xref: /freebsd/sys/dev/e1000/if_em.c (revision 924226fba12cc9a228c73b956e1b7fa24c60b055)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* $FreeBSD$ */
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33 
34 #define em_mac_min e1000_82571
35 #define igb_mac_min e1000_82575
36 
37 /*********************************************************************
38  *  Driver version:
39  *********************************************************************/
40 char em_driver_version[] = "7.6.1-k";
41 
42 /*********************************************************************
43  *  PCI Device ID Table
44  *
45  *  Used by probe to select devices to load on
46  *  Last field stores an index into e1000_strings
47  *  Last entry must be all 0s
48  *
49  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
50  *********************************************************************/
51 
52 static pci_vendor_info_t em_vendor_info_array[] =
53 {
54 	/* Intel(R) - lem-class legacy devices */
55 	PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) Legacy PRO/1000 MT 82540EM"),
56 	PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) Legacy PRO/1000 MT 82540EM (LOM)"),
57 	PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) Legacy PRO/1000 MT 82540EP"),
58 	PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) Legacy PRO/1000 MT 82540EP (LOM)"),
59 	PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) Legacy PRO/1000 MT 82540EP (Mobile)"),
60 
61 	PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) Legacy PRO/1000 MT 82541EI (Copper)"),
62 	PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) Legacy PRO/1000 82541ER"),
63 	PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) Legacy PRO/1000 MT 82541ER"),
64 	PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541EI (Mobile)"),
65 	PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) Legacy PRO/1000 MT 82541GI"),
66 	PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) Legacy PRO/1000 GT 82541PI"),
67 	PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541GI (Mobile)"),
68 
69 	PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) Legacy PRO/1000 82542 (Fiber)"),
70 
71 	PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) Legacy PRO/1000 F 82543GC (Fiber)"),
72 	PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) Legacy PRO/1000 T 82543GC (Copper)"),
73 
74 	PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) Legacy PRO/1000 XT 82544EI (Copper)"),
75 	PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) Legacy PRO/1000 XF 82544EI (Fiber)"),
76 	PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) Legacy PRO/1000 T 82544GC (Copper)"),
77 	PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) Legacy PRO/1000 XT 82544GC (LOM)"),
78 
79 	PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545EM (Copper)"),
80 	PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545EM (Fiber)"),
81 	PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545GM (Copper)"),
82 	PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545GM (Fiber)"),
83 	PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) Legacy PRO/1000 MB 82545GM (SERDES)"),
84 
85 	PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Copper)"),
86 	PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546EB (Fiber)"),
87 	PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Quad Copper"),
88 	PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546GB (Copper)"),
89 	PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546GB (Fiber)"),
90 	PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) Legacy PRO/1000 MB 82546GB (SERDES)"),
91 	PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) Legacy PRO/1000 P 82546GB (PCIe)"),
92 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
93 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
94 
95 	PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) Legacy PRO/1000 CT 82547EI"),
96 	PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) Legacy PRO/1000 CT 82547EI (Mobile)"),
97 	PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) Legacy PRO/1000 CT 82547GI"),
98 
99 	/* Intel(R) - em-class devices */
100 	PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Copper)"),
101 	PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 PF 82571EB/82571GB (Fiber)"),
102 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 PB 82571EB (SERDES)"),
103 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 82571EB (Dual Mezzanine)"),
104 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 82571EB (Quad Mezzanine)"),
105 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
106 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
107 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 PF 82571EB (Quad Fiber)"),
108 	PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571PT (Quad Copper)"),
109 	PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 PT 82572EI (Copper)"),
110 	PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 PT 82572EI (Copper)"),
111 	PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 PF 82572EI (Fiber)"),
112 	PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 82572EI (SERDES)"),
113 	PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 82573E (Copper)"),
114 	PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 82573E AMT (Copper)"),
115 	PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 82573L"),
116 	PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) 82583V"),
117 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) 80003ES2LAN (Copper)"),
118 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) 80003ES2LAN (SERDES)"),
119 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) 80003ES2LAN (Dual Copper)"),
120 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) 80003ES2LAN (Dual SERDES)"),
121 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) 82566MM ICH8 AMT (Mobile)"),
122 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) 82566DM ICH8 AMT"),
123 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) 82566DC ICH8"),
124 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) 82562V ICH8"),
125 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) 82562GT ICH8"),
126 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) 82562G ICH8"),
127 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) 82566MC ICH8"),
128 	PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) 82567V-3 ICH8"),
129 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) 82567LM ICH9 AMT"),
130 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) 82566DM-2 ICH9 AMT"),
131 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) 82566DC-2 ICH9"),
132 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) 82567LF ICH9"),
133 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) 82567V ICH9"),
134 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) 82562V-2 ICH9"),
135 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) 82562GT-2 ICH9"),
136 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) 82562G-2 ICH9"),
137 	PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) 82567LM-4 ICH9"),
138 	PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) Gigabit CT 82574L"),
139 	PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) 82574L-Apple"),
140 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) 82567LM-2 ICH10"),
141 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) 82567LF-2 ICH10"),
142 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) 82567V-2 ICH10"),
143 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) 82567LM-3 ICH10"),
144 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) 82567LF-3 ICH10"),
145 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) 82567V-4 ICH10"),
146 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) 82577LM"),
147 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) 82577LC"),
148 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) 82578DM"),
149 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) 82578DC"),
150 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) 82579LM"),
151 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) 82579V"),
152 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) I217-LM LPT"),
153 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) I217-V LPT"),
154 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) I218-LM LPTLP"),
155 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) I218-V LPTLP"),
156 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) I218-LM (2)"),
157 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) I218-V (2)"),
158 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) I218-LM (3)"),
159 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) I218-V (3)"),
160 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) I219-LM SPT"),
161 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) I219-V SPT"),
162 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) I219-LM SPT-H(2)"),
163 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) I219-V SPT-H(2)"),
164 	PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) I219-LM LBG(3)"),
165 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) I219-LM SPT(4)"),
166 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) I219-V SPT(4)"),
167 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) I219-LM SPT(5)"),
168 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) I219-V SPT(5)"),
169 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) I219-LM CNP(6)"),
170 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) I219-V CNP(6)"),
171 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) I219-LM CNP(7)"),
172 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) I219-V CNP(7)"),
173 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) I219-LM ICP(8)"),
174 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) I219-V ICP(8)"),
175 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) I219-LM ICP(9)"),
176 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) I219-V ICP(9)"),
177 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10, "Intel(R) I219-LM CMP(10)"),
178 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10, "Intel(R) I219-V CMP(10)"),
179 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11, "Intel(R) I219-LM CMP(11)"),
180 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11, "Intel(R) I219-V CMP(11)"),
181 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12, "Intel(R) I219-LM CMP(12)"),
182 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12, "Intel(R) I219-V CMP(12)"),
183 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM13, "Intel(R) I219-LM TGP(13)"),
184 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V13, "Intel(R) I219-V TGP(13)"),
185 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM14, "Intel(R) I219-LM TGP(14)"),
186 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V14, "Intel(R) I219-V GTP(14)"),
187 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM15, "Intel(R) I219-LM TGP(15)"),
188 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V15, "Intel(R) I219-V TGP(15)"),
189 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM16, "Intel(R) I219-LM ADL(16)"),
190 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V16, "Intel(R) I219-V ADL(16)"),
191 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM17, "Intel(R) I219-LM ADL(17)"),
192 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V17, "Intel(R) I219-V ADL(17)"),
193 	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM18, "Intel(R) I219-LM MTP(18)"),
194 	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V18, "Intel(R) I219-V MTP(18)"),
195 	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM19, "Intel(R) I219-LM MTP(19)"),
196 	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V19, "Intel(R) I219-V MTP(19)"),
197 	/* required last entry */
198 	PVID_END
199 };
200 
201 static pci_vendor_info_t igb_vendor_info_array[] =
202 {
203 	/* Intel(R) - igb-class devices */
204 	PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 82575EB (Copper)"),
205 	PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 82575EB (SERDES)"),
206 	PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 VT 82575GB (Quad Copper)"),
207 	PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 82576"),
208 	PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 82576NS"),
209 	PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 82576NS (SERDES)"),
210 	PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 EF 82576 (Dual Fiber)"),
211 	PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 82576 (Dual SERDES)"),
212 	PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 ET 82576 (Quad SERDES)"),
213 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 ET 82576 (Quad Copper)"),
214 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 ET(2) 82576 (Quad Copper)"),
215 	PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 82576 Virtual Function"),
216 	PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) I340 82580 (Copper)"),
217 	PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) I340 82580 (Fiber)"),
218 	PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) I340 82580 (SERDES)"),
219 	PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) I340 82580 (SGMII)"),
220 	PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) I340-T2 82580 (Dual Copper)"),
221 	PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) I340-F4 82580 (Quad Fiber)"),
222 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) DH89XXCC (SERDES)"),
223 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) I347-AT4 DH89XXCC"),
224 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) DH89XXCC (SFP)"),
225 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) DH89XXCC (Backplane)"),
226 	PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) I350 (Copper)"),
227 	PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) I350 (Fiber)"),
228 	PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) I350 (SERDES)"),
229 	PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) I350 (SGMII)"),
230 	PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) I350 Virtual Function"),
231 	PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) I210 (Copper)"),
232 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) I210 IT (Copper)"),
233 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) I210 (OEM)"),
234 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) I210 Flashless (Copper)"),
235 	PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) I210 Flashless (SERDES)"),
236 	PVID(0x8086, E1000_DEV_ID_I210_SGMII_FLASHLESS, "Intel(R) I210 Flashless (SGMII)"),
237 	PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) I210 (Fiber)"),
238 	PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) I210 (SERDES)"),
239 	PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) I210 (SGMII)"),
240 	PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) I211 (Copper)"),
241 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) I354 (1.0 GbE Backplane)"),
242 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) I354 (2.5 GbE Backplane)"),
243 	PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) I354 (SGMII)"),
244 	/* required last entry */
245 	PVID_END
246 };
247 
248 /*********************************************************************
249  *  Function prototypes
250  *********************************************************************/
251 static void	*em_register(device_t);
252 static void	*igb_register(device_t);
253 static int	em_if_attach_pre(if_ctx_t);
254 static int	em_if_attach_post(if_ctx_t);
255 static int	em_if_detach(if_ctx_t);
256 static int	em_if_shutdown(if_ctx_t);
257 static int	em_if_suspend(if_ctx_t);
258 static int	em_if_resume(if_ctx_t);
259 
260 static int	em_if_tx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int, int);
261 static int	em_if_rx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int, int);
262 static void	em_if_queues_free(if_ctx_t);
263 
264 static uint64_t	em_if_get_counter(if_ctx_t, ift_counter);
265 static void	em_if_init(if_ctx_t);
266 static void	em_if_stop(if_ctx_t);
267 static void	em_if_media_status(if_ctx_t, struct ifmediareq *);
268 static int	em_if_media_change(if_ctx_t);
269 static int	em_if_mtu_set(if_ctx_t, uint32_t);
270 static void	em_if_timer(if_ctx_t, uint16_t);
271 static void	em_if_vlan_register(if_ctx_t, u16);
272 static void	em_if_vlan_unregister(if_ctx_t, u16);
273 static void	em_if_watchdog_reset(if_ctx_t);
274 static bool	em_if_needs_restart(if_ctx_t, enum iflib_restart_event);
275 
276 static void	em_identify_hardware(if_ctx_t);
277 static int	em_allocate_pci_resources(if_ctx_t);
278 static void	em_free_pci_resources(if_ctx_t);
279 static void	em_reset(if_ctx_t);
280 static int	em_setup_interface(if_ctx_t);
281 static int	em_setup_msix(if_ctx_t);
282 
283 static void	em_initialize_transmit_unit(if_ctx_t);
284 static void	em_initialize_receive_unit(if_ctx_t);
285 
286 static void	em_if_intr_enable(if_ctx_t);
287 static void	em_if_intr_disable(if_ctx_t);
288 static void	igb_if_intr_enable(if_ctx_t);
289 static void	igb_if_intr_disable(if_ctx_t);
290 static int	em_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
291 static int	em_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
292 static int	igb_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
293 static int	igb_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
294 static void	em_if_multi_set(if_ctx_t);
295 static void	em_if_update_admin_status(if_ctx_t);
296 static void	em_if_debug(if_ctx_t);
297 static void	em_update_stats_counters(struct e1000_softc *);
298 static void	em_add_hw_stats(struct e1000_softc *);
299 static int	em_if_set_promisc(if_ctx_t, int);
300 static bool	em_if_vlan_filter_capable(if_ctx_t);
301 static bool	em_if_vlan_filter_used(if_ctx_t);
302 static void	em_if_vlan_filter_enable(struct e1000_softc *);
303 static void	em_if_vlan_filter_disable(struct e1000_softc *);
304 static void	em_if_vlan_filter_write(struct e1000_softc *);
305 static void	em_setup_vlan_hw_support(if_ctx_t ctx);
306 static int	em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
307 static void	em_print_nvm_info(struct e1000_softc *);
308 static void	em_fw_version_locked(if_ctx_t);
309 static void	em_sbuf_fw_version(struct e1000_fw_version *, struct sbuf *);
310 static void	em_print_fw_version(struct e1000_softc *);
311 static int	em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS);
312 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
313 static int	em_get_rs(SYSCTL_HANDLER_ARGS);
314 static void	em_print_debug_info(struct e1000_softc *);
315 static int 	em_is_valid_ether_addr(u8 *);
316 static int	em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
317 static void	em_add_int_delay_sysctl(struct e1000_softc *, const char *,
318 		    const char *, struct em_int_delay_info *, int, int);
319 /* Management and WOL Support */
320 static void	em_init_manageability(struct e1000_softc *);
321 static void	em_release_manageability(struct e1000_softc *);
322 static void	em_get_hw_control(struct e1000_softc *);
323 static void	em_release_hw_control(struct e1000_softc *);
324 static void	em_get_wakeup(if_ctx_t);
325 static void	em_enable_wakeup(if_ctx_t);
326 static int	em_enable_phy_wakeup(struct e1000_softc *);
327 static void	em_disable_aspm(struct e1000_softc *);
328 
329 int		em_intr(void *);
330 
331 /* MSI-X handlers */
332 static int	em_if_msix_intr_assign(if_ctx_t, int);
333 static int	em_msix_link(void *);
334 static void	em_handle_link(void *);
335 
336 static void	em_enable_vectors_82574(if_ctx_t);
337 
338 static int	em_set_flowcntl(SYSCTL_HANDLER_ARGS);
339 static int	em_sysctl_eee(SYSCTL_HANDLER_ARGS);
340 static void	em_if_led_func(if_ctx_t, int);
341 
342 static int	em_get_regs(SYSCTL_HANDLER_ARGS);
343 
344 static void	lem_smartspeed(struct e1000_softc *);
345 static void	igb_configure_queues(struct e1000_softc *);
346 
347 
348 /*********************************************************************
349  *  FreeBSD Device Interface Entry Points
350  *********************************************************************/
351 static device_method_t em_methods[] = {
352 	/* Device interface */
353 	DEVMETHOD(device_register, em_register),
354 	DEVMETHOD(device_probe, iflib_device_probe),
355 	DEVMETHOD(device_attach, iflib_device_attach),
356 	DEVMETHOD(device_detach, iflib_device_detach),
357 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
358 	DEVMETHOD(device_suspend, iflib_device_suspend),
359 	DEVMETHOD(device_resume, iflib_device_resume),
360 	DEVMETHOD_END
361 };
362 
363 static device_method_t igb_methods[] = {
364 	/* Device interface */
365 	DEVMETHOD(device_register, igb_register),
366 	DEVMETHOD(device_probe, iflib_device_probe),
367 	DEVMETHOD(device_attach, iflib_device_attach),
368 	DEVMETHOD(device_detach, iflib_device_detach),
369 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
370 	DEVMETHOD(device_suspend, iflib_device_suspend),
371 	DEVMETHOD(device_resume, iflib_device_resume),
372 	DEVMETHOD_END
373 };
374 
375 
376 static driver_t em_driver = {
377 	"em", em_methods, sizeof(struct e1000_softc),
378 };
379 
380 DRIVER_MODULE(em, pci, em_driver, 0, 0);
381 
382 MODULE_DEPEND(em, pci, 1, 1, 1);
383 MODULE_DEPEND(em, ether, 1, 1, 1);
384 MODULE_DEPEND(em, iflib, 1, 1, 1);
385 
386 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
387 
388 static driver_t igb_driver = {
389 	"igb", igb_methods, sizeof(struct e1000_softc),
390 };
391 
392 DRIVER_MODULE(igb, pci, igb_driver, 0, 0);
393 
394 MODULE_DEPEND(igb, pci, 1, 1, 1);
395 MODULE_DEPEND(igb, ether, 1, 1, 1);
396 MODULE_DEPEND(igb, iflib, 1, 1, 1);
397 
398 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
399 
400 static device_method_t em_if_methods[] = {
401 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
402 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
403 	DEVMETHOD(ifdi_detach, em_if_detach),
404 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
405 	DEVMETHOD(ifdi_suspend, em_if_suspend),
406 	DEVMETHOD(ifdi_resume, em_if_resume),
407 	DEVMETHOD(ifdi_init, em_if_init),
408 	DEVMETHOD(ifdi_stop, em_if_stop),
409 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
410 	DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
411 	DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
412 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
413 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
414 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
415 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
416 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
417 	DEVMETHOD(ifdi_media_status, em_if_media_status),
418 	DEVMETHOD(ifdi_media_change, em_if_media_change),
419 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
420 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
421 	DEVMETHOD(ifdi_timer, em_if_timer),
422 	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
423 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
424 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
425 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
426 	DEVMETHOD(ifdi_led_func, em_if_led_func),
427 	DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
428 	DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
429 	DEVMETHOD(ifdi_debug, em_if_debug),
430 	DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
431 	DEVMETHOD_END
432 };
433 
434 static driver_t em_if_driver = {
435 	"em_if", em_if_methods, sizeof(struct e1000_softc)
436 };
437 
438 static device_method_t igb_if_methods[] = {
439 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
440 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
441 	DEVMETHOD(ifdi_detach, em_if_detach),
442 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
443 	DEVMETHOD(ifdi_suspend, em_if_suspend),
444 	DEVMETHOD(ifdi_resume, em_if_resume),
445 	DEVMETHOD(ifdi_init, em_if_init),
446 	DEVMETHOD(ifdi_stop, em_if_stop),
447 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
448 	DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
449 	DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
450 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
451 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
452 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
453 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
454 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
455 	DEVMETHOD(ifdi_media_status, em_if_media_status),
456 	DEVMETHOD(ifdi_media_change, em_if_media_change),
457 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
458 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
459 	DEVMETHOD(ifdi_timer, em_if_timer),
460 	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
461 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
462 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
463 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
464 	DEVMETHOD(ifdi_led_func, em_if_led_func),
465 	DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
466 	DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
467 	DEVMETHOD(ifdi_debug, em_if_debug),
468 	DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
469 	DEVMETHOD_END
470 };
471 
472 static driver_t igb_if_driver = {
473 	"igb_if", igb_if_methods, sizeof(struct e1000_softc)
474 };
475 
476 /*********************************************************************
477  *  Tunable default values.
478  *********************************************************************/
479 
480 #define EM_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
481 #define EM_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
482 
483 #define MAX_INTS_PER_SEC	8000
484 #define DEFAULT_ITR		(1000000000/(MAX_INTS_PER_SEC * 256))
485 
486 /* Allow common code without TSO */
487 #ifndef CSUM_TSO
488 #define CSUM_TSO	0
489 #endif
490 
491 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
492     "EM driver parameters");
493 
494 static int em_disable_crc_stripping = 0;
495 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
496     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
497 
498 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
499 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
500 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
501     0, "Default transmit interrupt delay in usecs");
502 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
503     0, "Default receive interrupt delay in usecs");
504 
505 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
506 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
507 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
508     &em_tx_abs_int_delay_dflt, 0,
509     "Default transmit interrupt delay limit in usecs");
510 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
511     &em_rx_abs_int_delay_dflt, 0,
512     "Default receive interrupt delay limit in usecs");
513 
514 static int em_smart_pwr_down = false;
515 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
516     0, "Set to true to leave smart power down enabled on newer adapters");
517 
518 /* Controls whether promiscuous also shows bad packets */
519 static int em_debug_sbp = false;
520 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
521     "Show bad packets in promiscuous mode");
522 
523 /* How many packets rxeof tries to clean at a time */
524 static int em_rx_process_limit = 100;
525 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
526     &em_rx_process_limit, 0,
527     "Maximum number of received packets to process "
528     "at a time, -1 means unlimited");
529 
530 /* Energy efficient ethernet - default to OFF */
531 static int eee_setting = 1;
532 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
533     "Enable Energy Efficient Ethernet");
534 
535 /*
536 ** Tuneable Interrupt rate
537 */
538 static int em_max_interrupt_rate = 8000;
539 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
540     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
541 
542 
543 
544 /* Global used in WOL setup with multiport cards */
545 static int global_quad_port_a = 0;
546 
547 extern struct if_txrx igb_txrx;
548 extern struct if_txrx em_txrx;
549 extern struct if_txrx lem_txrx;
550 
551 static struct if_shared_ctx em_sctx_init = {
552 	.isc_magic = IFLIB_MAGIC,
553 	.isc_q_align = PAGE_SIZE,
554 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
555 	.isc_tx_maxsegsize = PAGE_SIZE,
556 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
557 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
558 	.isc_rx_maxsize = MJUM9BYTES,
559 	.isc_rx_nsegments = 1,
560 	.isc_rx_maxsegsize = MJUM9BYTES,
561 	.isc_nfl = 1,
562 	.isc_nrxqs = 1,
563 	.isc_ntxqs = 1,
564 	.isc_admin_intrcnt = 1,
565 	.isc_vendor_info = em_vendor_info_array,
566 	.isc_driver_version = em_driver_version,
567 	.isc_driver = &em_if_driver,
568 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
569 
570 	.isc_nrxd_min = {EM_MIN_RXD},
571 	.isc_ntxd_min = {EM_MIN_TXD},
572 	.isc_nrxd_max = {EM_MAX_RXD},
573 	.isc_ntxd_max = {EM_MAX_TXD},
574 	.isc_nrxd_default = {EM_DEFAULT_RXD},
575 	.isc_ntxd_default = {EM_DEFAULT_TXD},
576 };
577 
578 static struct if_shared_ctx igb_sctx_init = {
579 	.isc_magic = IFLIB_MAGIC,
580 	.isc_q_align = PAGE_SIZE,
581 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
582 	.isc_tx_maxsegsize = PAGE_SIZE,
583 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
584 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
585 	.isc_rx_maxsize = MJUM9BYTES,
586 	.isc_rx_nsegments = 1,
587 	.isc_rx_maxsegsize = MJUM9BYTES,
588 	.isc_nfl = 1,
589 	.isc_nrxqs = 1,
590 	.isc_ntxqs = 1,
591 	.isc_admin_intrcnt = 1,
592 	.isc_vendor_info = igb_vendor_info_array,
593 	.isc_driver_version = em_driver_version,
594 	.isc_driver = &igb_if_driver,
595 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
596 
597 	.isc_nrxd_min = {EM_MIN_RXD},
598 	.isc_ntxd_min = {EM_MIN_TXD},
599 	.isc_nrxd_max = {IGB_MAX_RXD},
600 	.isc_ntxd_max = {IGB_MAX_TXD},
601 	.isc_nrxd_default = {EM_DEFAULT_RXD},
602 	.isc_ntxd_default = {EM_DEFAULT_TXD},
603 };
604 
605 /*****************************************************************
606  *
607  * Dump Registers
608  *
609  ****************************************************************/
610 #define IGB_REGS_LEN 739
611 
612 static int em_get_regs(SYSCTL_HANDLER_ARGS)
613 {
614 	struct e1000_softc *sc = (struct e1000_softc *)arg1;
615 	struct e1000_hw *hw = &sc->hw;
616 	struct sbuf *sb;
617 	u32 *regs_buff;
618 	int rc;
619 
620 	regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
621 	memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
622 
623 	rc = sysctl_wire_old_buffer(req, 0);
624 	MPASS(rc == 0);
625 	if (rc != 0) {
626 		free(regs_buff, M_DEVBUF);
627 		return (rc);
628 	}
629 
630 	sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
631 	MPASS(sb != NULL);
632 	if (sb == NULL) {
633 		free(regs_buff, M_DEVBUF);
634 		return (ENOMEM);
635 	}
636 
637 	/* General Registers */
638 	regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
639 	regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
640 	regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
641 	regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
642 	regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
643 	regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
644 	regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
645 	regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
646 	regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
647 	regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
648 	regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
649 	regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
650 	regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
651 	regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
652 	regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
653 	regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
654 	regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
655 	regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
656 	regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
657 	regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
658 	regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
659 	regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
660 
661 	sbuf_printf(sb, "General Registers\n");
662 	sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
663 	sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
664 	sbuf_printf(sb, "\tCTRL_EXT\t %08x\n\n", regs_buff[2]);
665 
666 	sbuf_printf(sb, "Interrupt Registers\n");
667 	sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
668 
669 	sbuf_printf(sb, "RX Registers\n");
670 	sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
671 	sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
672 	sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
673 	sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
674 	sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
675 	sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
676 	sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
677 
678 	sbuf_printf(sb, "TX Registers\n");
679 	sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
680 	sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
681 	sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
682 	sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
683 	sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
684 	sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
685 	sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
686 	sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
687 	sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
688 	sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
689 	sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
690 
691 	free(regs_buff, M_DEVBUF);
692 
693 #ifdef DUMP_DESCS
694 	{
695 		if_softc_ctx_t scctx = sc->shared;
696 		struct rx_ring *rxr = &rx_que->rxr;
697 		struct tx_ring *txr = &tx_que->txr;
698 		int ntxd = scctx->isc_ntxd[0];
699 		int nrxd = scctx->isc_nrxd[0];
700 		int j;
701 
702 	for (j = 0; j < nrxd; j++) {
703 		u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
704 		u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
705 		sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
706 	}
707 
708 	for (j = 0; j < min(ntxd, 256); j++) {
709 		unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
710 
711 		sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
712 			    j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
713 			    buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
714 
715 	}
716 	}
717 #endif
718 
719 	rc = sbuf_finish(sb);
720 	sbuf_delete(sb);
721 	return(rc);
722 }
723 
724 static void *
725 em_register(device_t dev)
726 {
727 	return (&em_sctx_init);
728 }
729 
730 static void *
731 igb_register(device_t dev)
732 {
733 	return (&igb_sctx_init);
734 }
735 
736 static int
737 em_set_num_queues(if_ctx_t ctx)
738 {
739 	struct e1000_softc *sc = iflib_get_softc(ctx);
740 	int maxqueues;
741 
742 	/* Sanity check based on HW */
743 	switch (sc->hw.mac.type) {
744 	case e1000_82576:
745 	case e1000_82580:
746 	case e1000_i350:
747 	case e1000_i354:
748 		maxqueues = 8;
749 		break;
750 	case e1000_i210:
751 	case e1000_82575:
752 		maxqueues = 4;
753 		break;
754 	case e1000_i211:
755 	case e1000_82574:
756 		maxqueues = 2;
757 		break;
758 	default:
759 		maxqueues = 1;
760 		break;
761 	}
762 
763 	return (maxqueues);
764 }
765 
766 #define	LEM_CAPS							\
767     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
768     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER
769 
770 #define	EM_CAPS								\
771     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
772     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |	\
773     IFCAP_LRO | IFCAP_VLAN_HWTSO
774 
775 #define	IGB_CAPS							\
776     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
777     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |	\
778     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 |\
779     IFCAP_TSO6
780 
781 /*********************************************************************
782  *  Device initialization routine
783  *
784  *  The attach entry point is called when the driver is being loaded.
785  *  This routine identifies the type of hardware, allocates all resources
786  *  and initializes the hardware.
787  *
788  *  return 0 on success, positive on failure
789  *********************************************************************/
790 static int
791 em_if_attach_pre(if_ctx_t ctx)
792 {
793 	struct e1000_softc *sc;
794 	if_softc_ctx_t scctx;
795 	device_t dev;
796 	struct e1000_hw *hw;
797 	struct sysctl_oid_list *child;
798 	struct sysctl_ctx_list *ctx_list;
799 	int error = 0;
800 
801 	INIT_DEBUGOUT("em_if_attach_pre: begin");
802 	dev = iflib_get_dev(ctx);
803 	sc = iflib_get_softc(ctx);
804 
805 	sc->ctx = sc->osdep.ctx = ctx;
806 	sc->dev = sc->osdep.dev = dev;
807 	scctx = sc->shared = iflib_get_softc_ctx(ctx);
808 	sc->media = iflib_get_media(ctx);
809 	hw = &sc->hw;
810 
811 	sc->tx_process_limit = scctx->isc_ntxd[0];
812 
813 	/* Determine hardware and mac info */
814 	em_identify_hardware(ctx);
815 
816 	/* SYSCTL stuff */
817 	ctx_list = device_get_sysctl_ctx(dev);
818 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
819 
820 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "nvm",
821 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
822 	    em_sysctl_nvm_info, "I", "NVM Information");
823 
824 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fw_version",
825 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
826 	    em_sysctl_print_fw_version, "A",
827 	    "Prints FW/NVM Versions");
828 
829 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "debug",
830 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
831 	    em_sysctl_debug_info, "I", "Debug Information");
832 
833 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fc",
834 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
835 	    em_set_flowcntl, "I", "Flow Control");
836 
837 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "reg_dump",
838 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
839 	    em_get_regs, "A", "Dump Registers");
840 
841 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "rs_dump",
842 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
843 	    em_get_rs, "I", "Dump RS indexes");
844 
845 	scctx->isc_tx_nsegments = EM_MAX_SCATTER;
846 	scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
847 	if (bootverbose)
848 		device_printf(dev, "attach_pre capping queues at %d\n",
849 		    scctx->isc_ntxqsets_max);
850 
851 	if (hw->mac.type >= igb_mac_min) {
852 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
853 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
854 		scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
855 		scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
856 		scctx->isc_txrx = &igb_txrx;
857 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
858 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
859 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
860 		scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
861 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
862 		     CSUM_IP6_TCP | CSUM_IP6_UDP;
863 		if (hw->mac.type != e1000_82575)
864 			scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
865 		/*
866 		** Some new devices, as with ixgbe, now may
867 		** use a different BAR, so we need to keep
868 		** track of which is used.
869 		*/
870 		scctx->isc_msix_bar = pci_msix_table_bar(dev);
871 	} else if (hw->mac.type >= em_mac_min) {
872 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
873 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
874 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
875 		scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
876 		scctx->isc_txrx = &em_txrx;
877 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
878 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
879 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
880 		scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
881 		/*
882 		 * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO}
883 		 * by default as we don't have workarounds for all associated
884 		 * silicon errata.  E. g., with several MACs such as 82573E,
885 		 * TSO only works at Gigabit speed and otherwise can cause the
886 		 * hardware to hang (which also would be next to impossible to
887 		 * work around given that already queued TSO-using descriptors
888 		 * would need to be flushed and vlan(4) reconfigured at runtime
889 		 * in case of a link speed change).  Moreover, MACs like 82579
890 		 * still can hang at Gigabit even with all publicly documented
891 		 * TSO workarounds implemented.  Generally, the penality of
892 		 * these workarounds is rather high and may involve copying
893 		 * mbuf data around so advantages of TSO lapse.  Still, TSO may
894 		 * work for a few MACs of this class - at least when sticking
895 		 * with Gigabit - in which case users may enable TSO manually.
896 		 */
897 		scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
898 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
899 		/*
900 		 * We support MSI-X with 82574 only, but indicate to iflib(4)
901 		 * that it shall give MSI at least a try with other devices.
902 		 */
903 		if (hw->mac.type == e1000_82574) {
904 			scctx->isc_msix_bar = pci_msix_table_bar(dev);;
905 		} else {
906 			scctx->isc_msix_bar = -1;
907 			scctx->isc_disable_msix = 1;
908 		}
909 	} else {
910 		scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
911 		scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
912 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
913 		scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
914 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP;
915 		scctx->isc_txrx = &lem_txrx;
916 		scctx->isc_capabilities = LEM_CAPS;
917 		if (hw->mac.type < e1000_82543)
918 			scctx->isc_capabilities &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM);
919 		/* 82541ER doesn't do HW tagging */
920 		if (hw->device_id == E1000_DEV_ID_82541ER || hw->device_id == E1000_DEV_ID_82541ER_LOM)
921 			scctx->isc_capabilities &= ~IFCAP_VLAN_HWTAGGING;
922 		/* INTx only */
923 		scctx->isc_msix_bar = 0;
924 		scctx->isc_capenable = scctx->isc_capabilities;
925 	}
926 
927 	/* Setup PCI resources */
928 	if (em_allocate_pci_resources(ctx)) {
929 		device_printf(dev, "Allocation of PCI resources failed\n");
930 		error = ENXIO;
931 		goto err_pci;
932 	}
933 
934 	/*
935 	** For ICH8 and family we need to
936 	** map the flash memory, and this
937 	** must happen after the MAC is
938 	** identified
939 	*/
940 	if ((hw->mac.type == e1000_ich8lan) ||
941 	    (hw->mac.type == e1000_ich9lan) ||
942 	    (hw->mac.type == e1000_ich10lan) ||
943 	    (hw->mac.type == e1000_pchlan) ||
944 	    (hw->mac.type == e1000_pch2lan) ||
945 	    (hw->mac.type == e1000_pch_lpt)) {
946 		int rid = EM_BAR_TYPE_FLASH;
947 		sc->flash = bus_alloc_resource_any(dev,
948 		    SYS_RES_MEMORY, &rid, RF_ACTIVE);
949 		if (sc->flash == NULL) {
950 			device_printf(dev, "Mapping of Flash failed\n");
951 			error = ENXIO;
952 			goto err_pci;
953 		}
954 		/* This is used in the shared code */
955 		hw->flash_address = (u8 *)sc->flash;
956 		sc->osdep.flash_bus_space_tag =
957 		    rman_get_bustag(sc->flash);
958 		sc->osdep.flash_bus_space_handle =
959 		    rman_get_bushandle(sc->flash);
960 	}
961 	/*
962 	** In the new SPT device flash is not  a
963 	** separate BAR, rather it is also in BAR0,
964 	** so use the same tag and an offset handle for the
965 	** FLASH read/write macros in the shared code.
966 	*/
967 	else if (hw->mac.type >= e1000_pch_spt) {
968 		sc->osdep.flash_bus_space_tag =
969 		    sc->osdep.mem_bus_space_tag;
970 		sc->osdep.flash_bus_space_handle =
971 		    sc->osdep.mem_bus_space_handle
972 		    + E1000_FLASH_BASE_ADDR;
973 	}
974 
975 	/* Do Shared Code initialization */
976 	error = e1000_setup_init_funcs(hw, true);
977 	if (error) {
978 		device_printf(dev, "Setup of Shared code failed, error %d\n",
979 		    error);
980 		error = ENXIO;
981 		goto err_pci;
982 	}
983 
984 	em_setup_msix(ctx);
985 	e1000_get_bus_info(hw);
986 
987 	/* Set up some sysctls for the tunable interrupt delays */
988 	em_add_int_delay_sysctl(sc, "rx_int_delay",
989 	    "receive interrupt delay in usecs", &sc->rx_int_delay,
990 	    E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
991 	em_add_int_delay_sysctl(sc, "tx_int_delay",
992 	    "transmit interrupt delay in usecs", &sc->tx_int_delay,
993 	    E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
994 	em_add_int_delay_sysctl(sc, "rx_abs_int_delay",
995 	    "receive interrupt delay limit in usecs",
996 	    &sc->rx_abs_int_delay,
997 	    E1000_REGISTER(hw, E1000_RADV),
998 	    em_rx_abs_int_delay_dflt);
999 	em_add_int_delay_sysctl(sc, "tx_abs_int_delay",
1000 	    "transmit interrupt delay limit in usecs",
1001 	    &sc->tx_abs_int_delay,
1002 	    E1000_REGISTER(hw, E1000_TADV),
1003 	    em_tx_abs_int_delay_dflt);
1004 	em_add_int_delay_sysctl(sc, "itr",
1005 	    "interrupt delay limit in usecs/4",
1006 	    &sc->tx_itr,
1007 	    E1000_REGISTER(hw, E1000_ITR),
1008 	    DEFAULT_ITR);
1009 
1010 	hw->mac.autoneg = DO_AUTO_NEG;
1011 	hw->phy.autoneg_wait_to_complete = false;
1012 	hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1013 
1014 	if (hw->mac.type < em_mac_min) {
1015 		e1000_init_script_state_82541(hw, true);
1016 		e1000_set_tbi_compatibility_82543(hw, true);
1017 	}
1018 	/* Copper options */
1019 	if (hw->phy.media_type == e1000_media_type_copper) {
1020 		hw->phy.mdix = AUTO_ALL_MODES;
1021 		hw->phy.disable_polarity_correction = false;
1022 		hw->phy.ms_type = EM_MASTER_SLAVE;
1023 	}
1024 
1025 	/*
1026 	 * Set the frame limits assuming
1027 	 * standard ethernet sized frames.
1028 	 */
1029 	scctx->isc_max_frame_size = hw->mac.max_frame_size =
1030 	    ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
1031 
1032 	/*
1033 	 * This controls when hardware reports transmit completion
1034 	 * status.
1035 	 */
1036 	hw->mac.report_tx_early = 1;
1037 
1038 	/* Allocate multicast array memory. */
1039 	sc->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
1040 	    MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1041 	if (sc->mta == NULL) {
1042 		device_printf(dev, "Can not allocate multicast setup array\n");
1043 		error = ENOMEM;
1044 		goto err_late;
1045 	}
1046 
1047 	/* Check SOL/IDER usage */
1048 	if (e1000_check_reset_block(hw))
1049 		device_printf(dev, "PHY reset is blocked"
1050 			      " due to SOL/IDER session.\n");
1051 
1052 	/* Sysctl for setting Energy Efficient Ethernet */
1053 	hw->dev_spec.ich8lan.eee_disable = eee_setting;
1054 	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "eee_control",
1055 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
1056 	    em_sysctl_eee, "I", "Disable Energy Efficient Ethernet");
1057 
1058 	/*
1059 	** Start from a known state, this is
1060 	** important in reading the nvm and
1061 	** mac from that.
1062 	*/
1063 	e1000_reset_hw(hw);
1064 
1065 	/* Make sure we have a good EEPROM before we read from it */
1066 	if (e1000_validate_nvm_checksum(hw) < 0) {
1067 		/*
1068 		** Some PCI-E parts fail the first check due to
1069 		** the link being in sleep state, call it again,
1070 		** if it fails a second time its a real issue.
1071 		*/
1072 		if (e1000_validate_nvm_checksum(hw) < 0) {
1073 			device_printf(dev,
1074 			    "The EEPROM Checksum Is Not Valid\n");
1075 			error = EIO;
1076 			goto err_late;
1077 		}
1078 	}
1079 
1080 	/* Copy the permanent MAC address out of the EEPROM */
1081 	if (e1000_read_mac_addr(hw) < 0) {
1082 		device_printf(dev, "EEPROM read error while reading MAC"
1083 			      " address\n");
1084 		error = EIO;
1085 		goto err_late;
1086 	}
1087 
1088 	if (!em_is_valid_ether_addr(hw->mac.addr)) {
1089 		if (sc->vf_ifp) {
1090 			ether_gen_addr(iflib_get_ifp(ctx),
1091 			    (struct ether_addr *)hw->mac.addr);
1092 		} else {
1093 			device_printf(dev, "Invalid MAC address\n");
1094 			error = EIO;
1095 			goto err_late;
1096 		}
1097 	}
1098 
1099 	/* Save the EEPROM/NVM versions, must be done under IFLIB_CTX_LOCK */
1100 	em_fw_version_locked(ctx);
1101 
1102 	em_print_fw_version(sc);
1103 
1104 	/* Disable ULP support */
1105 	e1000_disable_ulp_lpt_lp(hw, true);
1106 
1107 	/*
1108 	 * Get Wake-on-Lan and Management info for later use
1109 	 */
1110 	em_get_wakeup(ctx);
1111 
1112 	/* Enable only WOL MAGIC by default */
1113 	scctx->isc_capenable &= ~IFCAP_WOL;
1114 	if (sc->wol != 0)
1115 		scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1116 
1117 	iflib_set_mac(ctx, hw->mac.addr);
1118 
1119 	return (0);
1120 
1121 err_late:
1122 	em_release_hw_control(sc);
1123 err_pci:
1124 	em_free_pci_resources(ctx);
1125 	free(sc->mta, M_DEVBUF);
1126 
1127 	return (error);
1128 }
1129 
1130 static int
1131 em_if_attach_post(if_ctx_t ctx)
1132 {
1133 	struct e1000_softc *sc = iflib_get_softc(ctx);
1134 	struct e1000_hw *hw = &sc->hw;
1135 	int error = 0;
1136 
1137 	/* Setup OS specific network interface */
1138 	error = em_setup_interface(ctx);
1139 	if (error != 0) {
1140 		device_printf(sc->dev, "Interface setup failed: %d\n", error);
1141 		goto err_late;
1142 	}
1143 
1144 	em_reset(ctx);
1145 
1146 	/* Initialize statistics */
1147 	em_update_stats_counters(sc);
1148 	hw->mac.get_link_status = 1;
1149 	em_if_update_admin_status(ctx);
1150 	em_add_hw_stats(sc);
1151 
1152 	/* Non-AMT based hardware can now take control from firmware */
1153 	if (sc->has_manage && !sc->has_amt)
1154 		em_get_hw_control(sc);
1155 
1156 	INIT_DEBUGOUT("em_if_attach_post: end");
1157 
1158 	return (0);
1159 
1160 err_late:
1161 	/* upon attach_post() error, iflib calls _if_detach() to free resources. */
1162 	return (error);
1163 }
1164 
1165 /*********************************************************************
1166  *  Device removal routine
1167  *
1168  *  The detach entry point is called when the driver is being removed.
1169  *  This routine stops the adapter and deallocates all the resources
1170  *  that were allocated for driver operation.
1171  *
1172  *  return 0 on success, positive on failure
1173  *********************************************************************/
1174 static int
1175 em_if_detach(if_ctx_t ctx)
1176 {
1177 	struct e1000_softc	*sc = iflib_get_softc(ctx);
1178 
1179 	INIT_DEBUGOUT("em_if_detach: begin");
1180 
1181 	e1000_phy_hw_reset(&sc->hw);
1182 
1183 	em_release_manageability(sc);
1184 	em_release_hw_control(sc);
1185 	em_free_pci_resources(ctx);
1186 	free(sc->mta, M_DEVBUF);
1187 	sc->mta = NULL;
1188 
1189 	return (0);
1190 }
1191 
1192 /*********************************************************************
1193  *
1194  *  Shutdown entry point
1195  *
1196  **********************************************************************/
1197 
1198 static int
1199 em_if_shutdown(if_ctx_t ctx)
1200 {
1201 	return em_if_suspend(ctx);
1202 }
1203 
1204 /*
1205  * Suspend/resume device methods.
1206  */
1207 static int
1208 em_if_suspend(if_ctx_t ctx)
1209 {
1210 	struct e1000_softc *sc = iflib_get_softc(ctx);
1211 
1212 	em_release_manageability(sc);
1213 	em_release_hw_control(sc);
1214 	em_enable_wakeup(ctx);
1215 	return (0);
1216 }
1217 
1218 static int
1219 em_if_resume(if_ctx_t ctx)
1220 {
1221 	struct e1000_softc *sc = iflib_get_softc(ctx);
1222 
1223 	if (sc->hw.mac.type == e1000_pch2lan)
1224 		e1000_resume_workarounds_pchlan(&sc->hw);
1225 	em_if_init(ctx);
1226 	em_init_manageability(sc);
1227 
1228 	return(0);
1229 }
1230 
1231 static int
1232 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1233 {
1234 	int max_frame_size;
1235 	struct e1000_softc *sc = iflib_get_softc(ctx);
1236 	if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1237 
1238 	IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1239 
1240 	switch (sc->hw.mac.type) {
1241 	case e1000_82571:
1242 	case e1000_82572:
1243 	case e1000_ich9lan:
1244 	case e1000_ich10lan:
1245 	case e1000_pch2lan:
1246 	case e1000_pch_lpt:
1247 	case e1000_pch_spt:
1248 	case e1000_pch_cnp:
1249 	case e1000_pch_tgp:
1250 	case e1000_pch_adp:
1251 	case e1000_pch_mtp:
1252 	case e1000_82574:
1253 	case e1000_82583:
1254 	case e1000_80003es2lan:
1255 		/* 9K Jumbo Frame size */
1256 		max_frame_size = 9234;
1257 		break;
1258 	case e1000_pchlan:
1259 		max_frame_size = 4096;
1260 		break;
1261 	case e1000_82542:
1262 	case e1000_ich8lan:
1263 		/* Adapters that do not support jumbo frames */
1264 		max_frame_size = ETHER_MAX_LEN;
1265 		break;
1266 	default:
1267 		if (sc->hw.mac.type >= igb_mac_min)
1268 			max_frame_size = 9234;
1269 		else /* lem */
1270 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1271 	}
1272 	if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1273 		return (EINVAL);
1274 	}
1275 
1276 	scctx->isc_max_frame_size = sc->hw.mac.max_frame_size =
1277 	    mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1278 	return (0);
1279 }
1280 
1281 /*********************************************************************
1282  *  Init entry point
1283  *
1284  *  This routine is used in two ways. It is used by the stack as
1285  *  init entry point in network interface structure. It is also used
1286  *  by the driver as a hw/sw initialization routine to get to a
1287  *  consistent state.
1288  *
1289  **********************************************************************/
1290 static void
1291 em_if_init(if_ctx_t ctx)
1292 {
1293 	struct e1000_softc *sc = iflib_get_softc(ctx);
1294 	if_softc_ctx_t scctx = sc->shared;
1295 	struct ifnet *ifp = iflib_get_ifp(ctx);
1296 	struct em_tx_queue *tx_que;
1297 	int i;
1298 
1299 	INIT_DEBUGOUT("em_if_init: begin");
1300 
1301 	/* Get the latest mac address, User can use a LAA */
1302 	bcopy(if_getlladdr(ifp), sc->hw.mac.addr,
1303 	    ETHER_ADDR_LEN);
1304 
1305 	/* Put the address into the Receive Address Array */
1306 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1307 
1308 	/*
1309 	 * With the 82571 adapter, RAR[0] may be overwritten
1310 	 * when the other port is reset, we make a duplicate
1311 	 * in RAR[14] for that eventuality, this assures
1312 	 * the interface continues to function.
1313 	 */
1314 	if (sc->hw.mac.type == e1000_82571) {
1315 		e1000_set_laa_state_82571(&sc->hw, true);
1316 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1317 		    E1000_RAR_ENTRIES - 1);
1318 	}
1319 
1320 
1321 	/* Initialize the hardware */
1322 	em_reset(ctx);
1323 	em_if_update_admin_status(ctx);
1324 
1325 	for (i = 0, tx_que = sc->tx_queues; i < sc->tx_num_queues; i++, tx_que++) {
1326 		struct tx_ring *txr = &tx_que->txr;
1327 
1328 		txr->tx_rs_cidx = txr->tx_rs_pidx;
1329 
1330 		/* Initialize the last processed descriptor to be the end of
1331 		 * the ring, rather than the start, so that we avoid an
1332 		 * off-by-one error when calculating how many descriptors are
1333 		 * done in the credits_update function.
1334 		 */
1335 		txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1336 	}
1337 
1338 	/* Setup VLAN support, basic and offload if available */
1339 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1340 
1341 	/* Clear bad data from Rx FIFOs */
1342 	if (sc->hw.mac.type >= igb_mac_min)
1343 		e1000_rx_fifo_flush_base(&sc->hw);
1344 
1345 	/* Configure for OS presence */
1346 	em_init_manageability(sc);
1347 
1348 	/* Prepare transmit descriptors and buffers */
1349 	em_initialize_transmit_unit(ctx);
1350 
1351 	/* Setup Multicast table */
1352 	em_if_multi_set(ctx);
1353 
1354 	sc->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1355 	em_initialize_receive_unit(ctx);
1356 
1357 	/* Set up VLAN support and filter */
1358 	em_setup_vlan_hw_support(ctx);
1359 
1360 	/* Don't lose promiscuous settings */
1361 	em_if_set_promisc(ctx, if_getflags(ifp));
1362 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1363 
1364 	/* MSI-X configuration for 82574 */
1365 	if (sc->hw.mac.type == e1000_82574) {
1366 		int tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1367 
1368 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1369 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1370 		/* Set the IVAR - interrupt vector routing. */
1371 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, sc->ivars);
1372 	} else if (sc->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1373 		igb_configure_queues(sc);
1374 
1375 	/* this clears any pending interrupts */
1376 	E1000_READ_REG(&sc->hw, E1000_ICR);
1377 	E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1378 
1379 	/* AMT based hardware can now take control from firmware */
1380 	if (sc->has_manage && sc->has_amt)
1381 		em_get_hw_control(sc);
1382 
1383 	/* Set Energy Efficient Ethernet */
1384 	if (sc->hw.mac.type >= igb_mac_min &&
1385 	    sc->hw.phy.media_type == e1000_media_type_copper) {
1386 		if (sc->hw.mac.type == e1000_i354)
1387 			e1000_set_eee_i354(&sc->hw, true, true);
1388 		else
1389 			e1000_set_eee_i350(&sc->hw, true, true);
1390 	}
1391 }
1392 
1393 /*********************************************************************
1394  *
1395  *  Fast Legacy/MSI Combined Interrupt Service routine
1396  *
1397  *********************************************************************/
1398 int
1399 em_intr(void *arg)
1400 {
1401 	struct e1000_softc *sc = arg;
1402 	if_ctx_t ctx = sc->ctx;
1403 	u32 reg_icr;
1404 
1405 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1406 
1407 	/* Hot eject? */
1408 	if (reg_icr == 0xffffffff)
1409 		return FILTER_STRAY;
1410 
1411 	/* Definitely not our interrupt. */
1412 	if (reg_icr == 0x0)
1413 		return FILTER_STRAY;
1414 
1415 	/*
1416 	 * Starting with the 82571 chip, bit 31 should be used to
1417 	 * determine whether the interrupt belongs to us.
1418 	 */
1419 	if (sc->hw.mac.type >= e1000_82571 &&
1420 	    (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1421 		return FILTER_STRAY;
1422 
1423 	/*
1424 	 * Only MSI-X interrupts have one-shot behavior by taking advantage
1425 	 * of the EIAC register.  Thus, explicitly disable interrupts.  This
1426 	 * also works around the MSI message reordering errata on certain
1427 	 * systems.
1428 	 */
1429 	IFDI_INTR_DISABLE(ctx);
1430 
1431 	/* Link status change */
1432 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1433 		em_handle_link(ctx);
1434 
1435 	if (reg_icr & E1000_ICR_RXO)
1436 		sc->rx_overruns++;
1437 
1438 	return (FILTER_SCHEDULE_THREAD);
1439 }
1440 
1441 static int
1442 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1443 {
1444 	struct e1000_softc *sc = iflib_get_softc(ctx);
1445 	struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
1446 
1447 	E1000_WRITE_REG(&sc->hw, E1000_IMS, rxq->eims);
1448 	return (0);
1449 }
1450 
1451 static int
1452 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1453 {
1454 	struct e1000_softc *sc = iflib_get_softc(ctx);
1455 	struct em_tx_queue *txq = &sc->tx_queues[txqid];
1456 
1457 	E1000_WRITE_REG(&sc->hw, E1000_IMS, txq->eims);
1458 	return (0);
1459 }
1460 
1461 static int
1462 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1463 {
1464 	struct e1000_softc *sc = iflib_get_softc(ctx);
1465 	struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
1466 
1467 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, rxq->eims);
1468 	return (0);
1469 }
1470 
1471 static int
1472 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1473 {
1474 	struct e1000_softc *sc = iflib_get_softc(ctx);
1475 	struct em_tx_queue *txq = &sc->tx_queues[txqid];
1476 
1477 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, txq->eims);
1478 	return (0);
1479 }
1480 
1481 /*********************************************************************
1482  *
1483  *  MSI-X RX Interrupt Service routine
1484  *
1485  **********************************************************************/
1486 static int
1487 em_msix_que(void *arg)
1488 {
1489 	struct em_rx_queue *que = arg;
1490 
1491 	++que->irqs;
1492 
1493 	return (FILTER_SCHEDULE_THREAD);
1494 }
1495 
1496 /*********************************************************************
1497  *
1498  *  MSI-X Link Fast Interrupt Service routine
1499  *
1500  **********************************************************************/
1501 static int
1502 em_msix_link(void *arg)
1503 {
1504 	struct e1000_softc *sc = arg;
1505 	u32 reg_icr;
1506 
1507 	++sc->link_irq;
1508 	MPASS(sc->hw.back != NULL);
1509 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1510 
1511 	if (reg_icr & E1000_ICR_RXO)
1512 		sc->rx_overruns++;
1513 
1514 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1515 		em_handle_link(sc->ctx);
1516 
1517 	/* Re-arm unconditionally */
1518 	if (sc->hw.mac.type >= igb_mac_min) {
1519 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
1520 		E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->link_mask);
1521 	} else if (sc->hw.mac.type == e1000_82574) {
1522 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC |
1523 		    E1000_IMS_OTHER);
1524 		/*
1525 		 * Because we must read the ICR for this interrupt it may
1526 		 * clear other causes using autoclear, for this reason we
1527 		 * simply create a soft interrupt for all these vectors.
1528 		 */
1529 		if (reg_icr)
1530 			E1000_WRITE_REG(&sc->hw, E1000_ICS, sc->ims);
1531 	} else
1532 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
1533 
1534 	return (FILTER_HANDLED);
1535 }
1536 
1537 static void
1538 em_handle_link(void *context)
1539 {
1540 	if_ctx_t ctx = context;
1541 	struct e1000_softc *sc = iflib_get_softc(ctx);
1542 
1543 	sc->hw.mac.get_link_status = 1;
1544 	iflib_admin_intr_deferred(ctx);
1545 }
1546 
1547 /*********************************************************************
1548  *
1549  *  Media Ioctl callback
1550  *
1551  *  This routine is called whenever the user queries the status of
1552  *  the interface using ifconfig.
1553  *
1554  **********************************************************************/
1555 static void
1556 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1557 {
1558 	struct e1000_softc *sc = iflib_get_softc(ctx);
1559 	u_char fiber_type = IFM_1000_SX;
1560 
1561 	INIT_DEBUGOUT("em_if_media_status: begin");
1562 
1563 	iflib_admin_intr_deferred(ctx);
1564 
1565 	ifmr->ifm_status = IFM_AVALID;
1566 	ifmr->ifm_active = IFM_ETHER;
1567 
1568 	if (!sc->link_active) {
1569 		return;
1570 	}
1571 
1572 	ifmr->ifm_status |= IFM_ACTIVE;
1573 
1574 	if ((sc->hw.phy.media_type == e1000_media_type_fiber) ||
1575 	    (sc->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1576 		if (sc->hw.mac.type == e1000_82545)
1577 			fiber_type = IFM_1000_LX;
1578 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1579 	} else {
1580 		switch (sc->link_speed) {
1581 		case 10:
1582 			ifmr->ifm_active |= IFM_10_T;
1583 			break;
1584 		case 100:
1585 			ifmr->ifm_active |= IFM_100_TX;
1586 			break;
1587 		case 1000:
1588 			ifmr->ifm_active |= IFM_1000_T;
1589 			break;
1590 		}
1591 		if (sc->link_duplex == FULL_DUPLEX)
1592 			ifmr->ifm_active |= IFM_FDX;
1593 		else
1594 			ifmr->ifm_active |= IFM_HDX;
1595 	}
1596 }
1597 
1598 /*********************************************************************
1599  *
1600  *  Media Ioctl callback
1601  *
1602  *  This routine is called when the user changes speed/duplex using
1603  *  media/mediopt option with ifconfig.
1604  *
1605  **********************************************************************/
1606 static int
1607 em_if_media_change(if_ctx_t ctx)
1608 {
1609 	struct e1000_softc *sc = iflib_get_softc(ctx);
1610 	struct ifmedia *ifm = iflib_get_media(ctx);
1611 
1612 	INIT_DEBUGOUT("em_if_media_change: begin");
1613 
1614 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1615 		return (EINVAL);
1616 
1617 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1618 	case IFM_AUTO:
1619 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1620 		sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1621 		break;
1622 	case IFM_1000_LX:
1623 	case IFM_1000_SX:
1624 	case IFM_1000_T:
1625 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1626 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1627 		break;
1628 	case IFM_100_TX:
1629 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1630 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
1631 			sc->hw.phy.autoneg_advertised = ADVERTISE_100_FULL;
1632 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1633 		} else {
1634 			sc->hw.phy.autoneg_advertised = ADVERTISE_100_HALF;
1635 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1636 		}
1637 		break;
1638 	case IFM_10_T:
1639 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1640 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
1641 			sc->hw.phy.autoneg_advertised = ADVERTISE_10_FULL;
1642 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1643 		} else {
1644 			sc->hw.phy.autoneg_advertised = ADVERTISE_10_HALF;
1645 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1646 		}
1647 		break;
1648 	default:
1649 		device_printf(sc->dev, "Unsupported media type\n");
1650 	}
1651 
1652 	em_if_init(ctx);
1653 
1654 	return (0);
1655 }
1656 
1657 static int
1658 em_if_set_promisc(if_ctx_t ctx, int flags)
1659 {
1660 	struct e1000_softc *sc = iflib_get_softc(ctx);
1661 	struct ifnet *ifp = iflib_get_ifp(ctx);
1662 	u32 reg_rctl;
1663 	int mcnt = 0;
1664 
1665 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1666 	reg_rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_UPE);
1667 	if (flags & IFF_ALLMULTI)
1668 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1669 	else
1670 		mcnt = min(if_llmaddr_count(ifp), MAX_NUM_MULTICAST_ADDRESSES);
1671 
1672 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1673 		reg_rctl &= (~E1000_RCTL_MPE);
1674 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1675 
1676 	if (flags & IFF_PROMISC) {
1677 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1678 		em_if_vlan_filter_disable(sc);
1679 		/* Turn this on if you want to see bad packets */
1680 		if (em_debug_sbp)
1681 			reg_rctl |= E1000_RCTL_SBP;
1682 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1683 	} else {
1684 		if (flags & IFF_ALLMULTI) {
1685 			reg_rctl |= E1000_RCTL_MPE;
1686 			reg_rctl &= ~E1000_RCTL_UPE;
1687 			E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1688 		}
1689 		if (em_if_vlan_filter_used(ctx))
1690 			em_if_vlan_filter_enable(sc);
1691 	}
1692 	return (0);
1693 }
1694 
1695 static u_int
1696 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int idx)
1697 {
1698 	u8 *mta = arg;
1699 
1700 	if (idx == MAX_NUM_MULTICAST_ADDRESSES)
1701 		return (0);
1702 
1703 	bcopy(LLADDR(sdl), &mta[idx * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1704 
1705 	return (1);
1706 }
1707 
1708 /*********************************************************************
1709  *  Multicast Update
1710  *
1711  *  This routine is called whenever multicast address list is updated.
1712  *
1713  **********************************************************************/
1714 static void
1715 em_if_multi_set(if_ctx_t ctx)
1716 {
1717 	struct e1000_softc *sc = iflib_get_softc(ctx);
1718 	struct ifnet *ifp = iflib_get_ifp(ctx);
1719 	u8  *mta; /* Multicast array memory */
1720 	u32 reg_rctl = 0;
1721 	int mcnt = 0;
1722 
1723 	IOCTL_DEBUGOUT("em_set_multi: begin");
1724 
1725 	mta = sc->mta;
1726 	bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1727 
1728 	if (sc->hw.mac.type == e1000_82542 &&
1729 	    sc->hw.revision_id == E1000_REVISION_2) {
1730 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1731 		if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1732 			e1000_pci_clear_mwi(&sc->hw);
1733 		reg_rctl |= E1000_RCTL_RST;
1734 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1735 		msec_delay(5);
1736 	}
1737 
1738 	mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
1739 
1740 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1741 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1742 
1743 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1744 
1745 	if (if_getflags(ifp) & IFF_PROMISC)
1746 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1747 	else if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES ||
1748 	    if_getflags(ifp) & IFF_ALLMULTI) {
1749 		reg_rctl |= E1000_RCTL_MPE;
1750 		reg_rctl &= ~E1000_RCTL_UPE;
1751 	} else
1752 		reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1753 
1754 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1755 
1756 	if (sc->hw.mac.type == e1000_82542 &&
1757 	    sc->hw.revision_id == E1000_REVISION_2) {
1758 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1759 		reg_rctl &= ~E1000_RCTL_RST;
1760 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1761 		msec_delay(5);
1762 		if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1763 			e1000_pci_set_mwi(&sc->hw);
1764 	}
1765 }
1766 
1767 /*********************************************************************
1768  *  Timer routine
1769  *
1770  *  This routine schedules em_if_update_admin_status() to check for
1771  *  link status and to gather statistics as well as to perform some
1772  *  controller-specific hardware patting.
1773  *
1774  **********************************************************************/
1775 static void
1776 em_if_timer(if_ctx_t ctx, uint16_t qid)
1777 {
1778 
1779 	if (qid != 0)
1780 		return;
1781 
1782 	iflib_admin_intr_deferred(ctx);
1783 }
1784 
1785 static void
1786 em_if_update_admin_status(if_ctx_t ctx)
1787 {
1788 	struct e1000_softc *sc = iflib_get_softc(ctx);
1789 	struct e1000_hw *hw = &sc->hw;
1790 	device_t dev = iflib_get_dev(ctx);
1791 	u32 link_check, thstat, ctrl;
1792 
1793 	link_check = thstat = ctrl = 0;
1794 	/* Get the cached link value or read phy for real */
1795 	switch (hw->phy.media_type) {
1796 	case e1000_media_type_copper:
1797 		if (hw->mac.get_link_status) {
1798 			if (hw->mac.type == e1000_pch_spt)
1799 				msec_delay(50);
1800 			/* Do the work to read phy */
1801 			e1000_check_for_link(hw);
1802 			link_check = !hw->mac.get_link_status;
1803 			if (link_check) /* ESB2 fix */
1804 				e1000_cfg_on_link_up(hw);
1805 		} else {
1806 			link_check = true;
1807 		}
1808 		break;
1809 	case e1000_media_type_fiber:
1810 		e1000_check_for_link(hw);
1811 		link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1812 			    E1000_STATUS_LU);
1813 		break;
1814 	case e1000_media_type_internal_serdes:
1815 		e1000_check_for_link(hw);
1816 		link_check = hw->mac.serdes_has_link;
1817 		break;
1818 	/* VF device is type_unknown */
1819 	case e1000_media_type_unknown:
1820 		e1000_check_for_link(hw);
1821 		link_check = !hw->mac.get_link_status;
1822 		/* FALLTHROUGH */
1823 	default:
1824 		break;
1825 	}
1826 
1827 	/* Check for thermal downshift or shutdown */
1828 	if (hw->mac.type == e1000_i350) {
1829 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1830 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1831 	}
1832 
1833 	/* Now check for a transition */
1834 	if (link_check && (sc->link_active == 0)) {
1835 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1836 		    &sc->link_duplex);
1837 		/* Check if we must disable SPEED_MODE bit on PCI-E */
1838 		if ((sc->link_speed != SPEED_1000) &&
1839 		    ((hw->mac.type == e1000_82571) ||
1840 		    (hw->mac.type == e1000_82572))) {
1841 			int tarc0;
1842 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1843 			tarc0 &= ~TARC_SPEED_MODE_BIT;
1844 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1845 		}
1846 		if (bootverbose)
1847 			device_printf(dev, "Link is up %d Mbps %s\n",
1848 			    sc->link_speed,
1849 			    ((sc->link_duplex == FULL_DUPLEX) ?
1850 			    "Full Duplex" : "Half Duplex"));
1851 		sc->link_active = 1;
1852 		sc->smartspeed = 0;
1853 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
1854 		    E1000_CTRL_EXT_LINK_MODE_GMII &&
1855 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1856 			device_printf(dev, "Link: thermal downshift\n");
1857 		/* Delay Link Up for Phy update */
1858 		if (((hw->mac.type == e1000_i210) ||
1859 		    (hw->mac.type == e1000_i211)) &&
1860 		    (hw->phy.id == I210_I_PHY_ID))
1861 			msec_delay(I210_LINK_DELAY);
1862 		/* Reset if the media type changed. */
1863 		if (hw->dev_spec._82575.media_changed &&
1864 		    hw->mac.type >= igb_mac_min) {
1865 			hw->dev_spec._82575.media_changed = false;
1866 			sc->flags |= IGB_MEDIA_RESET;
1867 			em_reset(ctx);
1868 		}
1869 		iflib_link_state_change(ctx, LINK_STATE_UP,
1870 		    IF_Mbps(sc->link_speed));
1871 	} else if (!link_check && (sc->link_active == 1)) {
1872 		sc->link_speed = 0;
1873 		sc->link_duplex = 0;
1874 		sc->link_active = 0;
1875 		iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
1876 	}
1877 	em_update_stats_counters(sc);
1878 
1879 	/* Reset LAA into RAR[0] on 82571 */
1880 	if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
1881 		e1000_rar_set(hw, hw->mac.addr, 0);
1882 
1883 	if (hw->mac.type < em_mac_min)
1884 		lem_smartspeed(sc);
1885 }
1886 
1887 static void
1888 em_if_watchdog_reset(if_ctx_t ctx)
1889 {
1890 	struct e1000_softc *sc = iflib_get_softc(ctx);
1891 
1892 	/*
1893 	 * Just count the event; iflib(4) will already trigger a
1894 	 * sufficient reset of the controller.
1895 	 */
1896 	sc->watchdog_events++;
1897 }
1898 
1899 /*********************************************************************
1900  *
1901  *  This routine disables all traffic on the adapter by issuing a
1902  *  global reset on the MAC.
1903  *
1904  **********************************************************************/
1905 static void
1906 em_if_stop(if_ctx_t ctx)
1907 {
1908 	struct e1000_softc *sc = iflib_get_softc(ctx);
1909 
1910 	INIT_DEBUGOUT("em_if_stop: begin");
1911 
1912 	e1000_reset_hw(&sc->hw);
1913 	if (sc->hw.mac.type >= e1000_82544)
1914 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, 0);
1915 
1916 	e1000_led_off(&sc->hw);
1917 	e1000_cleanup_led(&sc->hw);
1918 }
1919 
1920 /*********************************************************************
1921  *
1922  *  Determine hardware revision.
1923  *
1924  **********************************************************************/
1925 static void
1926 em_identify_hardware(if_ctx_t ctx)
1927 {
1928 	device_t dev = iflib_get_dev(ctx);
1929 	struct e1000_softc *sc = iflib_get_softc(ctx);
1930 
1931 	/* Make sure our PCI config space has the necessary stuff set */
1932 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1933 
1934 	/* Save off the information about this board */
1935 	sc->hw.vendor_id = pci_get_vendor(dev);
1936 	sc->hw.device_id = pci_get_device(dev);
1937 	sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1938 	sc->hw.subsystem_vendor_id =
1939 	    pci_read_config(dev, PCIR_SUBVEND_0, 2);
1940 	sc->hw.subsystem_device_id =
1941 	    pci_read_config(dev, PCIR_SUBDEV_0, 2);
1942 
1943 	/* Do Shared Code Init and Setup */
1944 	if (e1000_set_mac_type(&sc->hw)) {
1945 		device_printf(dev, "Setup init failure\n");
1946 		return;
1947 	}
1948 
1949 	/* Are we a VF device? */
1950 	if ((sc->hw.mac.type == e1000_vfadapt) ||
1951 	    (sc->hw.mac.type == e1000_vfadapt_i350))
1952 		sc->vf_ifp = 1;
1953 	else
1954 		sc->vf_ifp = 0;
1955 }
1956 
1957 static int
1958 em_allocate_pci_resources(if_ctx_t ctx)
1959 {
1960 	struct e1000_softc *sc = iflib_get_softc(ctx);
1961 	device_t dev = iflib_get_dev(ctx);
1962 	int rid, val;
1963 
1964 	rid = PCIR_BAR(0);
1965 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1966 	    &rid, RF_ACTIVE);
1967 	if (sc->memory == NULL) {
1968 		device_printf(dev, "Unable to allocate bus resource: memory\n");
1969 		return (ENXIO);
1970 	}
1971 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
1972 	sc->osdep.mem_bus_space_handle =
1973 	    rman_get_bushandle(sc->memory);
1974 	sc->hw.hw_addr = (u8 *)&sc->osdep.mem_bus_space_handle;
1975 
1976 	/* Only older adapters use IO mapping */
1977 	if (sc->hw.mac.type < em_mac_min &&
1978 	    sc->hw.mac.type > e1000_82543) {
1979 		/* Figure our where our IO BAR is ? */
1980 		for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1981 			val = pci_read_config(dev, rid, 4);
1982 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1983 				break;
1984 			}
1985 			rid += 4;
1986 			/* check for 64bit BAR */
1987 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1988 				rid += 4;
1989 		}
1990 		if (rid >= PCIR_CIS) {
1991 			device_printf(dev, "Unable to locate IO BAR\n");
1992 			return (ENXIO);
1993 		}
1994 		sc->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
1995 		    &rid, RF_ACTIVE);
1996 		if (sc->ioport == NULL) {
1997 			device_printf(dev, "Unable to allocate bus resource: "
1998 			    "ioport\n");
1999 			return (ENXIO);
2000 		}
2001 		sc->hw.io_base = 0;
2002 		sc->osdep.io_bus_space_tag =
2003 		    rman_get_bustag(sc->ioport);
2004 		sc->osdep.io_bus_space_handle =
2005 		    rman_get_bushandle(sc->ioport);
2006 	}
2007 
2008 	sc->hw.back = &sc->osdep;
2009 
2010 	return (0);
2011 }
2012 
2013 /*********************************************************************
2014  *
2015  *  Set up the MSI-X Interrupt handlers
2016  *
2017  **********************************************************************/
2018 static int
2019 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
2020 {
2021 	struct e1000_softc *sc = iflib_get_softc(ctx);
2022 	struct em_rx_queue *rx_que = sc->rx_queues;
2023 	struct em_tx_queue *tx_que = sc->tx_queues;
2024 	int error, rid, i, vector = 0, rx_vectors;
2025 	char buf[16];
2026 
2027 	/* First set up ring resources */
2028 	for (i = 0; i < sc->rx_num_queues; i++, rx_que++, vector++) {
2029 		rid = vector + 1;
2030 		snprintf(buf, sizeof(buf), "rxq%d", i);
2031 		error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
2032 		if (error) {
2033 			device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
2034 			sc->rx_num_queues = i + 1;
2035 			goto fail;
2036 		}
2037 
2038 		rx_que->msix =  vector;
2039 
2040 		/*
2041 		 * Set the bit to enable interrupt
2042 		 * in E1000_IMS -- bits 20 and 21
2043 		 * are for RX0 and RX1, note this has
2044 		 * NOTHING to do with the MSI-X vector
2045 		 */
2046 		if (sc->hw.mac.type == e1000_82574) {
2047 			rx_que->eims = 1 << (20 + i);
2048 			sc->ims |= rx_que->eims;
2049 			sc->ivars |= (8 | rx_que->msix) << (i * 4);
2050 		} else if (sc->hw.mac.type == e1000_82575)
2051 			rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2052 		else
2053 			rx_que->eims = 1 << vector;
2054 	}
2055 	rx_vectors = vector;
2056 
2057 	vector = 0;
2058 	for (i = 0; i < sc->tx_num_queues; i++, tx_que++, vector++) {
2059 		snprintf(buf, sizeof(buf), "txq%d", i);
2060 		tx_que = &sc->tx_queues[i];
2061 		iflib_softirq_alloc_generic(ctx,
2062 		    &sc->rx_queues[i % sc->rx_num_queues].que_irq,
2063 		    IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2064 
2065 		tx_que->msix = (vector % sc->rx_num_queues);
2066 
2067 		/*
2068 		 * Set the bit to enable interrupt
2069 		 * in E1000_IMS -- bits 22 and 23
2070 		 * are for TX0 and TX1, note this has
2071 		 * NOTHING to do with the MSI-X vector
2072 		 */
2073 		if (sc->hw.mac.type == e1000_82574) {
2074 			tx_que->eims = 1 << (22 + i);
2075 			sc->ims |= tx_que->eims;
2076 			sc->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2077 		} else if (sc->hw.mac.type == e1000_82575) {
2078 			tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2079 		} else {
2080 			tx_que->eims = 1 << i;
2081 		}
2082 	}
2083 
2084 	/* Link interrupt */
2085 	rid = rx_vectors + 1;
2086 	error = iflib_irq_alloc_generic(ctx, &sc->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, sc, 0, "aq");
2087 
2088 	if (error) {
2089 		device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
2090 		goto fail;
2091 	}
2092 	sc->linkvec = rx_vectors;
2093 	if (sc->hw.mac.type < igb_mac_min) {
2094 		sc->ivars |=  (8 | rx_vectors) << 16;
2095 		sc->ivars |= 0x80000000;
2096 		/* Enable the "Other" interrupt type for link status change */
2097 		sc->ims |= E1000_IMS_OTHER;
2098 	}
2099 
2100 	return (0);
2101 fail:
2102 	iflib_irq_free(ctx, &sc->irq);
2103 	rx_que = sc->rx_queues;
2104 	for (int i = 0; i < sc->rx_num_queues; i++, rx_que++)
2105 		iflib_irq_free(ctx, &rx_que->que_irq);
2106 	return (error);
2107 }
2108 
2109 static void
2110 igb_configure_queues(struct e1000_softc *sc)
2111 {
2112 	struct e1000_hw *hw = &sc->hw;
2113 	struct em_rx_queue *rx_que;
2114 	struct em_tx_queue *tx_que;
2115 	u32 tmp, ivar = 0, newitr = 0;
2116 
2117 	/* First turn on RSS capability */
2118 	if (hw->mac.type != e1000_82575)
2119 		E1000_WRITE_REG(hw, E1000_GPIE,
2120 		    E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2121 		    E1000_GPIE_PBA | E1000_GPIE_NSICR);
2122 
2123 	/* Turn on MSI-X */
2124 	switch (hw->mac.type) {
2125 	case e1000_82580:
2126 	case e1000_i350:
2127 	case e1000_i354:
2128 	case e1000_i210:
2129 	case e1000_i211:
2130 	case e1000_vfadapt:
2131 	case e1000_vfadapt_i350:
2132 		/* RX entries */
2133 		for (int i = 0; i < sc->rx_num_queues; i++) {
2134 			u32 index = i >> 1;
2135 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2136 			rx_que = &sc->rx_queues[i];
2137 			if (i & 1) {
2138 				ivar &= 0xFF00FFFF;
2139 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2140 			} else {
2141 				ivar &= 0xFFFFFF00;
2142 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2143 			}
2144 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2145 		}
2146 		/* TX entries */
2147 		for (int i = 0; i < sc->tx_num_queues; i++) {
2148 			u32 index = i >> 1;
2149 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2150 			tx_que = &sc->tx_queues[i];
2151 			if (i & 1) {
2152 				ivar &= 0x00FFFFFF;
2153 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2154 			} else {
2155 				ivar &= 0xFFFF00FF;
2156 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2157 			}
2158 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2159 			sc->que_mask |= tx_que->eims;
2160 		}
2161 
2162 		/* And for the link interrupt */
2163 		ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
2164 		sc->link_mask = 1 << sc->linkvec;
2165 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2166 		break;
2167 	case e1000_82576:
2168 		/* RX entries */
2169 		for (int i = 0; i < sc->rx_num_queues; i++) {
2170 			u32 index = i & 0x7; /* Each IVAR has two entries */
2171 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2172 			rx_que = &sc->rx_queues[i];
2173 			if (i < 8) {
2174 				ivar &= 0xFFFFFF00;
2175 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2176 			} else {
2177 				ivar &= 0xFF00FFFF;
2178 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2179 			}
2180 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2181 			sc->que_mask |= rx_que->eims;
2182 		}
2183 		/* TX entries */
2184 		for (int i = 0; i < sc->tx_num_queues; i++) {
2185 			u32 index = i & 0x7; /* Each IVAR has two entries */
2186 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2187 			tx_que = &sc->tx_queues[i];
2188 			if (i < 8) {
2189 				ivar &= 0xFFFF00FF;
2190 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2191 			} else {
2192 				ivar &= 0x00FFFFFF;
2193 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2194 			}
2195 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2196 			sc->que_mask |= tx_que->eims;
2197 		}
2198 
2199 		/* And for the link interrupt */
2200 		ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
2201 		sc->link_mask = 1 << sc->linkvec;
2202 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2203 		break;
2204 
2205 	case e1000_82575:
2206 		/* enable MSI-X support*/
2207 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2208 		tmp |= E1000_CTRL_EXT_PBA_CLR;
2209 		/* Auto-Mask interrupts upon ICR read. */
2210 		tmp |= E1000_CTRL_EXT_EIAME;
2211 		tmp |= E1000_CTRL_EXT_IRCA;
2212 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2213 
2214 		/* Queues */
2215 		for (int i = 0; i < sc->rx_num_queues; i++) {
2216 			rx_que = &sc->rx_queues[i];
2217 			tmp = E1000_EICR_RX_QUEUE0 << i;
2218 			tmp |= E1000_EICR_TX_QUEUE0 << i;
2219 			rx_que->eims = tmp;
2220 			E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2221 			    i, rx_que->eims);
2222 			sc->que_mask |= rx_que->eims;
2223 		}
2224 
2225 		/* Link */
2226 		E1000_WRITE_REG(hw, E1000_MSIXBM(sc->linkvec),
2227 		    E1000_EIMS_OTHER);
2228 		sc->link_mask |= E1000_EIMS_OTHER;
2229 	default:
2230 		break;
2231 	}
2232 
2233 	/* Set the starting interrupt rate */
2234 	if (em_max_interrupt_rate > 0)
2235 		newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2236 
2237 	if (hw->mac.type == e1000_82575)
2238 		newitr |= newitr << 16;
2239 	else
2240 		newitr |= E1000_EITR_CNT_IGNR;
2241 
2242 	for (int i = 0; i < sc->rx_num_queues; i++) {
2243 		rx_que = &sc->rx_queues[i];
2244 		E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2245 	}
2246 
2247 	return;
2248 }
2249 
2250 static void
2251 em_free_pci_resources(if_ctx_t ctx)
2252 {
2253 	struct e1000_softc *sc = iflib_get_softc(ctx);
2254 	struct em_rx_queue *que = sc->rx_queues;
2255 	device_t dev = iflib_get_dev(ctx);
2256 
2257 	/* Release all MSI-X queue resources */
2258 	if (sc->intr_type == IFLIB_INTR_MSIX)
2259 		iflib_irq_free(ctx, &sc->irq);
2260 
2261 	if (que != NULL) {
2262 		for (int i = 0; i < sc->rx_num_queues; i++, que++) {
2263 			iflib_irq_free(ctx, &que->que_irq);
2264 		}
2265 	}
2266 
2267 	if (sc->memory != NULL) {
2268 		bus_release_resource(dev, SYS_RES_MEMORY,
2269 		    rman_get_rid(sc->memory), sc->memory);
2270 		sc->memory = NULL;
2271 	}
2272 
2273 	if (sc->flash != NULL) {
2274 		bus_release_resource(dev, SYS_RES_MEMORY,
2275 		    rman_get_rid(sc->flash), sc->flash);
2276 		sc->flash = NULL;
2277 	}
2278 
2279 	if (sc->ioport != NULL) {
2280 		bus_release_resource(dev, SYS_RES_IOPORT,
2281 		    rman_get_rid(sc->ioport), sc->ioport);
2282 		sc->ioport = NULL;
2283 	}
2284 }
2285 
2286 /* Set up MSI or MSI-X */
2287 static int
2288 em_setup_msix(if_ctx_t ctx)
2289 {
2290 	struct e1000_softc *sc = iflib_get_softc(ctx);
2291 
2292 	if (sc->hw.mac.type == e1000_82574) {
2293 		em_enable_vectors_82574(ctx);
2294 	}
2295 	return (0);
2296 }
2297 
2298 /*********************************************************************
2299  *
2300  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2301  *
2302  **********************************************************************/
2303 static void
2304 lem_smartspeed(struct e1000_softc *sc)
2305 {
2306 	u16 phy_tmp;
2307 
2308 	if (sc->link_active || (sc->hw.phy.type != e1000_phy_igp) ||
2309 	    sc->hw.mac.autoneg == 0 ||
2310 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2311 		return;
2312 
2313 	if (sc->smartspeed == 0) {
2314 		/* If Master/Slave config fault is asserted twice,
2315 		 * we assume back-to-back */
2316 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2317 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2318 			return;
2319 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2320 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2321 			e1000_read_phy_reg(&sc->hw,
2322 			    PHY_1000T_CTRL, &phy_tmp);
2323 			if(phy_tmp & CR_1000T_MS_ENABLE) {
2324 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2325 				e1000_write_phy_reg(&sc->hw,
2326 				    PHY_1000T_CTRL, phy_tmp);
2327 				sc->smartspeed++;
2328 				if(sc->hw.mac.autoneg &&
2329 				   !e1000_copper_link_autoneg(&sc->hw) &&
2330 				   !e1000_read_phy_reg(&sc->hw,
2331 				    PHY_CONTROL, &phy_tmp)) {
2332 					phy_tmp |= (MII_CR_AUTO_NEG_EN |
2333 						    MII_CR_RESTART_AUTO_NEG);
2334 					e1000_write_phy_reg(&sc->hw,
2335 					    PHY_CONTROL, phy_tmp);
2336 				}
2337 			}
2338 		}
2339 		return;
2340 	} else if(sc->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2341 		/* If still no link, perhaps using 2/3 pair cable */
2342 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2343 		phy_tmp |= CR_1000T_MS_ENABLE;
2344 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2345 		if(sc->hw.mac.autoneg &&
2346 		   !e1000_copper_link_autoneg(&sc->hw) &&
2347 		   !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2348 			phy_tmp |= (MII_CR_AUTO_NEG_EN |
2349 				    MII_CR_RESTART_AUTO_NEG);
2350 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2351 		}
2352 	}
2353 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2354 	if(sc->smartspeed++ == EM_SMARTSPEED_MAX)
2355 		sc->smartspeed = 0;
2356 }
2357 
2358 /*********************************************************************
2359  *
2360  *  Initialize the DMA Coalescing feature
2361  *
2362  **********************************************************************/
2363 static void
2364 igb_init_dmac(struct e1000_softc *sc, u32 pba)
2365 {
2366 	device_t	dev = sc->dev;
2367 	struct e1000_hw *hw = &sc->hw;
2368 	u32 		dmac, reg = ~E1000_DMACR_DMAC_EN;
2369 	u16		hwm;
2370 	u16		max_frame_size;
2371 
2372 	if (hw->mac.type == e1000_i211)
2373 		return;
2374 
2375 	max_frame_size = sc->shared->isc_max_frame_size;
2376 	if (hw->mac.type > e1000_82580) {
2377 
2378 		if (sc->dmac == 0) { /* Disabling it */
2379 			E1000_WRITE_REG(hw, E1000_DMACR, reg);
2380 			return;
2381 		} else
2382 			device_printf(dev, "DMA Coalescing enabled\n");
2383 
2384 		/* Set starting threshold */
2385 		E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2386 
2387 		hwm = 64 * pba - max_frame_size / 16;
2388 		if (hwm < 64 * (pba - 6))
2389 			hwm = 64 * (pba - 6);
2390 		reg = E1000_READ_REG(hw, E1000_FCRTC);
2391 		reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2392 		reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2393 		    & E1000_FCRTC_RTH_COAL_MASK);
2394 		E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2395 
2396 
2397 		dmac = pba - max_frame_size / 512;
2398 		if (dmac < pba - 10)
2399 			dmac = pba - 10;
2400 		reg = E1000_READ_REG(hw, E1000_DMACR);
2401 		reg &= ~E1000_DMACR_DMACTHR_MASK;
2402 		reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2403 		    & E1000_DMACR_DMACTHR_MASK);
2404 
2405 		/* transition to L0x or L1 if available..*/
2406 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2407 
2408 		/* Check if status is 2.5Gb backplane connection
2409 		* before configuration of watchdog timer, which is
2410 		* in msec values in 12.8usec intervals
2411 		* watchdog timer= msec values in 32usec intervals
2412 		* for non 2.5Gb connection
2413 		*/
2414 		if (hw->mac.type == e1000_i354) {
2415 			int status = E1000_READ_REG(hw, E1000_STATUS);
2416 			if ((status & E1000_STATUS_2P5_SKU) &&
2417 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2418 				reg |= ((sc->dmac * 5) >> 6);
2419 			else
2420 				reg |= (sc->dmac >> 5);
2421 		} else {
2422 			reg |= (sc->dmac >> 5);
2423 		}
2424 
2425 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
2426 
2427 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2428 
2429 		/* Set the interval before transition */
2430 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
2431 		if (hw->mac.type == e1000_i350)
2432 			reg |= IGB_DMCTLX_DCFLUSH_DIS;
2433 		/*
2434 		** in 2.5Gb connection, TTLX unit is 0.4 usec
2435 		** which is 0x4*2 = 0xA. But delay is still 4 usec
2436 		*/
2437 		if (hw->mac.type == e1000_i354) {
2438 			int status = E1000_READ_REG(hw, E1000_STATUS);
2439 			if ((status & E1000_STATUS_2P5_SKU) &&
2440 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2441 				reg |= 0xA;
2442 			else
2443 				reg |= 0x4;
2444 		} else {
2445 			reg |= 0x4;
2446 		}
2447 
2448 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2449 
2450 		/* free space in tx packet buffer to wake from DMA coal */
2451 		E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2452 		    (2 * max_frame_size)) >> 6);
2453 
2454 		/* make low power state decision controlled by DMA coal */
2455 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2456 		reg &= ~E1000_PCIEMISC_LX_DECISION;
2457 		E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2458 
2459 	} else if (hw->mac.type == e1000_82580) {
2460 		u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2461 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
2462 		    reg & ~E1000_PCIEMISC_LX_DECISION);
2463 		E1000_WRITE_REG(hw, E1000_DMACR, 0);
2464 	}
2465 }
2466 
2467 /*********************************************************************
2468  *
2469  *  Initialize the hardware to a configuration as specified by the
2470  *  sc structure.
2471  *
2472  **********************************************************************/
2473 static void
2474 em_reset(if_ctx_t ctx)
2475 {
2476 	device_t dev = iflib_get_dev(ctx);
2477 	struct e1000_softc *sc = iflib_get_softc(ctx);
2478 	struct ifnet *ifp = iflib_get_ifp(ctx);
2479 	struct e1000_hw *hw = &sc->hw;
2480 	u32 rx_buffer_size;
2481 	u32 pba;
2482 
2483 	INIT_DEBUGOUT("em_reset: begin");
2484 	/* Let the firmware know the OS is in control */
2485 	em_get_hw_control(sc);
2486 
2487 	/* Set up smart power down as default off on newer adapters. */
2488 	if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2489 	    hw->mac.type == e1000_82572)) {
2490 		u16 phy_tmp = 0;
2491 
2492 		/* Speed up time to link by disabling smart power down. */
2493 		e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2494 		phy_tmp &= ~IGP02E1000_PM_SPD;
2495 		e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2496 	}
2497 
2498 	/*
2499 	 * Packet Buffer Allocation (PBA)
2500 	 * Writing PBA sets the receive portion of the buffer
2501 	 * the remainder is used for the transmit buffer.
2502 	 */
2503 	switch (hw->mac.type) {
2504 	/* 82547: Total Packet Buffer is 40K */
2505 	case e1000_82547:
2506 	case e1000_82547_rev_2:
2507 		if (hw->mac.max_frame_size > 8192)
2508 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2509 		else
2510 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2511 		break;
2512 	/* 82571/82572/80003es2lan: Total Packet Buffer is 48K */
2513 	case e1000_82571:
2514 	case e1000_82572:
2515 	case e1000_80003es2lan:
2516 			pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2517 		break;
2518 	/* 82573: Total Packet Buffer is 32K */
2519 	case e1000_82573:
2520 			pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2521 		break;
2522 	case e1000_82574:
2523 	case e1000_82583:
2524 			pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2525 		break;
2526 	case e1000_ich8lan:
2527 		pba = E1000_PBA_8K;
2528 		break;
2529 	case e1000_ich9lan:
2530 	case e1000_ich10lan:
2531 		/* Boost Receive side for jumbo frames */
2532 		if (hw->mac.max_frame_size > 4096)
2533 			pba = E1000_PBA_14K;
2534 		else
2535 			pba = E1000_PBA_10K;
2536 		break;
2537 	case e1000_pchlan:
2538 	case e1000_pch2lan:
2539 	case e1000_pch_lpt:
2540 	case e1000_pch_spt:
2541 	case e1000_pch_cnp:
2542 	case e1000_pch_tgp:
2543 	case e1000_pch_adp:
2544 	case e1000_pch_mtp:
2545 		pba = E1000_PBA_26K;
2546 		break;
2547 	case e1000_82575:
2548 		pba = E1000_PBA_32K;
2549 		break;
2550 	case e1000_82576:
2551 	case e1000_vfadapt:
2552 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2553 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2554 		break;
2555 	case e1000_82580:
2556 	case e1000_i350:
2557 	case e1000_i354:
2558 	case e1000_vfadapt_i350:
2559 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2560 		pba = e1000_rxpbs_adjust_82580(pba);
2561 		break;
2562 	case e1000_i210:
2563 	case e1000_i211:
2564 		pba = E1000_PBA_34K;
2565 		break;
2566 	default:
2567 		/* Remaining devices assumed to have a Packet Buffer of 64K. */
2568 		if (hw->mac.max_frame_size > 8192)
2569 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2570 		else
2571 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2572 	}
2573 
2574 	/* Special needs in case of Jumbo frames */
2575 	if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
2576 		u32 tx_space, min_tx, min_rx;
2577 		pba = E1000_READ_REG(hw, E1000_PBA);
2578 		tx_space = pba >> 16;
2579 		pba &= 0xffff;
2580 		min_tx = (hw->mac.max_frame_size +
2581 		    sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
2582 		min_tx = roundup2(min_tx, 1024);
2583 		min_tx >>= 10;
2584 		min_rx = hw->mac.max_frame_size;
2585 		min_rx = roundup2(min_rx, 1024);
2586 		min_rx >>= 10;
2587 		if (tx_space < min_tx &&
2588 		    ((min_tx - tx_space) < pba)) {
2589 			pba = pba - (min_tx - tx_space);
2590 			/*
2591 			 * if short on rx space, rx wins
2592 			 * and must trump tx adjustment
2593 			 */
2594 			if (pba < min_rx)
2595 				pba = min_rx;
2596 		}
2597 		E1000_WRITE_REG(hw, E1000_PBA, pba);
2598 	}
2599 
2600 	if (hw->mac.type < igb_mac_min)
2601 		E1000_WRITE_REG(hw, E1000_PBA, pba);
2602 
2603 	INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
2604 
2605 	/*
2606 	 * These parameters control the automatic generation (Tx) and
2607 	 * response (Rx) to Ethernet PAUSE frames.
2608 	 * - High water mark should allow for at least two frames to be
2609 	 *   received after sending an XOFF.
2610 	 * - Low water mark works best when it is very near the high water mark.
2611 	 *   This allows the receiver to restart by sending XON when it has
2612 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
2613 	 *   restart after one full frame is pulled from the buffer. There
2614 	 *   could be several smaller frames in the buffer and if so they will
2615 	 *   not trigger the XON until their total number reduces the buffer
2616 	 *   by 1500.
2617 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2618 	 */
2619 	rx_buffer_size = (pba & 0xffff) << 10;
2620 	hw->fc.high_water = rx_buffer_size -
2621 	    roundup2(hw->mac.max_frame_size, 1024);
2622 	hw->fc.low_water = hw->fc.high_water - 1500;
2623 
2624 	if (sc->fc) /* locally set flow control value? */
2625 		hw->fc.requested_mode = sc->fc;
2626 	else
2627 		hw->fc.requested_mode = e1000_fc_full;
2628 
2629 	if (hw->mac.type == e1000_80003es2lan)
2630 		hw->fc.pause_time = 0xFFFF;
2631 	else
2632 		hw->fc.pause_time = EM_FC_PAUSE_TIME;
2633 
2634 	hw->fc.send_xon = true;
2635 
2636 	/* Device specific overrides/settings */
2637 	switch (hw->mac.type) {
2638 	case e1000_pchlan:
2639 		/* Workaround: no TX flow ctrl for PCH */
2640 		hw->fc.requested_mode = e1000_fc_rx_pause;
2641 		hw->fc.pause_time = 0xFFFF; /* override */
2642 		if (if_getmtu(ifp) > ETHERMTU) {
2643 			hw->fc.high_water = 0x3500;
2644 			hw->fc.low_water = 0x1500;
2645 		} else {
2646 			hw->fc.high_water = 0x5000;
2647 			hw->fc.low_water = 0x3000;
2648 		}
2649 		hw->fc.refresh_time = 0x1000;
2650 		break;
2651 	case e1000_pch2lan:
2652 	case e1000_pch_lpt:
2653 	case e1000_pch_spt:
2654 	case e1000_pch_cnp:
2655 	case e1000_pch_tgp:
2656 	case e1000_pch_adp:
2657 	case e1000_pch_mtp:
2658 		hw->fc.high_water = 0x5C20;
2659 		hw->fc.low_water = 0x5048;
2660 		hw->fc.pause_time = 0x0650;
2661 		hw->fc.refresh_time = 0x0400;
2662 		/* Jumbos need adjusted PBA */
2663 		if (if_getmtu(ifp) > ETHERMTU)
2664 			E1000_WRITE_REG(hw, E1000_PBA, 12);
2665 		else
2666 			E1000_WRITE_REG(hw, E1000_PBA, 26);
2667 		break;
2668 	case e1000_82575:
2669 	case e1000_82576:
2670 		/* 8-byte granularity */
2671 		hw->fc.low_water = hw->fc.high_water - 8;
2672 		break;
2673 	case e1000_82580:
2674 	case e1000_i350:
2675 	case e1000_i354:
2676 	case e1000_i210:
2677 	case e1000_i211:
2678 	case e1000_vfadapt:
2679 	case e1000_vfadapt_i350:
2680 		/* 16-byte granularity */
2681 		hw->fc.low_water = hw->fc.high_water - 16;
2682 		break;
2683 	case e1000_ich9lan:
2684 	case e1000_ich10lan:
2685 		if (if_getmtu(ifp) > ETHERMTU) {
2686 			hw->fc.high_water = 0x2800;
2687 			hw->fc.low_water = hw->fc.high_water - 8;
2688 			break;
2689 		}
2690 		/* FALLTHROUGH */
2691 	default:
2692 		if (hw->mac.type == e1000_80003es2lan)
2693 			hw->fc.pause_time = 0xFFFF;
2694 		break;
2695 	}
2696 
2697 	/* Issue a global reset */
2698 	e1000_reset_hw(hw);
2699 	if (hw->mac.type >= igb_mac_min) {
2700 		E1000_WRITE_REG(hw, E1000_WUC, 0);
2701 	} else {
2702 		E1000_WRITE_REG(hw, E1000_WUFC, 0);
2703 		em_disable_aspm(sc);
2704 	}
2705 	if (sc->flags & IGB_MEDIA_RESET) {
2706 		e1000_setup_init_funcs(hw, true);
2707 		e1000_get_bus_info(hw);
2708 		sc->flags &= ~IGB_MEDIA_RESET;
2709 	}
2710 	/* and a re-init */
2711 	if (e1000_init_hw(hw) < 0) {
2712 		device_printf(dev, "Hardware Initialization Failed\n");
2713 		return;
2714 	}
2715 	if (hw->mac.type >= igb_mac_min)
2716 		igb_init_dmac(sc, pba);
2717 
2718 	E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2719 	e1000_get_phy_info(hw);
2720 	e1000_check_for_link(hw);
2721 }
2722 
2723 /*
2724  * Initialise the RSS mapping for NICs that support multiple transmit/
2725  * receive rings.
2726  */
2727 
2728 #define RSSKEYLEN 10
2729 static void
2730 em_initialize_rss_mapping(struct e1000_softc *sc)
2731 {
2732 	uint8_t  rss_key[4 * RSSKEYLEN];
2733 	uint32_t reta = 0;
2734 	struct e1000_hw	*hw = &sc->hw;
2735 	int i;
2736 
2737 	/*
2738 	 * Configure RSS key
2739 	 */
2740 	arc4rand(rss_key, sizeof(rss_key), 0);
2741 	for (i = 0; i < RSSKEYLEN; ++i) {
2742 		uint32_t rssrk = 0;
2743 
2744 		rssrk = EM_RSSRK_VAL(rss_key, i);
2745 		E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2746 	}
2747 
2748 	/*
2749 	 * Configure RSS redirect table in following fashion:
2750 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2751 	 */
2752 	for (i = 0; i < sizeof(reta); ++i) {
2753 		uint32_t q;
2754 
2755 		q = (i % sc->rx_num_queues) << 7;
2756 		reta |= q << (8 * i);
2757 	}
2758 
2759 	for (i = 0; i < 32; ++i)
2760 		E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2761 
2762 	E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
2763 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2764 			E1000_MRQC_RSS_FIELD_IPV4 |
2765 			E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2766 			E1000_MRQC_RSS_FIELD_IPV6_EX |
2767 			E1000_MRQC_RSS_FIELD_IPV6);
2768 }
2769 
2770 static void
2771 igb_initialize_rss_mapping(struct e1000_softc *sc)
2772 {
2773 	struct e1000_hw *hw = &sc->hw;
2774 	int i;
2775 	int queue_id;
2776 	u32 reta;
2777 	u32 rss_key[10], mrqc, shift = 0;
2778 
2779 	/* XXX? */
2780 	if (hw->mac.type == e1000_82575)
2781 		shift = 6;
2782 
2783 	/*
2784 	 * The redirection table controls which destination
2785 	 * queue each bucket redirects traffic to.
2786 	 * Each DWORD represents four queues, with the LSB
2787 	 * being the first queue in the DWORD.
2788 	 *
2789 	 * This just allocates buckets to queues using round-robin
2790 	 * allocation.
2791 	 *
2792 	 * NOTE: It Just Happens to line up with the default
2793 	 * RSS allocation method.
2794 	 */
2795 
2796 	/* Warning FM follows */
2797 	reta = 0;
2798 	for (i = 0; i < 128; i++) {
2799 #ifdef RSS
2800 		queue_id = rss_get_indirection_to_bucket(i);
2801 		/*
2802 		 * If we have more queues than buckets, we'll
2803 		 * end up mapping buckets to a subset of the
2804 		 * queues.
2805 		 *
2806 		 * If we have more buckets than queues, we'll
2807 		 * end up instead assigning multiple buckets
2808 		 * to queues.
2809 		 *
2810 		 * Both are suboptimal, but we need to handle
2811 		 * the case so we don't go out of bounds
2812 		 * indexing arrays and such.
2813 		 */
2814 		queue_id = queue_id % sc->rx_num_queues;
2815 #else
2816 		queue_id = (i % sc->rx_num_queues);
2817 #endif
2818 		/* Adjust if required */
2819 		queue_id = queue_id << shift;
2820 
2821 		/*
2822 		 * The low 8 bits are for hash value (n+0);
2823 		 * The next 8 bits are for hash value (n+1), etc.
2824 		 */
2825 		reta = reta >> 8;
2826 		reta = reta | ( ((uint32_t) queue_id) << 24);
2827 		if ((i & 3) == 3) {
2828 			E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2829 			reta = 0;
2830 		}
2831 	}
2832 
2833 	/* Now fill in hash table */
2834 
2835 	/*
2836 	 * MRQC: Multiple Receive Queues Command
2837 	 * Set queuing to RSS control, number depends on the device.
2838 	 */
2839 	mrqc = E1000_MRQC_ENABLE_RSS_MQ;
2840 
2841 #ifdef RSS
2842 	/* XXX ew typecasting */
2843 	rss_getkey((uint8_t *) &rss_key);
2844 #else
2845 	arc4rand(&rss_key, sizeof(rss_key), 0);
2846 #endif
2847 	for (i = 0; i < 10; i++)
2848 		E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
2849 
2850 	/*
2851 	 * Configure the RSS fields to hash upon.
2852 	 */
2853 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2854 	    E1000_MRQC_RSS_FIELD_IPV4_TCP);
2855 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2856 	    E1000_MRQC_RSS_FIELD_IPV6_TCP);
2857 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2858 	    E1000_MRQC_RSS_FIELD_IPV6_UDP);
2859 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2860 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2861 
2862 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2863 }
2864 
2865 /*********************************************************************
2866  *
2867  *  Setup networking device structure and register interface media.
2868  *
2869  **********************************************************************/
2870 static int
2871 em_setup_interface(if_ctx_t ctx)
2872 {
2873 	struct ifnet *ifp = iflib_get_ifp(ctx);
2874 	struct e1000_softc *sc = iflib_get_softc(ctx);
2875 	if_softc_ctx_t scctx = sc->shared;
2876 
2877 	INIT_DEBUGOUT("em_setup_interface: begin");
2878 
2879 	/* Single Queue */
2880 	if (sc->tx_num_queues == 1) {
2881 		if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
2882 		if_setsendqready(ifp);
2883 	}
2884 
2885 	/*
2886 	 * Specify the media types supported by this adapter and register
2887 	 * callbacks to update media and link information
2888 	 */
2889 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2890 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
2891 		u_char fiber_type = IFM_1000_SX;	/* default type */
2892 
2893 		if (sc->hw.mac.type == e1000_82545)
2894 			fiber_type = IFM_1000_LX;
2895 		ifmedia_add(sc->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
2896 		ifmedia_add(sc->media, IFM_ETHER | fiber_type, 0, NULL);
2897 	} else {
2898 		ifmedia_add(sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
2899 		ifmedia_add(sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
2900 		ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2901 		ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
2902 		if (sc->hw.phy.type != e1000_phy_ife) {
2903 			ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2904 			ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2905 		}
2906 	}
2907 	ifmedia_add(sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2908 	ifmedia_set(sc->media, IFM_ETHER | IFM_AUTO);
2909 	return (0);
2910 }
2911 
2912 static int
2913 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
2914 {
2915 	struct e1000_softc *sc = iflib_get_softc(ctx);
2916 	if_softc_ctx_t scctx = sc->shared;
2917 	int error = E1000_SUCCESS;
2918 	struct em_tx_queue *que;
2919 	int i, j;
2920 
2921 	MPASS(sc->tx_num_queues > 0);
2922 	MPASS(sc->tx_num_queues == ntxqsets);
2923 
2924 	/* First allocate the top level queue structs */
2925 	if (!(sc->tx_queues =
2926 	    (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
2927 	    sc->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2928 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2929 		return(ENOMEM);
2930 	}
2931 
2932 	for (i = 0, que = sc->tx_queues; i < sc->tx_num_queues; i++, que++) {
2933 		/* Set up some basics */
2934 
2935 		struct tx_ring *txr = &que->txr;
2936 		txr->sc = que->sc = sc;
2937 		que->me = txr->me =  i;
2938 
2939 		/* Allocate report status array */
2940 		if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2941 			device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
2942 			error = ENOMEM;
2943 			goto fail;
2944 		}
2945 		for (j = 0; j < scctx->isc_ntxd[0]; j++)
2946 			txr->tx_rsq[j] = QIDX_INVALID;
2947 		/* get the virtual and physical address of the hardware queues */
2948 		txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
2949 		txr->tx_paddr = paddrs[i*ntxqs];
2950 	}
2951 
2952 	if (bootverbose)
2953 		device_printf(iflib_get_dev(ctx),
2954 		    "allocated for %d tx_queues\n", sc->tx_num_queues);
2955 	return (0);
2956 fail:
2957 	em_if_queues_free(ctx);
2958 	return (error);
2959 }
2960 
2961 static int
2962 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
2963 {
2964 	struct e1000_softc *sc = iflib_get_softc(ctx);
2965 	int error = E1000_SUCCESS;
2966 	struct em_rx_queue *que;
2967 	int i;
2968 
2969 	MPASS(sc->rx_num_queues > 0);
2970 	MPASS(sc->rx_num_queues == nrxqsets);
2971 
2972 	/* First allocate the top level queue structs */
2973 	if (!(sc->rx_queues =
2974 	    (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
2975 	    sc->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2976 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2977 		error = ENOMEM;
2978 		goto fail;
2979 	}
2980 
2981 	for (i = 0, que = sc->rx_queues; i < nrxqsets; i++, que++) {
2982 		/* Set up some basics */
2983 		struct rx_ring *rxr = &que->rxr;
2984 		rxr->sc = que->sc = sc;
2985 		rxr->que = que;
2986 		que->me = rxr->me =  i;
2987 
2988 		/* get the virtual and physical address of the hardware queues */
2989 		rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
2990 		rxr->rx_paddr = paddrs[i*nrxqs];
2991 	}
2992 
2993 	if (bootverbose)
2994 		device_printf(iflib_get_dev(ctx),
2995 		    "allocated for %d rx_queues\n", sc->rx_num_queues);
2996 
2997 	return (0);
2998 fail:
2999 	em_if_queues_free(ctx);
3000 	return (error);
3001 }
3002 
3003 static void
3004 em_if_queues_free(if_ctx_t ctx)
3005 {
3006 	struct e1000_softc *sc = iflib_get_softc(ctx);
3007 	struct em_tx_queue *tx_que = sc->tx_queues;
3008 	struct em_rx_queue *rx_que = sc->rx_queues;
3009 
3010 	if (tx_que != NULL) {
3011 		for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
3012 			struct tx_ring *txr = &tx_que->txr;
3013 			if (txr->tx_rsq == NULL)
3014 				break;
3015 
3016 			free(txr->tx_rsq, M_DEVBUF);
3017 			txr->tx_rsq = NULL;
3018 		}
3019 		free(sc->tx_queues, M_DEVBUF);
3020 		sc->tx_queues = NULL;
3021 	}
3022 
3023 	if (rx_que != NULL) {
3024 		free(sc->rx_queues, M_DEVBUF);
3025 		sc->rx_queues = NULL;
3026 	}
3027 }
3028 
3029 /*********************************************************************
3030  *
3031  *  Enable transmit unit.
3032  *
3033  **********************************************************************/
3034 static void
3035 em_initialize_transmit_unit(if_ctx_t ctx)
3036 {
3037 	struct e1000_softc *sc = iflib_get_softc(ctx);
3038 	if_softc_ctx_t scctx = sc->shared;
3039 	struct em_tx_queue *que;
3040 	struct tx_ring	*txr;
3041 	struct e1000_hw	*hw = &sc->hw;
3042 	u32 tctl, txdctl = 0, tarc, tipg = 0;
3043 
3044 	INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
3045 
3046 	for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
3047 		u64 bus_addr;
3048 		caddr_t offp, endp;
3049 
3050 		que = &sc->tx_queues[i];
3051 		txr = &que->txr;
3052 		bus_addr = txr->tx_paddr;
3053 
3054 		/* Clear checksum offload context. */
3055 		offp = (caddr_t)&txr->csum_flags;
3056 		endp = (caddr_t)(txr + 1);
3057 		bzero(offp, endp - offp);
3058 
3059 		/* Base and Len of TX Ring */
3060 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
3061 		    scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
3062 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
3063 		    (u32)(bus_addr >> 32));
3064 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
3065 		    (u32)bus_addr);
3066 		/* Init the HEAD/TAIL indices */
3067 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3068 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3069 
3070 		HW_DEBUGOUT2("Base = %x, Length = %x\n",
3071 		    E1000_READ_REG(hw, E1000_TDBAL(i)),
3072 		    E1000_READ_REG(hw, E1000_TDLEN(i)));
3073 
3074 		txdctl = 0; /* clear txdctl */
3075 		txdctl |= 0x1f; /* PTHRESH */
3076 		txdctl |= 1 << 8; /* HTHRESH */
3077 		txdctl |= 1 << 16;/* WTHRESH */
3078 		txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3079 		txdctl |= E1000_TXDCTL_GRAN;
3080 		txdctl |= 1 << 25; /* LWTHRESH */
3081 
3082 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3083 	}
3084 
3085 	/* Set the default values for the Tx Inter Packet Gap timer */
3086 	switch (hw->mac.type) {
3087 	case e1000_80003es2lan:
3088 		tipg = DEFAULT_82543_TIPG_IPGR1;
3089 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3090 		    E1000_TIPG_IPGR2_SHIFT;
3091 		break;
3092 	case e1000_82542:
3093 		tipg = DEFAULT_82542_TIPG_IPGT;
3094 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3095 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3096 		break;
3097 	default:
3098 		if (hw->phy.media_type == e1000_media_type_fiber ||
3099 		    hw->phy.media_type == e1000_media_type_internal_serdes)
3100 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3101 		else
3102 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3103 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3104 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3105 	}
3106 
3107 	E1000_WRITE_REG(hw, E1000_TIPG, tipg);
3108 	E1000_WRITE_REG(hw, E1000_TIDV, sc->tx_int_delay.value);
3109 
3110 	if(hw->mac.type >= e1000_82540)
3111 		E1000_WRITE_REG(hw, E1000_TADV,
3112 		    sc->tx_abs_int_delay.value);
3113 
3114 	if (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572) {
3115 		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3116 		tarc |= TARC_SPEED_MODE_BIT;
3117 		E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3118 	} else if (hw->mac.type == e1000_80003es2lan) {
3119 		/* errata: program both queues to unweighted RR */
3120 		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3121 		tarc |= 1;
3122 		E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3123 		tarc = E1000_READ_REG(hw, E1000_TARC(1));
3124 		tarc |= 1;
3125 		E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3126 	} else if (hw->mac.type == e1000_82574) {
3127 		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3128 		tarc |= TARC_ERRATA_BIT;
3129 		if ( sc->tx_num_queues > 1) {
3130 			tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3131 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3132 			E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3133 		} else
3134 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3135 	}
3136 
3137 	if (sc->tx_int_delay.value > 0)
3138 		sc->txd_cmd |= E1000_TXD_CMD_IDE;
3139 
3140 	/* Program the Transmit Control Register */
3141 	tctl = E1000_READ_REG(hw, E1000_TCTL);
3142 	tctl &= ~E1000_TCTL_CT;
3143 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3144 		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3145 
3146 	if (hw->mac.type >= e1000_82571)
3147 		tctl |= E1000_TCTL_MULR;
3148 
3149 	/* This write will effectively turn on the transmit unit. */
3150 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
3151 
3152 	/* SPT and KBL errata workarounds */
3153 	if (hw->mac.type == e1000_pch_spt) {
3154 		u32 reg;
3155 		reg = E1000_READ_REG(hw, E1000_IOSFPC);
3156 		reg |= E1000_RCTL_RDMTS_HEX;
3157 		E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3158 		/* i218-i219 Specification Update 1.5.4.5 */
3159 		reg = E1000_READ_REG(hw, E1000_TARC(0));
3160 		reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3161 		reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3162 		E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3163 	}
3164 }
3165 
3166 /*********************************************************************
3167  *
3168  *  Enable receive unit.
3169  *
3170  **********************************************************************/
3171 #define BSIZEPKT_ROUNDUP ((1<<E1000_SRRCTL_BSIZEPKT_SHIFT)-1)
3172 
3173 static void
3174 em_initialize_receive_unit(if_ctx_t ctx)
3175 {
3176 	struct e1000_softc *sc = iflib_get_softc(ctx);
3177 	if_softc_ctx_t scctx = sc->shared;
3178 	struct ifnet *ifp = iflib_get_ifp(ctx);
3179 	struct e1000_hw	*hw = &sc->hw;
3180 	struct em_rx_queue *que;
3181 	int i;
3182 	uint32_t rctl, rxcsum;
3183 
3184 	INIT_DEBUGOUT("em_initialize_receive_units: begin");
3185 
3186 	/*
3187 	 * Make sure receives are disabled while setting
3188 	 * up the descriptor ring
3189 	 */
3190 	rctl = E1000_READ_REG(hw, E1000_RCTL);
3191 	/* Do not disable if ever enabled on this hardware */
3192 	if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3193 		E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3194 
3195 	/* Setup the Receive Control Register */
3196 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3197 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3198 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3199 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3200 
3201 	/* Do not store bad packets */
3202 	rctl &= ~E1000_RCTL_SBP;
3203 
3204 	/* Enable Long Packet receive */
3205 	if (if_getmtu(ifp) > ETHERMTU)
3206 		rctl |= E1000_RCTL_LPE;
3207 	else
3208 		rctl &= ~E1000_RCTL_LPE;
3209 
3210 	/* Strip the CRC */
3211 	if (!em_disable_crc_stripping)
3212 		rctl |= E1000_RCTL_SECRC;
3213 
3214 	if (hw->mac.type >= e1000_82540) {
3215 		E1000_WRITE_REG(hw, E1000_RADV,
3216 		    sc->rx_abs_int_delay.value);
3217 
3218 		/*
3219 		 * Set the interrupt throttling rate. Value is calculated
3220 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3221 		 */
3222 		E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
3223 	}
3224 	E1000_WRITE_REG(hw, E1000_RDTR, sc->rx_int_delay.value);
3225 
3226 	if (hw->mac.type >= em_mac_min) {
3227 		uint32_t rfctl;
3228 		/* Use extended rx descriptor formats */
3229 		rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3230 		rfctl |= E1000_RFCTL_EXTEN;
3231 
3232 		/*
3233 		 * When using MSI-X interrupts we need to throttle
3234 		 * using the EITR register (82574 only)
3235 		 */
3236 		if (hw->mac.type == e1000_82574) {
3237 			for (int i = 0; i < 4; i++)
3238 				E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3239 				    DEFAULT_ITR);
3240 			/* Disable accelerated acknowledge */
3241 			rfctl |= E1000_RFCTL_ACK_DIS;
3242 		}
3243 		E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3244 	}
3245 
3246 	/* Set up L3 and L4 csum Rx descriptor offloads */
3247 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3248 	if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3249 		rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3250 		if (hw->mac.type > e1000_82575)
3251 			rxcsum |= E1000_RXCSUM_CRCOFL;
3252 		else if (hw->mac.type < em_mac_min &&
3253 		    if_getcapenable(ifp) & IFCAP_HWCSUM_IPV6)
3254 			rxcsum |= E1000_RXCSUM_IPV6OFL;
3255 	} else {
3256 		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3257 		if (hw->mac.type > e1000_82575)
3258 			rxcsum &= ~E1000_RXCSUM_CRCOFL;
3259 		else if (hw->mac.type < em_mac_min)
3260 			rxcsum &= ~E1000_RXCSUM_IPV6OFL;
3261 	}
3262 
3263 	if (sc->rx_num_queues > 1) {
3264 		/* RSS hash needed in the Rx descriptor */
3265 		rxcsum |= E1000_RXCSUM_PCSD;
3266 
3267 		if (hw->mac.type >= igb_mac_min)
3268 			igb_initialize_rss_mapping(sc);
3269 		else
3270 			em_initialize_rss_mapping(sc);
3271 	}
3272 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3273 
3274 	/*
3275 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3276 	 * long latencies are observed, like Lenovo X60. This
3277 	 * change eliminates the problem, but since having positive
3278 	 * values in RDTR is a known source of problems on other
3279 	 * platforms another solution is being sought.
3280 	 */
3281 	if (hw->mac.type == e1000_82573)
3282 		E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3283 
3284 	for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) {
3285 		struct rx_ring *rxr = &que->rxr;
3286 		/* Setup the Base and Length of the Rx Descriptor Ring */
3287 		u64 bus_addr = rxr->rx_paddr;
3288 #if 0
3289 		u32 rdt = sc->rx_num_queues -1;  /* default */
3290 #endif
3291 
3292 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
3293 		    scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
3294 		E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3295 		E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3296 		/* Setup the Head and Tail Descriptor Pointers */
3297 		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3298 		E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3299 	}
3300 
3301 	/*
3302 	 * Set PTHRESH for improved jumbo performance
3303 	 * According to 10.2.5.11 of Intel 82574 Datasheet,
3304 	 * RXDCTL(1) is written whenever RXDCTL(0) is written.
3305 	 * Only write to RXDCTL(1) if there is a need for different
3306 	 * settings.
3307 	 */
3308 	if ((hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_pch2lan ||
3309 	    hw->mac.type == e1000_ich10lan) && if_getmtu(ifp) > ETHERMTU) {
3310 		u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3311 		E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3312 	} else if (hw->mac.type == e1000_82574) {
3313 		for (int i = 0; i < sc->rx_num_queues; i++) {
3314 			u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3315 			rxdctl |= 0x20; /* PTHRESH */
3316 			rxdctl |= 4 << 8; /* HTHRESH */
3317 			rxdctl |= 4 << 16;/* WTHRESH */
3318 			rxdctl |= 1 << 24; /* Switch to granularity */
3319 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3320 		}
3321 	} else if (hw->mac.type >= igb_mac_min) {
3322 		u32 psize, srrctl = 0;
3323 
3324 		if (if_getmtu(ifp) > ETHERMTU) {
3325 			psize = scctx->isc_max_frame_size;
3326 			/* are we on a vlan? */
3327 			if (ifp->if_vlantrunk != NULL)
3328 				psize += VLAN_TAG_SIZE;
3329 
3330 			if (sc->vf_ifp)
3331 				e1000_rlpml_set_vf(hw, psize);
3332 			else
3333 				E1000_WRITE_REG(hw, E1000_RLPML, psize);
3334 		}
3335 
3336 		/* Set maximum packet buffer len */
3337 		srrctl |= (sc->rx_mbuf_sz + BSIZEPKT_ROUNDUP) >>
3338 		    E1000_SRRCTL_BSIZEPKT_SHIFT;
3339 
3340 		/*
3341 		 * If TX flow control is disabled and there's >1 queue defined,
3342 		 * enable DROP.
3343 		 *
3344 		 * This drops frames rather than hanging the RX MAC for all queues.
3345 		 */
3346 		if ((sc->rx_num_queues > 1) &&
3347 		    (sc->fc == e1000_fc_none ||
3348 		     sc->fc == e1000_fc_rx_pause)) {
3349 			srrctl |= E1000_SRRCTL_DROP_EN;
3350 		}
3351 			/* Setup the Base and Length of the Rx Descriptor Rings */
3352 		for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) {
3353 			struct rx_ring *rxr = &que->rxr;
3354 			u64 bus_addr = rxr->rx_paddr;
3355 			u32 rxdctl;
3356 
3357 #ifdef notyet
3358 			/* Configure for header split? -- ignore for now */
3359 			rxr->hdr_split = igb_header_split;
3360 #else
3361 			srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3362 #endif
3363 
3364 			E1000_WRITE_REG(hw, E1000_RDLEN(i),
3365 					scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3366 			E1000_WRITE_REG(hw, E1000_RDBAH(i),
3367 					(uint32_t)(bus_addr >> 32));
3368 			E1000_WRITE_REG(hw, E1000_RDBAL(i),
3369 					(uint32_t)bus_addr);
3370 			E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3371 			/* Enable this Queue */
3372 			rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3373 			rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3374 			rxdctl &= 0xFFF00000;
3375 			rxdctl |= IGB_RX_PTHRESH;
3376 			rxdctl |= IGB_RX_HTHRESH << 8;
3377 			rxdctl |= IGB_RX_WTHRESH << 16;
3378 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3379 		}
3380 	} else if (hw->mac.type >= e1000_pch2lan) {
3381 		if (if_getmtu(ifp) > ETHERMTU)
3382 			e1000_lv_jumbo_workaround_ich8lan(hw, true);
3383 		else
3384 			e1000_lv_jumbo_workaround_ich8lan(hw, false);
3385 	}
3386 
3387 	/* Make sure VLAN Filters are off */
3388 	rctl &= ~E1000_RCTL_VFE;
3389 
3390 	/* Set up packet buffer size, overridden by per queue srrctl on igb */
3391 	if (hw->mac.type < igb_mac_min) {
3392 		if (sc->rx_mbuf_sz > 2048 && sc->rx_mbuf_sz <= 4096)
3393 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3394 		else if (sc->rx_mbuf_sz > 4096 && sc->rx_mbuf_sz <= 8192)
3395 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3396 		else if (sc->rx_mbuf_sz > 8192)
3397 			rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX;
3398 		else {
3399 			rctl |= E1000_RCTL_SZ_2048;
3400 			rctl &= ~E1000_RCTL_BSEX;
3401 		}
3402 	} else
3403 		rctl |= E1000_RCTL_SZ_2048;
3404 
3405 	/*
3406 	 * rctl bits 11:10 are as follows
3407 	 * lem: reserved
3408 	 * em: DTYPE
3409 	 * igb: reserved
3410 	 * and should be 00 on all of the above
3411 	 */
3412 	rctl &= ~0x00000C00;
3413 
3414 	/* Write out the settings */
3415 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3416 
3417 	return;
3418 }
3419 
3420 static void
3421 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3422 {
3423 	struct e1000_softc *sc = iflib_get_softc(ctx);
3424 	u32 index, bit;
3425 
3426 	index = (vtag >> 5) & 0x7F;
3427 	bit = vtag & 0x1F;
3428 	sc->shadow_vfta[index] |= (1 << bit);
3429 	++sc->num_vlans;
3430 	em_if_vlan_filter_write(sc);
3431 }
3432 
3433 static void
3434 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3435 {
3436 	struct e1000_softc *sc = iflib_get_softc(ctx);
3437 	u32 index, bit;
3438 
3439 	index = (vtag >> 5) & 0x7F;
3440 	bit = vtag & 0x1F;
3441 	sc->shadow_vfta[index] &= ~(1 << bit);
3442 	--sc->num_vlans;
3443 	em_if_vlan_filter_write(sc);
3444 }
3445 
3446 static bool
3447 em_if_vlan_filter_capable(if_ctx_t ctx)
3448 {
3449 	if_t ifp = iflib_get_ifp(ctx);
3450 
3451 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) &&
3452 	    !em_disable_crc_stripping)
3453 		return (true);
3454 
3455 	return (false);
3456 }
3457 
3458 static bool
3459 em_if_vlan_filter_used(if_ctx_t ctx)
3460 {
3461 	struct e1000_softc *sc = iflib_get_softc(ctx);
3462 
3463 	if (!em_if_vlan_filter_capable(ctx))
3464 		return (false);
3465 
3466 	for (int i = 0; i < EM_VFTA_SIZE; i++)
3467 		if (sc->shadow_vfta[i] != 0)
3468 			return (true);
3469 
3470 	return (false);
3471 }
3472 
3473 static void
3474 em_if_vlan_filter_enable(struct e1000_softc *sc)
3475 {
3476 	struct e1000_hw *hw = &sc->hw;
3477 	u32 reg;
3478 
3479 	reg = E1000_READ_REG(hw, E1000_RCTL);
3480 	reg &= ~E1000_RCTL_CFIEN;
3481 	reg |= E1000_RCTL_VFE;
3482 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
3483 }
3484 
3485 static void
3486 em_if_vlan_filter_disable(struct e1000_softc *sc)
3487 {
3488 	struct e1000_hw *hw = &sc->hw;
3489 	u32 reg;
3490 
3491 	reg = E1000_READ_REG(hw, E1000_RCTL);
3492 	reg &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
3493 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
3494 }
3495 
3496 static void
3497 em_if_vlan_filter_write(struct e1000_softc *sc)
3498 {
3499 	struct e1000_hw *hw = &sc->hw;
3500 
3501 	if (sc->vf_ifp)
3502 		return;
3503 
3504 	/* Disable interrupts for lem-class devices during the filter change */
3505 	if (hw->mac.type < em_mac_min)
3506 		em_if_intr_disable(sc->ctx);
3507 
3508 	for (int i = 0; i < EM_VFTA_SIZE; i++)
3509 		if (sc->shadow_vfta[i] != 0) {
3510 			/* XXXKB: incomplete VF support, we return early above */
3511 			if (sc->vf_ifp)
3512 				e1000_vfta_set_vf(hw, sc->shadow_vfta[i], true);
3513 			else
3514 				e1000_write_vfta(hw, i, sc->shadow_vfta[i]);
3515 		}
3516 
3517 	/* Re-enable interrupts for lem-class devices */
3518 	if (hw->mac.type < em_mac_min)
3519 		em_if_intr_enable(sc->ctx);
3520 }
3521 
3522 static void
3523 em_setup_vlan_hw_support(if_ctx_t ctx)
3524 {
3525 	struct e1000_softc *sc = iflib_get_softc(ctx);
3526 	struct e1000_hw *hw = &sc->hw;
3527 	struct ifnet *ifp = iflib_get_ifp(ctx);
3528 	u32 reg;
3529 
3530 	/* XXXKB: Return early if we are a VF until VF decap and filter management
3531 	 * is ready and tested.
3532 	 */
3533 	if (sc->vf_ifp)
3534 		return;
3535 
3536 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
3537 	    !em_disable_crc_stripping) {
3538 		reg = E1000_READ_REG(hw, E1000_CTRL);
3539 		reg |= E1000_CTRL_VME;
3540 		E1000_WRITE_REG(hw, E1000_CTRL, reg);
3541 	} else {
3542 		reg = E1000_READ_REG(hw, E1000_CTRL);
3543 		reg &= ~E1000_CTRL_VME;
3544 		E1000_WRITE_REG(hw, E1000_CTRL, reg);
3545 	}
3546 
3547 	/* If we aren't doing HW filtering, we're done */
3548 	if (!em_if_vlan_filter_capable(ctx))  {
3549 		em_if_vlan_filter_disable(sc);
3550 		return;
3551 	}
3552 
3553 	/*
3554 	 * A soft reset zero's out the VFTA, so
3555 	 * we need to repopulate it now.
3556 	 */
3557 	em_if_vlan_filter_write(sc);
3558 
3559 	/* Enable the Filter Table */
3560 	em_if_vlan_filter_enable(sc);
3561 }
3562 
3563 static void
3564 em_if_intr_enable(if_ctx_t ctx)
3565 {
3566 	struct e1000_softc *sc = iflib_get_softc(ctx);
3567 	struct e1000_hw *hw = &sc->hw;
3568 	u32 ims_mask = IMS_ENABLE_MASK;
3569 
3570 	if (sc->intr_type == IFLIB_INTR_MSIX) {
3571 		E1000_WRITE_REG(hw, EM_EIAC, sc->ims);
3572 		ims_mask |= sc->ims;
3573 	}
3574 	E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3575 	E1000_WRITE_FLUSH(hw);
3576 }
3577 
3578 static void
3579 em_if_intr_disable(if_ctx_t ctx)
3580 {
3581 	struct e1000_softc *sc = iflib_get_softc(ctx);
3582 	struct e1000_hw *hw = &sc->hw;
3583 
3584 	if (sc->intr_type == IFLIB_INTR_MSIX)
3585 		E1000_WRITE_REG(hw, EM_EIAC, 0);
3586 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3587 	E1000_WRITE_FLUSH(hw);
3588 }
3589 
3590 static void
3591 igb_if_intr_enable(if_ctx_t ctx)
3592 {
3593 	struct e1000_softc *sc = iflib_get_softc(ctx);
3594 	struct e1000_hw *hw = &sc->hw;
3595 	u32 mask;
3596 
3597 	if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
3598 		mask = (sc->que_mask | sc->link_mask);
3599 		E1000_WRITE_REG(hw, E1000_EIAC, mask);
3600 		E1000_WRITE_REG(hw, E1000_EIAM, mask);
3601 		E1000_WRITE_REG(hw, E1000_EIMS, mask);
3602 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3603 	} else
3604 		E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3605 	E1000_WRITE_FLUSH(hw);
3606 }
3607 
3608 static void
3609 igb_if_intr_disable(if_ctx_t ctx)
3610 {
3611 	struct e1000_softc *sc = iflib_get_softc(ctx);
3612 	struct e1000_hw *hw = &sc->hw;
3613 
3614 	if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
3615 		E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
3616 		E1000_WRITE_REG(hw, E1000_EIAC, 0);
3617 	}
3618 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3619 	E1000_WRITE_FLUSH(hw);
3620 }
3621 
3622 /*
3623  * Bit of a misnomer, what this really means is
3624  * to enable OS management of the system... aka
3625  * to disable special hardware management features
3626  */
3627 static void
3628 em_init_manageability(struct e1000_softc *sc)
3629 {
3630 	/* A shared code workaround */
3631 #define E1000_82542_MANC2H E1000_MANC2H
3632 	if (sc->has_manage) {
3633 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3634 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3635 
3636 		/* disable hardware interception of ARP */
3637 		manc &= ~(E1000_MANC_ARP_EN);
3638 
3639 		/* enable receiving management packets to the host */
3640 		manc |= E1000_MANC_EN_MNG2HOST;
3641 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3642 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3643 		manc2h |= E1000_MNG2HOST_PORT_623;
3644 		manc2h |= E1000_MNG2HOST_PORT_664;
3645 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3646 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3647 	}
3648 }
3649 
3650 /*
3651  * Give control back to hardware management
3652  * controller if there is one.
3653  */
3654 static void
3655 em_release_manageability(struct e1000_softc *sc)
3656 {
3657 	if (sc->has_manage) {
3658 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3659 
3660 		/* re-enable hardware interception of ARP */
3661 		manc |= E1000_MANC_ARP_EN;
3662 		manc &= ~E1000_MANC_EN_MNG2HOST;
3663 
3664 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3665 	}
3666 }
3667 
3668 /*
3669  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3670  * For ASF and Pass Through versions of f/w this means
3671  * that the driver is loaded. For AMT version type f/w
3672  * this means that the network i/f is open.
3673  */
3674 static void
3675 em_get_hw_control(struct e1000_softc *sc)
3676 {
3677 	u32 ctrl_ext, swsm;
3678 
3679 	if (sc->vf_ifp)
3680 		return;
3681 
3682 	if (sc->hw.mac.type == e1000_82573) {
3683 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3684 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3685 		    swsm | E1000_SWSM_DRV_LOAD);
3686 		return;
3687 	}
3688 	/* else */
3689 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3690 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3691 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3692 }
3693 
3694 /*
3695  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3696  * For ASF and Pass Through versions of f/w this means that
3697  * the driver is no longer loaded. For AMT versions of the
3698  * f/w this means that the network i/f is closed.
3699  */
3700 static void
3701 em_release_hw_control(struct e1000_softc *sc)
3702 {
3703 	u32 ctrl_ext, swsm;
3704 
3705 	if (!sc->has_manage)
3706 		return;
3707 
3708 	if (sc->hw.mac.type == e1000_82573) {
3709 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3710 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3711 		    swsm & ~E1000_SWSM_DRV_LOAD);
3712 		return;
3713 	}
3714 	/* else */
3715 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3716 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3717 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3718 	return;
3719 }
3720 
3721 static int
3722 em_is_valid_ether_addr(u8 *addr)
3723 {
3724 	char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3725 
3726 	if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3727 		return (false);
3728 	}
3729 
3730 	return (true);
3731 }
3732 
3733 /*
3734 ** Parse the interface capabilities with regard
3735 ** to both system management and wake-on-lan for
3736 ** later use.
3737 */
3738 static void
3739 em_get_wakeup(if_ctx_t ctx)
3740 {
3741 	struct e1000_softc *sc = iflib_get_softc(ctx);
3742 	device_t dev = iflib_get_dev(ctx);
3743 	u16 eeprom_data = 0, device_id, apme_mask;
3744 
3745 	sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
3746 	apme_mask = EM_EEPROM_APME;
3747 
3748 	switch (sc->hw.mac.type) {
3749 	case e1000_82542:
3750 	case e1000_82543:
3751 		break;
3752 	case e1000_82544:
3753 		e1000_read_nvm(&sc->hw,
3754 		    NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3755 		apme_mask = EM_82544_APME;
3756 		break;
3757 	case e1000_82546:
3758 	case e1000_82546_rev_3:
3759 		if (sc->hw.bus.func == 1) {
3760 			e1000_read_nvm(&sc->hw,
3761 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3762 			break;
3763 		} else
3764 			e1000_read_nvm(&sc->hw,
3765 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3766 		break;
3767 	case e1000_82573:
3768 	case e1000_82583:
3769 		sc->has_amt = true;
3770 		/* FALLTHROUGH */
3771 	case e1000_82571:
3772 	case e1000_82572:
3773 	case e1000_80003es2lan:
3774 		if (sc->hw.bus.func == 1) {
3775 			e1000_read_nvm(&sc->hw,
3776 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3777 			break;
3778 		} else
3779 			e1000_read_nvm(&sc->hw,
3780 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3781 		break;
3782 	case e1000_ich8lan:
3783 	case e1000_ich9lan:
3784 	case e1000_ich10lan:
3785 	case e1000_pchlan:
3786 	case e1000_pch2lan:
3787 	case e1000_pch_lpt:
3788 	case e1000_pch_spt:
3789 	case e1000_82575:	/* listing all igb devices */
3790 	case e1000_82576:
3791 	case e1000_82580:
3792 	case e1000_i350:
3793 	case e1000_i354:
3794 	case e1000_i210:
3795 	case e1000_i211:
3796 	case e1000_vfadapt:
3797 	case e1000_vfadapt_i350:
3798 		apme_mask = E1000_WUC_APME;
3799 		sc->has_amt = true;
3800 		eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC);
3801 		break;
3802 	default:
3803 		e1000_read_nvm(&sc->hw,
3804 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3805 		break;
3806 	}
3807 	if (eeprom_data & apme_mask)
3808 		sc->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
3809 	/*
3810 	 * We have the eeprom settings, now apply the special cases
3811 	 * where the eeprom may be wrong or the board won't support
3812 	 * wake on lan on a particular port
3813 	 */
3814 	device_id = pci_get_device(dev);
3815 	switch (device_id) {
3816 	case E1000_DEV_ID_82546GB_PCIE:
3817 		sc->wol = 0;
3818 		break;
3819 	case E1000_DEV_ID_82546EB_FIBER:
3820 	case E1000_DEV_ID_82546GB_FIBER:
3821 		/* Wake events only supported on port A for dual fiber
3822 		 * regardless of eeprom setting */
3823 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
3824 		    E1000_STATUS_FUNC_1)
3825 			sc->wol = 0;
3826 		break;
3827 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
3828 		/* if quad port adapter, disable WoL on all but port A */
3829 		if (global_quad_port_a != 0)
3830 			sc->wol = 0;
3831 		/* Reset for multiple quad port adapters */
3832 		if (++global_quad_port_a == 4)
3833 			global_quad_port_a = 0;
3834 		break;
3835 	case E1000_DEV_ID_82571EB_FIBER:
3836 		/* Wake events only supported on port A for dual fiber
3837 		 * regardless of eeprom setting */
3838 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
3839 		    E1000_STATUS_FUNC_1)
3840 			sc->wol = 0;
3841 		break;
3842 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
3843 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
3844 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
3845 		/* if quad port adapter, disable WoL on all but port A */
3846 		if (global_quad_port_a != 0)
3847 			sc->wol = 0;
3848 		/* Reset for multiple quad port adapters */
3849 		if (++global_quad_port_a == 4)
3850 			global_quad_port_a = 0;
3851 		break;
3852 	}
3853 	return;
3854 }
3855 
3856 
3857 /*
3858  * Enable PCI Wake On Lan capability
3859  */
3860 static void
3861 em_enable_wakeup(if_ctx_t ctx)
3862 {
3863 	struct e1000_softc *sc = iflib_get_softc(ctx);
3864 	device_t dev = iflib_get_dev(ctx);
3865 	if_t ifp = iflib_get_ifp(ctx);
3866 	int error = 0;
3867 	u32 pmc, ctrl, ctrl_ext, rctl;
3868 	u16 status;
3869 
3870 	if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
3871 		return;
3872 
3873 	/*
3874 	 * Determine type of Wakeup: note that wol
3875 	 * is set with all bits on by default.
3876 	 */
3877 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
3878 		sc->wol &= ~E1000_WUFC_MAG;
3879 
3880 	if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
3881 		sc->wol &= ~E1000_WUFC_EX;
3882 
3883 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
3884 		sc->wol &= ~E1000_WUFC_MC;
3885 	else {
3886 		rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
3887 		rctl |= E1000_RCTL_MPE;
3888 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
3889 	}
3890 
3891 	if (!(sc->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
3892 		goto pme;
3893 
3894 	/* Advertise the wakeup capability */
3895 	ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
3896 	ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
3897 	E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
3898 
3899 	/* Keep the laser running on Fiber adapters */
3900 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
3901 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
3902 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3903 		ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
3904 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, ctrl_ext);
3905 	}
3906 
3907 	if ((sc->hw.mac.type == e1000_ich8lan) ||
3908 	    (sc->hw.mac.type == e1000_pchlan) ||
3909 	    (sc->hw.mac.type == e1000_ich9lan) ||
3910 	    (sc->hw.mac.type == e1000_ich10lan))
3911 		e1000_suspend_workarounds_ich8lan(&sc->hw);
3912 
3913 	if ( sc->hw.mac.type >= e1000_pchlan) {
3914 		error = em_enable_phy_wakeup(sc);
3915 		if (error)
3916 			goto pme;
3917 	} else {
3918 		/* Enable wakeup by the MAC */
3919 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
3920 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
3921 	}
3922 
3923 	if (sc->hw.phy.type == e1000_phy_igp_3)
3924 		e1000_igp3_phy_powerdown_workaround_ich8lan(&sc->hw);
3925 
3926 pme:
3927 	status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
3928 	status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3929 	if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
3930 		status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3931 	pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
3932 
3933 	return;
3934 }
3935 
3936 /*
3937  * WOL in the newer chipset interfaces (pchlan)
3938  * require thing to be copied into the phy
3939  */
3940 static int
3941 em_enable_phy_wakeup(struct e1000_softc *sc)
3942 {
3943 	struct e1000_hw *hw = &sc->hw;
3944 	u32 mreg, ret = 0;
3945 	u16 preg;
3946 
3947 	/* copy MAC RARs to PHY RARs */
3948 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
3949 
3950 	/* copy MAC MTA to PHY MTA */
3951 	for (int i = 0; i < hw->mac.mta_reg_count; i++) {
3952 		mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
3953 		e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
3954 		e1000_write_phy_reg(hw, BM_MTA(i) + 1,
3955 		    (u16)((mreg >> 16) & 0xFFFF));
3956 	}
3957 
3958 	/* configure PHY Rx Control register */
3959 	e1000_read_phy_reg(hw, BM_RCTL, &preg);
3960 	mreg = E1000_READ_REG(hw, E1000_RCTL);
3961 	if (mreg & E1000_RCTL_UPE)
3962 		preg |= BM_RCTL_UPE;
3963 	if (mreg & E1000_RCTL_MPE)
3964 		preg |= BM_RCTL_MPE;
3965 	preg &= ~(BM_RCTL_MO_MASK);
3966 	if (mreg & E1000_RCTL_MO_3)
3967 		preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
3968 				<< BM_RCTL_MO_SHIFT);
3969 	if (mreg & E1000_RCTL_BAM)
3970 		preg |= BM_RCTL_BAM;
3971 	if (mreg & E1000_RCTL_PMCF)
3972 		preg |= BM_RCTL_PMCF;
3973 	mreg = E1000_READ_REG(hw, E1000_CTRL);
3974 	if (mreg & E1000_CTRL_RFCE)
3975 		preg |= BM_RCTL_RFCE;
3976 	e1000_write_phy_reg(hw, BM_RCTL, preg);
3977 
3978 	/* enable PHY wakeup in MAC register */
3979 	E1000_WRITE_REG(hw, E1000_WUC,
3980 	    E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
3981 	E1000_WRITE_REG(hw, E1000_WUFC, sc->wol);
3982 
3983 	/* configure and enable PHY wakeup in PHY registers */
3984 	e1000_write_phy_reg(hw, BM_WUFC, sc->wol);
3985 	e1000_write_phy_reg(hw, BM_WUC, E1000_WUC_PME_EN);
3986 
3987 	/* activate PHY wakeup */
3988 	ret = hw->phy.ops.acquire(hw);
3989 	if (ret) {
3990 		printf("Could not acquire PHY\n");
3991 		return ret;
3992 	}
3993 	e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3994 	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
3995 	ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
3996 	if (ret) {
3997 		printf("Could not read PHY page 769\n");
3998 		goto out;
3999 	}
4000 	preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
4001 	ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
4002 	if (ret)
4003 		printf("Could not set PHY Host Wakeup bit\n");
4004 out:
4005 	hw->phy.ops.release(hw);
4006 
4007 	return ret;
4008 }
4009 
4010 static void
4011 em_if_led_func(if_ctx_t ctx, int onoff)
4012 {
4013 	struct e1000_softc *sc = iflib_get_softc(ctx);
4014 
4015 	if (onoff) {
4016 		e1000_setup_led(&sc->hw);
4017 		e1000_led_on(&sc->hw);
4018 	} else {
4019 		e1000_led_off(&sc->hw);
4020 		e1000_cleanup_led(&sc->hw);
4021 	}
4022 }
4023 
4024 /*
4025  * Disable the L0S and L1 LINK states
4026  */
4027 static void
4028 em_disable_aspm(struct e1000_softc *sc)
4029 {
4030 	int base, reg;
4031 	u16 link_cap,link_ctrl;
4032 	device_t dev = sc->dev;
4033 
4034 	switch (sc->hw.mac.type) {
4035 	case e1000_82573:
4036 	case e1000_82574:
4037 	case e1000_82583:
4038 		break;
4039 	default:
4040 		return;
4041 	}
4042 	if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
4043 		return;
4044 	reg = base + PCIER_LINK_CAP;
4045 	link_cap = pci_read_config(dev, reg, 2);
4046 	if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
4047 		return;
4048 	reg = base + PCIER_LINK_CTL;
4049 	link_ctrl = pci_read_config(dev, reg, 2);
4050 	link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
4051 	pci_write_config(dev, reg, link_ctrl, 2);
4052 	return;
4053 }
4054 
4055 /**********************************************************************
4056  *
4057  *  Update the board statistics counters.
4058  *
4059  **********************************************************************/
4060 static void
4061 em_update_stats_counters(struct e1000_softc *sc)
4062 {
4063 	u64 prev_xoffrxc = sc->stats.xoffrxc;
4064 
4065 	if(sc->hw.phy.media_type == e1000_media_type_copper ||
4066 	   (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
4067 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
4068 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
4069 	}
4070 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
4071 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
4072 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
4073 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
4074 
4075 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
4076 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
4077 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
4078 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
4079 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
4080 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
4081 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
4082 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
4083 	/*
4084 	 ** For watchdog management we need to know if we have been
4085 	 ** paused during the last interval, so capture that here.
4086 	*/
4087 	if (sc->stats.xoffrxc != prev_xoffrxc)
4088 		sc->shared->isc_pause_frames = 1;
4089 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
4090 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
4091 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
4092 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
4093 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
4094 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
4095 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
4096 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
4097 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
4098 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
4099 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
4100 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
4101 
4102 	/* For the 64-bit byte counters the low dword must be read first. */
4103 	/* Both registers clear on the read of the high dword */
4104 
4105 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCL) +
4106 	    ((u64)E1000_READ_REG(&sc->hw, E1000_GORCH) << 32);
4107 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCL) +
4108 	    ((u64)E1000_READ_REG(&sc->hw, E1000_GOTCH) << 32);
4109 
4110 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
4111 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
4112 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
4113 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
4114 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
4115 
4116 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
4117 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
4118 
4119 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
4120 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
4121 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
4122 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
4123 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
4124 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
4125 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
4126 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
4127 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
4128 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
4129 
4130 	/* Interrupt Counts */
4131 
4132 	sc->stats.iac += E1000_READ_REG(&sc->hw, E1000_IAC);
4133 	sc->stats.icrxptc += E1000_READ_REG(&sc->hw, E1000_ICRXPTC);
4134 	sc->stats.icrxatc += E1000_READ_REG(&sc->hw, E1000_ICRXATC);
4135 	sc->stats.ictxptc += E1000_READ_REG(&sc->hw, E1000_ICTXPTC);
4136 	sc->stats.ictxatc += E1000_READ_REG(&sc->hw, E1000_ICTXATC);
4137 	sc->stats.ictxqec += E1000_READ_REG(&sc->hw, E1000_ICTXQEC);
4138 	sc->stats.ictxqmtc += E1000_READ_REG(&sc->hw, E1000_ICTXQMTC);
4139 	sc->stats.icrxdmtc += E1000_READ_REG(&sc->hw, E1000_ICRXDMTC);
4140 	sc->stats.icrxoc += E1000_READ_REG(&sc->hw, E1000_ICRXOC);
4141 
4142 	if (sc->hw.mac.type >= e1000_82543) {
4143 		sc->stats.algnerrc +=
4144 		E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
4145 		sc->stats.rxerrc +=
4146 		E1000_READ_REG(&sc->hw, E1000_RXERRC);
4147 		sc->stats.tncrs +=
4148 		E1000_READ_REG(&sc->hw, E1000_TNCRS);
4149 		sc->stats.cexterr +=
4150 		E1000_READ_REG(&sc->hw, E1000_CEXTERR);
4151 		sc->stats.tsctc +=
4152 		E1000_READ_REG(&sc->hw, E1000_TSCTC);
4153 		sc->stats.tsctfc +=
4154 		E1000_READ_REG(&sc->hw, E1000_TSCTFC);
4155 	}
4156 }
4157 
4158 static uint64_t
4159 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4160 {
4161 	struct e1000_softc *sc = iflib_get_softc(ctx);
4162 	struct ifnet *ifp = iflib_get_ifp(ctx);
4163 
4164 	switch (cnt) {
4165 	case IFCOUNTER_COLLISIONS:
4166 		return (sc->stats.colc);
4167 	case IFCOUNTER_IERRORS:
4168 		return (sc->dropped_pkts + sc->stats.rxerrc +
4169 		    sc->stats.crcerrs + sc->stats.algnerrc +
4170 		    sc->stats.ruc + sc->stats.roc +
4171 		    sc->stats.mpc + sc->stats.cexterr);
4172 	case IFCOUNTER_OERRORS:
4173 		return (sc->stats.ecol + sc->stats.latecol +
4174 		    sc->watchdog_events);
4175 	default:
4176 		return (if_get_counter_default(ifp, cnt));
4177 	}
4178 }
4179 
4180 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized
4181  * @ctx: iflib context
4182  * @event: event code to check
4183  *
4184  * Defaults to returning true for unknown events.
4185  *
4186  * @returns true if iflib needs to reinit the interface
4187  */
4188 static bool
4189 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
4190 {
4191 	switch (event) {
4192 	case IFLIB_RESTART_VLAN_CONFIG:
4193 		return (false);
4194 	default:
4195 		return (true);
4196 	}
4197 }
4198 
4199 /* Export a single 32-bit register via a read-only sysctl. */
4200 static int
4201 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4202 {
4203 	struct e1000_softc *sc;
4204 	u_int val;
4205 
4206 	sc = oidp->oid_arg1;
4207 	val = E1000_READ_REG(&sc->hw, oidp->oid_arg2);
4208 	return (sysctl_handle_int(oidp, &val, 0, req));
4209 }
4210 
4211 /*
4212  * Add sysctl variables, one per statistic, to the system.
4213  */
4214 static void
4215 em_add_hw_stats(struct e1000_softc *sc)
4216 {
4217 	device_t dev = iflib_get_dev(sc->ctx);
4218 	struct em_tx_queue *tx_que = sc->tx_queues;
4219 	struct em_rx_queue *rx_que = sc->rx_queues;
4220 
4221 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4222 	struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4223 	struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4224 	struct e1000_hw_stats *stats = &sc->stats;
4225 
4226 	struct sysctl_oid *stat_node, *queue_node, *int_node;
4227 	struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4228 
4229 #define QUEUE_NAME_LEN 32
4230 	char namebuf[QUEUE_NAME_LEN];
4231 
4232 	/* Driver Statistics */
4233 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4234 			CTLFLAG_RD, &sc->dropped_pkts,
4235 			"Driver dropped packets");
4236 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4237 			CTLFLAG_RD, &sc->link_irq,
4238 			"Link MSI-X IRQ Handled");
4239 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4240 			CTLFLAG_RD, &sc->rx_overruns,
4241 			"RX overruns");
4242 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4243 			CTLFLAG_RD, &sc->watchdog_events,
4244 			"Watchdog timeouts");
4245 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4246 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4247 	    sc, E1000_CTRL, em_sysctl_reg_handler, "IU",
4248 	    "Device Control Register");
4249 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4250 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4251 	    sc, E1000_RCTL, em_sysctl_reg_handler, "IU",
4252 	    "Receiver Control Register");
4253 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4254 			CTLFLAG_RD, &sc->hw.fc.high_water, 0,
4255 			"Flow Control High Watermark");
4256 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4257 			CTLFLAG_RD, &sc->hw.fc.low_water, 0,
4258 			"Flow Control Low Watermark");
4259 
4260 	for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
4261 		struct tx_ring *txr = &tx_que->txr;
4262 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4263 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4264 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
4265 		queue_list = SYSCTL_CHILDREN(queue_node);
4266 
4267 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4268 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
4269 		    E1000_TDH(txr->me), em_sysctl_reg_handler, "IU",
4270 		    "Transmit Descriptor Head");
4271 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4272 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
4273 		    E1000_TDT(txr->me), em_sysctl_reg_handler, "IU",
4274 		    "Transmit Descriptor Tail");
4275 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4276 				CTLFLAG_RD, &txr->tx_irq,
4277 				"Queue MSI-X Transmit Interrupts");
4278 	}
4279 
4280 	for (int j = 0; j < sc->rx_num_queues; j++, rx_que++) {
4281 		struct rx_ring *rxr = &rx_que->rxr;
4282 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4283 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4284 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
4285 		queue_list = SYSCTL_CHILDREN(queue_node);
4286 
4287 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4288 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
4289 		    E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU",
4290 		    "Receive Descriptor Head");
4291 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4292 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
4293 		    E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU",
4294 		    "Receive Descriptor Tail");
4295 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
4296 				CTLFLAG_RD, &rxr->rx_irq,
4297 				"Queue MSI-X Receive Interrupts");
4298 	}
4299 
4300 	/* MAC stats get their own sub node */
4301 
4302 	stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
4303 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
4304 	stat_list = SYSCTL_CHILDREN(stat_node);
4305 
4306 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
4307 			CTLFLAG_RD, &stats->ecol,
4308 			"Excessive collisions");
4309 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
4310 			CTLFLAG_RD, &stats->scc,
4311 			"Single collisions");
4312 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
4313 			CTLFLAG_RD, &stats->mcc,
4314 			"Multiple collisions");
4315 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
4316 			CTLFLAG_RD, &stats->latecol,
4317 			"Late collisions");
4318 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
4319 			CTLFLAG_RD, &stats->colc,
4320 			"Collision Count");
4321 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
4322 			CTLFLAG_RD, &sc->stats.symerrs,
4323 			"Symbol Errors");
4324 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
4325 			CTLFLAG_RD, &sc->stats.sec,
4326 			"Sequence Errors");
4327 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
4328 			CTLFLAG_RD, &sc->stats.dc,
4329 			"Defer Count");
4330 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
4331 			CTLFLAG_RD, &sc->stats.mpc,
4332 			"Missed Packets");
4333 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
4334 			CTLFLAG_RD, &sc->stats.rnbc,
4335 			"Receive No Buffers");
4336 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
4337 			CTLFLAG_RD, &sc->stats.ruc,
4338 			"Receive Undersize");
4339 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
4340 			CTLFLAG_RD, &sc->stats.rfc,
4341 			"Fragmented Packets Received ");
4342 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
4343 			CTLFLAG_RD, &sc->stats.roc,
4344 			"Oversized Packets Received");
4345 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
4346 			CTLFLAG_RD, &sc->stats.rjc,
4347 			"Recevied Jabber");
4348 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
4349 			CTLFLAG_RD, &sc->stats.rxerrc,
4350 			"Receive Errors");
4351 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
4352 			CTLFLAG_RD, &sc->stats.crcerrs,
4353 			"CRC errors");
4354 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
4355 			CTLFLAG_RD, &sc->stats.algnerrc,
4356 			"Alignment Errors");
4357 	/* On 82575 these are collision counts */
4358 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
4359 			CTLFLAG_RD, &sc->stats.cexterr,
4360 			"Collision/Carrier extension errors");
4361 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
4362 			CTLFLAG_RD, &sc->stats.xonrxc,
4363 			"XON Received");
4364 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
4365 			CTLFLAG_RD, &sc->stats.xontxc,
4366 			"XON Transmitted");
4367 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
4368 			CTLFLAG_RD, &sc->stats.xoffrxc,
4369 			"XOFF Received");
4370 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
4371 			CTLFLAG_RD, &sc->stats.xofftxc,
4372 			"XOFF Transmitted");
4373 
4374 	/* Packet Reception Stats */
4375 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
4376 			CTLFLAG_RD, &sc->stats.tpr,
4377 			"Total Packets Received ");
4378 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
4379 			CTLFLAG_RD, &sc->stats.gprc,
4380 			"Good Packets Received");
4381 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
4382 			CTLFLAG_RD, &sc->stats.bprc,
4383 			"Broadcast Packets Received");
4384 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
4385 			CTLFLAG_RD, &sc->stats.mprc,
4386 			"Multicast Packets Received");
4387 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
4388 			CTLFLAG_RD, &sc->stats.prc64,
4389 			"64 byte frames received ");
4390 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
4391 			CTLFLAG_RD, &sc->stats.prc127,
4392 			"65-127 byte frames received");
4393 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
4394 			CTLFLAG_RD, &sc->stats.prc255,
4395 			"128-255 byte frames received");
4396 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
4397 			CTLFLAG_RD, &sc->stats.prc511,
4398 			"256-511 byte frames received");
4399 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
4400 			CTLFLAG_RD, &sc->stats.prc1023,
4401 			"512-1023 byte frames received");
4402 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
4403 			CTLFLAG_RD, &sc->stats.prc1522,
4404 			"1023-1522 byte frames received");
4405 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
4406 			CTLFLAG_RD, &sc->stats.gorc,
4407 			"Good Octets Received");
4408 
4409 	/* Packet Transmission Stats */
4410 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
4411 			CTLFLAG_RD, &sc->stats.gotc,
4412 			"Good Octets Transmitted");
4413 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
4414 			CTLFLAG_RD, &sc->stats.tpt,
4415 			"Total Packets Transmitted");
4416 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
4417 			CTLFLAG_RD, &sc->stats.gptc,
4418 			"Good Packets Transmitted");
4419 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
4420 			CTLFLAG_RD, &sc->stats.bptc,
4421 			"Broadcast Packets Transmitted");
4422 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
4423 			CTLFLAG_RD, &sc->stats.mptc,
4424 			"Multicast Packets Transmitted");
4425 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
4426 			CTLFLAG_RD, &sc->stats.ptc64,
4427 			"64 byte frames transmitted ");
4428 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
4429 			CTLFLAG_RD, &sc->stats.ptc127,
4430 			"65-127 byte frames transmitted");
4431 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
4432 			CTLFLAG_RD, &sc->stats.ptc255,
4433 			"128-255 byte frames transmitted");
4434 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
4435 			CTLFLAG_RD, &sc->stats.ptc511,
4436 			"256-511 byte frames transmitted");
4437 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
4438 			CTLFLAG_RD, &sc->stats.ptc1023,
4439 			"512-1023 byte frames transmitted");
4440 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
4441 			CTLFLAG_RD, &sc->stats.ptc1522,
4442 			"1024-1522 byte frames transmitted");
4443 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
4444 			CTLFLAG_RD, &sc->stats.tsctc,
4445 			"TSO Contexts Transmitted");
4446 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
4447 			CTLFLAG_RD, &sc->stats.tsctfc,
4448 			"TSO Contexts Failed");
4449 
4450 
4451 	/* Interrupt Stats */
4452 
4453 	int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
4454 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
4455 	int_list = SYSCTL_CHILDREN(int_node);
4456 
4457 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
4458 			CTLFLAG_RD, &sc->stats.iac,
4459 			"Interrupt Assertion Count");
4460 
4461 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
4462 			CTLFLAG_RD, &sc->stats.icrxptc,
4463 			"Interrupt Cause Rx Pkt Timer Expire Count");
4464 
4465 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
4466 			CTLFLAG_RD, &sc->stats.icrxatc,
4467 			"Interrupt Cause Rx Abs Timer Expire Count");
4468 
4469 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
4470 			CTLFLAG_RD, &sc->stats.ictxptc,
4471 			"Interrupt Cause Tx Pkt Timer Expire Count");
4472 
4473 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
4474 			CTLFLAG_RD, &sc->stats.ictxatc,
4475 			"Interrupt Cause Tx Abs Timer Expire Count");
4476 
4477 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
4478 			CTLFLAG_RD, &sc->stats.ictxqec,
4479 			"Interrupt Cause Tx Queue Empty Count");
4480 
4481 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
4482 			CTLFLAG_RD, &sc->stats.ictxqmtc,
4483 			"Interrupt Cause Tx Queue Min Thresh Count");
4484 
4485 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4486 			CTLFLAG_RD, &sc->stats.icrxdmtc,
4487 			"Interrupt Cause Rx Desc Min Thresh Count");
4488 
4489 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4490 			CTLFLAG_RD, &sc->stats.icrxoc,
4491 			"Interrupt Cause Receiver Overrun Count");
4492 }
4493 
4494 static void
4495 em_fw_version_locked(if_ctx_t ctx)
4496 {
4497 	struct e1000_softc *sc = iflib_get_softc(ctx);
4498 	struct e1000_hw *hw = &sc->hw;
4499 	struct e1000_fw_version *fw_ver = &sc->fw_ver;
4500 	uint16_t eep = 0;
4501 
4502 	/*
4503 	 * em_fw_version_locked() must run under the IFLIB_CTX_LOCK to meet the
4504 	 * NVM locking model, so we do it in em_if_attach_pre() and store the
4505 	 * info in the softc
4506 	 */
4507 	ASSERT_CTX_LOCK_HELD(hw);
4508 
4509 	*fw_ver = (struct e1000_fw_version){0};
4510 
4511 	if (hw->mac.type >= igb_mac_min) {
4512 		/*
4513 		 * Use the Shared Code for igb(4)
4514 		 */
4515 		e1000_get_fw_version(hw, fw_ver);
4516 	} else {
4517 		/*
4518 		 * Otherwise, EEPROM version should be present on (almost?) all
4519 		 * devices here
4520 		 */
4521 		if(e1000_read_nvm(hw, NVM_VERSION, 1, &eep)) {
4522 			INIT_DEBUGOUT("can't get EEPROM version");
4523 			return;
4524 		}
4525 
4526 		fw_ver->eep_major = (eep & NVM_MAJOR_MASK) >> NVM_MAJOR_SHIFT;
4527 		fw_ver->eep_minor = (eep & NVM_MINOR_MASK) >> NVM_MINOR_SHIFT;
4528 		fw_ver->eep_build = (eep & NVM_IMAGE_ID_MASK);
4529 	}
4530 }
4531 
4532 static void
4533 em_sbuf_fw_version(struct e1000_fw_version *fw_ver, struct sbuf *buf)
4534 {
4535 	const char *space = "";
4536 
4537 	if (fw_ver->eep_major || fw_ver->eep_minor || fw_ver->eep_build) {
4538 		sbuf_printf(buf, "EEPROM V%d.%d-%d", fw_ver->eep_major,
4539 			    fw_ver->eep_minor, fw_ver->eep_build);
4540 		space = " ";
4541 	}
4542 
4543 	if (fw_ver->invm_major || fw_ver->invm_minor || fw_ver->invm_img_type) {
4544 		sbuf_printf(buf, "%sNVM V%d.%d imgtype%d",
4545 			    space, fw_ver->invm_major, fw_ver->invm_minor,
4546 			    fw_ver->invm_img_type);
4547 		space = " ";
4548 	}
4549 
4550 	if (fw_ver->or_valid) {
4551 		sbuf_printf(buf, "%sOption ROM V%d-b%d-p%d",
4552 			    space, fw_ver->or_major, fw_ver->or_build,
4553 			    fw_ver->or_patch);
4554 		space = " ";
4555 	}
4556 
4557 	if (fw_ver->etrack_id)
4558 		sbuf_printf(buf, "%seTrack 0x%08x", space, fw_ver->etrack_id);
4559 }
4560 
4561 static void
4562 em_print_fw_version(struct e1000_softc *sc )
4563 {
4564 	device_t dev = sc->dev;
4565 	struct sbuf *buf;
4566 	int error = 0;
4567 
4568 	buf = sbuf_new_auto();
4569 	if (!buf) {
4570 		device_printf(dev, "Could not allocate sbuf for output.\n");
4571 		return;
4572 	}
4573 
4574 	em_sbuf_fw_version(&sc->fw_ver, buf);
4575 
4576 	error = sbuf_finish(buf);
4577 	if (error)
4578 		device_printf(dev, "Error finishing sbuf: %d\n", error);
4579 	else if (sbuf_len(buf))
4580 		device_printf(dev, "%s\n", sbuf_data(buf));
4581 
4582 	sbuf_delete(buf);
4583 }
4584 
4585 static int
4586 em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS)
4587 {
4588 	struct e1000_softc *sc = (struct e1000_softc *)arg1;
4589 	device_t dev = sc->dev;
4590 	struct sbuf *buf;
4591 	int error = 0;
4592 
4593 	buf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
4594 	if (!buf) {
4595 		device_printf(dev, "Could not allocate sbuf for output.\n");
4596 		return (ENOMEM);
4597 	}
4598 
4599 	em_sbuf_fw_version(&sc->fw_ver, buf);
4600 
4601 	error = sbuf_finish(buf);
4602 	if (error)
4603 		device_printf(dev, "Error finishing sbuf: %d\n", error);
4604 
4605 	sbuf_delete(buf);
4606 
4607 	return (0);
4608 }
4609 
4610 /**********************************************************************
4611  *
4612  *  This routine provides a way to dump out the adapter eeprom,
4613  *  often a useful debug/service tool. This only dumps the first
4614  *  32 words, stuff that matters is in that extent.
4615  *
4616  **********************************************************************/
4617 static int
4618 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4619 {
4620 	struct e1000_softc *sc = (struct e1000_softc *)arg1;
4621 	int error;
4622 	int result;
4623 
4624 	result = -1;
4625 	error = sysctl_handle_int(oidp, &result, 0, req);
4626 
4627 	if (error || !req->newptr)
4628 		return (error);
4629 
4630 	/*
4631 	 * This value will cause a hex dump of the
4632 	 * first 32 16-bit words of the EEPROM to
4633 	 * the screen.
4634 	 */
4635 	if (result == 1)
4636 		em_print_nvm_info(sc);
4637 
4638 	return (error);
4639 }
4640 
4641 static void
4642 em_print_nvm_info(struct e1000_softc *sc)
4643 {
4644 	struct e1000_hw *hw = &sc->hw;
4645 	struct sx *iflib_ctx_lock = iflib_ctx_lock_get(sc->ctx);
4646 	u16 eeprom_data;
4647 	int i, j, row = 0;
4648 
4649 	/* Its a bit crude, but it gets the job done */
4650 	printf("\nInterface EEPROM Dump:\n");
4651 	printf("Offset\n0x0000  ");
4652 
4653 	/* We rely on the IFLIB_CTX_LOCK as part of NVM locking model */
4654 	sx_xlock(iflib_ctx_lock);
4655 	ASSERT_CTX_LOCK_HELD(hw);
4656 	for (i = 0, j = 0; i < 32; i++, j++) {
4657 		if (j == 8) { /* Make the offset block */
4658 			j = 0; ++row;
4659 			printf("\n0x00%x0  ",row);
4660 		}
4661 		e1000_read_nvm(hw, i, 1, &eeprom_data);
4662 		printf("%04x ", eeprom_data);
4663 	}
4664 	sx_xunlock(iflib_ctx_lock);
4665 	printf("\n");
4666 }
4667 
4668 static int
4669 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4670 {
4671 	struct em_int_delay_info *info;
4672 	struct e1000_softc *sc;
4673 	u32 regval;
4674 	int error, usecs, ticks;
4675 
4676 	info = (struct em_int_delay_info *) arg1;
4677 	usecs = info->value;
4678 	error = sysctl_handle_int(oidp, &usecs, 0, req);
4679 	if (error != 0 || req->newptr == NULL)
4680 		return (error);
4681 	if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4682 		return (EINVAL);
4683 	info->value = usecs;
4684 	ticks = EM_USECS_TO_TICKS(usecs);
4685 	if (info->offset == E1000_ITR)	/* units are 256ns here */
4686 		ticks *= 4;
4687 
4688 	sc = info->sc;
4689 
4690 	regval = E1000_READ_OFFSET(&sc->hw, info->offset);
4691 	regval = (regval & ~0xffff) | (ticks & 0xffff);
4692 	/* Handle a few special cases. */
4693 	switch (info->offset) {
4694 	case E1000_RDTR:
4695 		break;
4696 	case E1000_TIDV:
4697 		if (ticks == 0) {
4698 			sc->txd_cmd &= ~E1000_TXD_CMD_IDE;
4699 			/* Don't write 0 into the TIDV register. */
4700 			regval++;
4701 		} else
4702 			sc->txd_cmd |= E1000_TXD_CMD_IDE;
4703 		break;
4704 	}
4705 	E1000_WRITE_OFFSET(&sc->hw, info->offset, regval);
4706 	return (0);
4707 }
4708 
4709 static void
4710 em_add_int_delay_sysctl(struct e1000_softc *sc, const char *name,
4711 	const char *description, struct em_int_delay_info *info,
4712 	int offset, int value)
4713 {
4714 	info->sc = sc;
4715 	info->offset = offset;
4716 	info->value = value;
4717 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
4718 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
4719 	    OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
4720 	    info, 0, em_sysctl_int_delay, "I", description);
4721 }
4722 
4723 /*
4724  * Set flow control using sysctl:
4725  * Flow control values:
4726  *      0 - off
4727  *      1 - rx pause
4728  *      2 - tx pause
4729  *      3 - full
4730  */
4731 static int
4732 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4733 {
4734 	int error;
4735 	static int input = 3; /* default is full */
4736 	struct e1000_softc	*sc = (struct e1000_softc *) arg1;
4737 
4738 	error = sysctl_handle_int(oidp, &input, 0, req);
4739 
4740 	if ((error) || (req->newptr == NULL))
4741 		return (error);
4742 
4743 	if (input == sc->fc) /* no change? */
4744 		return (error);
4745 
4746 	switch (input) {
4747 	case e1000_fc_rx_pause:
4748 	case e1000_fc_tx_pause:
4749 	case e1000_fc_full:
4750 	case e1000_fc_none:
4751 		sc->hw.fc.requested_mode = input;
4752 		sc->fc = input;
4753 		break;
4754 	default:
4755 		/* Do nothing */
4756 		return (error);
4757 	}
4758 
4759 	sc->hw.fc.current_mode = sc->hw.fc.requested_mode;
4760 	e1000_force_mac_fc(&sc->hw);
4761 	return (error);
4762 }
4763 
4764 /*
4765  * Manage Energy Efficient Ethernet:
4766  * Control values:
4767  *     0/1 - enabled/disabled
4768  */
4769 static int
4770 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
4771 {
4772 	struct e1000_softc *sc = (struct e1000_softc *) arg1;
4773 	int error, value;
4774 
4775 	value = sc->hw.dev_spec.ich8lan.eee_disable;
4776 	error = sysctl_handle_int(oidp, &value, 0, req);
4777 	if (error || req->newptr == NULL)
4778 		return (error);
4779 	sc->hw.dev_spec.ich8lan.eee_disable = (value != 0);
4780 	em_if_init(sc->ctx);
4781 
4782 	return (0);
4783 }
4784 
4785 static int
4786 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4787 {
4788 	struct e1000_softc *sc;
4789 	int error;
4790 	int result;
4791 
4792 	result = -1;
4793 	error = sysctl_handle_int(oidp, &result, 0, req);
4794 
4795 	if (error || !req->newptr)
4796 		return (error);
4797 
4798 	if (result == 1) {
4799 		sc = (struct e1000_softc *) arg1;
4800 		em_print_debug_info(sc);
4801 	}
4802 
4803 	return (error);
4804 }
4805 
4806 static int
4807 em_get_rs(SYSCTL_HANDLER_ARGS)
4808 {
4809 	struct e1000_softc *sc = (struct e1000_softc *) arg1;
4810 	int error;
4811 	int result;
4812 
4813 	result = 0;
4814 	error = sysctl_handle_int(oidp, &result, 0, req);
4815 
4816 	if (error || !req->newptr || result != 1)
4817 		return (error);
4818 	em_dump_rs(sc);
4819 
4820 	return (error);
4821 }
4822 
4823 static void
4824 em_if_debug(if_ctx_t ctx)
4825 {
4826 	em_dump_rs(iflib_get_softc(ctx));
4827 }
4828 
4829 /*
4830  * This routine is meant to be fluid, add whatever is
4831  * needed for debugging a problem.  -jfv
4832  */
4833 static void
4834 em_print_debug_info(struct e1000_softc *sc)
4835 {
4836 	device_t dev = iflib_get_dev(sc->ctx);
4837 	struct ifnet *ifp = iflib_get_ifp(sc->ctx);
4838 	struct tx_ring *txr = &sc->tx_queues->txr;
4839 	struct rx_ring *rxr = &sc->rx_queues->rxr;
4840 
4841 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
4842 		printf("Interface is RUNNING ");
4843 	else
4844 		printf("Interface is NOT RUNNING\n");
4845 
4846 	if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
4847 		printf("and INACTIVE\n");
4848 	else
4849 		printf("and ACTIVE\n");
4850 
4851 	for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
4852 		device_printf(dev, "TX Queue %d ------\n", i);
4853 		device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4854 			E1000_READ_REG(&sc->hw, E1000_TDH(i)),
4855 			E1000_READ_REG(&sc->hw, E1000_TDT(i)));
4856 
4857 	}
4858 	for (int j=0; j < sc->rx_num_queues; j++, rxr++) {
4859 		device_printf(dev, "RX Queue %d ------\n", j);
4860 		device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4861 			E1000_READ_REG(&sc->hw, E1000_RDH(j)),
4862 			E1000_READ_REG(&sc->hw, E1000_RDT(j)));
4863 	}
4864 }
4865 
4866 /*
4867  * 82574 only:
4868  * Write a new value to the EEPROM increasing the number of MSI-X
4869  * vectors from 3 to 5, for proper multiqueue support.
4870  */
4871 static void
4872 em_enable_vectors_82574(if_ctx_t ctx)
4873 {
4874 	struct e1000_softc *sc = iflib_get_softc(ctx);
4875 	struct e1000_hw *hw = &sc->hw;
4876 	device_t dev = iflib_get_dev(ctx);
4877 	u16 edata;
4878 
4879 	e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4880 	if (bootverbose)
4881 		device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
4882 	if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
4883 		device_printf(dev, "Writing to eeprom: increasing "
4884 		    "reported MSI-X vectors from 3 to 5...\n");
4885 		edata &= ~(EM_NVM_MSIX_N_MASK);
4886 		edata |= 4 << EM_NVM_MSIX_N_SHIFT;
4887 		e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4888 		e1000_update_nvm_checksum(hw);
4889 		device_printf(dev, "Writing to eeprom: done\n");
4890 	}
4891 }
4892