;
3631 		/* FALLTHROUGH */
3632 	case e1000_82571:
3633 	case e1000_82572:
3634 	case e1000_80003es2lan:
3635 		if (adapter->hw.bus.func == 1) {
3636 			e1000_read_nvm(&adapter->hw,
3637 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3638 			break;
3639 		} else
3640 			e1000_read_nvm(&adapter->hw,
3641 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3642 		break;
3643 	case e1000_ich8lan:
3644 	case e1000_ich9lan:
3645 	case e1000_ich10lan:
3646 	case e1000_pchlan:
3647 	case e1000_pch2lan:
3648 	case e1000_pch_lpt:
3649 	case e1000_pch_spt:
3650 	case e1000_82575:	/* listing all igb devices */
3651 	case e1000_82576:
3652 	case e1000_82580:
3653 	case e1000_i350:
3654 	case e1000_i354:
3655 	case e1000_i210:
3656 	case e1000_i211:
3657 	case e1000_vfadapt:
3658 	case e1000_vfadapt_i350:
3659 		apme_mask = E1000_WUC_APME;
3660 		adapter->has_amt = TRUE;
3661 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
3662 		break;
3663 	default:
3664 		e1000_read_nvm(&adapter->hw,
3665 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3666 		break;
3667 	}
3668 	if (eeprom_data & apme_mask)
3669 		adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
3670 	/*
3671 	 * We have the eeprom settings, now apply the special cases
3672 	 * where the eeprom may be wrong or the board won't support
3673 	 * wake on lan on a particular port
3674 	 */
3675 	device_id = pci_get_device(dev);
3676 	switch (device_id) {
3677 	case E1000_DEV_ID_82546GB_PCIE:
3678 		adapter->wol = 0;
3679 		break;
3680 	case E1000_DEV_ID_82546EB_FIBER:
3681 	case E1000_DEV_ID_82546GB_FIBER:
3682 		/* Wake events only supported on port A for dual fiber
3683 		 * regardless of eeprom setting */
3684 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3685 		    E1000_STATUS_FUNC_1)
3686 			adapter->wol = 0;
3687 		break;
3688 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
3689 		/* if quad port adapter, disable WoL on all but port A */
3690 		if (global_quad_port_a != 0)
3691 			adapter->wol = 0;
3692 		/* Reset for multiple quad port adapters */
3693 		if (++global_quad_port_a == 4)
3694 			global_quad_port_a = 0;
3695 		break;
3696 	case E1000_DEV_ID_82571EB_FIBER:
3697 		/* Wake events only supported on port A for dual fiber
3698 		 * regardless of eeprom setting */
3699 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3700 		    E1000_STATUS_FUNC_1)
3701 			adapter->wol = 0;
3702 		break;
3703 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
3704 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
3705 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
3706 		/* if quad port adapter, disable WoL on all but port A */
3707 		if (global_quad_port_a != 0)
3708 			adapter->wol = 0;
3709 		/* Reset for multiple quad port adapters */
3710 		if (++global_quad_port_a == 4)
3711 			global_quad_port_a = 0;
3712 		break;
3713 	}
3714 	return;
3715 }
3716 
3717 
3718 /*
3719  * Enable PCI Wake On Lan capability
3720  */
3721 static void
3722 em_enable_wakeup(if_ctx_t ctx)
3723 {
3724 	struct adapter *adapter = iflib_get_softc(ctx);
3725 	device_t dev = iflib_get_dev(ctx);
3726 	if_t ifp = iflib_get_ifp(ctx);
3727 	int error = 0;
3728 	u32 pmc, ctrl, ctrl_ext, rctl;
3729 	u16 status;
3730 
3731 	if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
3732 		return;
3733 
3734 	/*
3735 	 * Determine type of Wakeup: note that wol
3736 	 * is set with all bits on by default.
3737 	 */
3738 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
3739 		adapter->wol &= ~E1000_WUFC_MAG;
3740 
3741 	if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
3742 		adapter->wol &= ~E1000_WUFC_EX;
3743 
3744 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
3745 		adapter->wol &= ~E1000_WUFC_MC;
3746 	else {
3747 		rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3748 		rctl |= E1000_RCTL_MPE;
3749 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3750 	}
3751 
3752 	if (!(adapter->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
3753 		goto pme;
3754 
3755 	/* Advertise the wakeup capability */
3756 	ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
3757 	ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
3758 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
3759 
3760 	/* Keep the laser running on Fiber adapters */
3761 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3762 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
3763 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3764 		ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
3765 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext);
3766 	}
3767 
3768 	if ((adapter->hw.mac.type == e1000_ich8lan) ||
3769 	    (adapter->hw.mac.type == e1000_pchlan) ||
3770 	    (adapter->hw.mac.type == e1000_ich9lan) ||
3771 	    (adapter->hw.mac.type == e1000_ich10lan))
3772 		e1000_suspend_workarounds_ich8lan(&adapter->hw);
3773 
3774 	if ( adapter->hw.mac.type >= e1000_pchlan) {
3775 		error = em_enable_phy_wakeup(adapter);
3776 		if (error)
3777 			goto pme;
3778 	} else {
3779 		/* Enable wakeup by the MAC */
3780 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
3781 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
3782 	}
3783 
3784 	if (adapter->hw.phy.type == e1000_phy_igp_3)
3785 		e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3786 
3787 pme:
3788 	status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
3789 	status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3790 	if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
3791 		status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3792 	pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
3793 
3794 	return;
3795 }
3796 
3797 /*
3798  * WOL in the newer chipset interfaces (pchlan)
3799  * require thing to be copied into the phy
3800  */
3801 static int
3802 em_enable_phy_wakeup(struct adapter *adapter)
3803 {
3804 	struct e1000_hw *hw = &adapter->hw;
3805 	u32 mreg, ret = 0;
3806 	u16 preg;
3807 
3808 	/* copy MAC RARs to PHY RARs */
3809 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
3810 
3811 	/* copy MAC MTA to PHY MTA */
3812 	for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
3813 		mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
3814 		e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
3815 		e1000_write_phy_reg(hw, BM_MTA(i) + 1,
3816 		    (u16)((mreg >> 16) & 0xFFFF));
3817 	}
3818 
3819 	/* configure PHY Rx Control register */
3820 	e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg);
3821 	mreg = E1000_READ_REG(hw, E1000_RCTL);
3822 	if (mreg & E1000_RCTL_UPE)
3823 		preg |= BM_RCTL_UPE;
3824 	if (mreg & E1000_RCTL_MPE)
3825 		preg |= BM_RCTL_MPE;
3826 	preg &= ~(BM_RCTL_MO_MASK);
3827 	if (mreg & E1000_RCTL_MO_3)
3828 		preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
3829 				<< BM_RCTL_MO_SHIFT);
3830 	if (mreg & E1000_RCTL_BAM)
3831 		preg |= BM_RCTL_BAM;
3832 	if (mreg & E1000_RCTL_PMCF)
3833 		preg |= BM_RCTL_PMCF;
3834 	mreg = E1000_READ_REG(hw, E1000_CTRL);
3835 	if (mreg & E1000_CTRL_RFCE)
3836 		preg |= BM_RCTL_RFCE;
3837 	e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg);
3838 
3839 	/* enable PHY wakeup in MAC register */
3840 	E1000_WRITE_REG(hw, E1000_WUC,
3841 	    E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
3842 	E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol);
3843 
3844 	/* configure and enable PHY wakeup in PHY registers */
3845 	e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol);
3846 	e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
3847 
3848 	/* activate PHY wakeup */
3849 	ret = hw->phy.ops.acquire(hw);
3850 	if (ret) {
3851 		printf("Could not acquire PHY\n");
3852 		return ret;
3853 	}
3854 	e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3855 	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
3856 	ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
3857 	if (ret) {
3858 		printf("Could not read PHY page 769\n");
3859 		goto out;
3860 	}
3861 	preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
3862 	ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
3863 	if (ret)
3864 		printf("Could not set PHY Host Wakeup bit\n");
3865 out:
3866 	hw->phy.ops.release(hw);
3867 
3868 	return ret;
3869 }
3870 
3871 static void
3872 em_if_led_func(if_ctx_t ctx, int onoff)
3873 {
3874 	struct adapter *adapter = iflib_get_softc(ctx);
3875 
3876 	if (onoff) {
3877 		e1000_setup_led(&adapter->hw);
3878 		e1000_led_on(&adapter->hw);
3879 	} else {
3880 		e1000_led_off(&adapter->hw);
3881 		e1000_cleanup_led(&adapter->hw);
3882 	}
3883 }
3884 
3885 /*
3886  * Disable the L0S and L1 LINK states
3887  */
3888 static void
3889 em_disable_aspm(struct adapter *adapter)
3890 {
3891 	int base, reg;
3892 	u16 link_cap,link_ctrl;
3893 	device_t dev = adapter->dev;
3894 
3895 	switch (adapter->hw.mac.type) {
3896 	case e1000_82573:
3897 	case e1000_82574:
3898 	case e1000_82583:
3899 		break;
3900 	default:
3901 		return;
3902 	}
3903 	if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
3904 		return;
3905 	reg = base + PCIER_LINK_CAP;
3906 	link_cap = pci_read_config(dev, reg, 2);
3907 	if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
3908 		return;
3909 	reg = base + PCIER_LINK_CTL;
3910 	link_ctrl = pci_read_config(dev, reg, 2);
3911 	link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
3912 	pci_write_config(dev, reg, link_ctrl, 2);
3913 	return;
3914 }
3915 
3916 /**********************************************************************
3917  *
3918  *  Update the board statistics counters.
3919  *
3920  **********************************************************************/
3921 static void
3922 em_update_stats_counters(struct adapter *adapter)
3923 {
3924 	u64 prev_xoffrxc = adapter->stats.xoffrxc;
3925 
3926 	if(adapter->hw.phy.media_type == e1000_media_type_copper ||
3927 	   (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3928 		adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3929 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3930 	}
3931 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3932 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3933 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3934 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3935 
3936 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3937 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3938 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3939 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3940 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3941 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3942 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3943 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3944 	/*
3945 	 ** For watchdog management we need to know if we have been
3946 	 ** paused during the last interval, so capture that here.
3947 	*/
3948 	if (adapter->stats.xoffrxc != prev_xoffrxc)
3949 		adapter->shared->isc_pause_frames = 1;
3950 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3951 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3952 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3953 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3954 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3955 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3956 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3957 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3958 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3959 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3960 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3961 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3962 
3963 	/* For the 64-bit byte counters the low dword must be read first. */
3964 	/* Both registers clear on the read of the high dword */
3965 
3966 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) +
3967 	    ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32);
3968 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) +
3969 	    ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32);
3970 
3971 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3972 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3973 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3974 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3975 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3976 
3977 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3978 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3979 
3980 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3981 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3982 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3983 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3984 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3985 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3986 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3987 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3988 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3989 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3990 
3991 	/* Interrupt Counts */
3992 
3993 	adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC);
3994 	adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC);
3995 	adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC);
3996 	adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC);
3997 	adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC);
3998 	adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC);
3999 	adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC);
4000 	adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC);
4001 	adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC);
4002 
4003 	if (adapter->hw.mac.type >= e1000_82543) {
4004 		adapter->stats.algnerrc +=
4005 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
4006 		adapter->stats.rxerrc +=
4007 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
4008 		adapter->stats.tncrs +=
4009 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
4010 		adapter->stats.cexterr +=
4011 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
4012 		adapter->stats.tsctc +=
4013 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
4014 		adapter->stats.tsctfc +=
4015 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
4016 	}
4017 }
4018 
4019 static uint64_t
4020 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4021 {
4022 	struct adapter *adapter = iflib_get_softc(ctx);
4023 	struct ifnet *ifp = iflib_get_ifp(ctx);
4024 
4025 	switch (cnt) {
4026 	case IFCOUNTER_COLLISIONS:
4027 		return (adapter->stats.colc);
4028 	case IFCOUNTER_IERRORS:
4029 		return (adapter->dropped_pkts + adapter->stats.rxerrc +
4030 		    adapter->stats.crcerrs + adapter->stats.algnerrc +
4031 		    adapter->stats.ruc + adapter->stats.roc +
4032 		    adapter->stats.mpc + adapter->stats.cexterr);
4033 	case IFCOUNTER_OERRORS:
4034 		return (adapter->stats.ecol + adapter->stats.latecol +
4035 		    adapter->watchdog_events);
4036 	default:
4037 		return (if_get_counter_default(ifp, cnt));
4038 	}
4039 }
4040 
4041 /* Export a single 32-bit register via a read-only sysctl. */
4042 static int
4043 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4044 {
4045 	struct adapter *adapter;
4046 	u_int val;
4047 
4048 	adapter = oidp->oid_arg1;
4049 	val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
4050 	return (sysctl_handle_int(oidp, &val, 0, req));
4051 }
4052 
4053 /*
4054  * Add sysctl variables, one per statistic, to the system.
4055  */
4056 static void
4057 em_add_hw_stats(struct adapter *adapter)
4058 {
4059 	device_t dev = iflib_get_dev(adapter->ctx);
4060 	struct em_tx_queue *tx_que = adapter->tx_queues;
4061 	struct em_rx_queue *rx_que = adapter->rx_queues;
4062 
4063 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4064 	struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4065 	struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4066 	struct e1000_hw_stats *stats = &adapter->stats;
4067 
4068 	struct sysctl_oid *stat_node, *queue_node, *int_node;
4069 	struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4070 
4071 #define QUEUE_NAME_LEN 32
4072 	char namebuf[QUEUE_NAME_LEN];
4073 
4074 	/* Driver Statistics */
4075 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4076 			CTLFLAG_RD, &adapter->dropped_pkts,
4077 			"Driver dropped packets");
4078 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4079 			CTLFLAG_RD, &adapter->link_irq,
4080 			"Link MSI-X IRQ Handled");
4081 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4082 			CTLFLAG_RD, &adapter->rx_overruns,
4083 			"RX overruns");
4084 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4085 			CTLFLAG_RD, &adapter->watchdog_events,
4086 			"Watchdog timeouts");
4087 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4088 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4089 	    adapter, E1000_CTRL, em_sysctl_reg_handler, "IU",
4090 	    "Device Control Register");
4091 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4092 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4093 	    adapter, E1000_RCTL, em_sysctl_reg_handler, "IU",
4094 	    "Receiver Control Register");
4095 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4096 			CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
4097 			"Flow Control High Watermark");
4098 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4099 			CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
4100 			"Flow Control Low Watermark");
4101 
4102 	for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
4103 		struct tx_ring *txr = &tx_que->txr;
4104 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4105 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4106 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
4107 		queue_list = SYSCTL_CHILDREN(queue_node);
4108 
4109 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4110 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4111 		    E1000_TDH(txr->me), em_sysctl_reg_handler, "IU",
4112 		    "Transmit Descriptor Head");
4113 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4114 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4115 		    E1000_TDT(txr->me), em_sysctl_reg_handler, "IU",
4116 		    "Transmit Descriptor Tail");
4117 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4118 				CTLFLAG_RD, &txr->tx_irq,
4119 				"Queue MSI-X Transmit Interrupts");
4120 	}
4121 
4122 	for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) {
4123 		struct rx_ring *rxr = &rx_que->rxr;
4124 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4125 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4126 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
4127 		queue_list = SYSCTL_CHILDREN(queue_node);
4128 
4129 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4130 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4131 		    E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU",
4132 		    "Receive Descriptor Head");
4133 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4134 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4135 		    E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU",
4136 		    "Receive Descriptor Tail");
4137 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
4138 				CTLFLAG_RD, &rxr->rx_irq,
4139 				"Queue MSI-X Receive Interrupts");
4140 	}
4141 
4142 	/* MAC stats get their own sub node */
4143 
4144 	stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
4145 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
4146 	stat_list = SYSCTL_CHILDREN(stat_node);
4147 
4148 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
4149 			CTLFLAG_RD, &stats->ecol,
4150 			"Excessive collisions");
4151 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
4152 			CTLFLAG_RD, &stats->scc,
4153 			"Single collisions");
4154 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
4155 			CTLFLAG_RD, &stats->mcc,
4156 			"Multiple collisions");
4157 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
4158 			CTLFLAG_RD, &stats->latecol,
4159 			"Late collisions");
4160 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
4161 			CTLFLAG_RD, &stats->colc,
4162 			"Collision Count");
4163 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
4164 			CTLFLAG_RD, &adapter->stats.symerrs,
4165 			"Symbol Errors");
4166 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
4167 			CTLFLAG_RD, &adapter->stats.sec,
4168 			"Sequence Errors");
4169 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
4170 			CTLFLAG_RD, &adapter->stats.dc,
4171 			"Defer Count");
4172 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
4173 			CTLFLAG_RD, &adapter->stats.mpc,
4174 			"Missed Packets");
4175 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
4176 			CTLFLAG_RD, &adapter->stats.rnbc,
4177 			"Receive No Buffers");
4178 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
4179 			CTLFLAG_RD, &adapter->stats.ruc,
4180 			"Receive Undersize");
4181 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
4182 			CTLFLAG_RD, &adapter->stats.rfc,
4183 			"Fragmented Packets Received ");
4184 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
4185 			CTLFLAG_RD, &adapter->stats.roc,
4186 			"Oversized Packets Received");
4187 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
4188 			CTLFLAG_RD, &adapter->stats.rjc,
4189 			"Recevied Jabber");
4190 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
4191 			CTLFLAG_RD, &adapter->stats.rxerrc,
4192 			"Receive Errors");
4193 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
4194 			CTLFLAG_RD, &adapter->stats.crcerrs,
4195 			"CRC errors");
4196 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
4197 			CTLFLAG_RD, &adapter->stats.algnerrc,
4198 			"Alignment Errors");
4199 	/* On 82575 these are collision counts */
4200 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
4201 			CTLFLAG_RD, &adapter->stats.cexterr,
4202 			"Collision/Carrier extension errors");
4203 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
4204 			CTLFLAG_RD, &adapter->stats.xonrxc,
4205 			"XON Received");
4206 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
4207 			CTLFLAG_RD, &adapter->stats.xontxc,
4208 			"XON Transmitted");
4209 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
4210 			CTLFLAG_RD, &adapter->stats.xoffrxc,
4211 			"XOFF Received");
4212 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
4213 			CTLFLAG_RD, &adapter->stats.xofftxc,
4214 			"XOFF Transmitted");
4215 
4216 	/* Packet Reception Stats */
4217 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
4218 			CTLFLAG_RD, &adapter->stats.tpr,
4219 			"Total Packets Received ");
4220 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
4221 			CTLFLAG_RD, &adapter->stats.gprc,
4222 			"Good Packets Received");
4223 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
4224 			CTLFLAG_RD, &adapter->stats.bprc,
4225 			"Broadcast Packets Received");
4226 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
4227 			CTLFLAG_RD, &adapter->stats.mprc,
4228 			"Multicast Packets Received");
4229 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
4230 			CTLFLAG_RD, &adapter->stats.prc64,
4231 			"64 byte frames received ");
4232 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
4233 			CTLFLAG_RD, &adapter->stats.prc127,
4234 			"65-127 byte frames received");
4235 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
4236 			CTLFLAG_RD, &adapter->stats.prc255,
4237 			"128-255 byte frames received");
4238 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
4239 			CTLFLAG_RD, &adapter->stats.prc511,
4240 			"256-511 byte frames received");
4241 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
4242 			CTLFLAG_RD, &adapter->stats.prc1023,
4243 			"512-1023 byte frames received");
4244 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
4245 			CTLFLAG_RD, &adapter->stats.prc1522,
4246 			"1023-1522 byte frames received");
4247 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
4248 			CTLFLAG_RD, &adapter->stats.gorc,
4249 			"Good Octets Received");
4250 
4251 	/* Packet Transmission Stats */
4252 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
4253 			CTLFLAG_RD, &adapter->stats.gotc,
4254 			"Good Octets Transmitted");
4255 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
4256 			CTLFLAG_RD, &adapter->stats.tpt,
4257 			"Total Packets Transmitted");
4258 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
4259 			CTLFLAG_RD, &adapter->stats.gptc,
4260 			"Good Packets Transmitted");
4261 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
4262 			CTLFLAG_RD, &adapter->stats.bptc,
4263 			"Broadcast Packets Transmitted");
4264 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
4265 			CTLFLAG_RD, &adapter->stats.mptc,
4266 			"Multicast Packets Transmitted");
4267 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
4268 			CTLFLAG_RD, &adapter->stats.ptc64,
4269 			"64 byte frames transmitted ");
4270 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
4271 			CTLFLAG_RD, &adapter->stats.ptc127,
4272 			"65-127 byte frames transmitted");
4273 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
4274 			CTLFLAG_RD, &adapter->stats.ptc255,
4275 			"128-255 byte frames transmitted");
4276 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
4277 			CTLFLAG_RD, &adapter->stats.ptc511,
4278 			"256-511 byte frames transmitted");
4279 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
4280 			CTLFLAG_RD, &adapter->stats.ptc1023,
4281 			"512-1023 byte frames transmitted");
4282 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
4283 			CTLFLAG_RD, &adapter->stats.ptc1522,
4284 			"1024-1522 byte frames transmitted");
4285 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
4286 			CTLFLAG_RD, &adapter->stats.tsctc,
4287 			"TSO Contexts Transmitted");
4288 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
4289 			CTLFLAG_RD, &adapter->stats.tsctfc,
4290 			"TSO Contexts Failed");
4291 
4292 
4293 	/* Interrupt Stats */
4294 
4295 	int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
4296 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
4297 	int_list = SYSCTL_CHILDREN(int_node);
4298 
4299 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
4300 			CTLFLAG_RD, &adapter->stats.iac,
4301 			"Interrupt Assertion Count");
4302 
4303 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
4304 			CTLFLAG_RD, &adapter->stats.icrxptc,
4305 			"Interrupt Cause Rx Pkt Timer Expire Count");
4306 
4307 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
4308 			CTLFLAG_RD, &adapter->stats.icrxatc,
4309 			"Interrupt Cause Rx Abs Timer Expire Count");
4310 
4311 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
4312 			CTLFLAG_RD, &adapter->stats.ictxptc,
4313 			"Interrupt Cause Tx Pkt Timer Expire Count");
4314 
4315 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
4316 			CTLFLAG_RD, &adapter->stats.ictxatc,
4317 			"Interrupt Cause Tx Abs Timer Expire Count");
4318 
4319 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
4320 			CTLFLAG_RD, &adapter->stats.ictxqec,
4321 			"Interrupt Cause Tx Queue Empty Count");
4322 
4323 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
4324 			CTLFLAG_RD, &adapter->stats.ictxqmtc,
4325 			"Interrupt Cause Tx Queue Min Thresh Count");
4326 
4327 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4328 			CTLFLAG_RD, &adapter->stats.icrxdmtc,
4329 			"Interrupt Cause Rx Desc Min Thresh Count");
4330 
4331 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4332 			CTLFLAG_RD, &adapter->stats.icrxoc,
4333 			"Interrupt Cause Receiver Overrun Count");
4334 }
4335 
4336 /**********************************************************************
4337  *
4338  *  This routine provides a way to dump out the adapter eeprom,
4339  *  often a useful debug/service tool. This only dumps the first
4340  *  32 words, stuff that matters is in that extent.
4341  *
4342  **********************************************************************/
4343 static int
4344 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4345 {
4346 	struct adapter *adapter = (struct adapter *)arg1;
4347 	int error;
4348 	int result;
4349 
4350 	result = -1;
4351 	error = sysctl_handle_int(oidp, &result, 0, req);
4352 
4353 	if (error || !req->newptr)
4354 		return (error);
4355 
4356 	/*
4357 	 * This value will cause a hex dump of the
4358 	 * first 32 16-bit words of the EEPROM to
4359 	 * the screen.
4360 	 */
4361 	if (result == 1)
4362 		em_print_nvm_info(adapter);
4363 
4364 	return (error);
4365 }
4366 
4367 static void
4368 em_print_nvm_info(struct adapter *adapter)
4369 {
4370 	u16 eeprom_data;
4371 	int i, j, row = 0;
4372 
4373 	/* Its a bit crude, but it gets the job done */
4374 	printf("\nInterface EEPROM Dump:\n");
4375 	printf("Offset\n0x0000  ");
4376 	for (i = 0, j = 0; i < 32; i++, j++) {
4377 		if (j == 8) { /* Make the offset block */
4378 			j = 0; ++row;
4379 			printf("\n0x00%x0  ",row);
4380 		}
4381 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4382 		printf("%04x ", eeprom_data);
4383 	}
4384 	printf("\n");
4385 }
4386 
4387 static int
4388 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4389 {
4390 	struct em_int_delay_info *info;
4391 	struct adapter *adapter;
4392 	u32 regval;
4393 	int error, usecs, ticks;
4394 
4395 	info = (struct em_int_delay_info *) arg1;
4396 	usecs = info->value;
4397 	error = sysctl_handle_int(oidp, &usecs, 0, req);
4398 	if (error != 0 || req->newptr == NULL)
4399 		return (error);
4400 	if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4401 		return (EINVAL);
4402 	info->value = usecs;
4403 	ticks = EM_USECS_TO_TICKS(usecs);
4404 	if (info->offset == E1000_ITR)	/* units are 256ns here */
4405 		ticks *= 4;
4406 
4407 	adapter = info->adapter;
4408 
4409 	regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
4410 	regval = (regval & ~0xffff) | (ticks & 0xffff);
4411 	/* Handle a few special cases. */
4412 	switch (info->offset) {
4413 	case E1000_RDTR:
4414 		break;
4415 	case E1000_TIDV:
4416 		if (ticks == 0) {
4417 			adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
4418 			/* Don't write 0 into the TIDV register. */
4419 			regval++;
4420 		} else
4421 			adapter->txd_cmd |= E1000_TXD_CMD_IDE;
4422 		break;
4423 	}
4424 	E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
4425 	return (0);
4426 }
4427 
4428 static void
4429 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
4430 	const char *description, struct em_int_delay_info *info,
4431 	int offset, int value)
4432 {
4433 	info->adapter = adapter;
4434 	info->offset = offset;
4435 	info->value = value;
4436 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
4437 	    SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
4438 	    OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
4439 	    info, 0, em_sysctl_int_delay, "I", description);
4440 }
4441 
4442 /*
4443  * Set flow control using sysctl:
4444  * Flow control values:
4445  *      0 - off
4446  *      1 - rx pause
4447  *      2 - tx pause
4448  *      3 - full
4449  */
4450 static int
4451 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4452 {
4453 	int error;
4454 	static int input = 3; /* default is full */
4455 	struct adapter	*adapter = (struct adapter *) arg1;
4456 
4457 	error = sysctl_handle_int(oidp, &input, 0, req);
4458 
4459 	if ((error) || (req->newptr == NULL))
4460 		return (error);
4461 
4462 	if (input == adapter->fc) /* no change? */
4463 		return (error);
4464 
4465 	switch (input) {
4466 	case e1000_fc_rx_pause:
4467 	case e1000_fc_tx_pause:
4468 	case e1000_fc_full:
4469 	case e1000_fc_none:
4470 		adapter->hw.fc.requested_mode = input;
4471 		adapter->fc = input;
4472 		break;
4473 	default:
4474 		/* Do nothing */
4475 		return (error);
4476 	}
4477 
4478 	adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
4479 	e1000_force_mac_fc(&adapter->hw);
4480 	return (error);
4481 }
4482 
4483 /*
4484  * Manage Energy Efficient Ethernet:
4485  * Control values:
4486  *     0/1 - enabled/disabled
4487  */
4488 static int
4489 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
4490 {
4491 	struct adapter *adapter = (struct adapter *) arg1;
4492 	int error, value;
4493 
4494 	value = adapter->hw.dev_spec.ich8lan.eee_disable;
4495 	error = sysctl_handle_int(oidp, &value, 0, req);
4496 	if (error || req->newptr == NULL)
4497 		return (error);
4498 	adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0);
4499 	em_if_init(adapter->ctx);
4500 
4501 	return (0);
4502 }
4503 
4504 static int
4505 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4506 {
4507 	struct adapter *adapter;
4508 	int error;
4509 	int result;
4510 
4511 	result = -1;
4512 	error = sysctl_handle_int(oidp, &result, 0, req);
4513 
4514 	if (error || !req->newptr)
4515 		return (error);
4516 
4517 	if (result == 1) {
4518 		adapter = (struct adapter *) arg1;
4519 		em_print_debug_info(adapter);
4520 	}
4521 
4522 	return (error);
4523 }
4524 
4525 static int
4526 em_get_rs(SYSCTL_HANDLER_ARGS)
4527 {
4528 	struct adapter *adapter = (struct adapter *) arg1;
4529 	int error;
4530 	int result;
4531 
4532 	result = 0;
4533 	error = sysctl_handle_int(oidp, &result, 0, req);
4534 
4535 	if (error || !req->newptr || result != 1)
4536 		return (error);
4537 	em_dump_rs(adapter);
4538 
4539 	return (error);
4540 }
4541 
4542 static void
4543 em_if_debug(if_ctx_t ctx)
4544 {
4545 	em_dump_rs(iflib_get_softc(ctx));
4546 }
4547 
4548 /*
4549  * This routine is meant to be fluid, add whatever is
4550  * needed for debugging a problem.  -jfv
4551  */
4552 static void
4553 em_print_debug_info(struct adapter *adapter)
4554 {
4555 	device_t dev = iflib_get_dev(adapter->ctx);
4556 	struct ifnet *ifp = iflib_get_ifp(adapter->ctx);
4557 	struct tx_ring *txr = &adapter->tx_queues->txr;
4558 	struct rx_ring *rxr = &adapter->rx_queues->rxr;
4559 
4560 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
4561 		printf("Interface is RUNNING ");
4562 	else
4563 		printf("Interface is NOT RUNNING\n");
4564 
4565 	if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
4566 		printf("and INACTIVE\n");
4567 	else
4568 		printf("and ACTIVE\n");
4569 
4570 	for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
4571 		device_printf(dev, "TX Queue %d ------\n", i);
4572 		device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4573 			E1000_READ_REG(&adapter->hw, E1000_TDH(i)),
4574 			E1000_READ_REG(&adapter->hw, E1000_TDT(i)));
4575 
4576 	}
4577 	for (int j=0; j < adapter->rx_num_queues; j++, rxr++) {
4578 		device_printf(dev, "RX Queue %d ------\n", j);
4579 		device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4580 			E1000_READ_REG(&adapter->hw, E1000_RDH(j)),
4581 			E1000_READ_REG(&adapter->hw, E1000_RDT(j)));
4582 	}
4583 }
4584 
4585 /*
4586  * 82574 only:
4587  * Write a new value to the EEPROM increasing the number of MSI-X
4588  * vectors from 3 to 5, for proper multiqueue support.
4589  */
4590 static void
4591 em_enable_vectors_82574(if_ctx_t ctx)
4592 {
4593 	struct adapter *adapter = iflib_get_softc(ctx);
4594 	struct e1000_hw *hw = &adapter->hw;
4595 	device_t dev = iflib_get_dev(ctx);
4596 	u16 edata;
4597 
4598 	e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4599 	if (bootverbose)
4600 		device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
4601 	if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
4602 		device_printf(dev, "Writing to eeprom: increasing "
4603 		    "reported MSI-X vectors from 3 to 5...\n");
4604 		edata &= ~(EM_NVM_MSIX_N_MASK);
4605 		edata |= 4 << EM_NVM_MSIX_N_SHIFT;
4606 		e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4607 		e1000_update_nvm_checksum(hw);
4608 		device_printf(dev, "Writing to eeprom: done\n");
4609 	}
4610 }
4611