xref: /freebsd/sys/dev/e1000/if_em.c (revision 6be3386466ab79a84b48429ae66244f21526d3df)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* $FreeBSD$ */
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33 
34 #define em_mac_min e1000_82547
35 #define igb_mac_min e1000_82575
36 
37 /*********************************************************************
38  *  Driver version:
39  *********************************************************************/
40 char em_driver_version[] = "7.6.1-k";
41 
42 /*********************************************************************
43  *  PCI Device ID Table
44  *
45  *  Used by probe to select devices to load on
46  *  Last field stores an index into e1000_strings
47  *  Last entry must be all 0s
48  *
49  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
50  *********************************************************************/
51 
52 static pci_vendor_info_t em_vendor_info_array[] =
53 {
54 	/* Intel(R) PRO/1000 Network Connection - Legacy em*/
55 	PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) PRO/1000 Network Connection"),
56 	PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) PRO/1000 Network Connection"),
57 	PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) PRO/1000 Network Connection"),
58 	PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) PRO/1000 Network Connection"),
59 	PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) PRO/1000 Network Connection"),
60 
61 	PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) PRO/1000 Network Connection"),
62 	PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) PRO/1000 Network Connection"),
63 	PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) PRO/1000 Network Connection"),
64 	PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
65 	PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) PRO/1000 Network Connection"),
66 	PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) PRO/1000 Network Connection"),
67 	PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
68 
69 	PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) PRO/1000 Network Connection"),
70 
71 	PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) PRO/1000 Network Connection"),
72 	PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
73 
74 	PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
75 	PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
76 	PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
77 	PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) PRO/1000 Network Connection"),
78 
79 	PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) PRO/1000 Network Connection"),
80 	PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) PRO/1000 Network Connection"),
81 	PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) PRO/1000 Network Connection"),
82 	PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) PRO/1000 Network Connection"),
83 	PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) PRO/1000 Network Connection"),
84 
85 	PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
86 	PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
87 	PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
88 	PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) PRO/1000 Network Connection"),
89 	PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) PRO/1000 Network Connection"),
90 	PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) PRO/1000 Network Connection"),
91 	PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) PRO/1000 Network Connection"),
92 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
93 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) PRO/1000 Network Connection"),
94 
95 	PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) PRO/1000 Network Connection"),
96 	PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
97 	PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) PRO/1000 Network Connection"),
98 
99 	/* Intel(R) PRO/1000 Network Connection - em */
100 	PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
101 	PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
102 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 Network Connection"),
103 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 Network Connection"),
104 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 Network Connection"),
105 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
106 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 Network Connection"),
107 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 Network Connection"),
108 	PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
109 	PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 Network Connection"),
110 	PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
111 	PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
112 	PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 Network Connection"),
113 	PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 Network Connection"),
114 	PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 Network Connection"),
115 	PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 Network Connection"),
116 	PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) PRO/1000 Network Connection"),
117 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) PRO/1000 Network Connection"),
118 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) PRO/1000 Network Connection"),
119 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) PRO/1000 Network Connection"),
120 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) PRO/1000 Network Connection"),
121 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
122 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
123 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) PRO/1000 Network Connection"),
124 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) PRO/1000 Network Connection"),
125 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
126 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) PRO/1000 Network Connection"),
127 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) PRO/1000 Network Connection"),
128 	PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) PRO/1000 Network Connection"),
129 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
130 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
131 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) PRO/1000 Network Connection"),
132 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) PRO/1000 Network Connection"),
133 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) PRO/1000 Network Connection"),
134 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) PRO/1000 Network Connection"),
135 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
136 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) PRO/1000 Network Connection"),
137 	PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) PRO/1000 Network Connection"),
138 	PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) PRO/1000 Network Connection"),
139 	PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) PRO/1000 Network Connection"),
140 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) PRO/1000 Network Connection"),
141 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) PRO/1000 Network Connection"),
142 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) PRO/1000 Network Connection"),
143 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) PRO/1000 Network Connection"),
144 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) PRO/1000 Network Connection"),
145 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) PRO/1000 Network Connection"),
146 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) PRO/1000 Network Connection"),
147 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) PRO/1000 Network Connection"),
148 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) PRO/1000 Network Connection"),
149 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) PRO/1000 Network Connection"),
150 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) PRO/1000 Network Connection"),
151 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) PRO/1000 Network Connection"),
152 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) PRO/1000 Network Connection"),
153 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) PRO/1000 Network Connection"),
154 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) PRO/1000 Network Connection"),
155 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) PRO/1000 Network Connection"),
156 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) PRO/1000 Network Connection"),
157 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) PRO/1000 Network Connection"),
158 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) PRO/1000 Network Connection"),
159 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) PRO/1000 Network Connection"),
160 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) PRO/1000 Network Connection"),
161 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) PRO/1000 Network Connection"),
162 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) PRO/1000 Network Connection"),
163 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) PRO/1000 Network Connection"),
164 	PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) PRO/1000 Network Connection"),
165 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) PRO/1000 Network Connection"),
166 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) PRO/1000 Network Connection"),
167 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) PRO/1000 Network Connection"),
168 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) PRO/1000 Network Connection"),
169 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) PRO/1000 Network Connection"),
170 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) PRO/1000 Network Connection"),
171 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) PRO/1000 Network Connection"),
172 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) PRO/1000 Network Connection"),
173 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) PRO/1000 Network Connection"),
174 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) PRO/1000 Network Connection"),
175 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) PRO/1000 Network Connection"),
176 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) PRO/1000 Network Connection"),
177 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10, "Intel(R) PRO/1000 Network Connection"),
178 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10, "Intel(R) PRO/1000 Network Connection"),
179 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11, "Intel(R) PRO/1000 Network Connection"),
180 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11, "Intel(R) PRO/1000 Network Connection"),
181 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12, "Intel(R) PRO/1000 Network Connection"),
182 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12, "Intel(R) PRO/1000 Network Connection"),
183 	/* required last entry */
184 	PVID_END
185 };
186 
187 static pci_vendor_info_t igb_vendor_info_array[] =
188 {
189 	/* Intel(R) PRO/1000 Network Connection - igb */
190 	PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
191 	PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
192 	PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
193 	PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 PCI-Express Network Driver"),
194 	PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
195 	PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
196 	PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
197 	PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
198 	PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 PCI-Express Network Driver"),
199 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
200 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 PCI-Express Network Driver"),
201 	PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
202 	PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
203 	PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
204 	PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
205 	PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
206 	PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) PRO/1000 PCI-Express Network Driver"),
207 	PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
208 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
209 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
210 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) PRO/1000 PCI-Express Network Driver"),
211 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) PRO/1000 PCI-Express Network Driver"),
212 	PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
213 	PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
214 	PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
215 	PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
216 	PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
217 	PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
218 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) PRO/1000 PCI-Express Network Driver"),
219 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) PRO/1000 PCI-Express Network Driver"),
220 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
221 	PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
222 	PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
223 	PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
224 	PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
225 	PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
226 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
227 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
228 	PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
229 	/* required last entry */
230 	PVID_END
231 };
232 
233 /*********************************************************************
234  *  Function prototypes
235  *********************************************************************/
236 static void	*em_register(device_t dev);
237 static void	*igb_register(device_t dev);
238 static int	em_if_attach_pre(if_ctx_t ctx);
239 static int	em_if_attach_post(if_ctx_t ctx);
240 static int	em_if_detach(if_ctx_t ctx);
241 static int	em_if_shutdown(if_ctx_t ctx);
242 static int	em_if_suspend(if_ctx_t ctx);
243 static int	em_if_resume(if_ctx_t ctx);
244 
245 static int	em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets);
246 static int	em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets);
247 static void	em_if_queues_free(if_ctx_t ctx);
248 
249 static uint64_t	em_if_get_counter(if_ctx_t, ift_counter);
250 static void	em_if_init(if_ctx_t ctx);
251 static void	em_if_stop(if_ctx_t ctx);
252 static void	em_if_media_status(if_ctx_t, struct ifmediareq *);
253 static int	em_if_media_change(if_ctx_t ctx);
254 static int	em_if_mtu_set(if_ctx_t ctx, uint32_t mtu);
255 static void	em_if_timer(if_ctx_t ctx, uint16_t qid);
256 static void	em_if_vlan_register(if_ctx_t ctx, u16 vtag);
257 static void	em_if_vlan_unregister(if_ctx_t ctx, u16 vtag);
258 static void	em_if_watchdog_reset(if_ctx_t ctx);
259 static bool	em_if_needs_restart(if_ctx_t ctx, enum iflib_restart_event event);
260 
261 static void	em_identify_hardware(if_ctx_t ctx);
262 static int	em_allocate_pci_resources(if_ctx_t ctx);
263 static void	em_free_pci_resources(if_ctx_t ctx);
264 static void	em_reset(if_ctx_t ctx);
265 static int	em_setup_interface(if_ctx_t ctx);
266 static int	em_setup_msix(if_ctx_t ctx);
267 
268 static void	em_initialize_transmit_unit(if_ctx_t ctx);
269 static void	em_initialize_receive_unit(if_ctx_t ctx);
270 
271 static void	em_if_intr_enable(if_ctx_t ctx);
272 static void	em_if_intr_disable(if_ctx_t ctx);
273 static void	igb_if_intr_enable(if_ctx_t ctx);
274 static void	igb_if_intr_disable(if_ctx_t ctx);
275 static int	em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
276 static int	em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
277 static int	igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
278 static int	igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
279 static void	em_if_multi_set(if_ctx_t ctx);
280 static void	em_if_update_admin_status(if_ctx_t ctx);
281 static void	em_if_debug(if_ctx_t ctx);
282 static void	em_update_stats_counters(struct adapter *);
283 static void	em_add_hw_stats(struct adapter *adapter);
284 static int	em_if_set_promisc(if_ctx_t ctx, int flags);
285 static void	em_setup_vlan_hw_support(struct adapter *);
286 static int	em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
287 static void	em_print_nvm_info(struct adapter *);
288 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
289 static int	em_get_rs(SYSCTL_HANDLER_ARGS);
290 static void	em_print_debug_info(struct adapter *);
291 static int 	em_is_valid_ether_addr(u8 *);
292 static int	em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
293 static void	em_add_int_delay_sysctl(struct adapter *, const char *,
294 		    const char *, struct em_int_delay_info *, int, int);
295 /* Management and WOL Support */
296 static void	em_init_manageability(struct adapter *);
297 static void	em_release_manageability(struct adapter *);
298 static void	em_get_hw_control(struct adapter *);
299 static void	em_release_hw_control(struct adapter *);
300 static void	em_get_wakeup(if_ctx_t ctx);
301 static void	em_enable_wakeup(if_ctx_t ctx);
302 static int	em_enable_phy_wakeup(struct adapter *);
303 static void	em_disable_aspm(struct adapter *);
304 
305 int		em_intr(void *arg);
306 static void	em_disable_promisc(if_ctx_t ctx);
307 
308 /* MSI-X handlers */
309 static int	em_if_msix_intr_assign(if_ctx_t, int);
310 static int	em_msix_link(void *);
311 static void	em_handle_link(void *context);
312 
313 static void	em_enable_vectors_82574(if_ctx_t);
314 
315 static int	em_set_flowcntl(SYSCTL_HANDLER_ARGS);
316 static int	em_sysctl_eee(SYSCTL_HANDLER_ARGS);
317 static void	em_if_led_func(if_ctx_t ctx, int onoff);
318 
319 static int	em_get_regs(SYSCTL_HANDLER_ARGS);
320 
321 static void	lem_smartspeed(struct adapter *adapter);
322 static void	igb_configure_queues(struct adapter *adapter);
323 
324 
325 /*********************************************************************
326  *  FreeBSD Device Interface Entry Points
327  *********************************************************************/
328 static device_method_t em_methods[] = {
329 	/* Device interface */
330 	DEVMETHOD(device_register, em_register),
331 	DEVMETHOD(device_probe, iflib_device_probe),
332 	DEVMETHOD(device_attach, iflib_device_attach),
333 	DEVMETHOD(device_detach, iflib_device_detach),
334 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
335 	DEVMETHOD(device_suspend, iflib_device_suspend),
336 	DEVMETHOD(device_resume, iflib_device_resume),
337 	DEVMETHOD_END
338 };
339 
340 static device_method_t igb_methods[] = {
341 	/* Device interface */
342 	DEVMETHOD(device_register, igb_register),
343 	DEVMETHOD(device_probe, iflib_device_probe),
344 	DEVMETHOD(device_attach, iflib_device_attach),
345 	DEVMETHOD(device_detach, iflib_device_detach),
346 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
347 	DEVMETHOD(device_suspend, iflib_device_suspend),
348 	DEVMETHOD(device_resume, iflib_device_resume),
349 	DEVMETHOD_END
350 };
351 
352 
353 static driver_t em_driver = {
354 	"em", em_methods, sizeof(struct adapter),
355 };
356 
357 static devclass_t em_devclass;
358 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
359 
360 MODULE_DEPEND(em, pci, 1, 1, 1);
361 MODULE_DEPEND(em, ether, 1, 1, 1);
362 MODULE_DEPEND(em, iflib, 1, 1, 1);
363 
364 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
365 
366 static driver_t igb_driver = {
367 	"igb", igb_methods, sizeof(struct adapter),
368 };
369 
370 static devclass_t igb_devclass;
371 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
372 
373 MODULE_DEPEND(igb, pci, 1, 1, 1);
374 MODULE_DEPEND(igb, ether, 1, 1, 1);
375 MODULE_DEPEND(igb, iflib, 1, 1, 1);
376 
377 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
378 
379 static device_method_t em_if_methods[] = {
380 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
381 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
382 	DEVMETHOD(ifdi_detach, em_if_detach),
383 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
384 	DEVMETHOD(ifdi_suspend, em_if_suspend),
385 	DEVMETHOD(ifdi_resume, em_if_resume),
386 	DEVMETHOD(ifdi_init, em_if_init),
387 	DEVMETHOD(ifdi_stop, em_if_stop),
388 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
389 	DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
390 	DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
391 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
392 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
393 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
394 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
395 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
396 	DEVMETHOD(ifdi_media_status, em_if_media_status),
397 	DEVMETHOD(ifdi_media_change, em_if_media_change),
398 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
399 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
400 	DEVMETHOD(ifdi_timer, em_if_timer),
401 	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
402 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
403 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
404 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
405 	DEVMETHOD(ifdi_led_func, em_if_led_func),
406 	DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
407 	DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
408 	DEVMETHOD(ifdi_debug, em_if_debug),
409 	DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
410 	DEVMETHOD_END
411 };
412 
413 static driver_t em_if_driver = {
414 	"em_if", em_if_methods, sizeof(struct adapter)
415 };
416 
417 static device_method_t igb_if_methods[] = {
418 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
419 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
420 	DEVMETHOD(ifdi_detach, em_if_detach),
421 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
422 	DEVMETHOD(ifdi_suspend, em_if_suspend),
423 	DEVMETHOD(ifdi_resume, em_if_resume),
424 	DEVMETHOD(ifdi_init, em_if_init),
425 	DEVMETHOD(ifdi_stop, em_if_stop),
426 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
427 	DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
428 	DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
429 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
430 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
431 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
432 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
433 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
434 	DEVMETHOD(ifdi_media_status, em_if_media_status),
435 	DEVMETHOD(ifdi_media_change, em_if_media_change),
436 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
437 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
438 	DEVMETHOD(ifdi_timer, em_if_timer),
439 	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
440 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
441 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
442 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
443 	DEVMETHOD(ifdi_led_func, em_if_led_func),
444 	DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
445 	DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
446 	DEVMETHOD(ifdi_debug, em_if_debug),
447 	DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
448 	DEVMETHOD_END
449 };
450 
451 static driver_t igb_if_driver = {
452 	"igb_if", igb_if_methods, sizeof(struct adapter)
453 };
454 
455 /*********************************************************************
456  *  Tunable default values.
457  *********************************************************************/
458 
459 #define EM_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
460 #define EM_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
461 
462 #define MAX_INTS_PER_SEC	8000
463 #define DEFAULT_ITR		(1000000000/(MAX_INTS_PER_SEC * 256))
464 
465 /* Allow common code without TSO */
466 #ifndef CSUM_TSO
467 #define CSUM_TSO	0
468 #endif
469 
470 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
471     "EM driver parameters");
472 
473 static int em_disable_crc_stripping = 0;
474 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
475     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
476 
477 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
478 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
479 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
480     0, "Default transmit interrupt delay in usecs");
481 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
482     0, "Default receive interrupt delay in usecs");
483 
484 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
485 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
486 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
487     &em_tx_abs_int_delay_dflt, 0,
488     "Default transmit interrupt delay limit in usecs");
489 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
490     &em_rx_abs_int_delay_dflt, 0,
491     "Default receive interrupt delay limit in usecs");
492 
493 static int em_smart_pwr_down = FALSE;
494 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
495     0, "Set to true to leave smart power down enabled on newer adapters");
496 
497 /* Controls whether promiscuous also shows bad packets */
498 static int em_debug_sbp = TRUE;
499 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
500     "Show bad packets in promiscuous mode");
501 
502 /* How many packets rxeof tries to clean at a time */
503 static int em_rx_process_limit = 100;
504 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
505     &em_rx_process_limit, 0,
506     "Maximum number of received packets to process "
507     "at a time, -1 means unlimited");
508 
509 /* Energy efficient ethernet - default to OFF */
510 static int eee_setting = 1;
511 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
512     "Enable Energy Efficient Ethernet");
513 
514 /*
515 ** Tuneable Interrupt rate
516 */
517 static int em_max_interrupt_rate = 8000;
518 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
519     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
520 
521 
522 
523 /* Global used in WOL setup with multiport cards */
524 static int global_quad_port_a = 0;
525 
526 extern struct if_txrx igb_txrx;
527 extern struct if_txrx em_txrx;
528 extern struct if_txrx lem_txrx;
529 
530 static struct if_shared_ctx em_sctx_init = {
531 	.isc_magic = IFLIB_MAGIC,
532 	.isc_q_align = PAGE_SIZE,
533 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
534 	.isc_tx_maxsegsize = PAGE_SIZE,
535 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
536 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
537 	.isc_rx_maxsize = MJUM9BYTES,
538 	.isc_rx_nsegments = 1,
539 	.isc_rx_maxsegsize = MJUM9BYTES,
540 	.isc_nfl = 1,
541 	.isc_nrxqs = 1,
542 	.isc_ntxqs = 1,
543 	.isc_admin_intrcnt = 1,
544 	.isc_vendor_info = em_vendor_info_array,
545 	.isc_driver_version = em_driver_version,
546 	.isc_driver = &em_if_driver,
547 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
548 
549 	.isc_nrxd_min = {EM_MIN_RXD},
550 	.isc_ntxd_min = {EM_MIN_TXD},
551 	.isc_nrxd_max = {EM_MAX_RXD},
552 	.isc_ntxd_max = {EM_MAX_TXD},
553 	.isc_nrxd_default = {EM_DEFAULT_RXD},
554 	.isc_ntxd_default = {EM_DEFAULT_TXD},
555 };
556 
557 static struct if_shared_ctx igb_sctx_init = {
558 	.isc_magic = IFLIB_MAGIC,
559 	.isc_q_align = PAGE_SIZE,
560 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
561 	.isc_tx_maxsegsize = PAGE_SIZE,
562 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
563 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
564 	.isc_rx_maxsize = MJUM9BYTES,
565 	.isc_rx_nsegments = 1,
566 	.isc_rx_maxsegsize = MJUM9BYTES,
567 	.isc_nfl = 1,
568 	.isc_nrxqs = 1,
569 	.isc_ntxqs = 1,
570 	.isc_admin_intrcnt = 1,
571 	.isc_vendor_info = igb_vendor_info_array,
572 	.isc_driver_version = em_driver_version,
573 	.isc_driver = &igb_if_driver,
574 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
575 
576 	.isc_nrxd_min = {EM_MIN_RXD},
577 	.isc_ntxd_min = {EM_MIN_TXD},
578 	.isc_nrxd_max = {IGB_MAX_RXD},
579 	.isc_ntxd_max = {IGB_MAX_TXD},
580 	.isc_nrxd_default = {EM_DEFAULT_RXD},
581 	.isc_ntxd_default = {EM_DEFAULT_TXD},
582 };
583 
584 /*****************************************************************
585  *
586  * Dump Registers
587  *
588  ****************************************************************/
589 #define IGB_REGS_LEN 739
590 
591 static int em_get_regs(SYSCTL_HANDLER_ARGS)
592 {
593 	struct adapter *adapter = (struct adapter *)arg1;
594 	struct e1000_hw *hw = &adapter->hw;
595 	struct sbuf *sb;
596 	u32 *regs_buff;
597 	int rc;
598 
599 	regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
600 	memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
601 
602 	rc = sysctl_wire_old_buffer(req, 0);
603 	MPASS(rc == 0);
604 	if (rc != 0) {
605 		free(regs_buff, M_DEVBUF);
606 		return (rc);
607 	}
608 
609 	sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
610 	MPASS(sb != NULL);
611 	if (sb == NULL) {
612 		free(regs_buff, M_DEVBUF);
613 		return (ENOMEM);
614 	}
615 
616 	/* General Registers */
617 	regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
618 	regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
619 	regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
620 	regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
621 	regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
622 	regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
623 	regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
624 	regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
625 	regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
626 	regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
627 	regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
628 	regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
629 	regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
630 	regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
631 	regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
632 	regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
633 	regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
634 	regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
635 	regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
636 	regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
637 	regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
638 	regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
639 
640 	sbuf_printf(sb, "General Registers\n");
641 	sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
642 	sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
643 	sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]);
644 
645 	sbuf_printf(sb, "Interrupt Registers\n");
646 	sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
647 
648 	sbuf_printf(sb, "RX Registers\n");
649 	sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
650 	sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
651 	sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
652 	sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
653 	sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
654 	sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
655 	sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
656 
657 	sbuf_printf(sb, "TX Registers\n");
658 	sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
659 	sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
660 	sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
661 	sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
662 	sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
663 	sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
664 	sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
665 	sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
666 	sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
667 	sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
668 	sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
669 
670 	free(regs_buff, M_DEVBUF);
671 
672 #ifdef DUMP_DESCS
673 	{
674 		if_softc_ctx_t scctx = adapter->shared;
675 		struct rx_ring *rxr = &rx_que->rxr;
676 		struct tx_ring *txr = &tx_que->txr;
677 		int ntxd = scctx->isc_ntxd[0];
678 		int nrxd = scctx->isc_nrxd[0];
679 		int j;
680 
681 	for (j = 0; j < nrxd; j++) {
682 		u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
683 		u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
684 		sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
685 	}
686 
687 	for (j = 0; j < min(ntxd, 256); j++) {
688 		unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
689 
690 		sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
691 			    j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
692 			    buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
693 
694 	}
695 	}
696 #endif
697 
698 	rc = sbuf_finish(sb);
699 	sbuf_delete(sb);
700 	return(rc);
701 }
702 
703 static void *
704 em_register(device_t dev)
705 {
706 	return (&em_sctx_init);
707 }
708 
709 static void *
710 igb_register(device_t dev)
711 {
712 	return (&igb_sctx_init);
713 }
714 
715 static int
716 em_set_num_queues(if_ctx_t ctx)
717 {
718 	struct adapter *adapter = iflib_get_softc(ctx);
719 	int maxqueues;
720 
721 	/* Sanity check based on HW */
722 	switch (adapter->hw.mac.type) {
723 	case e1000_82576:
724 	case e1000_82580:
725 	case e1000_i350:
726 	case e1000_i354:
727 		maxqueues = 8;
728 		break;
729 	case e1000_i210:
730 	case e1000_82575:
731 		maxqueues = 4;
732 		break;
733 	case e1000_i211:
734 	case e1000_82574:
735 		maxqueues = 2;
736 		break;
737 	default:
738 		maxqueues = 1;
739 		break;
740 	}
741 
742 	return (maxqueues);
743 }
744 
745 #define	LEM_CAPS							\
746     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
747     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER
748 
749 #define	EM_CAPS								\
750     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
751     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |	\
752     IFCAP_LRO | IFCAP_VLAN_HWTSO
753 
754 #define	IGB_CAPS							\
755     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
756     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |	\
757     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 |\
758     IFCAP_TSO6
759 
760 /*********************************************************************
761  *  Device initialization routine
762  *
763  *  The attach entry point is called when the driver is being loaded.
764  *  This routine identifies the type of hardware, allocates all resources
765  *  and initializes the hardware.
766  *
767  *  return 0 on success, positive on failure
768  *********************************************************************/
769 static int
770 em_if_attach_pre(if_ctx_t ctx)
771 {
772 	struct adapter *adapter;
773 	if_softc_ctx_t scctx;
774 	device_t dev;
775 	struct e1000_hw *hw;
776 	int error = 0;
777 
778 	INIT_DEBUGOUT("em_if_attach_pre: begin");
779 	dev = iflib_get_dev(ctx);
780 	adapter = iflib_get_softc(ctx);
781 
782 	adapter->ctx = adapter->osdep.ctx = ctx;
783 	adapter->dev = adapter->osdep.dev = dev;
784 	scctx = adapter->shared = iflib_get_softc_ctx(ctx);
785 	adapter->media = iflib_get_media(ctx);
786 	hw = &adapter->hw;
787 
788 	adapter->tx_process_limit = scctx->isc_ntxd[0];
789 
790 	/* SYSCTL stuff */
791 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
792 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
793 	    OID_AUTO, "nvm", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
794 	    adapter, 0, em_sysctl_nvm_info, "I", "NVM Information");
795 
796 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
797 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
798 	    OID_AUTO, "debug", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
799 	    adapter, 0, em_sysctl_debug_info, "I", "Debug Information");
800 
801 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
802 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
803 	    OID_AUTO, "fc", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
804 	    adapter, 0, em_set_flowcntl, "I", "Flow Control");
805 
806 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
807 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
808 	    OID_AUTO, "reg_dump",
809 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter, 0,
810 	    em_get_regs, "A", "Dump Registers");
811 
812 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
813 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
814 	    OID_AUTO, "rs_dump",
815 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, adapter, 0,
816 	    em_get_rs, "I", "Dump RS indexes");
817 
818 	/* Determine hardware and mac info */
819 	em_identify_hardware(ctx);
820 
821 	scctx->isc_tx_nsegments = EM_MAX_SCATTER;
822 	scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
823 	if (bootverbose)
824 		device_printf(dev, "attach_pre capping queues at %d\n",
825 		    scctx->isc_ntxqsets_max);
826 
827 	if (hw->mac.type >= igb_mac_min) {
828 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
829 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
830 		scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
831 		scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
832 		scctx->isc_txrx = &igb_txrx;
833 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
834 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
835 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
836 		scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
837 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
838 		     CSUM_IP6_TCP | CSUM_IP6_UDP;
839 		if (hw->mac.type != e1000_82575)
840 			scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
841 		/*
842 		** Some new devices, as with ixgbe, now may
843 		** use a different BAR, so we need to keep
844 		** track of which is used.
845 		*/
846 		scctx->isc_msix_bar = pci_msix_table_bar(dev);
847 	} else if (hw->mac.type >= em_mac_min) {
848 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
849 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
850 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
851 		scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
852 		scctx->isc_txrx = &em_txrx;
853 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
854 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
855 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
856 		scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
857 		/*
858 		 * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO}
859 		 * by default as we don't have workarounds for all associated
860 		 * silicon errata.  E. g., with several MACs such as 82573E,
861 		 * TSO only works at Gigabit speed and otherwise can cause the
862 		 * hardware to hang (which also would be next to impossible to
863 		 * work around given that already queued TSO-using descriptors
864 		 * would need to be flushed and vlan(4) reconfigured at runtime
865 		 * in case of a link speed change).  Moreover, MACs like 82579
866 		 * still can hang at Gigabit even with all publicly documented
867 		 * TSO workarounds implemented.  Generally, the penality of
868 		 * these workarounds is rather high and may involve copying
869 		 * mbuf data around so advantages of TSO lapse.  Still, TSO may
870 		 * work for a few MACs of this class - at least when sticking
871 		 * with Gigabit - in which case users may enable TSO manually.
872 		 */
873 		scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
874 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
875 		/*
876 		 * We support MSI-X with 82574 only, but indicate to iflib(4)
877 		 * that it shall give MSI at least a try with other devices.
878 		 */
879 		if (hw->mac.type == e1000_82574) {
880 			scctx->isc_msix_bar = pci_msix_table_bar(dev);;
881 		} else {
882 			scctx->isc_msix_bar = -1;
883 			scctx->isc_disable_msix = 1;
884 		}
885 	} else {
886 		scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
887 		scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
888 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
889 		scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
890 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP;
891 		scctx->isc_txrx = &lem_txrx;
892 		scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
893 		if (hw->mac.type < e1000_82543)
894 			scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM);
895 		/* INTx only */
896 		scctx->isc_msix_bar = 0;
897 	}
898 
899 	/* Setup PCI resources */
900 	if (em_allocate_pci_resources(ctx)) {
901 		device_printf(dev, "Allocation of PCI resources failed\n");
902 		error = ENXIO;
903 		goto err_pci;
904 	}
905 
906 	/*
907 	** For ICH8 and family we need to
908 	** map the flash memory, and this
909 	** must happen after the MAC is
910 	** identified
911 	*/
912 	if ((hw->mac.type == e1000_ich8lan) ||
913 	    (hw->mac.type == e1000_ich9lan) ||
914 	    (hw->mac.type == e1000_ich10lan) ||
915 	    (hw->mac.type == e1000_pchlan) ||
916 	    (hw->mac.type == e1000_pch2lan) ||
917 	    (hw->mac.type == e1000_pch_lpt)) {
918 		int rid = EM_BAR_TYPE_FLASH;
919 		adapter->flash = bus_alloc_resource_any(dev,
920 		    SYS_RES_MEMORY, &rid, RF_ACTIVE);
921 		if (adapter->flash == NULL) {
922 			device_printf(dev, "Mapping of Flash failed\n");
923 			error = ENXIO;
924 			goto err_pci;
925 		}
926 		/* This is used in the shared code */
927 		hw->flash_address = (u8 *)adapter->flash;
928 		adapter->osdep.flash_bus_space_tag =
929 		    rman_get_bustag(adapter->flash);
930 		adapter->osdep.flash_bus_space_handle =
931 		    rman_get_bushandle(adapter->flash);
932 	}
933 	/*
934 	** In the new SPT device flash is not  a
935 	** separate BAR, rather it is also in BAR0,
936 	** so use the same tag and an offset handle for the
937 	** FLASH read/write macros in the shared code.
938 	*/
939 	else if (hw->mac.type >= e1000_pch_spt) {
940 		adapter->osdep.flash_bus_space_tag =
941 		    adapter->osdep.mem_bus_space_tag;
942 		adapter->osdep.flash_bus_space_handle =
943 		    adapter->osdep.mem_bus_space_handle
944 		    + E1000_FLASH_BASE_ADDR;
945 	}
946 
947 	/* Do Shared Code initialization */
948 	error = e1000_setup_init_funcs(hw, TRUE);
949 	if (error) {
950 		device_printf(dev, "Setup of Shared code failed, error %d\n",
951 		    error);
952 		error = ENXIO;
953 		goto err_pci;
954 	}
955 
956 	em_setup_msix(ctx);
957 	e1000_get_bus_info(hw);
958 
959 	/* Set up some sysctls for the tunable interrupt delays */
960 	em_add_int_delay_sysctl(adapter, "rx_int_delay",
961 	    "receive interrupt delay in usecs", &adapter->rx_int_delay,
962 	    E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
963 	em_add_int_delay_sysctl(adapter, "tx_int_delay",
964 	    "transmit interrupt delay in usecs", &adapter->tx_int_delay,
965 	    E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
966 	em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
967 	    "receive interrupt delay limit in usecs",
968 	    &adapter->rx_abs_int_delay,
969 	    E1000_REGISTER(hw, E1000_RADV),
970 	    em_rx_abs_int_delay_dflt);
971 	em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
972 	    "transmit interrupt delay limit in usecs",
973 	    &adapter->tx_abs_int_delay,
974 	    E1000_REGISTER(hw, E1000_TADV),
975 	    em_tx_abs_int_delay_dflt);
976 	em_add_int_delay_sysctl(adapter, "itr",
977 	    "interrupt delay limit in usecs/4",
978 	    &adapter->tx_itr,
979 	    E1000_REGISTER(hw, E1000_ITR),
980 	    DEFAULT_ITR);
981 
982 	hw->mac.autoneg = DO_AUTO_NEG;
983 	hw->phy.autoneg_wait_to_complete = FALSE;
984 	hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
985 
986 	if (hw->mac.type < em_mac_min) {
987 		e1000_init_script_state_82541(hw, TRUE);
988 		e1000_set_tbi_compatibility_82543(hw, TRUE);
989 	}
990 	/* Copper options */
991 	if (hw->phy.media_type == e1000_media_type_copper) {
992 		hw->phy.mdix = AUTO_ALL_MODES;
993 		hw->phy.disable_polarity_correction = FALSE;
994 		hw->phy.ms_type = EM_MASTER_SLAVE;
995 	}
996 
997 	/*
998 	 * Set the frame limits assuming
999 	 * standard ethernet sized frames.
1000 	 */
1001 	scctx->isc_max_frame_size = hw->mac.max_frame_size =
1002 	    ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
1003 
1004 	/*
1005 	 * This controls when hardware reports transmit completion
1006 	 * status.
1007 	 */
1008 	hw->mac.report_tx_early = 1;
1009 
1010 	/* Allocate multicast array memory. */
1011 	adapter->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
1012 	    MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1013 	if (adapter->mta == NULL) {
1014 		device_printf(dev, "Can not allocate multicast setup array\n");
1015 		error = ENOMEM;
1016 		goto err_late;
1017 	}
1018 
1019 	/* Check SOL/IDER usage */
1020 	if (e1000_check_reset_block(hw))
1021 		device_printf(dev, "PHY reset is blocked"
1022 			      " due to SOL/IDER session.\n");
1023 
1024 	/* Sysctl for setting Energy Efficient Ethernet */
1025 	hw->dev_spec.ich8lan.eee_disable = eee_setting;
1026 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1027 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1028 	    OID_AUTO, "eee_control",
1029 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1030 	    adapter, 0, em_sysctl_eee, "I",
1031 	    "Disable Energy Efficient Ethernet");
1032 
1033 	/*
1034 	** Start from a known state, this is
1035 	** important in reading the nvm and
1036 	** mac from that.
1037 	*/
1038 	e1000_reset_hw(hw);
1039 
1040 	/* Make sure we have a good EEPROM before we read from it */
1041 	if (e1000_validate_nvm_checksum(hw) < 0) {
1042 		/*
1043 		** Some PCI-E parts fail the first check due to
1044 		** the link being in sleep state, call it again,
1045 		** if it fails a second time its a real issue.
1046 		*/
1047 		if (e1000_validate_nvm_checksum(hw) < 0) {
1048 			device_printf(dev,
1049 			    "The EEPROM Checksum Is Not Valid\n");
1050 			error = EIO;
1051 			goto err_late;
1052 		}
1053 	}
1054 
1055 	/* Copy the permanent MAC address out of the EEPROM */
1056 	if (e1000_read_mac_addr(hw) < 0) {
1057 		device_printf(dev, "EEPROM read error while reading MAC"
1058 			      " address\n");
1059 		error = EIO;
1060 		goto err_late;
1061 	}
1062 
1063 	if (!em_is_valid_ether_addr(hw->mac.addr)) {
1064 		device_printf(dev, "Invalid MAC address\n");
1065 		error = EIO;
1066 		goto err_late;
1067 	}
1068 
1069 	/* Disable ULP support */
1070 	e1000_disable_ulp_lpt_lp(hw, TRUE);
1071 
1072 	/*
1073 	 * Get Wake-on-Lan and Management info for later use
1074 	 */
1075 	em_get_wakeup(ctx);
1076 
1077 	/* Enable only WOL MAGIC by default */
1078 	scctx->isc_capenable &= ~IFCAP_WOL;
1079 	if (adapter->wol != 0)
1080 		scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1081 
1082 	iflib_set_mac(ctx, hw->mac.addr);
1083 
1084 	return (0);
1085 
1086 err_late:
1087 	em_release_hw_control(adapter);
1088 err_pci:
1089 	em_free_pci_resources(ctx);
1090 	free(adapter->mta, M_DEVBUF);
1091 
1092 	return (error);
1093 }
1094 
1095 static int
1096 em_if_attach_post(if_ctx_t ctx)
1097 {
1098 	struct adapter *adapter = iflib_get_softc(ctx);
1099 	struct e1000_hw *hw = &adapter->hw;
1100 	int error = 0;
1101 
1102 	/* Setup OS specific network interface */
1103 	error = em_setup_interface(ctx);
1104 	if (error != 0) {
1105 		device_printf(adapter->dev, "Interface setup failed: %d\n", error);
1106 		goto err_late;
1107 	}
1108 
1109 	em_reset(ctx);
1110 
1111 	/* Initialize statistics */
1112 	em_update_stats_counters(adapter);
1113 	hw->mac.get_link_status = 1;
1114 	em_if_update_admin_status(ctx);
1115 	em_add_hw_stats(adapter);
1116 
1117 	/* Non-AMT based hardware can now take control from firmware */
1118 	if (adapter->has_manage && !adapter->has_amt)
1119 		em_get_hw_control(adapter);
1120 
1121 	INIT_DEBUGOUT("em_if_attach_post: end");
1122 
1123 	return (0);
1124 
1125 err_late:
1126 	/* upon attach_post() error, iflib calls _if_detach() to free resources. */
1127 	return (error);
1128 }
1129 
1130 /*********************************************************************
1131  *  Device removal routine
1132  *
1133  *  The detach entry point is called when the driver is being removed.
1134  *  This routine stops the adapter and deallocates all the resources
1135  *  that were allocated for driver operation.
1136  *
1137  *  return 0 on success, positive on failure
1138  *********************************************************************/
1139 static int
1140 em_if_detach(if_ctx_t ctx)
1141 {
1142 	struct adapter	*adapter = iflib_get_softc(ctx);
1143 
1144 	INIT_DEBUGOUT("em_if_detach: begin");
1145 
1146 	e1000_phy_hw_reset(&adapter->hw);
1147 
1148 	em_release_manageability(adapter);
1149 	em_release_hw_control(adapter);
1150 	em_free_pci_resources(ctx);
1151 	free(adapter->mta, M_DEVBUF);
1152 	adapter->mta = NULL;
1153 
1154 	return (0);
1155 }
1156 
1157 /*********************************************************************
1158  *
1159  *  Shutdown entry point
1160  *
1161  **********************************************************************/
1162 
1163 static int
1164 em_if_shutdown(if_ctx_t ctx)
1165 {
1166 	return em_if_suspend(ctx);
1167 }
1168 
1169 /*
1170  * Suspend/resume device methods.
1171  */
1172 static int
1173 em_if_suspend(if_ctx_t ctx)
1174 {
1175 	struct adapter *adapter = iflib_get_softc(ctx);
1176 
1177 	em_release_manageability(adapter);
1178 	em_release_hw_control(adapter);
1179 	em_enable_wakeup(ctx);
1180 	return (0);
1181 }
1182 
1183 static int
1184 em_if_resume(if_ctx_t ctx)
1185 {
1186 	struct adapter *adapter = iflib_get_softc(ctx);
1187 
1188 	if (adapter->hw.mac.type == e1000_pch2lan)
1189 		e1000_resume_workarounds_pchlan(&adapter->hw);
1190 	em_if_init(ctx);
1191 	em_init_manageability(adapter);
1192 
1193 	return(0);
1194 }
1195 
1196 static int
1197 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1198 {
1199 	int max_frame_size;
1200 	struct adapter *adapter = iflib_get_softc(ctx);
1201 	if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1202 
1203 	IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1204 
1205 	switch (adapter->hw.mac.type) {
1206 	case e1000_82571:
1207 	case e1000_82572:
1208 	case e1000_ich9lan:
1209 	case e1000_ich10lan:
1210 	case e1000_pch2lan:
1211 	case e1000_pch_lpt:
1212 	case e1000_pch_spt:
1213 	case e1000_pch_cnp:
1214 	case e1000_82574:
1215 	case e1000_82583:
1216 	case e1000_80003es2lan:
1217 		/* 9K Jumbo Frame size */
1218 		max_frame_size = 9234;
1219 		break;
1220 	case e1000_pchlan:
1221 		max_frame_size = 4096;
1222 		break;
1223 	case e1000_82542:
1224 	case e1000_ich8lan:
1225 		/* Adapters that do not support jumbo frames */
1226 		max_frame_size = ETHER_MAX_LEN;
1227 		break;
1228 	default:
1229 		if (adapter->hw.mac.type >= igb_mac_min)
1230 			max_frame_size = 9234;
1231 		else /* lem */
1232 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1233 	}
1234 	if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1235 		return (EINVAL);
1236 	}
1237 
1238 	scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
1239 	    mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1240 	return (0);
1241 }
1242 
1243 /*********************************************************************
1244  *  Init entry point
1245  *
1246  *  This routine is used in two ways. It is used by the stack as
1247  *  init entry point in network interface structure. It is also used
1248  *  by the driver as a hw/sw initialization routine to get to a
1249  *  consistent state.
1250  *
1251  **********************************************************************/
1252 static void
1253 em_if_init(if_ctx_t ctx)
1254 {
1255 	struct adapter *adapter = iflib_get_softc(ctx);
1256 	if_softc_ctx_t scctx = adapter->shared;
1257 	struct ifnet *ifp = iflib_get_ifp(ctx);
1258 	struct em_tx_queue *tx_que;
1259 	int i;
1260 
1261 	INIT_DEBUGOUT("em_if_init: begin");
1262 
1263 	/* Get the latest mac address, User can use a LAA */
1264 	bcopy(if_getlladdr(ifp), adapter->hw.mac.addr,
1265 	    ETHER_ADDR_LEN);
1266 
1267 	/* Put the address into the Receive Address Array */
1268 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1269 
1270 	/*
1271 	 * With the 82571 adapter, RAR[0] may be overwritten
1272 	 * when the other port is reset, we make a duplicate
1273 	 * in RAR[14] for that eventuality, this assures
1274 	 * the interface continues to function.
1275 	 */
1276 	if (adapter->hw.mac.type == e1000_82571) {
1277 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1278 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1279 		    E1000_RAR_ENTRIES - 1);
1280 	}
1281 
1282 
1283 	/* Initialize the hardware */
1284 	em_reset(ctx);
1285 	em_if_update_admin_status(ctx);
1286 
1287 	for (i = 0, tx_que = adapter->tx_queues; i < adapter->tx_num_queues; i++, tx_que++) {
1288 		struct tx_ring *txr = &tx_que->txr;
1289 
1290 		txr->tx_rs_cidx = txr->tx_rs_pidx;
1291 
1292 		/* Initialize the last processed descriptor to be the end of
1293 		 * the ring, rather than the start, so that we avoid an
1294 		 * off-by-one error when calculating how many descriptors are
1295 		 * done in the credits_update function.
1296 		 */
1297 		txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1298 	}
1299 
1300 	/* Setup VLAN support, basic and offload if available */
1301 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1302 
1303 	/* Clear bad data from Rx FIFOs */
1304 	if (adapter->hw.mac.type >= igb_mac_min)
1305 		e1000_rx_fifo_flush_82575(&adapter->hw);
1306 
1307 	/* Configure for OS presence */
1308 	em_init_manageability(adapter);
1309 
1310 	/* Prepare transmit descriptors and buffers */
1311 	em_initialize_transmit_unit(ctx);
1312 
1313 	/* Setup Multicast table */
1314 	em_if_multi_set(ctx);
1315 
1316 	adapter->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1317 	em_initialize_receive_unit(ctx);
1318 
1319 	/* Use real VLAN Filter support? */
1320 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
1321 		if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
1322 			/* Use real VLAN Filter support */
1323 			em_setup_vlan_hw_support(adapter);
1324 		else {
1325 			u32 ctrl;
1326 			ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1327 			ctrl |= E1000_CTRL_VME;
1328 			E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1329 		}
1330 	} else {
1331 		u32 ctrl;
1332 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1333 		ctrl &= ~E1000_CTRL_VME;
1334 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1335 	}
1336 
1337 	/* Don't lose promiscuous settings */
1338 	em_if_set_promisc(ctx, if_getflags(ifp));
1339 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1340 
1341 	/* MSI-X configuration for 82574 */
1342 	if (adapter->hw.mac.type == e1000_82574) {
1343 		int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1344 
1345 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1346 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1347 		/* Set the IVAR - interrupt vector routing. */
1348 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars);
1349 	} else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1350 		igb_configure_queues(adapter);
1351 
1352 	/* this clears any pending interrupts */
1353 	E1000_READ_REG(&adapter->hw, E1000_ICR);
1354 	E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
1355 
1356 	/* AMT based hardware can now take control from firmware */
1357 	if (adapter->has_manage && adapter->has_amt)
1358 		em_get_hw_control(adapter);
1359 
1360 	/* Set Energy Efficient Ethernet */
1361 	if (adapter->hw.mac.type >= igb_mac_min &&
1362 	    adapter->hw.phy.media_type == e1000_media_type_copper) {
1363 		if (adapter->hw.mac.type == e1000_i354)
1364 			e1000_set_eee_i354(&adapter->hw, TRUE, TRUE);
1365 		else
1366 			e1000_set_eee_i350(&adapter->hw, TRUE, TRUE);
1367 	}
1368 }
1369 
1370 /*********************************************************************
1371  *
1372  *  Fast Legacy/MSI Combined Interrupt Service routine
1373  *
1374  *********************************************************************/
1375 int
1376 em_intr(void *arg)
1377 {
1378 	struct adapter *adapter = arg;
1379 	if_ctx_t ctx = adapter->ctx;
1380 	u32 reg_icr;
1381 
1382 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1383 
1384 	/* Hot eject? */
1385 	if (reg_icr == 0xffffffff)
1386 		return FILTER_STRAY;
1387 
1388 	/* Definitely not our interrupt. */
1389 	if (reg_icr == 0x0)
1390 		return FILTER_STRAY;
1391 
1392 	/*
1393 	 * Starting with the 82571 chip, bit 31 should be used to
1394 	 * determine whether the interrupt belongs to us.
1395 	 */
1396 	if (adapter->hw.mac.type >= e1000_82571 &&
1397 	    (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1398 		return FILTER_STRAY;
1399 
1400 	/*
1401 	 * Only MSI-X interrupts have one-shot behavior by taking advantage
1402 	 * of the EIAC register.  Thus, explicitly disable interrupts.  This
1403 	 * also works around the MSI message reordering errata on certain
1404 	 * systems.
1405 	 */
1406 	IFDI_INTR_DISABLE(ctx);
1407 
1408 	/* Link status change */
1409 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1410 		em_handle_link(ctx);
1411 
1412 	if (reg_icr & E1000_ICR_RXO)
1413 		adapter->rx_overruns++;
1414 
1415 	return (FILTER_SCHEDULE_THREAD);
1416 }
1417 
1418 static int
1419 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1420 {
1421 	struct adapter *adapter = iflib_get_softc(ctx);
1422 	struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1423 
1424 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims);
1425 	return (0);
1426 }
1427 
1428 static int
1429 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1430 {
1431 	struct adapter *adapter = iflib_get_softc(ctx);
1432 	struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1433 
1434 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, txq->eims);
1435 	return (0);
1436 }
1437 
1438 static int
1439 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1440 {
1441 	struct adapter *adapter = iflib_get_softc(ctx);
1442 	struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1443 
1444 	E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims);
1445 	return (0);
1446 }
1447 
1448 static int
1449 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1450 {
1451 	struct adapter *adapter = iflib_get_softc(ctx);
1452 	struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1453 
1454 	E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txq->eims);
1455 	return (0);
1456 }
1457 
1458 /*********************************************************************
1459  *
1460  *  MSI-X RX Interrupt Service routine
1461  *
1462  **********************************************************************/
1463 static int
1464 em_msix_que(void *arg)
1465 {
1466 	struct em_rx_queue *que = arg;
1467 
1468 	++que->irqs;
1469 
1470 	return (FILTER_SCHEDULE_THREAD);
1471 }
1472 
1473 /*********************************************************************
1474  *
1475  *  MSI-X Link Fast Interrupt Service routine
1476  *
1477  **********************************************************************/
1478 static int
1479 em_msix_link(void *arg)
1480 {
1481 	struct adapter *adapter = arg;
1482 	u32 reg_icr;
1483 
1484 	++adapter->link_irq;
1485 	MPASS(adapter->hw.back != NULL);
1486 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1487 
1488 	if (reg_icr & E1000_ICR_RXO)
1489 		adapter->rx_overruns++;
1490 
1491 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1492 		em_handle_link(adapter->ctx);
1493 	} else if (adapter->hw.mac.type == e1000_82574) {
1494 		/* Only re-arm 82574 if em_if_update_admin_status() won't. */
1495 		E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK |
1496 		    E1000_IMS_LSC);
1497 	}
1498 
1499 	if (adapter->hw.mac.type == e1000_82574) {
1500 		/*
1501 		 * Because we must read the ICR for this interrupt it may
1502 		 * clear other causes using autoclear, for this reason we
1503 		 * simply create a soft interrupt for all these vectors.
1504 		 */
1505 		if (reg_icr)
1506 			E1000_WRITE_REG(&adapter->hw, E1000_ICS, adapter->ims);
1507 	} else {
1508 		/* Re-arm unconditionally */
1509 		E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC);
1510 		E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
1511 	}
1512 
1513 	return (FILTER_HANDLED);
1514 }
1515 
1516 static void
1517 em_handle_link(void *context)
1518 {
1519 	if_ctx_t ctx = context;
1520 	struct adapter *adapter = iflib_get_softc(ctx);
1521 
1522 	adapter->hw.mac.get_link_status = 1;
1523 	iflib_admin_intr_deferred(ctx);
1524 }
1525 
1526 /*********************************************************************
1527  *
1528  *  Media Ioctl callback
1529  *
1530  *  This routine is called whenever the user queries the status of
1531  *  the interface using ifconfig.
1532  *
1533  **********************************************************************/
1534 static void
1535 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1536 {
1537 	struct adapter *adapter = iflib_get_softc(ctx);
1538 	u_char fiber_type = IFM_1000_SX;
1539 
1540 	INIT_DEBUGOUT("em_if_media_status: begin");
1541 
1542 	iflib_admin_intr_deferred(ctx);
1543 
1544 	ifmr->ifm_status = IFM_AVALID;
1545 	ifmr->ifm_active = IFM_ETHER;
1546 
1547 	if (!adapter->link_active) {
1548 		return;
1549 	}
1550 
1551 	ifmr->ifm_status |= IFM_ACTIVE;
1552 
1553 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
1554 	    (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1555 		if (adapter->hw.mac.type == e1000_82545)
1556 			fiber_type = IFM_1000_LX;
1557 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1558 	} else {
1559 		switch (adapter->link_speed) {
1560 		case 10:
1561 			ifmr->ifm_active |= IFM_10_T;
1562 			break;
1563 		case 100:
1564 			ifmr->ifm_active |= IFM_100_TX;
1565 			break;
1566 		case 1000:
1567 			ifmr->ifm_active |= IFM_1000_T;
1568 			break;
1569 		}
1570 		if (adapter->link_duplex == FULL_DUPLEX)
1571 			ifmr->ifm_active |= IFM_FDX;
1572 		else
1573 			ifmr->ifm_active |= IFM_HDX;
1574 	}
1575 }
1576 
1577 /*********************************************************************
1578  *
1579  *  Media Ioctl callback
1580  *
1581  *  This routine is called when the user changes speed/duplex using
1582  *  media/mediopt option with ifconfig.
1583  *
1584  **********************************************************************/
1585 static int
1586 em_if_media_change(if_ctx_t ctx)
1587 {
1588 	struct adapter *adapter = iflib_get_softc(ctx);
1589 	struct ifmedia *ifm = iflib_get_media(ctx);
1590 
1591 	INIT_DEBUGOUT("em_if_media_change: begin");
1592 
1593 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1594 		return (EINVAL);
1595 
1596 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1597 	case IFM_AUTO:
1598 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1599 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1600 		break;
1601 	case IFM_1000_LX:
1602 	case IFM_1000_SX:
1603 	case IFM_1000_T:
1604 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1605 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1606 		break;
1607 	case IFM_100_TX:
1608 		adapter->hw.mac.autoneg = FALSE;
1609 		adapter->hw.phy.autoneg_advertised = 0;
1610 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1611 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1612 		else
1613 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1614 		break;
1615 	case IFM_10_T:
1616 		adapter->hw.mac.autoneg = FALSE;
1617 		adapter->hw.phy.autoneg_advertised = 0;
1618 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1619 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1620 		else
1621 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1622 		break;
1623 	default:
1624 		device_printf(adapter->dev, "Unsupported media type\n");
1625 	}
1626 
1627 	em_if_init(ctx);
1628 
1629 	return (0);
1630 }
1631 
1632 static int
1633 em_if_set_promisc(if_ctx_t ctx, int flags)
1634 {
1635 	struct adapter *adapter = iflib_get_softc(ctx);
1636 	u32 reg_rctl;
1637 
1638 	em_disable_promisc(ctx);
1639 
1640 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1641 
1642 	if (flags & IFF_PROMISC) {
1643 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1644 		/* Turn this on if you want to see bad packets */
1645 		if (em_debug_sbp)
1646 			reg_rctl |= E1000_RCTL_SBP;
1647 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1648 	} else if (flags & IFF_ALLMULTI) {
1649 		reg_rctl |= E1000_RCTL_MPE;
1650 		reg_rctl &= ~E1000_RCTL_UPE;
1651 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1652 	}
1653 	return (0);
1654 }
1655 
1656 static void
1657 em_disable_promisc(if_ctx_t ctx)
1658 {
1659 	struct adapter *adapter = iflib_get_softc(ctx);
1660 	struct ifnet *ifp = iflib_get_ifp(ctx);
1661 	u32 reg_rctl;
1662 	int mcnt = 0;
1663 
1664 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1665 	reg_rctl &= (~E1000_RCTL_UPE);
1666 	if (if_getflags(ifp) & IFF_ALLMULTI)
1667 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1668 	else
1669 		mcnt = if_llmaddr_count(ifp);
1670 	/* Don't disable if in MAX groups */
1671 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1672 		reg_rctl &=  (~E1000_RCTL_MPE);
1673 	reg_rctl &=  (~E1000_RCTL_SBP);
1674 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1675 }
1676 
1677 
1678 static u_int
1679 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1680 {
1681 	u8 *mta = arg;
1682 
1683 	if (cnt == MAX_NUM_MULTICAST_ADDRESSES)
1684 		return (1);
1685 
1686 	bcopy(LLADDR(sdl), &mta[cnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1687 
1688 	return (1);
1689 }
1690 
1691 /*********************************************************************
1692  *  Multicast Update
1693  *
1694  *  This routine is called whenever multicast address list is updated.
1695  *
1696  **********************************************************************/
1697 
1698 static void
1699 em_if_multi_set(if_ctx_t ctx)
1700 {
1701 	struct adapter *adapter = iflib_get_softc(ctx);
1702 	struct ifnet *ifp = iflib_get_ifp(ctx);
1703 	u32 reg_rctl = 0;
1704 	u8  *mta; /* Multicast array memory */
1705 	int mcnt = 0;
1706 
1707 	IOCTL_DEBUGOUT("em_set_multi: begin");
1708 
1709 	mta = adapter->mta;
1710 	bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1711 
1712 	if (adapter->hw.mac.type == e1000_82542 &&
1713 	    adapter->hw.revision_id == E1000_REVISION_2) {
1714 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1715 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1716 			e1000_pci_clear_mwi(&adapter->hw);
1717 		reg_rctl |= E1000_RCTL_RST;
1718 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1719 		msec_delay(5);
1720 	}
1721 
1722 	mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
1723 
1724 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1725 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1726 		reg_rctl |= E1000_RCTL_MPE;
1727 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1728 	} else
1729 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1730 
1731 	if (adapter->hw.mac.type == e1000_82542 &&
1732 	    adapter->hw.revision_id == E1000_REVISION_2) {
1733 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1734 		reg_rctl &= ~E1000_RCTL_RST;
1735 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1736 		msec_delay(5);
1737 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1738 			e1000_pci_set_mwi(&adapter->hw);
1739 	}
1740 }
1741 
1742 /*********************************************************************
1743  *  Timer routine
1744  *
1745  *  This routine schedules em_if_update_admin_status() to check for
1746  *  link status and to gather statistics as well as to perform some
1747  *  controller-specific hardware patting.
1748  *
1749  **********************************************************************/
1750 static void
1751 em_if_timer(if_ctx_t ctx, uint16_t qid)
1752 {
1753 
1754 	if (qid != 0)
1755 		return;
1756 
1757 	iflib_admin_intr_deferred(ctx);
1758 }
1759 
1760 static void
1761 em_if_update_admin_status(if_ctx_t ctx)
1762 {
1763 	struct adapter *adapter = iflib_get_softc(ctx);
1764 	struct e1000_hw *hw = &adapter->hw;
1765 	device_t dev = iflib_get_dev(ctx);
1766 	u32 link_check, thstat, ctrl;
1767 
1768 	link_check = thstat = ctrl = 0;
1769 	/* Get the cached link value or read phy for real */
1770 	switch (hw->phy.media_type) {
1771 	case e1000_media_type_copper:
1772 		if (hw->mac.get_link_status) {
1773 			if (hw->mac.type == e1000_pch_spt)
1774 				msec_delay(50);
1775 			/* Do the work to read phy */
1776 			e1000_check_for_link(hw);
1777 			link_check = !hw->mac.get_link_status;
1778 			if (link_check) /* ESB2 fix */
1779 				e1000_cfg_on_link_up(hw);
1780 		} else {
1781 			link_check = TRUE;
1782 		}
1783 		break;
1784 	case e1000_media_type_fiber:
1785 		e1000_check_for_link(hw);
1786 		link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1787 			    E1000_STATUS_LU);
1788 		break;
1789 	case e1000_media_type_internal_serdes:
1790 		e1000_check_for_link(hw);
1791 		link_check = hw->mac.serdes_has_link;
1792 		break;
1793 	/* VF device is type_unknown */
1794 	case e1000_media_type_unknown:
1795 		e1000_check_for_link(hw);
1796 		link_check = !hw->mac.get_link_status;
1797 		/* FALLTHROUGH */
1798 	default:
1799 		break;
1800 	}
1801 
1802 	/* Check for thermal downshift or shutdown */
1803 	if (hw->mac.type == e1000_i350) {
1804 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1805 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1806 	}
1807 
1808 	/* Now check for a transition */
1809 	if (link_check && (adapter->link_active == 0)) {
1810 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
1811 		    &adapter->link_duplex);
1812 		/* Check if we must disable SPEED_MODE bit on PCI-E */
1813 		if ((adapter->link_speed != SPEED_1000) &&
1814 		    ((hw->mac.type == e1000_82571) ||
1815 		    (hw->mac.type == e1000_82572))) {
1816 			int tarc0;
1817 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1818 			tarc0 &= ~TARC_SPEED_MODE_BIT;
1819 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1820 		}
1821 		if (bootverbose)
1822 			device_printf(dev, "Link is up %d Mbps %s\n",
1823 			    adapter->link_speed,
1824 			    ((adapter->link_duplex == FULL_DUPLEX) ?
1825 			    "Full Duplex" : "Half Duplex"));
1826 		adapter->link_active = 1;
1827 		adapter->smartspeed = 0;
1828 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
1829 		    E1000_CTRL_EXT_LINK_MODE_GMII &&
1830 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1831 			device_printf(dev, "Link: thermal downshift\n");
1832 		/* Delay Link Up for Phy update */
1833 		if (((hw->mac.type == e1000_i210) ||
1834 		    (hw->mac.type == e1000_i211)) &&
1835 		    (hw->phy.id == I210_I_PHY_ID))
1836 			msec_delay(I210_LINK_DELAY);
1837 		/* Reset if the media type changed. */
1838 		if (hw->dev_spec._82575.media_changed &&
1839 		    hw->mac.type >= igb_mac_min) {
1840 			hw->dev_spec._82575.media_changed = false;
1841 			adapter->flags |= IGB_MEDIA_RESET;
1842 			em_reset(ctx);
1843 		}
1844 		iflib_link_state_change(ctx, LINK_STATE_UP,
1845 		    IF_Mbps(adapter->link_speed));
1846 	} else if (!link_check && (adapter->link_active == 1)) {
1847 		adapter->link_speed = 0;
1848 		adapter->link_duplex = 0;
1849 		adapter->link_active = 0;
1850 		iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
1851 	}
1852 	em_update_stats_counters(adapter);
1853 
1854 	/* Reset LAA into RAR[0] on 82571 */
1855 	if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
1856 		e1000_rar_set(hw, hw->mac.addr, 0);
1857 
1858 	if (hw->mac.type < em_mac_min)
1859 		lem_smartspeed(adapter);
1860 	else if (hw->mac.type == e1000_82574 &&
1861 	    adapter->intr_type == IFLIB_INTR_MSIX)
1862 		E1000_WRITE_REG(hw, E1000_IMS, EM_MSIX_LINK | E1000_IMS_LSC);
1863 }
1864 
1865 static void
1866 em_if_watchdog_reset(if_ctx_t ctx)
1867 {
1868 	struct adapter *adapter = iflib_get_softc(ctx);
1869 
1870 	/*
1871 	 * Just count the event; iflib(4) will already trigger a
1872 	 * sufficient reset of the controller.
1873 	 */
1874 	adapter->watchdog_events++;
1875 }
1876 
1877 /*********************************************************************
1878  *
1879  *  This routine disables all traffic on the adapter by issuing a
1880  *  global reset on the MAC.
1881  *
1882  **********************************************************************/
1883 static void
1884 em_if_stop(if_ctx_t ctx)
1885 {
1886 	struct adapter *adapter = iflib_get_softc(ctx);
1887 
1888 	INIT_DEBUGOUT("em_if_stop: begin");
1889 
1890 	e1000_reset_hw(&adapter->hw);
1891 	if (adapter->hw.mac.type >= e1000_82544)
1892 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0);
1893 
1894 	e1000_led_off(&adapter->hw);
1895 	e1000_cleanup_led(&adapter->hw);
1896 }
1897 
1898 /*********************************************************************
1899  *
1900  *  Determine hardware revision.
1901  *
1902  **********************************************************************/
1903 static void
1904 em_identify_hardware(if_ctx_t ctx)
1905 {
1906 	device_t dev = iflib_get_dev(ctx);
1907 	struct adapter *adapter = iflib_get_softc(ctx);
1908 
1909 	/* Make sure our PCI config space has the necessary stuff set */
1910 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1911 
1912 	/* Save off the information about this board */
1913 	adapter->hw.vendor_id = pci_get_vendor(dev);
1914 	adapter->hw.device_id = pci_get_device(dev);
1915 	adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1916 	adapter->hw.subsystem_vendor_id =
1917 	    pci_read_config(dev, PCIR_SUBVEND_0, 2);
1918 	adapter->hw.subsystem_device_id =
1919 	    pci_read_config(dev, PCIR_SUBDEV_0, 2);
1920 
1921 	/* Do Shared Code Init and Setup */
1922 	if (e1000_set_mac_type(&adapter->hw)) {
1923 		device_printf(dev, "Setup init failure\n");
1924 		return;
1925 	}
1926 }
1927 
1928 static int
1929 em_allocate_pci_resources(if_ctx_t ctx)
1930 {
1931 	struct adapter *adapter = iflib_get_softc(ctx);
1932 	device_t dev = iflib_get_dev(ctx);
1933 	int rid, val;
1934 
1935 	rid = PCIR_BAR(0);
1936 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1937 	    &rid, RF_ACTIVE);
1938 	if (adapter->memory == NULL) {
1939 		device_printf(dev, "Unable to allocate bus resource: memory\n");
1940 		return (ENXIO);
1941 	}
1942 	adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->memory);
1943 	adapter->osdep.mem_bus_space_handle =
1944 	    rman_get_bushandle(adapter->memory);
1945 	adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
1946 
1947 	/* Only older adapters use IO mapping */
1948 	if (adapter->hw.mac.type < em_mac_min &&
1949 	    adapter->hw.mac.type > e1000_82543) {
1950 		/* Figure our where our IO BAR is ? */
1951 		for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1952 			val = pci_read_config(dev, rid, 4);
1953 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1954 				break;
1955 			}
1956 			rid += 4;
1957 			/* check for 64bit BAR */
1958 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1959 				rid += 4;
1960 		}
1961 		if (rid >= PCIR_CIS) {
1962 			device_printf(dev, "Unable to locate IO BAR\n");
1963 			return (ENXIO);
1964 		}
1965 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
1966 		    &rid, RF_ACTIVE);
1967 		if (adapter->ioport == NULL) {
1968 			device_printf(dev, "Unable to allocate bus resource: "
1969 			    "ioport\n");
1970 			return (ENXIO);
1971 		}
1972 		adapter->hw.io_base = 0;
1973 		adapter->osdep.io_bus_space_tag =
1974 		    rman_get_bustag(adapter->ioport);
1975 		adapter->osdep.io_bus_space_handle =
1976 		    rman_get_bushandle(adapter->ioport);
1977 	}
1978 
1979 	adapter->hw.back = &adapter->osdep;
1980 
1981 	return (0);
1982 }
1983 
1984 /*********************************************************************
1985  *
1986  *  Set up the MSI-X Interrupt handlers
1987  *
1988  **********************************************************************/
1989 static int
1990 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
1991 {
1992 	struct adapter *adapter = iflib_get_softc(ctx);
1993 	struct em_rx_queue *rx_que = adapter->rx_queues;
1994 	struct em_tx_queue *tx_que = adapter->tx_queues;
1995 	int error, rid, i, vector = 0, rx_vectors;
1996 	char buf[16];
1997 
1998 	/* First set up ring resources */
1999 	for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) {
2000 		rid = vector + 1;
2001 		snprintf(buf, sizeof(buf), "rxq%d", i);
2002 		error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
2003 		if (error) {
2004 			device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
2005 			adapter->rx_num_queues = i + 1;
2006 			goto fail;
2007 		}
2008 
2009 		rx_que->msix =  vector;
2010 
2011 		/*
2012 		 * Set the bit to enable interrupt
2013 		 * in E1000_IMS -- bits 20 and 21
2014 		 * are for RX0 and RX1, note this has
2015 		 * NOTHING to do with the MSI-X vector
2016 		 */
2017 		if (adapter->hw.mac.type == e1000_82574) {
2018 			rx_que->eims = 1 << (20 + i);
2019 			adapter->ims |= rx_que->eims;
2020 			adapter->ivars |= (8 | rx_que->msix) << (i * 4);
2021 		} else if (adapter->hw.mac.type == e1000_82575)
2022 			rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2023 		else
2024 			rx_que->eims = 1 << vector;
2025 	}
2026 	rx_vectors = vector;
2027 
2028 	vector = 0;
2029 	for (i = 0; i < adapter->tx_num_queues; i++, tx_que++, vector++) {
2030 		snprintf(buf, sizeof(buf), "txq%d", i);
2031 		tx_que = &adapter->tx_queues[i];
2032 		iflib_softirq_alloc_generic(ctx,
2033 		    &adapter->rx_queues[i % adapter->rx_num_queues].que_irq,
2034 		    IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2035 
2036 		tx_que->msix = (vector % adapter->rx_num_queues);
2037 
2038 		/*
2039 		 * Set the bit to enable interrupt
2040 		 * in E1000_IMS -- bits 22 and 23
2041 		 * are for TX0 and TX1, note this has
2042 		 * NOTHING to do with the MSI-X vector
2043 		 */
2044 		if (adapter->hw.mac.type == e1000_82574) {
2045 			tx_que->eims = 1 << (22 + i);
2046 			adapter->ims |= tx_que->eims;
2047 			adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2048 		} else if (adapter->hw.mac.type == e1000_82575) {
2049 			tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2050 		} else {
2051 			tx_que->eims = 1 << i;
2052 		}
2053 	}
2054 
2055 	/* Link interrupt */
2056 	rid = rx_vectors + 1;
2057 	error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq");
2058 
2059 	if (error) {
2060 		device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
2061 		goto fail;
2062 	}
2063 	adapter->linkvec = rx_vectors;
2064 	if (adapter->hw.mac.type < igb_mac_min) {
2065 		adapter->ivars |=  (8 | rx_vectors) << 16;
2066 		adapter->ivars |= 0x80000000;
2067 	}
2068 	return (0);
2069 fail:
2070 	iflib_irq_free(ctx, &adapter->irq);
2071 	rx_que = adapter->rx_queues;
2072 	for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++)
2073 		iflib_irq_free(ctx, &rx_que->que_irq);
2074 	return (error);
2075 }
2076 
2077 static void
2078 igb_configure_queues(struct adapter *adapter)
2079 {
2080 	struct e1000_hw *hw = &adapter->hw;
2081 	struct em_rx_queue *rx_que;
2082 	struct em_tx_queue *tx_que;
2083 	u32 tmp, ivar = 0, newitr = 0;
2084 
2085 	/* First turn on RSS capability */
2086 	if (hw->mac.type != e1000_82575)
2087 		E1000_WRITE_REG(hw, E1000_GPIE,
2088 		    E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2089 		    E1000_GPIE_PBA | E1000_GPIE_NSICR);
2090 
2091 	/* Turn on MSI-X */
2092 	switch (hw->mac.type) {
2093 	case e1000_82580:
2094 	case e1000_i350:
2095 	case e1000_i354:
2096 	case e1000_i210:
2097 	case e1000_i211:
2098 	case e1000_vfadapt:
2099 	case e1000_vfadapt_i350:
2100 		/* RX entries */
2101 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2102 			u32 index = i >> 1;
2103 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2104 			rx_que = &adapter->rx_queues[i];
2105 			if (i & 1) {
2106 				ivar &= 0xFF00FFFF;
2107 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2108 			} else {
2109 				ivar &= 0xFFFFFF00;
2110 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2111 			}
2112 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2113 		}
2114 		/* TX entries */
2115 		for (int i = 0; i < adapter->tx_num_queues; i++) {
2116 			u32 index = i >> 1;
2117 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2118 			tx_que = &adapter->tx_queues[i];
2119 			if (i & 1) {
2120 				ivar &= 0x00FFFFFF;
2121 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2122 			} else {
2123 				ivar &= 0xFFFF00FF;
2124 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2125 			}
2126 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2127 			adapter->que_mask |= tx_que->eims;
2128 		}
2129 
2130 		/* And for the link interrupt */
2131 		ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2132 		adapter->link_mask = 1 << adapter->linkvec;
2133 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2134 		break;
2135 	case e1000_82576:
2136 		/* RX entries */
2137 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2138 			u32 index = i & 0x7; /* Each IVAR has two entries */
2139 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2140 			rx_que = &adapter->rx_queues[i];
2141 			if (i < 8) {
2142 				ivar &= 0xFFFFFF00;
2143 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2144 			} else {
2145 				ivar &= 0xFF00FFFF;
2146 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2147 			}
2148 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2149 			adapter->que_mask |= rx_que->eims;
2150 		}
2151 		/* TX entries */
2152 		for (int i = 0; i < adapter->tx_num_queues; i++) {
2153 			u32 index = i & 0x7; /* Each IVAR has two entries */
2154 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2155 			tx_que = &adapter->tx_queues[i];
2156 			if (i < 8) {
2157 				ivar &= 0xFFFF00FF;
2158 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2159 			} else {
2160 				ivar &= 0x00FFFFFF;
2161 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2162 			}
2163 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2164 			adapter->que_mask |= tx_que->eims;
2165 		}
2166 
2167 		/* And for the link interrupt */
2168 		ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2169 		adapter->link_mask = 1 << adapter->linkvec;
2170 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2171 		break;
2172 
2173 	case e1000_82575:
2174 		/* enable MSI-X support*/
2175 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2176 		tmp |= E1000_CTRL_EXT_PBA_CLR;
2177 		/* Auto-Mask interrupts upon ICR read. */
2178 		tmp |= E1000_CTRL_EXT_EIAME;
2179 		tmp |= E1000_CTRL_EXT_IRCA;
2180 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2181 
2182 		/* Queues */
2183 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2184 			rx_que = &adapter->rx_queues[i];
2185 			tmp = E1000_EICR_RX_QUEUE0 << i;
2186 			tmp |= E1000_EICR_TX_QUEUE0 << i;
2187 			rx_que->eims = tmp;
2188 			E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2189 			    i, rx_que->eims);
2190 			adapter->que_mask |= rx_que->eims;
2191 		}
2192 
2193 		/* Link */
2194 		E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
2195 		    E1000_EIMS_OTHER);
2196 		adapter->link_mask |= E1000_EIMS_OTHER;
2197 	default:
2198 		break;
2199 	}
2200 
2201 	/* Set the starting interrupt rate */
2202 	if (em_max_interrupt_rate > 0)
2203 		newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2204 
2205 	if (hw->mac.type == e1000_82575)
2206 		newitr |= newitr << 16;
2207 	else
2208 		newitr |= E1000_EITR_CNT_IGNR;
2209 
2210 	for (int i = 0; i < adapter->rx_num_queues; i++) {
2211 		rx_que = &adapter->rx_queues[i];
2212 		E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2213 	}
2214 
2215 	return;
2216 }
2217 
2218 static void
2219 em_free_pci_resources(if_ctx_t ctx)
2220 {
2221 	struct adapter *adapter = iflib_get_softc(ctx);
2222 	struct em_rx_queue *que = adapter->rx_queues;
2223 	device_t dev = iflib_get_dev(ctx);
2224 
2225 	/* Release all MSI-X queue resources */
2226 	if (adapter->intr_type == IFLIB_INTR_MSIX)
2227 		iflib_irq_free(ctx, &adapter->irq);
2228 
2229 	if (que != NULL) {
2230 		for (int i = 0; i < adapter->rx_num_queues; i++, que++) {
2231 			iflib_irq_free(ctx, &que->que_irq);
2232 		}
2233 	}
2234 
2235 	if (adapter->memory != NULL) {
2236 		bus_release_resource(dev, SYS_RES_MEMORY,
2237 		    rman_get_rid(adapter->memory), adapter->memory);
2238 		adapter->memory = NULL;
2239 	}
2240 
2241 	if (adapter->flash != NULL) {
2242 		bus_release_resource(dev, SYS_RES_MEMORY,
2243 		    rman_get_rid(adapter->flash), adapter->flash);
2244 		adapter->flash = NULL;
2245 	}
2246 
2247 	if (adapter->ioport != NULL) {
2248 		bus_release_resource(dev, SYS_RES_IOPORT,
2249 		    rman_get_rid(adapter->ioport), adapter->ioport);
2250 		adapter->ioport = NULL;
2251 	}
2252 }
2253 
2254 /* Set up MSI or MSI-X */
2255 static int
2256 em_setup_msix(if_ctx_t ctx)
2257 {
2258 	struct adapter *adapter = iflib_get_softc(ctx);
2259 
2260 	if (adapter->hw.mac.type == e1000_82574) {
2261 		em_enable_vectors_82574(ctx);
2262 	}
2263 	return (0);
2264 }
2265 
2266 /*********************************************************************
2267  *
2268  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2269  *
2270  **********************************************************************/
2271 static void
2272 lem_smartspeed(struct adapter *adapter)
2273 {
2274 	u16 phy_tmp;
2275 
2276 	if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
2277 	    adapter->hw.mac.autoneg == 0 ||
2278 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2279 		return;
2280 
2281 	if (adapter->smartspeed == 0) {
2282 		/* If Master/Slave config fault is asserted twice,
2283 		 * we assume back-to-back */
2284 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2285 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2286 			return;
2287 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2288 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2289 			e1000_read_phy_reg(&adapter->hw,
2290 			    PHY_1000T_CTRL, &phy_tmp);
2291 			if(phy_tmp & CR_1000T_MS_ENABLE) {
2292 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2293 				e1000_write_phy_reg(&adapter->hw,
2294 				    PHY_1000T_CTRL, phy_tmp);
2295 				adapter->smartspeed++;
2296 				if(adapter->hw.mac.autoneg &&
2297 				   !e1000_copper_link_autoneg(&adapter->hw) &&
2298 				   !e1000_read_phy_reg(&adapter->hw,
2299 				    PHY_CONTROL, &phy_tmp)) {
2300 					phy_tmp |= (MII_CR_AUTO_NEG_EN |
2301 						    MII_CR_RESTART_AUTO_NEG);
2302 					e1000_write_phy_reg(&adapter->hw,
2303 					    PHY_CONTROL, phy_tmp);
2304 				}
2305 			}
2306 		}
2307 		return;
2308 	} else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2309 		/* If still no link, perhaps using 2/3 pair cable */
2310 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2311 		phy_tmp |= CR_1000T_MS_ENABLE;
2312 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2313 		if(adapter->hw.mac.autoneg &&
2314 		   !e1000_copper_link_autoneg(&adapter->hw) &&
2315 		   !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2316 			phy_tmp |= (MII_CR_AUTO_NEG_EN |
2317 				    MII_CR_RESTART_AUTO_NEG);
2318 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2319 		}
2320 	}
2321 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2322 	if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2323 		adapter->smartspeed = 0;
2324 }
2325 
2326 /*********************************************************************
2327  *
2328  *  Initialize the DMA Coalescing feature
2329  *
2330  **********************************************************************/
2331 static void
2332 igb_init_dmac(struct adapter *adapter, u32 pba)
2333 {
2334 	device_t	dev = adapter->dev;
2335 	struct e1000_hw *hw = &adapter->hw;
2336 	u32 		dmac, reg = ~E1000_DMACR_DMAC_EN;
2337 	u16		hwm;
2338 	u16		max_frame_size;
2339 
2340 	if (hw->mac.type == e1000_i211)
2341 		return;
2342 
2343 	max_frame_size = adapter->shared->isc_max_frame_size;
2344 	if (hw->mac.type > e1000_82580) {
2345 
2346 		if (adapter->dmac == 0) { /* Disabling it */
2347 			E1000_WRITE_REG(hw, E1000_DMACR, reg);
2348 			return;
2349 		} else
2350 			device_printf(dev, "DMA Coalescing enabled\n");
2351 
2352 		/* Set starting threshold */
2353 		E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2354 
2355 		hwm = 64 * pba - max_frame_size / 16;
2356 		if (hwm < 64 * (pba - 6))
2357 			hwm = 64 * (pba - 6);
2358 		reg = E1000_READ_REG(hw, E1000_FCRTC);
2359 		reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2360 		reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2361 		    & E1000_FCRTC_RTH_COAL_MASK);
2362 		E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2363 
2364 
2365 		dmac = pba - max_frame_size / 512;
2366 		if (dmac < pba - 10)
2367 			dmac = pba - 10;
2368 		reg = E1000_READ_REG(hw, E1000_DMACR);
2369 		reg &= ~E1000_DMACR_DMACTHR_MASK;
2370 		reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2371 		    & E1000_DMACR_DMACTHR_MASK);
2372 
2373 		/* transition to L0x or L1 if available..*/
2374 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2375 
2376 		/* Check if status is 2.5Gb backplane connection
2377 		* before configuration of watchdog timer, which is
2378 		* in msec values in 12.8usec intervals
2379 		* watchdog timer= msec values in 32usec intervals
2380 		* for non 2.5Gb connection
2381 		*/
2382 		if (hw->mac.type == e1000_i354) {
2383 			int status = E1000_READ_REG(hw, E1000_STATUS);
2384 			if ((status & E1000_STATUS_2P5_SKU) &&
2385 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2386 				reg |= ((adapter->dmac * 5) >> 6);
2387 			else
2388 				reg |= (adapter->dmac >> 5);
2389 		} else {
2390 			reg |= (adapter->dmac >> 5);
2391 		}
2392 
2393 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
2394 
2395 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2396 
2397 		/* Set the interval before transition */
2398 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
2399 		if (hw->mac.type == e1000_i350)
2400 			reg |= IGB_DMCTLX_DCFLUSH_DIS;
2401 		/*
2402 		** in 2.5Gb connection, TTLX unit is 0.4 usec
2403 		** which is 0x4*2 = 0xA. But delay is still 4 usec
2404 		*/
2405 		if (hw->mac.type == e1000_i354) {
2406 			int status = E1000_READ_REG(hw, E1000_STATUS);
2407 			if ((status & E1000_STATUS_2P5_SKU) &&
2408 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2409 				reg |= 0xA;
2410 			else
2411 				reg |= 0x4;
2412 		} else {
2413 			reg |= 0x4;
2414 		}
2415 
2416 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2417 
2418 		/* free space in tx packet buffer to wake from DMA coal */
2419 		E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2420 		    (2 * max_frame_size)) >> 6);
2421 
2422 		/* make low power state decision controlled by DMA coal */
2423 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2424 		reg &= ~E1000_PCIEMISC_LX_DECISION;
2425 		E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2426 
2427 	} else if (hw->mac.type == e1000_82580) {
2428 		u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2429 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
2430 		    reg & ~E1000_PCIEMISC_LX_DECISION);
2431 		E1000_WRITE_REG(hw, E1000_DMACR, 0);
2432 	}
2433 }
2434 
2435 /*********************************************************************
2436  *
2437  *  Initialize the hardware to a configuration as specified by the
2438  *  adapter structure.
2439  *
2440  **********************************************************************/
2441 static void
2442 em_reset(if_ctx_t ctx)
2443 {
2444 	device_t dev = iflib_get_dev(ctx);
2445 	struct adapter *adapter = iflib_get_softc(ctx);
2446 	struct ifnet *ifp = iflib_get_ifp(ctx);
2447 	struct e1000_hw *hw = &adapter->hw;
2448 	u16 rx_buffer_size;
2449 	u32 pba;
2450 
2451 	INIT_DEBUGOUT("em_reset: begin");
2452 	/* Let the firmware know the OS is in control */
2453 	em_get_hw_control(adapter);
2454 
2455 	/* Set up smart power down as default off on newer adapters. */
2456 	if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2457 	    hw->mac.type == e1000_82572)) {
2458 		u16 phy_tmp = 0;
2459 
2460 		/* Speed up time to link by disabling smart power down. */
2461 		e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2462 		phy_tmp &= ~IGP02E1000_PM_SPD;
2463 		e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2464 	}
2465 
2466 	/*
2467 	 * Packet Buffer Allocation (PBA)
2468 	 * Writing PBA sets the receive portion of the buffer
2469 	 * the remainder is used for the transmit buffer.
2470 	 */
2471 	switch (hw->mac.type) {
2472 	/* Total Packet Buffer on these is 48K */
2473 	case e1000_82571:
2474 	case e1000_82572:
2475 	case e1000_80003es2lan:
2476 			pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2477 		break;
2478 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2479 			pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2480 		break;
2481 	case e1000_82574:
2482 	case e1000_82583:
2483 			pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2484 		break;
2485 	case e1000_ich8lan:
2486 		pba = E1000_PBA_8K;
2487 		break;
2488 	case e1000_ich9lan:
2489 	case e1000_ich10lan:
2490 		/* Boost Receive side for jumbo frames */
2491 		if (hw->mac.max_frame_size > 4096)
2492 			pba = E1000_PBA_14K;
2493 		else
2494 			pba = E1000_PBA_10K;
2495 		break;
2496 	case e1000_pchlan:
2497 	case e1000_pch2lan:
2498 	case e1000_pch_lpt:
2499 	case e1000_pch_spt:
2500 	case e1000_pch_cnp:
2501 		pba = E1000_PBA_26K;
2502 		break;
2503 	case e1000_82575:
2504 		pba = E1000_PBA_32K;
2505 		break;
2506 	case e1000_82576:
2507 	case e1000_vfadapt:
2508 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2509 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2510 		break;
2511 	case e1000_82580:
2512 	case e1000_i350:
2513 	case e1000_i354:
2514 	case e1000_vfadapt_i350:
2515 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2516 		pba = e1000_rxpbs_adjust_82580(pba);
2517 		break;
2518 	case e1000_i210:
2519 	case e1000_i211:
2520 		pba = E1000_PBA_34K;
2521 		break;
2522 	default:
2523 		if (hw->mac.max_frame_size > 8192)
2524 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2525 		else
2526 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2527 	}
2528 
2529 	/* Special needs in case of Jumbo frames */
2530 	if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
2531 		u32 tx_space, min_tx, min_rx;
2532 		pba = E1000_READ_REG(hw, E1000_PBA);
2533 		tx_space = pba >> 16;
2534 		pba &= 0xffff;
2535 		min_tx = (hw->mac.max_frame_size +
2536 		    sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
2537 		min_tx = roundup2(min_tx, 1024);
2538 		min_tx >>= 10;
2539 		min_rx = hw->mac.max_frame_size;
2540 		min_rx = roundup2(min_rx, 1024);
2541 		min_rx >>= 10;
2542 		if (tx_space < min_tx &&
2543 		    ((min_tx - tx_space) < pba)) {
2544 			pba = pba - (min_tx - tx_space);
2545 			/*
2546 			 * if short on rx space, rx wins
2547 			 * and must trump tx adjustment
2548 			 */
2549 			if (pba < min_rx)
2550 				pba = min_rx;
2551 		}
2552 		E1000_WRITE_REG(hw, E1000_PBA, pba);
2553 	}
2554 
2555 	if (hw->mac.type < igb_mac_min)
2556 		E1000_WRITE_REG(hw, E1000_PBA, pba);
2557 
2558 	INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
2559 
2560 	/*
2561 	 * These parameters control the automatic generation (Tx) and
2562 	 * response (Rx) to Ethernet PAUSE frames.
2563 	 * - High water mark should allow for at least two frames to be
2564 	 *   received after sending an XOFF.
2565 	 * - Low water mark works best when it is very near the high water mark.
2566 	 *   This allows the receiver to restart by sending XON when it has
2567 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
2568 	 *   restart after one full frame is pulled from the buffer. There
2569 	 *   could be several smaller frames in the buffer and if so they will
2570 	 *   not trigger the XON until their total number reduces the buffer
2571 	 *   by 1500.
2572 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2573 	 */
2574 	rx_buffer_size = (pba & 0xffff) << 10;
2575 	hw->fc.high_water = rx_buffer_size -
2576 	    roundup2(hw->mac.max_frame_size, 1024);
2577 	hw->fc.low_water = hw->fc.high_water - 1500;
2578 
2579 	if (adapter->fc) /* locally set flow control value? */
2580 		hw->fc.requested_mode = adapter->fc;
2581 	else
2582 		hw->fc.requested_mode = e1000_fc_full;
2583 
2584 	if (hw->mac.type == e1000_80003es2lan)
2585 		hw->fc.pause_time = 0xFFFF;
2586 	else
2587 		hw->fc.pause_time = EM_FC_PAUSE_TIME;
2588 
2589 	hw->fc.send_xon = TRUE;
2590 
2591 	/* Device specific overrides/settings */
2592 	switch (hw->mac.type) {
2593 	case e1000_pchlan:
2594 		/* Workaround: no TX flow ctrl for PCH */
2595 		hw->fc.requested_mode = e1000_fc_rx_pause;
2596 		hw->fc.pause_time = 0xFFFF; /* override */
2597 		if (if_getmtu(ifp) > ETHERMTU) {
2598 			hw->fc.high_water = 0x3500;
2599 			hw->fc.low_water = 0x1500;
2600 		} else {
2601 			hw->fc.high_water = 0x5000;
2602 			hw->fc.low_water = 0x3000;
2603 		}
2604 		hw->fc.refresh_time = 0x1000;
2605 		break;
2606 	case e1000_pch2lan:
2607 	case e1000_pch_lpt:
2608 	case e1000_pch_spt:
2609 	case e1000_pch_cnp:
2610 		hw->fc.high_water = 0x5C20;
2611 		hw->fc.low_water = 0x5048;
2612 		hw->fc.pause_time = 0x0650;
2613 		hw->fc.refresh_time = 0x0400;
2614 		/* Jumbos need adjusted PBA */
2615 		if (if_getmtu(ifp) > ETHERMTU)
2616 			E1000_WRITE_REG(hw, E1000_PBA, 12);
2617 		else
2618 			E1000_WRITE_REG(hw, E1000_PBA, 26);
2619 		break;
2620 	case e1000_82575:
2621 	case e1000_82576:
2622 		/* 8-byte granularity */
2623 		hw->fc.low_water = hw->fc.high_water - 8;
2624 		break;
2625 	case e1000_82580:
2626 	case e1000_i350:
2627 	case e1000_i354:
2628 	case e1000_i210:
2629 	case e1000_i211:
2630 	case e1000_vfadapt:
2631 	case e1000_vfadapt_i350:
2632 		/* 16-byte granularity */
2633 		hw->fc.low_water = hw->fc.high_water - 16;
2634 		break;
2635 	case e1000_ich9lan:
2636 	case e1000_ich10lan:
2637 		if (if_getmtu(ifp) > ETHERMTU) {
2638 			hw->fc.high_water = 0x2800;
2639 			hw->fc.low_water = hw->fc.high_water - 8;
2640 			break;
2641 		}
2642 		/* FALLTHROUGH */
2643 	default:
2644 		if (hw->mac.type == e1000_80003es2lan)
2645 			hw->fc.pause_time = 0xFFFF;
2646 		break;
2647 	}
2648 
2649 	/* Issue a global reset */
2650 	e1000_reset_hw(hw);
2651 	if (hw->mac.type >= igb_mac_min) {
2652 		E1000_WRITE_REG(hw, E1000_WUC, 0);
2653 	} else {
2654 		E1000_WRITE_REG(hw, E1000_WUFC, 0);
2655 		em_disable_aspm(adapter);
2656 	}
2657 	if (adapter->flags & IGB_MEDIA_RESET) {
2658 		e1000_setup_init_funcs(hw, TRUE);
2659 		e1000_get_bus_info(hw);
2660 		adapter->flags &= ~IGB_MEDIA_RESET;
2661 	}
2662 	/* and a re-init */
2663 	if (e1000_init_hw(hw) < 0) {
2664 		device_printf(dev, "Hardware Initialization Failed\n");
2665 		return;
2666 	}
2667 	if (hw->mac.type >= igb_mac_min)
2668 		igb_init_dmac(adapter, pba);
2669 
2670 	E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2671 	e1000_get_phy_info(hw);
2672 	e1000_check_for_link(hw);
2673 }
2674 
2675 /*
2676  * Initialise the RSS mapping for NICs that support multiple transmit/
2677  * receive rings.
2678  */
2679 
2680 #define RSSKEYLEN 10
2681 static void
2682 em_initialize_rss_mapping(struct adapter *adapter)
2683 {
2684 	uint8_t  rss_key[4 * RSSKEYLEN];
2685 	uint32_t reta = 0;
2686 	struct e1000_hw	*hw = &adapter->hw;
2687 	int i;
2688 
2689 	/*
2690 	 * Configure RSS key
2691 	 */
2692 	arc4rand(rss_key, sizeof(rss_key), 0);
2693 	for (i = 0; i < RSSKEYLEN; ++i) {
2694 		uint32_t rssrk = 0;
2695 
2696 		rssrk = EM_RSSRK_VAL(rss_key, i);
2697 		E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2698 	}
2699 
2700 	/*
2701 	 * Configure RSS redirect table in following fashion:
2702 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2703 	 */
2704 	for (i = 0; i < sizeof(reta); ++i) {
2705 		uint32_t q;
2706 
2707 		q = (i % adapter->rx_num_queues) << 7;
2708 		reta |= q << (8 * i);
2709 	}
2710 
2711 	for (i = 0; i < 32; ++i)
2712 		E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2713 
2714 	E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
2715 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2716 			E1000_MRQC_RSS_FIELD_IPV4 |
2717 			E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2718 			E1000_MRQC_RSS_FIELD_IPV6_EX |
2719 			E1000_MRQC_RSS_FIELD_IPV6);
2720 }
2721 
2722 static void
2723 igb_initialize_rss_mapping(struct adapter *adapter)
2724 {
2725 	struct e1000_hw *hw = &adapter->hw;
2726 	int i;
2727 	int queue_id;
2728 	u32 reta;
2729 	u32 rss_key[10], mrqc, shift = 0;
2730 
2731 	/* XXX? */
2732 	if (hw->mac.type == e1000_82575)
2733 		shift = 6;
2734 
2735 	/*
2736 	 * The redirection table controls which destination
2737 	 * queue each bucket redirects traffic to.
2738 	 * Each DWORD represents four queues, with the LSB
2739 	 * being the first queue in the DWORD.
2740 	 *
2741 	 * This just allocates buckets to queues using round-robin
2742 	 * allocation.
2743 	 *
2744 	 * NOTE: It Just Happens to line up with the default
2745 	 * RSS allocation method.
2746 	 */
2747 
2748 	/* Warning FM follows */
2749 	reta = 0;
2750 	for (i = 0; i < 128; i++) {
2751 #ifdef RSS
2752 		queue_id = rss_get_indirection_to_bucket(i);
2753 		/*
2754 		 * If we have more queues than buckets, we'll
2755 		 * end up mapping buckets to a subset of the
2756 		 * queues.
2757 		 *
2758 		 * If we have more buckets than queues, we'll
2759 		 * end up instead assigning multiple buckets
2760 		 * to queues.
2761 		 *
2762 		 * Both are suboptimal, but we need to handle
2763 		 * the case so we don't go out of bounds
2764 		 * indexing arrays and such.
2765 		 */
2766 		queue_id = queue_id % adapter->rx_num_queues;
2767 #else
2768 		queue_id = (i % adapter->rx_num_queues);
2769 #endif
2770 		/* Adjust if required */
2771 		queue_id = queue_id << shift;
2772 
2773 		/*
2774 		 * The low 8 bits are for hash value (n+0);
2775 		 * The next 8 bits are for hash value (n+1), etc.
2776 		 */
2777 		reta = reta >> 8;
2778 		reta = reta | ( ((uint32_t) queue_id) << 24);
2779 		if ((i & 3) == 3) {
2780 			E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2781 			reta = 0;
2782 		}
2783 	}
2784 
2785 	/* Now fill in hash table */
2786 
2787 	/*
2788 	 * MRQC: Multiple Receive Queues Command
2789 	 * Set queuing to RSS control, number depends on the device.
2790 	 */
2791 	mrqc = E1000_MRQC_ENABLE_RSS_8Q;
2792 
2793 #ifdef RSS
2794 	/* XXX ew typecasting */
2795 	rss_getkey((uint8_t *) &rss_key);
2796 #else
2797 	arc4rand(&rss_key, sizeof(rss_key), 0);
2798 #endif
2799 	for (i = 0; i < 10; i++)
2800 		E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
2801 
2802 	/*
2803 	 * Configure the RSS fields to hash upon.
2804 	 */
2805 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2806 	    E1000_MRQC_RSS_FIELD_IPV4_TCP);
2807 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2808 	    E1000_MRQC_RSS_FIELD_IPV6_TCP);
2809 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2810 	    E1000_MRQC_RSS_FIELD_IPV6_UDP);
2811 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2812 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2813 
2814 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2815 }
2816 
2817 /*********************************************************************
2818  *
2819  *  Setup networking device structure and register interface media.
2820  *
2821  **********************************************************************/
2822 static int
2823 em_setup_interface(if_ctx_t ctx)
2824 {
2825 	struct ifnet *ifp = iflib_get_ifp(ctx);
2826 	struct adapter *adapter = iflib_get_softc(ctx);
2827 	if_softc_ctx_t scctx = adapter->shared;
2828 
2829 	INIT_DEBUGOUT("em_setup_interface: begin");
2830 
2831 	/* Single Queue */
2832 	if (adapter->tx_num_queues == 1) {
2833 		if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
2834 		if_setsendqready(ifp);
2835 	}
2836 
2837 	/*
2838 	 * Specify the media types supported by this adapter and register
2839 	 * callbacks to update media and link information
2840 	 */
2841 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2842 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2843 		u_char fiber_type = IFM_1000_SX;	/* default type */
2844 
2845 		if (adapter->hw.mac.type == e1000_82545)
2846 			fiber_type = IFM_1000_LX;
2847 		ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
2848 		ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2849 	} else {
2850 		ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2851 		ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
2852 		ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2853 		ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
2854 		if (adapter->hw.phy.type != e1000_phy_ife) {
2855 			ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2856 			ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2857 		}
2858 	}
2859 	ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2860 	ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO);
2861 	return (0);
2862 }
2863 
2864 static int
2865 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
2866 {
2867 	struct adapter *adapter = iflib_get_softc(ctx);
2868 	if_softc_ctx_t scctx = adapter->shared;
2869 	int error = E1000_SUCCESS;
2870 	struct em_tx_queue *que;
2871 	int i, j;
2872 
2873 	MPASS(adapter->tx_num_queues > 0);
2874 	MPASS(adapter->tx_num_queues == ntxqsets);
2875 
2876 	/* First allocate the top level queue structs */
2877 	if (!(adapter->tx_queues =
2878 	    (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
2879 	    adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2880 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2881 		return(ENOMEM);
2882 	}
2883 
2884 	for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) {
2885 		/* Set up some basics */
2886 
2887 		struct tx_ring *txr = &que->txr;
2888 		txr->adapter = que->adapter = adapter;
2889 		que->me = txr->me =  i;
2890 
2891 		/* Allocate report status array */
2892 		if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2893 			device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
2894 			error = ENOMEM;
2895 			goto fail;
2896 		}
2897 		for (j = 0; j < scctx->isc_ntxd[0]; j++)
2898 			txr->tx_rsq[j] = QIDX_INVALID;
2899 		/* get the virtual and physical address of the hardware queues */
2900 		txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
2901 		txr->tx_paddr = paddrs[i*ntxqs];
2902 	}
2903 
2904 	if (bootverbose)
2905 		device_printf(iflib_get_dev(ctx),
2906 		    "allocated for %d tx_queues\n", adapter->tx_num_queues);
2907 	return (0);
2908 fail:
2909 	em_if_queues_free(ctx);
2910 	return (error);
2911 }
2912 
2913 static int
2914 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
2915 {
2916 	struct adapter *adapter = iflib_get_softc(ctx);
2917 	int error = E1000_SUCCESS;
2918 	struct em_rx_queue *que;
2919 	int i;
2920 
2921 	MPASS(adapter->rx_num_queues > 0);
2922 	MPASS(adapter->rx_num_queues == nrxqsets);
2923 
2924 	/* First allocate the top level queue structs */
2925 	if (!(adapter->rx_queues =
2926 	    (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
2927 	    adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2928 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2929 		error = ENOMEM;
2930 		goto fail;
2931 	}
2932 
2933 	for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) {
2934 		/* Set up some basics */
2935 		struct rx_ring *rxr = &que->rxr;
2936 		rxr->adapter = que->adapter = adapter;
2937 		rxr->que = que;
2938 		que->me = rxr->me =  i;
2939 
2940 		/* get the virtual and physical address of the hardware queues */
2941 		rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
2942 		rxr->rx_paddr = paddrs[i*nrxqs];
2943 	}
2944 
2945 	if (bootverbose)
2946 		device_printf(iflib_get_dev(ctx),
2947 		    "allocated for %d rx_queues\n", adapter->rx_num_queues);
2948 
2949 	return (0);
2950 fail:
2951 	em_if_queues_free(ctx);
2952 	return (error);
2953 }
2954 
2955 static void
2956 em_if_queues_free(if_ctx_t ctx)
2957 {
2958 	struct adapter *adapter = iflib_get_softc(ctx);
2959 	struct em_tx_queue *tx_que = adapter->tx_queues;
2960 	struct em_rx_queue *rx_que = adapter->rx_queues;
2961 
2962 	if (tx_que != NULL) {
2963 		for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
2964 			struct tx_ring *txr = &tx_que->txr;
2965 			if (txr->tx_rsq == NULL)
2966 				break;
2967 
2968 			free(txr->tx_rsq, M_DEVBUF);
2969 			txr->tx_rsq = NULL;
2970 		}
2971 		free(adapter->tx_queues, M_DEVBUF);
2972 		adapter->tx_queues = NULL;
2973 	}
2974 
2975 	if (rx_que != NULL) {
2976 		free(adapter->rx_queues, M_DEVBUF);
2977 		adapter->rx_queues = NULL;
2978 	}
2979 }
2980 
2981 /*********************************************************************
2982  *
2983  *  Enable transmit unit.
2984  *
2985  **********************************************************************/
2986 static void
2987 em_initialize_transmit_unit(if_ctx_t ctx)
2988 {
2989 	struct adapter *adapter = iflib_get_softc(ctx);
2990 	if_softc_ctx_t scctx = adapter->shared;
2991 	struct em_tx_queue *que;
2992 	struct tx_ring	*txr;
2993 	struct e1000_hw	*hw = &adapter->hw;
2994 	u32 tctl, txdctl = 0, tarc, tipg = 0;
2995 
2996 	INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
2997 
2998 	for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
2999 		u64 bus_addr;
3000 		caddr_t offp, endp;
3001 
3002 		que = &adapter->tx_queues[i];
3003 		txr = &que->txr;
3004 		bus_addr = txr->tx_paddr;
3005 
3006 		/* Clear checksum offload context. */
3007 		offp = (caddr_t)&txr->csum_flags;
3008 		endp = (caddr_t)(txr + 1);
3009 		bzero(offp, endp - offp);
3010 
3011 		/* Base and Len of TX Ring */
3012 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
3013 		    scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
3014 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
3015 		    (u32)(bus_addr >> 32));
3016 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
3017 		    (u32)bus_addr);
3018 		/* Init the HEAD/TAIL indices */
3019 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3020 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3021 
3022 		HW_DEBUGOUT2("Base = %x, Length = %x\n",
3023 		    E1000_READ_REG(hw, E1000_TDBAL(i)),
3024 		    E1000_READ_REG(hw, E1000_TDLEN(i)));
3025 
3026 		txdctl = 0; /* clear txdctl */
3027 		txdctl |= 0x1f; /* PTHRESH */
3028 		txdctl |= 1 << 8; /* HTHRESH */
3029 		txdctl |= 1 << 16;/* WTHRESH */
3030 		txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3031 		txdctl |= E1000_TXDCTL_GRAN;
3032 		txdctl |= 1 << 25; /* LWTHRESH */
3033 
3034 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3035 	}
3036 
3037 	/* Set the default values for the Tx Inter Packet Gap timer */
3038 	switch (hw->mac.type) {
3039 	case e1000_80003es2lan:
3040 		tipg = DEFAULT_82543_TIPG_IPGR1;
3041 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3042 		    E1000_TIPG_IPGR2_SHIFT;
3043 		break;
3044 	case e1000_82542:
3045 		tipg = DEFAULT_82542_TIPG_IPGT;
3046 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3047 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3048 		break;
3049 	default:
3050 		if (hw->phy.media_type == e1000_media_type_fiber ||
3051 		    hw->phy.media_type == e1000_media_type_internal_serdes)
3052 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3053 		else
3054 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3055 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3056 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3057 	}
3058 
3059 	E1000_WRITE_REG(hw, E1000_TIPG, tipg);
3060 	E1000_WRITE_REG(hw, E1000_TIDV, adapter->tx_int_delay.value);
3061 
3062 	if(hw->mac.type >= e1000_82540)
3063 		E1000_WRITE_REG(hw, E1000_TADV,
3064 		    adapter->tx_abs_int_delay.value);
3065 
3066 	if (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572) {
3067 		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3068 		tarc |= TARC_SPEED_MODE_BIT;
3069 		E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3070 	} else if (hw->mac.type == e1000_80003es2lan) {
3071 		/* errata: program both queues to unweighted RR */
3072 		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3073 		tarc |= 1;
3074 		E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3075 		tarc = E1000_READ_REG(hw, E1000_TARC(1));
3076 		tarc |= 1;
3077 		E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3078 	} else if (hw->mac.type == e1000_82574) {
3079 		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3080 		tarc |= TARC_ERRATA_BIT;
3081 		if ( adapter->tx_num_queues > 1) {
3082 			tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3083 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3084 			E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3085 		} else
3086 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3087 	}
3088 
3089 	if (adapter->tx_int_delay.value > 0)
3090 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3091 
3092 	/* Program the Transmit Control Register */
3093 	tctl = E1000_READ_REG(hw, E1000_TCTL);
3094 	tctl &= ~E1000_TCTL_CT;
3095 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3096 		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3097 
3098 	if (hw->mac.type >= e1000_82571)
3099 		tctl |= E1000_TCTL_MULR;
3100 
3101 	/* This write will effectively turn on the transmit unit. */
3102 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
3103 
3104 	/* SPT and KBL errata workarounds */
3105 	if (hw->mac.type == e1000_pch_spt) {
3106 		u32 reg;
3107 		reg = E1000_READ_REG(hw, E1000_IOSFPC);
3108 		reg |= E1000_RCTL_RDMTS_HEX;
3109 		E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3110 		/* i218-i219 Specification Update 1.5.4.5 */
3111 		reg = E1000_READ_REG(hw, E1000_TARC(0));
3112 		reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3113 		reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3114 		E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3115 	}
3116 }
3117 
3118 /*********************************************************************
3119  *
3120  *  Enable receive unit.
3121  *
3122  **********************************************************************/
3123 
3124 static void
3125 em_initialize_receive_unit(if_ctx_t ctx)
3126 {
3127 	struct adapter *adapter = iflib_get_softc(ctx);
3128 	if_softc_ctx_t scctx = adapter->shared;
3129 	struct ifnet *ifp = iflib_get_ifp(ctx);
3130 	struct e1000_hw	*hw = &adapter->hw;
3131 	struct em_rx_queue *que;
3132 	int i;
3133 	u32 rctl, rxcsum, rfctl;
3134 
3135 	INIT_DEBUGOUT("em_initialize_receive_units: begin");
3136 
3137 	/*
3138 	 * Make sure receives are disabled while setting
3139 	 * up the descriptor ring
3140 	 */
3141 	rctl = E1000_READ_REG(hw, E1000_RCTL);
3142 	/* Do not disable if ever enabled on this hardware */
3143 	if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3144 		E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3145 
3146 	/* Setup the Receive Control Register */
3147 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3148 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3149 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3150 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3151 
3152 	/* Do not store bad packets */
3153 	rctl &= ~E1000_RCTL_SBP;
3154 
3155 	/* Enable Long Packet receive */
3156 	if (if_getmtu(ifp) > ETHERMTU)
3157 		rctl |= E1000_RCTL_LPE;
3158 	else
3159 		rctl &= ~E1000_RCTL_LPE;
3160 
3161 	/* Strip the CRC */
3162 	if (!em_disable_crc_stripping)
3163 		rctl |= E1000_RCTL_SECRC;
3164 
3165 	if (hw->mac.type >= e1000_82540) {
3166 		E1000_WRITE_REG(hw, E1000_RADV,
3167 		    adapter->rx_abs_int_delay.value);
3168 
3169 		/*
3170 		 * Set the interrupt throttling rate. Value is calculated
3171 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3172 		 */
3173 		E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
3174 	}
3175 	E1000_WRITE_REG(hw, E1000_RDTR, adapter->rx_int_delay.value);
3176 
3177 	/* Use extended rx descriptor formats */
3178 	rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3179 	rfctl |= E1000_RFCTL_EXTEN;
3180 	/*
3181 	 * When using MSI-X interrupts we need to throttle
3182 	 * using the EITR register (82574 only)
3183 	 */
3184 	if (hw->mac.type == e1000_82574) {
3185 		for (int i = 0; i < 4; i++)
3186 			E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3187 			    DEFAULT_ITR);
3188 		/* Disable accelerated acknowledge */
3189 		rfctl |= E1000_RFCTL_ACK_DIS;
3190 	}
3191 	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3192 
3193 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3194 	if (if_getcapenable(ifp) & IFCAP_RXCSUM &&
3195 	    hw->mac.type >= e1000_82543) {
3196 		if (adapter->tx_num_queues > 1) {
3197 			if (hw->mac.type >= igb_mac_min) {
3198 				rxcsum |= E1000_RXCSUM_PCSD;
3199 				if (hw->mac.type != e1000_82575)
3200 					rxcsum |= E1000_RXCSUM_CRCOFL;
3201 			} else
3202 				rxcsum |= E1000_RXCSUM_TUOFL |
3203 					E1000_RXCSUM_IPOFL |
3204 					E1000_RXCSUM_PCSD;
3205 		} else {
3206 			if (hw->mac.type >= igb_mac_min)
3207 				rxcsum |= E1000_RXCSUM_IPPCSE;
3208 			else
3209 				rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3210 			if (hw->mac.type > e1000_82575)
3211 				rxcsum |= E1000_RXCSUM_CRCOFL;
3212 		}
3213 	} else
3214 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3215 
3216 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3217 
3218 	if (adapter->rx_num_queues > 1) {
3219 		if (hw->mac.type >= igb_mac_min)
3220 			igb_initialize_rss_mapping(adapter);
3221 		else
3222 			em_initialize_rss_mapping(adapter);
3223 	}
3224 
3225 	/*
3226 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3227 	 * long latencies are observed, like Lenovo X60. This
3228 	 * change eliminates the problem, but since having positive
3229 	 * values in RDTR is a known source of problems on other
3230 	 * platforms another solution is being sought.
3231 	 */
3232 	if (hw->mac.type == e1000_82573)
3233 		E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3234 
3235 	for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3236 		struct rx_ring *rxr = &que->rxr;
3237 		/* Setup the Base and Length of the Rx Descriptor Ring */
3238 		u64 bus_addr = rxr->rx_paddr;
3239 #if 0
3240 		u32 rdt = adapter->rx_num_queues -1;  /* default */
3241 #endif
3242 
3243 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
3244 		    scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
3245 		E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3246 		E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3247 		/* Setup the Head and Tail Descriptor Pointers */
3248 		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3249 		E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3250 	}
3251 
3252 	/*
3253 	 * Set PTHRESH for improved jumbo performance
3254 	 * According to 10.2.5.11 of Intel 82574 Datasheet,
3255 	 * RXDCTL(1) is written whenever RXDCTL(0) is written.
3256 	 * Only write to RXDCTL(1) if there is a need for different
3257 	 * settings.
3258 	 */
3259 	if ((hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_pch2lan ||
3260 	    hw->mac.type == e1000_ich10lan) && if_getmtu(ifp) > ETHERMTU) {
3261 		u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3262 		E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3263 	} else if (hw->mac.type == e1000_82574) {
3264 		for (int i = 0; i < adapter->rx_num_queues; i++) {
3265 			u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3266 			rxdctl |= 0x20; /* PTHRESH */
3267 			rxdctl |= 4 << 8; /* HTHRESH */
3268 			rxdctl |= 4 << 16;/* WTHRESH */
3269 			rxdctl |= 1 << 24; /* Switch to granularity */
3270 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3271 		}
3272 	} else if (hw->mac.type >= igb_mac_min) {
3273 		u32 psize, srrctl = 0;
3274 
3275 		if (if_getmtu(ifp) > ETHERMTU) {
3276 			/* Set maximum packet len */
3277 			if (adapter->rx_mbuf_sz <= 4096) {
3278 				srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3279 				rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3280 			} else if (adapter->rx_mbuf_sz > 4096) {
3281 				srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3282 				rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3283 			}
3284 			psize = scctx->isc_max_frame_size;
3285 			/* are we on a vlan? */
3286 			if (ifp->if_vlantrunk != NULL)
3287 				psize += VLAN_TAG_SIZE;
3288 			E1000_WRITE_REG(hw, E1000_RLPML, psize);
3289 		} else {
3290 			srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3291 			rctl |= E1000_RCTL_SZ_2048;
3292 		}
3293 
3294 		/*
3295 		 * If TX flow control is disabled and there's >1 queue defined,
3296 		 * enable DROP.
3297 		 *
3298 		 * This drops frames rather than hanging the RX MAC for all queues.
3299 		 */
3300 		if ((adapter->rx_num_queues > 1) &&
3301 		    (adapter->fc == e1000_fc_none ||
3302 		     adapter->fc == e1000_fc_rx_pause)) {
3303 			srrctl |= E1000_SRRCTL_DROP_EN;
3304 		}
3305 			/* Setup the Base and Length of the Rx Descriptor Rings */
3306 		for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3307 			struct rx_ring *rxr = &que->rxr;
3308 			u64 bus_addr = rxr->rx_paddr;
3309 			u32 rxdctl;
3310 
3311 #ifdef notyet
3312 			/* Configure for header split? -- ignore for now */
3313 			rxr->hdr_split = igb_header_split;
3314 #else
3315 			srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3316 #endif
3317 
3318 			E1000_WRITE_REG(hw, E1000_RDLEN(i),
3319 					scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3320 			E1000_WRITE_REG(hw, E1000_RDBAH(i),
3321 					(uint32_t)(bus_addr >> 32));
3322 			E1000_WRITE_REG(hw, E1000_RDBAL(i),
3323 					(uint32_t)bus_addr);
3324 			E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3325 			/* Enable this Queue */
3326 			rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3327 			rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3328 			rxdctl &= 0xFFF00000;
3329 			rxdctl |= IGB_RX_PTHRESH;
3330 			rxdctl |= IGB_RX_HTHRESH << 8;
3331 			rxdctl |= IGB_RX_WTHRESH << 16;
3332 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3333 		}
3334 	} else if (hw->mac.type >= e1000_pch2lan) {
3335 		if (if_getmtu(ifp) > ETHERMTU)
3336 			e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
3337 		else
3338 			e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
3339 	}
3340 
3341 	/* Make sure VLAN Filters are off */
3342 	rctl &= ~E1000_RCTL_VFE;
3343 
3344 	if (hw->mac.type < igb_mac_min) {
3345 		if (adapter->rx_mbuf_sz == MCLBYTES)
3346 			rctl |= E1000_RCTL_SZ_2048;
3347 		else if (adapter->rx_mbuf_sz == MJUMPAGESIZE)
3348 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3349 		else if (adapter->rx_mbuf_sz > MJUMPAGESIZE)
3350 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3351 
3352 		/* ensure we clear use DTYPE of 00 here */
3353 		rctl &= ~0x00000C00;
3354 	}
3355 
3356 	/* Write out the settings */
3357 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3358 
3359 	return;
3360 }
3361 
3362 static void
3363 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3364 {
3365 	struct adapter *adapter = iflib_get_softc(ctx);
3366 	u32 index, bit;
3367 
3368 	index = (vtag >> 5) & 0x7F;
3369 	bit = vtag & 0x1F;
3370 	adapter->shadow_vfta[index] |= (1 << bit);
3371 	++adapter->num_vlans;
3372 }
3373 
3374 static void
3375 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3376 {
3377 	struct adapter *adapter = iflib_get_softc(ctx);
3378 	u32 index, bit;
3379 
3380 	index = (vtag >> 5) & 0x7F;
3381 	bit = vtag & 0x1F;
3382 	adapter->shadow_vfta[index] &= ~(1 << bit);
3383 	--adapter->num_vlans;
3384 }
3385 
3386 static void
3387 em_setup_vlan_hw_support(struct adapter *adapter)
3388 {
3389 	struct e1000_hw *hw = &adapter->hw;
3390 	u32 reg;
3391 
3392 	/*
3393 	 * We get here thru init_locked, meaning
3394 	 * a soft reset, this has already cleared
3395 	 * the VFTA and other state, so if there
3396 	 * have been no vlan's registered do nothing.
3397 	 */
3398 	if (adapter->num_vlans == 0)
3399 		return;
3400 
3401 	/*
3402 	 * A soft reset zero's out the VFTA, so
3403 	 * we need to repopulate it now.
3404 	 */
3405 	for (int i = 0; i < EM_VFTA_SIZE; i++)
3406 		if (adapter->shadow_vfta[i] != 0)
3407 			E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
3408 			    i, adapter->shadow_vfta[i]);
3409 
3410 	reg = E1000_READ_REG(hw, E1000_CTRL);
3411 	reg |= E1000_CTRL_VME;
3412 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
3413 
3414 	/* Enable the Filter Table */
3415 	reg = E1000_READ_REG(hw, E1000_RCTL);
3416 	reg &= ~E1000_RCTL_CFIEN;
3417 	reg |= E1000_RCTL_VFE;
3418 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
3419 }
3420 
3421 static void
3422 em_if_intr_enable(if_ctx_t ctx)
3423 {
3424 	struct adapter *adapter = iflib_get_softc(ctx);
3425 	struct e1000_hw *hw = &adapter->hw;
3426 	u32 ims_mask = IMS_ENABLE_MASK;
3427 
3428 	if (hw->mac.type == e1000_82574) {
3429 		E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK);
3430 		ims_mask |= adapter->ims;
3431 	}
3432 	E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3433 }
3434 
3435 static void
3436 em_if_intr_disable(if_ctx_t ctx)
3437 {
3438 	struct adapter *adapter = iflib_get_softc(ctx);
3439 	struct e1000_hw *hw = &adapter->hw;
3440 
3441 	if (hw->mac.type == e1000_82574)
3442 		E1000_WRITE_REG(hw, EM_EIAC, 0);
3443 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3444 }
3445 
3446 static void
3447 igb_if_intr_enable(if_ctx_t ctx)
3448 {
3449 	struct adapter *adapter = iflib_get_softc(ctx);
3450 	struct e1000_hw *hw = &adapter->hw;
3451 	u32 mask;
3452 
3453 	if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3454 		mask = (adapter->que_mask | adapter->link_mask);
3455 		E1000_WRITE_REG(hw, E1000_EIAC, mask);
3456 		E1000_WRITE_REG(hw, E1000_EIAM, mask);
3457 		E1000_WRITE_REG(hw, E1000_EIMS, mask);
3458 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3459 	} else
3460 		E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3461 	E1000_WRITE_FLUSH(hw);
3462 }
3463 
3464 static void
3465 igb_if_intr_disable(if_ctx_t ctx)
3466 {
3467 	struct adapter *adapter = iflib_get_softc(ctx);
3468 	struct e1000_hw *hw = &adapter->hw;
3469 
3470 	if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3471 		E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
3472 		E1000_WRITE_REG(hw, E1000_EIAC, 0);
3473 	}
3474 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3475 	E1000_WRITE_FLUSH(hw);
3476 }
3477 
3478 /*
3479  * Bit of a misnomer, what this really means is
3480  * to enable OS management of the system... aka
3481  * to disable special hardware management features
3482  */
3483 static void
3484 em_init_manageability(struct adapter *adapter)
3485 {
3486 	/* A shared code workaround */
3487 #define E1000_82542_MANC2H E1000_MANC2H
3488 	if (adapter->has_manage) {
3489 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3490 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3491 
3492 		/* disable hardware interception of ARP */
3493 		manc &= ~(E1000_MANC_ARP_EN);
3494 
3495 		/* enable receiving management packets to the host */
3496 		manc |= E1000_MANC_EN_MNG2HOST;
3497 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3498 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3499 		manc2h |= E1000_MNG2HOST_PORT_623;
3500 		manc2h |= E1000_MNG2HOST_PORT_664;
3501 		E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3502 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3503 	}
3504 }
3505 
3506 /*
3507  * Give control back to hardware management
3508  * controller if there is one.
3509  */
3510 static void
3511 em_release_manageability(struct adapter *adapter)
3512 {
3513 	if (adapter->has_manage) {
3514 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3515 
3516 		/* re-enable hardware interception of ARP */
3517 		manc |= E1000_MANC_ARP_EN;
3518 		manc &= ~E1000_MANC_EN_MNG2HOST;
3519 
3520 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3521 	}
3522 }
3523 
3524 /*
3525  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3526  * For ASF and Pass Through versions of f/w this means
3527  * that the driver is loaded. For AMT version type f/w
3528  * this means that the network i/f is open.
3529  */
3530 static void
3531 em_get_hw_control(struct adapter *adapter)
3532 {
3533 	u32 ctrl_ext, swsm;
3534 
3535 	if (adapter->vf_ifp)
3536 		return;
3537 
3538 	if (adapter->hw.mac.type == e1000_82573) {
3539 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3540 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3541 		    swsm | E1000_SWSM_DRV_LOAD);
3542 		return;
3543 	}
3544 	/* else */
3545 	ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3546 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3547 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3548 }
3549 
3550 /*
3551  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3552  * For ASF and Pass Through versions of f/w this means that
3553  * the driver is no longer loaded. For AMT versions of the
3554  * f/w this means that the network i/f is closed.
3555  */
3556 static void
3557 em_release_hw_control(struct adapter *adapter)
3558 {
3559 	u32 ctrl_ext, swsm;
3560 
3561 	if (!adapter->has_manage)
3562 		return;
3563 
3564 	if (adapter->hw.mac.type == e1000_82573) {
3565 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3566 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3567 		    swsm & ~E1000_SWSM_DRV_LOAD);
3568 		return;
3569 	}
3570 	/* else */
3571 	ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3572 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3573 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3574 	return;
3575 }
3576 
3577 static int
3578 em_is_valid_ether_addr(u8 *addr)
3579 {
3580 	char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3581 
3582 	if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3583 		return (FALSE);
3584 	}
3585 
3586 	return (TRUE);
3587 }
3588 
3589 /*
3590 ** Parse the interface capabilities with regard
3591 ** to both system management and wake-on-lan for
3592 ** later use.
3593 */
3594 static void
3595 em_get_wakeup(if_ctx_t ctx)
3596 {
3597 	struct adapter *adapter = iflib_get_softc(ctx);
3598 	device_t dev = iflib_get_dev(ctx);
3599 	u16 eeprom_data = 0, device_id, apme_mask;
3600 
3601 	adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
3602 	apme_mask = EM_EEPROM_APME;
3603 
3604 	switch (adapter->hw.mac.type) {
3605 	case e1000_82542:
3606 	case e1000_82543:
3607 		break;
3608 	case e1000_82544:
3609 		e1000_read_nvm(&adapter->hw,
3610 		    NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3611 		apme_mask = EM_82544_APME;
3612 		break;
3613 	case e1000_82546:
3614 	case e1000_82546_rev_3:
3615 		if (adapter->hw.bus.func == 1) {
3616 			e1000_read_nvm(&adapter->hw,
3617 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3618 			break;
3619 		} else
3620 			e1000_read_nvm(&adapter->hw,
3621 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3622 		break;
3623 	case e1000_82573:
3624 	case e1000_82583:
3625 		adapter->has_amt = TRUE;
3626 		/* FALLTHROUGH */
3627 	case e1000_82571:
3628 	case e1000_82572:
3629 	case e1000_80003es2lan:
3630 		if (adapter->hw.bus.func == 1) {
3631 			e1000_read_nvm(&adapter->hw,
3632 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3633 			break;
3634 		} else
3635 			e1000_read_nvm(&adapter->hw,
3636 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3637 		break;
3638 	case e1000_ich8lan:
3639 	case e1000_ich9lan:
3640 	case e1000_ich10lan:
3641 	case e1000_pchlan:
3642 	case e1000_pch2lan:
3643 	case e1000_pch_lpt:
3644 	case e1000_pch_spt:
3645 	case e1000_82575:	/* listing all igb devices */
3646 	case e1000_82576:
3647 	case e1000_82580:
3648 	case e1000_i350:
3649 	case e1000_i354:
3650 	case e1000_i210:
3651 	case e1000_i211:
3652 	case e1000_vfadapt:
3653 	case e1000_vfadapt_i350:
3654 		apme_mask = E1000_WUC_APME;
3655 		adapter->has_amt = TRUE;
3656 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
3657 		break;
3658 	default:
3659 		e1000_read_nvm(&adapter->hw,
3660 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3661 		break;
3662 	}
3663 	if (eeprom_data & apme_mask)
3664 		adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
3665 	/*
3666 	 * We have the eeprom settings, now apply the special cases
3667 	 * where the eeprom may be wrong or the board won't support
3668 	 * wake on lan on a particular port
3669 	 */
3670 	device_id = pci_get_device(dev);
3671 	switch (device_id) {
3672 	case E1000_DEV_ID_82546GB_PCIE:
3673 		adapter->wol = 0;
3674 		break;
3675 	case E1000_DEV_ID_82546EB_FIBER:
3676 	case E1000_DEV_ID_82546GB_FIBER:
3677 		/* Wake events only supported on port A for dual fiber
3678 		 * regardless of eeprom setting */
3679 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3680 		    E1000_STATUS_FUNC_1)
3681 			adapter->wol = 0;
3682 		break;
3683 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
3684 		/* if quad port adapter, disable WoL on all but port A */
3685 		if (global_quad_port_a != 0)
3686 			adapter->wol = 0;
3687 		/* Reset for multiple quad port adapters */
3688 		if (++global_quad_port_a == 4)
3689 			global_quad_port_a = 0;
3690 		break;
3691 	case E1000_DEV_ID_82571EB_FIBER:
3692 		/* Wake events only supported on port A for dual fiber
3693 		 * regardless of eeprom setting */
3694 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3695 		    E1000_STATUS_FUNC_1)
3696 			adapter->wol = 0;
3697 		break;
3698 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
3699 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
3700 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
3701 		/* if quad port adapter, disable WoL on all but port A */
3702 		if (global_quad_port_a != 0)
3703 			adapter->wol = 0;
3704 		/* Reset for multiple quad port adapters */
3705 		if (++global_quad_port_a == 4)
3706 			global_quad_port_a = 0;
3707 		break;
3708 	}
3709 	return;
3710 }
3711 
3712 
3713 /*
3714  * Enable PCI Wake On Lan capability
3715  */
3716 static void
3717 em_enable_wakeup(if_ctx_t ctx)
3718 {
3719 	struct adapter *adapter = iflib_get_softc(ctx);
3720 	device_t dev = iflib_get_dev(ctx);
3721 	if_t ifp = iflib_get_ifp(ctx);
3722 	int error = 0;
3723 	u32 pmc, ctrl, ctrl_ext, rctl;
3724 	u16 status;
3725 
3726 	if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
3727 		return;
3728 
3729 	/*
3730 	 * Determine type of Wakeup: note that wol
3731 	 * is set with all bits on by default.
3732 	 */
3733 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
3734 		adapter->wol &= ~E1000_WUFC_MAG;
3735 
3736 	if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
3737 		adapter->wol &= ~E1000_WUFC_EX;
3738 
3739 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
3740 		adapter->wol &= ~E1000_WUFC_MC;
3741 	else {
3742 		rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3743 		rctl |= E1000_RCTL_MPE;
3744 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3745 	}
3746 
3747 	if (!(adapter->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
3748 		goto pme;
3749 
3750 	/* Advertise the wakeup capability */
3751 	ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
3752 	ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
3753 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
3754 
3755 	/* Keep the laser running on Fiber adapters */
3756 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3757 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
3758 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3759 		ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
3760 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext);
3761 	}
3762 
3763 	if ((adapter->hw.mac.type == e1000_ich8lan) ||
3764 	    (adapter->hw.mac.type == e1000_pchlan) ||
3765 	    (adapter->hw.mac.type == e1000_ich9lan) ||
3766 	    (adapter->hw.mac.type == e1000_ich10lan))
3767 		e1000_suspend_workarounds_ich8lan(&adapter->hw);
3768 
3769 	if ( adapter->hw.mac.type >= e1000_pchlan) {
3770 		error = em_enable_phy_wakeup(adapter);
3771 		if (error)
3772 			goto pme;
3773 	} else {
3774 		/* Enable wakeup by the MAC */
3775 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
3776 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
3777 	}
3778 
3779 	if (adapter->hw.phy.type == e1000_phy_igp_3)
3780 		e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3781 
3782 pme:
3783 	status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
3784 	status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3785 	if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
3786 		status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3787 	pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
3788 
3789 	return;
3790 }
3791 
3792 /*
3793  * WOL in the newer chipset interfaces (pchlan)
3794  * require thing to be copied into the phy
3795  */
3796 static int
3797 em_enable_phy_wakeup(struct adapter *adapter)
3798 {
3799 	struct e1000_hw *hw = &adapter->hw;
3800 	u32 mreg, ret = 0;
3801 	u16 preg;
3802 
3803 	/* copy MAC RARs to PHY RARs */
3804 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
3805 
3806 	/* copy MAC MTA to PHY MTA */
3807 	for (int i = 0; i < hw->mac.mta_reg_count; i++) {
3808 		mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
3809 		e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
3810 		e1000_write_phy_reg(hw, BM_MTA(i) + 1,
3811 		    (u16)((mreg >> 16) & 0xFFFF));
3812 	}
3813 
3814 	/* configure PHY Rx Control register */
3815 	e1000_read_phy_reg(hw, BM_RCTL, &preg);
3816 	mreg = E1000_READ_REG(hw, E1000_RCTL);
3817 	if (mreg & E1000_RCTL_UPE)
3818 		preg |= BM_RCTL_UPE;
3819 	if (mreg & E1000_RCTL_MPE)
3820 		preg |= BM_RCTL_MPE;
3821 	preg &= ~(BM_RCTL_MO_MASK);
3822 	if (mreg & E1000_RCTL_MO_3)
3823 		preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
3824 				<< BM_RCTL_MO_SHIFT);
3825 	if (mreg & E1000_RCTL_BAM)
3826 		preg |= BM_RCTL_BAM;
3827 	if (mreg & E1000_RCTL_PMCF)
3828 		preg |= BM_RCTL_PMCF;
3829 	mreg = E1000_READ_REG(hw, E1000_CTRL);
3830 	if (mreg & E1000_CTRL_RFCE)
3831 		preg |= BM_RCTL_RFCE;
3832 	e1000_write_phy_reg(hw, BM_RCTL, preg);
3833 
3834 	/* enable PHY wakeup in MAC register */
3835 	E1000_WRITE_REG(hw, E1000_WUC,
3836 	    E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
3837 	E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol);
3838 
3839 	/* configure and enable PHY wakeup in PHY registers */
3840 	e1000_write_phy_reg(hw, BM_WUFC, adapter->wol);
3841 	e1000_write_phy_reg(hw, BM_WUC, E1000_WUC_PME_EN);
3842 
3843 	/* activate PHY wakeup */
3844 	ret = hw->phy.ops.acquire(hw);
3845 	if (ret) {
3846 		printf("Could not acquire PHY\n");
3847 		return ret;
3848 	}
3849 	e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3850 	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
3851 	ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
3852 	if (ret) {
3853 		printf("Could not read PHY page 769\n");
3854 		goto out;
3855 	}
3856 	preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
3857 	ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
3858 	if (ret)
3859 		printf("Could not set PHY Host Wakeup bit\n");
3860 out:
3861 	hw->phy.ops.release(hw);
3862 
3863 	return ret;
3864 }
3865 
3866 static void
3867 em_if_led_func(if_ctx_t ctx, int onoff)
3868 {
3869 	struct adapter *adapter = iflib_get_softc(ctx);
3870 
3871 	if (onoff) {
3872 		e1000_setup_led(&adapter->hw);
3873 		e1000_led_on(&adapter->hw);
3874 	} else {
3875 		e1000_led_off(&adapter->hw);
3876 		e1000_cleanup_led(&adapter->hw);
3877 	}
3878 }
3879 
3880 /*
3881  * Disable the L0S and L1 LINK states
3882  */
3883 static void
3884 em_disable_aspm(struct adapter *adapter)
3885 {
3886 	int base, reg;
3887 	u16 link_cap,link_ctrl;
3888 	device_t dev = adapter->dev;
3889 
3890 	switch (adapter->hw.mac.type) {
3891 	case e1000_82573:
3892 	case e1000_82574:
3893 	case e1000_82583:
3894 		break;
3895 	default:
3896 		return;
3897 	}
3898 	if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
3899 		return;
3900 	reg = base + PCIER_LINK_CAP;
3901 	link_cap = pci_read_config(dev, reg, 2);
3902 	if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
3903 		return;
3904 	reg = base + PCIER_LINK_CTL;
3905 	link_ctrl = pci_read_config(dev, reg, 2);
3906 	link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
3907 	pci_write_config(dev, reg, link_ctrl, 2);
3908 	return;
3909 }
3910 
3911 /**********************************************************************
3912  *
3913  *  Update the board statistics counters.
3914  *
3915  **********************************************************************/
3916 static void
3917 em_update_stats_counters(struct adapter *adapter)
3918 {
3919 	u64 prev_xoffrxc = adapter->stats.xoffrxc;
3920 
3921 	if(adapter->hw.phy.media_type == e1000_media_type_copper ||
3922 	   (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3923 		adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3924 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3925 	}
3926 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3927 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3928 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3929 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3930 
3931 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3932 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3933 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3934 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3935 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3936 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3937 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3938 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3939 	/*
3940 	 ** For watchdog management we need to know if we have been
3941 	 ** paused during the last interval, so capture that here.
3942 	*/
3943 	if (adapter->stats.xoffrxc != prev_xoffrxc)
3944 		adapter->shared->isc_pause_frames = 1;
3945 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3946 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3947 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3948 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3949 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3950 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3951 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3952 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3953 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3954 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3955 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3956 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3957 
3958 	/* For the 64-bit byte counters the low dword must be read first. */
3959 	/* Both registers clear on the read of the high dword */
3960 
3961 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) +
3962 	    ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32);
3963 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) +
3964 	    ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32);
3965 
3966 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3967 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3968 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3969 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3970 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3971 
3972 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3973 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3974 
3975 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3976 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3977 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3978 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3979 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3980 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3981 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3982 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3983 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3984 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3985 
3986 	/* Interrupt Counts */
3987 
3988 	adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC);
3989 	adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC);
3990 	adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC);
3991 	adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC);
3992 	adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC);
3993 	adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC);
3994 	adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC);
3995 	adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC);
3996 	adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC);
3997 
3998 	if (adapter->hw.mac.type >= e1000_82543) {
3999 		adapter->stats.algnerrc +=
4000 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
4001 		adapter->stats.rxerrc +=
4002 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
4003 		adapter->stats.tncrs +=
4004 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
4005 		adapter->stats.cexterr +=
4006 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
4007 		adapter->stats.tsctc +=
4008 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
4009 		adapter->stats.tsctfc +=
4010 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
4011 	}
4012 }
4013 
4014 static uint64_t
4015 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4016 {
4017 	struct adapter *adapter = iflib_get_softc(ctx);
4018 	struct ifnet *ifp = iflib_get_ifp(ctx);
4019 
4020 	switch (cnt) {
4021 	case IFCOUNTER_COLLISIONS:
4022 		return (adapter->stats.colc);
4023 	case IFCOUNTER_IERRORS:
4024 		return (adapter->dropped_pkts + adapter->stats.rxerrc +
4025 		    adapter->stats.crcerrs + adapter->stats.algnerrc +
4026 		    adapter->stats.ruc + adapter->stats.roc +
4027 		    adapter->stats.mpc + adapter->stats.cexterr);
4028 	case IFCOUNTER_OERRORS:
4029 		return (adapter->stats.ecol + adapter->stats.latecol +
4030 		    adapter->watchdog_events);
4031 	default:
4032 		return (if_get_counter_default(ifp, cnt));
4033 	}
4034 }
4035 
4036 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized
4037  * @ctx: iflib context
4038  * @event: event code to check
4039  *
4040  * Defaults to returning true for unknown events.
4041  *
4042  * @returns true if iflib needs to reinit the interface
4043  */
4044 static bool
4045 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
4046 {
4047 	switch (event) {
4048 	case IFLIB_RESTART_VLAN_CONFIG:
4049 	default:
4050 		return (true);
4051 	}
4052 }
4053 
4054 /* Export a single 32-bit register via a read-only sysctl. */
4055 static int
4056 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4057 {
4058 	struct adapter *adapter;
4059 	u_int val;
4060 
4061 	adapter = oidp->oid_arg1;
4062 	val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
4063 	return (sysctl_handle_int(oidp, &val, 0, req));
4064 }
4065 
4066 /*
4067  * Add sysctl variables, one per statistic, to the system.
4068  */
4069 static void
4070 em_add_hw_stats(struct adapter *adapter)
4071 {
4072 	device_t dev = iflib_get_dev(adapter->ctx);
4073 	struct em_tx_queue *tx_que = adapter->tx_queues;
4074 	struct em_rx_queue *rx_que = adapter->rx_queues;
4075 
4076 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4077 	struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4078 	struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4079 	struct e1000_hw_stats *stats = &adapter->stats;
4080 
4081 	struct sysctl_oid *stat_node, *queue_node, *int_node;
4082 	struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4083 
4084 #define QUEUE_NAME_LEN 32
4085 	char namebuf[QUEUE_NAME_LEN];
4086 
4087 	/* Driver Statistics */
4088 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4089 			CTLFLAG_RD, &adapter->dropped_pkts,
4090 			"Driver dropped packets");
4091 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4092 			CTLFLAG_RD, &adapter->link_irq,
4093 			"Link MSI-X IRQ Handled");
4094 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4095 			CTLFLAG_RD, &adapter->rx_overruns,
4096 			"RX overruns");
4097 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4098 			CTLFLAG_RD, &adapter->watchdog_events,
4099 			"Watchdog timeouts");
4100 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4101 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4102 	    adapter, E1000_CTRL, em_sysctl_reg_handler, "IU",
4103 	    "Device Control Register");
4104 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4105 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4106 	    adapter, E1000_RCTL, em_sysctl_reg_handler, "IU",
4107 	    "Receiver Control Register");
4108 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4109 			CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
4110 			"Flow Control High Watermark");
4111 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4112 			CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
4113 			"Flow Control Low Watermark");
4114 
4115 	for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
4116 		struct tx_ring *txr = &tx_que->txr;
4117 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4118 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4119 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
4120 		queue_list = SYSCTL_CHILDREN(queue_node);
4121 
4122 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4123 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4124 		    E1000_TDH(txr->me), em_sysctl_reg_handler, "IU",
4125 		    "Transmit Descriptor Head");
4126 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4127 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4128 		    E1000_TDT(txr->me), em_sysctl_reg_handler, "IU",
4129 		    "Transmit Descriptor Tail");
4130 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4131 				CTLFLAG_RD, &txr->tx_irq,
4132 				"Queue MSI-X Transmit Interrupts");
4133 	}
4134 
4135 	for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) {
4136 		struct rx_ring *rxr = &rx_que->rxr;
4137 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4138 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4139 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
4140 		queue_list = SYSCTL_CHILDREN(queue_node);
4141 
4142 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4143 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4144 		    E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU",
4145 		    "Receive Descriptor Head");
4146 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4147 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4148 		    E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU",
4149 		    "Receive Descriptor Tail");
4150 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
4151 				CTLFLAG_RD, &rxr->rx_irq,
4152 				"Queue MSI-X Receive Interrupts");
4153 	}
4154 
4155 	/* MAC stats get their own sub node */
4156 
4157 	stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
4158 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
4159 	stat_list = SYSCTL_CHILDREN(stat_node);
4160 
4161 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
4162 			CTLFLAG_RD, &stats->ecol,
4163 			"Excessive collisions");
4164 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
4165 			CTLFLAG_RD, &stats->scc,
4166 			"Single collisions");
4167 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
4168 			CTLFLAG_RD, &stats->mcc,
4169 			"Multiple collisions");
4170 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
4171 			CTLFLAG_RD, &stats->latecol,
4172 			"Late collisions");
4173 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
4174 			CTLFLAG_RD, &stats->colc,
4175 			"Collision Count");
4176 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
4177 			CTLFLAG_RD, &adapter->stats.symerrs,
4178 			"Symbol Errors");
4179 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
4180 			CTLFLAG_RD, &adapter->stats.sec,
4181 			"Sequence Errors");
4182 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
4183 			CTLFLAG_RD, &adapter->stats.dc,
4184 			"Defer Count");
4185 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
4186 			CTLFLAG_RD, &adapter->stats.mpc,
4187 			"Missed Packets");
4188 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
4189 			CTLFLAG_RD, &adapter->stats.rnbc,
4190 			"Receive No Buffers");
4191 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
4192 			CTLFLAG_RD, &adapter->stats.ruc,
4193 			"Receive Undersize");
4194 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
4195 			CTLFLAG_RD, &adapter->stats.rfc,
4196 			"Fragmented Packets Received ");
4197 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
4198 			CTLFLAG_RD, &adapter->stats.roc,
4199 			"Oversized Packets Received");
4200 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
4201 			CTLFLAG_RD, &adapter->stats.rjc,
4202 			"Recevied Jabber");
4203 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
4204 			CTLFLAG_RD, &adapter->stats.rxerrc,
4205 			"Receive Errors");
4206 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
4207 			CTLFLAG_RD, &adapter->stats.crcerrs,
4208 			"CRC errors");
4209 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
4210 			CTLFLAG_RD, &adapter->stats.algnerrc,
4211 			"Alignment Errors");
4212 	/* On 82575 these are collision counts */
4213 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
4214 			CTLFLAG_RD, &adapter->stats.cexterr,
4215 			"Collision/Carrier extension errors");
4216 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
4217 			CTLFLAG_RD, &adapter->stats.xonrxc,
4218 			"XON Received");
4219 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
4220 			CTLFLAG_RD, &adapter->stats.xontxc,
4221 			"XON Transmitted");
4222 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
4223 			CTLFLAG_RD, &adapter->stats.xoffrxc,
4224 			"XOFF Received");
4225 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
4226 			CTLFLAG_RD, &adapter->stats.xofftxc,
4227 			"XOFF Transmitted");
4228 
4229 	/* Packet Reception Stats */
4230 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
4231 			CTLFLAG_RD, &adapter->stats.tpr,
4232 			"Total Packets Received ");
4233 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
4234 			CTLFLAG_RD, &adapter->stats.gprc,
4235 			"Good Packets Received");
4236 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
4237 			CTLFLAG_RD, &adapter->stats.bprc,
4238 			"Broadcast Packets Received");
4239 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
4240 			CTLFLAG_RD, &adapter->stats.mprc,
4241 			"Multicast Packets Received");
4242 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
4243 			CTLFLAG_RD, &adapter->stats.prc64,
4244 			"64 byte frames received ");
4245 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
4246 			CTLFLAG_RD, &adapter->stats.prc127,
4247 			"65-127 byte frames received");
4248 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
4249 			CTLFLAG_RD, &adapter->stats.prc255,
4250 			"128-255 byte frames received");
4251 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
4252 			CTLFLAG_RD, &adapter->stats.prc511,
4253 			"256-511 byte frames received");
4254 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
4255 			CTLFLAG_RD, &adapter->stats.prc1023,
4256 			"512-1023 byte frames received");
4257 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
4258 			CTLFLAG_RD, &adapter->stats.prc1522,
4259 			"1023-1522 byte frames received");
4260 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
4261 			CTLFLAG_RD, &adapter->stats.gorc,
4262 			"Good Octets Received");
4263 
4264 	/* Packet Transmission Stats */
4265 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
4266 			CTLFLAG_RD, &adapter->stats.gotc,
4267 			"Good Octets Transmitted");
4268 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
4269 			CTLFLAG_RD, &adapter->stats.tpt,
4270 			"Total Packets Transmitted");
4271 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
4272 			CTLFLAG_RD, &adapter->stats.gptc,
4273 			"Good Packets Transmitted");
4274 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
4275 			CTLFLAG_RD, &adapter->stats.bptc,
4276 			"Broadcast Packets Transmitted");
4277 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
4278 			CTLFLAG_RD, &adapter->stats.mptc,
4279 			"Multicast Packets Transmitted");
4280 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
4281 			CTLFLAG_RD, &adapter->stats.ptc64,
4282 			"64 byte frames transmitted ");
4283 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
4284 			CTLFLAG_RD, &adapter->stats.ptc127,
4285 			"65-127 byte frames transmitted");
4286 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
4287 			CTLFLAG_RD, &adapter->stats.ptc255,
4288 			"128-255 byte frames transmitted");
4289 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
4290 			CTLFLAG_RD, &adapter->stats.ptc511,
4291 			"256-511 byte frames transmitted");
4292 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
4293 			CTLFLAG_RD, &adapter->stats.ptc1023,
4294 			"512-1023 byte frames transmitted");
4295 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
4296 			CTLFLAG_RD, &adapter->stats.ptc1522,
4297 			"1024-1522 byte frames transmitted");
4298 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
4299 			CTLFLAG_RD, &adapter->stats.tsctc,
4300 			"TSO Contexts Transmitted");
4301 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
4302 			CTLFLAG_RD, &adapter->stats.tsctfc,
4303 			"TSO Contexts Failed");
4304 
4305 
4306 	/* Interrupt Stats */
4307 
4308 	int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
4309 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
4310 	int_list = SYSCTL_CHILDREN(int_node);
4311 
4312 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
4313 			CTLFLAG_RD, &adapter->stats.iac,
4314 			"Interrupt Assertion Count");
4315 
4316 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
4317 			CTLFLAG_RD, &adapter->stats.icrxptc,
4318 			"Interrupt Cause Rx Pkt Timer Expire Count");
4319 
4320 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
4321 			CTLFLAG_RD, &adapter->stats.icrxatc,
4322 			"Interrupt Cause Rx Abs Timer Expire Count");
4323 
4324 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
4325 			CTLFLAG_RD, &adapter->stats.ictxptc,
4326 			"Interrupt Cause Tx Pkt Timer Expire Count");
4327 
4328 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
4329 			CTLFLAG_RD, &adapter->stats.ictxatc,
4330 			"Interrupt Cause Tx Abs Timer Expire Count");
4331 
4332 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
4333 			CTLFLAG_RD, &adapter->stats.ictxqec,
4334 			"Interrupt Cause Tx Queue Empty Count");
4335 
4336 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
4337 			CTLFLAG_RD, &adapter->stats.ictxqmtc,
4338 			"Interrupt Cause Tx Queue Min Thresh Count");
4339 
4340 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4341 			CTLFLAG_RD, &adapter->stats.icrxdmtc,
4342 			"Interrupt Cause Rx Desc Min Thresh Count");
4343 
4344 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4345 			CTLFLAG_RD, &adapter->stats.icrxoc,
4346 			"Interrupt Cause Receiver Overrun Count");
4347 }
4348 
4349 /**********************************************************************
4350  *
4351  *  This routine provides a way to dump out the adapter eeprom,
4352  *  often a useful debug/service tool. This only dumps the first
4353  *  32 words, stuff that matters is in that extent.
4354  *
4355  **********************************************************************/
4356 static int
4357 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4358 {
4359 	struct adapter *adapter = (struct adapter *)arg1;
4360 	int error;
4361 	int result;
4362 
4363 	result = -1;
4364 	error = sysctl_handle_int(oidp, &result, 0, req);
4365 
4366 	if (error || !req->newptr)
4367 		return (error);
4368 
4369 	/*
4370 	 * This value will cause a hex dump of the
4371 	 * first 32 16-bit words of the EEPROM to
4372 	 * the screen.
4373 	 */
4374 	if (result == 1)
4375 		em_print_nvm_info(adapter);
4376 
4377 	return (error);
4378 }
4379 
4380 static void
4381 em_print_nvm_info(struct adapter *adapter)
4382 {
4383 	u16 eeprom_data;
4384 	int i, j, row = 0;
4385 
4386 	/* Its a bit crude, but it gets the job done */
4387 	printf("\nInterface EEPROM Dump:\n");
4388 	printf("Offset\n0x0000  ");
4389 	for (i = 0, j = 0; i < 32; i++, j++) {
4390 		if (j == 8) { /* Make the offset block */
4391 			j = 0; ++row;
4392 			printf("\n0x00%x0  ",row);
4393 		}
4394 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4395 		printf("%04x ", eeprom_data);
4396 	}
4397 	printf("\n");
4398 }
4399 
4400 static int
4401 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4402 {
4403 	struct em_int_delay_info *info;
4404 	struct adapter *adapter;
4405 	u32 regval;
4406 	int error, usecs, ticks;
4407 
4408 	info = (struct em_int_delay_info *) arg1;
4409 	usecs = info->value;
4410 	error = sysctl_handle_int(oidp, &usecs, 0, req);
4411 	if (error != 0 || req->newptr == NULL)
4412 		return (error);
4413 	if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4414 		return (EINVAL);
4415 	info->value = usecs;
4416 	ticks = EM_USECS_TO_TICKS(usecs);
4417 	if (info->offset == E1000_ITR)	/* units are 256ns here */
4418 		ticks *= 4;
4419 
4420 	adapter = info->adapter;
4421 
4422 	regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
4423 	regval = (regval & ~0xffff) | (ticks & 0xffff);
4424 	/* Handle a few special cases. */
4425 	switch (info->offset) {
4426 	case E1000_RDTR:
4427 		break;
4428 	case E1000_TIDV:
4429 		if (ticks == 0) {
4430 			adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
4431 			/* Don't write 0 into the TIDV register. */
4432 			regval++;
4433 		} else
4434 			adapter->txd_cmd |= E1000_TXD_CMD_IDE;
4435 		break;
4436 	}
4437 	E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
4438 	return (0);
4439 }
4440 
4441 static void
4442 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
4443 	const char *description, struct em_int_delay_info *info,
4444 	int offset, int value)
4445 {
4446 	info->adapter = adapter;
4447 	info->offset = offset;
4448 	info->value = value;
4449 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
4450 	    SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
4451 	    OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
4452 	    info, 0, em_sysctl_int_delay, "I", description);
4453 }
4454 
4455 /*
4456  * Set flow control using sysctl:
4457  * Flow control values:
4458  *      0 - off
4459  *      1 - rx pause
4460  *      2 - tx pause
4461  *      3 - full
4462  */
4463 static int
4464 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4465 {
4466 	int error;
4467 	static int input = 3; /* default is full */
4468 	struct adapter	*adapter = (struct adapter *) arg1;
4469 
4470 	error = sysctl_handle_int(oidp, &input, 0, req);
4471 
4472 	if ((error) || (req->newptr == NULL))
4473 		return (error);
4474 
4475 	if (input == adapter->fc) /* no change? */
4476 		return (error);
4477 
4478 	switch (input) {
4479 	case e1000_fc_rx_pause:
4480 	case e1000_fc_tx_pause:
4481 	case e1000_fc_full:
4482 	case e1000_fc_none:
4483 		adapter->hw.fc.requested_mode = input;
4484 		adapter->fc = input;
4485 		break;
4486 	default:
4487 		/* Do nothing */
4488 		return (error);
4489 	}
4490 
4491 	adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
4492 	e1000_force_mac_fc(&adapter->hw);
4493 	return (error);
4494 }
4495 
4496 /*
4497  * Manage Energy Efficient Ethernet:
4498  * Control values:
4499  *     0/1 - enabled/disabled
4500  */
4501 static int
4502 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
4503 {
4504 	struct adapter *adapter = (struct adapter *) arg1;
4505 	int error, value;
4506 
4507 	value = adapter->hw.dev_spec.ich8lan.eee_disable;
4508 	error = sysctl_handle_int(oidp, &value, 0, req);
4509 	if (error || req->newptr == NULL)
4510 		return (error);
4511 	adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0);
4512 	em_if_init(adapter->ctx);
4513 
4514 	return (0);
4515 }
4516 
4517 static int
4518 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4519 {
4520 	struct adapter *adapter;
4521 	int error;
4522 	int result;
4523 
4524 	result = -1;
4525 	error = sysctl_handle_int(oidp, &result, 0, req);
4526 
4527 	if (error || !req->newptr)
4528 		return (error);
4529 
4530 	if (result == 1) {
4531 		adapter = (struct adapter *) arg1;
4532 		em_print_debug_info(adapter);
4533 	}
4534 
4535 	return (error);
4536 }
4537 
4538 static int
4539 em_get_rs(SYSCTL_HANDLER_ARGS)
4540 {
4541 	struct adapter *adapter = (struct adapter *) arg1;
4542 	int error;
4543 	int result;
4544 
4545 	result = 0;
4546 	error = sysctl_handle_int(oidp, &result, 0, req);
4547 
4548 	if (error || !req->newptr || result != 1)
4549 		return (error);
4550 	em_dump_rs(adapter);
4551 
4552 	return (error);
4553 }
4554 
4555 static void
4556 em_if_debug(if_ctx_t ctx)
4557 {
4558 	em_dump_rs(iflib_get_softc(ctx));
4559 }
4560 
4561 /*
4562  * This routine is meant to be fluid, add whatever is
4563  * needed for debugging a problem.  -jfv
4564  */
4565 static void
4566 em_print_debug_info(struct adapter *adapter)
4567 {
4568 	device_t dev = iflib_get_dev(adapter->ctx);
4569 	struct ifnet *ifp = iflib_get_ifp(adapter->ctx);
4570 	struct tx_ring *txr = &adapter->tx_queues->txr;
4571 	struct rx_ring *rxr = &adapter->rx_queues->rxr;
4572 
4573 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
4574 		printf("Interface is RUNNING ");
4575 	else
4576 		printf("Interface is NOT RUNNING\n");
4577 
4578 	if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
4579 		printf("and INACTIVE\n");
4580 	else
4581 		printf("and ACTIVE\n");
4582 
4583 	for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
4584 		device_printf(dev, "TX Queue %d ------\n", i);
4585 		device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4586 			E1000_READ_REG(&adapter->hw, E1000_TDH(i)),
4587 			E1000_READ_REG(&adapter->hw, E1000_TDT(i)));
4588 
4589 	}
4590 	for (int j=0; j < adapter->rx_num_queues; j++, rxr++) {
4591 		device_printf(dev, "RX Queue %d ------\n", j);
4592 		device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4593 			E1000_READ_REG(&adapter->hw, E1000_RDH(j)),
4594 			E1000_READ_REG(&adapter->hw, E1000_RDT(j)));
4595 	}
4596 }
4597 
4598 /*
4599  * 82574 only:
4600  * Write a new value to the EEPROM increasing the number of MSI-X
4601  * vectors from 3 to 5, for proper multiqueue support.
4602  */
4603 static void
4604 em_enable_vectors_82574(if_ctx_t ctx)
4605 {
4606 	struct adapter *adapter = iflib_get_softc(ctx);
4607 	struct e1000_hw *hw = &adapter->hw;
4608 	device_t dev = iflib_get_dev(ctx);
4609 	u16 edata;
4610 
4611 	e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4612 	if (bootverbose)
4613 		device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
4614 	if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
4615 		device_printf(dev, "Writing to eeprom: increasing "
4616 		    "reported MSI-X vectors from 3 to 5...\n");
4617 		edata &= ~(EM_NVM_MSIX_N_MASK);
4618 		edata |= 4 << EM_NVM_MSIX_N_SHIFT;
4619 		e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4620 		e1000_update_nvm_checksum(hw);
4621 		device_printf(dev, "Writing to eeprom: done\n");
4622 	}
4623 }
4624