xref: /freebsd/sys/dev/e1000/if_em.c (revision 6683132d54bd6d589889e43dabdc53d35e38a028)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* $FreeBSD$ */
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33 
34 #define em_mac_min e1000_82547
35 #define igb_mac_min e1000_82575
36 
37 /*********************************************************************
38  *  Driver version:
39  *********************************************************************/
40 char em_driver_version[] = "7.6.1-k";
41 
42 /*********************************************************************
43  *  PCI Device ID Table
44  *
45  *  Used by probe to select devices to load on
46  *  Last field stores an index into e1000_strings
47  *  Last entry must be all 0s
48  *
49  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
50  *********************************************************************/
51 
52 static pci_vendor_info_t em_vendor_info_array[] =
53 {
54 	/* Intel(R) PRO/1000 Network Connection - Legacy em*/
55 	PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) PRO/1000 Network Connection"),
56 	PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) PRO/1000 Network Connection"),
57 	PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) PRO/1000 Network Connection"),
58 	PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) PRO/1000 Network Connection"),
59 	PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) PRO/1000 Network Connection"),
60 
61 	PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) PRO/1000 Network Connection"),
62 	PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) PRO/1000 Network Connection"),
63 	PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) PRO/1000 Network Connection"),
64 	PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
65 	PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) PRO/1000 Network Connection"),
66 	PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) PRO/1000 Network Connection"),
67 	PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
68 
69 	PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) PRO/1000 Network Connection"),
70 
71 	PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) PRO/1000 Network Connection"),
72 	PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
73 
74 	PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
75 	PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
76 	PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
77 	PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) PRO/1000 Network Connection"),
78 
79 	PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) PRO/1000 Network Connection"),
80 	PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) PRO/1000 Network Connection"),
81 	PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) PRO/1000 Network Connection"),
82 	PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) PRO/1000 Network Connection"),
83 	PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) PRO/1000 Network Connection"),
84 
85 	PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
86 	PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
87 	PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
88 	PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) PRO/1000 Network Connection"),
89 	PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) PRO/1000 Network Connection"),
90 	PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) PRO/1000 Network Connection"),
91 	PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) PRO/1000 Network Connection"),
92 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
93 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) PRO/1000 Network Connection"),
94 
95 	PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) PRO/1000 Network Connection"),
96 	PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
97 	PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) PRO/1000 Network Connection"),
98 
99 	/* Intel(R) PRO/1000 Network Connection - em */
100 	PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
101 	PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
102 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 Network Connection"),
103 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 Network Connection"),
104 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 Network Connection"),
105 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
106 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 Network Connection"),
107 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 Network Connection"),
108 	PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
109 	PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 Network Connection"),
110 	PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
111 	PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
112 	PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 Network Connection"),
113 	PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 Network Connection"),
114 	PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 Network Connection"),
115 	PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 Network Connection"),
116 	PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) PRO/1000 Network Connection"),
117 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) PRO/1000 Network Connection"),
118 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) PRO/1000 Network Connection"),
119 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) PRO/1000 Network Connection"),
120 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) PRO/1000 Network Connection"),
121 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
122 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
123 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) PRO/1000 Network Connection"),
124 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) PRO/1000 Network Connection"),
125 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
126 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) PRO/1000 Network Connection"),
127 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) PRO/1000 Network Connection"),
128 	PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) PRO/1000 Network Connection"),
129 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
130 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
131 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) PRO/1000 Network Connection"),
132 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) PRO/1000 Network Connection"),
133 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) PRO/1000 Network Connection"),
134 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) PRO/1000 Network Connection"),
135 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
136 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) PRO/1000 Network Connection"),
137 	PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) PRO/1000 Network Connection"),
138 	PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) PRO/1000 Network Connection"),
139 	PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) PRO/1000 Network Connection"),
140 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) PRO/1000 Network Connection"),
141 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) PRO/1000 Network Connection"),
142 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) PRO/1000 Network Connection"),
143 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) PRO/1000 Network Connection"),
144 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) PRO/1000 Network Connection"),
145 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) PRO/1000 Network Connection"),
146 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) PRO/1000 Network Connection"),
147 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) PRO/1000 Network Connection"),
148 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) PRO/1000 Network Connection"),
149 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) PRO/1000 Network Connection"),
150 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) PRO/1000 Network Connection"),
151 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) PRO/1000 Network Connection"),
152 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) PRO/1000 Network Connection"),
153 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) PRO/1000 Network Connection"),
154 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) PRO/1000 Network Connection"),
155 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) PRO/1000 Network Connection"),
156 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) PRO/1000 Network Connection"),
157 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) PRO/1000 Network Connection"),
158 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) PRO/1000 Network Connection"),
159 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) PRO/1000 Network Connection"),
160 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) PRO/1000 Network Connection"),
161 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) PRO/1000 Network Connection"),
162 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) PRO/1000 Network Connection"),
163 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) PRO/1000 Network Connection"),
164 	PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) PRO/1000 Network Connection"),
165 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) PRO/1000 Network Connection"),
166 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) PRO/1000 Network Connection"),
167 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) PRO/1000 Network Connection"),
168 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) PRO/1000 Network Connection"),
169 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) PRO/1000 Network Connection"),
170 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) PRO/1000 Network Connection"),
171 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) PRO/1000 Network Connection"),
172 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) PRO/1000 Network Connection"),
173 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) PRO/1000 Network Connection"),
174 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) PRO/1000 Network Connection"),
175 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) PRO/1000 Network Connection"),
176 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) PRO/1000 Network Connection"),
177 	/* required last entry */
178 	PVID_END
179 };
180 
181 static pci_vendor_info_t igb_vendor_info_array[] =
182 {
183 	/* Intel(R) PRO/1000 Network Connection - igb */
184 	PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
185 	PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
186 	PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
187 	PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 PCI-Express Network Driver"),
188 	PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
189 	PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
190 	PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
191 	PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
192 	PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 PCI-Express Network Driver"),
193 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
194 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 PCI-Express Network Driver"),
195 	PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
196 	PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
197 	PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
198 	PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
199 	PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
200 	PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) PRO/1000 PCI-Express Network Driver"),
201 	PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
202 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
203 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
204 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) PRO/1000 PCI-Express Network Driver"),
205 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) PRO/1000 PCI-Express Network Driver"),
206 	PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
207 	PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
208 	PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
209 	PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
210 	PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
211 	PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
212 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) PRO/1000 PCI-Express Network Driver"),
213 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) PRO/1000 PCI-Express Network Driver"),
214 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
215 	PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
216 	PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
217 	PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
218 	PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
219 	PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
220 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
221 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
222 	PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
223 	/* required last entry */
224 	PVID_END
225 };
226 
227 /*********************************************************************
228  *  Function prototypes
229  *********************************************************************/
230 static void	*em_register(device_t dev);
231 static void	*igb_register(device_t dev);
232 static int	em_if_attach_pre(if_ctx_t ctx);
233 static int	em_if_attach_post(if_ctx_t ctx);
234 static int	em_if_detach(if_ctx_t ctx);
235 static int	em_if_shutdown(if_ctx_t ctx);
236 static int	em_if_suspend(if_ctx_t ctx);
237 static int	em_if_resume(if_ctx_t ctx);
238 
239 static int	em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets);
240 static int	em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets);
241 static void	em_if_queues_free(if_ctx_t ctx);
242 
243 static uint64_t	em_if_get_counter(if_ctx_t, ift_counter);
244 static void	em_if_init(if_ctx_t ctx);
245 static void	em_if_stop(if_ctx_t ctx);
246 static void	em_if_media_status(if_ctx_t, struct ifmediareq *);
247 static int	em_if_media_change(if_ctx_t ctx);
248 static int	em_if_mtu_set(if_ctx_t ctx, uint32_t mtu);
249 static void	em_if_timer(if_ctx_t ctx, uint16_t qid);
250 static void	em_if_vlan_register(if_ctx_t ctx, u16 vtag);
251 static void	em_if_vlan_unregister(if_ctx_t ctx, u16 vtag);
252 static void	em_if_watchdog_reset(if_ctx_t ctx);
253 
254 static void	em_identify_hardware(if_ctx_t ctx);
255 static int	em_allocate_pci_resources(if_ctx_t ctx);
256 static void	em_free_pci_resources(if_ctx_t ctx);
257 static void	em_reset(if_ctx_t ctx);
258 static int	em_setup_interface(if_ctx_t ctx);
259 static int	em_setup_msix(if_ctx_t ctx);
260 
261 static void	em_initialize_transmit_unit(if_ctx_t ctx);
262 static void	em_initialize_receive_unit(if_ctx_t ctx);
263 
264 static void	em_if_intr_enable(if_ctx_t ctx);
265 static void	em_if_intr_disable(if_ctx_t ctx);
266 static void	igb_if_intr_enable(if_ctx_t ctx);
267 static void	igb_if_intr_disable(if_ctx_t ctx);
268 static int	em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
269 static int	em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
270 static int	igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
271 static int	igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
272 static void	em_if_multi_set(if_ctx_t ctx);
273 static void	em_if_update_admin_status(if_ctx_t ctx);
274 static void	em_if_debug(if_ctx_t ctx);
275 static void	em_update_stats_counters(struct adapter *);
276 static void	em_add_hw_stats(struct adapter *adapter);
277 static int	em_if_set_promisc(if_ctx_t ctx, int flags);
278 static void	em_setup_vlan_hw_support(struct adapter *);
279 static int	em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
280 static void	em_print_nvm_info(struct adapter *);
281 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
282 static int	em_get_rs(SYSCTL_HANDLER_ARGS);
283 static void	em_print_debug_info(struct adapter *);
284 static int 	em_is_valid_ether_addr(u8 *);
285 static int	em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
286 static void	em_add_int_delay_sysctl(struct adapter *, const char *,
287 		    const char *, struct em_int_delay_info *, int, int);
288 /* Management and WOL Support */
289 static void	em_init_manageability(struct adapter *);
290 static void	em_release_manageability(struct adapter *);
291 static void	em_get_hw_control(struct adapter *);
292 static void	em_release_hw_control(struct adapter *);
293 static void	em_get_wakeup(if_ctx_t ctx);
294 static void	em_enable_wakeup(if_ctx_t ctx);
295 static int	em_enable_phy_wakeup(struct adapter *);
296 static void	em_disable_aspm(struct adapter *);
297 
298 int		em_intr(void *arg);
299 static void	em_disable_promisc(if_ctx_t ctx);
300 
301 /* MSI-X handlers */
302 static int	em_if_msix_intr_assign(if_ctx_t, int);
303 static int	em_msix_link(void *);
304 static void	em_handle_link(void *context);
305 
306 static void	em_enable_vectors_82574(if_ctx_t);
307 
308 static int	em_set_flowcntl(SYSCTL_HANDLER_ARGS);
309 static int	em_sysctl_eee(SYSCTL_HANDLER_ARGS);
310 static void	em_if_led_func(if_ctx_t ctx, int onoff);
311 
312 static int	em_get_regs(SYSCTL_HANDLER_ARGS);
313 
314 static void	lem_smartspeed(struct adapter *adapter);
315 static void	igb_configure_queues(struct adapter *adapter);
316 
317 
318 /*********************************************************************
319  *  FreeBSD Device Interface Entry Points
320  *********************************************************************/
321 static device_method_t em_methods[] = {
322 	/* Device interface */
323 	DEVMETHOD(device_register, em_register),
324 	DEVMETHOD(device_probe, iflib_device_probe),
325 	DEVMETHOD(device_attach, iflib_device_attach),
326 	DEVMETHOD(device_detach, iflib_device_detach),
327 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
328 	DEVMETHOD(device_suspend, iflib_device_suspend),
329 	DEVMETHOD(device_resume, iflib_device_resume),
330 	DEVMETHOD_END
331 };
332 
333 static device_method_t igb_methods[] = {
334 	/* Device interface */
335 	DEVMETHOD(device_register, igb_register),
336 	DEVMETHOD(device_probe, iflib_device_probe),
337 	DEVMETHOD(device_attach, iflib_device_attach),
338 	DEVMETHOD(device_detach, iflib_device_detach),
339 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
340 	DEVMETHOD(device_suspend, iflib_device_suspend),
341 	DEVMETHOD(device_resume, iflib_device_resume),
342 	DEVMETHOD_END
343 };
344 
345 
346 static driver_t em_driver = {
347 	"em", em_methods, sizeof(struct adapter),
348 };
349 
350 static devclass_t em_devclass;
351 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
352 
353 MODULE_DEPEND(em, pci, 1, 1, 1);
354 MODULE_DEPEND(em, ether, 1, 1, 1);
355 MODULE_DEPEND(em, iflib, 1, 1, 1);
356 
357 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
358 
359 static driver_t igb_driver = {
360 	"igb", igb_methods, sizeof(struct adapter),
361 };
362 
363 static devclass_t igb_devclass;
364 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
365 
366 MODULE_DEPEND(igb, pci, 1, 1, 1);
367 MODULE_DEPEND(igb, ether, 1, 1, 1);
368 MODULE_DEPEND(igb, iflib, 1, 1, 1);
369 
370 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
371 
372 static device_method_t em_if_methods[] = {
373 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
374 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
375 	DEVMETHOD(ifdi_detach, em_if_detach),
376 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
377 	DEVMETHOD(ifdi_suspend, em_if_suspend),
378 	DEVMETHOD(ifdi_resume, em_if_resume),
379 	DEVMETHOD(ifdi_init, em_if_init),
380 	DEVMETHOD(ifdi_stop, em_if_stop),
381 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
382 	DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
383 	DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
384 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
385 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
386 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
387 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
388 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
389 	DEVMETHOD(ifdi_media_status, em_if_media_status),
390 	DEVMETHOD(ifdi_media_change, em_if_media_change),
391 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
392 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
393 	DEVMETHOD(ifdi_timer, em_if_timer),
394 	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
395 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
396 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
397 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
398 	DEVMETHOD(ifdi_led_func, em_if_led_func),
399 	DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
400 	DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
401 	DEVMETHOD(ifdi_debug, em_if_debug),
402 	DEVMETHOD_END
403 };
404 
405 static driver_t em_if_driver = {
406 	"em_if", em_if_methods, sizeof(struct adapter)
407 };
408 
409 static device_method_t igb_if_methods[] = {
410 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
411 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
412 	DEVMETHOD(ifdi_detach, em_if_detach),
413 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
414 	DEVMETHOD(ifdi_suspend, em_if_suspend),
415 	DEVMETHOD(ifdi_resume, em_if_resume),
416 	DEVMETHOD(ifdi_init, em_if_init),
417 	DEVMETHOD(ifdi_stop, em_if_stop),
418 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
419 	DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
420 	DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
421 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
422 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
423 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
424 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
425 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
426 	DEVMETHOD(ifdi_media_status, em_if_media_status),
427 	DEVMETHOD(ifdi_media_change, em_if_media_change),
428 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
429 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
430 	DEVMETHOD(ifdi_timer, em_if_timer),
431 	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
432 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
433 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
434 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
435 	DEVMETHOD(ifdi_led_func, em_if_led_func),
436 	DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
437 	DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
438 	DEVMETHOD(ifdi_debug, em_if_debug),
439 	DEVMETHOD_END
440 };
441 
442 static driver_t igb_if_driver = {
443 	"igb_if", igb_if_methods, sizeof(struct adapter)
444 };
445 
446 /*********************************************************************
447  *  Tunable default values.
448  *********************************************************************/
449 
450 #define EM_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
451 #define EM_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
452 
453 #define MAX_INTS_PER_SEC	8000
454 #define DEFAULT_ITR		(1000000000/(MAX_INTS_PER_SEC * 256))
455 
456 /* Allow common code without TSO */
457 #ifndef CSUM_TSO
458 #define CSUM_TSO	0
459 #endif
460 
461 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD, 0, "EM driver parameters");
462 
463 static int em_disable_crc_stripping = 0;
464 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
465     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
466 
467 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
468 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
469 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
470     0, "Default transmit interrupt delay in usecs");
471 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
472     0, "Default receive interrupt delay in usecs");
473 
474 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
475 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
476 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
477     &em_tx_abs_int_delay_dflt, 0,
478     "Default transmit interrupt delay limit in usecs");
479 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
480     &em_rx_abs_int_delay_dflt, 0,
481     "Default receive interrupt delay limit in usecs");
482 
483 static int em_smart_pwr_down = FALSE;
484 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
485     0, "Set to true to leave smart power down enabled on newer adapters");
486 
487 /* Controls whether promiscuous also shows bad packets */
488 static int em_debug_sbp = TRUE;
489 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
490     "Show bad packets in promiscuous mode");
491 
492 /* How many packets rxeof tries to clean at a time */
493 static int em_rx_process_limit = 100;
494 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
495     &em_rx_process_limit, 0,
496     "Maximum number of received packets to process "
497     "at a time, -1 means unlimited");
498 
499 /* Energy efficient ethernet - default to OFF */
500 static int eee_setting = 1;
501 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
502     "Enable Energy Efficient Ethernet");
503 
504 /*
505 ** Tuneable Interrupt rate
506 */
507 static int em_max_interrupt_rate = 8000;
508 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
509     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
510 
511 
512 
513 /* Global used in WOL setup with multiport cards */
514 static int global_quad_port_a = 0;
515 
516 extern struct if_txrx igb_txrx;
517 extern struct if_txrx em_txrx;
518 extern struct if_txrx lem_txrx;
519 
520 static struct if_shared_ctx em_sctx_init = {
521 	.isc_magic = IFLIB_MAGIC,
522 	.isc_q_align = PAGE_SIZE,
523 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
524 	.isc_tx_maxsegsize = PAGE_SIZE,
525 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
526 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
527 	.isc_rx_maxsize = MJUM9BYTES,
528 	.isc_rx_nsegments = 1,
529 	.isc_rx_maxsegsize = MJUM9BYTES,
530 	.isc_nfl = 1,
531 	.isc_nrxqs = 1,
532 	.isc_ntxqs = 1,
533 	.isc_admin_intrcnt = 1,
534 	.isc_vendor_info = em_vendor_info_array,
535 	.isc_driver_version = em_driver_version,
536 	.isc_driver = &em_if_driver,
537 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
538 
539 	.isc_nrxd_min = {EM_MIN_RXD},
540 	.isc_ntxd_min = {EM_MIN_TXD},
541 	.isc_nrxd_max = {EM_MAX_RXD},
542 	.isc_ntxd_max = {EM_MAX_TXD},
543 	.isc_nrxd_default = {EM_DEFAULT_RXD},
544 	.isc_ntxd_default = {EM_DEFAULT_TXD},
545 };
546 
547 if_shared_ctx_t em_sctx = &em_sctx_init;
548 
549 static struct if_shared_ctx igb_sctx_init = {
550 	.isc_magic = IFLIB_MAGIC,
551 	.isc_q_align = PAGE_SIZE,
552 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
553 	.isc_tx_maxsegsize = PAGE_SIZE,
554 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
555 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
556 	.isc_rx_maxsize = MJUM9BYTES,
557 	.isc_rx_nsegments = 1,
558 	.isc_rx_maxsegsize = MJUM9BYTES,
559 	.isc_nfl = 1,
560 	.isc_nrxqs = 1,
561 	.isc_ntxqs = 1,
562 	.isc_admin_intrcnt = 1,
563 	.isc_vendor_info = igb_vendor_info_array,
564 	.isc_driver_version = em_driver_version,
565 	.isc_driver = &igb_if_driver,
566 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
567 
568 	.isc_nrxd_min = {EM_MIN_RXD},
569 	.isc_ntxd_min = {EM_MIN_TXD},
570 	.isc_nrxd_max = {IGB_MAX_RXD},
571 	.isc_ntxd_max = {IGB_MAX_TXD},
572 	.isc_nrxd_default = {EM_DEFAULT_RXD},
573 	.isc_ntxd_default = {EM_DEFAULT_TXD},
574 };
575 
576 if_shared_ctx_t igb_sctx = &igb_sctx_init;
577 
578 /*****************************************************************
579  *
580  * Dump Registers
581  *
582  ****************************************************************/
583 #define IGB_REGS_LEN 739
584 
585 static int em_get_regs(SYSCTL_HANDLER_ARGS)
586 {
587 	struct adapter *adapter = (struct adapter *)arg1;
588 	struct e1000_hw *hw = &adapter->hw;
589 	struct sbuf *sb;
590 	u32 *regs_buff;
591 	int rc;
592 
593 	regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
594 	memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
595 
596 	rc = sysctl_wire_old_buffer(req, 0);
597 	MPASS(rc == 0);
598 	if (rc != 0) {
599 		free(regs_buff, M_DEVBUF);
600 		return (rc);
601 	}
602 
603 	sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
604 	MPASS(sb != NULL);
605 	if (sb == NULL) {
606 		free(regs_buff, M_DEVBUF);
607 		return (ENOMEM);
608 	}
609 
610 	/* General Registers */
611 	regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
612 	regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
613 	regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
614 	regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
615 	regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
616 	regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
617 	regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
618 	regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
619 	regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
620 	regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
621 	regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
622 	regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
623 	regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
624 	regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
625 	regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
626 	regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
627 	regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
628 	regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
629 	regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
630 	regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
631 	regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
632 	regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
633 
634 	sbuf_printf(sb, "General Registers\n");
635 	sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
636 	sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
637 	sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]);
638 
639 	sbuf_printf(sb, "Interrupt Registers\n");
640 	sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
641 
642 	sbuf_printf(sb, "RX Registers\n");
643 	sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
644 	sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
645 	sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
646 	sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
647 	sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
648 	sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
649 	sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
650 
651 	sbuf_printf(sb, "TX Registers\n");
652 	sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
653 	sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
654 	sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
655 	sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
656 	sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
657 	sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
658 	sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
659 	sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
660 	sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
661 	sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
662 	sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
663 
664 	free(regs_buff, M_DEVBUF);
665 
666 #ifdef DUMP_DESCS
667 	{
668 		if_softc_ctx_t scctx = adapter->shared;
669 		struct rx_ring *rxr = &rx_que->rxr;
670 		struct tx_ring *txr = &tx_que->txr;
671 		int ntxd = scctx->isc_ntxd[0];
672 		int nrxd = scctx->isc_nrxd[0];
673 		int j;
674 
675 	for (j = 0; j < nrxd; j++) {
676 		u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
677 		u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
678 		sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
679 	}
680 
681 	for (j = 0; j < min(ntxd, 256); j++) {
682 		unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
683 
684 		sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
685 			    j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
686 			    buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
687 
688 	}
689 	}
690 #endif
691 
692 	rc = sbuf_finish(sb);
693 	sbuf_delete(sb);
694 	return(rc);
695 }
696 
697 static void *
698 em_register(device_t dev)
699 {
700 	return (em_sctx);
701 }
702 
703 static void *
704 igb_register(device_t dev)
705 {
706 	return (igb_sctx);
707 }
708 
709 static int
710 em_set_num_queues(if_ctx_t ctx)
711 {
712 	struct adapter *adapter = iflib_get_softc(ctx);
713 	int maxqueues;
714 
715 	/* Sanity check based on HW */
716 	switch (adapter->hw.mac.type) {
717 	case e1000_82576:
718 	case e1000_82580:
719 	case e1000_i350:
720 	case e1000_i354:
721 		maxqueues = 8;
722 		break;
723 	case e1000_i210:
724 	case e1000_82575:
725 		maxqueues = 4;
726 		break;
727 	case e1000_i211:
728 	case e1000_82574:
729 		maxqueues = 2;
730 		break;
731 	default:
732 		maxqueues = 1;
733 		break;
734 	}
735 
736 	return (maxqueues);
737 }
738 
739 #define	LEM_CAPS							\
740     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
741     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER
742 
743 #define	EM_CAPS								\
744     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
745     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |	\
746     IFCAP_LRO | IFCAP_VLAN_HWTSO
747 
748 #define	IGB_CAPS							\
749     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
750     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |	\
751     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 |\
752     IFCAP_TSO6
753 
754 /*********************************************************************
755  *  Device initialization routine
756  *
757  *  The attach entry point is called when the driver is being loaded.
758  *  This routine identifies the type of hardware, allocates all resources
759  *  and initializes the hardware.
760  *
761  *  return 0 on success, positive on failure
762  *********************************************************************/
763 static int
764 em_if_attach_pre(if_ctx_t ctx)
765 {
766 	struct adapter *adapter;
767 	if_softc_ctx_t scctx;
768 	device_t dev;
769 	struct e1000_hw *hw;
770 	int error = 0;
771 
772 	INIT_DEBUGOUT("em_if_attach_pre: begin");
773 	dev = iflib_get_dev(ctx);
774 	adapter = iflib_get_softc(ctx);
775 
776 	adapter->ctx = adapter->osdep.ctx = ctx;
777 	adapter->dev = adapter->osdep.dev = dev;
778 	scctx = adapter->shared = iflib_get_softc_ctx(ctx);
779 	adapter->media = iflib_get_media(ctx);
780 	hw = &adapter->hw;
781 
782 	adapter->tx_process_limit = scctx->isc_ntxd[0];
783 
784 	/* SYSCTL stuff */
785 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
786 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
787 	    OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
788 	    em_sysctl_nvm_info, "I", "NVM Information");
789 
790 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
791 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
792 	    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
793 	    em_sysctl_debug_info, "I", "Debug Information");
794 
795 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
796 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
797 	    OID_AUTO, "fc", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
798 	    em_set_flowcntl, "I", "Flow Control");
799 
800 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
801 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
802 	    OID_AUTO, "reg_dump", CTLTYPE_STRING | CTLFLAG_RD, adapter, 0,
803 	    em_get_regs, "A", "Dump Registers");
804 
805 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
806 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
807 	    OID_AUTO, "rs_dump", CTLTYPE_INT | CTLFLAG_RW, adapter, 0,
808 	    em_get_rs, "I", "Dump RS indexes");
809 
810 	/* Determine hardware and mac info */
811 	em_identify_hardware(ctx);
812 
813 	scctx->isc_tx_nsegments = EM_MAX_SCATTER;
814 	scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
815 	if (bootverbose)
816 		device_printf(dev, "attach_pre capping queues at %d\n",
817 		    scctx->isc_ntxqsets_max);
818 
819 	if (adapter->hw.mac.type >= igb_mac_min) {
820 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
821 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
822 		scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
823 		scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
824 		scctx->isc_txrx = &igb_txrx;
825 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
826 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
827 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
828 		scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
829 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
830 		     CSUM_IP6_TCP | CSUM_IP6_UDP;
831 		if (adapter->hw.mac.type != e1000_82575)
832 			scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
833 		/*
834 		** Some new devices, as with ixgbe, now may
835 		** use a different BAR, so we need to keep
836 		** track of which is used.
837 		*/
838 		scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR);
839 		if (pci_read_config(dev, scctx->isc_msix_bar, 4) == 0)
840 			scctx->isc_msix_bar += 4;
841 	} else if (adapter->hw.mac.type >= em_mac_min) {
842 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
843 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
844 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
845 		scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
846 		scctx->isc_txrx = &em_txrx;
847 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
848 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
849 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
850 		scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
851 		/*
852 		 * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO}
853 		 * by default as we don't have workarounds for all associated
854 		 * silicon errata.  E. g., with several MACs such as 82573E,
855 		 * TSO only works at Gigabit speed and otherwise can cause the
856 		 * hardware to hang (which also would be next to impossible to
857 		 * work around given that already queued TSO-using descriptors
858 		 * would need to be flushed and vlan(4) reconfigured at runtime
859 		 * in case of a link speed change).  Moreover, MACs like 82579
860 		 * still can hang at Gigabit even with all publicly documented
861 		 * TSO workarounds implemented.  Generally, the penality of
862 		 * these workarounds is rather high and may involve copying
863 		 * mbuf data around so advantages of TSO lapse.  Still, TSO may
864 		 * work for a few MACs of this class - at least when sticking
865 		 * with Gigabit - in which case users may enable TSO manually.
866 		 */
867 		scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
868 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
869 		/*
870 		 * We support MSI-X with 82574 only, but indicate to iflib(4)
871 		 * that it shall give MSI at least a try with other devices.
872 		 */
873 		if (adapter->hw.mac.type == e1000_82574) {
874 			scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR);
875 		} else {
876 			scctx->isc_msix_bar = -1;
877 			scctx->isc_disable_msix = 1;
878 		}
879 	} else {
880 		scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
881 		scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
882 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
883 		scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
884 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP;
885 		scctx->isc_txrx = &lem_txrx;
886 		scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
887 		if (adapter->hw.mac.type < e1000_82543)
888 			scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM);
889 		/* INTx only */
890 		scctx->isc_msix_bar = 0;
891 	}
892 
893 	/* Setup PCI resources */
894 	if (em_allocate_pci_resources(ctx)) {
895 		device_printf(dev, "Allocation of PCI resources failed\n");
896 		error = ENXIO;
897 		goto err_pci;
898 	}
899 
900 	/*
901 	** For ICH8 and family we need to
902 	** map the flash memory, and this
903 	** must happen after the MAC is
904 	** identified
905 	*/
906 	if ((hw->mac.type == e1000_ich8lan) ||
907 	    (hw->mac.type == e1000_ich9lan) ||
908 	    (hw->mac.type == e1000_ich10lan) ||
909 	    (hw->mac.type == e1000_pchlan) ||
910 	    (hw->mac.type == e1000_pch2lan) ||
911 	    (hw->mac.type == e1000_pch_lpt)) {
912 		int rid = EM_BAR_TYPE_FLASH;
913 		adapter->flash = bus_alloc_resource_any(dev,
914 		    SYS_RES_MEMORY, &rid, RF_ACTIVE);
915 		if (adapter->flash == NULL) {
916 			device_printf(dev, "Mapping of Flash failed\n");
917 			error = ENXIO;
918 			goto err_pci;
919 		}
920 		/* This is used in the shared code */
921 		hw->flash_address = (u8 *)adapter->flash;
922 		adapter->osdep.flash_bus_space_tag =
923 		    rman_get_bustag(adapter->flash);
924 		adapter->osdep.flash_bus_space_handle =
925 		    rman_get_bushandle(adapter->flash);
926 	}
927 	/*
928 	** In the new SPT device flash is not  a
929 	** separate BAR, rather it is also in BAR0,
930 	** so use the same tag and an offset handle for the
931 	** FLASH read/write macros in the shared code.
932 	*/
933 	else if (hw->mac.type >= e1000_pch_spt) {
934 		adapter->osdep.flash_bus_space_tag =
935 		    adapter->osdep.mem_bus_space_tag;
936 		adapter->osdep.flash_bus_space_handle =
937 		    adapter->osdep.mem_bus_space_handle
938 		    + E1000_FLASH_BASE_ADDR;
939 	}
940 
941 	/* Do Shared Code initialization */
942 	error = e1000_setup_init_funcs(hw, TRUE);
943 	if (error) {
944 		device_printf(dev, "Setup of Shared code failed, error %d\n",
945 		    error);
946 		error = ENXIO;
947 		goto err_pci;
948 	}
949 
950 	em_setup_msix(ctx);
951 	e1000_get_bus_info(hw);
952 
953 	/* Set up some sysctls for the tunable interrupt delays */
954 	em_add_int_delay_sysctl(adapter, "rx_int_delay",
955 	    "receive interrupt delay in usecs", &adapter->rx_int_delay,
956 	    E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
957 	em_add_int_delay_sysctl(adapter, "tx_int_delay",
958 	    "transmit interrupt delay in usecs", &adapter->tx_int_delay,
959 	    E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
960 	em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
961 	    "receive interrupt delay limit in usecs",
962 	    &adapter->rx_abs_int_delay,
963 	    E1000_REGISTER(hw, E1000_RADV),
964 	    em_rx_abs_int_delay_dflt);
965 	em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
966 	    "transmit interrupt delay limit in usecs",
967 	    &adapter->tx_abs_int_delay,
968 	    E1000_REGISTER(hw, E1000_TADV),
969 	    em_tx_abs_int_delay_dflt);
970 	em_add_int_delay_sysctl(adapter, "itr",
971 	    "interrupt delay limit in usecs/4",
972 	    &adapter->tx_itr,
973 	    E1000_REGISTER(hw, E1000_ITR),
974 	    DEFAULT_ITR);
975 
976 	hw->mac.autoneg = DO_AUTO_NEG;
977 	hw->phy.autoneg_wait_to_complete = FALSE;
978 	hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
979 
980 	if (adapter->hw.mac.type < em_mac_min) {
981 		e1000_init_script_state_82541(&adapter->hw, TRUE);
982 		e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
983 	}
984 	/* Copper options */
985 	if (hw->phy.media_type == e1000_media_type_copper) {
986 		hw->phy.mdix = AUTO_ALL_MODES;
987 		hw->phy.disable_polarity_correction = FALSE;
988 		hw->phy.ms_type = EM_MASTER_SLAVE;
989 	}
990 
991 	/*
992 	 * Set the frame limits assuming
993 	 * standard ethernet sized frames.
994 	 */
995 	scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
996 	    ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
997 
998 	/*
999 	 * This controls when hardware reports transmit completion
1000 	 * status.
1001 	 */
1002 	hw->mac.report_tx_early = 1;
1003 
1004 	/* Allocate multicast array memory. */
1005 	adapter->mta = malloc(sizeof(u8) * ETH_ADDR_LEN *
1006 	    MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1007 	if (adapter->mta == NULL) {
1008 		device_printf(dev, "Can not allocate multicast setup array\n");
1009 		error = ENOMEM;
1010 		goto err_late;
1011 	}
1012 
1013 	/* Check SOL/IDER usage */
1014 	if (e1000_check_reset_block(hw))
1015 		device_printf(dev, "PHY reset is blocked"
1016 			      " due to SOL/IDER session.\n");
1017 
1018 	/* Sysctl for setting Energy Efficient Ethernet */
1019 	hw->dev_spec.ich8lan.eee_disable = eee_setting;
1020 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1021 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1022 	    OID_AUTO, "eee_control", CTLTYPE_INT|CTLFLAG_RW,
1023 	    adapter, 0, em_sysctl_eee, "I",
1024 	    "Disable Energy Efficient Ethernet");
1025 
1026 	/*
1027 	** Start from a known state, this is
1028 	** important in reading the nvm and
1029 	** mac from that.
1030 	*/
1031 	e1000_reset_hw(hw);
1032 
1033 	/* Make sure we have a good EEPROM before we read from it */
1034 	if (e1000_validate_nvm_checksum(hw) < 0) {
1035 		/*
1036 		** Some PCI-E parts fail the first check due to
1037 		** the link being in sleep state, call it again,
1038 		** if it fails a second time its a real issue.
1039 		*/
1040 		if (e1000_validate_nvm_checksum(hw) < 0) {
1041 			device_printf(dev,
1042 			    "The EEPROM Checksum Is Not Valid\n");
1043 			error = EIO;
1044 			goto err_late;
1045 		}
1046 	}
1047 
1048 	/* Copy the permanent MAC address out of the EEPROM */
1049 	if (e1000_read_mac_addr(hw) < 0) {
1050 		device_printf(dev, "EEPROM read error while reading MAC"
1051 			      " address\n");
1052 		error = EIO;
1053 		goto err_late;
1054 	}
1055 
1056 	if (!em_is_valid_ether_addr(hw->mac.addr)) {
1057 		device_printf(dev, "Invalid MAC address\n");
1058 		error = EIO;
1059 		goto err_late;
1060 	}
1061 
1062 	/* Disable ULP support */
1063 	e1000_disable_ulp_lpt_lp(hw, TRUE);
1064 
1065 	/*
1066 	 * Get Wake-on-Lan and Management info for later use
1067 	 */
1068 	em_get_wakeup(ctx);
1069 
1070 	/* Enable only WOL MAGIC by default */
1071 	scctx->isc_capenable &= ~IFCAP_WOL;
1072 	if (adapter->wol != 0)
1073 		scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1074 
1075 	iflib_set_mac(ctx, hw->mac.addr);
1076 
1077 	return (0);
1078 
1079 err_late:
1080 	em_release_hw_control(adapter);
1081 err_pci:
1082 	em_free_pci_resources(ctx);
1083 	free(adapter->mta, M_DEVBUF);
1084 
1085 	return (error);
1086 }
1087 
1088 static int
1089 em_if_attach_post(if_ctx_t ctx)
1090 {
1091 	struct adapter *adapter = iflib_get_softc(ctx);
1092 	struct e1000_hw *hw = &adapter->hw;
1093 	int error = 0;
1094 
1095 	/* Setup OS specific network interface */
1096 	error = em_setup_interface(ctx);
1097 	if (error != 0) {
1098 		goto err_late;
1099 	}
1100 
1101 	em_reset(ctx);
1102 
1103 	/* Initialize statistics */
1104 	em_update_stats_counters(adapter);
1105 	hw->mac.get_link_status = 1;
1106 	em_if_update_admin_status(ctx);
1107 	em_add_hw_stats(adapter);
1108 
1109 	/* Non-AMT based hardware can now take control from firmware */
1110 	if (adapter->has_manage && !adapter->has_amt)
1111 		em_get_hw_control(adapter);
1112 
1113 	INIT_DEBUGOUT("em_if_attach_post: end");
1114 
1115 	return (error);
1116 
1117 err_late:
1118 	em_release_hw_control(adapter);
1119 	em_free_pci_resources(ctx);
1120 	em_if_queues_free(ctx);
1121 	free(adapter->mta, M_DEVBUF);
1122 
1123 	return (error);
1124 }
1125 
1126 /*********************************************************************
1127  *  Device removal routine
1128  *
1129  *  The detach entry point is called when the driver is being removed.
1130  *  This routine stops the adapter and deallocates all the resources
1131  *  that were allocated for driver operation.
1132  *
1133  *  return 0 on success, positive on failure
1134  *********************************************************************/
1135 static int
1136 em_if_detach(if_ctx_t ctx)
1137 {
1138 	struct adapter	*adapter = iflib_get_softc(ctx);
1139 
1140 	INIT_DEBUGOUT("em_if_detach: begin");
1141 
1142 	e1000_phy_hw_reset(&adapter->hw);
1143 
1144 	em_release_manageability(adapter);
1145 	em_release_hw_control(adapter);
1146 	em_free_pci_resources(ctx);
1147 
1148 	return (0);
1149 }
1150 
1151 /*********************************************************************
1152  *
1153  *  Shutdown entry point
1154  *
1155  **********************************************************************/
1156 
1157 static int
1158 em_if_shutdown(if_ctx_t ctx)
1159 {
1160 	return em_if_suspend(ctx);
1161 }
1162 
1163 /*
1164  * Suspend/resume device methods.
1165  */
1166 static int
1167 em_if_suspend(if_ctx_t ctx)
1168 {
1169 	struct adapter *adapter = iflib_get_softc(ctx);
1170 
1171 	em_release_manageability(adapter);
1172 	em_release_hw_control(adapter);
1173 	em_enable_wakeup(ctx);
1174 	return (0);
1175 }
1176 
1177 static int
1178 em_if_resume(if_ctx_t ctx)
1179 {
1180 	struct adapter *adapter = iflib_get_softc(ctx);
1181 
1182 	if (adapter->hw.mac.type == e1000_pch2lan)
1183 		e1000_resume_workarounds_pchlan(&adapter->hw);
1184 	em_if_init(ctx);
1185 	em_init_manageability(adapter);
1186 
1187 	return(0);
1188 }
1189 
1190 static int
1191 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1192 {
1193 	int max_frame_size;
1194 	struct adapter *adapter = iflib_get_softc(ctx);
1195 	if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1196 
1197 	 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1198 
1199 	switch (adapter->hw.mac.type) {
1200 	case e1000_82571:
1201 	case e1000_82572:
1202 	case e1000_ich9lan:
1203 	case e1000_ich10lan:
1204 	case e1000_pch2lan:
1205 	case e1000_pch_lpt:
1206 	case e1000_pch_spt:
1207 	case e1000_pch_cnp:
1208 	case e1000_82574:
1209 	case e1000_82583:
1210 	case e1000_80003es2lan:
1211 		/* 9K Jumbo Frame size */
1212 		max_frame_size = 9234;
1213 		break;
1214 	case e1000_pchlan:
1215 		max_frame_size = 4096;
1216 		break;
1217 	case e1000_82542:
1218 	case e1000_ich8lan:
1219 		/* Adapters that do not support jumbo frames */
1220 		max_frame_size = ETHER_MAX_LEN;
1221 		break;
1222 	default:
1223 		if (adapter->hw.mac.type >= igb_mac_min)
1224 			max_frame_size = 9234;
1225 		else /* lem */
1226 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1227 	}
1228 	if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1229 		return (EINVAL);
1230 	}
1231 
1232 	scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
1233 	    mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1234 	return (0);
1235 }
1236 
1237 /*********************************************************************
1238  *  Init entry point
1239  *
1240  *  This routine is used in two ways. It is used by the stack as
1241  *  init entry point in network interface structure. It is also used
1242  *  by the driver as a hw/sw initialization routine to get to a
1243  *  consistent state.
1244  *
1245  **********************************************************************/
1246 static void
1247 em_if_init(if_ctx_t ctx)
1248 {
1249 	struct adapter *adapter = iflib_get_softc(ctx);
1250 	if_softc_ctx_t scctx = adapter->shared;
1251 	struct ifnet *ifp = iflib_get_ifp(ctx);
1252 	struct em_tx_queue *tx_que;
1253 	int i;
1254 
1255 	INIT_DEBUGOUT("em_if_init: begin");
1256 
1257 	/* Get the latest mac address, User can use a LAA */
1258 	bcopy(if_getlladdr(ifp), adapter->hw.mac.addr,
1259 	    ETHER_ADDR_LEN);
1260 
1261 	/* Put the address into the Receive Address Array */
1262 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1263 
1264 	/*
1265 	 * With the 82571 adapter, RAR[0] may be overwritten
1266 	 * when the other port is reset, we make a duplicate
1267 	 * in RAR[14] for that eventuality, this assures
1268 	 * the interface continues to function.
1269 	 */
1270 	if (adapter->hw.mac.type == e1000_82571) {
1271 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1272 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1273 		    E1000_RAR_ENTRIES - 1);
1274 	}
1275 
1276 
1277 	/* Initialize the hardware */
1278 	em_reset(ctx);
1279 	em_if_update_admin_status(ctx);
1280 
1281 	for (i = 0, tx_que = adapter->tx_queues; i < adapter->tx_num_queues; i++, tx_que++) {
1282 		struct tx_ring *txr = &tx_que->txr;
1283 
1284 		txr->tx_rs_cidx = txr->tx_rs_pidx;
1285 
1286 		/* Initialize the last processed descriptor to be the end of
1287 		 * the ring, rather than the start, so that we avoid an
1288 		 * off-by-one error when calculating how many descriptors are
1289 		 * done in the credits_update function.
1290 		 */
1291 		txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1292 	}
1293 
1294 	/* Setup VLAN support, basic and offload if available */
1295 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1296 
1297 	/* Clear bad data from Rx FIFOs */
1298 	if (adapter->hw.mac.type >= igb_mac_min)
1299 		e1000_rx_fifo_flush_82575(&adapter->hw);
1300 
1301 	/* Configure for OS presence */
1302 	em_init_manageability(adapter);
1303 
1304 	/* Prepare transmit descriptors and buffers */
1305 	em_initialize_transmit_unit(ctx);
1306 
1307 	/* Setup Multicast table */
1308 	em_if_multi_set(ctx);
1309 
1310 	adapter->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1311 	em_initialize_receive_unit(ctx);
1312 
1313 	/* Use real VLAN Filter support? */
1314 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
1315 		if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
1316 			/* Use real VLAN Filter support */
1317 			em_setup_vlan_hw_support(adapter);
1318 		else {
1319 			u32 ctrl;
1320 			ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1321 			ctrl |= E1000_CTRL_VME;
1322 			E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1323 		}
1324 	}
1325 
1326 	/* Don't lose promiscuous settings */
1327 	em_if_set_promisc(ctx, IFF_PROMISC);
1328 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1329 
1330 	/* MSI-X configuration for 82574 */
1331 	if (adapter->hw.mac.type == e1000_82574) {
1332 		int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1333 
1334 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1335 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1336 		/* Set the IVAR - interrupt vector routing. */
1337 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars);
1338 	} else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1339 		igb_configure_queues(adapter);
1340 
1341 	/* this clears any pending interrupts */
1342 	E1000_READ_REG(&adapter->hw, E1000_ICR);
1343 	E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
1344 
1345 	/* AMT based hardware can now take control from firmware */
1346 	if (adapter->has_manage && adapter->has_amt)
1347 		em_get_hw_control(adapter);
1348 
1349 	/* Set Energy Efficient Ethernet */
1350 	if (adapter->hw.mac.type >= igb_mac_min &&
1351 	    adapter->hw.phy.media_type == e1000_media_type_copper) {
1352 		if (adapter->hw.mac.type == e1000_i354)
1353 			e1000_set_eee_i354(&adapter->hw, TRUE, TRUE);
1354 		else
1355 			e1000_set_eee_i350(&adapter->hw, TRUE, TRUE);
1356 	}
1357 }
1358 
1359 /*********************************************************************
1360  *
1361  *  Fast Legacy/MSI Combined Interrupt Service routine
1362  *
1363  *********************************************************************/
1364 int
1365 em_intr(void *arg)
1366 {
1367 	struct adapter *adapter = arg;
1368 	if_ctx_t ctx = adapter->ctx;
1369 	u32 reg_icr;
1370 
1371 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1372 
1373 	/* Hot eject? */
1374 	if (reg_icr == 0xffffffff)
1375 		return FILTER_STRAY;
1376 
1377 	/* Definitely not our interrupt. */
1378 	if (reg_icr == 0x0)
1379 		return FILTER_STRAY;
1380 
1381 	/*
1382 	 * Starting with the 82571 chip, bit 31 should be used to
1383 	 * determine whether the interrupt belongs to us.
1384 	 */
1385 	if (adapter->hw.mac.type >= e1000_82571 &&
1386 	    (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1387 		return FILTER_STRAY;
1388 
1389 	/*
1390 	 * Only MSI-X interrupts have one-shot behavior by taking advantage
1391 	 * of the EIAC register.  Thus, explicitly disable interrupts.  This
1392 	 * also works around the MSI message reordering errata on certain
1393 	 * systems.
1394 	 */
1395 	IFDI_INTR_DISABLE(ctx);
1396 
1397 	/* Link status change */
1398 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1399 		adapter->hw.mac.get_link_status = 1;
1400 		iflib_admin_intr_deferred(ctx);
1401 	}
1402 
1403 	if (reg_icr & E1000_ICR_RXO)
1404 		adapter->rx_overruns++;
1405 
1406 	return (FILTER_SCHEDULE_THREAD);
1407 }
1408 
1409 static int
1410 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1411 {
1412 	struct adapter *adapter = iflib_get_softc(ctx);
1413 	struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1414 
1415 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims);
1416 	return (0);
1417 }
1418 
1419 static int
1420 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1421 {
1422 	struct adapter *adapter = iflib_get_softc(ctx);
1423 	struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1424 
1425 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, txq->eims);
1426 	return (0);
1427 }
1428 
1429 static int
1430 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1431 {
1432 	struct adapter *adapter = iflib_get_softc(ctx);
1433 	struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1434 
1435 	E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims);
1436 	return (0);
1437 }
1438 
1439 static int
1440 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1441 {
1442 	struct adapter *adapter = iflib_get_softc(ctx);
1443 	struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1444 
1445 	E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txq->eims);
1446 	return (0);
1447 }
1448 
1449 /*********************************************************************
1450  *
1451  *  MSI-X RX Interrupt Service routine
1452  *
1453  **********************************************************************/
1454 static int
1455 em_msix_que(void *arg)
1456 {
1457 	struct em_rx_queue *que = arg;
1458 
1459 	++que->irqs;
1460 
1461 	return (FILTER_SCHEDULE_THREAD);
1462 }
1463 
1464 /*********************************************************************
1465  *
1466  *  MSI-X Link Fast Interrupt Service routine
1467  *
1468  **********************************************************************/
1469 static int
1470 em_msix_link(void *arg)
1471 {
1472 	struct adapter *adapter = arg;
1473 	u32 reg_icr;
1474 
1475 	++adapter->link_irq;
1476 	MPASS(adapter->hw.back != NULL);
1477 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1478 
1479 	if (reg_icr & E1000_ICR_RXO)
1480 		adapter->rx_overruns++;
1481 
1482 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1483 		em_handle_link(adapter->ctx);
1484 	} else {
1485 		E1000_WRITE_REG(&adapter->hw, E1000_IMS,
1486 				EM_MSIX_LINK | E1000_IMS_LSC);
1487 		if (adapter->hw.mac.type >= igb_mac_min)
1488 			E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
1489 	}
1490 
1491 	/*
1492 	 * Because we must read the ICR for this interrupt
1493 	 * it may clear other causes using autoclear, for
1494 	 * this reason we simply create a soft interrupt
1495 	 * for all these vectors.
1496 	 */
1497 	if (reg_icr && adapter->hw.mac.type < igb_mac_min) {
1498 		E1000_WRITE_REG(&adapter->hw,
1499 			E1000_ICS, adapter->ims);
1500 	}
1501 
1502 	return (FILTER_HANDLED);
1503 }
1504 
1505 static void
1506 em_handle_link(void *context)
1507 {
1508 	if_ctx_t ctx = context;
1509 	struct adapter *adapter = iflib_get_softc(ctx);
1510 
1511 	adapter->hw.mac.get_link_status = 1;
1512 	iflib_admin_intr_deferred(ctx);
1513 }
1514 
1515 
1516 /*********************************************************************
1517  *
1518  *  Media Ioctl callback
1519  *
1520  *  This routine is called whenever the user queries the status of
1521  *  the interface using ifconfig.
1522  *
1523  **********************************************************************/
1524 static void
1525 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1526 {
1527 	struct adapter *adapter = iflib_get_softc(ctx);
1528 	u_char fiber_type = IFM_1000_SX;
1529 
1530 	INIT_DEBUGOUT("em_if_media_status: begin");
1531 
1532 	iflib_admin_intr_deferred(ctx);
1533 
1534 	ifmr->ifm_status = IFM_AVALID;
1535 	ifmr->ifm_active = IFM_ETHER;
1536 
1537 	if (!adapter->link_active) {
1538 		return;
1539 	}
1540 
1541 	ifmr->ifm_status |= IFM_ACTIVE;
1542 
1543 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
1544 	    (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1545 		if (adapter->hw.mac.type == e1000_82545)
1546 			fiber_type = IFM_1000_LX;
1547 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1548 	} else {
1549 		switch (adapter->link_speed) {
1550 		case 10:
1551 			ifmr->ifm_active |= IFM_10_T;
1552 			break;
1553 		case 100:
1554 			ifmr->ifm_active |= IFM_100_TX;
1555 			break;
1556 		case 1000:
1557 			ifmr->ifm_active |= IFM_1000_T;
1558 			break;
1559 		}
1560 		if (adapter->link_duplex == FULL_DUPLEX)
1561 			ifmr->ifm_active |= IFM_FDX;
1562 		else
1563 			ifmr->ifm_active |= IFM_HDX;
1564 	}
1565 }
1566 
1567 /*********************************************************************
1568  *
1569  *  Media Ioctl callback
1570  *
1571  *  This routine is called when the user changes speed/duplex using
1572  *  media/mediopt option with ifconfig.
1573  *
1574  **********************************************************************/
1575 static int
1576 em_if_media_change(if_ctx_t ctx)
1577 {
1578 	struct adapter *adapter = iflib_get_softc(ctx);
1579 	struct ifmedia *ifm = iflib_get_media(ctx);
1580 
1581 	INIT_DEBUGOUT("em_if_media_change: begin");
1582 
1583 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1584 		return (EINVAL);
1585 
1586 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1587 	case IFM_AUTO:
1588 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1589 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1590 		break;
1591 	case IFM_1000_LX:
1592 	case IFM_1000_SX:
1593 	case IFM_1000_T:
1594 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1595 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1596 		break;
1597 	case IFM_100_TX:
1598 		adapter->hw.mac.autoneg = FALSE;
1599 		adapter->hw.phy.autoneg_advertised = 0;
1600 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1601 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1602 		else
1603 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1604 		break;
1605 	case IFM_10_T:
1606 		adapter->hw.mac.autoneg = FALSE;
1607 		adapter->hw.phy.autoneg_advertised = 0;
1608 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1609 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1610 		else
1611 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1612 		break;
1613 	default:
1614 		device_printf(adapter->dev, "Unsupported media type\n");
1615 	}
1616 
1617 	em_if_init(ctx);
1618 
1619 	return (0);
1620 }
1621 
1622 static int
1623 em_if_set_promisc(if_ctx_t ctx, int flags)
1624 {
1625 	struct adapter *adapter = iflib_get_softc(ctx);
1626 	u32 reg_rctl;
1627 
1628 	em_disable_promisc(ctx);
1629 
1630 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1631 
1632 	if (flags & IFF_PROMISC) {
1633 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1634 		/* Turn this on if you want to see bad packets */
1635 		if (em_debug_sbp)
1636 			reg_rctl |= E1000_RCTL_SBP;
1637 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1638 	} else if (flags & IFF_ALLMULTI) {
1639 		reg_rctl |= E1000_RCTL_MPE;
1640 		reg_rctl &= ~E1000_RCTL_UPE;
1641 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1642 	}
1643 	return (0);
1644 }
1645 
1646 static void
1647 em_disable_promisc(if_ctx_t ctx)
1648 {
1649 	struct adapter *adapter = iflib_get_softc(ctx);
1650 	struct ifnet *ifp = iflib_get_ifp(ctx);
1651 	u32 reg_rctl;
1652 	int mcnt = 0;
1653 
1654 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1655 	reg_rctl &= (~E1000_RCTL_UPE);
1656 	if (if_getflags(ifp) & IFF_ALLMULTI)
1657 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1658 	else
1659 		mcnt = if_multiaddr_count(ifp, MAX_NUM_MULTICAST_ADDRESSES);
1660 	/* Don't disable if in MAX groups */
1661 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1662 		reg_rctl &=  (~E1000_RCTL_MPE);
1663 	reg_rctl &=  (~E1000_RCTL_SBP);
1664 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1665 }
1666 
1667 
1668 /*********************************************************************
1669  *  Multicast Update
1670  *
1671  *  This routine is called whenever multicast address list is updated.
1672  *
1673  **********************************************************************/
1674 
1675 static void
1676 em_if_multi_set(if_ctx_t ctx)
1677 {
1678 	struct adapter *adapter = iflib_get_softc(ctx);
1679 	struct ifnet *ifp = iflib_get_ifp(ctx);
1680 	u32 reg_rctl = 0;
1681 	u8  *mta; /* Multicast array memory */
1682 	int mcnt = 0;
1683 
1684 	IOCTL_DEBUGOUT("em_set_multi: begin");
1685 
1686 	mta = adapter->mta;
1687 	bzero(mta, sizeof(u8) * ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1688 
1689 	if (adapter->hw.mac.type == e1000_82542 &&
1690 	    adapter->hw.revision_id == E1000_REVISION_2) {
1691 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1692 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1693 			e1000_pci_clear_mwi(&adapter->hw);
1694 		reg_rctl |= E1000_RCTL_RST;
1695 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1696 		msec_delay(5);
1697 	}
1698 
1699 	if_multiaddr_array(ifp, mta, &mcnt, MAX_NUM_MULTICAST_ADDRESSES);
1700 
1701 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1702 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1703 		reg_rctl |= E1000_RCTL_MPE;
1704 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1705 	} else
1706 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1707 
1708 	if (adapter->hw.mac.type == e1000_82542 &&
1709 	    adapter->hw.revision_id == E1000_REVISION_2) {
1710 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1711 		reg_rctl &= ~E1000_RCTL_RST;
1712 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1713 		msec_delay(5);
1714 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1715 			e1000_pci_set_mwi(&adapter->hw);
1716 	}
1717 }
1718 
1719 /*********************************************************************
1720  *  Timer routine
1721  *
1722  *  This routine schedules em_if_update_admin_status() to check for
1723  *  link status and to gather statistics as well as to perform some
1724  *  controller-specific hardware patting.
1725  *
1726  **********************************************************************/
1727 static void
1728 em_if_timer(if_ctx_t ctx, uint16_t qid)
1729 {
1730 
1731 	if (qid != 0)
1732 		return;
1733 
1734 	iflib_admin_intr_deferred(ctx);
1735 }
1736 
1737 static void
1738 em_if_update_admin_status(if_ctx_t ctx)
1739 {
1740 	struct adapter *adapter = iflib_get_softc(ctx);
1741 	struct e1000_hw *hw = &adapter->hw;
1742 	device_t dev = iflib_get_dev(ctx);
1743 	u32 link_check, thstat, ctrl;
1744 
1745 	link_check = thstat = ctrl = 0;
1746 	/* Get the cached link value or read phy for real */
1747 	switch (hw->phy.media_type) {
1748 	case e1000_media_type_copper:
1749 		if (hw->mac.get_link_status) {
1750 			if (hw->mac.type == e1000_pch_spt)
1751 				msec_delay(50);
1752 			/* Do the work to read phy */
1753 			e1000_check_for_link(hw);
1754 			link_check = !hw->mac.get_link_status;
1755 			if (link_check) /* ESB2 fix */
1756 				e1000_cfg_on_link_up(hw);
1757 		} else {
1758 			link_check = TRUE;
1759 		}
1760 		break;
1761 	case e1000_media_type_fiber:
1762 		e1000_check_for_link(hw);
1763 		link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1764 			    E1000_STATUS_LU);
1765 		break;
1766 	case e1000_media_type_internal_serdes:
1767 		e1000_check_for_link(hw);
1768 		link_check = adapter->hw.mac.serdes_has_link;
1769 		break;
1770 	/* VF device is type_unknown */
1771 	case e1000_media_type_unknown:
1772 		e1000_check_for_link(hw);
1773 		link_check = !hw->mac.get_link_status;
1774 		/* FALLTHROUGH */
1775 	default:
1776 		break;
1777 	}
1778 
1779 	/* Check for thermal downshift or shutdown */
1780 	if (hw->mac.type == e1000_i350) {
1781 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1782 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1783 	}
1784 
1785 	/* Now check for a transition */
1786 	if (link_check && (adapter->link_active == 0)) {
1787 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
1788 		    &adapter->link_duplex);
1789 		/* Check if we must disable SPEED_MODE bit on PCI-E */
1790 		if ((adapter->link_speed != SPEED_1000) &&
1791 		    ((hw->mac.type == e1000_82571) ||
1792 		    (hw->mac.type == e1000_82572))) {
1793 			int tarc0;
1794 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1795 			tarc0 &= ~TARC_SPEED_MODE_BIT;
1796 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1797 		}
1798 		if (bootverbose)
1799 			device_printf(dev, "Link is up %d Mbps %s\n",
1800 			    adapter->link_speed,
1801 			    ((adapter->link_duplex == FULL_DUPLEX) ?
1802 			    "Full Duplex" : "Half Duplex"));
1803 		adapter->link_active = 1;
1804 		adapter->smartspeed = 0;
1805 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
1806 		    E1000_CTRL_EXT_LINK_MODE_GMII &&
1807 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1808 			device_printf(dev, "Link: thermal downshift\n");
1809 		/* Delay Link Up for Phy update */
1810 		if (((hw->mac.type == e1000_i210) ||
1811 		    (hw->mac.type == e1000_i211)) &&
1812 		    (hw->phy.id == I210_I_PHY_ID))
1813 			msec_delay(I210_LINK_DELAY);
1814 		/* Reset if the media type changed. */
1815 		if ((hw->dev_spec._82575.media_changed) &&
1816 			(adapter->hw.mac.type >= igb_mac_min)) {
1817 			hw->dev_spec._82575.media_changed = false;
1818 			adapter->flags |= IGB_MEDIA_RESET;
1819 			em_reset(ctx);
1820 		}
1821 		iflib_link_state_change(ctx, LINK_STATE_UP,
1822 		    IF_Mbps(adapter->link_speed));
1823 	} else if (!link_check && (adapter->link_active == 1)) {
1824 		adapter->link_speed = 0;
1825 		adapter->link_duplex = 0;
1826 		adapter->link_active = 0;
1827 		iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
1828 	}
1829 	em_update_stats_counters(adapter);
1830 
1831 	/* Reset LAA into RAR[0] on 82571 */
1832 	if ((adapter->hw.mac.type == e1000_82571) &&
1833 	    e1000_get_laa_state_82571(&adapter->hw))
1834 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1835 
1836 	if (adapter->hw.mac.type < em_mac_min)
1837 		lem_smartspeed(adapter);
1838 
1839 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK | E1000_IMS_LSC);
1840 }
1841 
1842 static void
1843 em_if_watchdog_reset(if_ctx_t ctx)
1844 {
1845 	struct adapter *adapter = iflib_get_softc(ctx);
1846 
1847 	/*
1848 	 * Just count the event; iflib(4) will already trigger a
1849 	 * sufficient reset of the controller.
1850 	 */
1851 	adapter->watchdog_events++;
1852 }
1853 
1854 /*********************************************************************
1855  *
1856  *  This routine disables all traffic on the adapter by issuing a
1857  *  global reset on the MAC.
1858  *
1859  **********************************************************************/
1860 static void
1861 em_if_stop(if_ctx_t ctx)
1862 {
1863 	struct adapter *adapter = iflib_get_softc(ctx);
1864 
1865 	INIT_DEBUGOUT("em_if_stop: begin");
1866 
1867 	e1000_reset_hw(&adapter->hw);
1868 	if (adapter->hw.mac.type >= e1000_82544)
1869 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0);
1870 
1871 	e1000_led_off(&adapter->hw);
1872 	e1000_cleanup_led(&adapter->hw);
1873 }
1874 
1875 /*********************************************************************
1876  *
1877  *  Determine hardware revision.
1878  *
1879  **********************************************************************/
1880 static void
1881 em_identify_hardware(if_ctx_t ctx)
1882 {
1883 	device_t dev = iflib_get_dev(ctx);
1884 	struct adapter *adapter = iflib_get_softc(ctx);
1885 
1886 	/* Make sure our PCI config space has the necessary stuff set */
1887 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1888 
1889 	/* Save off the information about this board */
1890 	adapter->hw.vendor_id = pci_get_vendor(dev);
1891 	adapter->hw.device_id = pci_get_device(dev);
1892 	adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1893 	adapter->hw.subsystem_vendor_id =
1894 	    pci_read_config(dev, PCIR_SUBVEND_0, 2);
1895 	adapter->hw.subsystem_device_id =
1896 	    pci_read_config(dev, PCIR_SUBDEV_0, 2);
1897 
1898 	/* Do Shared Code Init and Setup */
1899 	if (e1000_set_mac_type(&adapter->hw)) {
1900 		device_printf(dev, "Setup init failure\n");
1901 		return;
1902 	}
1903 }
1904 
1905 static int
1906 em_allocate_pci_resources(if_ctx_t ctx)
1907 {
1908 	struct adapter *adapter = iflib_get_softc(ctx);
1909 	device_t dev = iflib_get_dev(ctx);
1910 	int rid, val;
1911 
1912 	rid = PCIR_BAR(0);
1913 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1914 	    &rid, RF_ACTIVE);
1915 	if (adapter->memory == NULL) {
1916 		device_printf(dev, "Unable to allocate bus resource: memory\n");
1917 		return (ENXIO);
1918 	}
1919 	adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->memory);
1920 	adapter->osdep.mem_bus_space_handle =
1921 	    rman_get_bushandle(adapter->memory);
1922 	adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
1923 
1924 	/* Only older adapters use IO mapping */
1925 	if (adapter->hw.mac.type < em_mac_min &&
1926 	    adapter->hw.mac.type > e1000_82543) {
1927 		/* Figure our where our IO BAR is ? */
1928 		for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1929 			val = pci_read_config(dev, rid, 4);
1930 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1931 				break;
1932 			}
1933 			rid += 4;
1934 			/* check for 64bit BAR */
1935 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1936 				rid += 4;
1937 		}
1938 		if (rid >= PCIR_CIS) {
1939 			device_printf(dev, "Unable to locate IO BAR\n");
1940 			return (ENXIO);
1941 		}
1942 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
1943 		    &rid, RF_ACTIVE);
1944 		if (adapter->ioport == NULL) {
1945 			device_printf(dev, "Unable to allocate bus resource: "
1946 			    "ioport\n");
1947 			return (ENXIO);
1948 		}
1949 		adapter->hw.io_base = 0;
1950 		adapter->osdep.io_bus_space_tag =
1951 		    rman_get_bustag(adapter->ioport);
1952 		adapter->osdep.io_bus_space_handle =
1953 		    rman_get_bushandle(adapter->ioport);
1954 	}
1955 
1956 	adapter->hw.back = &adapter->osdep;
1957 
1958 	return (0);
1959 }
1960 
1961 /*********************************************************************
1962  *
1963  *  Set up the MSI-X Interrupt handlers
1964  *
1965  **********************************************************************/
1966 static int
1967 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
1968 {
1969 	struct adapter *adapter = iflib_get_softc(ctx);
1970 	struct em_rx_queue *rx_que = adapter->rx_queues;
1971 	struct em_tx_queue *tx_que = adapter->tx_queues;
1972 	int error, rid, i, vector = 0, rx_vectors;
1973 	char buf[16];
1974 
1975 	/* First set up ring resources */
1976 	for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) {
1977 		rid = vector + 1;
1978 		snprintf(buf, sizeof(buf), "rxq%d", i);
1979 		error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
1980 		if (error) {
1981 			device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
1982 			adapter->rx_num_queues = i + 1;
1983 			goto fail;
1984 		}
1985 
1986 		rx_que->msix =  vector;
1987 
1988 		/*
1989 		 * Set the bit to enable interrupt
1990 		 * in E1000_IMS -- bits 20 and 21
1991 		 * are for RX0 and RX1, note this has
1992 		 * NOTHING to do with the MSI-X vector
1993 		 */
1994 		if (adapter->hw.mac.type == e1000_82574) {
1995 			rx_que->eims = 1 << (20 + i);
1996 			adapter->ims |= rx_que->eims;
1997 			adapter->ivars |= (8 | rx_que->msix) << (i * 4);
1998 		} else if (adapter->hw.mac.type == e1000_82575)
1999 			rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2000 		else
2001 			rx_que->eims = 1 << vector;
2002 	}
2003 	rx_vectors = vector;
2004 
2005 	vector = 0;
2006 	for (i = 0; i < adapter->tx_num_queues; i++, tx_que++, vector++) {
2007 		snprintf(buf, sizeof(buf), "txq%d", i);
2008 		tx_que = &adapter->tx_queues[i];
2009 		iflib_softirq_alloc_generic(ctx,
2010 		    &adapter->rx_queues[i % adapter->rx_num_queues].que_irq,
2011 		    IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2012 
2013 		tx_que->msix = (vector % adapter->rx_num_queues);
2014 
2015 		/*
2016 		 * Set the bit to enable interrupt
2017 		 * in E1000_IMS -- bits 22 and 23
2018 		 * are for TX0 and TX1, note this has
2019 		 * NOTHING to do with the MSI-X vector
2020 		 */
2021 		if (adapter->hw.mac.type == e1000_82574) {
2022 			tx_que->eims = 1 << (22 + i);
2023 			adapter->ims |= tx_que->eims;
2024 			adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2025 		} else if (adapter->hw.mac.type == e1000_82575) {
2026 			tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2027 		} else {
2028 			tx_que->eims = 1 << i;
2029 		}
2030 	}
2031 
2032 	/* Link interrupt */
2033 	rid = rx_vectors + 1;
2034 	error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq");
2035 
2036 	if (error) {
2037 		device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
2038 		goto fail;
2039 	}
2040 	adapter->linkvec = rx_vectors;
2041 	if (adapter->hw.mac.type < igb_mac_min) {
2042 		adapter->ivars |=  (8 | rx_vectors) << 16;
2043 		adapter->ivars |= 0x80000000;
2044 	}
2045 	return (0);
2046 fail:
2047 	iflib_irq_free(ctx, &adapter->irq);
2048 	rx_que = adapter->rx_queues;
2049 	for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++)
2050 		iflib_irq_free(ctx, &rx_que->que_irq);
2051 	return (error);
2052 }
2053 
2054 static void
2055 igb_configure_queues(struct adapter *adapter)
2056 {
2057 	struct e1000_hw *hw = &adapter->hw;
2058 	struct em_rx_queue *rx_que;
2059 	struct em_tx_queue *tx_que;
2060 	u32 tmp, ivar = 0, newitr = 0;
2061 
2062 	/* First turn on RSS capability */
2063 	if (adapter->hw.mac.type != e1000_82575)
2064 		E1000_WRITE_REG(hw, E1000_GPIE,
2065 		    E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2066 		    E1000_GPIE_PBA | E1000_GPIE_NSICR);
2067 
2068 	/* Turn on MSI-X */
2069 	switch (adapter->hw.mac.type) {
2070 	case e1000_82580:
2071 	case e1000_i350:
2072 	case e1000_i354:
2073 	case e1000_i210:
2074 	case e1000_i211:
2075 	case e1000_vfadapt:
2076 	case e1000_vfadapt_i350:
2077 		/* RX entries */
2078 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2079 			u32 index = i >> 1;
2080 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2081 			rx_que = &adapter->rx_queues[i];
2082 			if (i & 1) {
2083 				ivar &= 0xFF00FFFF;
2084 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2085 			} else {
2086 				ivar &= 0xFFFFFF00;
2087 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2088 			}
2089 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2090 		}
2091 		/* TX entries */
2092 		for (int i = 0; i < adapter->tx_num_queues; i++) {
2093 			u32 index = i >> 1;
2094 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2095 			tx_que = &adapter->tx_queues[i];
2096 			if (i & 1) {
2097 				ivar &= 0x00FFFFFF;
2098 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2099 			} else {
2100 				ivar &= 0xFFFF00FF;
2101 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2102 			}
2103 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2104 			adapter->que_mask |= tx_que->eims;
2105 		}
2106 
2107 		/* And for the link interrupt */
2108 		ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2109 		adapter->link_mask = 1 << adapter->linkvec;
2110 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2111 		break;
2112 	case e1000_82576:
2113 		/* RX entries */
2114 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2115 			u32 index = i & 0x7; /* Each IVAR has two entries */
2116 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2117 			rx_que = &adapter->rx_queues[i];
2118 			if (i < 8) {
2119 				ivar &= 0xFFFFFF00;
2120 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2121 			} else {
2122 				ivar &= 0xFF00FFFF;
2123 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2124 			}
2125 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2126 			adapter->que_mask |= rx_que->eims;
2127 		}
2128 		/* TX entries */
2129 		for (int i = 0; i < adapter->tx_num_queues; i++) {
2130 			u32 index = i & 0x7; /* Each IVAR has two entries */
2131 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2132 			tx_que = &adapter->tx_queues[i];
2133 			if (i < 8) {
2134 				ivar &= 0xFFFF00FF;
2135 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2136 			} else {
2137 				ivar &= 0x00FFFFFF;
2138 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2139 			}
2140 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2141 			adapter->que_mask |= tx_que->eims;
2142 		}
2143 
2144 		/* And for the link interrupt */
2145 		ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2146 		adapter->link_mask = 1 << adapter->linkvec;
2147 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2148 		break;
2149 
2150 	case e1000_82575:
2151 		/* enable MSI-X support*/
2152 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2153 		tmp |= E1000_CTRL_EXT_PBA_CLR;
2154 		/* Auto-Mask interrupts upon ICR read. */
2155 		tmp |= E1000_CTRL_EXT_EIAME;
2156 		tmp |= E1000_CTRL_EXT_IRCA;
2157 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2158 
2159 		/* Queues */
2160 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2161 			rx_que = &adapter->rx_queues[i];
2162 			tmp = E1000_EICR_RX_QUEUE0 << i;
2163 			tmp |= E1000_EICR_TX_QUEUE0 << i;
2164 			rx_que->eims = tmp;
2165 			E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2166 			    i, rx_que->eims);
2167 			adapter->que_mask |= rx_que->eims;
2168 		}
2169 
2170 		/* Link */
2171 		E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
2172 		    E1000_EIMS_OTHER);
2173 		adapter->link_mask |= E1000_EIMS_OTHER;
2174 	default:
2175 		break;
2176 	}
2177 
2178 	/* Set the starting interrupt rate */
2179 	if (em_max_interrupt_rate > 0)
2180 		newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2181 
2182 	if (hw->mac.type == e1000_82575)
2183 		newitr |= newitr << 16;
2184 	else
2185 		newitr |= E1000_EITR_CNT_IGNR;
2186 
2187 	for (int i = 0; i < adapter->rx_num_queues; i++) {
2188 		rx_que = &adapter->rx_queues[i];
2189 		E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2190 	}
2191 
2192 	return;
2193 }
2194 
2195 static void
2196 em_free_pci_resources(if_ctx_t ctx)
2197 {
2198 	struct adapter *adapter = iflib_get_softc(ctx);
2199 	struct em_rx_queue *que = adapter->rx_queues;
2200 	device_t dev = iflib_get_dev(ctx);
2201 
2202 	/* Release all MSI-X queue resources */
2203 	if (adapter->intr_type == IFLIB_INTR_MSIX)
2204 		iflib_irq_free(ctx, &adapter->irq);
2205 
2206 	for (int i = 0; i < adapter->rx_num_queues; i++, que++) {
2207 		iflib_irq_free(ctx, &que->que_irq);
2208 	}
2209 
2210 	if (adapter->memory != NULL) {
2211 		bus_release_resource(dev, SYS_RES_MEMORY,
2212 		    rman_get_rid(adapter->memory), adapter->memory);
2213 		adapter->memory = NULL;
2214 	}
2215 
2216 	if (adapter->flash != NULL) {
2217 		bus_release_resource(dev, SYS_RES_MEMORY,
2218 		    rman_get_rid(adapter->flash), adapter->flash);
2219 		adapter->flash = NULL;
2220 	}
2221 
2222 	if (adapter->ioport != NULL) {
2223 		bus_release_resource(dev, SYS_RES_IOPORT,
2224 		    rman_get_rid(adapter->ioport), adapter->ioport);
2225 		adapter->ioport = NULL;
2226 	}
2227 }
2228 
2229 /* Set up MSI or MSI-X */
2230 static int
2231 em_setup_msix(if_ctx_t ctx)
2232 {
2233 	struct adapter *adapter = iflib_get_softc(ctx);
2234 
2235 	if (adapter->hw.mac.type == e1000_82574) {
2236 		em_enable_vectors_82574(ctx);
2237 	}
2238 	return (0);
2239 }
2240 
2241 /*********************************************************************
2242  *
2243  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2244  *
2245  **********************************************************************/
2246 static void
2247 lem_smartspeed(struct adapter *adapter)
2248 {
2249 	u16 phy_tmp;
2250 
2251 	if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
2252 	    adapter->hw.mac.autoneg == 0 ||
2253 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2254 		return;
2255 
2256 	if (adapter->smartspeed == 0) {
2257 		/* If Master/Slave config fault is asserted twice,
2258 		 * we assume back-to-back */
2259 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2260 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2261 			return;
2262 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2263 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2264 			e1000_read_phy_reg(&adapter->hw,
2265 			    PHY_1000T_CTRL, &phy_tmp);
2266 			if(phy_tmp & CR_1000T_MS_ENABLE) {
2267 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2268 				e1000_write_phy_reg(&adapter->hw,
2269 				    PHY_1000T_CTRL, phy_tmp);
2270 				adapter->smartspeed++;
2271 				if(adapter->hw.mac.autoneg &&
2272 				   !e1000_copper_link_autoneg(&adapter->hw) &&
2273 				   !e1000_read_phy_reg(&adapter->hw,
2274 				    PHY_CONTROL, &phy_tmp)) {
2275 					phy_tmp |= (MII_CR_AUTO_NEG_EN |
2276 						    MII_CR_RESTART_AUTO_NEG);
2277 					e1000_write_phy_reg(&adapter->hw,
2278 					    PHY_CONTROL, phy_tmp);
2279 				}
2280 			}
2281 		}
2282 		return;
2283 	} else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2284 		/* If still no link, perhaps using 2/3 pair cable */
2285 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2286 		phy_tmp |= CR_1000T_MS_ENABLE;
2287 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2288 		if(adapter->hw.mac.autoneg &&
2289 		   !e1000_copper_link_autoneg(&adapter->hw) &&
2290 		   !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2291 			phy_tmp |= (MII_CR_AUTO_NEG_EN |
2292 				    MII_CR_RESTART_AUTO_NEG);
2293 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2294 		}
2295 	}
2296 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2297 	if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2298 		adapter->smartspeed = 0;
2299 }
2300 
2301 /*********************************************************************
2302  *
2303  *  Initialize the DMA Coalescing feature
2304  *
2305  **********************************************************************/
2306 static void
2307 igb_init_dmac(struct adapter *adapter, u32 pba)
2308 {
2309 	device_t	dev = adapter->dev;
2310 	struct e1000_hw *hw = &adapter->hw;
2311 	u32 		dmac, reg = ~E1000_DMACR_DMAC_EN;
2312 	u16		hwm;
2313 	u16		max_frame_size;
2314 
2315 	if (hw->mac.type == e1000_i211)
2316 		return;
2317 
2318 	max_frame_size = adapter->shared->isc_max_frame_size;
2319 	if (hw->mac.type > e1000_82580) {
2320 
2321 		if (adapter->dmac == 0) { /* Disabling it */
2322 			E1000_WRITE_REG(hw, E1000_DMACR, reg);
2323 			return;
2324 		} else
2325 			device_printf(dev, "DMA Coalescing enabled\n");
2326 
2327 		/* Set starting threshold */
2328 		E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2329 
2330 		hwm = 64 * pba - max_frame_size / 16;
2331 		if (hwm < 64 * (pba - 6))
2332 			hwm = 64 * (pba - 6);
2333 		reg = E1000_READ_REG(hw, E1000_FCRTC);
2334 		reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2335 		reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2336 		    & E1000_FCRTC_RTH_COAL_MASK);
2337 		E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2338 
2339 
2340 		dmac = pba - max_frame_size / 512;
2341 		if (dmac < pba - 10)
2342 			dmac = pba - 10;
2343 		reg = E1000_READ_REG(hw, E1000_DMACR);
2344 		reg &= ~E1000_DMACR_DMACTHR_MASK;
2345 		reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2346 		    & E1000_DMACR_DMACTHR_MASK);
2347 
2348 		/* transition to L0x or L1 if available..*/
2349 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2350 
2351 		/* Check if status is 2.5Gb backplane connection
2352 		* before configuration of watchdog timer, which is
2353 		* in msec values in 12.8usec intervals
2354 		* watchdog timer= msec values in 32usec intervals
2355 		* for non 2.5Gb connection
2356 		*/
2357 		if (hw->mac.type == e1000_i354) {
2358 			int status = E1000_READ_REG(hw, E1000_STATUS);
2359 			if ((status & E1000_STATUS_2P5_SKU) &&
2360 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2361 				reg |= ((adapter->dmac * 5) >> 6);
2362 			else
2363 				reg |= (adapter->dmac >> 5);
2364 		} else {
2365 			reg |= (adapter->dmac >> 5);
2366 		}
2367 
2368 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
2369 
2370 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2371 
2372 		/* Set the interval before transition */
2373 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
2374 		if (hw->mac.type == e1000_i350)
2375 			reg |= IGB_DMCTLX_DCFLUSH_DIS;
2376 		/*
2377 		** in 2.5Gb connection, TTLX unit is 0.4 usec
2378 		** which is 0x4*2 = 0xA. But delay is still 4 usec
2379 		*/
2380 		if (hw->mac.type == e1000_i354) {
2381 			int status = E1000_READ_REG(hw, E1000_STATUS);
2382 			if ((status & E1000_STATUS_2P5_SKU) &&
2383 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2384 				reg |= 0xA;
2385 			else
2386 				reg |= 0x4;
2387 		} else {
2388 			reg |= 0x4;
2389 		}
2390 
2391 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2392 
2393 		/* free space in tx packet buffer to wake from DMA coal */
2394 		E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2395 		    (2 * max_frame_size)) >> 6);
2396 
2397 		/* make low power state decision controlled by DMA coal */
2398 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2399 		reg &= ~E1000_PCIEMISC_LX_DECISION;
2400 		E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2401 
2402 	} else if (hw->mac.type == e1000_82580) {
2403 		u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2404 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
2405 		    reg & ~E1000_PCIEMISC_LX_DECISION);
2406 		E1000_WRITE_REG(hw, E1000_DMACR, 0);
2407 	}
2408 }
2409 
2410 /*********************************************************************
2411  *
2412  *  Initialize the hardware to a configuration as specified by the
2413  *  adapter structure.
2414  *
2415  **********************************************************************/
2416 static void
2417 em_reset(if_ctx_t ctx)
2418 {
2419 	device_t dev = iflib_get_dev(ctx);
2420 	struct adapter *adapter = iflib_get_softc(ctx);
2421 	struct ifnet *ifp = iflib_get_ifp(ctx);
2422 	struct e1000_hw *hw = &adapter->hw;
2423 	u16 rx_buffer_size;
2424 	u32 pba;
2425 
2426 	INIT_DEBUGOUT("em_reset: begin");
2427 	/* Let the firmware know the OS is in control */
2428 	em_get_hw_control(adapter);
2429 
2430 	/* Set up smart power down as default off on newer adapters. */
2431 	if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2432 	    hw->mac.type == e1000_82572)) {
2433 		u16 phy_tmp = 0;
2434 
2435 		/* Speed up time to link by disabling smart power down. */
2436 		e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2437 		phy_tmp &= ~IGP02E1000_PM_SPD;
2438 		e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2439 	}
2440 
2441 	/*
2442 	 * Packet Buffer Allocation (PBA)
2443 	 * Writing PBA sets the receive portion of the buffer
2444 	 * the remainder is used for the transmit buffer.
2445 	 */
2446 	switch (hw->mac.type) {
2447 	/* Total Packet Buffer on these is 48K */
2448 	case e1000_82571:
2449 	case e1000_82572:
2450 	case e1000_80003es2lan:
2451 			pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2452 		break;
2453 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2454 			pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2455 		break;
2456 	case e1000_82574:
2457 	case e1000_82583:
2458 			pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2459 		break;
2460 	case e1000_ich8lan:
2461 		pba = E1000_PBA_8K;
2462 		break;
2463 	case e1000_ich9lan:
2464 	case e1000_ich10lan:
2465 		/* Boost Receive side for jumbo frames */
2466 		if (adapter->hw.mac.max_frame_size > 4096)
2467 			pba = E1000_PBA_14K;
2468 		else
2469 			pba = E1000_PBA_10K;
2470 		break;
2471 	case e1000_pchlan:
2472 	case e1000_pch2lan:
2473 	case e1000_pch_lpt:
2474 	case e1000_pch_spt:
2475 	case e1000_pch_cnp:
2476 		pba = E1000_PBA_26K;
2477 		break;
2478 	case e1000_82575:
2479 		pba = E1000_PBA_32K;
2480 		break;
2481 	case e1000_82576:
2482 	case e1000_vfadapt:
2483 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2484 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2485 		break;
2486 	case e1000_82580:
2487 	case e1000_i350:
2488 	case e1000_i354:
2489 	case e1000_vfadapt_i350:
2490 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2491 		pba = e1000_rxpbs_adjust_82580(pba);
2492 		break;
2493 	case e1000_i210:
2494 	case e1000_i211:
2495 		pba = E1000_PBA_34K;
2496 		break;
2497 	default:
2498 		if (adapter->hw.mac.max_frame_size > 8192)
2499 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2500 		else
2501 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2502 	}
2503 
2504 	/* Special needs in case of Jumbo frames */
2505 	if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
2506 		u32 tx_space, min_tx, min_rx;
2507 		pba = E1000_READ_REG(hw, E1000_PBA);
2508 		tx_space = pba >> 16;
2509 		pba &= 0xffff;
2510 		min_tx = (adapter->hw.mac.max_frame_size +
2511 		    sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
2512 		min_tx = roundup2(min_tx, 1024);
2513 		min_tx >>= 10;
2514 		min_rx = adapter->hw.mac.max_frame_size;
2515 		min_rx = roundup2(min_rx, 1024);
2516 		min_rx >>= 10;
2517 		if (tx_space < min_tx &&
2518 		    ((min_tx - tx_space) < pba)) {
2519 			pba = pba - (min_tx - tx_space);
2520 			/*
2521 			 * if short on rx space, rx wins
2522 			 * and must trump tx adjustment
2523 			 */
2524 			if (pba < min_rx)
2525 				pba = min_rx;
2526 		}
2527 		E1000_WRITE_REG(hw, E1000_PBA, pba);
2528 	}
2529 
2530 	if (hw->mac.type < igb_mac_min)
2531 		E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2532 
2533 	INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
2534 
2535 	/*
2536 	 * These parameters control the automatic generation (Tx) and
2537 	 * response (Rx) to Ethernet PAUSE frames.
2538 	 * - High water mark should allow for at least two frames to be
2539 	 *   received after sending an XOFF.
2540 	 * - Low water mark works best when it is very near the high water mark.
2541 	 *   This allows the receiver to restart by sending XON when it has
2542 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
2543 	 *   restart after one full frame is pulled from the buffer. There
2544 	 *   could be several smaller frames in the buffer and if so they will
2545 	 *   not trigger the XON until their total number reduces the buffer
2546 	 *   by 1500.
2547 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2548 	 */
2549 	rx_buffer_size = (pba & 0xffff) << 10;
2550 	hw->fc.high_water = rx_buffer_size -
2551 	    roundup2(adapter->hw.mac.max_frame_size, 1024);
2552 	hw->fc.low_water = hw->fc.high_water - 1500;
2553 
2554 	if (adapter->fc) /* locally set flow control value? */
2555 		hw->fc.requested_mode = adapter->fc;
2556 	else
2557 		hw->fc.requested_mode = e1000_fc_full;
2558 
2559 	if (hw->mac.type == e1000_80003es2lan)
2560 		hw->fc.pause_time = 0xFFFF;
2561 	else
2562 		hw->fc.pause_time = EM_FC_PAUSE_TIME;
2563 
2564 	hw->fc.send_xon = TRUE;
2565 
2566 	/* Device specific overrides/settings */
2567 	switch (hw->mac.type) {
2568 	case e1000_pchlan:
2569 		/* Workaround: no TX flow ctrl for PCH */
2570 		hw->fc.requested_mode = e1000_fc_rx_pause;
2571 		hw->fc.pause_time = 0xFFFF; /* override */
2572 		if (if_getmtu(ifp) > ETHERMTU) {
2573 			hw->fc.high_water = 0x3500;
2574 			hw->fc.low_water = 0x1500;
2575 		} else {
2576 			hw->fc.high_water = 0x5000;
2577 			hw->fc.low_water = 0x3000;
2578 		}
2579 		hw->fc.refresh_time = 0x1000;
2580 		break;
2581 	case e1000_pch2lan:
2582 	case e1000_pch_lpt:
2583 	case e1000_pch_spt:
2584 	case e1000_pch_cnp:
2585 		hw->fc.high_water = 0x5C20;
2586 		hw->fc.low_water = 0x5048;
2587 		hw->fc.pause_time = 0x0650;
2588 		hw->fc.refresh_time = 0x0400;
2589 		/* Jumbos need adjusted PBA */
2590 		if (if_getmtu(ifp) > ETHERMTU)
2591 			E1000_WRITE_REG(hw, E1000_PBA, 12);
2592 		else
2593 			E1000_WRITE_REG(hw, E1000_PBA, 26);
2594 		break;
2595 	case e1000_82575:
2596 	case e1000_82576:
2597 		/* 8-byte granularity */
2598 		hw->fc.low_water = hw->fc.high_water - 8;
2599 		break;
2600 	case e1000_82580:
2601 	case e1000_i350:
2602 	case e1000_i354:
2603 	case e1000_i210:
2604 	case e1000_i211:
2605 	case e1000_vfadapt:
2606 	case e1000_vfadapt_i350:
2607 		/* 16-byte granularity */
2608 		hw->fc.low_water = hw->fc.high_water - 16;
2609 		break;
2610 	case e1000_ich9lan:
2611 	case e1000_ich10lan:
2612 		if (if_getmtu(ifp) > ETHERMTU) {
2613 			hw->fc.high_water = 0x2800;
2614 			hw->fc.low_water = hw->fc.high_water - 8;
2615 			break;
2616 		}
2617 		/* FALLTHROUGH */
2618 	default:
2619 		if (hw->mac.type == e1000_80003es2lan)
2620 			hw->fc.pause_time = 0xFFFF;
2621 		break;
2622 	}
2623 
2624 	/* Issue a global reset */
2625 	e1000_reset_hw(hw);
2626 	if (adapter->hw.mac.type >= igb_mac_min) {
2627 		E1000_WRITE_REG(hw, E1000_WUC, 0);
2628 	} else {
2629 		E1000_WRITE_REG(hw, E1000_WUFC, 0);
2630 		em_disable_aspm(adapter);
2631 	}
2632 	if (adapter->flags & IGB_MEDIA_RESET) {
2633 		e1000_setup_init_funcs(hw, TRUE);
2634 		e1000_get_bus_info(hw);
2635 		adapter->flags &= ~IGB_MEDIA_RESET;
2636 	}
2637 	/* and a re-init */
2638 	if (e1000_init_hw(hw) < 0) {
2639 		device_printf(dev, "Hardware Initialization Failed\n");
2640 		return;
2641 	}
2642 	if (adapter->hw.mac.type >= igb_mac_min)
2643 		igb_init_dmac(adapter, pba);
2644 
2645 	E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2646 	e1000_get_phy_info(hw);
2647 	e1000_check_for_link(hw);
2648 }
2649 
2650 /*
2651  * Initialise the RSS mapping for NICs that support multiple transmit/
2652  * receive rings.
2653  */
2654 
2655 #define RSSKEYLEN 10
2656 static void
2657 em_initialize_rss_mapping(struct adapter *adapter)
2658 {
2659 	uint8_t  rss_key[4 * RSSKEYLEN];
2660 	uint32_t reta = 0;
2661 	struct e1000_hw	*hw = &adapter->hw;
2662 	int i;
2663 
2664 	/*
2665 	 * Configure RSS key
2666 	 */
2667 	arc4rand(rss_key, sizeof(rss_key), 0);
2668 	for (i = 0; i < RSSKEYLEN; ++i) {
2669 		uint32_t rssrk = 0;
2670 
2671 		rssrk = EM_RSSRK_VAL(rss_key, i);
2672 		E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2673 	}
2674 
2675 	/*
2676 	 * Configure RSS redirect table in following fashion:
2677 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2678 	 */
2679 	for (i = 0; i < sizeof(reta); ++i) {
2680 		uint32_t q;
2681 
2682 		q = (i % adapter->rx_num_queues) << 7;
2683 		reta |= q << (8 * i);
2684 	}
2685 
2686 	for (i = 0; i < 32; ++i)
2687 		E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2688 
2689 	E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
2690 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2691 			E1000_MRQC_RSS_FIELD_IPV4 |
2692 			E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2693 			E1000_MRQC_RSS_FIELD_IPV6_EX |
2694 			E1000_MRQC_RSS_FIELD_IPV6);
2695 }
2696 
2697 static void
2698 igb_initialize_rss_mapping(struct adapter *adapter)
2699 {
2700 	struct e1000_hw *hw = &adapter->hw;
2701 	int i;
2702 	int queue_id;
2703 	u32 reta;
2704 	u32 rss_key[10], mrqc, shift = 0;
2705 
2706 	/* XXX? */
2707 	if (adapter->hw.mac.type == e1000_82575)
2708 		shift = 6;
2709 
2710 	/*
2711 	 * The redirection table controls which destination
2712 	 * queue each bucket redirects traffic to.
2713 	 * Each DWORD represents four queues, with the LSB
2714 	 * being the first queue in the DWORD.
2715 	 *
2716 	 * This just allocates buckets to queues using round-robin
2717 	 * allocation.
2718 	 *
2719 	 * NOTE: It Just Happens to line up with the default
2720 	 * RSS allocation method.
2721 	 */
2722 
2723 	/* Warning FM follows */
2724 	reta = 0;
2725 	for (i = 0; i < 128; i++) {
2726 #ifdef RSS
2727 		queue_id = rss_get_indirection_to_bucket(i);
2728 		/*
2729 		 * If we have more queues than buckets, we'll
2730 		 * end up mapping buckets to a subset of the
2731 		 * queues.
2732 		 *
2733 		 * If we have more buckets than queues, we'll
2734 		 * end up instead assigning multiple buckets
2735 		 * to queues.
2736 		 *
2737 		 * Both are suboptimal, but we need to handle
2738 		 * the case so we don't go out of bounds
2739 		 * indexing arrays and such.
2740 		 */
2741 		queue_id = queue_id % adapter->rx_num_queues;
2742 #else
2743 		queue_id = (i % adapter->rx_num_queues);
2744 #endif
2745 		/* Adjust if required */
2746 		queue_id = queue_id << shift;
2747 
2748 		/*
2749 		 * The low 8 bits are for hash value (n+0);
2750 		 * The next 8 bits are for hash value (n+1), etc.
2751 		 */
2752 		reta = reta >> 8;
2753 		reta = reta | ( ((uint32_t) queue_id) << 24);
2754 		if ((i & 3) == 3) {
2755 			E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2756 			reta = 0;
2757 		}
2758 	}
2759 
2760 	/* Now fill in hash table */
2761 
2762 	/*
2763 	 * MRQC: Multiple Receive Queues Command
2764 	 * Set queuing to RSS control, number depends on the device.
2765 	 */
2766 	mrqc = E1000_MRQC_ENABLE_RSS_8Q;
2767 
2768 #ifdef RSS
2769 	/* XXX ew typecasting */
2770 	rss_getkey((uint8_t *) &rss_key);
2771 #else
2772 	arc4rand(&rss_key, sizeof(rss_key), 0);
2773 #endif
2774 	for (i = 0; i < 10; i++)
2775 		E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
2776 
2777 	/*
2778 	 * Configure the RSS fields to hash upon.
2779 	 */
2780 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2781 	    E1000_MRQC_RSS_FIELD_IPV4_TCP);
2782 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2783 	    E1000_MRQC_RSS_FIELD_IPV6_TCP);
2784 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2785 	    E1000_MRQC_RSS_FIELD_IPV6_UDP);
2786 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2787 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2788 
2789 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2790 }
2791 
2792 /*********************************************************************
2793  *
2794  *  Setup networking device structure and register interface media.
2795  *
2796  **********************************************************************/
2797 static int
2798 em_setup_interface(if_ctx_t ctx)
2799 {
2800 	struct ifnet *ifp = iflib_get_ifp(ctx);
2801 	struct adapter *adapter = iflib_get_softc(ctx);
2802 	if_softc_ctx_t scctx = adapter->shared;
2803 
2804 	INIT_DEBUGOUT("em_setup_interface: begin");
2805 
2806 	/* Single Queue */
2807 	if (adapter->tx_num_queues == 1) {
2808 		if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
2809 		if_setsendqready(ifp);
2810 	}
2811 
2812 	/*
2813 	 * Specify the media types supported by this adapter and register
2814 	 * callbacks to update media and link information
2815 	 */
2816 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
2817 	    (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
2818 		u_char fiber_type = IFM_1000_SX;	/* default type */
2819 
2820 		if (adapter->hw.mac.type == e1000_82545)
2821 			fiber_type = IFM_1000_LX;
2822 		ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
2823 		ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2824 	} else {
2825 		ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2826 		ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
2827 		ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2828 		ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
2829 		if (adapter->hw.phy.type != e1000_phy_ife) {
2830 			ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2831 			ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2832 		}
2833 	}
2834 	ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2835 	ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO);
2836 	return (0);
2837 }
2838 
2839 static int
2840 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
2841 {
2842 	struct adapter *adapter = iflib_get_softc(ctx);
2843 	if_softc_ctx_t scctx = adapter->shared;
2844 	int error = E1000_SUCCESS;
2845 	struct em_tx_queue *que;
2846 	int i, j;
2847 
2848 	MPASS(adapter->tx_num_queues > 0);
2849 	MPASS(adapter->tx_num_queues == ntxqsets);
2850 
2851 	/* First allocate the top level queue structs */
2852 	if (!(adapter->tx_queues =
2853 	    (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
2854 	    adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2855 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2856 		return(ENOMEM);
2857 	}
2858 
2859 	for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) {
2860 		/* Set up some basics */
2861 
2862 		struct tx_ring *txr = &que->txr;
2863 		txr->adapter = que->adapter = adapter;
2864 		que->me = txr->me =  i;
2865 
2866 		/* Allocate report status array */
2867 		if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2868 			device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
2869 			error = ENOMEM;
2870 			goto fail;
2871 		}
2872 		for (j = 0; j < scctx->isc_ntxd[0]; j++)
2873 			txr->tx_rsq[j] = QIDX_INVALID;
2874 		/* get the virtual and physical address of the hardware queues */
2875 		txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
2876 		txr->tx_paddr = paddrs[i*ntxqs];
2877 	}
2878 
2879 	if (bootverbose)
2880 		device_printf(iflib_get_dev(ctx),
2881 		    "allocated for %d tx_queues\n", adapter->tx_num_queues);
2882 	return (0);
2883 fail:
2884 	em_if_queues_free(ctx);
2885 	return (error);
2886 }
2887 
2888 static int
2889 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
2890 {
2891 	struct adapter *adapter = iflib_get_softc(ctx);
2892 	int error = E1000_SUCCESS;
2893 	struct em_rx_queue *que;
2894 	int i;
2895 
2896 	MPASS(adapter->rx_num_queues > 0);
2897 	MPASS(adapter->rx_num_queues == nrxqsets);
2898 
2899 	/* First allocate the top level queue structs */
2900 	if (!(adapter->rx_queues =
2901 	    (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
2902 	    adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2903 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2904 		error = ENOMEM;
2905 		goto fail;
2906 	}
2907 
2908 	for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) {
2909 		/* Set up some basics */
2910 		struct rx_ring *rxr = &que->rxr;
2911 		rxr->adapter = que->adapter = adapter;
2912 		rxr->que = que;
2913 		que->me = rxr->me =  i;
2914 
2915 		/* get the virtual and physical address of the hardware queues */
2916 		rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
2917 		rxr->rx_paddr = paddrs[i*nrxqs];
2918 	}
2919 
2920 	if (bootverbose)
2921 		device_printf(iflib_get_dev(ctx),
2922 		    "allocated for %d rx_queues\n", adapter->rx_num_queues);
2923 
2924 	return (0);
2925 fail:
2926 	em_if_queues_free(ctx);
2927 	return (error);
2928 }
2929 
2930 static void
2931 em_if_queues_free(if_ctx_t ctx)
2932 {
2933 	struct adapter *adapter = iflib_get_softc(ctx);
2934 	struct em_tx_queue *tx_que = adapter->tx_queues;
2935 	struct em_rx_queue *rx_que = adapter->rx_queues;
2936 
2937 	if (tx_que != NULL) {
2938 		for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
2939 			struct tx_ring *txr = &tx_que->txr;
2940 			if (txr->tx_rsq == NULL)
2941 				break;
2942 
2943 			free(txr->tx_rsq, M_DEVBUF);
2944 			txr->tx_rsq = NULL;
2945 		}
2946 		free(adapter->tx_queues, M_DEVBUF);
2947 		adapter->tx_queues = NULL;
2948 	}
2949 
2950 	if (rx_que != NULL) {
2951 		free(adapter->rx_queues, M_DEVBUF);
2952 		adapter->rx_queues = NULL;
2953 	}
2954 
2955 	em_release_hw_control(adapter);
2956 
2957 	if (adapter->mta != NULL) {
2958 		free(adapter->mta, M_DEVBUF);
2959 	}
2960 }
2961 
2962 /*********************************************************************
2963  *
2964  *  Enable transmit unit.
2965  *
2966  **********************************************************************/
2967 static void
2968 em_initialize_transmit_unit(if_ctx_t ctx)
2969 {
2970 	struct adapter *adapter = iflib_get_softc(ctx);
2971 	if_softc_ctx_t scctx = adapter->shared;
2972 	struct em_tx_queue *que;
2973 	struct tx_ring	*txr;
2974 	struct e1000_hw	*hw = &adapter->hw;
2975 	u32 tctl, txdctl = 0, tarc, tipg = 0;
2976 
2977 	INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
2978 
2979 	for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
2980 		u64 bus_addr;
2981 		caddr_t offp, endp;
2982 
2983 		que = &adapter->tx_queues[i];
2984 		txr = &que->txr;
2985 		bus_addr = txr->tx_paddr;
2986 
2987 		/* Clear checksum offload context. */
2988 		offp = (caddr_t)&txr->csum_flags;
2989 		endp = (caddr_t)(txr + 1);
2990 		bzero(offp, endp - offp);
2991 
2992 		/* Base and Len of TX Ring */
2993 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
2994 		    scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
2995 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
2996 		    (u32)(bus_addr >> 32));
2997 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
2998 		    (u32)bus_addr);
2999 		/* Init the HEAD/TAIL indices */
3000 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3001 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3002 
3003 		HW_DEBUGOUT2("Base = %x, Length = %x\n",
3004 		    E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)),
3005 		    E1000_READ_REG(&adapter->hw, E1000_TDLEN(i)));
3006 
3007 		txdctl = 0; /* clear txdctl */
3008 		txdctl |= 0x1f; /* PTHRESH */
3009 		txdctl |= 1 << 8; /* HTHRESH */
3010 		txdctl |= 1 << 16;/* WTHRESH */
3011 		txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3012 		txdctl |= E1000_TXDCTL_GRAN;
3013 		txdctl |= 1 << 25; /* LWTHRESH */
3014 
3015 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3016 	}
3017 
3018 	/* Set the default values for the Tx Inter Packet Gap timer */
3019 	switch (adapter->hw.mac.type) {
3020 	case e1000_80003es2lan:
3021 		tipg = DEFAULT_82543_TIPG_IPGR1;
3022 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3023 		    E1000_TIPG_IPGR2_SHIFT;
3024 		break;
3025 	case e1000_82542:
3026 		tipg = DEFAULT_82542_TIPG_IPGT;
3027 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3028 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3029 		break;
3030 	default:
3031 		if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
3032 		    (adapter->hw.phy.media_type ==
3033 		    e1000_media_type_internal_serdes))
3034 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3035 		else
3036 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3037 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3038 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3039 	}
3040 
3041 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
3042 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value);
3043 
3044 	if(adapter->hw.mac.type >= e1000_82540)
3045 		E1000_WRITE_REG(&adapter->hw, E1000_TADV,
3046 		    adapter->tx_abs_int_delay.value);
3047 
3048 	if ((adapter->hw.mac.type == e1000_82571) ||
3049 	    (adapter->hw.mac.type == e1000_82572)) {
3050 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3051 		tarc |= TARC_SPEED_MODE_BIT;
3052 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3053 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
3054 		/* errata: program both queues to unweighted RR */
3055 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3056 		tarc |= 1;
3057 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3058 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
3059 		tarc |= 1;
3060 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3061 	} else if (adapter->hw.mac.type == e1000_82574) {
3062 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3063 		tarc |= TARC_ERRATA_BIT;
3064 		if ( adapter->tx_num_queues > 1) {
3065 			tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3066 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3067 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3068 		} else
3069 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3070 	}
3071 
3072 	if (adapter->tx_int_delay.value > 0)
3073 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3074 
3075 	/* Program the Transmit Control Register */
3076 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
3077 	tctl &= ~E1000_TCTL_CT;
3078 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3079 		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3080 
3081 	if (adapter->hw.mac.type >= e1000_82571)
3082 		tctl |= E1000_TCTL_MULR;
3083 
3084 	/* This write will effectively turn on the transmit unit. */
3085 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
3086 
3087 	/* SPT and KBL errata workarounds */
3088 	if (hw->mac.type == e1000_pch_spt) {
3089 		u32 reg;
3090 		reg = E1000_READ_REG(hw, E1000_IOSFPC);
3091 		reg |= E1000_RCTL_RDMTS_HEX;
3092 		E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3093 		/* i218-i219 Specification Update 1.5.4.5 */
3094 		reg = E1000_READ_REG(hw, E1000_TARC(0));
3095 		reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3096 		reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3097 		E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3098 	}
3099 }
3100 
3101 /*********************************************************************
3102  *
3103  *  Enable receive unit.
3104  *
3105  **********************************************************************/
3106 
3107 static void
3108 em_initialize_receive_unit(if_ctx_t ctx)
3109 {
3110 	struct adapter *adapter = iflib_get_softc(ctx);
3111 	if_softc_ctx_t scctx = adapter->shared;
3112 	struct ifnet *ifp = iflib_get_ifp(ctx);
3113 	struct e1000_hw	*hw = &adapter->hw;
3114 	struct em_rx_queue *que;
3115 	int i;
3116 	u32 rctl, rxcsum, rfctl;
3117 
3118 	INIT_DEBUGOUT("em_initialize_receive_units: begin");
3119 
3120 	/*
3121 	 * Make sure receives are disabled while setting
3122 	 * up the descriptor ring
3123 	 */
3124 	rctl = E1000_READ_REG(hw, E1000_RCTL);
3125 	/* Do not disable if ever enabled on this hardware */
3126 	if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3127 		E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3128 
3129 	/* Setup the Receive Control Register */
3130 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3131 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3132 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3133 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3134 
3135 	/* Do not store bad packets */
3136 	rctl &= ~E1000_RCTL_SBP;
3137 
3138 	/* Enable Long Packet receive */
3139 	if (if_getmtu(ifp) > ETHERMTU)
3140 		rctl |= E1000_RCTL_LPE;
3141 	else
3142 		rctl &= ~E1000_RCTL_LPE;
3143 
3144 	/* Strip the CRC */
3145 	if (!em_disable_crc_stripping)
3146 		rctl |= E1000_RCTL_SECRC;
3147 
3148 	if (adapter->hw.mac.type >= e1000_82540) {
3149 		E1000_WRITE_REG(&adapter->hw, E1000_RADV,
3150 			    adapter->rx_abs_int_delay.value);
3151 
3152 		/*
3153 		 * Set the interrupt throttling rate. Value is calculated
3154 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3155 		 */
3156 		E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
3157 	}
3158 	E1000_WRITE_REG(&adapter->hw, E1000_RDTR,
3159 	    adapter->rx_int_delay.value);
3160 
3161 	/* Use extended rx descriptor formats */
3162 	rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3163 	rfctl |= E1000_RFCTL_EXTEN;
3164 	/*
3165 	 * When using MSI-X interrupts we need to throttle
3166 	 * using the EITR register (82574 only)
3167 	 */
3168 	if (hw->mac.type == e1000_82574) {
3169 		for (int i = 0; i < 4; i++)
3170 			E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3171 			    DEFAULT_ITR);
3172 		/* Disable accelerated acknowledge */
3173 		rfctl |= E1000_RFCTL_ACK_DIS;
3174 	}
3175 	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3176 
3177 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3178 	if (if_getcapenable(ifp) & IFCAP_RXCSUM &&
3179 	    adapter->hw.mac.type >= e1000_82543) {
3180 		if (adapter->tx_num_queues > 1) {
3181 			if (adapter->hw.mac.type >= igb_mac_min) {
3182 				rxcsum |= E1000_RXCSUM_PCSD;
3183 				if (hw->mac.type != e1000_82575)
3184 					rxcsum |= E1000_RXCSUM_CRCOFL;
3185 			} else
3186 				rxcsum |= E1000_RXCSUM_TUOFL |
3187 					E1000_RXCSUM_IPOFL |
3188 					E1000_RXCSUM_PCSD;
3189 		} else {
3190 			if (adapter->hw.mac.type >= igb_mac_min)
3191 				rxcsum |= E1000_RXCSUM_IPPCSE;
3192 			else
3193 				rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3194 			if (adapter->hw.mac.type > e1000_82575)
3195 				rxcsum |= E1000_RXCSUM_CRCOFL;
3196 		}
3197 	} else
3198 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3199 
3200 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3201 
3202 	if (adapter->rx_num_queues > 1) {
3203 		if (adapter->hw.mac.type >= igb_mac_min)
3204 			igb_initialize_rss_mapping(adapter);
3205 		else
3206 			em_initialize_rss_mapping(adapter);
3207 	}
3208 
3209 	/*
3210 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3211 	 * long latencies are observed, like Lenovo X60. This
3212 	 * change eliminates the problem, but since having positive
3213 	 * values in RDTR is a known source of problems on other
3214 	 * platforms another solution is being sought.
3215 	 */
3216 	if (hw->mac.type == e1000_82573)
3217 		E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3218 
3219 	for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3220 		struct rx_ring *rxr = &que->rxr;
3221 		/* Setup the Base and Length of the Rx Descriptor Ring */
3222 		u64 bus_addr = rxr->rx_paddr;
3223 #if 0
3224 		u32 rdt = adapter->rx_num_queues -1;  /* default */
3225 #endif
3226 
3227 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
3228 		    scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
3229 		E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3230 		E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3231 		/* Setup the Head and Tail Descriptor Pointers */
3232 		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3233 		E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3234 	}
3235 
3236 	/*
3237 	 * Set PTHRESH for improved jumbo performance
3238 	 * According to 10.2.5.11 of Intel 82574 Datasheet,
3239 	 * RXDCTL(1) is written whenever RXDCTL(0) is written.
3240 	 * Only write to RXDCTL(1) if there is a need for different
3241 	 * settings.
3242 	 */
3243 
3244 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3245 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3246 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3247 	    (if_getmtu(ifp) > ETHERMTU)) {
3248 		u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3249 		E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3250 	} else if (adapter->hw.mac.type == e1000_82574) {
3251 		for (int i = 0; i < adapter->rx_num_queues; i++) {
3252 			u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3253 			rxdctl |= 0x20; /* PTHRESH */
3254 			rxdctl |= 4 << 8; /* HTHRESH */
3255 			rxdctl |= 4 << 16;/* WTHRESH */
3256 			rxdctl |= 1 << 24; /* Switch to granularity */
3257 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3258 		}
3259 	} else if (adapter->hw.mac.type >= igb_mac_min) {
3260 		u32 psize, srrctl = 0;
3261 
3262 		if (if_getmtu(ifp) > ETHERMTU) {
3263 			/* Set maximum packet len */
3264 			if (adapter->rx_mbuf_sz <= 4096) {
3265 				srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3266 				rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3267 			} else if (adapter->rx_mbuf_sz > 4096) {
3268 				srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3269 				rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3270 			}
3271 			psize = scctx->isc_max_frame_size;
3272 			/* are we on a vlan? */
3273 			if (ifp->if_vlantrunk != NULL)
3274 				psize += VLAN_TAG_SIZE;
3275 			E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
3276 		} else {
3277 			srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3278 			rctl |= E1000_RCTL_SZ_2048;
3279 		}
3280 
3281 		/*
3282 		 * If TX flow control is disabled and there's >1 queue defined,
3283 		 * enable DROP.
3284 		 *
3285 		 * This drops frames rather than hanging the RX MAC for all queues.
3286 		 */
3287 		if ((adapter->rx_num_queues > 1) &&
3288 		    (adapter->fc == e1000_fc_none ||
3289 		     adapter->fc == e1000_fc_rx_pause)) {
3290 			srrctl |= E1000_SRRCTL_DROP_EN;
3291 		}
3292 			/* Setup the Base and Length of the Rx Descriptor Rings */
3293 		for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3294 			struct rx_ring *rxr = &que->rxr;
3295 			u64 bus_addr = rxr->rx_paddr;
3296 			u32 rxdctl;
3297 
3298 #ifdef notyet
3299 			/* Configure for header split? -- ignore for now */
3300 			rxr->hdr_split = igb_header_split;
3301 #else
3302 			srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3303 #endif
3304 
3305 			E1000_WRITE_REG(hw, E1000_RDLEN(i),
3306 					scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3307 			E1000_WRITE_REG(hw, E1000_RDBAH(i),
3308 					(uint32_t)(bus_addr >> 32));
3309 			E1000_WRITE_REG(hw, E1000_RDBAL(i),
3310 					(uint32_t)bus_addr);
3311 			E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3312 			/* Enable this Queue */
3313 			rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3314 			rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3315 			rxdctl &= 0xFFF00000;
3316 			rxdctl |= IGB_RX_PTHRESH;
3317 			rxdctl |= IGB_RX_HTHRESH << 8;
3318 			rxdctl |= IGB_RX_WTHRESH << 16;
3319 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3320 		}
3321 	} else if (adapter->hw.mac.type >= e1000_pch2lan) {
3322 		if (if_getmtu(ifp) > ETHERMTU)
3323 			e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
3324 		else
3325 			e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
3326 	}
3327 
3328 	/* Make sure VLAN Filters are off */
3329 	rctl &= ~E1000_RCTL_VFE;
3330 
3331 	if (adapter->hw.mac.type < igb_mac_min) {
3332 		if (adapter->rx_mbuf_sz == MCLBYTES)
3333 			rctl |= E1000_RCTL_SZ_2048;
3334 		else if (adapter->rx_mbuf_sz == MJUMPAGESIZE)
3335 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3336 		else if (adapter->rx_mbuf_sz > MJUMPAGESIZE)
3337 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3338 
3339 		/* ensure we clear use DTYPE of 00 here */
3340 		rctl &= ~0x00000C00;
3341 	}
3342 
3343 	/* Write out the settings */
3344 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3345 
3346 	return;
3347 }
3348 
3349 static void
3350 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3351 {
3352 	struct adapter *adapter = iflib_get_softc(ctx);
3353 	u32 index, bit;
3354 
3355 	index = (vtag >> 5) & 0x7F;
3356 	bit = vtag & 0x1F;
3357 	adapter->shadow_vfta[index] |= (1 << bit);
3358 	++adapter->num_vlans;
3359 }
3360 
3361 static void
3362 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3363 {
3364 	struct adapter *adapter = iflib_get_softc(ctx);
3365 	u32 index, bit;
3366 
3367 	index = (vtag >> 5) & 0x7F;
3368 	bit = vtag & 0x1F;
3369 	adapter->shadow_vfta[index] &= ~(1 << bit);
3370 	--adapter->num_vlans;
3371 }
3372 
3373 static void
3374 em_setup_vlan_hw_support(struct adapter *adapter)
3375 {
3376 	struct e1000_hw *hw = &adapter->hw;
3377 	u32 reg;
3378 
3379 	/*
3380 	 * We get here thru init_locked, meaning
3381 	 * a soft reset, this has already cleared
3382 	 * the VFTA and other state, so if there
3383 	 * have been no vlan's registered do nothing.
3384 	 */
3385 	if (adapter->num_vlans == 0)
3386 		return;
3387 
3388 	/*
3389 	 * A soft reset zero's out the VFTA, so
3390 	 * we need to repopulate it now.
3391 	 */
3392 	for (int i = 0; i < EM_VFTA_SIZE; i++)
3393 		if (adapter->shadow_vfta[i] != 0)
3394 			E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
3395 			    i, adapter->shadow_vfta[i]);
3396 
3397 	reg = E1000_READ_REG(hw, E1000_CTRL);
3398 	reg |= E1000_CTRL_VME;
3399 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
3400 
3401 	/* Enable the Filter Table */
3402 	reg = E1000_READ_REG(hw, E1000_RCTL);
3403 	reg &= ~E1000_RCTL_CFIEN;
3404 	reg |= E1000_RCTL_VFE;
3405 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
3406 }
3407 
3408 static void
3409 em_if_intr_enable(if_ctx_t ctx)
3410 {
3411 	struct adapter *adapter = iflib_get_softc(ctx);
3412 	struct e1000_hw *hw = &adapter->hw;
3413 	u32 ims_mask = IMS_ENABLE_MASK;
3414 
3415 	if (hw->mac.type == e1000_82574) {
3416 		E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK);
3417 		ims_mask |= adapter->ims;
3418 	}
3419 	E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3420 }
3421 
3422 static void
3423 em_if_intr_disable(if_ctx_t ctx)
3424 {
3425 	struct adapter *adapter = iflib_get_softc(ctx);
3426 	struct e1000_hw *hw = &adapter->hw;
3427 
3428 	if (hw->mac.type == e1000_82574)
3429 		E1000_WRITE_REG(hw, EM_EIAC, 0);
3430 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3431 }
3432 
3433 static void
3434 igb_if_intr_enable(if_ctx_t ctx)
3435 {
3436 	struct adapter *adapter = iflib_get_softc(ctx);
3437 	struct e1000_hw *hw = &adapter->hw;
3438 	u32 mask;
3439 
3440 	if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3441 		mask = (adapter->que_mask | adapter->link_mask);
3442 		E1000_WRITE_REG(hw, E1000_EIAC, mask);
3443 		E1000_WRITE_REG(hw, E1000_EIAM, mask);
3444 		E1000_WRITE_REG(hw, E1000_EIMS, mask);
3445 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3446 	} else
3447 		E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3448 	E1000_WRITE_FLUSH(hw);
3449 }
3450 
3451 static void
3452 igb_if_intr_disable(if_ctx_t ctx)
3453 {
3454 	struct adapter *adapter = iflib_get_softc(ctx);
3455 	struct e1000_hw *hw = &adapter->hw;
3456 
3457 	if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3458 		E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
3459 		E1000_WRITE_REG(hw, E1000_EIAC, 0);
3460 	}
3461 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3462 	E1000_WRITE_FLUSH(hw);
3463 }
3464 
3465 /*
3466  * Bit of a misnomer, what this really means is
3467  * to enable OS management of the system... aka
3468  * to disable special hardware management features
3469  */
3470 static void
3471 em_init_manageability(struct adapter *adapter)
3472 {
3473 	/* A shared code workaround */
3474 #define E1000_82542_MANC2H E1000_MANC2H
3475 	if (adapter->has_manage) {
3476 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3477 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3478 
3479 		/* disable hardware interception of ARP */
3480 		manc &= ~(E1000_MANC_ARP_EN);
3481 
3482 		/* enable receiving management packets to the host */
3483 		manc |= E1000_MANC_EN_MNG2HOST;
3484 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3485 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3486 		manc2h |= E1000_MNG2HOST_PORT_623;
3487 		manc2h |= E1000_MNG2HOST_PORT_664;
3488 		E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3489 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3490 	}
3491 }
3492 
3493 /*
3494  * Give control back to hardware management
3495  * controller if there is one.
3496  */
3497 static void
3498 em_release_manageability(struct adapter *adapter)
3499 {
3500 	if (adapter->has_manage) {
3501 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3502 
3503 		/* re-enable hardware interception of ARP */
3504 		manc |= E1000_MANC_ARP_EN;
3505 		manc &= ~E1000_MANC_EN_MNG2HOST;
3506 
3507 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3508 	}
3509 }
3510 
3511 /*
3512  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3513  * For ASF and Pass Through versions of f/w this means
3514  * that the driver is loaded. For AMT version type f/w
3515  * this means that the network i/f is open.
3516  */
3517 static void
3518 em_get_hw_control(struct adapter *adapter)
3519 {
3520 	u32 ctrl_ext, swsm;
3521 
3522 	if (adapter->vf_ifp)
3523 		return;
3524 
3525 	if (adapter->hw.mac.type == e1000_82573) {
3526 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3527 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3528 		    swsm | E1000_SWSM_DRV_LOAD);
3529 		return;
3530 	}
3531 	/* else */
3532 	ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3533 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3534 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3535 }
3536 
3537 /*
3538  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3539  * For ASF and Pass Through versions of f/w this means that
3540  * the driver is no longer loaded. For AMT versions of the
3541  * f/w this means that the network i/f is closed.
3542  */
3543 static void
3544 em_release_hw_control(struct adapter *adapter)
3545 {
3546 	u32 ctrl_ext, swsm;
3547 
3548 	if (!adapter->has_manage)
3549 		return;
3550 
3551 	if (adapter->hw.mac.type == e1000_82573) {
3552 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3553 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3554 		    swsm & ~E1000_SWSM_DRV_LOAD);
3555 		return;
3556 	}
3557 	/* else */
3558 	ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3559 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3560 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3561 	return;
3562 }
3563 
3564 static int
3565 em_is_valid_ether_addr(u8 *addr)
3566 {
3567 	char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3568 
3569 	if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3570 		return (FALSE);
3571 	}
3572 
3573 	return (TRUE);
3574 }
3575 
3576 /*
3577 ** Parse the interface capabilities with regard
3578 ** to both system management and wake-on-lan for
3579 ** later use.
3580 */
3581 static void
3582 em_get_wakeup(if_ctx_t ctx)
3583 {
3584 	struct adapter *adapter = iflib_get_softc(ctx);
3585 	device_t dev = iflib_get_dev(ctx);
3586 	u16 eeprom_data = 0, device_id, apme_mask;
3587 
3588 	adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
3589 	apme_mask = EM_EEPROM_APME;
3590 
3591 	switch (adapter->hw.mac.type) {
3592 	case e1000_82542:
3593 	case e1000_82543:
3594 		break;
3595 	case e1000_82544:
3596 		e1000_read_nvm(&adapter->hw,
3597 		    NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3598 		apme_mask = EM_82544_APME;
3599 		break;
3600 	case e1000_82546:
3601 	case e1000_82546_rev_3:
3602 		if (adapter->hw.bus.func == 1) {
3603 			e1000_read_nvm(&adapter->hw,
3604 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3605 			break;
3606 		} else
3607 			e1000_read_nvm(&adapter->hw,
3608 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3609 		break;
3610 	case e1000_82573:
3611 	case e1000_82583:
3612 		adapter->has_amt = TRUE;
3613 		/* FALLTHROUGH */
3614 	case e1000_82571:
3615 	case e1000_82572:
3616 	case e1000_80003es2lan:
3617 		if (adapter->hw.bus.func == 1) {
3618 			e1000_read_nvm(&adapter->hw,
3619 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3620 			break;
3621 		} else
3622 			e1000_read_nvm(&adapter->hw,
3623 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3624 		break;
3625 	case e1000_ich8lan:
3626 	case e1000_ich9lan:
3627 	case e1000_ich10lan:
3628 	case e1000_pchlan:
3629 	case e1000_pch2lan:
3630 	case e1000_pch_lpt:
3631 	case e1000_pch_spt:
3632 	case e1000_82575:	/* listing all igb devices */
3633 	case e1000_82576:
3634 	case e1000_82580:
3635 	case e1000_i350:
3636 	case e1000_i354:
3637 	case e1000_i210:
3638 	case e1000_i211:
3639 	case e1000_vfadapt:
3640 	case e1000_vfadapt_i350:
3641 		apme_mask = E1000_WUC_APME;
3642 		adapter->has_amt = TRUE;
3643 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
3644 		break;
3645 	default:
3646 		e1000_read_nvm(&adapter->hw,
3647 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3648 		break;
3649 	}
3650 	if (eeprom_data & apme_mask)
3651 		adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
3652 	/*
3653 	 * We have the eeprom settings, now apply the special cases
3654 	 * where the eeprom may be wrong or the board won't support
3655 	 * wake on lan on a particular port
3656 	 */
3657 	device_id = pci_get_device(dev);
3658 	switch (device_id) {
3659 	case E1000_DEV_ID_82546GB_PCIE:
3660 		adapter->wol = 0;
3661 		break;
3662 	case E1000_DEV_ID_82546EB_FIBER:
3663 	case E1000_DEV_ID_82546GB_FIBER:
3664 		/* Wake events only supported on port A for dual fiber
3665 		 * regardless of eeprom setting */
3666 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3667 		    E1000_STATUS_FUNC_1)
3668 			adapter->wol = 0;
3669 		break;
3670 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
3671 		/* if quad port adapter, disable WoL on all but port A */
3672 		if (global_quad_port_a != 0)
3673 			adapter->wol = 0;
3674 		/* Reset for multiple quad port adapters */
3675 		if (++global_quad_port_a == 4)
3676 			global_quad_port_a = 0;
3677 		break;
3678 	case E1000_DEV_ID_82571EB_FIBER:
3679 		/* Wake events only supported on port A for dual fiber
3680 		 * regardless of eeprom setting */
3681 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3682 		    E1000_STATUS_FUNC_1)
3683 			adapter->wol = 0;
3684 		break;
3685 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
3686 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
3687 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
3688 		/* if quad port adapter, disable WoL on all but port A */
3689 		if (global_quad_port_a != 0)
3690 			adapter->wol = 0;
3691 		/* Reset for multiple quad port adapters */
3692 		if (++global_quad_port_a == 4)
3693 			global_quad_port_a = 0;
3694 		break;
3695 	}
3696 	return;
3697 }
3698 
3699 
3700 /*
3701  * Enable PCI Wake On Lan capability
3702  */
3703 static void
3704 em_enable_wakeup(if_ctx_t ctx)
3705 {
3706 	struct adapter *adapter = iflib_get_softc(ctx);
3707 	device_t dev = iflib_get_dev(ctx);
3708 	if_t ifp = iflib_get_ifp(ctx);
3709 	int error = 0;
3710 	u32 pmc, ctrl, ctrl_ext, rctl;
3711 	u16 status;
3712 
3713 	if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
3714 		return;
3715 
3716 	/*
3717 	 * Determine type of Wakeup: note that wol
3718 	 * is set with all bits on by default.
3719 	 */
3720 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
3721 		adapter->wol &= ~E1000_WUFC_MAG;
3722 
3723 	if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
3724 		adapter->wol &= ~E1000_WUFC_EX;
3725 
3726 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
3727 		adapter->wol &= ~E1000_WUFC_MC;
3728 	else {
3729 		rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3730 		rctl |= E1000_RCTL_MPE;
3731 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3732 	}
3733 
3734 	if (!(adapter->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
3735 		goto pme;
3736 
3737 	/* Advertise the wakeup capability */
3738 	ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
3739 	ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
3740 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
3741 
3742 	/* Keep the laser running on Fiber adapters */
3743 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3744 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
3745 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3746 		ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
3747 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext);
3748 	}
3749 
3750 	if ((adapter->hw.mac.type == e1000_ich8lan) ||
3751 	    (adapter->hw.mac.type == e1000_pchlan) ||
3752 	    (adapter->hw.mac.type == e1000_ich9lan) ||
3753 	    (adapter->hw.mac.type == e1000_ich10lan))
3754 		e1000_suspend_workarounds_ich8lan(&adapter->hw);
3755 
3756 	if ( adapter->hw.mac.type >= e1000_pchlan) {
3757 		error = em_enable_phy_wakeup(adapter);
3758 		if (error)
3759 			goto pme;
3760 	} else {
3761 		/* Enable wakeup by the MAC */
3762 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
3763 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
3764 	}
3765 
3766 	if (adapter->hw.phy.type == e1000_phy_igp_3)
3767 		e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3768 
3769 pme:
3770 	status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
3771 	status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3772 	if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
3773 		status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3774 	pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
3775 
3776 	return;
3777 }
3778 
3779 /*
3780  * WOL in the newer chipset interfaces (pchlan)
3781  * require thing to be copied into the phy
3782  */
3783 static int
3784 em_enable_phy_wakeup(struct adapter *adapter)
3785 {
3786 	struct e1000_hw *hw = &adapter->hw;
3787 	u32 mreg, ret = 0;
3788 	u16 preg;
3789 
3790 	/* copy MAC RARs to PHY RARs */
3791 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
3792 
3793 	/* copy MAC MTA to PHY MTA */
3794 	for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
3795 		mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
3796 		e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
3797 		e1000_write_phy_reg(hw, BM_MTA(i) + 1,
3798 		    (u16)((mreg >> 16) & 0xFFFF));
3799 	}
3800 
3801 	/* configure PHY Rx Control register */
3802 	e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg);
3803 	mreg = E1000_READ_REG(hw, E1000_RCTL);
3804 	if (mreg & E1000_RCTL_UPE)
3805 		preg |= BM_RCTL_UPE;
3806 	if (mreg & E1000_RCTL_MPE)
3807 		preg |= BM_RCTL_MPE;
3808 	preg &= ~(BM_RCTL_MO_MASK);
3809 	if (mreg & E1000_RCTL_MO_3)
3810 		preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
3811 				<< BM_RCTL_MO_SHIFT);
3812 	if (mreg & E1000_RCTL_BAM)
3813 		preg |= BM_RCTL_BAM;
3814 	if (mreg & E1000_RCTL_PMCF)
3815 		preg |= BM_RCTL_PMCF;
3816 	mreg = E1000_READ_REG(hw, E1000_CTRL);
3817 	if (mreg & E1000_CTRL_RFCE)
3818 		preg |= BM_RCTL_RFCE;
3819 	e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg);
3820 
3821 	/* enable PHY wakeup in MAC register */
3822 	E1000_WRITE_REG(hw, E1000_WUC,
3823 	    E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
3824 	E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol);
3825 
3826 	/* configure and enable PHY wakeup in PHY registers */
3827 	e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol);
3828 	e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
3829 
3830 	/* activate PHY wakeup */
3831 	ret = hw->phy.ops.acquire(hw);
3832 	if (ret) {
3833 		printf("Could not acquire PHY\n");
3834 		return ret;
3835 	}
3836 	e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3837 	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
3838 	ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
3839 	if (ret) {
3840 		printf("Could not read PHY page 769\n");
3841 		goto out;
3842 	}
3843 	preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
3844 	ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
3845 	if (ret)
3846 		printf("Could not set PHY Host Wakeup bit\n");
3847 out:
3848 	hw->phy.ops.release(hw);
3849 
3850 	return ret;
3851 }
3852 
3853 static void
3854 em_if_led_func(if_ctx_t ctx, int onoff)
3855 {
3856 	struct adapter *adapter = iflib_get_softc(ctx);
3857 
3858 	if (onoff) {
3859 		e1000_setup_led(&adapter->hw);
3860 		e1000_led_on(&adapter->hw);
3861 	} else {
3862 		e1000_led_off(&adapter->hw);
3863 		e1000_cleanup_led(&adapter->hw);
3864 	}
3865 }
3866 
3867 /*
3868  * Disable the L0S and L1 LINK states
3869  */
3870 static void
3871 em_disable_aspm(struct adapter *adapter)
3872 {
3873 	int base, reg;
3874 	u16 link_cap,link_ctrl;
3875 	device_t dev = adapter->dev;
3876 
3877 	switch (adapter->hw.mac.type) {
3878 	case e1000_82573:
3879 	case e1000_82574:
3880 	case e1000_82583:
3881 		break;
3882 	default:
3883 		return;
3884 	}
3885 	if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
3886 		return;
3887 	reg = base + PCIER_LINK_CAP;
3888 	link_cap = pci_read_config(dev, reg, 2);
3889 	if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
3890 		return;
3891 	reg = base + PCIER_LINK_CTL;
3892 	link_ctrl = pci_read_config(dev, reg, 2);
3893 	link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
3894 	pci_write_config(dev, reg, link_ctrl, 2);
3895 	return;
3896 }
3897 
3898 /**********************************************************************
3899  *
3900  *  Update the board statistics counters.
3901  *
3902  **********************************************************************/
3903 static void
3904 em_update_stats_counters(struct adapter *adapter)
3905 {
3906 
3907 	if(adapter->hw.phy.media_type == e1000_media_type_copper ||
3908 	   (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3909 		adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3910 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3911 	}
3912 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3913 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3914 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3915 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3916 
3917 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3918 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3919 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3920 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3921 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3922 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3923 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3924 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3925 	/*
3926 	 ** For watchdog management we need to know if we have been
3927 	 ** paused during the last interval, so capture that here.
3928 	*/
3929 	adapter->shared->isc_pause_frames = adapter->stats.xoffrxc;
3930 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3931 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3932 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3933 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3934 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3935 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3936 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3937 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3938 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3939 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3940 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3941 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3942 
3943 	/* For the 64-bit byte counters the low dword must be read first. */
3944 	/* Both registers clear on the read of the high dword */
3945 
3946 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) +
3947 	    ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32);
3948 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) +
3949 	    ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32);
3950 
3951 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3952 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3953 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3954 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3955 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3956 
3957 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3958 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3959 
3960 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3961 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3962 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3963 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3964 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3965 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3966 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3967 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3968 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3969 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3970 
3971 	/* Interrupt Counts */
3972 
3973 	adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC);
3974 	adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC);
3975 	adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC);
3976 	adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC);
3977 	adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC);
3978 	adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC);
3979 	adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC);
3980 	adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC);
3981 	adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC);
3982 
3983 	if (adapter->hw.mac.type >= e1000_82543) {
3984 		adapter->stats.algnerrc +=
3985 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3986 		adapter->stats.rxerrc +=
3987 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3988 		adapter->stats.tncrs +=
3989 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3990 		adapter->stats.cexterr +=
3991 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3992 		adapter->stats.tsctc +=
3993 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3994 		adapter->stats.tsctfc +=
3995 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3996 	}
3997 }
3998 
3999 static uint64_t
4000 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4001 {
4002 	struct adapter *adapter = iflib_get_softc(ctx);
4003 	struct ifnet *ifp = iflib_get_ifp(ctx);
4004 
4005 	switch (cnt) {
4006 	case IFCOUNTER_COLLISIONS:
4007 		return (adapter->stats.colc);
4008 	case IFCOUNTER_IERRORS:
4009 		return (adapter->dropped_pkts + adapter->stats.rxerrc +
4010 		    adapter->stats.crcerrs + adapter->stats.algnerrc +
4011 		    adapter->stats.ruc + adapter->stats.roc +
4012 		    adapter->stats.mpc + adapter->stats.cexterr);
4013 	case IFCOUNTER_OERRORS:
4014 		return (adapter->stats.ecol + adapter->stats.latecol +
4015 		    adapter->watchdog_events);
4016 	default:
4017 		return (if_get_counter_default(ifp, cnt));
4018 	}
4019 }
4020 
4021 /* Export a single 32-bit register via a read-only sysctl. */
4022 static int
4023 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4024 {
4025 	struct adapter *adapter;
4026 	u_int val;
4027 
4028 	adapter = oidp->oid_arg1;
4029 	val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
4030 	return (sysctl_handle_int(oidp, &val, 0, req));
4031 }
4032 
4033 /*
4034  * Add sysctl variables, one per statistic, to the system.
4035  */
4036 static void
4037 em_add_hw_stats(struct adapter *adapter)
4038 {
4039 	device_t dev = iflib_get_dev(adapter->ctx);
4040 	struct em_tx_queue *tx_que = adapter->tx_queues;
4041 	struct em_rx_queue *rx_que = adapter->rx_queues;
4042 
4043 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4044 	struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4045 	struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4046 	struct e1000_hw_stats *stats = &adapter->stats;
4047 
4048 	struct sysctl_oid *stat_node, *queue_node, *int_node;
4049 	struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4050 
4051 #define QUEUE_NAME_LEN 32
4052 	char namebuf[QUEUE_NAME_LEN];
4053 
4054 	/* Driver Statistics */
4055 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4056 			CTLFLAG_RD, &adapter->dropped_pkts,
4057 			"Driver dropped packets");
4058 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4059 			CTLFLAG_RD, &adapter->link_irq,
4060 			"Link MSI-X IRQ Handled");
4061 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4062 			CTLFLAG_RD, &adapter->rx_overruns,
4063 			"RX overruns");
4064 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4065 			CTLFLAG_RD, &adapter->watchdog_events,
4066 			"Watchdog timeouts");
4067 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4068 			CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_CTRL,
4069 			em_sysctl_reg_handler, "IU",
4070 			"Device Control Register");
4071 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4072 			CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_RCTL,
4073 			em_sysctl_reg_handler, "IU",
4074 			"Receiver Control Register");
4075 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4076 			CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
4077 			"Flow Control High Watermark");
4078 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4079 			CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
4080 			"Flow Control Low Watermark");
4081 
4082 	for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
4083 		struct tx_ring *txr = &tx_que->txr;
4084 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4085 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4086 					    CTLFLAG_RD, NULL, "TX Queue Name");
4087 		queue_list = SYSCTL_CHILDREN(queue_node);
4088 
4089 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4090 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
4091 				E1000_TDH(txr->me),
4092 				em_sysctl_reg_handler, "IU",
4093 				"Transmit Descriptor Head");
4094 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4095 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
4096 				E1000_TDT(txr->me),
4097 				em_sysctl_reg_handler, "IU",
4098 				"Transmit Descriptor Tail");
4099 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4100 				CTLFLAG_RD, &txr->tx_irq,
4101 				"Queue MSI-X Transmit Interrupts");
4102 	}
4103 
4104 	for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) {
4105 		struct rx_ring *rxr = &rx_que->rxr;
4106 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4107 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4108 					    CTLFLAG_RD, NULL, "RX Queue Name");
4109 		queue_list = SYSCTL_CHILDREN(queue_node);
4110 
4111 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4112 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
4113 				E1000_RDH(rxr->me),
4114 				em_sysctl_reg_handler, "IU",
4115 				"Receive Descriptor Head");
4116 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4117 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
4118 				E1000_RDT(rxr->me),
4119 				em_sysctl_reg_handler, "IU",
4120 				"Receive Descriptor Tail");
4121 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
4122 				CTLFLAG_RD, &rxr->rx_irq,
4123 				"Queue MSI-X Receive Interrupts");
4124 	}
4125 
4126 	/* MAC stats get their own sub node */
4127 
4128 	stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
4129 				    CTLFLAG_RD, NULL, "Statistics");
4130 	stat_list = SYSCTL_CHILDREN(stat_node);
4131 
4132 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
4133 			CTLFLAG_RD, &stats->ecol,
4134 			"Excessive collisions");
4135 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
4136 			CTLFLAG_RD, &stats->scc,
4137 			"Single collisions");
4138 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
4139 			CTLFLAG_RD, &stats->mcc,
4140 			"Multiple collisions");
4141 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
4142 			CTLFLAG_RD, &stats->latecol,
4143 			"Late collisions");
4144 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
4145 			CTLFLAG_RD, &stats->colc,
4146 			"Collision Count");
4147 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
4148 			CTLFLAG_RD, &adapter->stats.symerrs,
4149 			"Symbol Errors");
4150 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
4151 			CTLFLAG_RD, &adapter->stats.sec,
4152 			"Sequence Errors");
4153 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
4154 			CTLFLAG_RD, &adapter->stats.dc,
4155 			"Defer Count");
4156 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
4157 			CTLFLAG_RD, &adapter->stats.mpc,
4158 			"Missed Packets");
4159 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
4160 			CTLFLAG_RD, &adapter->stats.rnbc,
4161 			"Receive No Buffers");
4162 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
4163 			CTLFLAG_RD, &adapter->stats.ruc,
4164 			"Receive Undersize");
4165 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
4166 			CTLFLAG_RD, &adapter->stats.rfc,
4167 			"Fragmented Packets Received ");
4168 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
4169 			CTLFLAG_RD, &adapter->stats.roc,
4170 			"Oversized Packets Received");
4171 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
4172 			CTLFLAG_RD, &adapter->stats.rjc,
4173 			"Recevied Jabber");
4174 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
4175 			CTLFLAG_RD, &adapter->stats.rxerrc,
4176 			"Receive Errors");
4177 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
4178 			CTLFLAG_RD, &adapter->stats.crcerrs,
4179 			"CRC errors");
4180 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
4181 			CTLFLAG_RD, &adapter->stats.algnerrc,
4182 			"Alignment Errors");
4183 	/* On 82575 these are collision counts */
4184 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
4185 			CTLFLAG_RD, &adapter->stats.cexterr,
4186 			"Collision/Carrier extension errors");
4187 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
4188 			CTLFLAG_RD, &adapter->stats.xonrxc,
4189 			"XON Received");
4190 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
4191 			CTLFLAG_RD, &adapter->stats.xontxc,
4192 			"XON Transmitted");
4193 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
4194 			CTLFLAG_RD, &adapter->stats.xoffrxc,
4195 			"XOFF Received");
4196 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
4197 			CTLFLAG_RD, &adapter->stats.xofftxc,
4198 			"XOFF Transmitted");
4199 
4200 	/* Packet Reception Stats */
4201 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
4202 			CTLFLAG_RD, &adapter->stats.tpr,
4203 			"Total Packets Received ");
4204 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
4205 			CTLFLAG_RD, &adapter->stats.gprc,
4206 			"Good Packets Received");
4207 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
4208 			CTLFLAG_RD, &adapter->stats.bprc,
4209 			"Broadcast Packets Received");
4210 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
4211 			CTLFLAG_RD, &adapter->stats.mprc,
4212 			"Multicast Packets Received");
4213 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
4214 			CTLFLAG_RD, &adapter->stats.prc64,
4215 			"64 byte frames received ");
4216 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
4217 			CTLFLAG_RD, &adapter->stats.prc127,
4218 			"65-127 byte frames received");
4219 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
4220 			CTLFLAG_RD, &adapter->stats.prc255,
4221 			"128-255 byte frames received");
4222 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
4223 			CTLFLAG_RD, &adapter->stats.prc511,
4224 			"256-511 byte frames received");
4225 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
4226 			CTLFLAG_RD, &adapter->stats.prc1023,
4227 			"512-1023 byte frames received");
4228 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
4229 			CTLFLAG_RD, &adapter->stats.prc1522,
4230 			"1023-1522 byte frames received");
4231 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
4232 			CTLFLAG_RD, &adapter->stats.gorc,
4233 			"Good Octets Received");
4234 
4235 	/* Packet Transmission Stats */
4236 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
4237 			CTLFLAG_RD, &adapter->stats.gotc,
4238 			"Good Octets Transmitted");
4239 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
4240 			CTLFLAG_RD, &adapter->stats.tpt,
4241 			"Total Packets Transmitted");
4242 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
4243 			CTLFLAG_RD, &adapter->stats.gptc,
4244 			"Good Packets Transmitted");
4245 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
4246 			CTLFLAG_RD, &adapter->stats.bptc,
4247 			"Broadcast Packets Transmitted");
4248 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
4249 			CTLFLAG_RD, &adapter->stats.mptc,
4250 			"Multicast Packets Transmitted");
4251 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
4252 			CTLFLAG_RD, &adapter->stats.ptc64,
4253 			"64 byte frames transmitted ");
4254 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
4255 			CTLFLAG_RD, &adapter->stats.ptc127,
4256 			"65-127 byte frames transmitted");
4257 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
4258 			CTLFLAG_RD, &adapter->stats.ptc255,
4259 			"128-255 byte frames transmitted");
4260 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
4261 			CTLFLAG_RD, &adapter->stats.ptc511,
4262 			"256-511 byte frames transmitted");
4263 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
4264 			CTLFLAG_RD, &adapter->stats.ptc1023,
4265 			"512-1023 byte frames transmitted");
4266 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
4267 			CTLFLAG_RD, &adapter->stats.ptc1522,
4268 			"1024-1522 byte frames transmitted");
4269 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
4270 			CTLFLAG_RD, &adapter->stats.tsctc,
4271 			"TSO Contexts Transmitted");
4272 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
4273 			CTLFLAG_RD, &adapter->stats.tsctfc,
4274 			"TSO Contexts Failed");
4275 
4276 
4277 	/* Interrupt Stats */
4278 
4279 	int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
4280 				    CTLFLAG_RD, NULL, "Interrupt Statistics");
4281 	int_list = SYSCTL_CHILDREN(int_node);
4282 
4283 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
4284 			CTLFLAG_RD, &adapter->stats.iac,
4285 			"Interrupt Assertion Count");
4286 
4287 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
4288 			CTLFLAG_RD, &adapter->stats.icrxptc,
4289 			"Interrupt Cause Rx Pkt Timer Expire Count");
4290 
4291 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
4292 			CTLFLAG_RD, &adapter->stats.icrxatc,
4293 			"Interrupt Cause Rx Abs Timer Expire Count");
4294 
4295 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
4296 			CTLFLAG_RD, &adapter->stats.ictxptc,
4297 			"Interrupt Cause Tx Pkt Timer Expire Count");
4298 
4299 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
4300 			CTLFLAG_RD, &adapter->stats.ictxatc,
4301 			"Interrupt Cause Tx Abs Timer Expire Count");
4302 
4303 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
4304 			CTLFLAG_RD, &adapter->stats.ictxqec,
4305 			"Interrupt Cause Tx Queue Empty Count");
4306 
4307 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
4308 			CTLFLAG_RD, &adapter->stats.ictxqmtc,
4309 			"Interrupt Cause Tx Queue Min Thresh Count");
4310 
4311 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4312 			CTLFLAG_RD, &adapter->stats.icrxdmtc,
4313 			"Interrupt Cause Rx Desc Min Thresh Count");
4314 
4315 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4316 			CTLFLAG_RD, &adapter->stats.icrxoc,
4317 			"Interrupt Cause Receiver Overrun Count");
4318 }
4319 
4320 /**********************************************************************
4321  *
4322  *  This routine provides a way to dump out the adapter eeprom,
4323  *  often a useful debug/service tool. This only dumps the first
4324  *  32 words, stuff that matters is in that extent.
4325  *
4326  **********************************************************************/
4327 static int
4328 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4329 {
4330 	struct adapter *adapter = (struct adapter *)arg1;
4331 	int error;
4332 	int result;
4333 
4334 	result = -1;
4335 	error = sysctl_handle_int(oidp, &result, 0, req);
4336 
4337 	if (error || !req->newptr)
4338 		return (error);
4339 
4340 	/*
4341 	 * This value will cause a hex dump of the
4342 	 * first 32 16-bit words of the EEPROM to
4343 	 * the screen.
4344 	 */
4345 	if (result == 1)
4346 		em_print_nvm_info(adapter);
4347 
4348 	return (error);
4349 }
4350 
4351 static void
4352 em_print_nvm_info(struct adapter *adapter)
4353 {
4354 	u16 eeprom_data;
4355 	int i, j, row = 0;
4356 
4357 	/* Its a bit crude, but it gets the job done */
4358 	printf("\nInterface EEPROM Dump:\n");
4359 	printf("Offset\n0x0000  ");
4360 	for (i = 0, j = 0; i < 32; i++, j++) {
4361 		if (j == 8) { /* Make the offset block */
4362 			j = 0; ++row;
4363 			printf("\n0x00%x0  ",row);
4364 		}
4365 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4366 		printf("%04x ", eeprom_data);
4367 	}
4368 	printf("\n");
4369 }
4370 
4371 static int
4372 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4373 {
4374 	struct em_int_delay_info *info;
4375 	struct adapter *adapter;
4376 	u32 regval;
4377 	int error, usecs, ticks;
4378 
4379 	info = (struct em_int_delay_info *) arg1;
4380 	usecs = info->value;
4381 	error = sysctl_handle_int(oidp, &usecs, 0, req);
4382 	if (error != 0 || req->newptr == NULL)
4383 		return (error);
4384 	if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4385 		return (EINVAL);
4386 	info->value = usecs;
4387 	ticks = EM_USECS_TO_TICKS(usecs);
4388 	if (info->offset == E1000_ITR)	/* units are 256ns here */
4389 		ticks *= 4;
4390 
4391 	adapter = info->adapter;
4392 
4393 	regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
4394 	regval = (regval & ~0xffff) | (ticks & 0xffff);
4395 	/* Handle a few special cases. */
4396 	switch (info->offset) {
4397 	case E1000_RDTR:
4398 		break;
4399 	case E1000_TIDV:
4400 		if (ticks == 0) {
4401 			adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
4402 			/* Don't write 0 into the TIDV register. */
4403 			regval++;
4404 		} else
4405 			adapter->txd_cmd |= E1000_TXD_CMD_IDE;
4406 		break;
4407 	}
4408 	E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
4409 	return (0);
4410 }
4411 
4412 static void
4413 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
4414 	const char *description, struct em_int_delay_info *info,
4415 	int offset, int value)
4416 {
4417 	info->adapter = adapter;
4418 	info->offset = offset;
4419 	info->value = value;
4420 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
4421 	    SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
4422 	    OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
4423 	    info, 0, em_sysctl_int_delay, "I", description);
4424 }
4425 
4426 /*
4427  * Set flow control using sysctl:
4428  * Flow control values:
4429  *      0 - off
4430  *      1 - rx pause
4431  *      2 - tx pause
4432  *      3 - full
4433  */
4434 static int
4435 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4436 {
4437 	int error;
4438 	static int input = 3; /* default is full */
4439 	struct adapter	*adapter = (struct adapter *) arg1;
4440 
4441 	error = sysctl_handle_int(oidp, &input, 0, req);
4442 
4443 	if ((error) || (req->newptr == NULL))
4444 		return (error);
4445 
4446 	if (input == adapter->fc) /* no change? */
4447 		return (error);
4448 
4449 	switch (input) {
4450 	case e1000_fc_rx_pause:
4451 	case e1000_fc_tx_pause:
4452 	case e1000_fc_full:
4453 	case e1000_fc_none:
4454 		adapter->hw.fc.requested_mode = input;
4455 		adapter->fc = input;
4456 		break;
4457 	default:
4458 		/* Do nothing */
4459 		return (error);
4460 	}
4461 
4462 	adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
4463 	e1000_force_mac_fc(&adapter->hw);
4464 	return (error);
4465 }
4466 
4467 /*
4468  * Manage Energy Efficient Ethernet:
4469  * Control values:
4470  *     0/1 - enabled/disabled
4471  */
4472 static int
4473 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
4474 {
4475 	struct adapter *adapter = (struct adapter *) arg1;
4476 	int error, value;
4477 
4478 	value = adapter->hw.dev_spec.ich8lan.eee_disable;
4479 	error = sysctl_handle_int(oidp, &value, 0, req);
4480 	if (error || req->newptr == NULL)
4481 		return (error);
4482 	adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0);
4483 	em_if_init(adapter->ctx);
4484 
4485 	return (0);
4486 }
4487 
4488 static int
4489 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4490 {
4491 	struct adapter *adapter;
4492 	int error;
4493 	int result;
4494 
4495 	result = -1;
4496 	error = sysctl_handle_int(oidp, &result, 0, req);
4497 
4498 	if (error || !req->newptr)
4499 		return (error);
4500 
4501 	if (result == 1) {
4502 		adapter = (struct adapter *) arg1;
4503 		em_print_debug_info(adapter);
4504 	}
4505 
4506 	return (error);
4507 }
4508 
4509 static int
4510 em_get_rs(SYSCTL_HANDLER_ARGS)
4511 {
4512 	struct adapter *adapter = (struct adapter *) arg1;
4513 	int error;
4514 	int result;
4515 
4516 	result = 0;
4517 	error = sysctl_handle_int(oidp, &result, 0, req);
4518 
4519 	if (error || !req->newptr || result != 1)
4520 		return (error);
4521 	em_dump_rs(adapter);
4522 
4523 	return (error);
4524 }
4525 
4526 static void
4527 em_if_debug(if_ctx_t ctx)
4528 {
4529 	em_dump_rs(iflib_get_softc(ctx));
4530 }
4531 
4532 /*
4533  * This routine is meant to be fluid, add whatever is
4534  * needed for debugging a problem.  -jfv
4535  */
4536 static void
4537 em_print_debug_info(struct adapter *adapter)
4538 {
4539 	device_t dev = iflib_get_dev(adapter->ctx);
4540 	struct ifnet *ifp = iflib_get_ifp(adapter->ctx);
4541 	struct tx_ring *txr = &adapter->tx_queues->txr;
4542 	struct rx_ring *rxr = &adapter->rx_queues->rxr;
4543 
4544 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
4545 		printf("Interface is RUNNING ");
4546 	else
4547 		printf("Interface is NOT RUNNING\n");
4548 
4549 	if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
4550 		printf("and INACTIVE\n");
4551 	else
4552 		printf("and ACTIVE\n");
4553 
4554 	for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
4555 		device_printf(dev, "TX Queue %d ------\n", i);
4556 		device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4557 			E1000_READ_REG(&adapter->hw, E1000_TDH(i)),
4558 			E1000_READ_REG(&adapter->hw, E1000_TDT(i)));
4559 
4560 	}
4561 	for (int j=0; j < adapter->rx_num_queues; j++, rxr++) {
4562 		device_printf(dev, "RX Queue %d ------\n", j);
4563 		device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4564 			E1000_READ_REG(&adapter->hw, E1000_RDH(j)),
4565 			E1000_READ_REG(&adapter->hw, E1000_RDT(j)));
4566 	}
4567 }
4568 
4569 /*
4570  * 82574 only:
4571  * Write a new value to the EEPROM increasing the number of MSI-X
4572  * vectors from 3 to 5, for proper multiqueue support.
4573  */
4574 static void
4575 em_enable_vectors_82574(if_ctx_t ctx)
4576 {
4577 	struct adapter *adapter = iflib_get_softc(ctx);
4578 	struct e1000_hw *hw = &adapter->hw;
4579 	device_t dev = iflib_get_dev(ctx);
4580 	u16 edata;
4581 
4582 	e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4583 	if (bootverbose)
4584 		device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
4585 	if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
4586 		device_printf(dev, "Writing to eeprom: increasing "
4587 		    "reported MSI-X vectors from 3 to 5...\n");
4588 		edata &= ~(EM_NVM_MSIX_N_MASK);
4589 		edata |= 4 << EM_NVM_MSIX_N_SHIFT;
4590 		e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4591 		e1000_update_nvm_checksum(hw);
4592 		device_printf(dev, "Writing to eeprom: done\n");
4593 	}
4594 }
4595