1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include "if_em.h" 30 #include <sys/sbuf.h> 31 #include <machine/_inttypes.h> 32 33 #define em_mac_min e1000_82571 34 #define igb_mac_min e1000_82575 35 36 /********************************************************************* 37 * Driver version: 38 *********************************************************************/ 39 static const char em_driver_version[] = "7.7.8-fbsd"; 40 static const char igb_driver_version[] = "2.5.19-fbsd"; 41 42 /********************************************************************* 43 * PCI Device ID Table 44 * 45 * Used by probe to select devices to load on 46 * Last field stores an index into e1000_strings 47 * Last entry must be all 0s 48 * 49 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index } 50 *********************************************************************/ 51 52 static const pci_vendor_info_t em_vendor_info_array[] = 53 { 54 /* Intel(R) - lem-class legacy devices */ 55 PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) Legacy PRO/1000 MT 82540EM"), 56 PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) Legacy PRO/1000 MT 82540EM (LOM)"), 57 PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) Legacy PRO/1000 MT 82540EP"), 58 PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) Legacy PRO/1000 MT 82540EP (LOM)"), 59 PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) Legacy PRO/1000 MT 82540EP (Mobile)"), 60 61 PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) Legacy PRO/1000 MT 82541EI (Copper)"), 62 PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) Legacy PRO/1000 82541ER"), 63 PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) Legacy PRO/1000 MT 82541ER"), 64 PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541EI (Mobile)"), 65 PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) Legacy PRO/1000 MT 82541GI"), 66 PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) Legacy PRO/1000 GT 82541PI"), 67 PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541GI (Mobile)"), 68 69 PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) Legacy PRO/1000 82542 (Fiber)"), 70 71 PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) Legacy PRO/1000 F 82543GC (Fiber)"), 72 PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) Legacy PRO/1000 T 82543GC (Copper)"), 73 74 PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) Legacy PRO/1000 XT 82544EI (Copper)"), 75 PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) Legacy PRO/1000 XF 82544EI (Fiber)"), 76 PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) Legacy PRO/1000 T 82544GC (Copper)"), 77 PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) Legacy PRO/1000 XT 82544GC (LOM)"), 78 79 PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545EM (Copper)"), 80 PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545EM (Fiber)"), 81 PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545GM (Copper)"), 82 PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545GM (Fiber)"), 83 PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) Legacy PRO/1000 MB 82545GM (SERDES)"), 84 85 PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Copper)"), 86 PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546EB (Fiber)"), 87 PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Quad Copper"), 88 PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546GB (Copper)"), 89 PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546GB (Fiber)"), 90 PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) Legacy PRO/1000 MB 82546GB (SERDES)"), 91 PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) Legacy PRO/1000 P 82546GB (PCIe)"), 92 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"), 93 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"), 94 95 PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) Legacy PRO/1000 CT 82547EI"), 96 PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) Legacy PRO/1000 CT 82547EI (Mobile)"), 97 PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) Legacy PRO/1000 CT 82547GI"), 98 99 /* Intel(R) - em-class devices */ 100 PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Copper)"), 101 PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 PF 82571EB/82571GB (Fiber)"), 102 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 PB 82571EB (SERDES)"), 103 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 82571EB (Dual Mezzanine)"), 104 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 82571EB (Quad Mezzanine)"), 105 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"), 106 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"), 107 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 PF 82571EB (Quad Fiber)"), 108 PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571PT (Quad Copper)"), 109 PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 PT 82572EI (Copper)"), 110 PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 PT 82572EI (Copper)"), 111 PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 PF 82572EI (Fiber)"), 112 PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 82572EI (SERDES)"), 113 PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 82573E (Copper)"), 114 PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 82573E AMT (Copper)"), 115 PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 82573L"), 116 PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) 82583V"), 117 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) 80003ES2LAN (Copper)"), 118 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) 80003ES2LAN (SERDES)"), 119 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) 80003ES2LAN (Dual Copper)"), 120 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) 80003ES2LAN (Dual SERDES)"), 121 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) 82566MM ICH8 AMT (Mobile)"), 122 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) 82566DM ICH8 AMT"), 123 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) 82566DC ICH8"), 124 PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) 82562V ICH8"), 125 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) 82562GT ICH8"), 126 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) 82562G ICH8"), 127 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) 82566MC ICH8"), 128 PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) 82567V-3 ICH8"), 129 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) 82567LM ICH9 AMT"), 130 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) 82566DM-2 ICH9 AMT"), 131 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) 82566DC-2 ICH9"), 132 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) 82567LF ICH9"), 133 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) 82567V ICH9"), 134 PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) 82562V-2 ICH9"), 135 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) 82562GT-2 ICH9"), 136 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) 82562G-2 ICH9"), 137 PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) 82567LM-4 ICH9"), 138 PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) Gigabit CT 82574L"), 139 PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) 82574L-Apple"), 140 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) 82567LM-2 ICH10"), 141 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) 82567LF-2 ICH10"), 142 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) 82567V-2 ICH10"), 143 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) 82567LM-3 ICH10"), 144 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) 82567LF-3 ICH10"), 145 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) 82567V-4 ICH10"), 146 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) 82577LM"), 147 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) 82577LC"), 148 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) 82578DM"), 149 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) 82578DC"), 150 PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) 82579LM"), 151 PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) 82579V"), 152 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) I217-LM LPT"), 153 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) I217-V LPT"), 154 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) I218-LM LPTLP"), 155 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) I218-V LPTLP"), 156 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) I218-LM (2)"), 157 PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) I218-V (2)"), 158 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) I218-LM (3)"), 159 PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) I218-V (3)"), 160 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) I219-LM SPT"), 161 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) I219-V SPT"), 162 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) I219-LM SPT-H(2)"), 163 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) I219-V SPT-H(2)"), 164 PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) I219-LM LBG(3)"), 165 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) I219-LM SPT(4)"), 166 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) I219-V SPT(4)"), 167 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) I219-LM SPT(5)"), 168 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) I219-V SPT(5)"), 169 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) I219-LM CNP(6)"), 170 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) I219-V CNP(6)"), 171 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) I219-LM CNP(7)"), 172 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) I219-V CNP(7)"), 173 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) I219-LM ICP(8)"), 174 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) I219-V ICP(8)"), 175 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) I219-LM ICP(9)"), 176 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) I219-V ICP(9)"), 177 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10, "Intel(R) I219-LM CMP(10)"), 178 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10, "Intel(R) I219-V CMP(10)"), 179 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11, "Intel(R) I219-LM CMP(11)"), 180 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11, "Intel(R) I219-V CMP(11)"), 181 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12, "Intel(R) I219-LM CMP(12)"), 182 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12, "Intel(R) I219-V CMP(12)"), 183 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM13, "Intel(R) I219-LM TGP(13)"), 184 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V13, "Intel(R) I219-V TGP(13)"), 185 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM14, "Intel(R) I219-LM TGP(14)"), 186 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V14, "Intel(R) I219-V GTP(14)"), 187 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM15, "Intel(R) I219-LM TGP(15)"), 188 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V15, "Intel(R) I219-V TGP(15)"), 189 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM16, "Intel(R) I219-LM ADL(16)"), 190 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V16, "Intel(R) I219-V ADL(16)"), 191 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM17, "Intel(R) I219-LM ADL(17)"), 192 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V17, "Intel(R) I219-V ADL(17)"), 193 PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM18, "Intel(R) I219-LM MTP(18)"), 194 PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V18, "Intel(R) I219-V MTP(18)"), 195 PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM19, "Intel(R) I219-LM MTP(19)"), 196 PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V19, "Intel(R) I219-V MTP(19)"), 197 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM20, "Intel(R) I219-LM LNL(20)"), 198 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V20, "Intel(R) I219-V LNL(20)"), 199 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM21, "Intel(R) I219-LM LNL(21)"), 200 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V21, "Intel(R) I219-V LNL(21)"), 201 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM22, "Intel(R) I219-LM RPL(22)"), 202 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V22, "Intel(R) I219-V RPL(22)"), 203 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM23, "Intel(R) I219-LM RPL(23)"), 204 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V23, "Intel(R) I219-V RPL(23)"), 205 PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_LM24, "Intel(R) I219-LM ARL(24)"), 206 PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_V24, "Intel(R) I219-V ARL(24)"), 207 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM25, "Intel(R) I219-LM PTP(25)"), 208 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V25, "Intel(R) I219-V PTP(25)"), 209 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM26, "Intel(R) I219-LM PTP(26)"), 210 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V26, "Intel(R) I219-V PTP(26)"), 211 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM27, "Intel(R) I219-LM PTP(27)"), 212 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V27, "Intel(R) I219-V PTP(27)"), 213 /* required last entry */ 214 PVID_END 215 }; 216 217 static const pci_vendor_info_t igb_vendor_info_array[] = 218 { 219 /* Intel(R) - igb-class devices */ 220 PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 82575EB (Copper)"), 221 PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 82575EB (SERDES)"), 222 PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 VT 82575GB (Quad Copper)"), 223 PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 82576"), 224 PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 82576NS"), 225 PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 82576NS (SERDES)"), 226 PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 EF 82576 (Dual Fiber)"), 227 PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 82576 (Dual SERDES)"), 228 PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 ET 82576 (Quad SERDES)"), 229 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 ET 82576 (Quad Copper)"), 230 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 ET(2) 82576 (Quad Copper)"), 231 PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 82576 Virtual Function"), 232 PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) I340 82580 (Copper)"), 233 PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) I340 82580 (Fiber)"), 234 PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) I340 82580 (SERDES)"), 235 PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) I340 82580 (SGMII)"), 236 PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) I340-T2 82580 (Dual Copper)"), 237 PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) I340-F4 82580 (Quad Fiber)"), 238 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) DH89XXCC (SERDES)"), 239 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) I347-AT4 DH89XXCC"), 240 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) DH89XXCC (SFP)"), 241 PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) DH89XXCC (Backplane)"), 242 PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) I350 (Copper)"), 243 PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) I350 (Fiber)"), 244 PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) I350 (SERDES)"), 245 PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) I350 (SGMII)"), 246 PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) I350 Virtual Function"), 247 PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) I210 (Copper)"), 248 PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) I210 IT (Copper)"), 249 PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) I210 (OEM)"), 250 PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) I210 Flashless (Copper)"), 251 PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) I210 Flashless (SERDES)"), 252 PVID(0x8086, E1000_DEV_ID_I210_SGMII_FLASHLESS, "Intel(R) I210 Flashless (SGMII)"), 253 PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) I210 (Fiber)"), 254 PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) I210 (SERDES)"), 255 PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) I210 (SGMII)"), 256 PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) I211 (Copper)"), 257 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) I354 (1.0 GbE Backplane)"), 258 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) I354 (2.5 GbE Backplane)"), 259 PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) I354 (SGMII)"), 260 /* required last entry */ 261 PVID_END 262 }; 263 264 /********************************************************************* 265 * Function prototypes 266 *********************************************************************/ 267 static void *em_register(device_t); 268 static void *igb_register(device_t); 269 static int em_if_attach_pre(if_ctx_t); 270 static int em_if_attach_post(if_ctx_t); 271 static int em_if_detach(if_ctx_t); 272 static int em_if_shutdown(if_ctx_t); 273 static int em_if_suspend(if_ctx_t); 274 static int em_if_resume(if_ctx_t); 275 276 static int em_if_tx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int, int); 277 static int em_if_rx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int, int); 278 static void em_if_queues_free(if_ctx_t); 279 280 static uint64_t em_if_get_counter(if_ctx_t, ift_counter); 281 static void em_if_init(if_ctx_t); 282 static void em_if_stop(if_ctx_t); 283 static void em_if_media_status(if_ctx_t, struct ifmediareq *); 284 static int em_if_media_change(if_ctx_t); 285 static int em_if_mtu_set(if_ctx_t, uint32_t); 286 static void em_if_timer(if_ctx_t, uint16_t); 287 static void em_if_vlan_register(if_ctx_t, u16); 288 static void em_if_vlan_unregister(if_ctx_t, u16); 289 static void em_if_watchdog_reset(if_ctx_t); 290 static bool em_if_needs_restart(if_ctx_t, enum iflib_restart_event); 291 292 static void em_identify_hardware(if_ctx_t); 293 static int em_allocate_pci_resources(if_ctx_t); 294 static void em_free_pci_resources(if_ctx_t); 295 static void em_reset(if_ctx_t); 296 static int em_setup_interface(if_ctx_t); 297 static int em_setup_msix(if_ctx_t); 298 299 static void em_initialize_transmit_unit(if_ctx_t); 300 static void em_initialize_receive_unit(if_ctx_t); 301 302 static void em_if_intr_enable(if_ctx_t); 303 static void em_if_intr_disable(if_ctx_t); 304 static void igb_if_intr_enable(if_ctx_t); 305 static void igb_if_intr_disable(if_ctx_t); 306 static int em_if_rx_queue_intr_enable(if_ctx_t, uint16_t); 307 static int em_if_tx_queue_intr_enable(if_ctx_t, uint16_t); 308 static int igb_if_rx_queue_intr_enable(if_ctx_t, uint16_t); 309 static int igb_if_tx_queue_intr_enable(if_ctx_t, uint16_t); 310 static void em_if_multi_set(if_ctx_t); 311 static void em_if_update_admin_status(if_ctx_t); 312 static void em_if_debug(if_ctx_t); 313 static void em_update_stats_counters(struct e1000_softc *); 314 static void em_add_hw_stats(struct e1000_softc *); 315 static int em_if_set_promisc(if_ctx_t, int); 316 static bool em_if_vlan_filter_capable(if_ctx_t); 317 static bool em_if_vlan_filter_used(if_ctx_t); 318 static void em_if_vlan_filter_enable(struct e1000_softc *); 319 static void em_if_vlan_filter_disable(struct e1000_softc *); 320 static void em_if_vlan_filter_write(struct e1000_softc *); 321 static void em_setup_vlan_hw_support(if_ctx_t ctx); 322 static int em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS); 323 static void em_print_nvm_info(struct e1000_softc *); 324 static void em_fw_version_locked(if_ctx_t); 325 static void em_sbuf_fw_version(struct e1000_fw_version *, struct sbuf *); 326 static void em_print_fw_version(struct e1000_softc *); 327 static int em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS); 328 static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS); 329 static int em_get_rs(SYSCTL_HANDLER_ARGS); 330 static void em_print_debug_info(struct e1000_softc *); 331 static int em_is_valid_ether_addr(u8 *); 332 static bool em_automask_tso(if_ctx_t); 333 static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS); 334 static void em_add_int_delay_sysctl(struct e1000_softc *, const char *, 335 const char *, struct em_int_delay_info *, int, int); 336 /* Management and WOL Support */ 337 static void em_init_manageability(struct e1000_softc *); 338 static void em_release_manageability(struct e1000_softc *); 339 static void em_get_hw_control(struct e1000_softc *); 340 static void em_release_hw_control(struct e1000_softc *); 341 static void em_get_wakeup(if_ctx_t); 342 static void em_enable_wakeup(if_ctx_t); 343 static int em_enable_phy_wakeup(struct e1000_softc *); 344 static void em_disable_aspm(struct e1000_softc *); 345 346 int em_intr(void *); 347 348 /* MSI-X handlers */ 349 static int em_if_msix_intr_assign(if_ctx_t, int); 350 static int em_msix_link(void *); 351 static void em_handle_link(void *); 352 353 static void em_enable_vectors_82574(if_ctx_t); 354 355 static int em_set_flowcntl(SYSCTL_HANDLER_ARGS); 356 static int em_sysctl_eee(SYSCTL_HANDLER_ARGS); 357 static void em_if_led_func(if_ctx_t, int); 358 359 static int em_get_regs(SYSCTL_HANDLER_ARGS); 360 361 static void lem_smartspeed(struct e1000_softc *); 362 static void igb_configure_queues(struct e1000_softc *); 363 static void em_flush_desc_rings(struct e1000_softc *); 364 365 366 /********************************************************************* 367 * FreeBSD Device Interface Entry Points 368 *********************************************************************/ 369 static device_method_t em_methods[] = { 370 /* Device interface */ 371 DEVMETHOD(device_register, em_register), 372 DEVMETHOD(device_probe, iflib_device_probe), 373 DEVMETHOD(device_attach, iflib_device_attach), 374 DEVMETHOD(device_detach, iflib_device_detach), 375 DEVMETHOD(device_shutdown, iflib_device_shutdown), 376 DEVMETHOD(device_suspend, iflib_device_suspend), 377 DEVMETHOD(device_resume, iflib_device_resume), 378 DEVMETHOD_END 379 }; 380 381 static device_method_t igb_methods[] = { 382 /* Device interface */ 383 DEVMETHOD(device_register, igb_register), 384 DEVMETHOD(device_probe, iflib_device_probe), 385 DEVMETHOD(device_attach, iflib_device_attach), 386 DEVMETHOD(device_detach, iflib_device_detach), 387 DEVMETHOD(device_shutdown, iflib_device_shutdown), 388 DEVMETHOD(device_suspend, iflib_device_suspend), 389 DEVMETHOD(device_resume, iflib_device_resume), 390 DEVMETHOD_END 391 }; 392 393 394 static driver_t em_driver = { 395 "em", em_methods, sizeof(struct e1000_softc), 396 }; 397 398 DRIVER_MODULE(em, pci, em_driver, 0, 0); 399 400 MODULE_DEPEND(em, pci, 1, 1, 1); 401 MODULE_DEPEND(em, ether, 1, 1, 1); 402 MODULE_DEPEND(em, iflib, 1, 1, 1); 403 404 IFLIB_PNP_INFO(pci, em, em_vendor_info_array); 405 406 static driver_t igb_driver = { 407 "igb", igb_methods, sizeof(struct e1000_softc), 408 }; 409 410 DRIVER_MODULE(igb, pci, igb_driver, 0, 0); 411 412 MODULE_DEPEND(igb, pci, 1, 1, 1); 413 MODULE_DEPEND(igb, ether, 1, 1, 1); 414 MODULE_DEPEND(igb, iflib, 1, 1, 1); 415 416 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array); 417 418 static device_method_t em_if_methods[] = { 419 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre), 420 DEVMETHOD(ifdi_attach_post, em_if_attach_post), 421 DEVMETHOD(ifdi_detach, em_if_detach), 422 DEVMETHOD(ifdi_shutdown, em_if_shutdown), 423 DEVMETHOD(ifdi_suspend, em_if_suspend), 424 DEVMETHOD(ifdi_resume, em_if_resume), 425 DEVMETHOD(ifdi_init, em_if_init), 426 DEVMETHOD(ifdi_stop, em_if_stop), 427 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign), 428 DEVMETHOD(ifdi_intr_enable, em_if_intr_enable), 429 DEVMETHOD(ifdi_intr_disable, em_if_intr_disable), 430 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc), 431 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc), 432 DEVMETHOD(ifdi_queues_free, em_if_queues_free), 433 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status), 434 DEVMETHOD(ifdi_multi_set, em_if_multi_set), 435 DEVMETHOD(ifdi_media_status, em_if_media_status), 436 DEVMETHOD(ifdi_media_change, em_if_media_change), 437 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set), 438 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc), 439 DEVMETHOD(ifdi_timer, em_if_timer), 440 DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset), 441 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register), 442 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister), 443 DEVMETHOD(ifdi_get_counter, em_if_get_counter), 444 DEVMETHOD(ifdi_led_func, em_if_led_func), 445 DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable), 446 DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable), 447 DEVMETHOD(ifdi_debug, em_if_debug), 448 DEVMETHOD(ifdi_needs_restart, em_if_needs_restart), 449 DEVMETHOD_END 450 }; 451 452 static driver_t em_if_driver = { 453 "em_if", em_if_methods, sizeof(struct e1000_softc) 454 }; 455 456 static device_method_t igb_if_methods[] = { 457 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre), 458 DEVMETHOD(ifdi_attach_post, em_if_attach_post), 459 DEVMETHOD(ifdi_detach, em_if_detach), 460 DEVMETHOD(ifdi_shutdown, em_if_shutdown), 461 DEVMETHOD(ifdi_suspend, em_if_suspend), 462 DEVMETHOD(ifdi_resume, em_if_resume), 463 DEVMETHOD(ifdi_init, em_if_init), 464 DEVMETHOD(ifdi_stop, em_if_stop), 465 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign), 466 DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable), 467 DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable), 468 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc), 469 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc), 470 DEVMETHOD(ifdi_queues_free, em_if_queues_free), 471 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status), 472 DEVMETHOD(ifdi_multi_set, em_if_multi_set), 473 DEVMETHOD(ifdi_media_status, em_if_media_status), 474 DEVMETHOD(ifdi_media_change, em_if_media_change), 475 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set), 476 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc), 477 DEVMETHOD(ifdi_timer, em_if_timer), 478 DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset), 479 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register), 480 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister), 481 DEVMETHOD(ifdi_get_counter, em_if_get_counter), 482 DEVMETHOD(ifdi_led_func, em_if_led_func), 483 DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable), 484 DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable), 485 DEVMETHOD(ifdi_debug, em_if_debug), 486 DEVMETHOD(ifdi_needs_restart, em_if_needs_restart), 487 DEVMETHOD_END 488 }; 489 490 static driver_t igb_if_driver = { 491 "igb_if", igb_if_methods, sizeof(struct e1000_softc) 492 }; 493 494 /********************************************************************* 495 * Tunable default values. 496 *********************************************************************/ 497 498 #define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000) 499 #define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024) 500 501 #define MAX_INTS_PER_SEC 8000 502 #define DEFAULT_ITR (1000000000/(MAX_INTS_PER_SEC * 256)) 503 504 /* Allow common code without TSO */ 505 #ifndef CSUM_TSO 506 #define CSUM_TSO 0 507 #endif 508 509 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 510 "EM driver parameters"); 511 512 static int em_disable_crc_stripping = 0; 513 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN, 514 &em_disable_crc_stripping, 0, "Disable CRC Stripping"); 515 516 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV); 517 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR); 518 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt, 519 0, "Default transmit interrupt delay in usecs"); 520 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt, 521 0, "Default receive interrupt delay in usecs"); 522 523 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV); 524 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV); 525 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN, 526 &em_tx_abs_int_delay_dflt, 0, 527 "Default transmit interrupt delay limit in usecs"); 528 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN, 529 &em_rx_abs_int_delay_dflt, 0, 530 "Default receive interrupt delay limit in usecs"); 531 532 static int em_smart_pwr_down = false; 533 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down, 534 0, "Set to true to leave smart power down enabled on newer adapters"); 535 536 static bool em_unsupported_tso = false; 537 SYSCTL_BOOL(_hw_em, OID_AUTO, unsupported_tso, CTLFLAG_RDTUN, 538 &em_unsupported_tso, 0, "Allow unsupported em(4) TSO configurations"); 539 540 /* Controls whether promiscuous also shows bad packets */ 541 static int em_debug_sbp = false; 542 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0, 543 "Show bad packets in promiscuous mode"); 544 545 /* Energy efficient ethernet - default to OFF */ 546 static int eee_setting = 1; 547 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0, 548 "Enable Energy Efficient Ethernet"); 549 550 /* 551 ** Tuneable Interrupt rate 552 */ 553 static int em_max_interrupt_rate = 8000; 554 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN, 555 &em_max_interrupt_rate, 0, "Maximum interrupts per second"); 556 557 /* Global used in WOL setup with multiport cards */ 558 static int global_quad_port_a = 0; 559 560 extern struct if_txrx igb_txrx; 561 extern struct if_txrx em_txrx; 562 extern struct if_txrx lem_txrx; 563 564 static struct if_shared_ctx em_sctx_init = { 565 .isc_magic = IFLIB_MAGIC, 566 .isc_q_align = PAGE_SIZE, 567 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 568 .isc_tx_maxsegsize = PAGE_SIZE, 569 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 570 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE, 571 .isc_rx_maxsize = MJUM9BYTES, 572 .isc_rx_nsegments = 1, 573 .isc_rx_maxsegsize = MJUM9BYTES, 574 .isc_nfl = 1, 575 .isc_nrxqs = 1, 576 .isc_ntxqs = 1, 577 .isc_admin_intrcnt = 1, 578 .isc_vendor_info = em_vendor_info_array, 579 .isc_driver_version = em_driver_version, 580 .isc_driver = &em_if_driver, 581 .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM, 582 583 .isc_nrxd_min = {EM_MIN_RXD}, 584 .isc_ntxd_min = {EM_MIN_TXD}, 585 .isc_nrxd_max = {EM_MAX_RXD}, 586 .isc_ntxd_max = {EM_MAX_TXD}, 587 .isc_nrxd_default = {EM_DEFAULT_RXD}, 588 .isc_ntxd_default = {EM_DEFAULT_TXD}, 589 }; 590 591 static struct if_shared_ctx igb_sctx_init = { 592 .isc_magic = IFLIB_MAGIC, 593 .isc_q_align = PAGE_SIZE, 594 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 595 .isc_tx_maxsegsize = PAGE_SIZE, 596 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 597 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE, 598 .isc_rx_maxsize = MJUM9BYTES, 599 .isc_rx_nsegments = 1, 600 .isc_rx_maxsegsize = MJUM9BYTES, 601 .isc_nfl = 1, 602 .isc_nrxqs = 1, 603 .isc_ntxqs = 1, 604 .isc_admin_intrcnt = 1, 605 .isc_vendor_info = igb_vendor_info_array, 606 .isc_driver_version = igb_driver_version, 607 .isc_driver = &igb_if_driver, 608 .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM, 609 610 .isc_nrxd_min = {EM_MIN_RXD}, 611 .isc_ntxd_min = {EM_MIN_TXD}, 612 .isc_nrxd_max = {IGB_MAX_RXD}, 613 .isc_ntxd_max = {IGB_MAX_TXD}, 614 .isc_nrxd_default = {EM_DEFAULT_RXD}, 615 .isc_ntxd_default = {EM_DEFAULT_TXD}, 616 }; 617 618 /***************************************************************** 619 * 620 * Dump Registers 621 * 622 ****************************************************************/ 623 #define IGB_REGS_LEN 739 624 625 static int em_get_regs(SYSCTL_HANDLER_ARGS) 626 { 627 struct e1000_softc *sc = (struct e1000_softc *)arg1; 628 struct e1000_hw *hw = &sc->hw; 629 struct sbuf *sb; 630 u32 *regs_buff; 631 int rc; 632 633 regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK); 634 memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32)); 635 636 rc = sysctl_wire_old_buffer(req, 0); 637 MPASS(rc == 0); 638 if (rc != 0) { 639 free(regs_buff, M_DEVBUF); 640 return (rc); 641 } 642 643 sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req); 644 MPASS(sb != NULL); 645 if (sb == NULL) { 646 free(regs_buff, M_DEVBUF); 647 return (ENOMEM); 648 } 649 650 /* General Registers */ 651 regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL); 652 regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS); 653 regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT); 654 regs_buff[3] = E1000_READ_REG(hw, E1000_ICR); 655 regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL); 656 regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0)); 657 regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0)); 658 regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0)); 659 regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0)); 660 regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0)); 661 regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0)); 662 regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL); 663 regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0)); 664 regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0)); 665 regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0)); 666 regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0)); 667 regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0)); 668 regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0)); 669 regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH); 670 regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT); 671 regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS); 672 regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC); 673 674 sbuf_printf(sb, "General Registers\n"); 675 sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]); 676 sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]); 677 sbuf_printf(sb, "\tCTRL_EXT\t %08x\n\n", regs_buff[2]); 678 679 sbuf_printf(sb, "Interrupt Registers\n"); 680 sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]); 681 682 sbuf_printf(sb, "RX Registers\n"); 683 sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]); 684 sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]); 685 sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]); 686 sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]); 687 sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]); 688 sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]); 689 sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]); 690 691 sbuf_printf(sb, "TX Registers\n"); 692 sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]); 693 sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]); 694 sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]); 695 sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]); 696 sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]); 697 sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]); 698 sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]); 699 sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]); 700 sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]); 701 sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]); 702 sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]); 703 704 free(regs_buff, M_DEVBUF); 705 706 #ifdef DUMP_DESCS 707 { 708 if_softc_ctx_t scctx = sc->shared; 709 struct rx_ring *rxr = &rx_que->rxr; 710 struct tx_ring *txr = &tx_que->txr; 711 int ntxd = scctx->isc_ntxd[0]; 712 int nrxd = scctx->isc_nrxd[0]; 713 int j; 714 715 for (j = 0; j < nrxd; j++) { 716 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error); 717 u32 length = le32toh(rxr->rx_base[j].wb.upper.length); 718 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 " Error:%d Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length); 719 } 720 721 for (j = 0; j < min(ntxd, 256); j++) { 722 unsigned int *ptr = (unsigned int *)&txr->tx_base[j]; 723 724 sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x eop: %d DD=%d\n", 725 j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop, 726 buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0); 727 728 } 729 } 730 #endif 731 732 rc = sbuf_finish(sb); 733 sbuf_delete(sb); 734 return(rc); 735 } 736 737 static void * 738 em_register(device_t dev) 739 { 740 return (&em_sctx_init); 741 } 742 743 static void * 744 igb_register(device_t dev) 745 { 746 return (&igb_sctx_init); 747 } 748 749 static int 750 em_set_num_queues(if_ctx_t ctx) 751 { 752 struct e1000_softc *sc = iflib_get_softc(ctx); 753 int maxqueues; 754 755 /* Sanity check based on HW */ 756 switch (sc->hw.mac.type) { 757 case e1000_82576: 758 case e1000_82580: 759 case e1000_i350: 760 case e1000_i354: 761 maxqueues = 8; 762 break; 763 case e1000_i210: 764 case e1000_82575: 765 maxqueues = 4; 766 break; 767 case e1000_i211: 768 case e1000_82574: 769 maxqueues = 2; 770 break; 771 default: 772 maxqueues = 1; 773 break; 774 } 775 776 return (maxqueues); 777 } 778 779 #define LEM_CAPS \ 780 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ 781 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \ 782 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 783 784 #define EM_CAPS \ 785 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ 786 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \ 787 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \ 788 IFCAP_TSO6 789 790 #define IGB_CAPS \ 791 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ 792 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \ 793 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \ 794 IFCAP_TSO6 795 796 /********************************************************************* 797 * Device initialization routine 798 * 799 * The attach entry point is called when the driver is being loaded. 800 * This routine identifies the type of hardware, allocates all resources 801 * and initializes the hardware. 802 * 803 * return 0 on success, positive on failure 804 *********************************************************************/ 805 static int 806 em_if_attach_pre(if_ctx_t ctx) 807 { 808 struct e1000_softc *sc; 809 if_softc_ctx_t scctx; 810 device_t dev; 811 struct e1000_hw *hw; 812 struct sysctl_oid_list *child; 813 struct sysctl_ctx_list *ctx_list; 814 int error = 0; 815 816 INIT_DEBUGOUT("em_if_attach_pre: begin"); 817 dev = iflib_get_dev(ctx); 818 sc = iflib_get_softc(ctx); 819 820 sc->ctx = sc->osdep.ctx = ctx; 821 sc->dev = sc->osdep.dev = dev; 822 scctx = sc->shared = iflib_get_softc_ctx(ctx); 823 sc->media = iflib_get_media(ctx); 824 hw = &sc->hw; 825 826 /* Determine hardware and mac info */ 827 em_identify_hardware(ctx); 828 829 /* SYSCTL stuff */ 830 ctx_list = device_get_sysctl_ctx(dev); 831 child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev)); 832 833 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "nvm", 834 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 835 em_sysctl_nvm_info, "I", "NVM Information"); 836 837 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fw_version", 838 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, 839 em_sysctl_print_fw_version, "A", 840 "Prints FW/NVM Versions"); 841 842 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "debug", 843 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 844 em_sysctl_debug_info, "I", "Debug Information"); 845 846 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fc", 847 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 848 em_set_flowcntl, "I", "Flow Control"); 849 850 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "reg_dump", 851 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, 852 em_get_regs, "A", "Dump Registers"); 853 854 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "rs_dump", 855 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 856 em_get_rs, "I", "Dump RS indexes"); 857 858 scctx->isc_tx_nsegments = EM_MAX_SCATTER; 859 scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx); 860 if (bootverbose) 861 device_printf(dev, "attach_pre capping queues at %d\n", 862 scctx->isc_ntxqsets_max); 863 864 if (hw->mac.type >= igb_mac_min) { 865 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN); 866 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN); 867 scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc); 868 scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc); 869 scctx->isc_txrx = &igb_txrx; 870 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER; 871 scctx->isc_tx_tso_size_max = EM_TSO_SIZE; 872 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE; 873 scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS; 874 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO | 875 CSUM_IP6_TCP | CSUM_IP6_UDP; 876 if (hw->mac.type != e1000_82575) 877 scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP; 878 /* 879 ** Some new devices, as with ixgbe, now may 880 ** use a different BAR, so we need to keep 881 ** track of which is used. 882 */ 883 scctx->isc_msix_bar = pci_msix_table_bar(dev); 884 } else if (hw->mac.type >= em_mac_min) { 885 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN); 886 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN); 887 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc); 888 scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended); 889 scctx->isc_txrx = &em_txrx; 890 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER; 891 scctx->isc_tx_tso_size_max = EM_TSO_SIZE; 892 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE; 893 scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS; 894 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO | 895 CSUM_IP6_TCP | CSUM_IP6_UDP; 896 897 /* Disable TSO on all em(4) until ring stalls can be debugged */ 898 scctx->isc_capenable &= ~IFCAP_TSO; 899 900 /* 901 * Disable TSO on SPT due to errata that downclocks DMA performance 902 * i218-i219 Specification Update 1.5.4.5 903 */ 904 if (hw->mac.type == e1000_pch_spt) 905 scctx->isc_capenable &= ~IFCAP_TSO; 906 907 /* 908 * We support MSI-X with 82574 only, but indicate to iflib(4) 909 * that it shall give MSI at least a try with other devices. 910 */ 911 if (hw->mac.type == e1000_82574) { 912 scctx->isc_msix_bar = pci_msix_table_bar(dev); 913 } else { 914 scctx->isc_msix_bar = -1; 915 scctx->isc_disable_msix = 1; 916 } 917 } else { 918 scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN); 919 scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN); 920 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc); 921 scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc); 922 scctx->isc_txrx = &lem_txrx; 923 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER; 924 scctx->isc_tx_tso_size_max = EM_TSO_SIZE; 925 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE; 926 scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS; 927 if (em_unsupported_tso) 928 scctx->isc_capabilities |= IFCAP_TSO6; 929 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO | 930 CSUM_IP6_TCP | CSUM_IP6_UDP; 931 932 /* Disable TSO on all lem(4) until ring stalls can be debugged */ 933 scctx->isc_capenable &= ~IFCAP_TSO; 934 935 /* 82541ER doesn't do HW tagging */ 936 if (hw->device_id == E1000_DEV_ID_82541ER || 937 hw->device_id == E1000_DEV_ID_82541ER_LOM) { 938 scctx->isc_capabilities &= ~IFCAP_VLAN_HWTAGGING; 939 scctx->isc_capenable = scctx->isc_capabilities; 940 } 941 /* This is the first e1000 chip and it does not do offloads */ 942 if (hw->mac.type == e1000_82542) { 943 scctx->isc_capabilities &= ~(IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM | 944 IFCAP_HWCSUM_IPV6 | IFCAP_VLAN_HWTAGGING | 945 IFCAP_VLAN_HWFILTER | IFCAP_TSO | IFCAP_VLAN_HWTSO); 946 scctx->isc_capenable = scctx->isc_capabilities; 947 } 948 /* These can't do TSO for various reasons */ 949 if (hw->mac.type < e1000_82544 || hw->mac.type == e1000_82547 || 950 hw->mac.type == e1000_82547_rev_2) { 951 scctx->isc_capabilities &= ~(IFCAP_TSO | IFCAP_VLAN_HWTSO); 952 scctx->isc_capenable = scctx->isc_capabilities; 953 } 954 /* XXXKB: No IPv6 before this? */ 955 if (hw->mac.type < e1000_82545){ 956 scctx->isc_capabilities &= ~IFCAP_HWCSUM_IPV6; 957 scctx->isc_capenable = scctx->isc_capabilities; 958 } 959 /* "PCI/PCI-X SDM 4.0" page 33 (b) - FDX requirement on these chips */ 960 if (hw->mac.type == e1000_82547 || hw->mac.type == e1000_82547_rev_2) 961 scctx->isc_capenable &= ~(IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM | 962 IFCAP_HWCSUM_IPV6); 963 964 /* INTx only */ 965 scctx->isc_msix_bar = 0; 966 } 967 968 /* Setup PCI resources */ 969 if (em_allocate_pci_resources(ctx)) { 970 device_printf(dev, "Allocation of PCI resources failed\n"); 971 error = ENXIO; 972 goto err_pci; 973 } 974 975 /* 976 ** For ICH8 and family we need to 977 ** map the flash memory, and this 978 ** must happen after the MAC is 979 ** identified 980 */ 981 if ((hw->mac.type == e1000_ich8lan) || 982 (hw->mac.type == e1000_ich9lan) || 983 (hw->mac.type == e1000_ich10lan) || 984 (hw->mac.type == e1000_pchlan) || 985 (hw->mac.type == e1000_pch2lan) || 986 (hw->mac.type == e1000_pch_lpt)) { 987 int rid = EM_BAR_TYPE_FLASH; 988 sc->flash = bus_alloc_resource_any(dev, 989 SYS_RES_MEMORY, &rid, RF_ACTIVE); 990 if (sc->flash == NULL) { 991 device_printf(dev, "Mapping of Flash failed\n"); 992 error = ENXIO; 993 goto err_pci; 994 } 995 /* This is used in the shared code */ 996 hw->flash_address = (u8 *)sc->flash; 997 sc->osdep.flash_bus_space_tag = 998 rman_get_bustag(sc->flash); 999 sc->osdep.flash_bus_space_handle = 1000 rman_get_bushandle(sc->flash); 1001 } 1002 /* 1003 ** In the new SPT device flash is not a 1004 ** separate BAR, rather it is also in BAR0, 1005 ** so use the same tag and an offset handle for the 1006 ** FLASH read/write macros in the shared code. 1007 */ 1008 else if (hw->mac.type >= e1000_pch_spt) { 1009 sc->osdep.flash_bus_space_tag = 1010 sc->osdep.mem_bus_space_tag; 1011 sc->osdep.flash_bus_space_handle = 1012 sc->osdep.mem_bus_space_handle 1013 + E1000_FLASH_BASE_ADDR; 1014 } 1015 1016 /* Do Shared Code initialization */ 1017 error = e1000_setup_init_funcs(hw, true); 1018 if (error) { 1019 device_printf(dev, "Setup of Shared code failed, error %d\n", 1020 error); 1021 error = ENXIO; 1022 goto err_pci; 1023 } 1024 1025 em_setup_msix(ctx); 1026 e1000_get_bus_info(hw); 1027 1028 /* Set up some sysctls for the tunable interrupt delays */ 1029 em_add_int_delay_sysctl(sc, "rx_int_delay", 1030 "receive interrupt delay in usecs", &sc->rx_int_delay, 1031 E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt); 1032 em_add_int_delay_sysctl(sc, "tx_int_delay", 1033 "transmit interrupt delay in usecs", &sc->tx_int_delay, 1034 E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt); 1035 em_add_int_delay_sysctl(sc, "rx_abs_int_delay", 1036 "receive interrupt delay limit in usecs", 1037 &sc->rx_abs_int_delay, 1038 E1000_REGISTER(hw, E1000_RADV), 1039 em_rx_abs_int_delay_dflt); 1040 em_add_int_delay_sysctl(sc, "tx_abs_int_delay", 1041 "transmit interrupt delay limit in usecs", 1042 &sc->tx_abs_int_delay, 1043 E1000_REGISTER(hw, E1000_TADV), 1044 em_tx_abs_int_delay_dflt); 1045 em_add_int_delay_sysctl(sc, "itr", 1046 "interrupt delay limit in usecs/4", 1047 &sc->tx_itr, 1048 E1000_REGISTER(hw, E1000_ITR), 1049 DEFAULT_ITR); 1050 1051 hw->mac.autoneg = DO_AUTO_NEG; 1052 hw->phy.autoneg_wait_to_complete = false; 1053 hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; 1054 1055 if (hw->mac.type < em_mac_min) { 1056 e1000_init_script_state_82541(hw, true); 1057 e1000_set_tbi_compatibility_82543(hw, true); 1058 } 1059 /* Copper options */ 1060 if (hw->phy.media_type == e1000_media_type_copper) { 1061 hw->phy.mdix = AUTO_ALL_MODES; 1062 hw->phy.disable_polarity_correction = false; 1063 hw->phy.ms_type = EM_MASTER_SLAVE; 1064 } 1065 1066 /* 1067 * Set the frame limits assuming 1068 * standard ethernet sized frames. 1069 */ 1070 scctx->isc_max_frame_size = hw->mac.max_frame_size = 1071 ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE; 1072 1073 /* 1074 * This controls when hardware reports transmit completion 1075 * status. 1076 */ 1077 hw->mac.report_tx_early = 1; 1078 1079 /* Allocate multicast array memory. */ 1080 sc->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN * 1081 MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT); 1082 if (sc->mta == NULL) { 1083 device_printf(dev, "Can not allocate multicast setup array\n"); 1084 error = ENOMEM; 1085 goto err_late; 1086 } 1087 1088 /* Clear the IFCAP_TSO auto mask */ 1089 sc->tso_automasked = 0; 1090 1091 /* Check SOL/IDER usage */ 1092 if (e1000_check_reset_block(hw)) 1093 device_printf(dev, "PHY reset is blocked" 1094 " due to SOL/IDER session.\n"); 1095 1096 /* Sysctl for setting Energy Efficient Ethernet */ 1097 hw->dev_spec.ich8lan.eee_disable = eee_setting; 1098 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "eee_control", 1099 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 1100 em_sysctl_eee, "I", "Disable Energy Efficient Ethernet"); 1101 1102 /* 1103 ** Start from a known state, this is 1104 ** important in reading the nvm and 1105 ** mac from that. 1106 */ 1107 e1000_reset_hw(hw); 1108 1109 /* Make sure we have a good EEPROM before we read from it */ 1110 if (e1000_validate_nvm_checksum(hw) < 0) { 1111 /* 1112 ** Some PCI-E parts fail the first check due to 1113 ** the link being in sleep state, call it again, 1114 ** if it fails a second time its a real issue. 1115 */ 1116 if (e1000_validate_nvm_checksum(hw) < 0) { 1117 device_printf(dev, 1118 "The EEPROM Checksum Is Not Valid\n"); 1119 error = EIO; 1120 goto err_late; 1121 } 1122 } 1123 1124 /* Copy the permanent MAC address out of the EEPROM */ 1125 if (e1000_read_mac_addr(hw) < 0) { 1126 device_printf(dev, "EEPROM read error while reading MAC" 1127 " address\n"); 1128 error = EIO; 1129 goto err_late; 1130 } 1131 1132 if (!em_is_valid_ether_addr(hw->mac.addr)) { 1133 if (sc->vf_ifp) { 1134 ether_gen_addr(iflib_get_ifp(ctx), 1135 (struct ether_addr *)hw->mac.addr); 1136 } else { 1137 device_printf(dev, "Invalid MAC address\n"); 1138 error = EIO; 1139 goto err_late; 1140 } 1141 } 1142 1143 /* Save the EEPROM/NVM versions, must be done under IFLIB_CTX_LOCK */ 1144 em_fw_version_locked(ctx); 1145 1146 em_print_fw_version(sc); 1147 1148 /* 1149 * Get Wake-on-Lan and Management info for later use 1150 */ 1151 em_get_wakeup(ctx); 1152 1153 /* Enable only WOL MAGIC by default */ 1154 scctx->isc_capenable &= ~IFCAP_WOL; 1155 if (sc->wol != 0) 1156 scctx->isc_capenable |= IFCAP_WOL_MAGIC; 1157 1158 iflib_set_mac(ctx, hw->mac.addr); 1159 1160 return (0); 1161 1162 err_late: 1163 em_release_hw_control(sc); 1164 err_pci: 1165 em_free_pci_resources(ctx); 1166 free(sc->mta, M_DEVBUF); 1167 1168 return (error); 1169 } 1170 1171 static int 1172 em_if_attach_post(if_ctx_t ctx) 1173 { 1174 struct e1000_softc *sc = iflib_get_softc(ctx); 1175 struct e1000_hw *hw = &sc->hw; 1176 int error = 0; 1177 1178 /* Setup OS specific network interface */ 1179 error = em_setup_interface(ctx); 1180 if (error != 0) { 1181 device_printf(sc->dev, "Interface setup failed: %d\n", error); 1182 goto err_late; 1183 } 1184 1185 em_reset(ctx); 1186 1187 /* Initialize statistics */ 1188 em_update_stats_counters(sc); 1189 hw->mac.get_link_status = 1; 1190 em_if_update_admin_status(ctx); 1191 em_add_hw_stats(sc); 1192 1193 /* Non-AMT based hardware can now take control from firmware */ 1194 if (sc->has_manage && !sc->has_amt) 1195 em_get_hw_control(sc); 1196 1197 INIT_DEBUGOUT("em_if_attach_post: end"); 1198 1199 return (0); 1200 1201 err_late: 1202 /* upon attach_post() error, iflib calls _if_detach() to free resources. */ 1203 return (error); 1204 } 1205 1206 /********************************************************************* 1207 * Device removal routine 1208 * 1209 * The detach entry point is called when the driver is being removed. 1210 * This routine stops the adapter and deallocates all the resources 1211 * that were allocated for driver operation. 1212 * 1213 * return 0 on success, positive on failure 1214 *********************************************************************/ 1215 static int 1216 em_if_detach(if_ctx_t ctx) 1217 { 1218 struct e1000_softc *sc = iflib_get_softc(ctx); 1219 1220 INIT_DEBUGOUT("em_if_detach: begin"); 1221 1222 e1000_phy_hw_reset(&sc->hw); 1223 1224 em_release_manageability(sc); 1225 em_release_hw_control(sc); 1226 em_free_pci_resources(ctx); 1227 free(sc->mta, M_DEVBUF); 1228 sc->mta = NULL; 1229 1230 return (0); 1231 } 1232 1233 /********************************************************************* 1234 * 1235 * Shutdown entry point 1236 * 1237 **********************************************************************/ 1238 1239 static int 1240 em_if_shutdown(if_ctx_t ctx) 1241 { 1242 return em_if_suspend(ctx); 1243 } 1244 1245 /* 1246 * Suspend/resume device methods. 1247 */ 1248 static int 1249 em_if_suspend(if_ctx_t ctx) 1250 { 1251 struct e1000_softc *sc = iflib_get_softc(ctx); 1252 1253 em_release_manageability(sc); 1254 em_release_hw_control(sc); 1255 em_enable_wakeup(ctx); 1256 return (0); 1257 } 1258 1259 static int 1260 em_if_resume(if_ctx_t ctx) 1261 { 1262 struct e1000_softc *sc = iflib_get_softc(ctx); 1263 1264 if (sc->hw.mac.type == e1000_pch2lan) 1265 e1000_resume_workarounds_pchlan(&sc->hw); 1266 em_if_init(ctx); 1267 em_init_manageability(sc); 1268 1269 return(0); 1270 } 1271 1272 static int 1273 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu) 1274 { 1275 int max_frame_size; 1276 struct e1000_softc *sc = iflib_get_softc(ctx); 1277 if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx); 1278 1279 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)"); 1280 1281 switch (sc->hw.mac.type) { 1282 case e1000_82571: 1283 case e1000_82572: 1284 case e1000_ich9lan: 1285 case e1000_ich10lan: 1286 case e1000_pch2lan: 1287 case e1000_pch_lpt: 1288 case e1000_pch_spt: 1289 case e1000_pch_cnp: 1290 case e1000_pch_tgp: 1291 case e1000_pch_adp: 1292 case e1000_pch_mtp: 1293 case e1000_pch_ptp: 1294 case e1000_82574: 1295 case e1000_82583: 1296 case e1000_80003es2lan: 1297 /* 9K Jumbo Frame size */ 1298 max_frame_size = 9234; 1299 break; 1300 case e1000_pchlan: 1301 max_frame_size = 4096; 1302 break; 1303 case e1000_82542: 1304 case e1000_ich8lan: 1305 /* Adapters that do not support jumbo frames */ 1306 max_frame_size = ETHER_MAX_LEN; 1307 break; 1308 default: 1309 if (sc->hw.mac.type >= igb_mac_min) 1310 max_frame_size = 9234; 1311 else /* lem */ 1312 max_frame_size = MAX_JUMBO_FRAME_SIZE; 1313 } 1314 if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) { 1315 return (EINVAL); 1316 } 1317 1318 scctx->isc_max_frame_size = sc->hw.mac.max_frame_size = 1319 mtu + ETHER_HDR_LEN + ETHER_CRC_LEN; 1320 return (0); 1321 } 1322 1323 /********************************************************************* 1324 * Init entry point 1325 * 1326 * This routine is used in two ways. It is used by the stack as 1327 * init entry point in network interface structure. It is also used 1328 * by the driver as a hw/sw initialization routine to get to a 1329 * consistent state. 1330 * 1331 **********************************************************************/ 1332 static void 1333 em_if_init(if_ctx_t ctx) 1334 { 1335 struct e1000_softc *sc = iflib_get_softc(ctx); 1336 if_softc_ctx_t scctx = sc->shared; 1337 if_t ifp = iflib_get_ifp(ctx); 1338 struct em_tx_queue *tx_que; 1339 int i; 1340 1341 INIT_DEBUGOUT("em_if_init: begin"); 1342 1343 /* Get the latest mac address, User can use a LAA */ 1344 bcopy(if_getlladdr(ifp), sc->hw.mac.addr, 1345 ETHER_ADDR_LEN); 1346 1347 /* Put the address into the Receive Address Array */ 1348 e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0); 1349 1350 /* 1351 * With the 82571 adapter, RAR[0] may be overwritten 1352 * when the other port is reset, we make a duplicate 1353 * in RAR[14] for that eventuality, this assures 1354 * the interface continues to function. 1355 */ 1356 if (sc->hw.mac.type == e1000_82571) { 1357 e1000_set_laa_state_82571(&sc->hw, true); 1358 e1000_rar_set(&sc->hw, sc->hw.mac.addr, 1359 E1000_RAR_ENTRIES - 1); 1360 } 1361 1362 /* Initialize the hardware */ 1363 em_reset(ctx); 1364 em_if_update_admin_status(ctx); 1365 1366 for (i = 0, tx_que = sc->tx_queues; i < sc->tx_num_queues; i++, tx_que++) { 1367 struct tx_ring *txr = &tx_que->txr; 1368 1369 txr->tx_rs_cidx = txr->tx_rs_pidx; 1370 1371 /* Initialize the last processed descriptor to be the end of 1372 * the ring, rather than the start, so that we avoid an 1373 * off-by-one error when calculating how many descriptors are 1374 * done in the credits_update function. 1375 */ 1376 txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1; 1377 } 1378 1379 /* Setup VLAN support, basic and offload if available */ 1380 E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN); 1381 1382 /* Clear bad data from Rx FIFOs */ 1383 if (sc->hw.mac.type >= igb_mac_min) 1384 e1000_rx_fifo_flush_base(&sc->hw); 1385 1386 /* Configure for OS presence */ 1387 em_init_manageability(sc); 1388 1389 /* Prepare transmit descriptors and buffers */ 1390 em_initialize_transmit_unit(ctx); 1391 1392 /* Setup Multicast table */ 1393 em_if_multi_set(ctx); 1394 1395 sc->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx); 1396 em_initialize_receive_unit(ctx); 1397 1398 /* Set up VLAN support and filter */ 1399 em_setup_vlan_hw_support(ctx); 1400 1401 /* Don't lose promiscuous settings */ 1402 em_if_set_promisc(ctx, if_getflags(ifp)); 1403 e1000_clear_hw_cntrs_base_generic(&sc->hw); 1404 1405 /* MSI-X configuration for 82574 */ 1406 if (sc->hw.mac.type == e1000_82574) { 1407 int tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT); 1408 1409 tmp |= E1000_CTRL_EXT_PBA_CLR; 1410 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp); 1411 /* Set the IVAR - interrupt vector routing. */ 1412 E1000_WRITE_REG(&sc->hw, E1000_IVAR, sc->ivars); 1413 } else if (sc->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */ 1414 igb_configure_queues(sc); 1415 1416 /* this clears any pending interrupts */ 1417 E1000_READ_REG(&sc->hw, E1000_ICR); 1418 E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC); 1419 1420 /* AMT based hardware can now take control from firmware */ 1421 if (sc->has_manage && sc->has_amt) 1422 em_get_hw_control(sc); 1423 1424 /* Set Energy Efficient Ethernet */ 1425 if (sc->hw.mac.type >= igb_mac_min && 1426 sc->hw.phy.media_type == e1000_media_type_copper) { 1427 if (sc->hw.mac.type == e1000_i354) 1428 e1000_set_eee_i354(&sc->hw, true, true); 1429 else 1430 e1000_set_eee_i350(&sc->hw, true, true); 1431 } 1432 } 1433 1434 /********************************************************************* 1435 * 1436 * Fast Legacy/MSI Combined Interrupt Service routine 1437 * 1438 *********************************************************************/ 1439 int 1440 em_intr(void *arg) 1441 { 1442 struct e1000_softc *sc = arg; 1443 if_ctx_t ctx = sc->ctx; 1444 u32 reg_icr; 1445 1446 reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR); 1447 1448 /* Hot eject? */ 1449 if (reg_icr == 0xffffffff) 1450 return FILTER_STRAY; 1451 1452 /* Definitely not our interrupt. */ 1453 if (reg_icr == 0x0) 1454 return FILTER_STRAY; 1455 1456 /* 1457 * Starting with the 82571 chip, bit 31 should be used to 1458 * determine whether the interrupt belongs to us. 1459 */ 1460 if (sc->hw.mac.type >= e1000_82571 && 1461 (reg_icr & E1000_ICR_INT_ASSERTED) == 0) 1462 return FILTER_STRAY; 1463 1464 /* 1465 * Only MSI-X interrupts have one-shot behavior by taking advantage 1466 * of the EIAC register. Thus, explicitly disable interrupts. This 1467 * also works around the MSI message reordering errata on certain 1468 * systems. 1469 */ 1470 IFDI_INTR_DISABLE(ctx); 1471 1472 /* Link status change */ 1473 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) 1474 em_handle_link(ctx); 1475 1476 if (reg_icr & E1000_ICR_RXO) 1477 sc->rx_overruns++; 1478 1479 return (FILTER_SCHEDULE_THREAD); 1480 } 1481 1482 static int 1483 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid) 1484 { 1485 struct e1000_softc *sc = iflib_get_softc(ctx); 1486 struct em_rx_queue *rxq = &sc->rx_queues[rxqid]; 1487 1488 E1000_WRITE_REG(&sc->hw, E1000_IMS, rxq->eims); 1489 return (0); 1490 } 1491 1492 static int 1493 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid) 1494 { 1495 struct e1000_softc *sc = iflib_get_softc(ctx); 1496 struct em_tx_queue *txq = &sc->tx_queues[txqid]; 1497 1498 E1000_WRITE_REG(&sc->hw, E1000_IMS, txq->eims); 1499 return (0); 1500 } 1501 1502 static int 1503 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid) 1504 { 1505 struct e1000_softc *sc = iflib_get_softc(ctx); 1506 struct em_rx_queue *rxq = &sc->rx_queues[rxqid]; 1507 1508 E1000_WRITE_REG(&sc->hw, E1000_EIMS, rxq->eims); 1509 return (0); 1510 } 1511 1512 static int 1513 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid) 1514 { 1515 struct e1000_softc *sc = iflib_get_softc(ctx); 1516 struct em_tx_queue *txq = &sc->tx_queues[txqid]; 1517 1518 E1000_WRITE_REG(&sc->hw, E1000_EIMS, txq->eims); 1519 return (0); 1520 } 1521 1522 /********************************************************************* 1523 * 1524 * MSI-X RX Interrupt Service routine 1525 * 1526 **********************************************************************/ 1527 static int 1528 em_msix_que(void *arg) 1529 { 1530 struct em_rx_queue *que = arg; 1531 1532 ++que->irqs; 1533 1534 return (FILTER_SCHEDULE_THREAD); 1535 } 1536 1537 /********************************************************************* 1538 * 1539 * MSI-X Link Fast Interrupt Service routine 1540 * 1541 **********************************************************************/ 1542 static int 1543 em_msix_link(void *arg) 1544 { 1545 struct e1000_softc *sc = arg; 1546 u32 reg_icr; 1547 1548 ++sc->link_irq; 1549 MPASS(sc->hw.back != NULL); 1550 reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR); 1551 1552 if (reg_icr & E1000_ICR_RXO) 1553 sc->rx_overruns++; 1554 1555 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) 1556 em_handle_link(sc->ctx); 1557 1558 /* Re-arm unconditionally */ 1559 if (sc->hw.mac.type >= igb_mac_min) { 1560 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC); 1561 E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->link_mask); 1562 } else if (sc->hw.mac.type == e1000_82574) { 1563 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC | 1564 E1000_IMS_OTHER); 1565 /* 1566 * Because we must read the ICR for this interrupt it may 1567 * clear other causes using autoclear, for this reason we 1568 * simply create a soft interrupt for all these vectors. 1569 */ 1570 if (reg_icr) 1571 E1000_WRITE_REG(&sc->hw, E1000_ICS, sc->ims); 1572 } else 1573 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC); 1574 1575 return (FILTER_HANDLED); 1576 } 1577 1578 static void 1579 em_handle_link(void *context) 1580 { 1581 if_ctx_t ctx = context; 1582 struct e1000_softc *sc = iflib_get_softc(ctx); 1583 1584 sc->hw.mac.get_link_status = 1; 1585 iflib_admin_intr_deferred(ctx); 1586 } 1587 1588 /********************************************************************* 1589 * 1590 * Media Ioctl callback 1591 * 1592 * This routine is called whenever the user queries the status of 1593 * the interface using ifconfig. 1594 * 1595 **********************************************************************/ 1596 static void 1597 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr) 1598 { 1599 struct e1000_softc *sc = iflib_get_softc(ctx); 1600 u_char fiber_type = IFM_1000_SX; 1601 1602 INIT_DEBUGOUT("em_if_media_status: begin"); 1603 1604 iflib_admin_intr_deferred(ctx); 1605 1606 ifmr->ifm_status = IFM_AVALID; 1607 ifmr->ifm_active = IFM_ETHER; 1608 1609 if (!sc->link_active) { 1610 return; 1611 } 1612 1613 ifmr->ifm_status |= IFM_ACTIVE; 1614 1615 if ((sc->hw.phy.media_type == e1000_media_type_fiber) || 1616 (sc->hw.phy.media_type == e1000_media_type_internal_serdes)) { 1617 if (sc->hw.mac.type == e1000_82545) 1618 fiber_type = IFM_1000_LX; 1619 ifmr->ifm_active |= fiber_type | IFM_FDX; 1620 } else { 1621 switch (sc->link_speed) { 1622 case 10: 1623 ifmr->ifm_active |= IFM_10_T; 1624 break; 1625 case 100: 1626 ifmr->ifm_active |= IFM_100_TX; 1627 break; 1628 case 1000: 1629 ifmr->ifm_active |= IFM_1000_T; 1630 break; 1631 } 1632 if (sc->link_duplex == FULL_DUPLEX) 1633 ifmr->ifm_active |= IFM_FDX; 1634 else 1635 ifmr->ifm_active |= IFM_HDX; 1636 } 1637 } 1638 1639 /********************************************************************* 1640 * 1641 * Media Ioctl callback 1642 * 1643 * This routine is called when the user changes speed/duplex using 1644 * media/mediopt option with ifconfig. 1645 * 1646 **********************************************************************/ 1647 static int 1648 em_if_media_change(if_ctx_t ctx) 1649 { 1650 struct e1000_softc *sc = iflib_get_softc(ctx); 1651 struct ifmedia *ifm = iflib_get_media(ctx); 1652 1653 INIT_DEBUGOUT("em_if_media_change: begin"); 1654 1655 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 1656 return (EINVAL); 1657 1658 switch (IFM_SUBTYPE(ifm->ifm_media)) { 1659 case IFM_AUTO: 1660 sc->hw.mac.autoneg = DO_AUTO_NEG; 1661 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; 1662 break; 1663 case IFM_1000_LX: 1664 case IFM_1000_SX: 1665 case IFM_1000_T: 1666 sc->hw.mac.autoneg = DO_AUTO_NEG; 1667 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 1668 break; 1669 case IFM_100_TX: 1670 sc->hw.mac.autoneg = false; 1671 sc->hw.phy.autoneg_advertised = 0; 1672 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) 1673 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL; 1674 else 1675 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF; 1676 break; 1677 case IFM_10_T: 1678 sc->hw.mac.autoneg = false; 1679 sc->hw.phy.autoneg_advertised = 0; 1680 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) 1681 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL; 1682 else 1683 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF; 1684 break; 1685 default: 1686 device_printf(sc->dev, "Unsupported media type\n"); 1687 } 1688 1689 em_if_init(ctx); 1690 1691 return (0); 1692 } 1693 1694 static int 1695 em_if_set_promisc(if_ctx_t ctx, int flags) 1696 { 1697 struct e1000_softc *sc = iflib_get_softc(ctx); 1698 if_t ifp = iflib_get_ifp(ctx); 1699 u32 reg_rctl; 1700 int mcnt = 0; 1701 1702 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL); 1703 reg_rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_UPE); 1704 if (flags & IFF_ALLMULTI) 1705 mcnt = MAX_NUM_MULTICAST_ADDRESSES; 1706 else 1707 mcnt = min(if_llmaddr_count(ifp), MAX_NUM_MULTICAST_ADDRESSES); 1708 1709 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES) 1710 reg_rctl &= (~E1000_RCTL_MPE); 1711 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl); 1712 1713 if (flags & IFF_PROMISC) { 1714 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 1715 em_if_vlan_filter_disable(sc); 1716 /* Turn this on if you want to see bad packets */ 1717 if (em_debug_sbp) 1718 reg_rctl |= E1000_RCTL_SBP; 1719 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl); 1720 } else { 1721 if (flags & IFF_ALLMULTI) { 1722 reg_rctl |= E1000_RCTL_MPE; 1723 reg_rctl &= ~E1000_RCTL_UPE; 1724 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl); 1725 } 1726 if (em_if_vlan_filter_used(ctx)) 1727 em_if_vlan_filter_enable(sc); 1728 } 1729 return (0); 1730 } 1731 1732 static u_int 1733 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int idx) 1734 { 1735 u8 *mta = arg; 1736 1737 if (idx == MAX_NUM_MULTICAST_ADDRESSES) 1738 return (0); 1739 1740 bcopy(LLADDR(sdl), &mta[idx * ETHER_ADDR_LEN], ETHER_ADDR_LEN); 1741 1742 return (1); 1743 } 1744 1745 /********************************************************************* 1746 * Multicast Update 1747 * 1748 * This routine is called whenever multicast address list is updated. 1749 * 1750 **********************************************************************/ 1751 static void 1752 em_if_multi_set(if_ctx_t ctx) 1753 { 1754 struct e1000_softc *sc = iflib_get_softc(ctx); 1755 if_t ifp = iflib_get_ifp(ctx); 1756 u8 *mta; /* Multicast array memory */ 1757 u32 reg_rctl = 0; 1758 int mcnt = 0; 1759 1760 IOCTL_DEBUGOUT("em_set_multi: begin"); 1761 1762 mta = sc->mta; 1763 bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES); 1764 1765 if (sc->hw.mac.type == e1000_82542 && 1766 sc->hw.revision_id == E1000_REVISION_2) { 1767 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL); 1768 if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) 1769 e1000_pci_clear_mwi(&sc->hw); 1770 reg_rctl |= E1000_RCTL_RST; 1771 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl); 1772 msec_delay(5); 1773 } 1774 1775 mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta); 1776 1777 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES) 1778 e1000_update_mc_addr_list(&sc->hw, mta, mcnt); 1779 1780 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL); 1781 1782 if (if_getflags(ifp) & IFF_PROMISC) 1783 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 1784 else if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES || 1785 if_getflags(ifp) & IFF_ALLMULTI) { 1786 reg_rctl |= E1000_RCTL_MPE; 1787 reg_rctl &= ~E1000_RCTL_UPE; 1788 } else 1789 reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); 1790 1791 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl); 1792 1793 if (sc->hw.mac.type == e1000_82542 && 1794 sc->hw.revision_id == E1000_REVISION_2) { 1795 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL); 1796 reg_rctl &= ~E1000_RCTL_RST; 1797 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl); 1798 msec_delay(5); 1799 if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) 1800 e1000_pci_set_mwi(&sc->hw); 1801 } 1802 } 1803 1804 /********************************************************************* 1805 * Timer routine 1806 * 1807 * This routine schedules em_if_update_admin_status() to check for 1808 * link status and to gather statistics as well as to perform some 1809 * controller-specific hardware patting. 1810 * 1811 **********************************************************************/ 1812 static void 1813 em_if_timer(if_ctx_t ctx, uint16_t qid) 1814 { 1815 1816 if (qid != 0) 1817 return; 1818 1819 iflib_admin_intr_deferred(ctx); 1820 } 1821 1822 static void 1823 em_if_update_admin_status(if_ctx_t ctx) 1824 { 1825 struct e1000_softc *sc = iflib_get_softc(ctx); 1826 struct e1000_hw *hw = &sc->hw; 1827 device_t dev = iflib_get_dev(ctx); 1828 u32 link_check, thstat, ctrl; 1829 bool automasked = false; 1830 1831 link_check = thstat = ctrl = 0; 1832 /* Get the cached link value or read phy for real */ 1833 switch (hw->phy.media_type) { 1834 case e1000_media_type_copper: 1835 if (hw->mac.get_link_status) { 1836 if (hw->mac.type == e1000_pch_spt) 1837 msec_delay(50); 1838 /* Do the work to read phy */ 1839 e1000_check_for_link(hw); 1840 link_check = !hw->mac.get_link_status; 1841 if (link_check) /* ESB2 fix */ 1842 e1000_cfg_on_link_up(hw); 1843 } else { 1844 link_check = true; 1845 } 1846 break; 1847 case e1000_media_type_fiber: 1848 e1000_check_for_link(hw); 1849 link_check = (E1000_READ_REG(hw, E1000_STATUS) & 1850 E1000_STATUS_LU); 1851 break; 1852 case e1000_media_type_internal_serdes: 1853 e1000_check_for_link(hw); 1854 link_check = hw->mac.serdes_has_link; 1855 break; 1856 /* VF device is type_unknown */ 1857 case e1000_media_type_unknown: 1858 e1000_check_for_link(hw); 1859 link_check = !hw->mac.get_link_status; 1860 /* FALLTHROUGH */ 1861 default: 1862 break; 1863 } 1864 1865 /* Check for thermal downshift or shutdown */ 1866 if (hw->mac.type == e1000_i350) { 1867 thstat = E1000_READ_REG(hw, E1000_THSTAT); 1868 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT); 1869 } 1870 1871 /* Now check for a transition */ 1872 if (link_check && (sc->link_active == 0)) { 1873 e1000_get_speed_and_duplex(hw, &sc->link_speed, 1874 &sc->link_duplex); 1875 /* Check if we must disable SPEED_MODE bit on PCI-E */ 1876 if ((sc->link_speed != SPEED_1000) && 1877 ((hw->mac.type == e1000_82571) || 1878 (hw->mac.type == e1000_82572))) { 1879 int tarc0; 1880 tarc0 = E1000_READ_REG(hw, E1000_TARC(0)); 1881 tarc0 &= ~TARC_SPEED_MODE_BIT; 1882 E1000_WRITE_REG(hw, E1000_TARC(0), tarc0); 1883 } 1884 if (bootverbose) 1885 device_printf(dev, "Link is up %d Mbps %s\n", 1886 sc->link_speed, 1887 ((sc->link_duplex == FULL_DUPLEX) ? 1888 "Full Duplex" : "Half Duplex")); 1889 sc->link_active = 1; 1890 sc->smartspeed = 0; 1891 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) == 1892 E1000_CTRL_EXT_LINK_MODE_GMII && 1893 (thstat & E1000_THSTAT_LINK_THROTTLE)) 1894 device_printf(dev, "Link: thermal downshift\n"); 1895 /* Delay Link Up for Phy update */ 1896 if (((hw->mac.type == e1000_i210) || 1897 (hw->mac.type == e1000_i211)) && 1898 (hw->phy.id == I210_I_PHY_ID)) 1899 msec_delay(I210_LINK_DELAY); 1900 /* Reset if the media type changed. */ 1901 if (hw->dev_spec._82575.media_changed && 1902 hw->mac.type >= igb_mac_min) { 1903 hw->dev_spec._82575.media_changed = false; 1904 sc->flags |= IGB_MEDIA_RESET; 1905 em_reset(ctx); 1906 } 1907 /* Only do TSO on gigabit Ethernet for older chips due to errata */ 1908 if (hw->mac.type < igb_mac_min) 1909 automasked = em_automask_tso(ctx); 1910 1911 /* Automasking resets the interface, so don't mark it up yet */ 1912 if (!automasked) 1913 iflib_link_state_change(ctx, LINK_STATE_UP, 1914 IF_Mbps(sc->link_speed)); 1915 } else if (!link_check && (sc->link_active == 1)) { 1916 sc->link_speed = 0; 1917 sc->link_duplex = 0; 1918 sc->link_active = 0; 1919 iflib_link_state_change(ctx, LINK_STATE_DOWN, 0); 1920 } 1921 em_update_stats_counters(sc); 1922 1923 /* Reset LAA into RAR[0] on 82571 */ 1924 if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw)) 1925 e1000_rar_set(hw, hw->mac.addr, 0); 1926 1927 if (hw->mac.type < em_mac_min) 1928 lem_smartspeed(sc); 1929 } 1930 1931 static void 1932 em_if_watchdog_reset(if_ctx_t ctx) 1933 { 1934 struct e1000_softc *sc = iflib_get_softc(ctx); 1935 1936 /* 1937 * Just count the event; iflib(4) will already trigger a 1938 * sufficient reset of the controller. 1939 */ 1940 sc->watchdog_events++; 1941 } 1942 1943 /********************************************************************* 1944 * 1945 * This routine disables all traffic on the adapter by issuing a 1946 * global reset on the MAC. 1947 * 1948 **********************************************************************/ 1949 static void 1950 em_if_stop(if_ctx_t ctx) 1951 { 1952 struct e1000_softc *sc = iflib_get_softc(ctx); 1953 1954 INIT_DEBUGOUT("em_if_stop: begin"); 1955 1956 /* I219 needs special flushing to avoid hangs */ 1957 if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min) 1958 em_flush_desc_rings(sc); 1959 1960 e1000_reset_hw(&sc->hw); 1961 if (sc->hw.mac.type >= e1000_82544) 1962 E1000_WRITE_REG(&sc->hw, E1000_WUFC, 0); 1963 1964 e1000_led_off(&sc->hw); 1965 e1000_cleanup_led(&sc->hw); 1966 } 1967 1968 /********************************************************************* 1969 * 1970 * Determine hardware revision. 1971 * 1972 **********************************************************************/ 1973 static void 1974 em_identify_hardware(if_ctx_t ctx) 1975 { 1976 device_t dev = iflib_get_dev(ctx); 1977 struct e1000_softc *sc = iflib_get_softc(ctx); 1978 1979 /* Make sure our PCI config space has the necessary stuff set */ 1980 sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2); 1981 1982 /* Save off the information about this board */ 1983 sc->hw.vendor_id = pci_get_vendor(dev); 1984 sc->hw.device_id = pci_get_device(dev); 1985 sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1); 1986 sc->hw.subsystem_vendor_id = 1987 pci_read_config(dev, PCIR_SUBVEND_0, 2); 1988 sc->hw.subsystem_device_id = 1989 pci_read_config(dev, PCIR_SUBDEV_0, 2); 1990 1991 /* Do Shared Code Init and Setup */ 1992 if (e1000_set_mac_type(&sc->hw)) { 1993 device_printf(dev, "Setup init failure\n"); 1994 return; 1995 } 1996 1997 /* Are we a VF device? */ 1998 if ((sc->hw.mac.type == e1000_vfadapt) || 1999 (sc->hw.mac.type == e1000_vfadapt_i350)) 2000 sc->vf_ifp = 1; 2001 else 2002 sc->vf_ifp = 0; 2003 } 2004 2005 static int 2006 em_allocate_pci_resources(if_ctx_t ctx) 2007 { 2008 struct e1000_softc *sc = iflib_get_softc(ctx); 2009 device_t dev = iflib_get_dev(ctx); 2010 int rid, val; 2011 2012 rid = PCIR_BAR(0); 2013 sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 2014 &rid, RF_ACTIVE); 2015 if (sc->memory == NULL) { 2016 device_printf(dev, "Unable to allocate bus resource: memory\n"); 2017 return (ENXIO); 2018 } 2019 sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory); 2020 sc->osdep.mem_bus_space_handle = 2021 rman_get_bushandle(sc->memory); 2022 sc->hw.hw_addr = (u8 *)&sc->osdep.mem_bus_space_handle; 2023 2024 /* Only older adapters use IO mapping */ 2025 if (sc->hw.mac.type < em_mac_min && sc->hw.mac.type > e1000_82543) { 2026 /* Figure our where our IO BAR is ? */ 2027 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) { 2028 val = pci_read_config(dev, rid, 4); 2029 if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) { 2030 break; 2031 } 2032 rid += 4; 2033 /* check for 64bit BAR */ 2034 if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT) 2035 rid += 4; 2036 } 2037 if (rid >= PCIR_CIS) { 2038 device_printf(dev, "Unable to locate IO BAR\n"); 2039 return (ENXIO); 2040 } 2041 sc->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT, 2042 &rid, RF_ACTIVE); 2043 if (sc->ioport == NULL) { 2044 device_printf(dev, "Unable to allocate bus resource: " 2045 "ioport\n"); 2046 return (ENXIO); 2047 } 2048 sc->hw.io_base = 0; 2049 sc->osdep.io_bus_space_tag = 2050 rman_get_bustag(sc->ioport); 2051 sc->osdep.io_bus_space_handle = 2052 rman_get_bushandle(sc->ioport); 2053 } 2054 2055 sc->hw.back = &sc->osdep; 2056 2057 return (0); 2058 } 2059 2060 /********************************************************************* 2061 * 2062 * Set up the MSI-X Interrupt handlers 2063 * 2064 **********************************************************************/ 2065 static int 2066 em_if_msix_intr_assign(if_ctx_t ctx, int msix) 2067 { 2068 struct e1000_softc *sc = iflib_get_softc(ctx); 2069 struct em_rx_queue *rx_que = sc->rx_queues; 2070 struct em_tx_queue *tx_que = sc->tx_queues; 2071 int error, rid, i, vector = 0, rx_vectors; 2072 char buf[16]; 2073 2074 /* First set up ring resources */ 2075 for (i = 0; i < sc->rx_num_queues; i++, rx_que++, vector++) { 2076 rid = vector + 1; 2077 snprintf(buf, sizeof(buf), "rxq%d", i); 2078 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf); 2079 if (error) { 2080 device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error); 2081 sc->rx_num_queues = i + 1; 2082 goto fail; 2083 } 2084 2085 rx_que->msix = vector; 2086 2087 /* 2088 * Set the bit to enable interrupt 2089 * in E1000_IMS -- bits 20 and 21 2090 * are for RX0 and RX1, note this has 2091 * NOTHING to do with the MSI-X vector 2092 */ 2093 if (sc->hw.mac.type == e1000_82574) { 2094 rx_que->eims = 1 << (20 + i); 2095 sc->ims |= rx_que->eims; 2096 sc->ivars |= (8 | rx_que->msix) << (i * 4); 2097 } else if (sc->hw.mac.type == e1000_82575) 2098 rx_que->eims = E1000_EICR_TX_QUEUE0 << vector; 2099 else 2100 rx_que->eims = 1 << vector; 2101 } 2102 rx_vectors = vector; 2103 2104 vector = 0; 2105 for (i = 0; i < sc->tx_num_queues; i++, tx_que++, vector++) { 2106 snprintf(buf, sizeof(buf), "txq%d", i); 2107 tx_que = &sc->tx_queues[i]; 2108 iflib_softirq_alloc_generic(ctx, 2109 &sc->rx_queues[i % sc->rx_num_queues].que_irq, 2110 IFLIB_INTR_TX, tx_que, tx_que->me, buf); 2111 2112 tx_que->msix = (vector % sc->rx_num_queues); 2113 2114 /* 2115 * Set the bit to enable interrupt 2116 * in E1000_IMS -- bits 22 and 23 2117 * are for TX0 and TX1, note this has 2118 * NOTHING to do with the MSI-X vector 2119 */ 2120 if (sc->hw.mac.type == e1000_82574) { 2121 tx_que->eims = 1 << (22 + i); 2122 sc->ims |= tx_que->eims; 2123 sc->ivars |= (8 | tx_que->msix) << (8 + (i * 4)); 2124 } else if (sc->hw.mac.type == e1000_82575) { 2125 tx_que->eims = E1000_EICR_TX_QUEUE0 << i; 2126 } else { 2127 tx_que->eims = 1 << i; 2128 } 2129 } 2130 2131 /* Link interrupt */ 2132 rid = rx_vectors + 1; 2133 error = iflib_irq_alloc_generic(ctx, &sc->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, sc, 0, "aq"); 2134 2135 if (error) { 2136 device_printf(iflib_get_dev(ctx), "Failed to register admin handler"); 2137 goto fail; 2138 } 2139 sc->linkvec = rx_vectors; 2140 if (sc->hw.mac.type < igb_mac_min) { 2141 sc->ivars |= (8 | rx_vectors) << 16; 2142 sc->ivars |= 0x80000000; 2143 /* Enable the "Other" interrupt type for link status change */ 2144 sc->ims |= E1000_IMS_OTHER; 2145 } 2146 2147 return (0); 2148 fail: 2149 iflib_irq_free(ctx, &sc->irq); 2150 rx_que = sc->rx_queues; 2151 for (int i = 0; i < sc->rx_num_queues; i++, rx_que++) 2152 iflib_irq_free(ctx, &rx_que->que_irq); 2153 return (error); 2154 } 2155 2156 static void 2157 igb_configure_queues(struct e1000_softc *sc) 2158 { 2159 struct e1000_hw *hw = &sc->hw; 2160 struct em_rx_queue *rx_que; 2161 struct em_tx_queue *tx_que; 2162 u32 tmp, ivar = 0, newitr = 0; 2163 2164 /* First turn on RSS capability */ 2165 if (hw->mac.type != e1000_82575) 2166 E1000_WRITE_REG(hw, E1000_GPIE, 2167 E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME | 2168 E1000_GPIE_PBA | E1000_GPIE_NSICR); 2169 2170 /* Turn on MSI-X */ 2171 switch (hw->mac.type) { 2172 case e1000_82580: 2173 case e1000_i350: 2174 case e1000_i354: 2175 case e1000_i210: 2176 case e1000_i211: 2177 case e1000_vfadapt: 2178 case e1000_vfadapt_i350: 2179 /* RX entries */ 2180 for (int i = 0; i < sc->rx_num_queues; i++) { 2181 u32 index = i >> 1; 2182 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2183 rx_que = &sc->rx_queues[i]; 2184 if (i & 1) { 2185 ivar &= 0xFF00FFFF; 2186 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16; 2187 } else { 2188 ivar &= 0xFFFFFF00; 2189 ivar |= rx_que->msix | E1000_IVAR_VALID; 2190 } 2191 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2192 } 2193 /* TX entries */ 2194 for (int i = 0; i < sc->tx_num_queues; i++) { 2195 u32 index = i >> 1; 2196 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2197 tx_que = &sc->tx_queues[i]; 2198 if (i & 1) { 2199 ivar &= 0x00FFFFFF; 2200 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24; 2201 } else { 2202 ivar &= 0xFFFF00FF; 2203 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8; 2204 } 2205 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2206 sc->que_mask |= tx_que->eims; 2207 } 2208 2209 /* And for the link interrupt */ 2210 ivar = (sc->linkvec | E1000_IVAR_VALID) << 8; 2211 sc->link_mask = 1 << sc->linkvec; 2212 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); 2213 break; 2214 case e1000_82576: 2215 /* RX entries */ 2216 for (int i = 0; i < sc->rx_num_queues; i++) { 2217 u32 index = i & 0x7; /* Each IVAR has two entries */ 2218 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2219 rx_que = &sc->rx_queues[i]; 2220 if (i < 8) { 2221 ivar &= 0xFFFFFF00; 2222 ivar |= rx_que->msix | E1000_IVAR_VALID; 2223 } else { 2224 ivar &= 0xFF00FFFF; 2225 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16; 2226 } 2227 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2228 sc->que_mask |= rx_que->eims; 2229 } 2230 /* TX entries */ 2231 for (int i = 0; i < sc->tx_num_queues; i++) { 2232 u32 index = i & 0x7; /* Each IVAR has two entries */ 2233 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2234 tx_que = &sc->tx_queues[i]; 2235 if (i < 8) { 2236 ivar &= 0xFFFF00FF; 2237 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8; 2238 } else { 2239 ivar &= 0x00FFFFFF; 2240 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24; 2241 } 2242 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2243 sc->que_mask |= tx_que->eims; 2244 } 2245 2246 /* And for the link interrupt */ 2247 ivar = (sc->linkvec | E1000_IVAR_VALID) << 8; 2248 sc->link_mask = 1 << sc->linkvec; 2249 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); 2250 break; 2251 2252 case e1000_82575: 2253 /* enable MSI-X support*/ 2254 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT); 2255 tmp |= E1000_CTRL_EXT_PBA_CLR; 2256 /* Auto-Mask interrupts upon ICR read. */ 2257 tmp |= E1000_CTRL_EXT_EIAME; 2258 tmp |= E1000_CTRL_EXT_IRCA; 2259 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp); 2260 2261 /* Queues */ 2262 for (int i = 0; i < sc->rx_num_queues; i++) { 2263 rx_que = &sc->rx_queues[i]; 2264 tmp = E1000_EICR_RX_QUEUE0 << i; 2265 tmp |= E1000_EICR_TX_QUEUE0 << i; 2266 rx_que->eims = tmp; 2267 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 2268 i, rx_que->eims); 2269 sc->que_mask |= rx_que->eims; 2270 } 2271 2272 /* Link */ 2273 E1000_WRITE_REG(hw, E1000_MSIXBM(sc->linkvec), 2274 E1000_EIMS_OTHER); 2275 sc->link_mask |= E1000_EIMS_OTHER; 2276 default: 2277 break; 2278 } 2279 2280 /* Set the starting interrupt rate */ 2281 if (em_max_interrupt_rate > 0) 2282 newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC; 2283 2284 if (hw->mac.type == e1000_82575) 2285 newitr |= newitr << 16; 2286 else 2287 newitr |= E1000_EITR_CNT_IGNR; 2288 2289 for (int i = 0; i < sc->rx_num_queues; i++) { 2290 rx_que = &sc->rx_queues[i]; 2291 E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr); 2292 } 2293 2294 return; 2295 } 2296 2297 static void 2298 em_free_pci_resources(if_ctx_t ctx) 2299 { 2300 struct e1000_softc *sc = iflib_get_softc(ctx); 2301 struct em_rx_queue *que = sc->rx_queues; 2302 device_t dev = iflib_get_dev(ctx); 2303 2304 /* Release all MSI-X queue resources */ 2305 if (sc->intr_type == IFLIB_INTR_MSIX) 2306 iflib_irq_free(ctx, &sc->irq); 2307 2308 if (que != NULL) { 2309 for (int i = 0; i < sc->rx_num_queues; i++, que++) { 2310 iflib_irq_free(ctx, &que->que_irq); 2311 } 2312 } 2313 2314 if (sc->memory != NULL) { 2315 bus_release_resource(dev, SYS_RES_MEMORY, 2316 rman_get_rid(sc->memory), sc->memory); 2317 sc->memory = NULL; 2318 } 2319 2320 if (sc->flash != NULL) { 2321 bus_release_resource(dev, SYS_RES_MEMORY, 2322 rman_get_rid(sc->flash), sc->flash); 2323 sc->flash = NULL; 2324 } 2325 2326 if (sc->ioport != NULL) { 2327 bus_release_resource(dev, SYS_RES_IOPORT, 2328 rman_get_rid(sc->ioport), sc->ioport); 2329 sc->ioport = NULL; 2330 } 2331 } 2332 2333 /* Set up MSI or MSI-X */ 2334 static int 2335 em_setup_msix(if_ctx_t ctx) 2336 { 2337 struct e1000_softc *sc = iflib_get_softc(ctx); 2338 2339 if (sc->hw.mac.type == e1000_82574) { 2340 em_enable_vectors_82574(ctx); 2341 } 2342 return (0); 2343 } 2344 2345 /********************************************************************* 2346 * 2347 * Workaround for SmartSpeed on 82541 and 82547 controllers 2348 * 2349 **********************************************************************/ 2350 static void 2351 lem_smartspeed(struct e1000_softc *sc) 2352 { 2353 u16 phy_tmp; 2354 2355 if (sc->link_active || (sc->hw.phy.type != e1000_phy_igp) || 2356 sc->hw.mac.autoneg == 0 || 2357 (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0) 2358 return; 2359 2360 if (sc->smartspeed == 0) { 2361 /* If Master/Slave config fault is asserted twice, 2362 * we assume back-to-back */ 2363 e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp); 2364 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT)) 2365 return; 2366 e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp); 2367 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) { 2368 e1000_read_phy_reg(&sc->hw, 2369 PHY_1000T_CTRL, &phy_tmp); 2370 if(phy_tmp & CR_1000T_MS_ENABLE) { 2371 phy_tmp &= ~CR_1000T_MS_ENABLE; 2372 e1000_write_phy_reg(&sc->hw, 2373 PHY_1000T_CTRL, phy_tmp); 2374 sc->smartspeed++; 2375 if(sc->hw.mac.autoneg && 2376 !e1000_copper_link_autoneg(&sc->hw) && 2377 !e1000_read_phy_reg(&sc->hw, 2378 PHY_CONTROL, &phy_tmp)) { 2379 phy_tmp |= (MII_CR_AUTO_NEG_EN | 2380 MII_CR_RESTART_AUTO_NEG); 2381 e1000_write_phy_reg(&sc->hw, 2382 PHY_CONTROL, phy_tmp); 2383 } 2384 } 2385 } 2386 return; 2387 } else if(sc->smartspeed == EM_SMARTSPEED_DOWNSHIFT) { 2388 /* If still no link, perhaps using 2/3 pair cable */ 2389 e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp); 2390 phy_tmp |= CR_1000T_MS_ENABLE; 2391 e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp); 2392 if(sc->hw.mac.autoneg && 2393 !e1000_copper_link_autoneg(&sc->hw) && 2394 !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) { 2395 phy_tmp |= (MII_CR_AUTO_NEG_EN | 2396 MII_CR_RESTART_AUTO_NEG); 2397 e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp); 2398 } 2399 } 2400 /* Restart process after EM_SMARTSPEED_MAX iterations */ 2401 if(sc->smartspeed++ == EM_SMARTSPEED_MAX) 2402 sc->smartspeed = 0; 2403 } 2404 2405 /********************************************************************* 2406 * 2407 * Initialize the DMA Coalescing feature 2408 * 2409 **********************************************************************/ 2410 static void 2411 igb_init_dmac(struct e1000_softc *sc, u32 pba) 2412 { 2413 device_t dev = sc->dev; 2414 struct e1000_hw *hw = &sc->hw; 2415 u32 dmac, reg = ~E1000_DMACR_DMAC_EN; 2416 u16 hwm; 2417 u16 max_frame_size; 2418 2419 if (hw->mac.type == e1000_i211) 2420 return; 2421 2422 max_frame_size = sc->shared->isc_max_frame_size; 2423 if (hw->mac.type > e1000_82580) { 2424 2425 if (sc->dmac == 0) { /* Disabling it */ 2426 E1000_WRITE_REG(hw, E1000_DMACR, reg); 2427 return; 2428 } else 2429 device_printf(dev, "DMA Coalescing enabled\n"); 2430 2431 /* Set starting threshold */ 2432 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0); 2433 2434 hwm = 64 * pba - max_frame_size / 16; 2435 if (hwm < 64 * (pba - 6)) 2436 hwm = 64 * (pba - 6); 2437 reg = E1000_READ_REG(hw, E1000_FCRTC); 2438 reg &= ~E1000_FCRTC_RTH_COAL_MASK; 2439 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) 2440 & E1000_FCRTC_RTH_COAL_MASK); 2441 E1000_WRITE_REG(hw, E1000_FCRTC, reg); 2442 2443 2444 dmac = pba - max_frame_size / 512; 2445 if (dmac < pba - 10) 2446 dmac = pba - 10; 2447 reg = E1000_READ_REG(hw, E1000_DMACR); 2448 reg &= ~E1000_DMACR_DMACTHR_MASK; 2449 reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT) 2450 & E1000_DMACR_DMACTHR_MASK); 2451 2452 /* transition to L0x or L1 if available..*/ 2453 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); 2454 2455 /* Check if status is 2.5Gb backplane connection 2456 * before configuration of watchdog timer, which is 2457 * in msec values in 12.8usec intervals 2458 * watchdog timer= msec values in 32usec intervals 2459 * for non 2.5Gb connection 2460 */ 2461 if (hw->mac.type == e1000_i354) { 2462 int status = E1000_READ_REG(hw, E1000_STATUS); 2463 if ((status & E1000_STATUS_2P5_SKU) && 2464 (!(status & E1000_STATUS_2P5_SKU_OVER))) 2465 reg |= ((sc->dmac * 5) >> 6); 2466 else 2467 reg |= (sc->dmac >> 5); 2468 } else { 2469 reg |= (sc->dmac >> 5); 2470 } 2471 2472 E1000_WRITE_REG(hw, E1000_DMACR, reg); 2473 2474 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0); 2475 2476 /* Set the interval before transition */ 2477 reg = E1000_READ_REG(hw, E1000_DMCTLX); 2478 if (hw->mac.type == e1000_i350) 2479 reg |= IGB_DMCTLX_DCFLUSH_DIS; 2480 /* 2481 ** in 2.5Gb connection, TTLX unit is 0.4 usec 2482 ** which is 0x4*2 = 0xA. But delay is still 4 usec 2483 */ 2484 if (hw->mac.type == e1000_i354) { 2485 int status = E1000_READ_REG(hw, E1000_STATUS); 2486 if ((status & E1000_STATUS_2P5_SKU) && 2487 (!(status & E1000_STATUS_2P5_SKU_OVER))) 2488 reg |= 0xA; 2489 else 2490 reg |= 0x4; 2491 } else { 2492 reg |= 0x4; 2493 } 2494 2495 E1000_WRITE_REG(hw, E1000_DMCTLX, reg); 2496 2497 /* free space in tx packet buffer to wake from DMA coal */ 2498 E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE - 2499 (2 * max_frame_size)) >> 6); 2500 2501 /* make low power state decision controlled by DMA coal */ 2502 reg = E1000_READ_REG(hw, E1000_PCIEMISC); 2503 reg &= ~E1000_PCIEMISC_LX_DECISION; 2504 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg); 2505 2506 } else if (hw->mac.type == e1000_82580) { 2507 u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC); 2508 E1000_WRITE_REG(hw, E1000_PCIEMISC, 2509 reg & ~E1000_PCIEMISC_LX_DECISION); 2510 E1000_WRITE_REG(hw, E1000_DMACR, 0); 2511 } 2512 } 2513 /********************************************************************* 2514 * The 3 following flush routines are used as a workaround in the 2515 * I219 client parts and only for them. 2516 * 2517 * em_flush_tx_ring - remove all descriptors from the tx_ring 2518 * 2519 * We want to clear all pending descriptors from the TX ring. 2520 * zeroing happens when the HW reads the regs. We assign the ring itself as 2521 * the data of the next descriptor. We don't care about the data we are about 2522 * to reset the HW. 2523 **********************************************************************/ 2524 static void 2525 em_flush_tx_ring(struct e1000_softc *sc) 2526 { 2527 struct e1000_hw *hw = &sc->hw; 2528 struct tx_ring *txr = &sc->tx_queues->txr; 2529 struct e1000_tx_desc *txd; 2530 u32 tctl, txd_lower = E1000_TXD_CMD_IFCS; 2531 u16 size = 512; 2532 2533 tctl = E1000_READ_REG(hw, E1000_TCTL); 2534 E1000_WRITE_REG(hw, E1000_TCTL, tctl | E1000_TCTL_EN); 2535 2536 txd = &txr->tx_base[txr->tx_cidx_processed]; 2537 2538 /* Just use the ring as a dummy buffer addr */ 2539 txd->buffer_addr = txr->tx_paddr; 2540 txd->lower.data = htole32(txd_lower | size); 2541 txd->upper.data = 0; 2542 2543 /* flush descriptors to memory before notifying the HW */ 2544 wmb(); 2545 2546 E1000_WRITE_REG(hw, E1000_TDT(0), txr->tx_cidx_processed); 2547 mb(); 2548 usec_delay(250); 2549 } 2550 2551 /********************************************************************* 2552 * em_flush_rx_ring - remove all descriptors from the rx_ring 2553 * 2554 * Mark all descriptors in the RX ring as consumed and disable the rx ring 2555 **********************************************************************/ 2556 static void 2557 em_flush_rx_ring(struct e1000_softc *sc) 2558 { 2559 struct e1000_hw *hw = &sc->hw; 2560 u32 rctl, rxdctl; 2561 2562 rctl = E1000_READ_REG(hw, E1000_RCTL); 2563 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); 2564 E1000_WRITE_FLUSH(hw); 2565 usec_delay(150); 2566 2567 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0)); 2568 /* zero the lower 14 bits (prefetch and host thresholds) */ 2569 rxdctl &= 0xffffc000; 2570 /* 2571 * update thresholds: prefetch threshold to 31, host threshold to 1 2572 * and make sure the granularity is "descriptors" and not "cache lines" 2573 */ 2574 rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC); 2575 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl); 2576 2577 /* momentarily enable the RX ring for the changes to take effect */ 2578 E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN); 2579 E1000_WRITE_FLUSH(hw); 2580 usec_delay(150); 2581 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); 2582 } 2583 2584 /********************************************************************* 2585 * em_flush_desc_rings - remove all descriptors from the descriptor rings 2586 * 2587 * In I219, the descriptor rings must be emptied before resetting the HW 2588 * or before changing the device state to D3 during runtime (runtime PM). 2589 * 2590 * Failure to do this will cause the HW to enter a unit hang state which can 2591 * only be released by PCI reset on the device 2592 * 2593 **********************************************************************/ 2594 static void 2595 em_flush_desc_rings(struct e1000_softc *sc) 2596 { 2597 struct e1000_hw *hw = &sc->hw; 2598 device_t dev = sc->dev; 2599 u16 hang_state; 2600 u32 fext_nvm11, tdlen; 2601 2602 /* First, disable MULR fix in FEXTNVM11 */ 2603 fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11); 2604 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; 2605 E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11); 2606 2607 /* do nothing if we're not in faulty state, or if the queue is empty */ 2608 tdlen = E1000_READ_REG(hw, E1000_TDLEN(0)); 2609 hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2); 2610 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen) 2611 return; 2612 em_flush_tx_ring(sc); 2613 2614 /* recheck, maybe the fault is caused by the rx ring */ 2615 hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2); 2616 if (hang_state & FLUSH_DESC_REQUIRED) 2617 em_flush_rx_ring(sc); 2618 } 2619 2620 2621 /********************************************************************* 2622 * 2623 * Initialize the hardware to a configuration as specified by the 2624 * sc structure. 2625 * 2626 **********************************************************************/ 2627 static void 2628 em_reset(if_ctx_t ctx) 2629 { 2630 device_t dev = iflib_get_dev(ctx); 2631 struct e1000_softc *sc = iflib_get_softc(ctx); 2632 if_t ifp = iflib_get_ifp(ctx); 2633 struct e1000_hw *hw = &sc->hw; 2634 u32 rx_buffer_size; 2635 u32 pba; 2636 2637 INIT_DEBUGOUT("em_reset: begin"); 2638 /* Let the firmware know the OS is in control */ 2639 em_get_hw_control(sc); 2640 2641 /* Set up smart power down as default off on newer adapters. */ 2642 if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 || 2643 hw->mac.type == e1000_82572)) { 2644 u16 phy_tmp = 0; 2645 2646 /* Speed up time to link by disabling smart power down. */ 2647 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp); 2648 phy_tmp &= ~IGP02E1000_PM_SPD; 2649 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp); 2650 } 2651 2652 /* 2653 * Packet Buffer Allocation (PBA) 2654 * Writing PBA sets the receive portion of the buffer 2655 * the remainder is used for the transmit buffer. 2656 */ 2657 switch (hw->mac.type) { 2658 /* 82547: Total Packet Buffer is 40K */ 2659 case e1000_82547: 2660 case e1000_82547_rev_2: 2661 if (hw->mac.max_frame_size > 8192) 2662 pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */ 2663 else 2664 pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */ 2665 break; 2666 /* 82571/82572/80003es2lan: Total Packet Buffer is 48K */ 2667 case e1000_82571: 2668 case e1000_82572: 2669 case e1000_80003es2lan: 2670 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */ 2671 break; 2672 /* 82573: Total Packet Buffer is 32K */ 2673 case e1000_82573: 2674 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */ 2675 break; 2676 case e1000_82574: 2677 case e1000_82583: 2678 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */ 2679 break; 2680 case e1000_ich8lan: 2681 pba = E1000_PBA_8K; 2682 break; 2683 case e1000_ich9lan: 2684 case e1000_ich10lan: 2685 /* Boost Receive side for jumbo frames */ 2686 if (hw->mac.max_frame_size > 4096) 2687 pba = E1000_PBA_14K; 2688 else 2689 pba = E1000_PBA_10K; 2690 break; 2691 case e1000_pchlan: 2692 case e1000_pch2lan: 2693 case e1000_pch_lpt: 2694 case e1000_pch_spt: 2695 case e1000_pch_cnp: 2696 case e1000_pch_tgp: 2697 case e1000_pch_adp: 2698 case e1000_pch_mtp: 2699 case e1000_pch_ptp: 2700 pba = E1000_PBA_26K; 2701 break; 2702 case e1000_82575: 2703 pba = E1000_PBA_32K; 2704 break; 2705 case e1000_82576: 2706 case e1000_vfadapt: 2707 pba = E1000_READ_REG(hw, E1000_RXPBS); 2708 pba &= E1000_RXPBS_SIZE_MASK_82576; 2709 break; 2710 case e1000_82580: 2711 case e1000_i350: 2712 case e1000_i354: 2713 case e1000_vfadapt_i350: 2714 pba = E1000_READ_REG(hw, E1000_RXPBS); 2715 pba = e1000_rxpbs_adjust_82580(pba); 2716 break; 2717 case e1000_i210: 2718 case e1000_i211: 2719 pba = E1000_PBA_34K; 2720 break; 2721 default: 2722 /* Remaining devices assumed to have a Packet Buffer of 64K. */ 2723 if (hw->mac.max_frame_size > 8192) 2724 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */ 2725 else 2726 pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */ 2727 } 2728 2729 /* Special needs in case of Jumbo frames */ 2730 if ((hw->mac.type == e1000_82575) && (if_getmtu(ifp) > ETHERMTU)) { 2731 u32 tx_space, min_tx, min_rx; 2732 pba = E1000_READ_REG(hw, E1000_PBA); 2733 tx_space = pba >> 16; 2734 pba &= 0xffff; 2735 min_tx = (hw->mac.max_frame_size + 2736 sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2; 2737 min_tx = roundup2(min_tx, 1024); 2738 min_tx >>= 10; 2739 min_rx = hw->mac.max_frame_size; 2740 min_rx = roundup2(min_rx, 1024); 2741 min_rx >>= 10; 2742 if (tx_space < min_tx && 2743 ((min_tx - tx_space) < pba)) { 2744 pba = pba - (min_tx - tx_space); 2745 /* 2746 * if short on rx space, rx wins 2747 * and must trump tx adjustment 2748 */ 2749 if (pba < min_rx) 2750 pba = min_rx; 2751 } 2752 E1000_WRITE_REG(hw, E1000_PBA, pba); 2753 } 2754 2755 if (hw->mac.type < igb_mac_min) 2756 E1000_WRITE_REG(hw, E1000_PBA, pba); 2757 2758 INIT_DEBUGOUT1("em_reset: pba=%dK",pba); 2759 2760 /* 2761 * These parameters control the automatic generation (Tx) and 2762 * response (Rx) to Ethernet PAUSE frames. 2763 * - High water mark should allow for at least two frames to be 2764 * received after sending an XOFF. 2765 * - Low water mark works best when it is very near the high water mark. 2766 * This allows the receiver to restart by sending XON when it has 2767 * drained a bit. Here we use an arbitrary value of 1500 which will 2768 * restart after one full frame is pulled from the buffer. There 2769 * could be several smaller frames in the buffer and if so they will 2770 * not trigger the XON until their total number reduces the buffer 2771 * by 1500. 2772 * - The pause time is fairly large at 1000 x 512ns = 512 usec. 2773 */ 2774 rx_buffer_size = (pba & 0xffff) << 10; 2775 hw->fc.high_water = rx_buffer_size - 2776 roundup2(hw->mac.max_frame_size, 1024); 2777 hw->fc.low_water = hw->fc.high_water - 1500; 2778 2779 if (sc->fc) /* locally set flow control value? */ 2780 hw->fc.requested_mode = sc->fc; 2781 else 2782 hw->fc.requested_mode = e1000_fc_full; 2783 2784 if (hw->mac.type == e1000_80003es2lan) 2785 hw->fc.pause_time = 0xFFFF; 2786 else 2787 hw->fc.pause_time = EM_FC_PAUSE_TIME; 2788 2789 hw->fc.send_xon = true; 2790 2791 /* Device specific overrides/settings */ 2792 switch (hw->mac.type) { 2793 case e1000_pchlan: 2794 /* Workaround: no TX flow ctrl for PCH */ 2795 hw->fc.requested_mode = e1000_fc_rx_pause; 2796 hw->fc.pause_time = 0xFFFF; /* override */ 2797 if (if_getmtu(ifp) > ETHERMTU) { 2798 hw->fc.high_water = 0x3500; 2799 hw->fc.low_water = 0x1500; 2800 } else { 2801 hw->fc.high_water = 0x5000; 2802 hw->fc.low_water = 0x3000; 2803 } 2804 hw->fc.refresh_time = 0x1000; 2805 break; 2806 case e1000_pch2lan: 2807 case e1000_pch_lpt: 2808 case e1000_pch_spt: 2809 case e1000_pch_cnp: 2810 case e1000_pch_tgp: 2811 case e1000_pch_adp: 2812 case e1000_pch_mtp: 2813 case e1000_pch_ptp: 2814 hw->fc.high_water = 0x5C20; 2815 hw->fc.low_water = 0x5048; 2816 hw->fc.pause_time = 0x0650; 2817 hw->fc.refresh_time = 0x0400; 2818 /* Jumbos need adjusted PBA */ 2819 if (if_getmtu(ifp) > ETHERMTU) 2820 E1000_WRITE_REG(hw, E1000_PBA, 12); 2821 else 2822 E1000_WRITE_REG(hw, E1000_PBA, 26); 2823 break; 2824 case e1000_82575: 2825 case e1000_82576: 2826 /* 8-byte granularity */ 2827 hw->fc.low_water = hw->fc.high_water - 8; 2828 break; 2829 case e1000_82580: 2830 case e1000_i350: 2831 case e1000_i354: 2832 case e1000_i210: 2833 case e1000_i211: 2834 case e1000_vfadapt: 2835 case e1000_vfadapt_i350: 2836 /* 16-byte granularity */ 2837 hw->fc.low_water = hw->fc.high_water - 16; 2838 break; 2839 case e1000_ich9lan: 2840 case e1000_ich10lan: 2841 if (if_getmtu(ifp) > ETHERMTU) { 2842 hw->fc.high_water = 0x2800; 2843 hw->fc.low_water = hw->fc.high_water - 8; 2844 break; 2845 } 2846 /* FALLTHROUGH */ 2847 default: 2848 if (hw->mac.type == e1000_80003es2lan) 2849 hw->fc.pause_time = 0xFFFF; 2850 break; 2851 } 2852 2853 /* I219 needs some special flushing to avoid hangs */ 2854 if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min) 2855 em_flush_desc_rings(sc); 2856 2857 /* Issue a global reset */ 2858 e1000_reset_hw(hw); 2859 if (hw->mac.type >= igb_mac_min) { 2860 E1000_WRITE_REG(hw, E1000_WUC, 0); 2861 } else { 2862 E1000_WRITE_REG(hw, E1000_WUFC, 0); 2863 em_disable_aspm(sc); 2864 } 2865 if (sc->flags & IGB_MEDIA_RESET) { 2866 e1000_setup_init_funcs(hw, true); 2867 e1000_get_bus_info(hw); 2868 sc->flags &= ~IGB_MEDIA_RESET; 2869 } 2870 /* and a re-init */ 2871 if (e1000_init_hw(hw) < 0) { 2872 device_printf(dev, "Hardware Initialization Failed\n"); 2873 return; 2874 } 2875 if (hw->mac.type >= igb_mac_min) 2876 igb_init_dmac(sc, pba); 2877 2878 E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN); 2879 e1000_get_phy_info(hw); 2880 e1000_check_for_link(hw); 2881 } 2882 2883 /* 2884 * Initialise the RSS mapping for NICs that support multiple transmit/ 2885 * receive rings. 2886 */ 2887 2888 #define RSSKEYLEN 10 2889 static void 2890 em_initialize_rss_mapping(struct e1000_softc *sc) 2891 { 2892 uint8_t rss_key[4 * RSSKEYLEN]; 2893 uint32_t reta = 0; 2894 struct e1000_hw *hw = &sc->hw; 2895 int i; 2896 2897 /* 2898 * Configure RSS key 2899 */ 2900 arc4rand(rss_key, sizeof(rss_key), 0); 2901 for (i = 0; i < RSSKEYLEN; ++i) { 2902 uint32_t rssrk = 0; 2903 2904 rssrk = EM_RSSRK_VAL(rss_key, i); 2905 E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk); 2906 } 2907 2908 /* 2909 * Configure RSS redirect table in following fashion: 2910 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)] 2911 */ 2912 for (i = 0; i < sizeof(reta); ++i) { 2913 uint32_t q; 2914 2915 q = (i % sc->rx_num_queues) << 7; 2916 reta |= q << (8 * i); 2917 } 2918 2919 for (i = 0; i < 32; ++i) 2920 E1000_WRITE_REG(hw, E1000_RETA(i), reta); 2921 2922 E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q | 2923 E1000_MRQC_RSS_FIELD_IPV4_TCP | 2924 E1000_MRQC_RSS_FIELD_IPV4 | 2925 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX | 2926 E1000_MRQC_RSS_FIELD_IPV6_EX | 2927 E1000_MRQC_RSS_FIELD_IPV6); 2928 } 2929 2930 static void 2931 igb_initialize_rss_mapping(struct e1000_softc *sc) 2932 { 2933 struct e1000_hw *hw = &sc->hw; 2934 int i; 2935 int queue_id; 2936 u32 reta; 2937 u32 rss_key[10], mrqc, shift = 0; 2938 2939 /* XXX? */ 2940 if (hw->mac.type == e1000_82575) 2941 shift = 6; 2942 2943 /* 2944 * The redirection table controls which destination 2945 * queue each bucket redirects traffic to. 2946 * Each DWORD represents four queues, with the LSB 2947 * being the first queue in the DWORD. 2948 * 2949 * This just allocates buckets to queues using round-robin 2950 * allocation. 2951 * 2952 * NOTE: It Just Happens to line up with the default 2953 * RSS allocation method. 2954 */ 2955 2956 /* Warning FM follows */ 2957 reta = 0; 2958 for (i = 0; i < 128; i++) { 2959 #ifdef RSS 2960 queue_id = rss_get_indirection_to_bucket(i); 2961 /* 2962 * If we have more queues than buckets, we'll 2963 * end up mapping buckets to a subset of the 2964 * queues. 2965 * 2966 * If we have more buckets than queues, we'll 2967 * end up instead assigning multiple buckets 2968 * to queues. 2969 * 2970 * Both are suboptimal, but we need to handle 2971 * the case so we don't go out of bounds 2972 * indexing arrays and such. 2973 */ 2974 queue_id = queue_id % sc->rx_num_queues; 2975 #else 2976 queue_id = (i % sc->rx_num_queues); 2977 #endif 2978 /* Adjust if required */ 2979 queue_id = queue_id << shift; 2980 2981 /* 2982 * The low 8 bits are for hash value (n+0); 2983 * The next 8 bits are for hash value (n+1), etc. 2984 */ 2985 reta = reta >> 8; 2986 reta = reta | ( ((uint32_t) queue_id) << 24); 2987 if ((i & 3) == 3) { 2988 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta); 2989 reta = 0; 2990 } 2991 } 2992 2993 /* Now fill in hash table */ 2994 2995 /* 2996 * MRQC: Multiple Receive Queues Command 2997 * Set queuing to RSS control, number depends on the device. 2998 */ 2999 mrqc = E1000_MRQC_ENABLE_RSS_MQ; 3000 3001 #ifdef RSS 3002 /* XXX ew typecasting */ 3003 rss_getkey((uint8_t *) &rss_key); 3004 #else 3005 arc4rand(&rss_key, sizeof(rss_key), 0); 3006 #endif 3007 for (i = 0; i < 10; i++) 3008 E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]); 3009 3010 /* 3011 * Configure the RSS fields to hash upon. 3012 */ 3013 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 | 3014 E1000_MRQC_RSS_FIELD_IPV4_TCP); 3015 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 | 3016 E1000_MRQC_RSS_FIELD_IPV6_TCP); 3017 mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP | 3018 E1000_MRQC_RSS_FIELD_IPV6_UDP); 3019 mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX | 3020 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); 3021 3022 E1000_WRITE_REG(hw, E1000_MRQC, mrqc); 3023 } 3024 3025 /********************************************************************* 3026 * 3027 * Setup networking device structure and register interface media. 3028 * 3029 **********************************************************************/ 3030 static int 3031 em_setup_interface(if_ctx_t ctx) 3032 { 3033 if_t ifp = iflib_get_ifp(ctx); 3034 struct e1000_softc *sc = iflib_get_softc(ctx); 3035 if_softc_ctx_t scctx = sc->shared; 3036 3037 INIT_DEBUGOUT("em_setup_interface: begin"); 3038 3039 /* Single Queue */ 3040 if (sc->tx_num_queues == 1) { 3041 if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1); 3042 if_setsendqready(ifp); 3043 } 3044 3045 /* 3046 * Specify the media types supported by this adapter and register 3047 * callbacks to update media and link information 3048 */ 3049 if (sc->hw.phy.media_type == e1000_media_type_fiber || 3050 sc->hw.phy.media_type == e1000_media_type_internal_serdes) { 3051 u_char fiber_type = IFM_1000_SX; /* default type */ 3052 3053 if (sc->hw.mac.type == e1000_82545) 3054 fiber_type = IFM_1000_LX; 3055 ifmedia_add(sc->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL); 3056 ifmedia_add(sc->media, IFM_ETHER | fiber_type, 0, NULL); 3057 } else { 3058 ifmedia_add(sc->media, IFM_ETHER | IFM_10_T, 0, NULL); 3059 ifmedia_add(sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL); 3060 ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX, 0, NULL); 3061 ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); 3062 if (sc->hw.phy.type != e1000_phy_ife) { 3063 ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); 3064 ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T, 0, NULL); 3065 } 3066 } 3067 ifmedia_add(sc->media, IFM_ETHER | IFM_AUTO, 0, NULL); 3068 ifmedia_set(sc->media, IFM_ETHER | IFM_AUTO); 3069 return (0); 3070 } 3071 3072 static int 3073 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets) 3074 { 3075 struct e1000_softc *sc = iflib_get_softc(ctx); 3076 if_softc_ctx_t scctx = sc->shared; 3077 int error = E1000_SUCCESS; 3078 struct em_tx_queue *que; 3079 int i, j; 3080 3081 MPASS(sc->tx_num_queues > 0); 3082 MPASS(sc->tx_num_queues == ntxqsets); 3083 3084 /* First allocate the top level queue structs */ 3085 if (!(sc->tx_queues = 3086 (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) * 3087 sc->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { 3088 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n"); 3089 return(ENOMEM); 3090 } 3091 3092 for (i = 0, que = sc->tx_queues; i < sc->tx_num_queues; i++, que++) { 3093 /* Set up some basics */ 3094 3095 struct tx_ring *txr = &que->txr; 3096 txr->sc = que->sc = sc; 3097 que->me = txr->me = i; 3098 3099 /* Allocate report status array */ 3100 if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) { 3101 device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n"); 3102 error = ENOMEM; 3103 goto fail; 3104 } 3105 for (j = 0; j < scctx->isc_ntxd[0]; j++) 3106 txr->tx_rsq[j] = QIDX_INVALID; 3107 /* get the virtual and physical address of the hardware queues */ 3108 txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs]; 3109 txr->tx_paddr = paddrs[i*ntxqs]; 3110 } 3111 3112 if (bootverbose) 3113 device_printf(iflib_get_dev(ctx), 3114 "allocated for %d tx_queues\n", sc->tx_num_queues); 3115 return (0); 3116 fail: 3117 em_if_queues_free(ctx); 3118 return (error); 3119 } 3120 3121 static int 3122 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets) 3123 { 3124 struct e1000_softc *sc = iflib_get_softc(ctx); 3125 int error = E1000_SUCCESS; 3126 struct em_rx_queue *que; 3127 int i; 3128 3129 MPASS(sc->rx_num_queues > 0); 3130 MPASS(sc->rx_num_queues == nrxqsets); 3131 3132 /* First allocate the top level queue structs */ 3133 if (!(sc->rx_queues = 3134 (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) * 3135 sc->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { 3136 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n"); 3137 error = ENOMEM; 3138 goto fail; 3139 } 3140 3141 for (i = 0, que = sc->rx_queues; i < nrxqsets; i++, que++) { 3142 /* Set up some basics */ 3143 struct rx_ring *rxr = &que->rxr; 3144 rxr->sc = que->sc = sc; 3145 rxr->que = que; 3146 que->me = rxr->me = i; 3147 3148 /* get the virtual and physical address of the hardware queues */ 3149 rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs]; 3150 rxr->rx_paddr = paddrs[i*nrxqs]; 3151 } 3152 3153 if (bootverbose) 3154 device_printf(iflib_get_dev(ctx), 3155 "allocated for %d rx_queues\n", sc->rx_num_queues); 3156 3157 return (0); 3158 fail: 3159 em_if_queues_free(ctx); 3160 return (error); 3161 } 3162 3163 static void 3164 em_if_queues_free(if_ctx_t ctx) 3165 { 3166 struct e1000_softc *sc = iflib_get_softc(ctx); 3167 struct em_tx_queue *tx_que = sc->tx_queues; 3168 struct em_rx_queue *rx_que = sc->rx_queues; 3169 3170 if (tx_que != NULL) { 3171 for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) { 3172 struct tx_ring *txr = &tx_que->txr; 3173 if (txr->tx_rsq == NULL) 3174 break; 3175 3176 free(txr->tx_rsq, M_DEVBUF); 3177 txr->tx_rsq = NULL; 3178 } 3179 free(sc->tx_queues, M_DEVBUF); 3180 sc->tx_queues = NULL; 3181 } 3182 3183 if (rx_que != NULL) { 3184 free(sc->rx_queues, M_DEVBUF); 3185 sc->rx_queues = NULL; 3186 } 3187 } 3188 3189 /********************************************************************* 3190 * 3191 * Enable transmit unit. 3192 * 3193 **********************************************************************/ 3194 static void 3195 em_initialize_transmit_unit(if_ctx_t ctx) 3196 { 3197 struct e1000_softc *sc = iflib_get_softc(ctx); 3198 if_softc_ctx_t scctx = sc->shared; 3199 struct em_tx_queue *que; 3200 struct tx_ring *txr; 3201 struct e1000_hw *hw = &sc->hw; 3202 u32 tctl, txdctl = 0, tarc, tipg = 0; 3203 3204 INIT_DEBUGOUT("em_initialize_transmit_unit: begin"); 3205 3206 for (int i = 0; i < sc->tx_num_queues; i++, txr++) { 3207 u64 bus_addr; 3208 caddr_t offp, endp; 3209 3210 que = &sc->tx_queues[i]; 3211 txr = &que->txr; 3212 bus_addr = txr->tx_paddr; 3213 3214 /* Clear checksum offload context. */ 3215 offp = (caddr_t)&txr->csum_flags; 3216 endp = (caddr_t)(txr + 1); 3217 bzero(offp, endp - offp); 3218 3219 /* Base and Len of TX Ring */ 3220 E1000_WRITE_REG(hw, E1000_TDLEN(i), 3221 scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc)); 3222 E1000_WRITE_REG(hw, E1000_TDBAH(i), 3223 (u32)(bus_addr >> 32)); 3224 E1000_WRITE_REG(hw, E1000_TDBAL(i), 3225 (u32)bus_addr); 3226 /* Init the HEAD/TAIL indices */ 3227 E1000_WRITE_REG(hw, E1000_TDT(i), 0); 3228 E1000_WRITE_REG(hw, E1000_TDH(i), 0); 3229 3230 HW_DEBUGOUT2("Base = %x, Length = %x\n", 3231 E1000_READ_REG(hw, E1000_TDBAL(i)), 3232 E1000_READ_REG(hw, E1000_TDLEN(i))); 3233 3234 txdctl = 0; /* clear txdctl */ 3235 txdctl |= 0x1f; /* PTHRESH */ 3236 txdctl |= 1 << 8; /* HTHRESH */ 3237 txdctl |= 1 << 16;/* WTHRESH */ 3238 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */ 3239 txdctl |= E1000_TXDCTL_GRAN; 3240 txdctl |= 1 << 25; /* LWTHRESH */ 3241 3242 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl); 3243 } 3244 3245 /* Set the default values for the Tx Inter Packet Gap timer */ 3246 switch (hw->mac.type) { 3247 case e1000_80003es2lan: 3248 tipg = DEFAULT_82543_TIPG_IPGR1; 3249 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 << 3250 E1000_TIPG_IPGR2_SHIFT; 3251 break; 3252 case e1000_82542: 3253 tipg = DEFAULT_82542_TIPG_IPGT; 3254 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; 3255 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; 3256 break; 3257 default: 3258 if (hw->phy.media_type == e1000_media_type_fiber || 3259 hw->phy.media_type == e1000_media_type_internal_serdes) 3260 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 3261 else 3262 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 3263 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; 3264 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; 3265 } 3266 3267 E1000_WRITE_REG(hw, E1000_TIPG, tipg); 3268 E1000_WRITE_REG(hw, E1000_TIDV, sc->tx_int_delay.value); 3269 3270 if(hw->mac.type >= e1000_82540) 3271 E1000_WRITE_REG(hw, E1000_TADV, 3272 sc->tx_abs_int_delay.value); 3273 3274 if (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572) { 3275 tarc = E1000_READ_REG(hw, E1000_TARC(0)); 3276 tarc |= TARC_SPEED_MODE_BIT; 3277 E1000_WRITE_REG(hw, E1000_TARC(0), tarc); 3278 } else if (hw->mac.type == e1000_80003es2lan) { 3279 /* errata: program both queues to unweighted RR */ 3280 tarc = E1000_READ_REG(hw, E1000_TARC(0)); 3281 tarc |= 1; 3282 E1000_WRITE_REG(hw, E1000_TARC(0), tarc); 3283 tarc = E1000_READ_REG(hw, E1000_TARC(1)); 3284 tarc |= 1; 3285 E1000_WRITE_REG(hw, E1000_TARC(1), tarc); 3286 } else if (hw->mac.type == e1000_82574) { 3287 tarc = E1000_READ_REG(hw, E1000_TARC(0)); 3288 tarc |= TARC_ERRATA_BIT; 3289 if ( sc->tx_num_queues > 1) { 3290 tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX); 3291 E1000_WRITE_REG(hw, E1000_TARC(0), tarc); 3292 E1000_WRITE_REG(hw, E1000_TARC(1), tarc); 3293 } else 3294 E1000_WRITE_REG(hw, E1000_TARC(0), tarc); 3295 } 3296 3297 if (sc->tx_int_delay.value > 0) 3298 sc->txd_cmd |= E1000_TXD_CMD_IDE; 3299 3300 /* Program the Transmit Control Register */ 3301 tctl = E1000_READ_REG(hw, E1000_TCTL); 3302 tctl &= ~E1000_TCTL_CT; 3303 tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN | 3304 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT)); 3305 3306 if (hw->mac.type >= e1000_82571) 3307 tctl |= E1000_TCTL_MULR; 3308 3309 /* This write will effectively turn on the transmit unit. */ 3310 E1000_WRITE_REG(hw, E1000_TCTL, tctl); 3311 3312 /* SPT and KBL errata workarounds */ 3313 if (hw->mac.type == e1000_pch_spt) { 3314 u32 reg; 3315 reg = E1000_READ_REG(hw, E1000_IOSFPC); 3316 reg |= E1000_RCTL_RDMTS_HEX; 3317 E1000_WRITE_REG(hw, E1000_IOSFPC, reg); 3318 /* i218-i219 Specification Update 1.5.4.5 */ 3319 reg = E1000_READ_REG(hw, E1000_TARC(0)); 3320 reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ; 3321 reg |= E1000_TARC0_CB_MULTIQ_2_REQ; 3322 E1000_WRITE_REG(hw, E1000_TARC(0), reg); 3323 } 3324 } 3325 3326 /********************************************************************* 3327 * 3328 * Enable receive unit. 3329 * 3330 **********************************************************************/ 3331 #define BSIZEPKT_ROUNDUP ((1<<E1000_SRRCTL_BSIZEPKT_SHIFT)-1) 3332 3333 static void 3334 em_initialize_receive_unit(if_ctx_t ctx) 3335 { 3336 struct e1000_softc *sc = iflib_get_softc(ctx); 3337 if_softc_ctx_t scctx = sc->shared; 3338 if_t ifp = iflib_get_ifp(ctx); 3339 struct e1000_hw *hw = &sc->hw; 3340 struct em_rx_queue *que; 3341 int i; 3342 uint32_t rctl, rxcsum; 3343 3344 INIT_DEBUGOUT("em_initialize_receive_units: begin"); 3345 3346 /* 3347 * Make sure receives are disabled while setting 3348 * up the descriptor ring 3349 */ 3350 rctl = E1000_READ_REG(hw, E1000_RCTL); 3351 /* Do not disable if ever enabled on this hardware */ 3352 if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583)) 3353 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); 3354 3355 /* Setup the Receive Control Register */ 3356 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 3357 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | 3358 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 3359 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 3360 3361 /* Do not store bad packets */ 3362 rctl &= ~E1000_RCTL_SBP; 3363 3364 /* Enable Long Packet receive */ 3365 if (if_getmtu(ifp) > ETHERMTU) 3366 rctl |= E1000_RCTL_LPE; 3367 else 3368 rctl &= ~E1000_RCTL_LPE; 3369 3370 /* Strip the CRC */ 3371 if (!em_disable_crc_stripping) 3372 rctl |= E1000_RCTL_SECRC; 3373 3374 if (hw->mac.type >= e1000_82540) { 3375 E1000_WRITE_REG(hw, E1000_RADV, 3376 sc->rx_abs_int_delay.value); 3377 3378 /* 3379 * Set the interrupt throttling rate. Value is calculated 3380 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) 3381 */ 3382 E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR); 3383 } 3384 E1000_WRITE_REG(hw, E1000_RDTR, sc->rx_int_delay.value); 3385 3386 if (hw->mac.type >= em_mac_min) { 3387 uint32_t rfctl; 3388 /* Use extended rx descriptor formats */ 3389 rfctl = E1000_READ_REG(hw, E1000_RFCTL); 3390 rfctl |= E1000_RFCTL_EXTEN; 3391 3392 /* 3393 * When using MSI-X interrupts we need to throttle 3394 * using the EITR register (82574 only) 3395 */ 3396 if (hw->mac.type == e1000_82574) { 3397 for (int i = 0; i < 4; i++) 3398 E1000_WRITE_REG(hw, E1000_EITR_82574(i), 3399 DEFAULT_ITR); 3400 /* Disable accelerated acknowledge */ 3401 rfctl |= E1000_RFCTL_ACK_DIS; 3402 } 3403 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); 3404 } 3405 3406 /* Set up L3 and L4 csum Rx descriptor offloads */ 3407 rxcsum = E1000_READ_REG(hw, E1000_RXCSUM); 3408 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 3409 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL; 3410 if (hw->mac.type > e1000_82575) 3411 rxcsum |= E1000_RXCSUM_CRCOFL; 3412 else if (hw->mac.type < em_mac_min && 3413 if_getcapenable(ifp) & IFCAP_HWCSUM_IPV6) 3414 rxcsum |= E1000_RXCSUM_IPV6OFL; 3415 } else { 3416 rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL); 3417 if (hw->mac.type > e1000_82575) 3418 rxcsum &= ~E1000_RXCSUM_CRCOFL; 3419 else if (hw->mac.type < em_mac_min) 3420 rxcsum &= ~E1000_RXCSUM_IPV6OFL; 3421 } 3422 3423 if (sc->rx_num_queues > 1) { 3424 /* RSS hash needed in the Rx descriptor */ 3425 rxcsum |= E1000_RXCSUM_PCSD; 3426 3427 if (hw->mac.type >= igb_mac_min) 3428 igb_initialize_rss_mapping(sc); 3429 else 3430 em_initialize_rss_mapping(sc); 3431 } 3432 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum); 3433 3434 /* 3435 * XXX TEMPORARY WORKAROUND: on some systems with 82573 3436 * long latencies are observed, like Lenovo X60. This 3437 * change eliminates the problem, but since having positive 3438 * values in RDTR is a known source of problems on other 3439 * platforms another solution is being sought. 3440 */ 3441 if (hw->mac.type == e1000_82573) 3442 E1000_WRITE_REG(hw, E1000_RDTR, 0x20); 3443 3444 for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) { 3445 struct rx_ring *rxr = &que->rxr; 3446 /* Setup the Base and Length of the Rx Descriptor Ring */ 3447 u64 bus_addr = rxr->rx_paddr; 3448 #if 0 3449 u32 rdt = sc->rx_num_queues -1; /* default */ 3450 #endif 3451 3452 E1000_WRITE_REG(hw, E1000_RDLEN(i), 3453 scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended)); 3454 E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32)); 3455 E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr); 3456 /* Setup the Head and Tail Descriptor Pointers */ 3457 E1000_WRITE_REG(hw, E1000_RDH(i), 0); 3458 E1000_WRITE_REG(hw, E1000_RDT(i), 0); 3459 } 3460 3461 /* 3462 * Set PTHRESH for improved jumbo performance 3463 * According to 10.2.5.11 of Intel 82574 Datasheet, 3464 * RXDCTL(1) is written whenever RXDCTL(0) is written. 3465 * Only write to RXDCTL(1) if there is a need for different 3466 * settings. 3467 */ 3468 if ((hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_pch2lan || 3469 hw->mac.type == e1000_ich10lan) && if_getmtu(ifp) > ETHERMTU) { 3470 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0)); 3471 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3); 3472 } else if (hw->mac.type == e1000_82574) { 3473 for (int i = 0; i < sc->rx_num_queues; i++) { 3474 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i)); 3475 rxdctl |= 0x20; /* PTHRESH */ 3476 rxdctl |= 4 << 8; /* HTHRESH */ 3477 rxdctl |= 4 << 16;/* WTHRESH */ 3478 rxdctl |= 1 << 24; /* Switch to granularity */ 3479 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); 3480 } 3481 } else if (hw->mac.type >= igb_mac_min) { 3482 u32 psize, srrctl = 0; 3483 3484 if (if_getmtu(ifp) > ETHERMTU) { 3485 psize = scctx->isc_max_frame_size; 3486 /* are we on a vlan? */ 3487 if (if_vlantrunkinuse(ifp)) 3488 psize += VLAN_TAG_SIZE; 3489 3490 if (sc->vf_ifp) 3491 e1000_rlpml_set_vf(hw, psize); 3492 else 3493 E1000_WRITE_REG(hw, E1000_RLPML, psize); 3494 } 3495 3496 /* Set maximum packet buffer len */ 3497 srrctl |= (sc->rx_mbuf_sz + BSIZEPKT_ROUNDUP) >> 3498 E1000_SRRCTL_BSIZEPKT_SHIFT; 3499 3500 /* 3501 * If TX flow control is disabled and there's >1 queue defined, 3502 * enable DROP. 3503 * 3504 * This drops frames rather than hanging the RX MAC for all queues. 3505 */ 3506 if ((sc->rx_num_queues > 1) && 3507 (sc->fc == e1000_fc_none || 3508 sc->fc == e1000_fc_rx_pause)) { 3509 srrctl |= E1000_SRRCTL_DROP_EN; 3510 } 3511 /* Setup the Base and Length of the Rx Descriptor Rings */ 3512 for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) { 3513 struct rx_ring *rxr = &que->rxr; 3514 u64 bus_addr = rxr->rx_paddr; 3515 u32 rxdctl; 3516 3517 #ifdef notyet 3518 /* Configure for header split? -- ignore for now */ 3519 rxr->hdr_split = igb_header_split; 3520 #else 3521 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 3522 #endif 3523 3524 E1000_WRITE_REG(hw, E1000_RDLEN(i), 3525 scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc)); 3526 E1000_WRITE_REG(hw, E1000_RDBAH(i), 3527 (uint32_t)(bus_addr >> 32)); 3528 E1000_WRITE_REG(hw, E1000_RDBAL(i), 3529 (uint32_t)bus_addr); 3530 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl); 3531 /* Enable this Queue */ 3532 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i)); 3533 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 3534 rxdctl &= 0xFFF00000; 3535 rxdctl |= IGB_RX_PTHRESH; 3536 rxdctl |= IGB_RX_HTHRESH << 8; 3537 rxdctl |= IGB_RX_WTHRESH << 16; 3538 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); 3539 } 3540 } else if (hw->mac.type >= e1000_pch2lan) { 3541 if (if_getmtu(ifp) > ETHERMTU) 3542 e1000_lv_jumbo_workaround_ich8lan(hw, true); 3543 else 3544 e1000_lv_jumbo_workaround_ich8lan(hw, false); 3545 } 3546 3547 /* Make sure VLAN Filters are off */ 3548 rctl &= ~E1000_RCTL_VFE; 3549 3550 /* Set up packet buffer size, overridden by per queue srrctl on igb */ 3551 if (hw->mac.type < igb_mac_min) { 3552 if (sc->rx_mbuf_sz > 2048 && sc->rx_mbuf_sz <= 4096) 3553 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX; 3554 else if (sc->rx_mbuf_sz > 4096 && sc->rx_mbuf_sz <= 8192) 3555 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX; 3556 else if (sc->rx_mbuf_sz > 8192) 3557 rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX; 3558 else { 3559 rctl |= E1000_RCTL_SZ_2048; 3560 rctl &= ~E1000_RCTL_BSEX; 3561 } 3562 } else 3563 rctl |= E1000_RCTL_SZ_2048; 3564 3565 /* 3566 * rctl bits 11:10 are as follows 3567 * lem: reserved 3568 * em: DTYPE 3569 * igb: reserved 3570 * and should be 00 on all of the above 3571 */ 3572 rctl &= ~0x00000C00; 3573 3574 /* Write out the settings */ 3575 E1000_WRITE_REG(hw, E1000_RCTL, rctl); 3576 3577 return; 3578 } 3579 3580 static void 3581 em_if_vlan_register(if_ctx_t ctx, u16 vtag) 3582 { 3583 struct e1000_softc *sc = iflib_get_softc(ctx); 3584 u32 index, bit; 3585 3586 index = (vtag >> 5) & 0x7F; 3587 bit = vtag & 0x1F; 3588 sc->shadow_vfta[index] |= (1 << bit); 3589 ++sc->num_vlans; 3590 em_if_vlan_filter_write(sc); 3591 } 3592 3593 static void 3594 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag) 3595 { 3596 struct e1000_softc *sc = iflib_get_softc(ctx); 3597 u32 index, bit; 3598 3599 index = (vtag >> 5) & 0x7F; 3600 bit = vtag & 0x1F; 3601 sc->shadow_vfta[index] &= ~(1 << bit); 3602 --sc->num_vlans; 3603 em_if_vlan_filter_write(sc); 3604 } 3605 3606 static bool 3607 em_if_vlan_filter_capable(if_ctx_t ctx) 3608 { 3609 if_t ifp = iflib_get_ifp(ctx); 3610 3611 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) && 3612 !em_disable_crc_stripping) 3613 return (true); 3614 3615 return (false); 3616 } 3617 3618 static bool 3619 em_if_vlan_filter_used(if_ctx_t ctx) 3620 { 3621 struct e1000_softc *sc = iflib_get_softc(ctx); 3622 3623 if (!em_if_vlan_filter_capable(ctx)) 3624 return (false); 3625 3626 for (int i = 0; i < EM_VFTA_SIZE; i++) 3627 if (sc->shadow_vfta[i] != 0) 3628 return (true); 3629 3630 return (false); 3631 } 3632 3633 static void 3634 em_if_vlan_filter_enable(struct e1000_softc *sc) 3635 { 3636 struct e1000_hw *hw = &sc->hw; 3637 u32 reg; 3638 3639 reg = E1000_READ_REG(hw, E1000_RCTL); 3640 reg &= ~E1000_RCTL_CFIEN; 3641 reg |= E1000_RCTL_VFE; 3642 E1000_WRITE_REG(hw, E1000_RCTL, reg); 3643 } 3644 3645 static void 3646 em_if_vlan_filter_disable(struct e1000_softc *sc) 3647 { 3648 struct e1000_hw *hw = &sc->hw; 3649 u32 reg; 3650 3651 reg = E1000_READ_REG(hw, E1000_RCTL); 3652 reg &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN); 3653 E1000_WRITE_REG(hw, E1000_RCTL, reg); 3654 } 3655 3656 static void 3657 em_if_vlan_filter_write(struct e1000_softc *sc) 3658 { 3659 struct e1000_hw *hw = &sc->hw; 3660 3661 if (sc->vf_ifp) 3662 return; 3663 3664 /* Disable interrupts for lem-class devices during the filter change */ 3665 if (hw->mac.type < em_mac_min) 3666 em_if_intr_disable(sc->ctx); 3667 3668 for (int i = 0; i < EM_VFTA_SIZE; i++) 3669 if (sc->shadow_vfta[i] != 0) { 3670 /* XXXKB: incomplete VF support, we return early above */ 3671 if (sc->vf_ifp) 3672 e1000_vfta_set_vf(hw, sc->shadow_vfta[i], true); 3673 else 3674 e1000_write_vfta(hw, i, sc->shadow_vfta[i]); 3675 } 3676 3677 /* Re-enable interrupts for lem-class devices */ 3678 if (hw->mac.type < em_mac_min) 3679 em_if_intr_enable(sc->ctx); 3680 } 3681 3682 static void 3683 em_setup_vlan_hw_support(if_ctx_t ctx) 3684 { 3685 struct e1000_softc *sc = iflib_get_softc(ctx); 3686 struct e1000_hw *hw = &sc->hw; 3687 if_t ifp = iflib_get_ifp(ctx); 3688 u32 reg; 3689 3690 /* XXXKB: Return early if we are a VF until VF decap and filter management 3691 * is ready and tested. 3692 */ 3693 if (sc->vf_ifp) 3694 return; 3695 3696 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING && 3697 !em_disable_crc_stripping) { 3698 reg = E1000_READ_REG(hw, E1000_CTRL); 3699 reg |= E1000_CTRL_VME; 3700 E1000_WRITE_REG(hw, E1000_CTRL, reg); 3701 } else { 3702 reg = E1000_READ_REG(hw, E1000_CTRL); 3703 reg &= ~E1000_CTRL_VME; 3704 E1000_WRITE_REG(hw, E1000_CTRL, reg); 3705 } 3706 3707 /* If we aren't doing HW filtering, we're done */ 3708 if (!em_if_vlan_filter_capable(ctx)) { 3709 em_if_vlan_filter_disable(sc); 3710 return; 3711 } 3712 3713 /* 3714 * A soft reset zero's out the VFTA, so 3715 * we need to repopulate it now. 3716 * We also insert VLAN 0 in the filter list, so we pass VLAN 0 tagged 3717 * traffic through. This will write the entire table. 3718 */ 3719 em_if_vlan_register(ctx, 0); 3720 3721 /* Enable the Filter Table */ 3722 em_if_vlan_filter_enable(sc); 3723 } 3724 3725 static void 3726 em_if_intr_enable(if_ctx_t ctx) 3727 { 3728 struct e1000_softc *sc = iflib_get_softc(ctx); 3729 struct e1000_hw *hw = &sc->hw; 3730 u32 ims_mask = IMS_ENABLE_MASK; 3731 3732 if (sc->intr_type == IFLIB_INTR_MSIX) { 3733 E1000_WRITE_REG(hw, EM_EIAC, sc->ims); 3734 ims_mask |= sc->ims; 3735 } 3736 E1000_WRITE_REG(hw, E1000_IMS, ims_mask); 3737 E1000_WRITE_FLUSH(hw); 3738 } 3739 3740 static void 3741 em_if_intr_disable(if_ctx_t ctx) 3742 { 3743 struct e1000_softc *sc = iflib_get_softc(ctx); 3744 struct e1000_hw *hw = &sc->hw; 3745 3746 if (sc->intr_type == IFLIB_INTR_MSIX) 3747 E1000_WRITE_REG(hw, EM_EIAC, 0); 3748 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); 3749 E1000_WRITE_FLUSH(hw); 3750 } 3751 3752 static void 3753 igb_if_intr_enable(if_ctx_t ctx) 3754 { 3755 struct e1000_softc *sc = iflib_get_softc(ctx); 3756 struct e1000_hw *hw = &sc->hw; 3757 u32 mask; 3758 3759 if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) { 3760 mask = (sc->que_mask | sc->link_mask); 3761 E1000_WRITE_REG(hw, E1000_EIAC, mask); 3762 E1000_WRITE_REG(hw, E1000_EIAM, mask); 3763 E1000_WRITE_REG(hw, E1000_EIMS, mask); 3764 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC); 3765 } else 3766 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK); 3767 E1000_WRITE_FLUSH(hw); 3768 } 3769 3770 static void 3771 igb_if_intr_disable(if_ctx_t ctx) 3772 { 3773 struct e1000_softc *sc = iflib_get_softc(ctx); 3774 struct e1000_hw *hw = &sc->hw; 3775 3776 if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) { 3777 E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff); 3778 E1000_WRITE_REG(hw, E1000_EIAC, 0); 3779 } 3780 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); 3781 E1000_WRITE_FLUSH(hw); 3782 } 3783 3784 /* 3785 * Bit of a misnomer, what this really means is 3786 * to enable OS management of the system... aka 3787 * to disable special hardware management features 3788 */ 3789 static void 3790 em_init_manageability(struct e1000_softc *sc) 3791 { 3792 /* A shared code workaround */ 3793 #define E1000_82542_MANC2H E1000_MANC2H 3794 if (sc->has_manage) { 3795 int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H); 3796 int manc = E1000_READ_REG(&sc->hw, E1000_MANC); 3797 3798 /* disable hardware interception of ARP */ 3799 manc &= ~(E1000_MANC_ARP_EN); 3800 3801 /* enable receiving management packets to the host */ 3802 manc |= E1000_MANC_EN_MNG2HOST; 3803 #define E1000_MNG2HOST_PORT_623 (1 << 5) 3804 #define E1000_MNG2HOST_PORT_664 (1 << 6) 3805 manc2h |= E1000_MNG2HOST_PORT_623; 3806 manc2h |= E1000_MNG2HOST_PORT_664; 3807 E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h); 3808 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc); 3809 } 3810 } 3811 3812 /* 3813 * Give control back to hardware management 3814 * controller if there is one. 3815 */ 3816 static void 3817 em_release_manageability(struct e1000_softc *sc) 3818 { 3819 if (sc->has_manage) { 3820 int manc = E1000_READ_REG(&sc->hw, E1000_MANC); 3821 3822 /* re-enable hardware interception of ARP */ 3823 manc |= E1000_MANC_ARP_EN; 3824 manc &= ~E1000_MANC_EN_MNG2HOST; 3825 3826 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc); 3827 } 3828 } 3829 3830 /* 3831 * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit. 3832 * For ASF and Pass Through versions of f/w this means 3833 * that the driver is loaded. For AMT version type f/w 3834 * this means that the network i/f is open. 3835 */ 3836 static void 3837 em_get_hw_control(struct e1000_softc *sc) 3838 { 3839 u32 ctrl_ext, swsm; 3840 3841 if (sc->vf_ifp) 3842 return; 3843 3844 if (sc->hw.mac.type == e1000_82573) { 3845 swsm = E1000_READ_REG(&sc->hw, E1000_SWSM); 3846 E1000_WRITE_REG(&sc->hw, E1000_SWSM, 3847 swsm | E1000_SWSM_DRV_LOAD); 3848 return; 3849 } 3850 /* else */ 3851 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT); 3852 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, 3853 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 3854 } 3855 3856 /* 3857 * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. 3858 * For ASF and Pass Through versions of f/w this means that 3859 * the driver is no longer loaded. For AMT versions of the 3860 * f/w this means that the network i/f is closed. 3861 */ 3862 static void 3863 em_release_hw_control(struct e1000_softc *sc) 3864 { 3865 u32 ctrl_ext, swsm; 3866 3867 if (!sc->has_manage) 3868 return; 3869 3870 if (sc->hw.mac.type == e1000_82573) { 3871 swsm = E1000_READ_REG(&sc->hw, E1000_SWSM); 3872 E1000_WRITE_REG(&sc->hw, E1000_SWSM, 3873 swsm & ~E1000_SWSM_DRV_LOAD); 3874 return; 3875 } 3876 /* else */ 3877 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT); 3878 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, 3879 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 3880 return; 3881 } 3882 3883 static int 3884 em_is_valid_ether_addr(u8 *addr) 3885 { 3886 char zero_addr[6] = { 0, 0, 0, 0, 0, 0 }; 3887 3888 if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) { 3889 return (false); 3890 } 3891 3892 return (true); 3893 } 3894 3895 static bool 3896 em_automask_tso(if_ctx_t ctx) 3897 { 3898 struct e1000_softc *sc = iflib_get_softc(ctx); 3899 if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx); 3900 if_t ifp = iflib_get_ifp(ctx); 3901 3902 if (!em_unsupported_tso && sc->link_speed && 3903 sc->link_speed != SPEED_1000 && scctx->isc_capenable & IFCAP_TSO) { 3904 device_printf(sc->dev, "Disabling TSO for 10/100 Ethernet.\n"); 3905 sc->tso_automasked = scctx->isc_capenable & IFCAP_TSO; 3906 scctx->isc_capenable &= ~IFCAP_TSO; 3907 if_setcapenablebit(ifp, 0, IFCAP_TSO); 3908 /* iflib_init_locked handles ifnet hwassistbits */ 3909 iflib_request_reset(ctx); 3910 return true; 3911 } else if (sc->link_speed == SPEED_1000 && sc->tso_automasked) { 3912 device_printf(sc->dev, "Re-enabling TSO for GbE.\n"); 3913 scctx->isc_capenable |= sc->tso_automasked; 3914 if_setcapenablebit(ifp, sc->tso_automasked, 0); 3915 sc->tso_automasked = 0; 3916 /* iflib_init_locked handles ifnet hwassistbits */ 3917 iflib_request_reset(ctx); 3918 return true; 3919 } 3920 3921 return false; 3922 } 3923 3924 /* 3925 ** Parse the interface capabilities with regard 3926 ** to both system management and wake-on-lan for 3927 ** later use. 3928 */ 3929 static void 3930 em_get_wakeup(if_ctx_t ctx) 3931 { 3932 struct e1000_softc *sc = iflib_get_softc(ctx); 3933 device_t dev = iflib_get_dev(ctx); 3934 u16 eeprom_data = 0, device_id, apme_mask; 3935 3936 sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw); 3937 apme_mask = EM_EEPROM_APME; 3938 3939 switch (sc->hw.mac.type) { 3940 case e1000_82542: 3941 case e1000_82543: 3942 break; 3943 case e1000_82544: 3944 e1000_read_nvm(&sc->hw, 3945 NVM_INIT_CONTROL2_REG, 1, &eeprom_data); 3946 apme_mask = EM_82544_APME; 3947 break; 3948 case e1000_82546: 3949 case e1000_82546_rev_3: 3950 if (sc->hw.bus.func == 1) { 3951 e1000_read_nvm(&sc->hw, 3952 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 3953 break; 3954 } else 3955 e1000_read_nvm(&sc->hw, 3956 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3957 break; 3958 case e1000_82573: 3959 case e1000_82583: 3960 sc->has_amt = true; 3961 /* FALLTHROUGH */ 3962 case e1000_82571: 3963 case e1000_82572: 3964 case e1000_80003es2lan: 3965 if (sc->hw.bus.func == 1) { 3966 e1000_read_nvm(&sc->hw, 3967 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 3968 break; 3969 } else 3970 e1000_read_nvm(&sc->hw, 3971 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3972 break; 3973 case e1000_ich8lan: 3974 case e1000_ich9lan: 3975 case e1000_ich10lan: 3976 case e1000_pchlan: 3977 case e1000_pch2lan: 3978 case e1000_pch_lpt: 3979 case e1000_pch_spt: 3980 case e1000_82575: /* listing all igb devices */ 3981 case e1000_82576: 3982 case e1000_82580: 3983 case e1000_i350: 3984 case e1000_i354: 3985 case e1000_i210: 3986 case e1000_i211: 3987 case e1000_vfadapt: 3988 case e1000_vfadapt_i350: 3989 apme_mask = E1000_WUC_APME; 3990 sc->has_amt = true; 3991 eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC); 3992 break; 3993 default: 3994 e1000_read_nvm(&sc->hw, 3995 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3996 break; 3997 } 3998 if (eeprom_data & apme_mask) 3999 sc->wol = (E1000_WUFC_MAG | E1000_WUFC_MC); 4000 /* 4001 * We have the eeprom settings, now apply the special cases 4002 * where the eeprom may be wrong or the board won't support 4003 * wake on lan on a particular port 4004 */ 4005 device_id = pci_get_device(dev); 4006 switch (device_id) { 4007 case E1000_DEV_ID_82546GB_PCIE: 4008 sc->wol = 0; 4009 break; 4010 case E1000_DEV_ID_82546EB_FIBER: 4011 case E1000_DEV_ID_82546GB_FIBER: 4012 /* Wake events only supported on port A for dual fiber 4013 * regardless of eeprom setting */ 4014 if (E1000_READ_REG(&sc->hw, E1000_STATUS) & 4015 E1000_STATUS_FUNC_1) 4016 sc->wol = 0; 4017 break; 4018 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 4019 /* if quad port adapter, disable WoL on all but port A */ 4020 if (global_quad_port_a != 0) 4021 sc->wol = 0; 4022 /* Reset for multiple quad port adapters */ 4023 if (++global_quad_port_a == 4) 4024 global_quad_port_a = 0; 4025 break; 4026 case E1000_DEV_ID_82571EB_FIBER: 4027 /* Wake events only supported on port A for dual fiber 4028 * regardless of eeprom setting */ 4029 if (E1000_READ_REG(&sc->hw, E1000_STATUS) & 4030 E1000_STATUS_FUNC_1) 4031 sc->wol = 0; 4032 break; 4033 case E1000_DEV_ID_82571EB_QUAD_COPPER: 4034 case E1000_DEV_ID_82571EB_QUAD_FIBER: 4035 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 4036 /* if quad port adapter, disable WoL on all but port A */ 4037 if (global_quad_port_a != 0) 4038 sc->wol = 0; 4039 /* Reset for multiple quad port adapters */ 4040 if (++global_quad_port_a == 4) 4041 global_quad_port_a = 0; 4042 break; 4043 } 4044 return; 4045 } 4046 4047 4048 /* 4049 * Enable PCI Wake On Lan capability 4050 */ 4051 static void 4052 em_enable_wakeup(if_ctx_t ctx) 4053 { 4054 struct e1000_softc *sc = iflib_get_softc(ctx); 4055 device_t dev = iflib_get_dev(ctx); 4056 if_t ifp = iflib_get_ifp(ctx); 4057 int error = 0; 4058 u32 pmc, ctrl, ctrl_ext, rctl; 4059 u16 status; 4060 4061 if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0) 4062 return; 4063 4064 /* 4065 * Determine type of Wakeup: note that wol 4066 * is set with all bits on by default. 4067 */ 4068 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0) 4069 sc->wol &= ~E1000_WUFC_MAG; 4070 4071 if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0) 4072 sc->wol &= ~E1000_WUFC_EX; 4073 4074 if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0) 4075 sc->wol &= ~E1000_WUFC_MC; 4076 else { 4077 rctl = E1000_READ_REG(&sc->hw, E1000_RCTL); 4078 rctl |= E1000_RCTL_MPE; 4079 E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl); 4080 } 4081 4082 if (!(sc->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC))) 4083 goto pme; 4084 4085 /* Advertise the wakeup capability */ 4086 ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL); 4087 ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3); 4088 E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl); 4089 4090 /* Keep the laser running on Fiber adapters */ 4091 if (sc->hw.phy.media_type == e1000_media_type_fiber || 4092 sc->hw.phy.media_type == e1000_media_type_internal_serdes) { 4093 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT); 4094 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; 4095 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, ctrl_ext); 4096 } 4097 4098 if ((sc->hw.mac.type == e1000_ich8lan) || 4099 (sc->hw.mac.type == e1000_pchlan) || 4100 (sc->hw.mac.type == e1000_ich9lan) || 4101 (sc->hw.mac.type == e1000_ich10lan)) 4102 e1000_suspend_workarounds_ich8lan(&sc->hw); 4103 4104 if ( sc->hw.mac.type >= e1000_pchlan) { 4105 error = em_enable_phy_wakeup(sc); 4106 if (error) 4107 goto pme; 4108 } else { 4109 /* Enable wakeup by the MAC */ 4110 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN); 4111 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol); 4112 } 4113 4114 if (sc->hw.phy.type == e1000_phy_igp_3) 4115 e1000_igp3_phy_powerdown_workaround_ich8lan(&sc->hw); 4116 4117 pme: 4118 status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2); 4119 status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 4120 if (!error && (if_getcapenable(ifp) & IFCAP_WOL)) 4121 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 4122 pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2); 4123 4124 return; 4125 } 4126 4127 /* 4128 * WOL in the newer chipset interfaces (pchlan) 4129 * require thing to be copied into the phy 4130 */ 4131 static int 4132 em_enable_phy_wakeup(struct e1000_softc *sc) 4133 { 4134 struct e1000_hw *hw = &sc->hw; 4135 u32 mreg, ret = 0; 4136 u16 preg; 4137 4138 /* copy MAC RARs to PHY RARs */ 4139 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 4140 4141 /* copy MAC MTA to PHY MTA */ 4142 for (int i = 0; i < hw->mac.mta_reg_count; i++) { 4143 mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); 4144 e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF)); 4145 e1000_write_phy_reg(hw, BM_MTA(i) + 1, 4146 (u16)((mreg >> 16) & 0xFFFF)); 4147 } 4148 4149 /* configure PHY Rx Control register */ 4150 e1000_read_phy_reg(hw, BM_RCTL, &preg); 4151 mreg = E1000_READ_REG(hw, E1000_RCTL); 4152 if (mreg & E1000_RCTL_UPE) 4153 preg |= BM_RCTL_UPE; 4154 if (mreg & E1000_RCTL_MPE) 4155 preg |= BM_RCTL_MPE; 4156 preg &= ~(BM_RCTL_MO_MASK); 4157 if (mreg & E1000_RCTL_MO_3) 4158 preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) 4159 << BM_RCTL_MO_SHIFT); 4160 if (mreg & E1000_RCTL_BAM) 4161 preg |= BM_RCTL_BAM; 4162 if (mreg & E1000_RCTL_PMCF) 4163 preg |= BM_RCTL_PMCF; 4164 mreg = E1000_READ_REG(hw, E1000_CTRL); 4165 if (mreg & E1000_CTRL_RFCE) 4166 preg |= BM_RCTL_RFCE; 4167 e1000_write_phy_reg(hw, BM_RCTL, preg); 4168 4169 /* enable PHY wakeup in MAC register */ 4170 E1000_WRITE_REG(hw, E1000_WUC, 4171 E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME); 4172 E1000_WRITE_REG(hw, E1000_WUFC, sc->wol); 4173 4174 /* configure and enable PHY wakeup in PHY registers */ 4175 e1000_write_phy_reg(hw, BM_WUFC, sc->wol); 4176 e1000_write_phy_reg(hw, BM_WUC, E1000_WUC_PME_EN); 4177 4178 /* activate PHY wakeup */ 4179 ret = hw->phy.ops.acquire(hw); 4180 if (ret) { 4181 printf("Could not acquire PHY\n"); 4182 return ret; 4183 } 4184 e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 4185 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT)); 4186 ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg); 4187 if (ret) { 4188 printf("Could not read PHY page 769\n"); 4189 goto out; 4190 } 4191 preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; 4192 ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg); 4193 if (ret) 4194 printf("Could not set PHY Host Wakeup bit\n"); 4195 out: 4196 hw->phy.ops.release(hw); 4197 4198 return ret; 4199 } 4200 4201 static void 4202 em_if_led_func(if_ctx_t ctx, int onoff) 4203 { 4204 struct e1000_softc *sc = iflib_get_softc(ctx); 4205 4206 if (onoff) { 4207 e1000_setup_led(&sc->hw); 4208 e1000_led_on(&sc->hw); 4209 } else { 4210 e1000_led_off(&sc->hw); 4211 e1000_cleanup_led(&sc->hw); 4212 } 4213 } 4214 4215 /* 4216 * Disable the L0S and L1 LINK states 4217 */ 4218 static void 4219 em_disable_aspm(struct e1000_softc *sc) 4220 { 4221 int base, reg; 4222 u16 link_cap,link_ctrl; 4223 device_t dev = sc->dev; 4224 4225 switch (sc->hw.mac.type) { 4226 case e1000_82573: 4227 case e1000_82574: 4228 case e1000_82583: 4229 break; 4230 default: 4231 return; 4232 } 4233 if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0) 4234 return; 4235 reg = base + PCIER_LINK_CAP; 4236 link_cap = pci_read_config(dev, reg, 2); 4237 if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0) 4238 return; 4239 reg = base + PCIER_LINK_CTL; 4240 link_ctrl = pci_read_config(dev, reg, 2); 4241 link_ctrl &= ~PCIEM_LINK_CTL_ASPMC; 4242 pci_write_config(dev, reg, link_ctrl, 2); 4243 return; 4244 } 4245 4246 /********************************************************************** 4247 * 4248 * Update the board statistics counters. 4249 * 4250 **********************************************************************/ 4251 static void 4252 em_update_stats_counters(struct e1000_softc *sc) 4253 { 4254 u64 prev_xoffrxc = sc->stats.xoffrxc; 4255 4256 if(sc->hw.phy.media_type == e1000_media_type_copper || 4257 (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) { 4258 sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS); 4259 sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC); 4260 } 4261 sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS); 4262 sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC); 4263 sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC); 4264 sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL); 4265 4266 sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC); 4267 sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL); 4268 sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC); 4269 sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC); 4270 sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC); 4271 sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC); 4272 sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC); 4273 sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC); 4274 /* 4275 ** For watchdog management we need to know if we have been 4276 ** paused during the last interval, so capture that here. 4277 */ 4278 if (sc->stats.xoffrxc != prev_xoffrxc) 4279 sc->shared->isc_pause_frames = 1; 4280 sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC); 4281 sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC); 4282 sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64); 4283 sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127); 4284 sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255); 4285 sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511); 4286 sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023); 4287 sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522); 4288 sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC); 4289 sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC); 4290 sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC); 4291 sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC); 4292 4293 /* For the 64-bit byte counters the low dword must be read first. */ 4294 /* Both registers clear on the read of the high dword */ 4295 4296 sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCL) + 4297 ((u64)E1000_READ_REG(&sc->hw, E1000_GORCH) << 32); 4298 sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCL) + 4299 ((u64)E1000_READ_REG(&sc->hw, E1000_GOTCH) << 32); 4300 4301 sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC); 4302 sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC); 4303 sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC); 4304 sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC); 4305 sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC); 4306 4307 sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH); 4308 sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH); 4309 4310 sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR); 4311 sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT); 4312 sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64); 4313 sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127); 4314 sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255); 4315 sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511); 4316 sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023); 4317 sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522); 4318 sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC); 4319 sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC); 4320 4321 /* Interrupt Counts */ 4322 4323 sc->stats.iac += E1000_READ_REG(&sc->hw, E1000_IAC); 4324 sc->stats.icrxptc += E1000_READ_REG(&sc->hw, E1000_ICRXPTC); 4325 sc->stats.icrxatc += E1000_READ_REG(&sc->hw, E1000_ICRXATC); 4326 sc->stats.ictxptc += E1000_READ_REG(&sc->hw, E1000_ICTXPTC); 4327 sc->stats.ictxatc += E1000_READ_REG(&sc->hw, E1000_ICTXATC); 4328 sc->stats.ictxqec += E1000_READ_REG(&sc->hw, E1000_ICTXQEC); 4329 sc->stats.ictxqmtc += E1000_READ_REG(&sc->hw, E1000_ICTXQMTC); 4330 sc->stats.icrxdmtc += E1000_READ_REG(&sc->hw, E1000_ICRXDMTC); 4331 sc->stats.icrxoc += E1000_READ_REG(&sc->hw, E1000_ICRXOC); 4332 4333 if (sc->hw.mac.type >= e1000_82543) { 4334 sc->stats.algnerrc += 4335 E1000_READ_REG(&sc->hw, E1000_ALGNERRC); 4336 sc->stats.rxerrc += 4337 E1000_READ_REG(&sc->hw, E1000_RXERRC); 4338 sc->stats.tncrs += 4339 E1000_READ_REG(&sc->hw, E1000_TNCRS); 4340 sc->stats.cexterr += 4341 E1000_READ_REG(&sc->hw, E1000_CEXTERR); 4342 sc->stats.tsctc += 4343 E1000_READ_REG(&sc->hw, E1000_TSCTC); 4344 sc->stats.tsctfc += 4345 E1000_READ_REG(&sc->hw, E1000_TSCTFC); 4346 } 4347 } 4348 4349 static uint64_t 4350 em_if_get_counter(if_ctx_t ctx, ift_counter cnt) 4351 { 4352 struct e1000_softc *sc = iflib_get_softc(ctx); 4353 if_t ifp = iflib_get_ifp(ctx); 4354 4355 switch (cnt) { 4356 case IFCOUNTER_COLLISIONS: 4357 return (sc->stats.colc); 4358 case IFCOUNTER_IERRORS: 4359 return (sc->dropped_pkts + sc->stats.rxerrc + 4360 sc->stats.crcerrs + sc->stats.algnerrc + 4361 sc->stats.ruc + sc->stats.roc + 4362 sc->stats.mpc + sc->stats.cexterr); 4363 case IFCOUNTER_OERRORS: 4364 return (sc->stats.ecol + sc->stats.latecol + 4365 sc->watchdog_events); 4366 default: 4367 return (if_get_counter_default(ifp, cnt)); 4368 } 4369 } 4370 4371 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized 4372 * @ctx: iflib context 4373 * @event: event code to check 4374 * 4375 * Defaults to returning false for unknown events. 4376 * 4377 * @returns true if iflib needs to reinit the interface 4378 */ 4379 static bool 4380 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event) 4381 { 4382 switch (event) { 4383 case IFLIB_RESTART_VLAN_CONFIG: 4384 default: 4385 return (false); 4386 } 4387 } 4388 4389 /* Export a single 32-bit register via a read-only sysctl. */ 4390 static int 4391 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS) 4392 { 4393 struct e1000_softc *sc; 4394 u_int val; 4395 4396 sc = oidp->oid_arg1; 4397 val = E1000_READ_REG(&sc->hw, oidp->oid_arg2); 4398 return (sysctl_handle_int(oidp, &val, 0, req)); 4399 } 4400 4401 /* 4402 * Add sysctl variables, one per statistic, to the system. 4403 */ 4404 static void 4405 em_add_hw_stats(struct e1000_softc *sc) 4406 { 4407 device_t dev = iflib_get_dev(sc->ctx); 4408 struct em_tx_queue *tx_que = sc->tx_queues; 4409 struct em_rx_queue *rx_que = sc->rx_queues; 4410 4411 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev); 4412 struct sysctl_oid *tree = device_get_sysctl_tree(dev); 4413 struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree); 4414 struct e1000_hw_stats *stats = &sc->stats; 4415 4416 struct sysctl_oid *stat_node, *queue_node, *int_node; 4417 struct sysctl_oid_list *stat_list, *queue_list, *int_list; 4418 4419 #define QUEUE_NAME_LEN 32 4420 char namebuf[QUEUE_NAME_LEN]; 4421 4422 /* Driver Statistics */ 4423 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped", 4424 CTLFLAG_RD, &sc->dropped_pkts, 4425 "Driver dropped packets"); 4426 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq", 4427 CTLFLAG_RD, &sc->link_irq, 4428 "Link MSI-X IRQ Handled"); 4429 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns", 4430 CTLFLAG_RD, &sc->rx_overruns, 4431 "RX overruns"); 4432 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts", 4433 CTLFLAG_RD, &sc->watchdog_events, 4434 "Watchdog timeouts"); 4435 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control", 4436 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 4437 sc, E1000_CTRL, em_sysctl_reg_handler, "IU", 4438 "Device Control Register"); 4439 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control", 4440 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 4441 sc, E1000_RCTL, em_sysctl_reg_handler, "IU", 4442 "Receiver Control Register"); 4443 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water", 4444 CTLFLAG_RD, &sc->hw.fc.high_water, 0, 4445 "Flow Control High Watermark"); 4446 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water", 4447 CTLFLAG_RD, &sc->hw.fc.low_water, 0, 4448 "Flow Control Low Watermark"); 4449 4450 for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) { 4451 struct tx_ring *txr = &tx_que->txr; 4452 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i); 4453 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, 4454 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name"); 4455 queue_list = SYSCTL_CHILDREN(queue_node); 4456 4457 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head", 4458 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 4459 E1000_TDH(txr->me), em_sysctl_reg_handler, "IU", 4460 "Transmit Descriptor Head"); 4461 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail", 4462 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 4463 E1000_TDT(txr->me), em_sysctl_reg_handler, "IU", 4464 "Transmit Descriptor Tail"); 4465 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq", 4466 CTLFLAG_RD, &txr->tx_irq, 4467 "Queue MSI-X Transmit Interrupts"); 4468 } 4469 4470 for (int j = 0; j < sc->rx_num_queues; j++, rx_que++) { 4471 struct rx_ring *rxr = &rx_que->rxr; 4472 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j); 4473 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, 4474 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name"); 4475 queue_list = SYSCTL_CHILDREN(queue_node); 4476 4477 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head", 4478 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 4479 E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU", 4480 "Receive Descriptor Head"); 4481 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail", 4482 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 4483 E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU", 4484 "Receive Descriptor Tail"); 4485 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq", 4486 CTLFLAG_RD, &rxr->rx_irq, 4487 "Queue MSI-X Receive Interrupts"); 4488 } 4489 4490 /* MAC stats get their own sub node */ 4491 4492 stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats", 4493 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics"); 4494 stat_list = SYSCTL_CHILDREN(stat_node); 4495 4496 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll", 4497 CTLFLAG_RD, &stats->ecol, 4498 "Excessive collisions"); 4499 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll", 4500 CTLFLAG_RD, &stats->scc, 4501 "Single collisions"); 4502 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll", 4503 CTLFLAG_RD, &stats->mcc, 4504 "Multiple collisions"); 4505 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll", 4506 CTLFLAG_RD, &stats->latecol, 4507 "Late collisions"); 4508 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count", 4509 CTLFLAG_RD, &stats->colc, 4510 "Collision Count"); 4511 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors", 4512 CTLFLAG_RD, &sc->stats.symerrs, 4513 "Symbol Errors"); 4514 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors", 4515 CTLFLAG_RD, &sc->stats.sec, 4516 "Sequence Errors"); 4517 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count", 4518 CTLFLAG_RD, &sc->stats.dc, 4519 "Defer Count"); 4520 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets", 4521 CTLFLAG_RD, &sc->stats.mpc, 4522 "Missed Packets"); 4523 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff", 4524 CTLFLAG_RD, &sc->stats.rnbc, 4525 "Receive No Buffers"); 4526 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize", 4527 CTLFLAG_RD, &sc->stats.ruc, 4528 "Receive Undersize"); 4529 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented", 4530 CTLFLAG_RD, &sc->stats.rfc, 4531 "Fragmented Packets Received "); 4532 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize", 4533 CTLFLAG_RD, &sc->stats.roc, 4534 "Oversized Packets Received"); 4535 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber", 4536 CTLFLAG_RD, &sc->stats.rjc, 4537 "Recevied Jabber"); 4538 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs", 4539 CTLFLAG_RD, &sc->stats.rxerrc, 4540 "Receive Errors"); 4541 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs", 4542 CTLFLAG_RD, &sc->stats.crcerrs, 4543 "CRC errors"); 4544 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs", 4545 CTLFLAG_RD, &sc->stats.algnerrc, 4546 "Alignment Errors"); 4547 /* On 82575 these are collision counts */ 4548 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs", 4549 CTLFLAG_RD, &sc->stats.cexterr, 4550 "Collision/Carrier extension errors"); 4551 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd", 4552 CTLFLAG_RD, &sc->stats.xonrxc, 4553 "XON Received"); 4554 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd", 4555 CTLFLAG_RD, &sc->stats.xontxc, 4556 "XON Transmitted"); 4557 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd", 4558 CTLFLAG_RD, &sc->stats.xoffrxc, 4559 "XOFF Received"); 4560 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd", 4561 CTLFLAG_RD, &sc->stats.xofftxc, 4562 "XOFF Transmitted"); 4563 4564 /* Packet Reception Stats */ 4565 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd", 4566 CTLFLAG_RD, &sc->stats.tpr, 4567 "Total Packets Received "); 4568 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd", 4569 CTLFLAG_RD, &sc->stats.gprc, 4570 "Good Packets Received"); 4571 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd", 4572 CTLFLAG_RD, &sc->stats.bprc, 4573 "Broadcast Packets Received"); 4574 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd", 4575 CTLFLAG_RD, &sc->stats.mprc, 4576 "Multicast Packets Received"); 4577 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64", 4578 CTLFLAG_RD, &sc->stats.prc64, 4579 "64 byte frames received "); 4580 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127", 4581 CTLFLAG_RD, &sc->stats.prc127, 4582 "65-127 byte frames received"); 4583 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255", 4584 CTLFLAG_RD, &sc->stats.prc255, 4585 "128-255 byte frames received"); 4586 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511", 4587 CTLFLAG_RD, &sc->stats.prc511, 4588 "256-511 byte frames received"); 4589 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023", 4590 CTLFLAG_RD, &sc->stats.prc1023, 4591 "512-1023 byte frames received"); 4592 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522", 4593 CTLFLAG_RD, &sc->stats.prc1522, 4594 "1023-1522 byte frames received"); 4595 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd", 4596 CTLFLAG_RD, &sc->stats.gorc, 4597 "Good Octets Received"); 4598 4599 /* Packet Transmission Stats */ 4600 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd", 4601 CTLFLAG_RD, &sc->stats.gotc, 4602 "Good Octets Transmitted"); 4603 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd", 4604 CTLFLAG_RD, &sc->stats.tpt, 4605 "Total Packets Transmitted"); 4606 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd", 4607 CTLFLAG_RD, &sc->stats.gptc, 4608 "Good Packets Transmitted"); 4609 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd", 4610 CTLFLAG_RD, &sc->stats.bptc, 4611 "Broadcast Packets Transmitted"); 4612 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd", 4613 CTLFLAG_RD, &sc->stats.mptc, 4614 "Multicast Packets Transmitted"); 4615 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64", 4616 CTLFLAG_RD, &sc->stats.ptc64, 4617 "64 byte frames transmitted "); 4618 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127", 4619 CTLFLAG_RD, &sc->stats.ptc127, 4620 "65-127 byte frames transmitted"); 4621 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255", 4622 CTLFLAG_RD, &sc->stats.ptc255, 4623 "128-255 byte frames transmitted"); 4624 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511", 4625 CTLFLAG_RD, &sc->stats.ptc511, 4626 "256-511 byte frames transmitted"); 4627 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023", 4628 CTLFLAG_RD, &sc->stats.ptc1023, 4629 "512-1023 byte frames transmitted"); 4630 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522", 4631 CTLFLAG_RD, &sc->stats.ptc1522, 4632 "1024-1522 byte frames transmitted"); 4633 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd", 4634 CTLFLAG_RD, &sc->stats.tsctc, 4635 "TSO Contexts Transmitted"); 4636 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail", 4637 CTLFLAG_RD, &sc->stats.tsctfc, 4638 "TSO Contexts Failed"); 4639 4640 4641 /* Interrupt Stats */ 4642 4643 int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts", 4644 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics"); 4645 int_list = SYSCTL_CHILDREN(int_node); 4646 4647 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts", 4648 CTLFLAG_RD, &sc->stats.iac, 4649 "Interrupt Assertion Count"); 4650 4651 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer", 4652 CTLFLAG_RD, &sc->stats.icrxptc, 4653 "Interrupt Cause Rx Pkt Timer Expire Count"); 4654 4655 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer", 4656 CTLFLAG_RD, &sc->stats.icrxatc, 4657 "Interrupt Cause Rx Abs Timer Expire Count"); 4658 4659 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer", 4660 CTLFLAG_RD, &sc->stats.ictxptc, 4661 "Interrupt Cause Tx Pkt Timer Expire Count"); 4662 4663 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer", 4664 CTLFLAG_RD, &sc->stats.ictxatc, 4665 "Interrupt Cause Tx Abs Timer Expire Count"); 4666 4667 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty", 4668 CTLFLAG_RD, &sc->stats.ictxqec, 4669 "Interrupt Cause Tx Queue Empty Count"); 4670 4671 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh", 4672 CTLFLAG_RD, &sc->stats.ictxqmtc, 4673 "Interrupt Cause Tx Queue Min Thresh Count"); 4674 4675 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh", 4676 CTLFLAG_RD, &sc->stats.icrxdmtc, 4677 "Interrupt Cause Rx Desc Min Thresh Count"); 4678 4679 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun", 4680 CTLFLAG_RD, &sc->stats.icrxoc, 4681 "Interrupt Cause Receiver Overrun Count"); 4682 } 4683 4684 static void 4685 em_fw_version_locked(if_ctx_t ctx) 4686 { 4687 struct e1000_softc *sc = iflib_get_softc(ctx); 4688 struct e1000_hw *hw = &sc->hw; 4689 struct e1000_fw_version *fw_ver = &sc->fw_ver; 4690 uint16_t eep = 0; 4691 4692 /* 4693 * em_fw_version_locked() must run under the IFLIB_CTX_LOCK to meet the 4694 * NVM locking model, so we do it in em_if_attach_pre() and store the 4695 * info in the softc 4696 */ 4697 ASSERT_CTX_LOCK_HELD(hw); 4698 4699 *fw_ver = (struct e1000_fw_version){0}; 4700 4701 if (hw->mac.type >= igb_mac_min) { 4702 /* 4703 * Use the Shared Code for igb(4) 4704 */ 4705 e1000_get_fw_version(hw, fw_ver); 4706 } else { 4707 /* 4708 * Otherwise, EEPROM version should be present on (almost?) all 4709 * devices here 4710 */ 4711 if(e1000_read_nvm(hw, NVM_VERSION, 1, &eep)) { 4712 INIT_DEBUGOUT("can't get EEPROM version"); 4713 return; 4714 } 4715 4716 fw_ver->eep_major = (eep & NVM_MAJOR_MASK) >> NVM_MAJOR_SHIFT; 4717 fw_ver->eep_minor = (eep & NVM_MINOR_MASK) >> NVM_MINOR_SHIFT; 4718 fw_ver->eep_build = (eep & NVM_IMAGE_ID_MASK); 4719 } 4720 } 4721 4722 static void 4723 em_sbuf_fw_version(struct e1000_fw_version *fw_ver, struct sbuf *buf) 4724 { 4725 const char *space = ""; 4726 4727 if (fw_ver->eep_major || fw_ver->eep_minor || fw_ver->eep_build) { 4728 sbuf_printf(buf, "EEPROM V%d.%d-%d", fw_ver->eep_major, 4729 fw_ver->eep_minor, fw_ver->eep_build); 4730 space = " "; 4731 } 4732 4733 if (fw_ver->invm_major || fw_ver->invm_minor || fw_ver->invm_img_type) { 4734 sbuf_printf(buf, "%sNVM V%d.%d imgtype%d", 4735 space, fw_ver->invm_major, fw_ver->invm_minor, 4736 fw_ver->invm_img_type); 4737 space = " "; 4738 } 4739 4740 if (fw_ver->or_valid) { 4741 sbuf_printf(buf, "%sOption ROM V%d-b%d-p%d", 4742 space, fw_ver->or_major, fw_ver->or_build, 4743 fw_ver->or_patch); 4744 space = " "; 4745 } 4746 4747 if (fw_ver->etrack_id) 4748 sbuf_printf(buf, "%seTrack 0x%08x", space, fw_ver->etrack_id); 4749 } 4750 4751 static void 4752 em_print_fw_version(struct e1000_softc *sc ) 4753 { 4754 device_t dev = sc->dev; 4755 struct sbuf *buf; 4756 int error = 0; 4757 4758 buf = sbuf_new_auto(); 4759 if (!buf) { 4760 device_printf(dev, "Could not allocate sbuf for output.\n"); 4761 return; 4762 } 4763 4764 em_sbuf_fw_version(&sc->fw_ver, buf); 4765 4766 error = sbuf_finish(buf); 4767 if (error) 4768 device_printf(dev, "Error finishing sbuf: %d\n", error); 4769 else if (sbuf_len(buf)) 4770 device_printf(dev, "%s\n", sbuf_data(buf)); 4771 4772 sbuf_delete(buf); 4773 } 4774 4775 static int 4776 em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS) 4777 { 4778 struct e1000_softc *sc = (struct e1000_softc *)arg1; 4779 device_t dev = sc->dev; 4780 struct sbuf *buf; 4781 int error = 0; 4782 4783 buf = sbuf_new_for_sysctl(NULL, NULL, 128, req); 4784 if (!buf) { 4785 device_printf(dev, "Could not allocate sbuf for output.\n"); 4786 return (ENOMEM); 4787 } 4788 4789 em_sbuf_fw_version(&sc->fw_ver, buf); 4790 4791 error = sbuf_finish(buf); 4792 if (error) 4793 device_printf(dev, "Error finishing sbuf: %d\n", error); 4794 4795 sbuf_delete(buf); 4796 4797 return (0); 4798 } 4799 4800 /********************************************************************** 4801 * 4802 * This routine provides a way to dump out the adapter eeprom, 4803 * often a useful debug/service tool. This only dumps the first 4804 * 32 words, stuff that matters is in that extent. 4805 * 4806 **********************************************************************/ 4807 static int 4808 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS) 4809 { 4810 struct e1000_softc *sc = (struct e1000_softc *)arg1; 4811 int error; 4812 int result; 4813 4814 result = -1; 4815 error = sysctl_handle_int(oidp, &result, 0, req); 4816 4817 if (error || !req->newptr) 4818 return (error); 4819 4820 /* 4821 * This value will cause a hex dump of the 4822 * first 32 16-bit words of the EEPROM to 4823 * the screen. 4824 */ 4825 if (result == 1) 4826 em_print_nvm_info(sc); 4827 4828 return (error); 4829 } 4830 4831 static void 4832 em_print_nvm_info(struct e1000_softc *sc) 4833 { 4834 struct e1000_hw *hw = &sc->hw; 4835 struct sx *iflib_ctx_lock = iflib_ctx_lock_get(sc->ctx); 4836 u16 eeprom_data; 4837 int i, j, row = 0; 4838 4839 /* Its a bit crude, but it gets the job done */ 4840 printf("\nInterface EEPROM Dump:\n"); 4841 printf("Offset\n0x0000 "); 4842 4843 /* We rely on the IFLIB_CTX_LOCK as part of NVM locking model */ 4844 sx_xlock(iflib_ctx_lock); 4845 ASSERT_CTX_LOCK_HELD(hw); 4846 for (i = 0, j = 0; i < 32; i++, j++) { 4847 if (j == 8) { /* Make the offset block */ 4848 j = 0; ++row; 4849 printf("\n0x00%x0 ",row); 4850 } 4851 e1000_read_nvm(hw, i, 1, &eeprom_data); 4852 printf("%04x ", eeprom_data); 4853 } 4854 sx_xunlock(iflib_ctx_lock); 4855 printf("\n"); 4856 } 4857 4858 static int 4859 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS) 4860 { 4861 struct em_int_delay_info *info; 4862 struct e1000_softc *sc; 4863 u32 regval; 4864 int error, usecs, ticks; 4865 4866 info = (struct em_int_delay_info *) arg1; 4867 usecs = info->value; 4868 error = sysctl_handle_int(oidp, &usecs, 0, req); 4869 if (error != 0 || req->newptr == NULL) 4870 return (error); 4871 if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535)) 4872 return (EINVAL); 4873 info->value = usecs; 4874 ticks = EM_USECS_TO_TICKS(usecs); 4875 if (info->offset == E1000_ITR) /* units are 256ns here */ 4876 ticks *= 4; 4877 4878 sc = info->sc; 4879 4880 regval = E1000_READ_OFFSET(&sc->hw, info->offset); 4881 regval = (regval & ~0xffff) | (ticks & 0xffff); 4882 /* Handle a few special cases. */ 4883 switch (info->offset) { 4884 case E1000_RDTR: 4885 break; 4886 case E1000_TIDV: 4887 if (ticks == 0) { 4888 sc->txd_cmd &= ~E1000_TXD_CMD_IDE; 4889 /* Don't write 0 into the TIDV register. */ 4890 regval++; 4891 } else 4892 sc->txd_cmd |= E1000_TXD_CMD_IDE; 4893 break; 4894 } 4895 E1000_WRITE_OFFSET(&sc->hw, info->offset, regval); 4896 return (0); 4897 } 4898 4899 static void 4900 em_add_int_delay_sysctl(struct e1000_softc *sc, const char *name, 4901 const char *description, struct em_int_delay_info *info, 4902 int offset, int value) 4903 { 4904 info->sc = sc; 4905 info->offset = offset; 4906 info->value = value; 4907 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev), 4908 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), 4909 OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 4910 info, 0, em_sysctl_int_delay, "I", description); 4911 } 4912 4913 /* 4914 * Set flow control using sysctl: 4915 * Flow control values: 4916 * 0 - off 4917 * 1 - rx pause 4918 * 2 - tx pause 4919 * 3 - full 4920 */ 4921 static int 4922 em_set_flowcntl(SYSCTL_HANDLER_ARGS) 4923 { 4924 int error; 4925 static int input = 3; /* default is full */ 4926 struct e1000_softc *sc = (struct e1000_softc *) arg1; 4927 4928 error = sysctl_handle_int(oidp, &input, 0, req); 4929 4930 if ((error) || (req->newptr == NULL)) 4931 return (error); 4932 4933 if (input == sc->fc) /* no change? */ 4934 return (error); 4935 4936 switch (input) { 4937 case e1000_fc_rx_pause: 4938 case e1000_fc_tx_pause: 4939 case e1000_fc_full: 4940 case e1000_fc_none: 4941 sc->hw.fc.requested_mode = input; 4942 sc->fc = input; 4943 break; 4944 default: 4945 /* Do nothing */ 4946 return (error); 4947 } 4948 4949 sc->hw.fc.current_mode = sc->hw.fc.requested_mode; 4950 e1000_force_mac_fc(&sc->hw); 4951 return (error); 4952 } 4953 4954 /* 4955 * Manage Energy Efficient Ethernet: 4956 * Control values: 4957 * 0/1 - enabled/disabled 4958 */ 4959 static int 4960 em_sysctl_eee(SYSCTL_HANDLER_ARGS) 4961 { 4962 struct e1000_softc *sc = (struct e1000_softc *) arg1; 4963 int error, value; 4964 4965 value = sc->hw.dev_spec.ich8lan.eee_disable; 4966 error = sysctl_handle_int(oidp, &value, 0, req); 4967 if (error || req->newptr == NULL) 4968 return (error); 4969 sc->hw.dev_spec.ich8lan.eee_disable = (value != 0); 4970 em_if_init(sc->ctx); 4971 4972 return (0); 4973 } 4974 4975 static int 4976 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS) 4977 { 4978 struct e1000_softc *sc; 4979 int error; 4980 int result; 4981 4982 result = -1; 4983 error = sysctl_handle_int(oidp, &result, 0, req); 4984 4985 if (error || !req->newptr) 4986 return (error); 4987 4988 if (result == 1) { 4989 sc = (struct e1000_softc *) arg1; 4990 em_print_debug_info(sc); 4991 } 4992 4993 return (error); 4994 } 4995 4996 static int 4997 em_get_rs(SYSCTL_HANDLER_ARGS) 4998 { 4999 struct e1000_softc *sc = (struct e1000_softc *) arg1; 5000 int error; 5001 int result; 5002 5003 result = 0; 5004 error = sysctl_handle_int(oidp, &result, 0, req); 5005 5006 if (error || !req->newptr || result != 1) 5007 return (error); 5008 em_dump_rs(sc); 5009 5010 return (error); 5011 } 5012 5013 static void 5014 em_if_debug(if_ctx_t ctx) 5015 { 5016 em_dump_rs(iflib_get_softc(ctx)); 5017 } 5018 5019 /* 5020 * This routine is meant to be fluid, add whatever is 5021 * needed for debugging a problem. -jfv 5022 */ 5023 static void 5024 em_print_debug_info(struct e1000_softc *sc) 5025 { 5026 device_t dev = iflib_get_dev(sc->ctx); 5027 if_t ifp = iflib_get_ifp(sc->ctx); 5028 struct tx_ring *txr = &sc->tx_queues->txr; 5029 struct rx_ring *rxr = &sc->rx_queues->rxr; 5030 5031 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 5032 printf("Interface is RUNNING "); 5033 else 5034 printf("Interface is NOT RUNNING\n"); 5035 5036 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) 5037 printf("and INACTIVE\n"); 5038 else 5039 printf("and ACTIVE\n"); 5040 5041 for (int i = 0; i < sc->tx_num_queues; i++, txr++) { 5042 device_printf(dev, "TX Queue %d ------\n", i); 5043 device_printf(dev, "hw tdh = %d, hw tdt = %d\n", 5044 E1000_READ_REG(&sc->hw, E1000_TDH(i)), 5045 E1000_READ_REG(&sc->hw, E1000_TDT(i))); 5046 5047 } 5048 for (int j=0; j < sc->rx_num_queues; j++, rxr++) { 5049 device_printf(dev, "RX Queue %d ------\n", j); 5050 device_printf(dev, "hw rdh = %d, hw rdt = %d\n", 5051 E1000_READ_REG(&sc->hw, E1000_RDH(j)), 5052 E1000_READ_REG(&sc->hw, E1000_RDT(j))); 5053 } 5054 } 5055 5056 /* 5057 * 82574 only: 5058 * Write a new value to the EEPROM increasing the number of MSI-X 5059 * vectors from 3 to 5, for proper multiqueue support. 5060 */ 5061 static void 5062 em_enable_vectors_82574(if_ctx_t ctx) 5063 { 5064 struct e1000_softc *sc = iflib_get_softc(ctx); 5065 struct e1000_hw *hw = &sc->hw; 5066 device_t dev = iflib_get_dev(ctx); 5067 u16 edata; 5068 5069 e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata); 5070 if (bootverbose) 5071 device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata); 5072 if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) { 5073 device_printf(dev, "Writing to eeprom: increasing " 5074 "reported MSI-X vectors from 3 to 5...\n"); 5075 edata &= ~(EM_NVM_MSIX_N_MASK); 5076 edata |= 4 << EM_NVM_MSIX_N_SHIFT; 5077 e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata); 5078 e1000_update_nvm_checksum(hw); 5079 device_printf(dev, "Writing to eeprom: done\n"); 5080 } 5081 } 5082