1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* $FreeBSD$ */ 30 #include "if_em.h" 31 #include <sys/sbuf.h> 32 #include <machine/_inttypes.h> 33 34 #define em_mac_min e1000_82547 35 #define igb_mac_min e1000_82575 36 37 /********************************************************************* 38 * Driver version: 39 *********************************************************************/ 40 char em_driver_version[] = "7.6.1-k"; 41 42 /********************************************************************* 43 * PCI Device ID Table 44 * 45 * Used by probe to select devices to load on 46 * Last field stores an index into e1000_strings 47 * Last entry must be all 0s 48 * 49 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index } 50 *********************************************************************/ 51 52 static pci_vendor_info_t em_vendor_info_array[] = 53 { 54 /* Intel(R) PRO/1000 Network Connection - Legacy em*/ 55 PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) PRO/1000 Network Connection"), 56 PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) PRO/1000 Network Connection"), 57 PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) PRO/1000 Network Connection"), 58 PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) PRO/1000 Network Connection"), 59 PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) PRO/1000 Network Connection"), 60 61 PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) PRO/1000 Network Connection"), 62 PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) PRO/1000 Network Connection"), 63 PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) PRO/1000 Network Connection"), 64 PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) PRO/1000 Network Connection"), 65 PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) PRO/1000 Network Connection"), 66 PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) PRO/1000 Network Connection"), 67 PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) PRO/1000 Network Connection"), 68 69 PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) PRO/1000 Network Connection"), 70 71 PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) PRO/1000 Network Connection"), 72 PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) PRO/1000 Network Connection"), 73 74 PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) PRO/1000 Network Connection"), 75 PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) PRO/1000 Network Connection"), 76 PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) PRO/1000 Network Connection"), 77 PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) PRO/1000 Network Connection"), 78 79 PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) PRO/1000 Network Connection"), 80 PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) PRO/1000 Network Connection"), 81 PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) PRO/1000 Network Connection"), 82 PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) PRO/1000 Network Connection"), 83 PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) PRO/1000 Network Connection"), 84 85 PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) PRO/1000 Network Connection"), 86 PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) PRO/1000 Network Connection"), 87 PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), 88 PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) PRO/1000 Network Connection"), 89 PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) PRO/1000 Network Connection"), 90 PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) PRO/1000 Network Connection"), 91 PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) PRO/1000 Network Connection"), 92 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), 93 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) PRO/1000 Network Connection"), 94 95 PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) PRO/1000 Network Connection"), 96 PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) PRO/1000 Network Connection"), 97 PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) PRO/1000 Network Connection"), 98 99 /* Intel(R) PRO/1000 Network Connection - em */ 100 PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 Network Connection"), 101 PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 Network Connection"), 102 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 Network Connection"), 103 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 Network Connection"), 104 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 Network Connection"), 105 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), 106 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 Network Connection"), 107 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 Network Connection"), 108 PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), 109 PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 Network Connection"), 110 PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 Network Connection"), 111 PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 Network Connection"), 112 PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 Network Connection"), 113 PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 Network Connection"), 114 PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 Network Connection"), 115 PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 Network Connection"), 116 PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) PRO/1000 Network Connection"), 117 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) PRO/1000 Network Connection"), 118 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) PRO/1000 Network Connection"), 119 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) PRO/1000 Network Connection"), 120 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) PRO/1000 Network Connection"), 121 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"), 122 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) PRO/1000 Network Connection"), 123 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) PRO/1000 Network Connection"), 124 PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) PRO/1000 Network Connection"), 125 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) PRO/1000 Network Connection"), 126 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) PRO/1000 Network Connection"), 127 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) PRO/1000 Network Connection"), 128 PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) PRO/1000 Network Connection"), 129 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"), 130 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) PRO/1000 Network Connection"), 131 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) PRO/1000 Network Connection"), 132 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) PRO/1000 Network Connection"), 133 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) PRO/1000 Network Connection"), 134 PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) PRO/1000 Network Connection"), 135 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) PRO/1000 Network Connection"), 136 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) PRO/1000 Network Connection"), 137 PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) PRO/1000 Network Connection"), 138 PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) PRO/1000 Network Connection"), 139 PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) PRO/1000 Network Connection"), 140 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) PRO/1000 Network Connection"), 141 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) PRO/1000 Network Connection"), 142 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) PRO/1000 Network Connection"), 143 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) PRO/1000 Network Connection"), 144 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) PRO/1000 Network Connection"), 145 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) PRO/1000 Network Connection"), 146 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) PRO/1000 Network Connection"), 147 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) PRO/1000 Network Connection"), 148 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) PRO/1000 Network Connection"), 149 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) PRO/1000 Network Connection"), 150 PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) PRO/1000 Network Connection"), 151 PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) PRO/1000 Network Connection"), 152 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) PRO/1000 Network Connection"), 153 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) PRO/1000 Network Connection"), 154 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) PRO/1000 Network Connection"), 155 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) PRO/1000 Network Connection"), 156 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) PRO/1000 Network Connection"), 157 PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) PRO/1000 Network Connection"), 158 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) PRO/1000 Network Connection"), 159 PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) PRO/1000 Network Connection"), 160 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) PRO/1000 Network Connection"), 161 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) PRO/1000 Network Connection"), 162 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) PRO/1000 Network Connection"), 163 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) PRO/1000 Network Connection"), 164 PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) PRO/1000 Network Connection"), 165 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) PRO/1000 Network Connection"), 166 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) PRO/1000 Network Connection"), 167 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) PRO/1000 Network Connection"), 168 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) PRO/1000 Network Connection"), 169 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) PRO/1000 Network Connection"), 170 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) PRO/1000 Network Connection"), 171 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) PRO/1000 Network Connection"), 172 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) PRO/1000 Network Connection"), 173 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) PRO/1000 Network Connection"), 174 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) PRO/1000 Network Connection"), 175 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) PRO/1000 Network Connection"), 176 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) PRO/1000 Network Connection"), 177 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10, "Intel(R) PRO/1000 Network Connection"), 178 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10, "Intel(R) PRO/1000 Network Connection"), 179 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11, "Intel(R) PRO/1000 Network Connection"), 180 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11, "Intel(R) PRO/1000 Network Connection"), 181 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12, "Intel(R) PRO/1000 Network Connection"), 182 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12, "Intel(R) PRO/1000 Network Connection"), 183 /* required last entry */ 184 PVID_END 185 }; 186 187 static pci_vendor_info_t igb_vendor_info_array[] = 188 { 189 /* Intel(R) PRO/1000 Network Connection - igb */ 190 PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 191 PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 192 PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 193 PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 PCI-Express Network Driver"), 194 PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 195 PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 196 PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 197 PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 198 PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 PCI-Express Network Driver"), 199 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 200 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 PCI-Express Network Driver"), 201 PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"), 202 PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 203 PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 204 PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 205 PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 206 PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) PRO/1000 PCI-Express Network Driver"), 207 PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 208 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 209 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 210 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) PRO/1000 PCI-Express Network Driver"), 211 PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) PRO/1000 PCI-Express Network Driver"), 212 PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 213 PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 214 PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 215 PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 216 PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"), 217 PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 218 PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) PRO/1000 PCI-Express Network Driver"), 219 PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) PRO/1000 PCI-Express Network Driver"), 220 PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 221 PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 222 PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 223 PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 224 PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 225 PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 226 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 227 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 228 PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 229 /* required last entry */ 230 PVID_END 231 }; 232 233 /********************************************************************* 234 * Function prototypes 235 *********************************************************************/ 236 static void *em_register(device_t dev); 237 static void *igb_register(device_t dev); 238 static int em_if_attach_pre(if_ctx_t ctx); 239 static int em_if_attach_post(if_ctx_t ctx); 240 static int em_if_detach(if_ctx_t ctx); 241 static int em_if_shutdown(if_ctx_t ctx); 242 static int em_if_suspend(if_ctx_t ctx); 243 static int em_if_resume(if_ctx_t ctx); 244 245 static int em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets); 246 static int em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets); 247 static void em_if_queues_free(if_ctx_t ctx); 248 249 static uint64_t em_if_get_counter(if_ctx_t, ift_counter); 250 static void em_if_init(if_ctx_t ctx); 251 static void em_if_stop(if_ctx_t ctx); 252 static void em_if_media_status(if_ctx_t, struct ifmediareq *); 253 static int em_if_media_change(if_ctx_t ctx); 254 static int em_if_mtu_set(if_ctx_t ctx, uint32_t mtu); 255 static void em_if_timer(if_ctx_t ctx, uint16_t qid); 256 static void em_if_vlan_register(if_ctx_t ctx, u16 vtag); 257 static void em_if_vlan_unregister(if_ctx_t ctx, u16 vtag); 258 static void em_if_watchdog_reset(if_ctx_t ctx); 259 static bool em_if_needs_restart(if_ctx_t ctx, enum iflib_restart_event event); 260 261 static void em_identify_hardware(if_ctx_t ctx); 262 static int em_allocate_pci_resources(if_ctx_t ctx); 263 static void em_free_pci_resources(if_ctx_t ctx); 264 static void em_reset(if_ctx_t ctx); 265 static int em_setup_interface(if_ctx_t ctx); 266 static int em_setup_msix(if_ctx_t ctx); 267 268 static void em_initialize_transmit_unit(if_ctx_t ctx); 269 static void em_initialize_receive_unit(if_ctx_t ctx); 270 271 static void em_if_intr_enable(if_ctx_t ctx); 272 static void em_if_intr_disable(if_ctx_t ctx); 273 static void igb_if_intr_enable(if_ctx_t ctx); 274 static void igb_if_intr_disable(if_ctx_t ctx); 275 static int em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid); 276 static int em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid); 277 static int igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid); 278 static int igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid); 279 static void em_if_multi_set(if_ctx_t ctx); 280 static void em_if_update_admin_status(if_ctx_t ctx); 281 static void em_if_debug(if_ctx_t ctx); 282 static void em_update_stats_counters(struct adapter *); 283 static void em_add_hw_stats(struct adapter *adapter); 284 static int em_if_set_promisc(if_ctx_t ctx, int flags); 285 static void em_setup_vlan_hw_support(struct adapter *); 286 static int em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS); 287 static void em_print_nvm_info(struct adapter *); 288 static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS); 289 static int em_get_rs(SYSCTL_HANDLER_ARGS); 290 static void em_print_debug_info(struct adapter *); 291 static int em_is_valid_ether_addr(u8 *); 292 static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS); 293 static void em_add_int_delay_sysctl(struct adapter *, const char *, 294 const char *, struct em_int_delay_info *, int, int); 295 /* Management and WOL Support */ 296 static void em_init_manageability(struct adapter *); 297 static void em_release_manageability(struct adapter *); 298 static void em_get_hw_control(struct adapter *); 299 static void em_release_hw_control(struct adapter *); 300 static void em_get_wakeup(if_ctx_t ctx); 301 static void em_enable_wakeup(if_ctx_t ctx); 302 static int em_enable_phy_wakeup(struct adapter *); 303 static void em_disable_aspm(struct adapter *); 304 305 int em_intr(void *arg); 306 static void em_disable_promisc(if_ctx_t ctx); 307 308 /* MSI-X handlers */ 309 static int em_if_msix_intr_assign(if_ctx_t, int); 310 static int em_msix_link(void *); 311 static void em_handle_link(void *context); 312 313 static void em_enable_vectors_82574(if_ctx_t); 314 315 static int em_set_flowcntl(SYSCTL_HANDLER_ARGS); 316 static int em_sysctl_eee(SYSCTL_HANDLER_ARGS); 317 static void em_if_led_func(if_ctx_t ctx, int onoff); 318 319 static int em_get_regs(SYSCTL_HANDLER_ARGS); 320 321 static void lem_smartspeed(struct adapter *adapter); 322 static void igb_configure_queues(struct adapter *adapter); 323 324 325 /********************************************************************* 326 * FreeBSD Device Interface Entry Points 327 *********************************************************************/ 328 static device_method_t em_methods[] = { 329 /* Device interface */ 330 DEVMETHOD(device_register, em_register), 331 DEVMETHOD(device_probe, iflib_device_probe), 332 DEVMETHOD(device_attach, iflib_device_attach), 333 DEVMETHOD(device_detach, iflib_device_detach), 334 DEVMETHOD(device_shutdown, iflib_device_shutdown), 335 DEVMETHOD(device_suspend, iflib_device_suspend), 336 DEVMETHOD(device_resume, iflib_device_resume), 337 DEVMETHOD_END 338 }; 339 340 static device_method_t igb_methods[] = { 341 /* Device interface */ 342 DEVMETHOD(device_register, igb_register), 343 DEVMETHOD(device_probe, iflib_device_probe), 344 DEVMETHOD(device_attach, iflib_device_attach), 345 DEVMETHOD(device_detach, iflib_device_detach), 346 DEVMETHOD(device_shutdown, iflib_device_shutdown), 347 DEVMETHOD(device_suspend, iflib_device_suspend), 348 DEVMETHOD(device_resume, iflib_device_resume), 349 DEVMETHOD_END 350 }; 351 352 353 static driver_t em_driver = { 354 "em", em_methods, sizeof(struct adapter), 355 }; 356 357 static devclass_t em_devclass; 358 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0); 359 360 MODULE_DEPEND(em, pci, 1, 1, 1); 361 MODULE_DEPEND(em, ether, 1, 1, 1); 362 MODULE_DEPEND(em, iflib, 1, 1, 1); 363 364 IFLIB_PNP_INFO(pci, em, em_vendor_info_array); 365 366 static driver_t igb_driver = { 367 "igb", igb_methods, sizeof(struct adapter), 368 }; 369 370 static devclass_t igb_devclass; 371 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0); 372 373 MODULE_DEPEND(igb, pci, 1, 1, 1); 374 MODULE_DEPEND(igb, ether, 1, 1, 1); 375 MODULE_DEPEND(igb, iflib, 1, 1, 1); 376 377 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array); 378 379 static device_method_t em_if_methods[] = { 380 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre), 381 DEVMETHOD(ifdi_attach_post, em_if_attach_post), 382 DEVMETHOD(ifdi_detach, em_if_detach), 383 DEVMETHOD(ifdi_shutdown, em_if_shutdown), 384 DEVMETHOD(ifdi_suspend, em_if_suspend), 385 DEVMETHOD(ifdi_resume, em_if_resume), 386 DEVMETHOD(ifdi_init, em_if_init), 387 DEVMETHOD(ifdi_stop, em_if_stop), 388 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign), 389 DEVMETHOD(ifdi_intr_enable, em_if_intr_enable), 390 DEVMETHOD(ifdi_intr_disable, em_if_intr_disable), 391 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc), 392 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc), 393 DEVMETHOD(ifdi_queues_free, em_if_queues_free), 394 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status), 395 DEVMETHOD(ifdi_multi_set, em_if_multi_set), 396 DEVMETHOD(ifdi_media_status, em_if_media_status), 397 DEVMETHOD(ifdi_media_change, em_if_media_change), 398 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set), 399 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc), 400 DEVMETHOD(ifdi_timer, em_if_timer), 401 DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset), 402 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register), 403 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister), 404 DEVMETHOD(ifdi_get_counter, em_if_get_counter), 405 DEVMETHOD(ifdi_led_func, em_if_led_func), 406 DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable), 407 DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable), 408 DEVMETHOD(ifdi_debug, em_if_debug), 409 DEVMETHOD(ifdi_needs_restart, em_if_needs_restart), 410 DEVMETHOD_END 411 }; 412 413 static driver_t em_if_driver = { 414 "em_if", em_if_methods, sizeof(struct adapter) 415 }; 416 417 static device_method_t igb_if_methods[] = { 418 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre), 419 DEVMETHOD(ifdi_attach_post, em_if_attach_post), 420 DEVMETHOD(ifdi_detach, em_if_detach), 421 DEVMETHOD(ifdi_shutdown, em_if_shutdown), 422 DEVMETHOD(ifdi_suspend, em_if_suspend), 423 DEVMETHOD(ifdi_resume, em_if_resume), 424 DEVMETHOD(ifdi_init, em_if_init), 425 DEVMETHOD(ifdi_stop, em_if_stop), 426 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign), 427 DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable), 428 DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable), 429 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc), 430 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc), 431 DEVMETHOD(ifdi_queues_free, em_if_queues_free), 432 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status), 433 DEVMETHOD(ifdi_multi_set, em_if_multi_set), 434 DEVMETHOD(ifdi_media_status, em_if_media_status), 435 DEVMETHOD(ifdi_media_change, em_if_media_change), 436 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set), 437 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc), 438 DEVMETHOD(ifdi_timer, em_if_timer), 439 DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset), 440 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register), 441 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister), 442 DEVMETHOD(ifdi_get_counter, em_if_get_counter), 443 DEVMETHOD(ifdi_led_func, em_if_led_func), 444 DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable), 445 DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable), 446 DEVMETHOD(ifdi_debug, em_if_debug), 447 DEVMETHOD(ifdi_needs_restart, em_if_needs_restart), 448 DEVMETHOD_END 449 }; 450 451 static driver_t igb_if_driver = { 452 "igb_if", igb_if_methods, sizeof(struct adapter) 453 }; 454 455 /********************************************************************* 456 * Tunable default values. 457 *********************************************************************/ 458 459 #define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000) 460 #define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024) 461 462 #define MAX_INTS_PER_SEC 8000 463 #define DEFAULT_ITR (1000000000/(MAX_INTS_PER_SEC * 256)) 464 465 /* Allow common code without TSO */ 466 #ifndef CSUM_TSO 467 #define CSUM_TSO 0 468 #endif 469 470 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 471 "EM driver parameters"); 472 473 static int em_disable_crc_stripping = 0; 474 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN, 475 &em_disable_crc_stripping, 0, "Disable CRC Stripping"); 476 477 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV); 478 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR); 479 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt, 480 0, "Default transmit interrupt delay in usecs"); 481 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt, 482 0, "Default receive interrupt delay in usecs"); 483 484 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV); 485 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV); 486 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN, 487 &em_tx_abs_int_delay_dflt, 0, 488 "Default transmit interrupt delay limit in usecs"); 489 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN, 490 &em_rx_abs_int_delay_dflt, 0, 491 "Default receive interrupt delay limit in usecs"); 492 493 static int em_smart_pwr_down = FALSE; 494 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down, 495 0, "Set to true to leave smart power down enabled on newer adapters"); 496 497 /* Controls whether promiscuous also shows bad packets */ 498 static int em_debug_sbp = TRUE; 499 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0, 500 "Show bad packets in promiscuous mode"); 501 502 /* How many packets rxeof tries to clean at a time */ 503 static int em_rx_process_limit = 100; 504 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN, 505 &em_rx_process_limit, 0, 506 "Maximum number of received packets to process " 507 "at a time, -1 means unlimited"); 508 509 /* Energy efficient ethernet - default to OFF */ 510 static int eee_setting = 1; 511 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0, 512 "Enable Energy Efficient Ethernet"); 513 514 /* 515 ** Tuneable Interrupt rate 516 */ 517 static int em_max_interrupt_rate = 8000; 518 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN, 519 &em_max_interrupt_rate, 0, "Maximum interrupts per second"); 520 521 522 523 /* Global used in WOL setup with multiport cards */ 524 static int global_quad_port_a = 0; 525 526 extern struct if_txrx igb_txrx; 527 extern struct if_txrx em_txrx; 528 extern struct if_txrx lem_txrx; 529 530 static struct if_shared_ctx em_sctx_init = { 531 .isc_magic = IFLIB_MAGIC, 532 .isc_q_align = PAGE_SIZE, 533 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 534 .isc_tx_maxsegsize = PAGE_SIZE, 535 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 536 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE, 537 .isc_rx_maxsize = MJUM9BYTES, 538 .isc_rx_nsegments = 1, 539 .isc_rx_maxsegsize = MJUM9BYTES, 540 .isc_nfl = 1, 541 .isc_nrxqs = 1, 542 .isc_ntxqs = 1, 543 .isc_admin_intrcnt = 1, 544 .isc_vendor_info = em_vendor_info_array, 545 .isc_driver_version = em_driver_version, 546 .isc_driver = &em_if_driver, 547 .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM, 548 549 .isc_nrxd_min = {EM_MIN_RXD}, 550 .isc_ntxd_min = {EM_MIN_TXD}, 551 .isc_nrxd_max = {EM_MAX_RXD}, 552 .isc_ntxd_max = {EM_MAX_TXD}, 553 .isc_nrxd_default = {EM_DEFAULT_RXD}, 554 .isc_ntxd_default = {EM_DEFAULT_TXD}, 555 }; 556 557 if_shared_ctx_t em_sctx = &em_sctx_init; 558 559 static struct if_shared_ctx igb_sctx_init = { 560 .isc_magic = IFLIB_MAGIC, 561 .isc_q_align = PAGE_SIZE, 562 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 563 .isc_tx_maxsegsize = PAGE_SIZE, 564 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 565 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE, 566 .isc_rx_maxsize = MJUM9BYTES, 567 .isc_rx_nsegments = 1, 568 .isc_rx_maxsegsize = MJUM9BYTES, 569 .isc_nfl = 1, 570 .isc_nrxqs = 1, 571 .isc_ntxqs = 1, 572 .isc_admin_intrcnt = 1, 573 .isc_vendor_info = igb_vendor_info_array, 574 .isc_driver_version = em_driver_version, 575 .isc_driver = &igb_if_driver, 576 .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM, 577 578 .isc_nrxd_min = {EM_MIN_RXD}, 579 .isc_ntxd_min = {EM_MIN_TXD}, 580 .isc_nrxd_max = {IGB_MAX_RXD}, 581 .isc_ntxd_max = {IGB_MAX_TXD}, 582 .isc_nrxd_default = {EM_DEFAULT_RXD}, 583 .isc_ntxd_default = {EM_DEFAULT_TXD}, 584 }; 585 586 if_shared_ctx_t igb_sctx = &igb_sctx_init; 587 588 /***************************************************************** 589 * 590 * Dump Registers 591 * 592 ****************************************************************/ 593 #define IGB_REGS_LEN 739 594 595 static int em_get_regs(SYSCTL_HANDLER_ARGS) 596 { 597 struct adapter *adapter = (struct adapter *)arg1; 598 struct e1000_hw *hw = &adapter->hw; 599 struct sbuf *sb; 600 u32 *regs_buff; 601 int rc; 602 603 regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK); 604 memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32)); 605 606 rc = sysctl_wire_old_buffer(req, 0); 607 MPASS(rc == 0); 608 if (rc != 0) { 609 free(regs_buff, M_DEVBUF); 610 return (rc); 611 } 612 613 sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req); 614 MPASS(sb != NULL); 615 if (sb == NULL) { 616 free(regs_buff, M_DEVBUF); 617 return (ENOMEM); 618 } 619 620 /* General Registers */ 621 regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL); 622 regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS); 623 regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT); 624 regs_buff[3] = E1000_READ_REG(hw, E1000_ICR); 625 regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL); 626 regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0)); 627 regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0)); 628 regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0)); 629 regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0)); 630 regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0)); 631 regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0)); 632 regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL); 633 regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0)); 634 regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0)); 635 regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0)); 636 regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0)); 637 regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0)); 638 regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0)); 639 regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH); 640 regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT); 641 regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS); 642 regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC); 643 644 sbuf_printf(sb, "General Registers\n"); 645 sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]); 646 sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]); 647 sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]); 648 649 sbuf_printf(sb, "Interrupt Registers\n"); 650 sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]); 651 652 sbuf_printf(sb, "RX Registers\n"); 653 sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]); 654 sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]); 655 sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]); 656 sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]); 657 sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]); 658 sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]); 659 sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]); 660 661 sbuf_printf(sb, "TX Registers\n"); 662 sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]); 663 sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]); 664 sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]); 665 sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]); 666 sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]); 667 sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]); 668 sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]); 669 sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]); 670 sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]); 671 sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]); 672 sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]); 673 674 free(regs_buff, M_DEVBUF); 675 676 #ifdef DUMP_DESCS 677 { 678 if_softc_ctx_t scctx = adapter->shared; 679 struct rx_ring *rxr = &rx_que->rxr; 680 struct tx_ring *txr = &tx_que->txr; 681 int ntxd = scctx->isc_ntxd[0]; 682 int nrxd = scctx->isc_nrxd[0]; 683 int j; 684 685 for (j = 0; j < nrxd; j++) { 686 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error); 687 u32 length = le32toh(rxr->rx_base[j].wb.upper.length); 688 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 " Error:%d Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length); 689 } 690 691 for (j = 0; j < min(ntxd, 256); j++) { 692 unsigned int *ptr = (unsigned int *)&txr->tx_base[j]; 693 694 sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x eop: %d DD=%d\n", 695 j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop, 696 buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0); 697 698 } 699 } 700 #endif 701 702 rc = sbuf_finish(sb); 703 sbuf_delete(sb); 704 return(rc); 705 } 706 707 static void * 708 em_register(device_t dev) 709 { 710 return (em_sctx); 711 } 712 713 static void * 714 igb_register(device_t dev) 715 { 716 return (igb_sctx); 717 } 718 719 static int 720 em_set_num_queues(if_ctx_t ctx) 721 { 722 struct adapter *adapter = iflib_get_softc(ctx); 723 int maxqueues; 724 725 /* Sanity check based on HW */ 726 switch (adapter->hw.mac.type) { 727 case e1000_82576: 728 case e1000_82580: 729 case e1000_i350: 730 case e1000_i354: 731 maxqueues = 8; 732 break; 733 case e1000_i210: 734 case e1000_82575: 735 maxqueues = 4; 736 break; 737 case e1000_i211: 738 case e1000_82574: 739 maxqueues = 2; 740 break; 741 default: 742 maxqueues = 1; 743 break; 744 } 745 746 return (maxqueues); 747 } 748 749 #define LEM_CAPS \ 750 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ 751 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER 752 753 #define EM_CAPS \ 754 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ 755 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \ 756 IFCAP_LRO | IFCAP_VLAN_HWTSO 757 758 #define IGB_CAPS \ 759 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ 760 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \ 761 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 |\ 762 IFCAP_TSO6 763 764 /********************************************************************* 765 * Device initialization routine 766 * 767 * The attach entry point is called when the driver is being loaded. 768 * This routine identifies the type of hardware, allocates all resources 769 * and initializes the hardware. 770 * 771 * return 0 on success, positive on failure 772 *********************************************************************/ 773 static int 774 em_if_attach_pre(if_ctx_t ctx) 775 { 776 struct adapter *adapter; 777 if_softc_ctx_t scctx; 778 device_t dev; 779 struct e1000_hw *hw; 780 int error = 0; 781 782 INIT_DEBUGOUT("em_if_attach_pre: begin"); 783 dev = iflib_get_dev(ctx); 784 adapter = iflib_get_softc(ctx); 785 786 adapter->ctx = adapter->osdep.ctx = ctx; 787 adapter->dev = adapter->osdep.dev = dev; 788 scctx = adapter->shared = iflib_get_softc_ctx(ctx); 789 adapter->media = iflib_get_media(ctx); 790 hw = &adapter->hw; 791 792 adapter->tx_process_limit = scctx->isc_ntxd[0]; 793 794 /* SYSCTL stuff */ 795 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 796 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 797 OID_AUTO, "nvm", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 798 adapter, 0, em_sysctl_nvm_info, "I", "NVM Information"); 799 800 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 801 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 802 OID_AUTO, "debug", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 803 adapter, 0, em_sysctl_debug_info, "I", "Debug Information"); 804 805 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 806 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 807 OID_AUTO, "fc", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 808 adapter, 0, em_set_flowcntl, "I", "Flow Control"); 809 810 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 811 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 812 OID_AUTO, "reg_dump", 813 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter, 0, 814 em_get_regs, "A", "Dump Registers"); 815 816 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 817 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 818 OID_AUTO, "rs_dump", 819 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, adapter, 0, 820 em_get_rs, "I", "Dump RS indexes"); 821 822 /* Determine hardware and mac info */ 823 em_identify_hardware(ctx); 824 825 scctx->isc_tx_nsegments = EM_MAX_SCATTER; 826 scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx); 827 if (bootverbose) 828 device_printf(dev, "attach_pre capping queues at %d\n", 829 scctx->isc_ntxqsets_max); 830 831 if (adapter->hw.mac.type >= igb_mac_min) { 832 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN); 833 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN); 834 scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc); 835 scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc); 836 scctx->isc_txrx = &igb_txrx; 837 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER; 838 scctx->isc_tx_tso_size_max = EM_TSO_SIZE; 839 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE; 840 scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS; 841 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO | 842 CSUM_IP6_TCP | CSUM_IP6_UDP; 843 if (adapter->hw.mac.type != e1000_82575) 844 scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP; 845 /* 846 ** Some new devices, as with ixgbe, now may 847 ** use a different BAR, so we need to keep 848 ** track of which is used. 849 */ 850 scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR); 851 if (pci_read_config(dev, scctx->isc_msix_bar, 4) == 0) 852 scctx->isc_msix_bar += 4; 853 } else if (adapter->hw.mac.type >= em_mac_min) { 854 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN); 855 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN); 856 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc); 857 scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended); 858 scctx->isc_txrx = &em_txrx; 859 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER; 860 scctx->isc_tx_tso_size_max = EM_TSO_SIZE; 861 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE; 862 scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS; 863 /* 864 * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO} 865 * by default as we don't have workarounds for all associated 866 * silicon errata. E. g., with several MACs such as 82573E, 867 * TSO only works at Gigabit speed and otherwise can cause the 868 * hardware to hang (which also would be next to impossible to 869 * work around given that already queued TSO-using descriptors 870 * would need to be flushed and vlan(4) reconfigured at runtime 871 * in case of a link speed change). Moreover, MACs like 82579 872 * still can hang at Gigabit even with all publicly documented 873 * TSO workarounds implemented. Generally, the penality of 874 * these workarounds is rather high and may involve copying 875 * mbuf data around so advantages of TSO lapse. Still, TSO may 876 * work for a few MACs of this class - at least when sticking 877 * with Gigabit - in which case users may enable TSO manually. 878 */ 879 scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO); 880 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO; 881 /* 882 * We support MSI-X with 82574 only, but indicate to iflib(4) 883 * that it shall give MSI at least a try with other devices. 884 */ 885 if (adapter->hw.mac.type == e1000_82574) { 886 scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR); 887 } else { 888 scctx->isc_msix_bar = -1; 889 scctx->isc_disable_msix = 1; 890 } 891 } else { 892 scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN); 893 scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN); 894 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc); 895 scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc); 896 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP; 897 scctx->isc_txrx = &lem_txrx; 898 scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS; 899 if (adapter->hw.mac.type < e1000_82543) 900 scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM); 901 /* INTx only */ 902 scctx->isc_msix_bar = 0; 903 } 904 905 /* Setup PCI resources */ 906 if (em_allocate_pci_resources(ctx)) { 907 device_printf(dev, "Allocation of PCI resources failed\n"); 908 error = ENXIO; 909 goto err_pci; 910 } 911 912 /* 913 ** For ICH8 and family we need to 914 ** map the flash memory, and this 915 ** must happen after the MAC is 916 ** identified 917 */ 918 if ((hw->mac.type == e1000_ich8lan) || 919 (hw->mac.type == e1000_ich9lan) || 920 (hw->mac.type == e1000_ich10lan) || 921 (hw->mac.type == e1000_pchlan) || 922 (hw->mac.type == e1000_pch2lan) || 923 (hw->mac.type == e1000_pch_lpt)) { 924 int rid = EM_BAR_TYPE_FLASH; 925 adapter->flash = bus_alloc_resource_any(dev, 926 SYS_RES_MEMORY, &rid, RF_ACTIVE); 927 if (adapter->flash == NULL) { 928 device_printf(dev, "Mapping of Flash failed\n"); 929 error = ENXIO; 930 goto err_pci; 931 } 932 /* This is used in the shared code */ 933 hw->flash_address = (u8 *)adapter->flash; 934 adapter->osdep.flash_bus_space_tag = 935 rman_get_bustag(adapter->flash); 936 adapter->osdep.flash_bus_space_handle = 937 rman_get_bushandle(adapter->flash); 938 } 939 /* 940 ** In the new SPT device flash is not a 941 ** separate BAR, rather it is also in BAR0, 942 ** so use the same tag and an offset handle for the 943 ** FLASH read/write macros in the shared code. 944 */ 945 else if (hw->mac.type >= e1000_pch_spt) { 946 adapter->osdep.flash_bus_space_tag = 947 adapter->osdep.mem_bus_space_tag; 948 adapter->osdep.flash_bus_space_handle = 949 adapter->osdep.mem_bus_space_handle 950 + E1000_FLASH_BASE_ADDR; 951 } 952 953 /* Do Shared Code initialization */ 954 error = e1000_setup_init_funcs(hw, TRUE); 955 if (error) { 956 device_printf(dev, "Setup of Shared code failed, error %d\n", 957 error); 958 error = ENXIO; 959 goto err_pci; 960 } 961 962 em_setup_msix(ctx); 963 e1000_get_bus_info(hw); 964 965 /* Set up some sysctls for the tunable interrupt delays */ 966 em_add_int_delay_sysctl(adapter, "rx_int_delay", 967 "receive interrupt delay in usecs", &adapter->rx_int_delay, 968 E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt); 969 em_add_int_delay_sysctl(adapter, "tx_int_delay", 970 "transmit interrupt delay in usecs", &adapter->tx_int_delay, 971 E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt); 972 em_add_int_delay_sysctl(adapter, "rx_abs_int_delay", 973 "receive interrupt delay limit in usecs", 974 &adapter->rx_abs_int_delay, 975 E1000_REGISTER(hw, E1000_RADV), 976 em_rx_abs_int_delay_dflt); 977 em_add_int_delay_sysctl(adapter, "tx_abs_int_delay", 978 "transmit interrupt delay limit in usecs", 979 &adapter->tx_abs_int_delay, 980 E1000_REGISTER(hw, E1000_TADV), 981 em_tx_abs_int_delay_dflt); 982 em_add_int_delay_sysctl(adapter, "itr", 983 "interrupt delay limit in usecs/4", 984 &adapter->tx_itr, 985 E1000_REGISTER(hw, E1000_ITR), 986 DEFAULT_ITR); 987 988 hw->mac.autoneg = DO_AUTO_NEG; 989 hw->phy.autoneg_wait_to_complete = FALSE; 990 hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; 991 992 if (adapter->hw.mac.type < em_mac_min) { 993 e1000_init_script_state_82541(&adapter->hw, TRUE); 994 e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE); 995 } 996 /* Copper options */ 997 if (hw->phy.media_type == e1000_media_type_copper) { 998 hw->phy.mdix = AUTO_ALL_MODES; 999 hw->phy.disable_polarity_correction = FALSE; 1000 hw->phy.ms_type = EM_MASTER_SLAVE; 1001 } 1002 1003 /* 1004 * Set the frame limits assuming 1005 * standard ethernet sized frames. 1006 */ 1007 scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size = 1008 ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE; 1009 1010 /* 1011 * This controls when hardware reports transmit completion 1012 * status. 1013 */ 1014 hw->mac.report_tx_early = 1; 1015 1016 /* Allocate multicast array memory. */ 1017 adapter->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN * 1018 MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT); 1019 if (adapter->mta == NULL) { 1020 device_printf(dev, "Can not allocate multicast setup array\n"); 1021 error = ENOMEM; 1022 goto err_late; 1023 } 1024 1025 /* Check SOL/IDER usage */ 1026 if (e1000_check_reset_block(hw)) 1027 device_printf(dev, "PHY reset is blocked" 1028 " due to SOL/IDER session.\n"); 1029 1030 /* Sysctl for setting Energy Efficient Ethernet */ 1031 hw->dev_spec.ich8lan.eee_disable = eee_setting; 1032 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 1033 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 1034 OID_AUTO, "eee_control", 1035 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 1036 adapter, 0, em_sysctl_eee, "I", 1037 "Disable Energy Efficient Ethernet"); 1038 1039 /* 1040 ** Start from a known state, this is 1041 ** important in reading the nvm and 1042 ** mac from that. 1043 */ 1044 e1000_reset_hw(hw); 1045 1046 /* Make sure we have a good EEPROM before we read from it */ 1047 if (e1000_validate_nvm_checksum(hw) < 0) { 1048 /* 1049 ** Some PCI-E parts fail the first check due to 1050 ** the link being in sleep state, call it again, 1051 ** if it fails a second time its a real issue. 1052 */ 1053 if (e1000_validate_nvm_checksum(hw) < 0) { 1054 device_printf(dev, 1055 "The EEPROM Checksum Is Not Valid\n"); 1056 error = EIO; 1057 goto err_late; 1058 } 1059 } 1060 1061 /* Copy the permanent MAC address out of the EEPROM */ 1062 if (e1000_read_mac_addr(hw) < 0) { 1063 device_printf(dev, "EEPROM read error while reading MAC" 1064 " address\n"); 1065 error = EIO; 1066 goto err_late; 1067 } 1068 1069 if (!em_is_valid_ether_addr(hw->mac.addr)) { 1070 device_printf(dev, "Invalid MAC address\n"); 1071 error = EIO; 1072 goto err_late; 1073 } 1074 1075 /* Disable ULP support */ 1076 e1000_disable_ulp_lpt_lp(hw, TRUE); 1077 1078 /* 1079 * Get Wake-on-Lan and Management info for later use 1080 */ 1081 em_get_wakeup(ctx); 1082 1083 /* Enable only WOL MAGIC by default */ 1084 scctx->isc_capenable &= ~IFCAP_WOL; 1085 if (adapter->wol != 0) 1086 scctx->isc_capenable |= IFCAP_WOL_MAGIC; 1087 1088 iflib_set_mac(ctx, hw->mac.addr); 1089 1090 return (0); 1091 1092 err_late: 1093 em_release_hw_control(adapter); 1094 err_pci: 1095 em_free_pci_resources(ctx); 1096 free(adapter->mta, M_DEVBUF); 1097 1098 return (error); 1099 } 1100 1101 static int 1102 em_if_attach_post(if_ctx_t ctx) 1103 { 1104 struct adapter *adapter = iflib_get_softc(ctx); 1105 struct e1000_hw *hw = &adapter->hw; 1106 int error = 0; 1107 1108 /* Setup OS specific network interface */ 1109 error = em_setup_interface(ctx); 1110 if (error != 0) { 1111 goto err_late; 1112 } 1113 1114 em_reset(ctx); 1115 1116 /* Initialize statistics */ 1117 em_update_stats_counters(adapter); 1118 hw->mac.get_link_status = 1; 1119 em_if_update_admin_status(ctx); 1120 em_add_hw_stats(adapter); 1121 1122 /* Non-AMT based hardware can now take control from firmware */ 1123 if (adapter->has_manage && !adapter->has_amt) 1124 em_get_hw_control(adapter); 1125 1126 INIT_DEBUGOUT("em_if_attach_post: end"); 1127 1128 return (error); 1129 1130 err_late: 1131 em_release_hw_control(adapter); 1132 em_free_pci_resources(ctx); 1133 em_if_queues_free(ctx); 1134 free(adapter->mta, M_DEVBUF); 1135 1136 return (error); 1137 } 1138 1139 /********************************************************************* 1140 * Device removal routine 1141 * 1142 * The detach entry point is called when the driver is being removed. 1143 * This routine stops the adapter and deallocates all the resources 1144 * that were allocated for driver operation. 1145 * 1146 * return 0 on success, positive on failure 1147 *********************************************************************/ 1148 static int 1149 em_if_detach(if_ctx_t ctx) 1150 { 1151 struct adapter *adapter = iflib_get_softc(ctx); 1152 1153 INIT_DEBUGOUT("em_if_detach: begin"); 1154 1155 e1000_phy_hw_reset(&adapter->hw); 1156 1157 em_release_manageability(adapter); 1158 em_release_hw_control(adapter); 1159 em_free_pci_resources(ctx); 1160 1161 return (0); 1162 } 1163 1164 /********************************************************************* 1165 * 1166 * Shutdown entry point 1167 * 1168 **********************************************************************/ 1169 1170 static int 1171 em_if_shutdown(if_ctx_t ctx) 1172 { 1173 return em_if_suspend(ctx); 1174 } 1175 1176 /* 1177 * Suspend/resume device methods. 1178 */ 1179 static int 1180 em_if_suspend(if_ctx_t ctx) 1181 { 1182 struct adapter *adapter = iflib_get_softc(ctx); 1183 1184 em_release_manageability(adapter); 1185 em_release_hw_control(adapter); 1186 em_enable_wakeup(ctx); 1187 return (0); 1188 } 1189 1190 static int 1191 em_if_resume(if_ctx_t ctx) 1192 { 1193 struct adapter *adapter = iflib_get_softc(ctx); 1194 1195 if (adapter->hw.mac.type == e1000_pch2lan) 1196 e1000_resume_workarounds_pchlan(&adapter->hw); 1197 em_if_init(ctx); 1198 em_init_manageability(adapter); 1199 1200 return(0); 1201 } 1202 1203 static int 1204 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu) 1205 { 1206 int max_frame_size; 1207 struct adapter *adapter = iflib_get_softc(ctx); 1208 if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx); 1209 1210 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)"); 1211 1212 switch (adapter->hw.mac.type) { 1213 case e1000_82571: 1214 case e1000_82572: 1215 case e1000_ich9lan: 1216 case e1000_ich10lan: 1217 case e1000_pch2lan: 1218 case e1000_pch_lpt: 1219 case e1000_pch_spt: 1220 case e1000_pch_cnp: 1221 case e1000_82574: 1222 case e1000_82583: 1223 case e1000_80003es2lan: 1224 /* 9K Jumbo Frame size */ 1225 max_frame_size = 9234; 1226 break; 1227 case e1000_pchlan: 1228 max_frame_size = 4096; 1229 break; 1230 case e1000_82542: 1231 case e1000_ich8lan: 1232 /* Adapters that do not support jumbo frames */ 1233 max_frame_size = ETHER_MAX_LEN; 1234 break; 1235 default: 1236 if (adapter->hw.mac.type >= igb_mac_min) 1237 max_frame_size = 9234; 1238 else /* lem */ 1239 max_frame_size = MAX_JUMBO_FRAME_SIZE; 1240 } 1241 if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) { 1242 return (EINVAL); 1243 } 1244 1245 scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size = 1246 mtu + ETHER_HDR_LEN + ETHER_CRC_LEN; 1247 return (0); 1248 } 1249 1250 /********************************************************************* 1251 * Init entry point 1252 * 1253 * This routine is used in two ways. It is used by the stack as 1254 * init entry point in network interface structure. It is also used 1255 * by the driver as a hw/sw initialization routine to get to a 1256 * consistent state. 1257 * 1258 **********************************************************************/ 1259 static void 1260 em_if_init(if_ctx_t ctx) 1261 { 1262 struct adapter *adapter = iflib_get_softc(ctx); 1263 if_softc_ctx_t scctx = adapter->shared; 1264 struct ifnet *ifp = iflib_get_ifp(ctx); 1265 struct em_tx_queue *tx_que; 1266 int i; 1267 1268 INIT_DEBUGOUT("em_if_init: begin"); 1269 1270 /* Get the latest mac address, User can use a LAA */ 1271 bcopy(if_getlladdr(ifp), adapter->hw.mac.addr, 1272 ETHER_ADDR_LEN); 1273 1274 /* Put the address into the Receive Address Array */ 1275 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); 1276 1277 /* 1278 * With the 82571 adapter, RAR[0] may be overwritten 1279 * when the other port is reset, we make a duplicate 1280 * in RAR[14] for that eventuality, this assures 1281 * the interface continues to function. 1282 */ 1283 if (adapter->hw.mac.type == e1000_82571) { 1284 e1000_set_laa_state_82571(&adapter->hw, TRUE); 1285 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 1286 E1000_RAR_ENTRIES - 1); 1287 } 1288 1289 1290 /* Initialize the hardware */ 1291 em_reset(ctx); 1292 em_if_update_admin_status(ctx); 1293 1294 for (i = 0, tx_que = adapter->tx_queues; i < adapter->tx_num_queues; i++, tx_que++) { 1295 struct tx_ring *txr = &tx_que->txr; 1296 1297 txr->tx_rs_cidx = txr->tx_rs_pidx; 1298 1299 /* Initialize the last processed descriptor to be the end of 1300 * the ring, rather than the start, so that we avoid an 1301 * off-by-one error when calculating how many descriptors are 1302 * done in the credits_update function. 1303 */ 1304 txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1; 1305 } 1306 1307 /* Setup VLAN support, basic and offload if available */ 1308 E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN); 1309 1310 /* Clear bad data from Rx FIFOs */ 1311 if (adapter->hw.mac.type >= igb_mac_min) 1312 e1000_rx_fifo_flush_82575(&adapter->hw); 1313 1314 /* Configure for OS presence */ 1315 em_init_manageability(adapter); 1316 1317 /* Prepare transmit descriptors and buffers */ 1318 em_initialize_transmit_unit(ctx); 1319 1320 /* Setup Multicast table */ 1321 em_if_multi_set(ctx); 1322 1323 adapter->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx); 1324 em_initialize_receive_unit(ctx); 1325 1326 /* Use real VLAN Filter support? */ 1327 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) { 1328 if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) 1329 /* Use real VLAN Filter support */ 1330 em_setup_vlan_hw_support(adapter); 1331 else { 1332 u32 ctrl; 1333 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL); 1334 ctrl |= E1000_CTRL_VME; 1335 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl); 1336 } 1337 } else { 1338 u32 ctrl; 1339 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL); 1340 ctrl &= ~E1000_CTRL_VME; 1341 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl); 1342 } 1343 1344 /* Don't lose promiscuous settings */ 1345 em_if_set_promisc(ctx, if_getflags(ifp)); 1346 e1000_clear_hw_cntrs_base_generic(&adapter->hw); 1347 1348 /* MSI-X configuration for 82574 */ 1349 if (adapter->hw.mac.type == e1000_82574) { 1350 int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); 1351 1352 tmp |= E1000_CTRL_EXT_PBA_CLR; 1353 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp); 1354 /* Set the IVAR - interrupt vector routing. */ 1355 E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars); 1356 } else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */ 1357 igb_configure_queues(adapter); 1358 1359 /* this clears any pending interrupts */ 1360 E1000_READ_REG(&adapter->hw, E1000_ICR); 1361 E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC); 1362 1363 /* AMT based hardware can now take control from firmware */ 1364 if (adapter->has_manage && adapter->has_amt) 1365 em_get_hw_control(adapter); 1366 1367 /* Set Energy Efficient Ethernet */ 1368 if (adapter->hw.mac.type >= igb_mac_min && 1369 adapter->hw.phy.media_type == e1000_media_type_copper) { 1370 if (adapter->hw.mac.type == e1000_i354) 1371 e1000_set_eee_i354(&adapter->hw, TRUE, TRUE); 1372 else 1373 e1000_set_eee_i350(&adapter->hw, TRUE, TRUE); 1374 } 1375 } 1376 1377 /********************************************************************* 1378 * 1379 * Fast Legacy/MSI Combined Interrupt Service routine 1380 * 1381 *********************************************************************/ 1382 int 1383 em_intr(void *arg) 1384 { 1385 struct adapter *adapter = arg; 1386 if_ctx_t ctx = adapter->ctx; 1387 u32 reg_icr; 1388 1389 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR); 1390 1391 /* Hot eject? */ 1392 if (reg_icr == 0xffffffff) 1393 return FILTER_STRAY; 1394 1395 /* Definitely not our interrupt. */ 1396 if (reg_icr == 0x0) 1397 return FILTER_STRAY; 1398 1399 /* 1400 * Starting with the 82571 chip, bit 31 should be used to 1401 * determine whether the interrupt belongs to us. 1402 */ 1403 if (adapter->hw.mac.type >= e1000_82571 && 1404 (reg_icr & E1000_ICR_INT_ASSERTED) == 0) 1405 return FILTER_STRAY; 1406 1407 /* 1408 * Only MSI-X interrupts have one-shot behavior by taking advantage 1409 * of the EIAC register. Thus, explicitly disable interrupts. This 1410 * also works around the MSI message reordering errata on certain 1411 * systems. 1412 */ 1413 IFDI_INTR_DISABLE(ctx); 1414 1415 /* Link status change */ 1416 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) 1417 em_handle_link(ctx); 1418 1419 if (reg_icr & E1000_ICR_RXO) 1420 adapter->rx_overruns++; 1421 1422 return (FILTER_SCHEDULE_THREAD); 1423 } 1424 1425 static int 1426 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid) 1427 { 1428 struct adapter *adapter = iflib_get_softc(ctx); 1429 struct em_rx_queue *rxq = &adapter->rx_queues[rxqid]; 1430 1431 E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims); 1432 return (0); 1433 } 1434 1435 static int 1436 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid) 1437 { 1438 struct adapter *adapter = iflib_get_softc(ctx); 1439 struct em_tx_queue *txq = &adapter->tx_queues[txqid]; 1440 1441 E1000_WRITE_REG(&adapter->hw, E1000_IMS, txq->eims); 1442 return (0); 1443 } 1444 1445 static int 1446 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid) 1447 { 1448 struct adapter *adapter = iflib_get_softc(ctx); 1449 struct em_rx_queue *rxq = &adapter->rx_queues[rxqid]; 1450 1451 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims); 1452 return (0); 1453 } 1454 1455 static int 1456 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid) 1457 { 1458 struct adapter *adapter = iflib_get_softc(ctx); 1459 struct em_tx_queue *txq = &adapter->tx_queues[txqid]; 1460 1461 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txq->eims); 1462 return (0); 1463 } 1464 1465 /********************************************************************* 1466 * 1467 * MSI-X RX Interrupt Service routine 1468 * 1469 **********************************************************************/ 1470 static int 1471 em_msix_que(void *arg) 1472 { 1473 struct em_rx_queue *que = arg; 1474 1475 ++que->irqs; 1476 1477 return (FILTER_SCHEDULE_THREAD); 1478 } 1479 1480 /********************************************************************* 1481 * 1482 * MSI-X Link Fast Interrupt Service routine 1483 * 1484 **********************************************************************/ 1485 static int 1486 em_msix_link(void *arg) 1487 { 1488 struct adapter *adapter = arg; 1489 u32 reg_icr; 1490 1491 ++adapter->link_irq; 1492 MPASS(adapter->hw.back != NULL); 1493 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR); 1494 1495 if (reg_icr & E1000_ICR_RXO) 1496 adapter->rx_overruns++; 1497 1498 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 1499 em_handle_link(adapter->ctx); 1500 } else if (adapter->hw.mac.type == e1000_82574) { 1501 /* Only re-arm 82574 if em_if_update_admin_status() won't. */ 1502 E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK | 1503 E1000_IMS_LSC); 1504 } 1505 1506 if (adapter->hw.mac.type == e1000_82574) { 1507 /* 1508 * Because we must read the ICR for this interrupt it may 1509 * clear other causes using autoclear, for this reason we 1510 * simply create a soft interrupt for all these vectors. 1511 */ 1512 if (reg_icr) 1513 E1000_WRITE_REG(&adapter->hw, E1000_ICS, adapter->ims); 1514 } else { 1515 /* Re-arm unconditionally */ 1516 E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC); 1517 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask); 1518 } 1519 1520 return (FILTER_HANDLED); 1521 } 1522 1523 static void 1524 em_handle_link(void *context) 1525 { 1526 if_ctx_t ctx = context; 1527 struct adapter *adapter = iflib_get_softc(ctx); 1528 1529 adapter->hw.mac.get_link_status = 1; 1530 iflib_admin_intr_deferred(ctx); 1531 } 1532 1533 /********************************************************************* 1534 * 1535 * Media Ioctl callback 1536 * 1537 * This routine is called whenever the user queries the status of 1538 * the interface using ifconfig. 1539 * 1540 **********************************************************************/ 1541 static void 1542 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr) 1543 { 1544 struct adapter *adapter = iflib_get_softc(ctx); 1545 u_char fiber_type = IFM_1000_SX; 1546 1547 INIT_DEBUGOUT("em_if_media_status: begin"); 1548 1549 iflib_admin_intr_deferred(ctx); 1550 1551 ifmr->ifm_status = IFM_AVALID; 1552 ifmr->ifm_active = IFM_ETHER; 1553 1554 if (!adapter->link_active) { 1555 return; 1556 } 1557 1558 ifmr->ifm_status |= IFM_ACTIVE; 1559 1560 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || 1561 (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) { 1562 if (adapter->hw.mac.type == e1000_82545) 1563 fiber_type = IFM_1000_LX; 1564 ifmr->ifm_active |= fiber_type | IFM_FDX; 1565 } else { 1566 switch (adapter->link_speed) { 1567 case 10: 1568 ifmr->ifm_active |= IFM_10_T; 1569 break; 1570 case 100: 1571 ifmr->ifm_active |= IFM_100_TX; 1572 break; 1573 case 1000: 1574 ifmr->ifm_active |= IFM_1000_T; 1575 break; 1576 } 1577 if (adapter->link_duplex == FULL_DUPLEX) 1578 ifmr->ifm_active |= IFM_FDX; 1579 else 1580 ifmr->ifm_active |= IFM_HDX; 1581 } 1582 } 1583 1584 /********************************************************************* 1585 * 1586 * Media Ioctl callback 1587 * 1588 * This routine is called when the user changes speed/duplex using 1589 * media/mediopt option with ifconfig. 1590 * 1591 **********************************************************************/ 1592 static int 1593 em_if_media_change(if_ctx_t ctx) 1594 { 1595 struct adapter *adapter = iflib_get_softc(ctx); 1596 struct ifmedia *ifm = iflib_get_media(ctx); 1597 1598 INIT_DEBUGOUT("em_if_media_change: begin"); 1599 1600 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 1601 return (EINVAL); 1602 1603 switch (IFM_SUBTYPE(ifm->ifm_media)) { 1604 case IFM_AUTO: 1605 adapter->hw.mac.autoneg = DO_AUTO_NEG; 1606 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; 1607 break; 1608 case IFM_1000_LX: 1609 case IFM_1000_SX: 1610 case IFM_1000_T: 1611 adapter->hw.mac.autoneg = DO_AUTO_NEG; 1612 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 1613 break; 1614 case IFM_100_TX: 1615 adapter->hw.mac.autoneg = FALSE; 1616 adapter->hw.phy.autoneg_advertised = 0; 1617 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) 1618 adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL; 1619 else 1620 adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF; 1621 break; 1622 case IFM_10_T: 1623 adapter->hw.mac.autoneg = FALSE; 1624 adapter->hw.phy.autoneg_advertised = 0; 1625 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) 1626 adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL; 1627 else 1628 adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF; 1629 break; 1630 default: 1631 device_printf(adapter->dev, "Unsupported media type\n"); 1632 } 1633 1634 em_if_init(ctx); 1635 1636 return (0); 1637 } 1638 1639 static int 1640 em_if_set_promisc(if_ctx_t ctx, int flags) 1641 { 1642 struct adapter *adapter = iflib_get_softc(ctx); 1643 u32 reg_rctl; 1644 1645 em_disable_promisc(ctx); 1646 1647 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1648 1649 if (flags & IFF_PROMISC) { 1650 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 1651 /* Turn this on if you want to see bad packets */ 1652 if (em_debug_sbp) 1653 reg_rctl |= E1000_RCTL_SBP; 1654 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1655 } else if (flags & IFF_ALLMULTI) { 1656 reg_rctl |= E1000_RCTL_MPE; 1657 reg_rctl &= ~E1000_RCTL_UPE; 1658 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1659 } 1660 return (0); 1661 } 1662 1663 static void 1664 em_disable_promisc(if_ctx_t ctx) 1665 { 1666 struct adapter *adapter = iflib_get_softc(ctx); 1667 struct ifnet *ifp = iflib_get_ifp(ctx); 1668 u32 reg_rctl; 1669 int mcnt = 0; 1670 1671 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1672 reg_rctl &= (~E1000_RCTL_UPE); 1673 if (if_getflags(ifp) & IFF_ALLMULTI) 1674 mcnt = MAX_NUM_MULTICAST_ADDRESSES; 1675 else 1676 mcnt = if_llmaddr_count(ifp); 1677 /* Don't disable if in MAX groups */ 1678 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES) 1679 reg_rctl &= (~E1000_RCTL_MPE); 1680 reg_rctl &= (~E1000_RCTL_SBP); 1681 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1682 } 1683 1684 1685 static u_int 1686 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 1687 { 1688 u8 *mta = arg; 1689 1690 if (cnt == MAX_NUM_MULTICAST_ADDRESSES) 1691 return (1); 1692 1693 bcopy(LLADDR(sdl), &mta[cnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN); 1694 1695 return (1); 1696 } 1697 1698 /********************************************************************* 1699 * Multicast Update 1700 * 1701 * This routine is called whenever multicast address list is updated. 1702 * 1703 **********************************************************************/ 1704 1705 static void 1706 em_if_multi_set(if_ctx_t ctx) 1707 { 1708 struct adapter *adapter = iflib_get_softc(ctx); 1709 struct ifnet *ifp = iflib_get_ifp(ctx); 1710 u32 reg_rctl = 0; 1711 u8 *mta; /* Multicast array memory */ 1712 int mcnt = 0; 1713 1714 IOCTL_DEBUGOUT("em_set_multi: begin"); 1715 1716 mta = adapter->mta; 1717 bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES); 1718 1719 if (adapter->hw.mac.type == e1000_82542 && 1720 adapter->hw.revision_id == E1000_REVISION_2) { 1721 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1722 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) 1723 e1000_pci_clear_mwi(&adapter->hw); 1724 reg_rctl |= E1000_RCTL_RST; 1725 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1726 msec_delay(5); 1727 } 1728 1729 mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta); 1730 1731 if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) { 1732 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1733 reg_rctl |= E1000_RCTL_MPE; 1734 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1735 } else 1736 e1000_update_mc_addr_list(&adapter->hw, mta, mcnt); 1737 1738 if (adapter->hw.mac.type == e1000_82542 && 1739 adapter->hw.revision_id == E1000_REVISION_2) { 1740 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1741 reg_rctl &= ~E1000_RCTL_RST; 1742 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1743 msec_delay(5); 1744 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) 1745 e1000_pci_set_mwi(&adapter->hw); 1746 } 1747 } 1748 1749 /********************************************************************* 1750 * Timer routine 1751 * 1752 * This routine schedules em_if_update_admin_status() to check for 1753 * link status and to gather statistics as well as to perform some 1754 * controller-specific hardware patting. 1755 * 1756 **********************************************************************/ 1757 static void 1758 em_if_timer(if_ctx_t ctx, uint16_t qid) 1759 { 1760 1761 if (qid != 0) 1762 return; 1763 1764 iflib_admin_intr_deferred(ctx); 1765 } 1766 1767 static void 1768 em_if_update_admin_status(if_ctx_t ctx) 1769 { 1770 struct adapter *adapter = iflib_get_softc(ctx); 1771 struct e1000_hw *hw = &adapter->hw; 1772 device_t dev = iflib_get_dev(ctx); 1773 u32 link_check, thstat, ctrl; 1774 1775 link_check = thstat = ctrl = 0; 1776 /* Get the cached link value or read phy for real */ 1777 switch (hw->phy.media_type) { 1778 case e1000_media_type_copper: 1779 if (hw->mac.get_link_status) { 1780 if (hw->mac.type == e1000_pch_spt) 1781 msec_delay(50); 1782 /* Do the work to read phy */ 1783 e1000_check_for_link(hw); 1784 link_check = !hw->mac.get_link_status; 1785 if (link_check) /* ESB2 fix */ 1786 e1000_cfg_on_link_up(hw); 1787 } else { 1788 link_check = TRUE; 1789 } 1790 break; 1791 case e1000_media_type_fiber: 1792 e1000_check_for_link(hw); 1793 link_check = (E1000_READ_REG(hw, E1000_STATUS) & 1794 E1000_STATUS_LU); 1795 break; 1796 case e1000_media_type_internal_serdes: 1797 e1000_check_for_link(hw); 1798 link_check = adapter->hw.mac.serdes_has_link; 1799 break; 1800 /* VF device is type_unknown */ 1801 case e1000_media_type_unknown: 1802 e1000_check_for_link(hw); 1803 link_check = !hw->mac.get_link_status; 1804 /* FALLTHROUGH */ 1805 default: 1806 break; 1807 } 1808 1809 /* Check for thermal downshift or shutdown */ 1810 if (hw->mac.type == e1000_i350) { 1811 thstat = E1000_READ_REG(hw, E1000_THSTAT); 1812 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT); 1813 } 1814 1815 /* Now check for a transition */ 1816 if (link_check && (adapter->link_active == 0)) { 1817 e1000_get_speed_and_duplex(hw, &adapter->link_speed, 1818 &adapter->link_duplex); 1819 /* Check if we must disable SPEED_MODE bit on PCI-E */ 1820 if ((adapter->link_speed != SPEED_1000) && 1821 ((hw->mac.type == e1000_82571) || 1822 (hw->mac.type == e1000_82572))) { 1823 int tarc0; 1824 tarc0 = E1000_READ_REG(hw, E1000_TARC(0)); 1825 tarc0 &= ~TARC_SPEED_MODE_BIT; 1826 E1000_WRITE_REG(hw, E1000_TARC(0), tarc0); 1827 } 1828 if (bootverbose) 1829 device_printf(dev, "Link is up %d Mbps %s\n", 1830 adapter->link_speed, 1831 ((adapter->link_duplex == FULL_DUPLEX) ? 1832 "Full Duplex" : "Half Duplex")); 1833 adapter->link_active = 1; 1834 adapter->smartspeed = 0; 1835 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) == 1836 E1000_CTRL_EXT_LINK_MODE_GMII && 1837 (thstat & E1000_THSTAT_LINK_THROTTLE)) 1838 device_printf(dev, "Link: thermal downshift\n"); 1839 /* Delay Link Up for Phy update */ 1840 if (((hw->mac.type == e1000_i210) || 1841 (hw->mac.type == e1000_i211)) && 1842 (hw->phy.id == I210_I_PHY_ID)) 1843 msec_delay(I210_LINK_DELAY); 1844 /* Reset if the media type changed. */ 1845 if ((hw->dev_spec._82575.media_changed) && 1846 (adapter->hw.mac.type >= igb_mac_min)) { 1847 hw->dev_spec._82575.media_changed = false; 1848 adapter->flags |= IGB_MEDIA_RESET; 1849 em_reset(ctx); 1850 } 1851 iflib_link_state_change(ctx, LINK_STATE_UP, 1852 IF_Mbps(adapter->link_speed)); 1853 } else if (!link_check && (adapter->link_active == 1)) { 1854 adapter->link_speed = 0; 1855 adapter->link_duplex = 0; 1856 adapter->link_active = 0; 1857 iflib_link_state_change(ctx, LINK_STATE_DOWN, 0); 1858 } 1859 em_update_stats_counters(adapter); 1860 1861 /* Reset LAA into RAR[0] on 82571 */ 1862 if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw)) 1863 e1000_rar_set(hw, hw->mac.addr, 0); 1864 1865 if (hw->mac.type < em_mac_min) 1866 lem_smartspeed(adapter); 1867 else if (hw->mac.type == e1000_82574 && 1868 adapter->intr_type == IFLIB_INTR_MSIX) 1869 E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK | 1870 E1000_IMS_LSC); 1871 } 1872 1873 static void 1874 em_if_watchdog_reset(if_ctx_t ctx) 1875 { 1876 struct adapter *adapter = iflib_get_softc(ctx); 1877 1878 /* 1879 * Just count the event; iflib(4) will already trigger a 1880 * sufficient reset of the controller. 1881 */ 1882 adapter->watchdog_events++; 1883 } 1884 1885 /********************************************************************* 1886 * 1887 * This routine disables all traffic on the adapter by issuing a 1888 * global reset on the MAC. 1889 * 1890 **********************************************************************/ 1891 static void 1892 em_if_stop(if_ctx_t ctx) 1893 { 1894 struct adapter *adapter = iflib_get_softc(ctx); 1895 1896 INIT_DEBUGOUT("em_if_stop: begin"); 1897 1898 e1000_reset_hw(&adapter->hw); 1899 if (adapter->hw.mac.type >= e1000_82544) 1900 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0); 1901 1902 e1000_led_off(&adapter->hw); 1903 e1000_cleanup_led(&adapter->hw); 1904 } 1905 1906 /********************************************************************* 1907 * 1908 * Determine hardware revision. 1909 * 1910 **********************************************************************/ 1911 static void 1912 em_identify_hardware(if_ctx_t ctx) 1913 { 1914 device_t dev = iflib_get_dev(ctx); 1915 struct adapter *adapter = iflib_get_softc(ctx); 1916 1917 /* Make sure our PCI config space has the necessary stuff set */ 1918 adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2); 1919 1920 /* Save off the information about this board */ 1921 adapter->hw.vendor_id = pci_get_vendor(dev); 1922 adapter->hw.device_id = pci_get_device(dev); 1923 adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1); 1924 adapter->hw.subsystem_vendor_id = 1925 pci_read_config(dev, PCIR_SUBVEND_0, 2); 1926 adapter->hw.subsystem_device_id = 1927 pci_read_config(dev, PCIR_SUBDEV_0, 2); 1928 1929 /* Do Shared Code Init and Setup */ 1930 if (e1000_set_mac_type(&adapter->hw)) { 1931 device_printf(dev, "Setup init failure\n"); 1932 return; 1933 } 1934 } 1935 1936 static int 1937 em_allocate_pci_resources(if_ctx_t ctx) 1938 { 1939 struct adapter *adapter = iflib_get_softc(ctx); 1940 device_t dev = iflib_get_dev(ctx); 1941 int rid, val; 1942 1943 rid = PCIR_BAR(0); 1944 adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 1945 &rid, RF_ACTIVE); 1946 if (adapter->memory == NULL) { 1947 device_printf(dev, "Unable to allocate bus resource: memory\n"); 1948 return (ENXIO); 1949 } 1950 adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->memory); 1951 adapter->osdep.mem_bus_space_handle = 1952 rman_get_bushandle(adapter->memory); 1953 adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle; 1954 1955 /* Only older adapters use IO mapping */ 1956 if (adapter->hw.mac.type < em_mac_min && 1957 adapter->hw.mac.type > e1000_82543) { 1958 /* Figure our where our IO BAR is ? */ 1959 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) { 1960 val = pci_read_config(dev, rid, 4); 1961 if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) { 1962 break; 1963 } 1964 rid += 4; 1965 /* check for 64bit BAR */ 1966 if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT) 1967 rid += 4; 1968 } 1969 if (rid >= PCIR_CIS) { 1970 device_printf(dev, "Unable to locate IO BAR\n"); 1971 return (ENXIO); 1972 } 1973 adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT, 1974 &rid, RF_ACTIVE); 1975 if (adapter->ioport == NULL) { 1976 device_printf(dev, "Unable to allocate bus resource: " 1977 "ioport\n"); 1978 return (ENXIO); 1979 } 1980 adapter->hw.io_base = 0; 1981 adapter->osdep.io_bus_space_tag = 1982 rman_get_bustag(adapter->ioport); 1983 adapter->osdep.io_bus_space_handle = 1984 rman_get_bushandle(adapter->ioport); 1985 } 1986 1987 adapter->hw.back = &adapter->osdep; 1988 1989 return (0); 1990 } 1991 1992 /********************************************************************* 1993 * 1994 * Set up the MSI-X Interrupt handlers 1995 * 1996 **********************************************************************/ 1997 static int 1998 em_if_msix_intr_assign(if_ctx_t ctx, int msix) 1999 { 2000 struct adapter *adapter = iflib_get_softc(ctx); 2001 struct em_rx_queue *rx_que = adapter->rx_queues; 2002 struct em_tx_queue *tx_que = adapter->tx_queues; 2003 int error, rid, i, vector = 0, rx_vectors; 2004 char buf[16]; 2005 2006 /* First set up ring resources */ 2007 for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) { 2008 rid = vector + 1; 2009 snprintf(buf, sizeof(buf), "rxq%d", i); 2010 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf); 2011 if (error) { 2012 device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error); 2013 adapter->rx_num_queues = i + 1; 2014 goto fail; 2015 } 2016 2017 rx_que->msix = vector; 2018 2019 /* 2020 * Set the bit to enable interrupt 2021 * in E1000_IMS -- bits 20 and 21 2022 * are for RX0 and RX1, note this has 2023 * NOTHING to do with the MSI-X vector 2024 */ 2025 if (adapter->hw.mac.type == e1000_82574) { 2026 rx_que->eims = 1 << (20 + i); 2027 adapter->ims |= rx_que->eims; 2028 adapter->ivars |= (8 | rx_que->msix) << (i * 4); 2029 } else if (adapter->hw.mac.type == e1000_82575) 2030 rx_que->eims = E1000_EICR_TX_QUEUE0 << vector; 2031 else 2032 rx_que->eims = 1 << vector; 2033 } 2034 rx_vectors = vector; 2035 2036 vector = 0; 2037 for (i = 0; i < adapter->tx_num_queues; i++, tx_que++, vector++) { 2038 snprintf(buf, sizeof(buf), "txq%d", i); 2039 tx_que = &adapter->tx_queues[i]; 2040 iflib_softirq_alloc_generic(ctx, 2041 &adapter->rx_queues[i % adapter->rx_num_queues].que_irq, 2042 IFLIB_INTR_TX, tx_que, tx_que->me, buf); 2043 2044 tx_que->msix = (vector % adapter->rx_num_queues); 2045 2046 /* 2047 * Set the bit to enable interrupt 2048 * in E1000_IMS -- bits 22 and 23 2049 * are for TX0 and TX1, note this has 2050 * NOTHING to do with the MSI-X vector 2051 */ 2052 if (adapter->hw.mac.type == e1000_82574) { 2053 tx_que->eims = 1 << (22 + i); 2054 adapter->ims |= tx_que->eims; 2055 adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4)); 2056 } else if (adapter->hw.mac.type == e1000_82575) { 2057 tx_que->eims = E1000_EICR_TX_QUEUE0 << i; 2058 } else { 2059 tx_que->eims = 1 << i; 2060 } 2061 } 2062 2063 /* Link interrupt */ 2064 rid = rx_vectors + 1; 2065 error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq"); 2066 2067 if (error) { 2068 device_printf(iflib_get_dev(ctx), "Failed to register admin handler"); 2069 goto fail; 2070 } 2071 adapter->linkvec = rx_vectors; 2072 if (adapter->hw.mac.type < igb_mac_min) { 2073 adapter->ivars |= (8 | rx_vectors) << 16; 2074 adapter->ivars |= 0x80000000; 2075 } 2076 return (0); 2077 fail: 2078 iflib_irq_free(ctx, &adapter->irq); 2079 rx_que = adapter->rx_queues; 2080 for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++) 2081 iflib_irq_free(ctx, &rx_que->que_irq); 2082 return (error); 2083 } 2084 2085 static void 2086 igb_configure_queues(struct adapter *adapter) 2087 { 2088 struct e1000_hw *hw = &adapter->hw; 2089 struct em_rx_queue *rx_que; 2090 struct em_tx_queue *tx_que; 2091 u32 tmp, ivar = 0, newitr = 0; 2092 2093 /* First turn on RSS capability */ 2094 if (adapter->hw.mac.type != e1000_82575) 2095 E1000_WRITE_REG(hw, E1000_GPIE, 2096 E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME | 2097 E1000_GPIE_PBA | E1000_GPIE_NSICR); 2098 2099 /* Turn on MSI-X */ 2100 switch (adapter->hw.mac.type) { 2101 case e1000_82580: 2102 case e1000_i350: 2103 case e1000_i354: 2104 case e1000_i210: 2105 case e1000_i211: 2106 case e1000_vfadapt: 2107 case e1000_vfadapt_i350: 2108 /* RX entries */ 2109 for (int i = 0; i < adapter->rx_num_queues; i++) { 2110 u32 index = i >> 1; 2111 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2112 rx_que = &adapter->rx_queues[i]; 2113 if (i & 1) { 2114 ivar &= 0xFF00FFFF; 2115 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16; 2116 } else { 2117 ivar &= 0xFFFFFF00; 2118 ivar |= rx_que->msix | E1000_IVAR_VALID; 2119 } 2120 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2121 } 2122 /* TX entries */ 2123 for (int i = 0; i < adapter->tx_num_queues; i++) { 2124 u32 index = i >> 1; 2125 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2126 tx_que = &adapter->tx_queues[i]; 2127 if (i & 1) { 2128 ivar &= 0x00FFFFFF; 2129 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24; 2130 } else { 2131 ivar &= 0xFFFF00FF; 2132 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8; 2133 } 2134 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2135 adapter->que_mask |= tx_que->eims; 2136 } 2137 2138 /* And for the link interrupt */ 2139 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8; 2140 adapter->link_mask = 1 << adapter->linkvec; 2141 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); 2142 break; 2143 case e1000_82576: 2144 /* RX entries */ 2145 for (int i = 0; i < adapter->rx_num_queues; i++) { 2146 u32 index = i & 0x7; /* Each IVAR has two entries */ 2147 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2148 rx_que = &adapter->rx_queues[i]; 2149 if (i < 8) { 2150 ivar &= 0xFFFFFF00; 2151 ivar |= rx_que->msix | E1000_IVAR_VALID; 2152 } else { 2153 ivar &= 0xFF00FFFF; 2154 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16; 2155 } 2156 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2157 adapter->que_mask |= rx_que->eims; 2158 } 2159 /* TX entries */ 2160 for (int i = 0; i < adapter->tx_num_queues; i++) { 2161 u32 index = i & 0x7; /* Each IVAR has two entries */ 2162 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2163 tx_que = &adapter->tx_queues[i]; 2164 if (i < 8) { 2165 ivar &= 0xFFFF00FF; 2166 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8; 2167 } else { 2168 ivar &= 0x00FFFFFF; 2169 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24; 2170 } 2171 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2172 adapter->que_mask |= tx_que->eims; 2173 } 2174 2175 /* And for the link interrupt */ 2176 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8; 2177 adapter->link_mask = 1 << adapter->linkvec; 2178 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); 2179 break; 2180 2181 case e1000_82575: 2182 /* enable MSI-X support*/ 2183 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT); 2184 tmp |= E1000_CTRL_EXT_PBA_CLR; 2185 /* Auto-Mask interrupts upon ICR read. */ 2186 tmp |= E1000_CTRL_EXT_EIAME; 2187 tmp |= E1000_CTRL_EXT_IRCA; 2188 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp); 2189 2190 /* Queues */ 2191 for (int i = 0; i < adapter->rx_num_queues; i++) { 2192 rx_que = &adapter->rx_queues[i]; 2193 tmp = E1000_EICR_RX_QUEUE0 << i; 2194 tmp |= E1000_EICR_TX_QUEUE0 << i; 2195 rx_que->eims = tmp; 2196 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 2197 i, rx_que->eims); 2198 adapter->que_mask |= rx_que->eims; 2199 } 2200 2201 /* Link */ 2202 E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec), 2203 E1000_EIMS_OTHER); 2204 adapter->link_mask |= E1000_EIMS_OTHER; 2205 default: 2206 break; 2207 } 2208 2209 /* Set the starting interrupt rate */ 2210 if (em_max_interrupt_rate > 0) 2211 newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC; 2212 2213 if (hw->mac.type == e1000_82575) 2214 newitr |= newitr << 16; 2215 else 2216 newitr |= E1000_EITR_CNT_IGNR; 2217 2218 for (int i = 0; i < adapter->rx_num_queues; i++) { 2219 rx_que = &adapter->rx_queues[i]; 2220 E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr); 2221 } 2222 2223 return; 2224 } 2225 2226 static void 2227 em_free_pci_resources(if_ctx_t ctx) 2228 { 2229 struct adapter *adapter = iflib_get_softc(ctx); 2230 struct em_rx_queue *que = adapter->rx_queues; 2231 device_t dev = iflib_get_dev(ctx); 2232 2233 /* Release all MSI-X queue resources */ 2234 if (adapter->intr_type == IFLIB_INTR_MSIX) 2235 iflib_irq_free(ctx, &adapter->irq); 2236 2237 if (que != NULL) { 2238 for (int i = 0; i < adapter->rx_num_queues; i++, que++) { 2239 iflib_irq_free(ctx, &que->que_irq); 2240 } 2241 } 2242 2243 if (adapter->memory != NULL) { 2244 bus_release_resource(dev, SYS_RES_MEMORY, 2245 rman_get_rid(adapter->memory), adapter->memory); 2246 adapter->memory = NULL; 2247 } 2248 2249 if (adapter->flash != NULL) { 2250 bus_release_resource(dev, SYS_RES_MEMORY, 2251 rman_get_rid(adapter->flash), adapter->flash); 2252 adapter->flash = NULL; 2253 } 2254 2255 if (adapter->ioport != NULL) { 2256 bus_release_resource(dev, SYS_RES_IOPORT, 2257 rman_get_rid(adapter->ioport), adapter->ioport); 2258 adapter->ioport = NULL; 2259 } 2260 } 2261 2262 /* Set up MSI or MSI-X */ 2263 static int 2264 em_setup_msix(if_ctx_t ctx) 2265 { 2266 struct adapter *adapter = iflib_get_softc(ctx); 2267 2268 if (adapter->hw.mac.type == e1000_82574) { 2269 em_enable_vectors_82574(ctx); 2270 } 2271 return (0); 2272 } 2273 2274 /********************************************************************* 2275 * 2276 * Workaround for SmartSpeed on 82541 and 82547 controllers 2277 * 2278 **********************************************************************/ 2279 static void 2280 lem_smartspeed(struct adapter *adapter) 2281 { 2282 u16 phy_tmp; 2283 2284 if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) || 2285 adapter->hw.mac.autoneg == 0 || 2286 (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0) 2287 return; 2288 2289 if (adapter->smartspeed == 0) { 2290 /* If Master/Slave config fault is asserted twice, 2291 * we assume back-to-back */ 2292 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp); 2293 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT)) 2294 return; 2295 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp); 2296 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) { 2297 e1000_read_phy_reg(&adapter->hw, 2298 PHY_1000T_CTRL, &phy_tmp); 2299 if(phy_tmp & CR_1000T_MS_ENABLE) { 2300 phy_tmp &= ~CR_1000T_MS_ENABLE; 2301 e1000_write_phy_reg(&adapter->hw, 2302 PHY_1000T_CTRL, phy_tmp); 2303 adapter->smartspeed++; 2304 if(adapter->hw.mac.autoneg && 2305 !e1000_copper_link_autoneg(&adapter->hw) && 2306 !e1000_read_phy_reg(&adapter->hw, 2307 PHY_CONTROL, &phy_tmp)) { 2308 phy_tmp |= (MII_CR_AUTO_NEG_EN | 2309 MII_CR_RESTART_AUTO_NEG); 2310 e1000_write_phy_reg(&adapter->hw, 2311 PHY_CONTROL, phy_tmp); 2312 } 2313 } 2314 } 2315 return; 2316 } else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) { 2317 /* If still no link, perhaps using 2/3 pair cable */ 2318 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp); 2319 phy_tmp |= CR_1000T_MS_ENABLE; 2320 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp); 2321 if(adapter->hw.mac.autoneg && 2322 !e1000_copper_link_autoneg(&adapter->hw) && 2323 !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) { 2324 phy_tmp |= (MII_CR_AUTO_NEG_EN | 2325 MII_CR_RESTART_AUTO_NEG); 2326 e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp); 2327 } 2328 } 2329 /* Restart process after EM_SMARTSPEED_MAX iterations */ 2330 if(adapter->smartspeed++ == EM_SMARTSPEED_MAX) 2331 adapter->smartspeed = 0; 2332 } 2333 2334 /********************************************************************* 2335 * 2336 * Initialize the DMA Coalescing feature 2337 * 2338 **********************************************************************/ 2339 static void 2340 igb_init_dmac(struct adapter *adapter, u32 pba) 2341 { 2342 device_t dev = adapter->dev; 2343 struct e1000_hw *hw = &adapter->hw; 2344 u32 dmac, reg = ~E1000_DMACR_DMAC_EN; 2345 u16 hwm; 2346 u16 max_frame_size; 2347 2348 if (hw->mac.type == e1000_i211) 2349 return; 2350 2351 max_frame_size = adapter->shared->isc_max_frame_size; 2352 if (hw->mac.type > e1000_82580) { 2353 2354 if (adapter->dmac == 0) { /* Disabling it */ 2355 E1000_WRITE_REG(hw, E1000_DMACR, reg); 2356 return; 2357 } else 2358 device_printf(dev, "DMA Coalescing enabled\n"); 2359 2360 /* Set starting threshold */ 2361 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0); 2362 2363 hwm = 64 * pba - max_frame_size / 16; 2364 if (hwm < 64 * (pba - 6)) 2365 hwm = 64 * (pba - 6); 2366 reg = E1000_READ_REG(hw, E1000_FCRTC); 2367 reg &= ~E1000_FCRTC_RTH_COAL_MASK; 2368 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) 2369 & E1000_FCRTC_RTH_COAL_MASK); 2370 E1000_WRITE_REG(hw, E1000_FCRTC, reg); 2371 2372 2373 dmac = pba - max_frame_size / 512; 2374 if (dmac < pba - 10) 2375 dmac = pba - 10; 2376 reg = E1000_READ_REG(hw, E1000_DMACR); 2377 reg &= ~E1000_DMACR_DMACTHR_MASK; 2378 reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT) 2379 & E1000_DMACR_DMACTHR_MASK); 2380 2381 /* transition to L0x or L1 if available..*/ 2382 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); 2383 2384 /* Check if status is 2.5Gb backplane connection 2385 * before configuration of watchdog timer, which is 2386 * in msec values in 12.8usec intervals 2387 * watchdog timer= msec values in 32usec intervals 2388 * for non 2.5Gb connection 2389 */ 2390 if (hw->mac.type == e1000_i354) { 2391 int status = E1000_READ_REG(hw, E1000_STATUS); 2392 if ((status & E1000_STATUS_2P5_SKU) && 2393 (!(status & E1000_STATUS_2P5_SKU_OVER))) 2394 reg |= ((adapter->dmac * 5) >> 6); 2395 else 2396 reg |= (adapter->dmac >> 5); 2397 } else { 2398 reg |= (adapter->dmac >> 5); 2399 } 2400 2401 E1000_WRITE_REG(hw, E1000_DMACR, reg); 2402 2403 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0); 2404 2405 /* Set the interval before transition */ 2406 reg = E1000_READ_REG(hw, E1000_DMCTLX); 2407 if (hw->mac.type == e1000_i350) 2408 reg |= IGB_DMCTLX_DCFLUSH_DIS; 2409 /* 2410 ** in 2.5Gb connection, TTLX unit is 0.4 usec 2411 ** which is 0x4*2 = 0xA. But delay is still 4 usec 2412 */ 2413 if (hw->mac.type == e1000_i354) { 2414 int status = E1000_READ_REG(hw, E1000_STATUS); 2415 if ((status & E1000_STATUS_2P5_SKU) && 2416 (!(status & E1000_STATUS_2P5_SKU_OVER))) 2417 reg |= 0xA; 2418 else 2419 reg |= 0x4; 2420 } else { 2421 reg |= 0x4; 2422 } 2423 2424 E1000_WRITE_REG(hw, E1000_DMCTLX, reg); 2425 2426 /* free space in tx packet buffer to wake from DMA coal */ 2427 E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE - 2428 (2 * max_frame_size)) >> 6); 2429 2430 /* make low power state decision controlled by DMA coal */ 2431 reg = E1000_READ_REG(hw, E1000_PCIEMISC); 2432 reg &= ~E1000_PCIEMISC_LX_DECISION; 2433 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg); 2434 2435 } else if (hw->mac.type == e1000_82580) { 2436 u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC); 2437 E1000_WRITE_REG(hw, E1000_PCIEMISC, 2438 reg & ~E1000_PCIEMISC_LX_DECISION); 2439 E1000_WRITE_REG(hw, E1000_DMACR, 0); 2440 } 2441 } 2442 2443 /********************************************************************* 2444 * 2445 * Initialize the hardware to a configuration as specified by the 2446 * adapter structure. 2447 * 2448 **********************************************************************/ 2449 static void 2450 em_reset(if_ctx_t ctx) 2451 { 2452 device_t dev = iflib_get_dev(ctx); 2453 struct adapter *adapter = iflib_get_softc(ctx); 2454 struct ifnet *ifp = iflib_get_ifp(ctx); 2455 struct e1000_hw *hw = &adapter->hw; 2456 u16 rx_buffer_size; 2457 u32 pba; 2458 2459 INIT_DEBUGOUT("em_reset: begin"); 2460 /* Let the firmware know the OS is in control */ 2461 em_get_hw_control(adapter); 2462 2463 /* Set up smart power down as default off on newer adapters. */ 2464 if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 || 2465 hw->mac.type == e1000_82572)) { 2466 u16 phy_tmp = 0; 2467 2468 /* Speed up time to link by disabling smart power down. */ 2469 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp); 2470 phy_tmp &= ~IGP02E1000_PM_SPD; 2471 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp); 2472 } 2473 2474 /* 2475 * Packet Buffer Allocation (PBA) 2476 * Writing PBA sets the receive portion of the buffer 2477 * the remainder is used for the transmit buffer. 2478 */ 2479 switch (hw->mac.type) { 2480 /* Total Packet Buffer on these is 48K */ 2481 case e1000_82571: 2482 case e1000_82572: 2483 case e1000_80003es2lan: 2484 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */ 2485 break; 2486 case e1000_82573: /* 82573: Total Packet Buffer is 32K */ 2487 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */ 2488 break; 2489 case e1000_82574: 2490 case e1000_82583: 2491 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */ 2492 break; 2493 case e1000_ich8lan: 2494 pba = E1000_PBA_8K; 2495 break; 2496 case e1000_ich9lan: 2497 case e1000_ich10lan: 2498 /* Boost Receive side for jumbo frames */ 2499 if (adapter->hw.mac.max_frame_size > 4096) 2500 pba = E1000_PBA_14K; 2501 else 2502 pba = E1000_PBA_10K; 2503 break; 2504 case e1000_pchlan: 2505 case e1000_pch2lan: 2506 case e1000_pch_lpt: 2507 case e1000_pch_spt: 2508 case e1000_pch_cnp: 2509 pba = E1000_PBA_26K; 2510 break; 2511 case e1000_82575: 2512 pba = E1000_PBA_32K; 2513 break; 2514 case e1000_82576: 2515 case e1000_vfadapt: 2516 pba = E1000_READ_REG(hw, E1000_RXPBS); 2517 pba &= E1000_RXPBS_SIZE_MASK_82576; 2518 break; 2519 case e1000_82580: 2520 case e1000_i350: 2521 case e1000_i354: 2522 case e1000_vfadapt_i350: 2523 pba = E1000_READ_REG(hw, E1000_RXPBS); 2524 pba = e1000_rxpbs_adjust_82580(pba); 2525 break; 2526 case e1000_i210: 2527 case e1000_i211: 2528 pba = E1000_PBA_34K; 2529 break; 2530 default: 2531 if (adapter->hw.mac.max_frame_size > 8192) 2532 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */ 2533 else 2534 pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */ 2535 } 2536 2537 /* Special needs in case of Jumbo frames */ 2538 if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) { 2539 u32 tx_space, min_tx, min_rx; 2540 pba = E1000_READ_REG(hw, E1000_PBA); 2541 tx_space = pba >> 16; 2542 pba &= 0xffff; 2543 min_tx = (adapter->hw.mac.max_frame_size + 2544 sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2; 2545 min_tx = roundup2(min_tx, 1024); 2546 min_tx >>= 10; 2547 min_rx = adapter->hw.mac.max_frame_size; 2548 min_rx = roundup2(min_rx, 1024); 2549 min_rx >>= 10; 2550 if (tx_space < min_tx && 2551 ((min_tx - tx_space) < pba)) { 2552 pba = pba - (min_tx - tx_space); 2553 /* 2554 * if short on rx space, rx wins 2555 * and must trump tx adjustment 2556 */ 2557 if (pba < min_rx) 2558 pba = min_rx; 2559 } 2560 E1000_WRITE_REG(hw, E1000_PBA, pba); 2561 } 2562 2563 if (hw->mac.type < igb_mac_min) 2564 E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba); 2565 2566 INIT_DEBUGOUT1("em_reset: pba=%dK",pba); 2567 2568 /* 2569 * These parameters control the automatic generation (Tx) and 2570 * response (Rx) to Ethernet PAUSE frames. 2571 * - High water mark should allow for at least two frames to be 2572 * received after sending an XOFF. 2573 * - Low water mark works best when it is very near the high water mark. 2574 * This allows the receiver to restart by sending XON when it has 2575 * drained a bit. Here we use an arbitrary value of 1500 which will 2576 * restart after one full frame is pulled from the buffer. There 2577 * could be several smaller frames in the buffer and if so they will 2578 * not trigger the XON until their total number reduces the buffer 2579 * by 1500. 2580 * - The pause time is fairly large at 1000 x 512ns = 512 usec. 2581 */ 2582 rx_buffer_size = (pba & 0xffff) << 10; 2583 hw->fc.high_water = rx_buffer_size - 2584 roundup2(adapter->hw.mac.max_frame_size, 1024); 2585 hw->fc.low_water = hw->fc.high_water - 1500; 2586 2587 if (adapter->fc) /* locally set flow control value? */ 2588 hw->fc.requested_mode = adapter->fc; 2589 else 2590 hw->fc.requested_mode = e1000_fc_full; 2591 2592 if (hw->mac.type == e1000_80003es2lan) 2593 hw->fc.pause_time = 0xFFFF; 2594 else 2595 hw->fc.pause_time = EM_FC_PAUSE_TIME; 2596 2597 hw->fc.send_xon = TRUE; 2598 2599 /* Device specific overrides/settings */ 2600 switch (hw->mac.type) { 2601 case e1000_pchlan: 2602 /* Workaround: no TX flow ctrl for PCH */ 2603 hw->fc.requested_mode = e1000_fc_rx_pause; 2604 hw->fc.pause_time = 0xFFFF; /* override */ 2605 if (if_getmtu(ifp) > ETHERMTU) { 2606 hw->fc.high_water = 0x3500; 2607 hw->fc.low_water = 0x1500; 2608 } else { 2609 hw->fc.high_water = 0x5000; 2610 hw->fc.low_water = 0x3000; 2611 } 2612 hw->fc.refresh_time = 0x1000; 2613 break; 2614 case e1000_pch2lan: 2615 case e1000_pch_lpt: 2616 case e1000_pch_spt: 2617 case e1000_pch_cnp: 2618 hw->fc.high_water = 0x5C20; 2619 hw->fc.low_water = 0x5048; 2620 hw->fc.pause_time = 0x0650; 2621 hw->fc.refresh_time = 0x0400; 2622 /* Jumbos need adjusted PBA */ 2623 if (if_getmtu(ifp) > ETHERMTU) 2624 E1000_WRITE_REG(hw, E1000_PBA, 12); 2625 else 2626 E1000_WRITE_REG(hw, E1000_PBA, 26); 2627 break; 2628 case e1000_82575: 2629 case e1000_82576: 2630 /* 8-byte granularity */ 2631 hw->fc.low_water = hw->fc.high_water - 8; 2632 break; 2633 case e1000_82580: 2634 case e1000_i350: 2635 case e1000_i354: 2636 case e1000_i210: 2637 case e1000_i211: 2638 case e1000_vfadapt: 2639 case e1000_vfadapt_i350: 2640 /* 16-byte granularity */ 2641 hw->fc.low_water = hw->fc.high_water - 16; 2642 break; 2643 case e1000_ich9lan: 2644 case e1000_ich10lan: 2645 if (if_getmtu(ifp) > ETHERMTU) { 2646 hw->fc.high_water = 0x2800; 2647 hw->fc.low_water = hw->fc.high_water - 8; 2648 break; 2649 } 2650 /* FALLTHROUGH */ 2651 default: 2652 if (hw->mac.type == e1000_80003es2lan) 2653 hw->fc.pause_time = 0xFFFF; 2654 break; 2655 } 2656 2657 /* Issue a global reset */ 2658 e1000_reset_hw(hw); 2659 if (adapter->hw.mac.type >= igb_mac_min) { 2660 E1000_WRITE_REG(hw, E1000_WUC, 0); 2661 } else { 2662 E1000_WRITE_REG(hw, E1000_WUFC, 0); 2663 em_disable_aspm(adapter); 2664 } 2665 if (adapter->flags & IGB_MEDIA_RESET) { 2666 e1000_setup_init_funcs(hw, TRUE); 2667 e1000_get_bus_info(hw); 2668 adapter->flags &= ~IGB_MEDIA_RESET; 2669 } 2670 /* and a re-init */ 2671 if (e1000_init_hw(hw) < 0) { 2672 device_printf(dev, "Hardware Initialization Failed\n"); 2673 return; 2674 } 2675 if (adapter->hw.mac.type >= igb_mac_min) 2676 igb_init_dmac(adapter, pba); 2677 2678 E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN); 2679 e1000_get_phy_info(hw); 2680 e1000_check_for_link(hw); 2681 } 2682 2683 /* 2684 * Initialise the RSS mapping for NICs that support multiple transmit/ 2685 * receive rings. 2686 */ 2687 2688 #define RSSKEYLEN 10 2689 static void 2690 em_initialize_rss_mapping(struct adapter *adapter) 2691 { 2692 uint8_t rss_key[4 * RSSKEYLEN]; 2693 uint32_t reta = 0; 2694 struct e1000_hw *hw = &adapter->hw; 2695 int i; 2696 2697 /* 2698 * Configure RSS key 2699 */ 2700 arc4rand(rss_key, sizeof(rss_key), 0); 2701 for (i = 0; i < RSSKEYLEN; ++i) { 2702 uint32_t rssrk = 0; 2703 2704 rssrk = EM_RSSRK_VAL(rss_key, i); 2705 E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk); 2706 } 2707 2708 /* 2709 * Configure RSS redirect table in following fashion: 2710 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)] 2711 */ 2712 for (i = 0; i < sizeof(reta); ++i) { 2713 uint32_t q; 2714 2715 q = (i % adapter->rx_num_queues) << 7; 2716 reta |= q << (8 * i); 2717 } 2718 2719 for (i = 0; i < 32; ++i) 2720 E1000_WRITE_REG(hw, E1000_RETA(i), reta); 2721 2722 E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q | 2723 E1000_MRQC_RSS_FIELD_IPV4_TCP | 2724 E1000_MRQC_RSS_FIELD_IPV4 | 2725 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX | 2726 E1000_MRQC_RSS_FIELD_IPV6_EX | 2727 E1000_MRQC_RSS_FIELD_IPV6); 2728 } 2729 2730 static void 2731 igb_initialize_rss_mapping(struct adapter *adapter) 2732 { 2733 struct e1000_hw *hw = &adapter->hw; 2734 int i; 2735 int queue_id; 2736 u32 reta; 2737 u32 rss_key[10], mrqc, shift = 0; 2738 2739 /* XXX? */ 2740 if (adapter->hw.mac.type == e1000_82575) 2741 shift = 6; 2742 2743 /* 2744 * The redirection table controls which destination 2745 * queue each bucket redirects traffic to. 2746 * Each DWORD represents four queues, with the LSB 2747 * being the first queue in the DWORD. 2748 * 2749 * This just allocates buckets to queues using round-robin 2750 * allocation. 2751 * 2752 * NOTE: It Just Happens to line up with the default 2753 * RSS allocation method. 2754 */ 2755 2756 /* Warning FM follows */ 2757 reta = 0; 2758 for (i = 0; i < 128; i++) { 2759 #ifdef RSS 2760 queue_id = rss_get_indirection_to_bucket(i); 2761 /* 2762 * If we have more queues than buckets, we'll 2763 * end up mapping buckets to a subset of the 2764 * queues. 2765 * 2766 * If we have more buckets than queues, we'll 2767 * end up instead assigning multiple buckets 2768 * to queues. 2769 * 2770 * Both are suboptimal, but we need to handle 2771 * the case so we don't go out of bounds 2772 * indexing arrays and such. 2773 */ 2774 queue_id = queue_id % adapter->rx_num_queues; 2775 #else 2776 queue_id = (i % adapter->rx_num_queues); 2777 #endif 2778 /* Adjust if required */ 2779 queue_id = queue_id << shift; 2780 2781 /* 2782 * The low 8 bits are for hash value (n+0); 2783 * The next 8 bits are for hash value (n+1), etc. 2784 */ 2785 reta = reta >> 8; 2786 reta = reta | ( ((uint32_t) queue_id) << 24); 2787 if ((i & 3) == 3) { 2788 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta); 2789 reta = 0; 2790 } 2791 } 2792 2793 /* Now fill in hash table */ 2794 2795 /* 2796 * MRQC: Multiple Receive Queues Command 2797 * Set queuing to RSS control, number depends on the device. 2798 */ 2799 mrqc = E1000_MRQC_ENABLE_RSS_8Q; 2800 2801 #ifdef RSS 2802 /* XXX ew typecasting */ 2803 rss_getkey((uint8_t *) &rss_key); 2804 #else 2805 arc4rand(&rss_key, sizeof(rss_key), 0); 2806 #endif 2807 for (i = 0; i < 10; i++) 2808 E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]); 2809 2810 /* 2811 * Configure the RSS fields to hash upon. 2812 */ 2813 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 | 2814 E1000_MRQC_RSS_FIELD_IPV4_TCP); 2815 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 | 2816 E1000_MRQC_RSS_FIELD_IPV6_TCP); 2817 mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP | 2818 E1000_MRQC_RSS_FIELD_IPV6_UDP); 2819 mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX | 2820 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); 2821 2822 E1000_WRITE_REG(hw, E1000_MRQC, mrqc); 2823 } 2824 2825 /********************************************************************* 2826 * 2827 * Setup networking device structure and register interface media. 2828 * 2829 **********************************************************************/ 2830 static int 2831 em_setup_interface(if_ctx_t ctx) 2832 { 2833 struct ifnet *ifp = iflib_get_ifp(ctx); 2834 struct adapter *adapter = iflib_get_softc(ctx); 2835 if_softc_ctx_t scctx = adapter->shared; 2836 2837 INIT_DEBUGOUT("em_setup_interface: begin"); 2838 2839 /* Single Queue */ 2840 if (adapter->tx_num_queues == 1) { 2841 if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1); 2842 if_setsendqready(ifp); 2843 } 2844 2845 /* 2846 * Specify the media types supported by this adapter and register 2847 * callbacks to update media and link information 2848 */ 2849 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || 2850 (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) { 2851 u_char fiber_type = IFM_1000_SX; /* default type */ 2852 2853 if (adapter->hw.mac.type == e1000_82545) 2854 fiber_type = IFM_1000_LX; 2855 ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL); 2856 ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL); 2857 } else { 2858 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL); 2859 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL); 2860 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL); 2861 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); 2862 if (adapter->hw.phy.type != e1000_phy_ife) { 2863 ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); 2864 ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL); 2865 } 2866 } 2867 ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL); 2868 ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO); 2869 return (0); 2870 } 2871 2872 static int 2873 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets) 2874 { 2875 struct adapter *adapter = iflib_get_softc(ctx); 2876 if_softc_ctx_t scctx = adapter->shared; 2877 int error = E1000_SUCCESS; 2878 struct em_tx_queue *que; 2879 int i, j; 2880 2881 MPASS(adapter->tx_num_queues > 0); 2882 MPASS(adapter->tx_num_queues == ntxqsets); 2883 2884 /* First allocate the top level queue structs */ 2885 if (!(adapter->tx_queues = 2886 (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) * 2887 adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { 2888 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n"); 2889 return(ENOMEM); 2890 } 2891 2892 for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) { 2893 /* Set up some basics */ 2894 2895 struct tx_ring *txr = &que->txr; 2896 txr->adapter = que->adapter = adapter; 2897 que->me = txr->me = i; 2898 2899 /* Allocate report status array */ 2900 if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) { 2901 device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n"); 2902 error = ENOMEM; 2903 goto fail; 2904 } 2905 for (j = 0; j < scctx->isc_ntxd[0]; j++) 2906 txr->tx_rsq[j] = QIDX_INVALID; 2907 /* get the virtual and physical address of the hardware queues */ 2908 txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs]; 2909 txr->tx_paddr = paddrs[i*ntxqs]; 2910 } 2911 2912 if (bootverbose) 2913 device_printf(iflib_get_dev(ctx), 2914 "allocated for %d tx_queues\n", adapter->tx_num_queues); 2915 return (0); 2916 fail: 2917 em_if_queues_free(ctx); 2918 return (error); 2919 } 2920 2921 static int 2922 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets) 2923 { 2924 struct adapter *adapter = iflib_get_softc(ctx); 2925 int error = E1000_SUCCESS; 2926 struct em_rx_queue *que; 2927 int i; 2928 2929 MPASS(adapter->rx_num_queues > 0); 2930 MPASS(adapter->rx_num_queues == nrxqsets); 2931 2932 /* First allocate the top level queue structs */ 2933 if (!(adapter->rx_queues = 2934 (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) * 2935 adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { 2936 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n"); 2937 error = ENOMEM; 2938 goto fail; 2939 } 2940 2941 for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) { 2942 /* Set up some basics */ 2943 struct rx_ring *rxr = &que->rxr; 2944 rxr->adapter = que->adapter = adapter; 2945 rxr->que = que; 2946 que->me = rxr->me = i; 2947 2948 /* get the virtual and physical address of the hardware queues */ 2949 rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs]; 2950 rxr->rx_paddr = paddrs[i*nrxqs]; 2951 } 2952 2953 if (bootverbose) 2954 device_printf(iflib_get_dev(ctx), 2955 "allocated for %d rx_queues\n", adapter->rx_num_queues); 2956 2957 return (0); 2958 fail: 2959 em_if_queues_free(ctx); 2960 return (error); 2961 } 2962 2963 static void 2964 em_if_queues_free(if_ctx_t ctx) 2965 { 2966 struct adapter *adapter = iflib_get_softc(ctx); 2967 struct em_tx_queue *tx_que = adapter->tx_queues; 2968 struct em_rx_queue *rx_que = adapter->rx_queues; 2969 2970 if (tx_que != NULL) { 2971 for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) { 2972 struct tx_ring *txr = &tx_que->txr; 2973 if (txr->tx_rsq == NULL) 2974 break; 2975 2976 free(txr->tx_rsq, M_DEVBUF); 2977 txr->tx_rsq = NULL; 2978 } 2979 free(adapter->tx_queues, M_DEVBUF); 2980 adapter->tx_queues = NULL; 2981 } 2982 2983 if (rx_que != NULL) { 2984 free(adapter->rx_queues, M_DEVBUF); 2985 adapter->rx_queues = NULL; 2986 } 2987 2988 em_release_hw_control(adapter); 2989 2990 if (adapter->mta != NULL) { 2991 free(adapter->mta, M_DEVBUF); 2992 } 2993 } 2994 2995 /********************************************************************* 2996 * 2997 * Enable transmit unit. 2998 * 2999 **********************************************************************/ 3000 static void 3001 em_initialize_transmit_unit(if_ctx_t ctx) 3002 { 3003 struct adapter *adapter = iflib_get_softc(ctx); 3004 if_softc_ctx_t scctx = adapter->shared; 3005 struct em_tx_queue *que; 3006 struct tx_ring *txr; 3007 struct e1000_hw *hw = &adapter->hw; 3008 u32 tctl, txdctl = 0, tarc, tipg = 0; 3009 3010 INIT_DEBUGOUT("em_initialize_transmit_unit: begin"); 3011 3012 for (int i = 0; i < adapter->tx_num_queues; i++, txr++) { 3013 u64 bus_addr; 3014 caddr_t offp, endp; 3015 3016 que = &adapter->tx_queues[i]; 3017 txr = &que->txr; 3018 bus_addr = txr->tx_paddr; 3019 3020 /* Clear checksum offload context. */ 3021 offp = (caddr_t)&txr->csum_flags; 3022 endp = (caddr_t)(txr + 1); 3023 bzero(offp, endp - offp); 3024 3025 /* Base and Len of TX Ring */ 3026 E1000_WRITE_REG(hw, E1000_TDLEN(i), 3027 scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc)); 3028 E1000_WRITE_REG(hw, E1000_TDBAH(i), 3029 (u32)(bus_addr >> 32)); 3030 E1000_WRITE_REG(hw, E1000_TDBAL(i), 3031 (u32)bus_addr); 3032 /* Init the HEAD/TAIL indices */ 3033 E1000_WRITE_REG(hw, E1000_TDT(i), 0); 3034 E1000_WRITE_REG(hw, E1000_TDH(i), 0); 3035 3036 HW_DEBUGOUT2("Base = %x, Length = %x\n", 3037 E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)), 3038 E1000_READ_REG(&adapter->hw, E1000_TDLEN(i))); 3039 3040 txdctl = 0; /* clear txdctl */ 3041 txdctl |= 0x1f; /* PTHRESH */ 3042 txdctl |= 1 << 8; /* HTHRESH */ 3043 txdctl |= 1 << 16;/* WTHRESH */ 3044 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */ 3045 txdctl |= E1000_TXDCTL_GRAN; 3046 txdctl |= 1 << 25; /* LWTHRESH */ 3047 3048 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl); 3049 } 3050 3051 /* Set the default values for the Tx Inter Packet Gap timer */ 3052 switch (adapter->hw.mac.type) { 3053 case e1000_80003es2lan: 3054 tipg = DEFAULT_82543_TIPG_IPGR1; 3055 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 << 3056 E1000_TIPG_IPGR2_SHIFT; 3057 break; 3058 case e1000_82542: 3059 tipg = DEFAULT_82542_TIPG_IPGT; 3060 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; 3061 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; 3062 break; 3063 default: 3064 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || 3065 (adapter->hw.phy.media_type == 3066 e1000_media_type_internal_serdes)) 3067 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 3068 else 3069 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 3070 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; 3071 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; 3072 } 3073 3074 E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg); 3075 E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value); 3076 3077 if(adapter->hw.mac.type >= e1000_82540) 3078 E1000_WRITE_REG(&adapter->hw, E1000_TADV, 3079 adapter->tx_abs_int_delay.value); 3080 3081 if ((adapter->hw.mac.type == e1000_82571) || 3082 (adapter->hw.mac.type == e1000_82572)) { 3083 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0)); 3084 tarc |= TARC_SPEED_MODE_BIT; 3085 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); 3086 } else if (adapter->hw.mac.type == e1000_80003es2lan) { 3087 /* errata: program both queues to unweighted RR */ 3088 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0)); 3089 tarc |= 1; 3090 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); 3091 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1)); 3092 tarc |= 1; 3093 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc); 3094 } else if (adapter->hw.mac.type == e1000_82574) { 3095 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0)); 3096 tarc |= TARC_ERRATA_BIT; 3097 if ( adapter->tx_num_queues > 1) { 3098 tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX); 3099 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); 3100 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc); 3101 } else 3102 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); 3103 } 3104 3105 if (adapter->tx_int_delay.value > 0) 3106 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 3107 3108 /* Program the Transmit Control Register */ 3109 tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL); 3110 tctl &= ~E1000_TCTL_CT; 3111 tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN | 3112 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT)); 3113 3114 if (adapter->hw.mac.type >= e1000_82571) 3115 tctl |= E1000_TCTL_MULR; 3116 3117 /* This write will effectively turn on the transmit unit. */ 3118 E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl); 3119 3120 /* SPT and KBL errata workarounds */ 3121 if (hw->mac.type == e1000_pch_spt) { 3122 u32 reg; 3123 reg = E1000_READ_REG(hw, E1000_IOSFPC); 3124 reg |= E1000_RCTL_RDMTS_HEX; 3125 E1000_WRITE_REG(hw, E1000_IOSFPC, reg); 3126 /* i218-i219 Specification Update 1.5.4.5 */ 3127 reg = E1000_READ_REG(hw, E1000_TARC(0)); 3128 reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ; 3129 reg |= E1000_TARC0_CB_MULTIQ_2_REQ; 3130 E1000_WRITE_REG(hw, E1000_TARC(0), reg); 3131 } 3132 } 3133 3134 /********************************************************************* 3135 * 3136 * Enable receive unit. 3137 * 3138 **********************************************************************/ 3139 3140 static void 3141 em_initialize_receive_unit(if_ctx_t ctx) 3142 { 3143 struct adapter *adapter = iflib_get_softc(ctx); 3144 if_softc_ctx_t scctx = adapter->shared; 3145 struct ifnet *ifp = iflib_get_ifp(ctx); 3146 struct e1000_hw *hw = &adapter->hw; 3147 struct em_rx_queue *que; 3148 int i; 3149 u32 rctl, rxcsum, rfctl; 3150 3151 INIT_DEBUGOUT("em_initialize_receive_units: begin"); 3152 3153 /* 3154 * Make sure receives are disabled while setting 3155 * up the descriptor ring 3156 */ 3157 rctl = E1000_READ_REG(hw, E1000_RCTL); 3158 /* Do not disable if ever enabled on this hardware */ 3159 if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583)) 3160 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); 3161 3162 /* Setup the Receive Control Register */ 3163 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 3164 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | 3165 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 3166 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 3167 3168 /* Do not store bad packets */ 3169 rctl &= ~E1000_RCTL_SBP; 3170 3171 /* Enable Long Packet receive */ 3172 if (if_getmtu(ifp) > ETHERMTU) 3173 rctl |= E1000_RCTL_LPE; 3174 else 3175 rctl &= ~E1000_RCTL_LPE; 3176 3177 /* Strip the CRC */ 3178 if (!em_disable_crc_stripping) 3179 rctl |= E1000_RCTL_SECRC; 3180 3181 if (adapter->hw.mac.type >= e1000_82540) { 3182 E1000_WRITE_REG(&adapter->hw, E1000_RADV, 3183 adapter->rx_abs_int_delay.value); 3184 3185 /* 3186 * Set the interrupt throttling rate. Value is calculated 3187 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) 3188 */ 3189 E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR); 3190 } 3191 E1000_WRITE_REG(&adapter->hw, E1000_RDTR, 3192 adapter->rx_int_delay.value); 3193 3194 /* Use extended rx descriptor formats */ 3195 rfctl = E1000_READ_REG(hw, E1000_RFCTL); 3196 rfctl |= E1000_RFCTL_EXTEN; 3197 /* 3198 * When using MSI-X interrupts we need to throttle 3199 * using the EITR register (82574 only) 3200 */ 3201 if (hw->mac.type == e1000_82574) { 3202 for (int i = 0; i < 4; i++) 3203 E1000_WRITE_REG(hw, E1000_EITR_82574(i), 3204 DEFAULT_ITR); 3205 /* Disable accelerated acknowledge */ 3206 rfctl |= E1000_RFCTL_ACK_DIS; 3207 } 3208 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); 3209 3210 rxcsum = E1000_READ_REG(hw, E1000_RXCSUM); 3211 if (if_getcapenable(ifp) & IFCAP_RXCSUM && 3212 adapter->hw.mac.type >= e1000_82543) { 3213 if (adapter->tx_num_queues > 1) { 3214 if (adapter->hw.mac.type >= igb_mac_min) { 3215 rxcsum |= E1000_RXCSUM_PCSD; 3216 if (hw->mac.type != e1000_82575) 3217 rxcsum |= E1000_RXCSUM_CRCOFL; 3218 } else 3219 rxcsum |= E1000_RXCSUM_TUOFL | 3220 E1000_RXCSUM_IPOFL | 3221 E1000_RXCSUM_PCSD; 3222 } else { 3223 if (adapter->hw.mac.type >= igb_mac_min) 3224 rxcsum |= E1000_RXCSUM_IPPCSE; 3225 else 3226 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL; 3227 if (adapter->hw.mac.type > e1000_82575) 3228 rxcsum |= E1000_RXCSUM_CRCOFL; 3229 } 3230 } else 3231 rxcsum &= ~E1000_RXCSUM_TUOFL; 3232 3233 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum); 3234 3235 if (adapter->rx_num_queues > 1) { 3236 if (adapter->hw.mac.type >= igb_mac_min) 3237 igb_initialize_rss_mapping(adapter); 3238 else 3239 em_initialize_rss_mapping(adapter); 3240 } 3241 3242 /* 3243 * XXX TEMPORARY WORKAROUND: on some systems with 82573 3244 * long latencies are observed, like Lenovo X60. This 3245 * change eliminates the problem, but since having positive 3246 * values in RDTR is a known source of problems on other 3247 * platforms another solution is being sought. 3248 */ 3249 if (hw->mac.type == e1000_82573) 3250 E1000_WRITE_REG(hw, E1000_RDTR, 0x20); 3251 3252 for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) { 3253 struct rx_ring *rxr = &que->rxr; 3254 /* Setup the Base and Length of the Rx Descriptor Ring */ 3255 u64 bus_addr = rxr->rx_paddr; 3256 #if 0 3257 u32 rdt = adapter->rx_num_queues -1; /* default */ 3258 #endif 3259 3260 E1000_WRITE_REG(hw, E1000_RDLEN(i), 3261 scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended)); 3262 E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32)); 3263 E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr); 3264 /* Setup the Head and Tail Descriptor Pointers */ 3265 E1000_WRITE_REG(hw, E1000_RDH(i), 0); 3266 E1000_WRITE_REG(hw, E1000_RDT(i), 0); 3267 } 3268 3269 /* 3270 * Set PTHRESH for improved jumbo performance 3271 * According to 10.2.5.11 of Intel 82574 Datasheet, 3272 * RXDCTL(1) is written whenever RXDCTL(0) is written. 3273 * Only write to RXDCTL(1) if there is a need for different 3274 * settings. 3275 */ 3276 3277 if (((adapter->hw.mac.type == e1000_ich9lan) || 3278 (adapter->hw.mac.type == e1000_pch2lan) || 3279 (adapter->hw.mac.type == e1000_ich10lan)) && 3280 (if_getmtu(ifp) > ETHERMTU)) { 3281 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0)); 3282 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3); 3283 } else if (adapter->hw.mac.type == e1000_82574) { 3284 for (int i = 0; i < adapter->rx_num_queues; i++) { 3285 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i)); 3286 rxdctl |= 0x20; /* PTHRESH */ 3287 rxdctl |= 4 << 8; /* HTHRESH */ 3288 rxdctl |= 4 << 16;/* WTHRESH */ 3289 rxdctl |= 1 << 24; /* Switch to granularity */ 3290 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); 3291 } 3292 } else if (adapter->hw.mac.type >= igb_mac_min) { 3293 u32 psize, srrctl = 0; 3294 3295 if (if_getmtu(ifp) > ETHERMTU) { 3296 /* Set maximum packet len */ 3297 if (adapter->rx_mbuf_sz <= 4096) { 3298 srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 3299 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX; 3300 } else if (adapter->rx_mbuf_sz > 4096) { 3301 srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 3302 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX; 3303 } 3304 psize = scctx->isc_max_frame_size; 3305 /* are we on a vlan? */ 3306 if (ifp->if_vlantrunk != NULL) 3307 psize += VLAN_TAG_SIZE; 3308 E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize); 3309 } else { 3310 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 3311 rctl |= E1000_RCTL_SZ_2048; 3312 } 3313 3314 /* 3315 * If TX flow control is disabled and there's >1 queue defined, 3316 * enable DROP. 3317 * 3318 * This drops frames rather than hanging the RX MAC for all queues. 3319 */ 3320 if ((adapter->rx_num_queues > 1) && 3321 (adapter->fc == e1000_fc_none || 3322 adapter->fc == e1000_fc_rx_pause)) { 3323 srrctl |= E1000_SRRCTL_DROP_EN; 3324 } 3325 /* Setup the Base and Length of the Rx Descriptor Rings */ 3326 for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) { 3327 struct rx_ring *rxr = &que->rxr; 3328 u64 bus_addr = rxr->rx_paddr; 3329 u32 rxdctl; 3330 3331 #ifdef notyet 3332 /* Configure for header split? -- ignore for now */ 3333 rxr->hdr_split = igb_header_split; 3334 #else 3335 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 3336 #endif 3337 3338 E1000_WRITE_REG(hw, E1000_RDLEN(i), 3339 scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc)); 3340 E1000_WRITE_REG(hw, E1000_RDBAH(i), 3341 (uint32_t)(bus_addr >> 32)); 3342 E1000_WRITE_REG(hw, E1000_RDBAL(i), 3343 (uint32_t)bus_addr); 3344 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl); 3345 /* Enable this Queue */ 3346 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i)); 3347 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 3348 rxdctl &= 0xFFF00000; 3349 rxdctl |= IGB_RX_PTHRESH; 3350 rxdctl |= IGB_RX_HTHRESH << 8; 3351 rxdctl |= IGB_RX_WTHRESH << 16; 3352 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); 3353 } 3354 } else if (adapter->hw.mac.type >= e1000_pch2lan) { 3355 if (if_getmtu(ifp) > ETHERMTU) 3356 e1000_lv_jumbo_workaround_ich8lan(hw, TRUE); 3357 else 3358 e1000_lv_jumbo_workaround_ich8lan(hw, FALSE); 3359 } 3360 3361 /* Make sure VLAN Filters are off */ 3362 rctl &= ~E1000_RCTL_VFE; 3363 3364 if (adapter->hw.mac.type < igb_mac_min) { 3365 if (adapter->rx_mbuf_sz == MCLBYTES) 3366 rctl |= E1000_RCTL_SZ_2048; 3367 else if (adapter->rx_mbuf_sz == MJUMPAGESIZE) 3368 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX; 3369 else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) 3370 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX; 3371 3372 /* ensure we clear use DTYPE of 00 here */ 3373 rctl &= ~0x00000C00; 3374 } 3375 3376 /* Write out the settings */ 3377 E1000_WRITE_REG(hw, E1000_RCTL, rctl); 3378 3379 return; 3380 } 3381 3382 static void 3383 em_if_vlan_register(if_ctx_t ctx, u16 vtag) 3384 { 3385 struct adapter *adapter = iflib_get_softc(ctx); 3386 u32 index, bit; 3387 3388 index = (vtag >> 5) & 0x7F; 3389 bit = vtag & 0x1F; 3390 adapter->shadow_vfta[index] |= (1 << bit); 3391 ++adapter->num_vlans; 3392 } 3393 3394 static void 3395 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag) 3396 { 3397 struct adapter *adapter = iflib_get_softc(ctx); 3398 u32 index, bit; 3399 3400 index = (vtag >> 5) & 0x7F; 3401 bit = vtag & 0x1F; 3402 adapter->shadow_vfta[index] &= ~(1 << bit); 3403 --adapter->num_vlans; 3404 } 3405 3406 static void 3407 em_setup_vlan_hw_support(struct adapter *adapter) 3408 { 3409 struct e1000_hw *hw = &adapter->hw; 3410 u32 reg; 3411 3412 /* 3413 * We get here thru init_locked, meaning 3414 * a soft reset, this has already cleared 3415 * the VFTA and other state, so if there 3416 * have been no vlan's registered do nothing. 3417 */ 3418 if (adapter->num_vlans == 0) 3419 return; 3420 3421 /* 3422 * A soft reset zero's out the VFTA, so 3423 * we need to repopulate it now. 3424 */ 3425 for (int i = 0; i < EM_VFTA_SIZE; i++) 3426 if (adapter->shadow_vfta[i] != 0) 3427 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, 3428 i, adapter->shadow_vfta[i]); 3429 3430 reg = E1000_READ_REG(hw, E1000_CTRL); 3431 reg |= E1000_CTRL_VME; 3432 E1000_WRITE_REG(hw, E1000_CTRL, reg); 3433 3434 /* Enable the Filter Table */ 3435 reg = E1000_READ_REG(hw, E1000_RCTL); 3436 reg &= ~E1000_RCTL_CFIEN; 3437 reg |= E1000_RCTL_VFE; 3438 E1000_WRITE_REG(hw, E1000_RCTL, reg); 3439 } 3440 3441 static void 3442 em_if_intr_enable(if_ctx_t ctx) 3443 { 3444 struct adapter *adapter = iflib_get_softc(ctx); 3445 struct e1000_hw *hw = &adapter->hw; 3446 u32 ims_mask = IMS_ENABLE_MASK; 3447 3448 if (hw->mac.type == e1000_82574) { 3449 E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK); 3450 ims_mask |= adapter->ims; 3451 } 3452 E1000_WRITE_REG(hw, E1000_IMS, ims_mask); 3453 } 3454 3455 static void 3456 em_if_intr_disable(if_ctx_t ctx) 3457 { 3458 struct adapter *adapter = iflib_get_softc(ctx); 3459 struct e1000_hw *hw = &adapter->hw; 3460 3461 if (hw->mac.type == e1000_82574) 3462 E1000_WRITE_REG(hw, EM_EIAC, 0); 3463 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); 3464 } 3465 3466 static void 3467 igb_if_intr_enable(if_ctx_t ctx) 3468 { 3469 struct adapter *adapter = iflib_get_softc(ctx); 3470 struct e1000_hw *hw = &adapter->hw; 3471 u32 mask; 3472 3473 if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) { 3474 mask = (adapter->que_mask | adapter->link_mask); 3475 E1000_WRITE_REG(hw, E1000_EIAC, mask); 3476 E1000_WRITE_REG(hw, E1000_EIAM, mask); 3477 E1000_WRITE_REG(hw, E1000_EIMS, mask); 3478 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC); 3479 } else 3480 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK); 3481 E1000_WRITE_FLUSH(hw); 3482 } 3483 3484 static void 3485 igb_if_intr_disable(if_ctx_t ctx) 3486 { 3487 struct adapter *adapter = iflib_get_softc(ctx); 3488 struct e1000_hw *hw = &adapter->hw; 3489 3490 if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) { 3491 E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff); 3492 E1000_WRITE_REG(hw, E1000_EIAC, 0); 3493 } 3494 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); 3495 E1000_WRITE_FLUSH(hw); 3496 } 3497 3498 /* 3499 * Bit of a misnomer, what this really means is 3500 * to enable OS management of the system... aka 3501 * to disable special hardware management features 3502 */ 3503 static void 3504 em_init_manageability(struct adapter *adapter) 3505 { 3506 /* A shared code workaround */ 3507 #define E1000_82542_MANC2H E1000_MANC2H 3508 if (adapter->has_manage) { 3509 int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H); 3510 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC); 3511 3512 /* disable hardware interception of ARP */ 3513 manc &= ~(E1000_MANC_ARP_EN); 3514 3515 /* enable receiving management packets to the host */ 3516 manc |= E1000_MANC_EN_MNG2HOST; 3517 #define E1000_MNG2HOST_PORT_623 (1 << 5) 3518 #define E1000_MNG2HOST_PORT_664 (1 << 6) 3519 manc2h |= E1000_MNG2HOST_PORT_623; 3520 manc2h |= E1000_MNG2HOST_PORT_664; 3521 E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h); 3522 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc); 3523 } 3524 } 3525 3526 /* 3527 * Give control back to hardware management 3528 * controller if there is one. 3529 */ 3530 static void 3531 em_release_manageability(struct adapter *adapter) 3532 { 3533 if (adapter->has_manage) { 3534 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC); 3535 3536 /* re-enable hardware interception of ARP */ 3537 manc |= E1000_MANC_ARP_EN; 3538 manc &= ~E1000_MANC_EN_MNG2HOST; 3539 3540 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc); 3541 } 3542 } 3543 3544 /* 3545 * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit. 3546 * For ASF and Pass Through versions of f/w this means 3547 * that the driver is loaded. For AMT version type f/w 3548 * this means that the network i/f is open. 3549 */ 3550 static void 3551 em_get_hw_control(struct adapter *adapter) 3552 { 3553 u32 ctrl_ext, swsm; 3554 3555 if (adapter->vf_ifp) 3556 return; 3557 3558 if (adapter->hw.mac.type == e1000_82573) { 3559 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM); 3560 E1000_WRITE_REG(&adapter->hw, E1000_SWSM, 3561 swsm | E1000_SWSM_DRV_LOAD); 3562 return; 3563 } 3564 /* else */ 3565 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); 3566 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, 3567 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 3568 } 3569 3570 /* 3571 * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. 3572 * For ASF and Pass Through versions of f/w this means that 3573 * the driver is no longer loaded. For AMT versions of the 3574 * f/w this means that the network i/f is closed. 3575 */ 3576 static void 3577 em_release_hw_control(struct adapter *adapter) 3578 { 3579 u32 ctrl_ext, swsm; 3580 3581 if (!adapter->has_manage) 3582 return; 3583 3584 if (adapter->hw.mac.type == e1000_82573) { 3585 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM); 3586 E1000_WRITE_REG(&adapter->hw, E1000_SWSM, 3587 swsm & ~E1000_SWSM_DRV_LOAD); 3588 return; 3589 } 3590 /* else */ 3591 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); 3592 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, 3593 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 3594 return; 3595 } 3596 3597 static int 3598 em_is_valid_ether_addr(u8 *addr) 3599 { 3600 char zero_addr[6] = { 0, 0, 0, 0, 0, 0 }; 3601 3602 if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) { 3603 return (FALSE); 3604 } 3605 3606 return (TRUE); 3607 } 3608 3609 /* 3610 ** Parse the interface capabilities with regard 3611 ** to both system management and wake-on-lan for 3612 ** later use. 3613 */ 3614 static void 3615 em_get_wakeup(if_ctx_t ctx) 3616 { 3617 struct adapter *adapter = iflib_get_softc(ctx); 3618 device_t dev = iflib_get_dev(ctx); 3619 u16 eeprom_data = 0, device_id, apme_mask; 3620 3621 adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw); 3622 apme_mask = EM_EEPROM_APME; 3623 3624 switch (adapter->hw.mac.type) { 3625 case e1000_82542: 3626 case e1000_82543: 3627 break; 3628 case e1000_82544: 3629 e1000_read_nvm(&adapter->hw, 3630 NVM_INIT_CONTROL2_REG, 1, &eeprom_data); 3631 apme_mask = EM_82544_APME; 3632 break; 3633 case e1000_82546: 3634 case e1000_82546_rev_3: 3635 if (adapter->hw.bus.func == 1) { 3636 e1000_read_nvm(&adapter->hw, 3637 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 3638 break; 3639 } else 3640 e1000_read_nvm(&adapter->hw, 3641 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3642 break; 3643 case e1000_82573: 3644 case e1000_82583: 3645 adapter->has_amt = TRUE; 3646 /* FALLTHROUGH */ 3647 case e1000_82571: 3648 case e1000_82572: 3649 case e1000_80003es2lan: 3650 if (adapter->hw.bus.func == 1) { 3651 e1000_read_nvm(&adapter->hw, 3652 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 3653 break; 3654 } else 3655 e1000_read_nvm(&adapter->hw, 3656 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3657 break; 3658 case e1000_ich8lan: 3659 case e1000_ich9lan: 3660 case e1000_ich10lan: 3661 case e1000_pchlan: 3662 case e1000_pch2lan: 3663 case e1000_pch_lpt: 3664 case e1000_pch_spt: 3665 case e1000_82575: /* listing all igb devices */ 3666 case e1000_82576: 3667 case e1000_82580: 3668 case e1000_i350: 3669 case e1000_i354: 3670 case e1000_i210: 3671 case e1000_i211: 3672 case e1000_vfadapt: 3673 case e1000_vfadapt_i350: 3674 apme_mask = E1000_WUC_APME; 3675 adapter->has_amt = TRUE; 3676 eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC); 3677 break; 3678 default: 3679 e1000_read_nvm(&adapter->hw, 3680 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3681 break; 3682 } 3683 if (eeprom_data & apme_mask) 3684 adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC); 3685 /* 3686 * We have the eeprom settings, now apply the special cases 3687 * where the eeprom may be wrong or the board won't support 3688 * wake on lan on a particular port 3689 */ 3690 device_id = pci_get_device(dev); 3691 switch (device_id) { 3692 case E1000_DEV_ID_82546GB_PCIE: 3693 adapter->wol = 0; 3694 break; 3695 case E1000_DEV_ID_82546EB_FIBER: 3696 case E1000_DEV_ID_82546GB_FIBER: 3697 /* Wake events only supported on port A for dual fiber 3698 * regardless of eeprom setting */ 3699 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) & 3700 E1000_STATUS_FUNC_1) 3701 adapter->wol = 0; 3702 break; 3703 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 3704 /* if quad port adapter, disable WoL on all but port A */ 3705 if (global_quad_port_a != 0) 3706 adapter->wol = 0; 3707 /* Reset for multiple quad port adapters */ 3708 if (++global_quad_port_a == 4) 3709 global_quad_port_a = 0; 3710 break; 3711 case E1000_DEV_ID_82571EB_FIBER: 3712 /* Wake events only supported on port A for dual fiber 3713 * regardless of eeprom setting */ 3714 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) & 3715 E1000_STATUS_FUNC_1) 3716 adapter->wol = 0; 3717 break; 3718 case E1000_DEV_ID_82571EB_QUAD_COPPER: 3719 case E1000_DEV_ID_82571EB_QUAD_FIBER: 3720 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 3721 /* if quad port adapter, disable WoL on all but port A */ 3722 if (global_quad_port_a != 0) 3723 adapter->wol = 0; 3724 /* Reset for multiple quad port adapters */ 3725 if (++global_quad_port_a == 4) 3726 global_quad_port_a = 0; 3727 break; 3728 } 3729 return; 3730 } 3731 3732 3733 /* 3734 * Enable PCI Wake On Lan capability 3735 */ 3736 static void 3737 em_enable_wakeup(if_ctx_t ctx) 3738 { 3739 struct adapter *adapter = iflib_get_softc(ctx); 3740 device_t dev = iflib_get_dev(ctx); 3741 if_t ifp = iflib_get_ifp(ctx); 3742 int error = 0; 3743 u32 pmc, ctrl, ctrl_ext, rctl; 3744 u16 status; 3745 3746 if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0) 3747 return; 3748 3749 /* 3750 * Determine type of Wakeup: note that wol 3751 * is set with all bits on by default. 3752 */ 3753 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0) 3754 adapter->wol &= ~E1000_WUFC_MAG; 3755 3756 if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0) 3757 adapter->wol &= ~E1000_WUFC_EX; 3758 3759 if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0) 3760 adapter->wol &= ~E1000_WUFC_MC; 3761 else { 3762 rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 3763 rctl |= E1000_RCTL_MPE; 3764 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl); 3765 } 3766 3767 if (!(adapter->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC))) 3768 goto pme; 3769 3770 /* Advertise the wakeup capability */ 3771 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL); 3772 ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3); 3773 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl); 3774 3775 /* Keep the laser running on Fiber adapters */ 3776 if (adapter->hw.phy.media_type == e1000_media_type_fiber || 3777 adapter->hw.phy.media_type == e1000_media_type_internal_serdes) { 3778 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); 3779 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; 3780 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext); 3781 } 3782 3783 if ((adapter->hw.mac.type == e1000_ich8lan) || 3784 (adapter->hw.mac.type == e1000_pchlan) || 3785 (adapter->hw.mac.type == e1000_ich9lan) || 3786 (adapter->hw.mac.type == e1000_ich10lan)) 3787 e1000_suspend_workarounds_ich8lan(&adapter->hw); 3788 3789 if ( adapter->hw.mac.type >= e1000_pchlan) { 3790 error = em_enable_phy_wakeup(adapter); 3791 if (error) 3792 goto pme; 3793 } else { 3794 /* Enable wakeup by the MAC */ 3795 E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN); 3796 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol); 3797 } 3798 3799 if (adapter->hw.phy.type == e1000_phy_igp_3) 3800 e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); 3801 3802 pme: 3803 status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2); 3804 status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 3805 if (!error && (if_getcapenable(ifp) & IFCAP_WOL)) 3806 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 3807 pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2); 3808 3809 return; 3810 } 3811 3812 /* 3813 * WOL in the newer chipset interfaces (pchlan) 3814 * require thing to be copied into the phy 3815 */ 3816 static int 3817 em_enable_phy_wakeup(struct adapter *adapter) 3818 { 3819 struct e1000_hw *hw = &adapter->hw; 3820 u32 mreg, ret = 0; 3821 u16 preg; 3822 3823 /* copy MAC RARs to PHY RARs */ 3824 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 3825 3826 /* copy MAC MTA to PHY MTA */ 3827 for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) { 3828 mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); 3829 e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF)); 3830 e1000_write_phy_reg(hw, BM_MTA(i) + 1, 3831 (u16)((mreg >> 16) & 0xFFFF)); 3832 } 3833 3834 /* configure PHY Rx Control register */ 3835 e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg); 3836 mreg = E1000_READ_REG(hw, E1000_RCTL); 3837 if (mreg & E1000_RCTL_UPE) 3838 preg |= BM_RCTL_UPE; 3839 if (mreg & E1000_RCTL_MPE) 3840 preg |= BM_RCTL_MPE; 3841 preg &= ~(BM_RCTL_MO_MASK); 3842 if (mreg & E1000_RCTL_MO_3) 3843 preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) 3844 << BM_RCTL_MO_SHIFT); 3845 if (mreg & E1000_RCTL_BAM) 3846 preg |= BM_RCTL_BAM; 3847 if (mreg & E1000_RCTL_PMCF) 3848 preg |= BM_RCTL_PMCF; 3849 mreg = E1000_READ_REG(hw, E1000_CTRL); 3850 if (mreg & E1000_CTRL_RFCE) 3851 preg |= BM_RCTL_RFCE; 3852 e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg); 3853 3854 /* enable PHY wakeup in MAC register */ 3855 E1000_WRITE_REG(hw, E1000_WUC, 3856 E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME); 3857 E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol); 3858 3859 /* configure and enable PHY wakeup in PHY registers */ 3860 e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol); 3861 e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN); 3862 3863 /* activate PHY wakeup */ 3864 ret = hw->phy.ops.acquire(hw); 3865 if (ret) { 3866 printf("Could not acquire PHY\n"); 3867 return ret; 3868 } 3869 e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 3870 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT)); 3871 ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg); 3872 if (ret) { 3873 printf("Could not read PHY page 769\n"); 3874 goto out; 3875 } 3876 preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; 3877 ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg); 3878 if (ret) 3879 printf("Could not set PHY Host Wakeup bit\n"); 3880 out: 3881 hw->phy.ops.release(hw); 3882 3883 return ret; 3884 } 3885 3886 static void 3887 em_if_led_func(if_ctx_t ctx, int onoff) 3888 { 3889 struct adapter *adapter = iflib_get_softc(ctx); 3890 3891 if (onoff) { 3892 e1000_setup_led(&adapter->hw); 3893 e1000_led_on(&adapter->hw); 3894 } else { 3895 e1000_led_off(&adapter->hw); 3896 e1000_cleanup_led(&adapter->hw); 3897 } 3898 } 3899 3900 /* 3901 * Disable the L0S and L1 LINK states 3902 */ 3903 static void 3904 em_disable_aspm(struct adapter *adapter) 3905 { 3906 int base, reg; 3907 u16 link_cap,link_ctrl; 3908 device_t dev = adapter->dev; 3909 3910 switch (adapter->hw.mac.type) { 3911 case e1000_82573: 3912 case e1000_82574: 3913 case e1000_82583: 3914 break; 3915 default: 3916 return; 3917 } 3918 if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0) 3919 return; 3920 reg = base + PCIER_LINK_CAP; 3921 link_cap = pci_read_config(dev, reg, 2); 3922 if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0) 3923 return; 3924 reg = base + PCIER_LINK_CTL; 3925 link_ctrl = pci_read_config(dev, reg, 2); 3926 link_ctrl &= ~PCIEM_LINK_CTL_ASPMC; 3927 pci_write_config(dev, reg, link_ctrl, 2); 3928 return; 3929 } 3930 3931 /********************************************************************** 3932 * 3933 * Update the board statistics counters. 3934 * 3935 **********************************************************************/ 3936 static void 3937 em_update_stats_counters(struct adapter *adapter) 3938 { 3939 u64 prev_xoffrxc = adapter->stats.xoffrxc; 3940 3941 if(adapter->hw.phy.media_type == e1000_media_type_copper || 3942 (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) { 3943 adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS); 3944 adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC); 3945 } 3946 adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS); 3947 adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC); 3948 adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC); 3949 adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL); 3950 3951 adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC); 3952 adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL); 3953 adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC); 3954 adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC); 3955 adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC); 3956 adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC); 3957 adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC); 3958 adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC); 3959 /* 3960 ** For watchdog management we need to know if we have been 3961 ** paused during the last interval, so capture that here. 3962 */ 3963 if (adapter->stats.xoffrxc != prev_xoffrxc) 3964 adapter->shared->isc_pause_frames = 1; 3965 adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC); 3966 adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC); 3967 adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64); 3968 adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127); 3969 adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255); 3970 adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511); 3971 adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023); 3972 adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522); 3973 adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC); 3974 adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC); 3975 adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC); 3976 adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC); 3977 3978 /* For the 64-bit byte counters the low dword must be read first. */ 3979 /* Both registers clear on the read of the high dword */ 3980 3981 adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) + 3982 ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32); 3983 adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) + 3984 ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32); 3985 3986 adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC); 3987 adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC); 3988 adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC); 3989 adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC); 3990 adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC); 3991 3992 adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH); 3993 adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH); 3994 3995 adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR); 3996 adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT); 3997 adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64); 3998 adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127); 3999 adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255); 4000 adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511); 4001 adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023); 4002 adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522); 4003 adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC); 4004 adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC); 4005 4006 /* Interrupt Counts */ 4007 4008 adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC); 4009 adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC); 4010 adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC); 4011 adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC); 4012 adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC); 4013 adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC); 4014 adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC); 4015 adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC); 4016 adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC); 4017 4018 if (adapter->hw.mac.type >= e1000_82543) { 4019 adapter->stats.algnerrc += 4020 E1000_READ_REG(&adapter->hw, E1000_ALGNERRC); 4021 adapter->stats.rxerrc += 4022 E1000_READ_REG(&adapter->hw, E1000_RXERRC); 4023 adapter->stats.tncrs += 4024 E1000_READ_REG(&adapter->hw, E1000_TNCRS); 4025 adapter->stats.cexterr += 4026 E1000_READ_REG(&adapter->hw, E1000_CEXTERR); 4027 adapter->stats.tsctc += 4028 E1000_READ_REG(&adapter->hw, E1000_TSCTC); 4029 adapter->stats.tsctfc += 4030 E1000_READ_REG(&adapter->hw, E1000_TSCTFC); 4031 } 4032 } 4033 4034 static uint64_t 4035 em_if_get_counter(if_ctx_t ctx, ift_counter cnt) 4036 { 4037 struct adapter *adapter = iflib_get_softc(ctx); 4038 struct ifnet *ifp = iflib_get_ifp(ctx); 4039 4040 switch (cnt) { 4041 case IFCOUNTER_COLLISIONS: 4042 return (adapter->stats.colc); 4043 case IFCOUNTER_IERRORS: 4044 return (adapter->dropped_pkts + adapter->stats.rxerrc + 4045 adapter->stats.crcerrs + adapter->stats.algnerrc + 4046 adapter->stats.ruc + adapter->stats.roc + 4047 adapter->stats.mpc + adapter->stats.cexterr); 4048 case IFCOUNTER_OERRORS: 4049 return (adapter->stats.ecol + adapter->stats.latecol + 4050 adapter->watchdog_events); 4051 default: 4052 return (if_get_counter_default(ifp, cnt)); 4053 } 4054 } 4055 4056 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized 4057 * @ctx: iflib context 4058 * @event: event code to check 4059 * 4060 * Defaults to returning true for unknown events. 4061 * 4062 * @returns true if iflib needs to reinit the interface 4063 */ 4064 static bool 4065 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event) 4066 { 4067 switch (event) { 4068 case IFLIB_RESTART_VLAN_CONFIG: 4069 default: 4070 return (true); 4071 } 4072 } 4073 4074 /* Export a single 32-bit register via a read-only sysctl. */ 4075 static int 4076 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS) 4077 { 4078 struct adapter *adapter; 4079 u_int val; 4080 4081 adapter = oidp->oid_arg1; 4082 val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2); 4083 return (sysctl_handle_int(oidp, &val, 0, req)); 4084 } 4085 4086 /* 4087 * Add sysctl variables, one per statistic, to the system. 4088 */ 4089 static void 4090 em_add_hw_stats(struct adapter *adapter) 4091 { 4092 device_t dev = iflib_get_dev(adapter->ctx); 4093 struct em_tx_queue *tx_que = adapter->tx_queues; 4094 struct em_rx_queue *rx_que = adapter->rx_queues; 4095 4096 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev); 4097 struct sysctl_oid *tree = device_get_sysctl_tree(dev); 4098 struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree); 4099 struct e1000_hw_stats *stats = &adapter->stats; 4100 4101 struct sysctl_oid *stat_node, *queue_node, *int_node; 4102 struct sysctl_oid_list *stat_list, *queue_list, *int_list; 4103 4104 #define QUEUE_NAME_LEN 32 4105 char namebuf[QUEUE_NAME_LEN]; 4106 4107 /* Driver Statistics */ 4108 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped", 4109 CTLFLAG_RD, &adapter->dropped_pkts, 4110 "Driver dropped packets"); 4111 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq", 4112 CTLFLAG_RD, &adapter->link_irq, 4113 "Link MSI-X IRQ Handled"); 4114 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns", 4115 CTLFLAG_RD, &adapter->rx_overruns, 4116 "RX overruns"); 4117 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts", 4118 CTLFLAG_RD, &adapter->watchdog_events, 4119 "Watchdog timeouts"); 4120 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control", 4121 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 4122 adapter, E1000_CTRL, em_sysctl_reg_handler, "IU", 4123 "Device Control Register"); 4124 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control", 4125 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 4126 adapter, E1000_RCTL, em_sysctl_reg_handler, "IU", 4127 "Receiver Control Register"); 4128 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water", 4129 CTLFLAG_RD, &adapter->hw.fc.high_water, 0, 4130 "Flow Control High Watermark"); 4131 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water", 4132 CTLFLAG_RD, &adapter->hw.fc.low_water, 0, 4133 "Flow Control Low Watermark"); 4134 4135 for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) { 4136 struct tx_ring *txr = &tx_que->txr; 4137 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i); 4138 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, 4139 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name"); 4140 queue_list = SYSCTL_CHILDREN(queue_node); 4141 4142 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head", 4143 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter, 4144 E1000_TDH(txr->me), em_sysctl_reg_handler, "IU", 4145 "Transmit Descriptor Head"); 4146 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail", 4147 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter, 4148 E1000_TDT(txr->me), em_sysctl_reg_handler, "IU", 4149 "Transmit Descriptor Tail"); 4150 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq", 4151 CTLFLAG_RD, &txr->tx_irq, 4152 "Queue MSI-X Transmit Interrupts"); 4153 } 4154 4155 for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) { 4156 struct rx_ring *rxr = &rx_que->rxr; 4157 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j); 4158 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, 4159 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name"); 4160 queue_list = SYSCTL_CHILDREN(queue_node); 4161 4162 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head", 4163 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter, 4164 E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU", 4165 "Receive Descriptor Head"); 4166 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail", 4167 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter, 4168 E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU", 4169 "Receive Descriptor Tail"); 4170 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq", 4171 CTLFLAG_RD, &rxr->rx_irq, 4172 "Queue MSI-X Receive Interrupts"); 4173 } 4174 4175 /* MAC stats get their own sub node */ 4176 4177 stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats", 4178 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics"); 4179 stat_list = SYSCTL_CHILDREN(stat_node); 4180 4181 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll", 4182 CTLFLAG_RD, &stats->ecol, 4183 "Excessive collisions"); 4184 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll", 4185 CTLFLAG_RD, &stats->scc, 4186 "Single collisions"); 4187 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll", 4188 CTLFLAG_RD, &stats->mcc, 4189 "Multiple collisions"); 4190 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll", 4191 CTLFLAG_RD, &stats->latecol, 4192 "Late collisions"); 4193 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count", 4194 CTLFLAG_RD, &stats->colc, 4195 "Collision Count"); 4196 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors", 4197 CTLFLAG_RD, &adapter->stats.symerrs, 4198 "Symbol Errors"); 4199 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors", 4200 CTLFLAG_RD, &adapter->stats.sec, 4201 "Sequence Errors"); 4202 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count", 4203 CTLFLAG_RD, &adapter->stats.dc, 4204 "Defer Count"); 4205 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets", 4206 CTLFLAG_RD, &adapter->stats.mpc, 4207 "Missed Packets"); 4208 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff", 4209 CTLFLAG_RD, &adapter->stats.rnbc, 4210 "Receive No Buffers"); 4211 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize", 4212 CTLFLAG_RD, &adapter->stats.ruc, 4213 "Receive Undersize"); 4214 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented", 4215 CTLFLAG_RD, &adapter->stats.rfc, 4216 "Fragmented Packets Received "); 4217 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize", 4218 CTLFLAG_RD, &adapter->stats.roc, 4219 "Oversized Packets Received"); 4220 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber", 4221 CTLFLAG_RD, &adapter->stats.rjc, 4222 "Recevied Jabber"); 4223 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs", 4224 CTLFLAG_RD, &adapter->stats.rxerrc, 4225 "Receive Errors"); 4226 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs", 4227 CTLFLAG_RD, &adapter->stats.crcerrs, 4228 "CRC errors"); 4229 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs", 4230 CTLFLAG_RD, &adapter->stats.algnerrc, 4231 "Alignment Errors"); 4232 /* On 82575 these are collision counts */ 4233 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs", 4234 CTLFLAG_RD, &adapter->stats.cexterr, 4235 "Collision/Carrier extension errors"); 4236 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd", 4237 CTLFLAG_RD, &adapter->stats.xonrxc, 4238 "XON Received"); 4239 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd", 4240 CTLFLAG_RD, &adapter->stats.xontxc, 4241 "XON Transmitted"); 4242 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd", 4243 CTLFLAG_RD, &adapter->stats.xoffrxc, 4244 "XOFF Received"); 4245 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd", 4246 CTLFLAG_RD, &adapter->stats.xofftxc, 4247 "XOFF Transmitted"); 4248 4249 /* Packet Reception Stats */ 4250 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd", 4251 CTLFLAG_RD, &adapter->stats.tpr, 4252 "Total Packets Received "); 4253 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd", 4254 CTLFLAG_RD, &adapter->stats.gprc, 4255 "Good Packets Received"); 4256 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd", 4257 CTLFLAG_RD, &adapter->stats.bprc, 4258 "Broadcast Packets Received"); 4259 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd", 4260 CTLFLAG_RD, &adapter->stats.mprc, 4261 "Multicast Packets Received"); 4262 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64", 4263 CTLFLAG_RD, &adapter->stats.prc64, 4264 "64 byte frames received "); 4265 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127", 4266 CTLFLAG_RD, &adapter->stats.prc127, 4267 "65-127 byte frames received"); 4268 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255", 4269 CTLFLAG_RD, &adapter->stats.prc255, 4270 "128-255 byte frames received"); 4271 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511", 4272 CTLFLAG_RD, &adapter->stats.prc511, 4273 "256-511 byte frames received"); 4274 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023", 4275 CTLFLAG_RD, &adapter->stats.prc1023, 4276 "512-1023 byte frames received"); 4277 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522", 4278 CTLFLAG_RD, &adapter->stats.prc1522, 4279 "1023-1522 byte frames received"); 4280 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd", 4281 CTLFLAG_RD, &adapter->stats.gorc, 4282 "Good Octets Received"); 4283 4284 /* Packet Transmission Stats */ 4285 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd", 4286 CTLFLAG_RD, &adapter->stats.gotc, 4287 "Good Octets Transmitted"); 4288 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd", 4289 CTLFLAG_RD, &adapter->stats.tpt, 4290 "Total Packets Transmitted"); 4291 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd", 4292 CTLFLAG_RD, &adapter->stats.gptc, 4293 "Good Packets Transmitted"); 4294 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd", 4295 CTLFLAG_RD, &adapter->stats.bptc, 4296 "Broadcast Packets Transmitted"); 4297 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd", 4298 CTLFLAG_RD, &adapter->stats.mptc, 4299 "Multicast Packets Transmitted"); 4300 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64", 4301 CTLFLAG_RD, &adapter->stats.ptc64, 4302 "64 byte frames transmitted "); 4303 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127", 4304 CTLFLAG_RD, &adapter->stats.ptc127, 4305 "65-127 byte frames transmitted"); 4306 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255", 4307 CTLFLAG_RD, &adapter->stats.ptc255, 4308 "128-255 byte frames transmitted"); 4309 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511", 4310 CTLFLAG_RD, &adapter->stats.ptc511, 4311 "256-511 byte frames transmitted"); 4312 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023", 4313 CTLFLAG_RD, &adapter->stats.ptc1023, 4314 "512-1023 byte frames transmitted"); 4315 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522", 4316 CTLFLAG_RD, &adapter->stats.ptc1522, 4317 "1024-1522 byte frames transmitted"); 4318 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd", 4319 CTLFLAG_RD, &adapter->stats.tsctc, 4320 "TSO Contexts Transmitted"); 4321 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail", 4322 CTLFLAG_RD, &adapter->stats.tsctfc, 4323 "TSO Contexts Failed"); 4324 4325 4326 /* Interrupt Stats */ 4327 4328 int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts", 4329 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics"); 4330 int_list = SYSCTL_CHILDREN(int_node); 4331 4332 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts", 4333 CTLFLAG_RD, &adapter->stats.iac, 4334 "Interrupt Assertion Count"); 4335 4336 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer", 4337 CTLFLAG_RD, &adapter->stats.icrxptc, 4338 "Interrupt Cause Rx Pkt Timer Expire Count"); 4339 4340 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer", 4341 CTLFLAG_RD, &adapter->stats.icrxatc, 4342 "Interrupt Cause Rx Abs Timer Expire Count"); 4343 4344 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer", 4345 CTLFLAG_RD, &adapter->stats.ictxptc, 4346 "Interrupt Cause Tx Pkt Timer Expire Count"); 4347 4348 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer", 4349 CTLFLAG_RD, &adapter->stats.ictxatc, 4350 "Interrupt Cause Tx Abs Timer Expire Count"); 4351 4352 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty", 4353 CTLFLAG_RD, &adapter->stats.ictxqec, 4354 "Interrupt Cause Tx Queue Empty Count"); 4355 4356 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh", 4357 CTLFLAG_RD, &adapter->stats.ictxqmtc, 4358 "Interrupt Cause Tx Queue Min Thresh Count"); 4359 4360 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh", 4361 CTLFLAG_RD, &adapter->stats.icrxdmtc, 4362 "Interrupt Cause Rx Desc Min Thresh Count"); 4363 4364 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun", 4365 CTLFLAG_RD, &adapter->stats.icrxoc, 4366 "Interrupt Cause Receiver Overrun Count"); 4367 } 4368 4369 /********************************************************************** 4370 * 4371 * This routine provides a way to dump out the adapter eeprom, 4372 * often a useful debug/service tool. This only dumps the first 4373 * 32 words, stuff that matters is in that extent. 4374 * 4375 **********************************************************************/ 4376 static int 4377 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS) 4378 { 4379 struct adapter *adapter = (struct adapter *)arg1; 4380 int error; 4381 int result; 4382 4383 result = -1; 4384 error = sysctl_handle_int(oidp, &result, 0, req); 4385 4386 if (error || !req->newptr) 4387 return (error); 4388 4389 /* 4390 * This value will cause a hex dump of the 4391 * first 32 16-bit words of the EEPROM to 4392 * the screen. 4393 */ 4394 if (result == 1) 4395 em_print_nvm_info(adapter); 4396 4397 return (error); 4398 } 4399 4400 static void 4401 em_print_nvm_info(struct adapter *adapter) 4402 { 4403 u16 eeprom_data; 4404 int i, j, row = 0; 4405 4406 /* Its a bit crude, but it gets the job done */ 4407 printf("\nInterface EEPROM Dump:\n"); 4408 printf("Offset\n0x0000 "); 4409 for (i = 0, j = 0; i < 32; i++, j++) { 4410 if (j == 8) { /* Make the offset block */ 4411 j = 0; ++row; 4412 printf("\n0x00%x0 ",row); 4413 } 4414 e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data); 4415 printf("%04x ", eeprom_data); 4416 } 4417 printf("\n"); 4418 } 4419 4420 static int 4421 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS) 4422 { 4423 struct em_int_delay_info *info; 4424 struct adapter *adapter; 4425 u32 regval; 4426 int error, usecs, ticks; 4427 4428 info = (struct em_int_delay_info *) arg1; 4429 usecs = info->value; 4430 error = sysctl_handle_int(oidp, &usecs, 0, req); 4431 if (error != 0 || req->newptr == NULL) 4432 return (error); 4433 if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535)) 4434 return (EINVAL); 4435 info->value = usecs; 4436 ticks = EM_USECS_TO_TICKS(usecs); 4437 if (info->offset == E1000_ITR) /* units are 256ns here */ 4438 ticks *= 4; 4439 4440 adapter = info->adapter; 4441 4442 regval = E1000_READ_OFFSET(&adapter->hw, info->offset); 4443 regval = (regval & ~0xffff) | (ticks & 0xffff); 4444 /* Handle a few special cases. */ 4445 switch (info->offset) { 4446 case E1000_RDTR: 4447 break; 4448 case E1000_TIDV: 4449 if (ticks == 0) { 4450 adapter->txd_cmd &= ~E1000_TXD_CMD_IDE; 4451 /* Don't write 0 into the TIDV register. */ 4452 regval++; 4453 } else 4454 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 4455 break; 4456 } 4457 E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval); 4458 return (0); 4459 } 4460 4461 static void 4462 em_add_int_delay_sysctl(struct adapter *adapter, const char *name, 4463 const char *description, struct em_int_delay_info *info, 4464 int offset, int value) 4465 { 4466 info->adapter = adapter; 4467 info->offset = offset; 4468 info->value = value; 4469 SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev), 4470 SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)), 4471 OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 4472 info, 0, em_sysctl_int_delay, "I", description); 4473 } 4474 4475 /* 4476 * Set flow control using sysctl: 4477 * Flow control values: 4478 * 0 - off 4479 * 1 - rx pause 4480 * 2 - tx pause 4481 * 3 - full 4482 */ 4483 static int 4484 em_set_flowcntl(SYSCTL_HANDLER_ARGS) 4485 { 4486 int error; 4487 static int input = 3; /* default is full */ 4488 struct adapter *adapter = (struct adapter *) arg1; 4489 4490 error = sysctl_handle_int(oidp, &input, 0, req); 4491 4492 if ((error) || (req->newptr == NULL)) 4493 return (error); 4494 4495 if (input == adapter->fc) /* no change? */ 4496 return (error); 4497 4498 switch (input) { 4499 case e1000_fc_rx_pause: 4500 case e1000_fc_tx_pause: 4501 case e1000_fc_full: 4502 case e1000_fc_none: 4503 adapter->hw.fc.requested_mode = input; 4504 adapter->fc = input; 4505 break; 4506 default: 4507 /* Do nothing */ 4508 return (error); 4509 } 4510 4511 adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode; 4512 e1000_force_mac_fc(&adapter->hw); 4513 return (error); 4514 } 4515 4516 /* 4517 * Manage Energy Efficient Ethernet: 4518 * Control values: 4519 * 0/1 - enabled/disabled 4520 */ 4521 static int 4522 em_sysctl_eee(SYSCTL_HANDLER_ARGS) 4523 { 4524 struct adapter *adapter = (struct adapter *) arg1; 4525 int error, value; 4526 4527 value = adapter->hw.dev_spec.ich8lan.eee_disable; 4528 error = sysctl_handle_int(oidp, &value, 0, req); 4529 if (error || req->newptr == NULL) 4530 return (error); 4531 adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0); 4532 em_if_init(adapter->ctx); 4533 4534 return (0); 4535 } 4536 4537 static int 4538 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS) 4539 { 4540 struct adapter *adapter; 4541 int error; 4542 int result; 4543 4544 result = -1; 4545 error = sysctl_handle_int(oidp, &result, 0, req); 4546 4547 if (error || !req->newptr) 4548 return (error); 4549 4550 if (result == 1) { 4551 adapter = (struct adapter *) arg1; 4552 em_print_debug_info(adapter); 4553 } 4554 4555 return (error); 4556 } 4557 4558 static int 4559 em_get_rs(SYSCTL_HANDLER_ARGS) 4560 { 4561 struct adapter *adapter = (struct adapter *) arg1; 4562 int error; 4563 int result; 4564 4565 result = 0; 4566 error = sysctl_handle_int(oidp, &result, 0, req); 4567 4568 if (error || !req->newptr || result != 1) 4569 return (error); 4570 em_dump_rs(adapter); 4571 4572 return (error); 4573 } 4574 4575 static void 4576 em_if_debug(if_ctx_t ctx) 4577 { 4578 em_dump_rs(iflib_get_softc(ctx)); 4579 } 4580 4581 /* 4582 * This routine is meant to be fluid, add whatever is 4583 * needed for debugging a problem. -jfv 4584 */ 4585 static void 4586 em_print_debug_info(struct adapter *adapter) 4587 { 4588 device_t dev = iflib_get_dev(adapter->ctx); 4589 struct ifnet *ifp = iflib_get_ifp(adapter->ctx); 4590 struct tx_ring *txr = &adapter->tx_queues->txr; 4591 struct rx_ring *rxr = &adapter->rx_queues->rxr; 4592 4593 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 4594 printf("Interface is RUNNING "); 4595 else 4596 printf("Interface is NOT RUNNING\n"); 4597 4598 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) 4599 printf("and INACTIVE\n"); 4600 else 4601 printf("and ACTIVE\n"); 4602 4603 for (int i = 0; i < adapter->tx_num_queues; i++, txr++) { 4604 device_printf(dev, "TX Queue %d ------\n", i); 4605 device_printf(dev, "hw tdh = %d, hw tdt = %d\n", 4606 E1000_READ_REG(&adapter->hw, E1000_TDH(i)), 4607 E1000_READ_REG(&adapter->hw, E1000_TDT(i))); 4608 4609 } 4610 for (int j=0; j < adapter->rx_num_queues; j++, rxr++) { 4611 device_printf(dev, "RX Queue %d ------\n", j); 4612 device_printf(dev, "hw rdh = %d, hw rdt = %d\n", 4613 E1000_READ_REG(&adapter->hw, E1000_RDH(j)), 4614 E1000_READ_REG(&adapter->hw, E1000_RDT(j))); 4615 } 4616 } 4617 4618 /* 4619 * 82574 only: 4620 * Write a new value to the EEPROM increasing the number of MSI-X 4621 * vectors from 3 to 5, for proper multiqueue support. 4622 */ 4623 static void 4624 em_enable_vectors_82574(if_ctx_t ctx) 4625 { 4626 struct adapter *adapter = iflib_get_softc(ctx); 4627 struct e1000_hw *hw = &adapter->hw; 4628 device_t dev = iflib_get_dev(ctx); 4629 u16 edata; 4630 4631 e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata); 4632 if (bootverbose) 4633 device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata); 4634 if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) { 4635 device_printf(dev, "Writing to eeprom: increasing " 4636 "reported MSI-X vectors from 3 to 5...\n"); 4637 edata &= ~(EM_NVM_MSIX_N_MASK); 4638 edata |= 4 << EM_NVM_MSIX_N_SHIFT; 4639 e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata); 4640 e1000_update_nvm_checksum(hw); 4641 device_printf(dev, "Writing to eeprom: done\n"); 4642 } 4643 } 4644