xref: /freebsd/sys/dev/e1000/if_em.c (revision 44d4804d1945435745518cd09eb8ae6ab22ecef4)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* $FreeBSD$ */
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33 
34 #define em_mac_min e1000_82571
35 #define igb_mac_min e1000_82575
36 
37 /*********************************************************************
38  *  Driver version:
39  *********************************************************************/
40 char em_driver_version[] = "7.6.1-k";
41 
42 /*********************************************************************
43  *  PCI Device ID Table
44  *
45  *  Used by probe to select devices to load on
46  *  Last field stores an index into e1000_strings
47  *  Last entry must be all 0s
48  *
49  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
50  *********************************************************************/
51 
52 static pci_vendor_info_t em_vendor_info_array[] =
53 {
54 	/* Intel(R) - lem-class legacy devices */
55 	PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) Legacy PRO/1000 MT 82540EM"),
56 	PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) Legacy PRO/1000 MT 82540EM (LOM)"),
57 	PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) Legacy PRO/1000 MT 82540EP"),
58 	PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) Legacy PRO/1000 MT 82540EP (LOM)"),
59 	PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) Legacy PRO/1000 MT 82540EP (Mobile)"),
60 
61 	PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) Legacy PRO/1000 MT 82541EI (Copper)"),
62 	PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) Legacy PRO/1000 82541ER"),
63 	PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) Legacy PRO/1000 MT 82541ER"),
64 	PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541EI (Mobile)"),
65 	PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) Legacy PRO/1000 MT 82541GI"),
66 	PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) Legacy PRO/1000 GT 82541PI"),
67 	PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541GI (Mobile)"),
68 
69 	PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) Legacy PRO/1000 82542 (Fiber)"),
70 
71 	PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) Legacy PRO/1000 F 82543GC (Fiber)"),
72 	PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) Legacy PRO/1000 T 82543GC (Copper)"),
73 
74 	PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) Legacy PRO/1000 XT 82544EI (Copper)"),
75 	PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) Legacy PRO/1000 XF 82544EI (Fiber)"),
76 	PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) Legacy PRO/1000 T 82544GC (Copper)"),
77 	PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) Legacy PRO/1000 XT 82544GC (LOM)"),
78 
79 	PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545EM (Copper)"),
80 	PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545EM (Fiber)"),
81 	PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545GM (Copper)"),
82 	PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545GM (Fiber)"),
83 	PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) Legacy PRO/1000 MB 82545GM (SERDES)"),
84 
85 	PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Copper)"),
86 	PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546EB (Fiber)"),
87 	PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Quad Copper"),
88 	PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546GB (Copper)"),
89 	PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546GB (Fiber)"),
90 	PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) Legacy PRO/1000 MB 82546GB (SERDES)"),
91 	PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) Legacy PRO/1000 P 82546GB (PCIe)"),
92 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
93 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
94 
95 	PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) Legacy PRO/1000 CT 82547EI"),
96 	PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) Legacy PRO/1000 CT 82547EI (Mobile)"),
97 	PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) Legacy PRO/1000 CT 82547GI"),
98 
99 	/* Intel(R) - em-class devices */
100 	PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Copper)"),
101 	PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 PF 82571EB/82571GB (Fiber)"),
102 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 PB 82571EB (SERDES)"),
103 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 82571EB (Dual Mezzanine)"),
104 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 82571EB (Quad Mezzanine)"),
105 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
106 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
107 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 PF 82571EB (Quad Fiber)"),
108 	PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571PT (Quad Copper)"),
109 	PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 PT 82572EI (Copper)"),
110 	PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 PT 82572EI (Copper)"),
111 	PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 PF 82572EI (Fiber)"),
112 	PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 82572EI (SERDES)"),
113 	PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 82573E (Copper)"),
114 	PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 82573E AMT (Copper)"),
115 	PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 82573L"),
116 	PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) 82583V"),
117 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) 80003ES2LAN (Copper)"),
118 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) 80003ES2LAN (SERDES)"),
119 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) 80003ES2LAN (Dual Copper)"),
120 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) 80003ES2LAN (Dual SERDES)"),
121 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) 82566MM ICH8 AMT (Mobile)"),
122 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) 82566DM ICH8 AMT"),
123 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) 82566DC ICH8"),
124 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) 82562V ICH8"),
125 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) 82562GT ICH8"),
126 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) 82562G ICH8"),
127 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) 82566MC ICH8"),
128 	PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) 82567V-3 ICH8"),
129 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) 82567LM ICH9 AMT"),
130 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) 82566DM-2 ICH9 AMT"),
131 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) 82566DC-2 ICH9"),
132 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) 82567LF ICH9"),
133 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) 82567V ICH9"),
134 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) 82562V-2 ICH9"),
135 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) 82562GT-2 ICH9"),
136 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) 82562G-2 ICH9"),
137 	PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) 82567LM-4 ICH9"),
138 	PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) Gigabit CT 82574L"),
139 	PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) 82574L-Apple"),
140 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) 82567LM-2 ICH10"),
141 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) 82567LF-2 ICH10"),
142 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) 82567V-2 ICH10"),
143 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) 82567LM-3 ICH10"),
144 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) 82567LF-3 ICH10"),
145 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) 82567V-4 ICH10"),
146 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) 82577LM"),
147 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) 82577LC"),
148 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) 82578DM"),
149 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) 82578DC"),
150 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) 82579LM"),
151 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) 82579V"),
152 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) I217-LM LPT"),
153 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) I217-V LPT"),
154 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) I218-LM LPTLP"),
155 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) I218-V LPTLP"),
156 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) I218-LM (2)"),
157 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) I218-V (2)"),
158 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) I218-LM (3)"),
159 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) I218-V (3)"),
160 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) I219-LM SPT"),
161 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) I219-V SPT"),
162 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) I219-LM SPT-H(2)"),
163 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) I219-V SPT-H(2)"),
164 	PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) I219-LM LBG(3)"),
165 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) I219-LM SPT(4)"),
166 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) I219-V SPT(4)"),
167 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) I219-LM SPT(5)"),
168 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) I219-V SPT(5)"),
169 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) I219-LM CNP(6)"),
170 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) I219-V CNP(6)"),
171 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) I219-LM CNP(7)"),
172 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) I219-V CNP(7)"),
173 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) I219-LM ICP(8)"),
174 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) I219-V ICP(8)"),
175 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) I219-LM ICP(9)"),
176 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) I219-V ICP(9)"),
177 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10, "Intel(R) I219-LM CMP(10)"),
178 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10, "Intel(R) I219-V CMP(10)"),
179 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11, "Intel(R) I219-LM CMP(11)"),
180 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11, "Intel(R) I219-V CMP(11)"),
181 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12, "Intel(R) I219-LM CMP(12)"),
182 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12, "Intel(R) I219-V CMP(12)"),
183 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM13, "Intel(R) I219-LM TGP(13)"),
184 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V13, "Intel(R) I219-V TGP(13)"),
185 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM14, "Intel(R) I219-LM TGP(14)"),
186 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V14, "Intel(R) I219-V GTP(14)"),
187 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM15, "Intel(R) I219-LM TGP(15)"),
188 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V15, "Intel(R) I219-V TGP(15)"),
189 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM16, "Intel(R) I219-LM ADL(16)"),
190 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V16, "Intel(R) I219-V ADL(16)"),
191 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM17, "Intel(R) I219-LM ADL(17)"),
192 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V17, "Intel(R) I219-V ADL(17)"),
193 	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM18, "Intel(R) I219-LM MTP(18)"),
194 	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V18, "Intel(R) I219-V MTP(18)"),
195 	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM19, "Intel(R) I219-LM MTP(19)"),
196 	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V19, "Intel(R) I219-V MTP(19)"),
197 	/* required last entry */
198 	PVID_END
199 };
200 
201 static pci_vendor_info_t igb_vendor_info_array[] =
202 {
203 	/* Intel(R) - igb-class devices */
204 	PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 82575EB (Copper)"),
205 	PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 82575EB (SERDES)"),
206 	PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 VT 82575GB (Quad Copper)"),
207 	PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 82576"),
208 	PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 82576NS"),
209 	PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 82576NS (SERDES)"),
210 	PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 EF 82576 (Dual Fiber)"),
211 	PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 82576 (Dual SERDES)"),
212 	PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 ET 82576 (Quad SERDES)"),
213 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 ET 82576 (Quad Copper)"),
214 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 ET(2) 82576 (Quad Copper)"),
215 	PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 82576 Virtual Function"),
216 	PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) I340 82580 (Copper)"),
217 	PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) I340 82580 (Fiber)"),
218 	PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) I340 82580 (SERDES)"),
219 	PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) I340 82580 (SGMII)"),
220 	PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) I340-T2 82580 (Dual Copper)"),
221 	PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) I340-F4 82580 (Quad Fiber)"),
222 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) DH89XXCC (SERDES)"),
223 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) I347-AT4 DH89XXCC"),
224 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) DH89XXCC (SFP)"),
225 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) DH89XXCC (Backplane)"),
226 	PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) I350 (Copper)"),
227 	PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) I350 (Fiber)"),
228 	PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) I350 (SERDES)"),
229 	PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) I350 (SGMII)"),
230 	PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) I350 Virtual Function"),
231 	PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) I210 (Copper)"),
232 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) I210 IT (Copper)"),
233 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) I210 (OEM)"),
234 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) I210 Flashless (Copper)"),
235 	PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) I210 Flashless (SERDES)"),
236 	PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) I210 (Fiber)"),
237 	PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) I210 (SERDES)"),
238 	PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) I210 (SGMII)"),
239 	PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) I211 (Copper)"),
240 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) I354 (1.0 GbE Backplane)"),
241 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) I354 (2.5 GbE Backplane)"),
242 	PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) I354 (SGMII)"),
243 	/* required last entry */
244 	PVID_END
245 };
246 
247 /*********************************************************************
248  *  Function prototypes
249  *********************************************************************/
250 static void	*em_register(device_t dev);
251 static void	*igb_register(device_t dev);
252 static int	em_if_attach_pre(if_ctx_t ctx);
253 static int	em_if_attach_post(if_ctx_t ctx);
254 static int	em_if_detach(if_ctx_t ctx);
255 static int	em_if_shutdown(if_ctx_t ctx);
256 static int	em_if_suspend(if_ctx_t ctx);
257 static int	em_if_resume(if_ctx_t ctx);
258 
259 static int	em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets);
260 static int	em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets);
261 static void	em_if_queues_free(if_ctx_t ctx);
262 
263 static uint64_t	em_if_get_counter(if_ctx_t, ift_counter);
264 static void	em_if_init(if_ctx_t ctx);
265 static void	em_if_stop(if_ctx_t ctx);
266 static void	em_if_media_status(if_ctx_t, struct ifmediareq *);
267 static int	em_if_media_change(if_ctx_t ctx);
268 static int	em_if_mtu_set(if_ctx_t ctx, uint32_t mtu);
269 static void	em_if_timer(if_ctx_t ctx, uint16_t qid);
270 static void	em_if_vlan_register(if_ctx_t ctx, u16 vtag);
271 static void	em_if_vlan_unregister(if_ctx_t ctx, u16 vtag);
272 static void	em_if_watchdog_reset(if_ctx_t ctx);
273 static bool	em_if_needs_restart(if_ctx_t ctx, enum iflib_restart_event event);
274 
275 static void	em_identify_hardware(if_ctx_t ctx);
276 static int	em_allocate_pci_resources(if_ctx_t ctx);
277 static void	em_free_pci_resources(if_ctx_t ctx);
278 static void	em_reset(if_ctx_t ctx);
279 static int	em_setup_interface(if_ctx_t ctx);
280 static int	em_setup_msix(if_ctx_t ctx);
281 
282 static void	em_initialize_transmit_unit(if_ctx_t ctx);
283 static void	em_initialize_receive_unit(if_ctx_t ctx);
284 
285 static void	em_if_intr_enable(if_ctx_t ctx);
286 static void	em_if_intr_disable(if_ctx_t ctx);
287 static void	igb_if_intr_enable(if_ctx_t ctx);
288 static void	igb_if_intr_disable(if_ctx_t ctx);
289 static int	em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
290 static int	em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
291 static int	igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
292 static int	igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
293 static void	em_if_multi_set(if_ctx_t ctx);
294 static void	em_if_update_admin_status(if_ctx_t ctx);
295 static void	em_if_debug(if_ctx_t ctx);
296 static void	em_update_stats_counters(struct adapter *);
297 static void	em_add_hw_stats(struct adapter *adapter);
298 static int	em_if_set_promisc(if_ctx_t ctx, int flags);
299 static void	em_setup_vlan_hw_support(struct adapter *);
300 static int	em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
301 static void	em_print_nvm_info(struct adapter *);
302 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
303 static int	em_get_rs(SYSCTL_HANDLER_ARGS);
304 static void	em_print_debug_info(struct adapter *);
305 static int 	em_is_valid_ether_addr(u8 *);
306 static int	em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
307 static void	em_add_int_delay_sysctl(struct adapter *, const char *,
308 		    const char *, struct em_int_delay_info *, int, int);
309 /* Management and WOL Support */
310 static void	em_init_manageability(struct adapter *);
311 static void	em_release_manageability(struct adapter *);
312 static void	em_get_hw_control(struct adapter *);
313 static void	em_release_hw_control(struct adapter *);
314 static void	em_get_wakeup(if_ctx_t ctx);
315 static void	em_enable_wakeup(if_ctx_t ctx);
316 static int	em_enable_phy_wakeup(struct adapter *);
317 static void	em_disable_aspm(struct adapter *);
318 
319 int		em_intr(void *arg);
320 
321 /* MSI-X handlers */
322 static int	em_if_msix_intr_assign(if_ctx_t, int);
323 static int	em_msix_link(void *);
324 static void	em_handle_link(void *context);
325 
326 static void	em_enable_vectors_82574(if_ctx_t);
327 
328 static int	em_set_flowcntl(SYSCTL_HANDLER_ARGS);
329 static int	em_sysctl_eee(SYSCTL_HANDLER_ARGS);
330 static void	em_if_led_func(if_ctx_t ctx, int onoff);
331 
332 static int	em_get_regs(SYSCTL_HANDLER_ARGS);
333 
334 static void	lem_smartspeed(struct adapter *adapter);
335 static void	igb_configure_queues(struct adapter *adapter);
336 
337 
338 /*********************************************************************
339  *  FreeBSD Device Interface Entry Points
340  *********************************************************************/
341 static device_method_t em_methods[] = {
342 	/* Device interface */
343 	DEVMETHOD(device_register, em_register),
344 	DEVMETHOD(device_probe, iflib_device_probe),
345 	DEVMETHOD(device_attach, iflib_device_attach),
346 	DEVMETHOD(device_detach, iflib_device_detach),
347 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
348 	DEVMETHOD(device_suspend, iflib_device_suspend),
349 	DEVMETHOD(device_resume, iflib_device_resume),
350 	DEVMETHOD_END
351 };
352 
353 static device_method_t igb_methods[] = {
354 	/* Device interface */
355 	DEVMETHOD(device_register, igb_register),
356 	DEVMETHOD(device_probe, iflib_device_probe),
357 	DEVMETHOD(device_attach, iflib_device_attach),
358 	DEVMETHOD(device_detach, iflib_device_detach),
359 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
360 	DEVMETHOD(device_suspend, iflib_device_suspend),
361 	DEVMETHOD(device_resume, iflib_device_resume),
362 	DEVMETHOD_END
363 };
364 
365 
366 static driver_t em_driver = {
367 	"em", em_methods, sizeof(struct adapter),
368 };
369 
370 static devclass_t em_devclass;
371 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
372 
373 MODULE_DEPEND(em, pci, 1, 1, 1);
374 MODULE_DEPEND(em, ether, 1, 1, 1);
375 MODULE_DEPEND(em, iflib, 1, 1, 1);
376 
377 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
378 
379 static driver_t igb_driver = {
380 	"igb", igb_methods, sizeof(struct adapter),
381 };
382 
383 static devclass_t igb_devclass;
384 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
385 
386 MODULE_DEPEND(igb, pci, 1, 1, 1);
387 MODULE_DEPEND(igb, ether, 1, 1, 1);
388 MODULE_DEPEND(igb, iflib, 1, 1, 1);
389 
390 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
391 
392 static device_method_t em_if_methods[] = {
393 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
394 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
395 	DEVMETHOD(ifdi_detach, em_if_detach),
396 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
397 	DEVMETHOD(ifdi_suspend, em_if_suspend),
398 	DEVMETHOD(ifdi_resume, em_if_resume),
399 	DEVMETHOD(ifdi_init, em_if_init),
400 	DEVMETHOD(ifdi_stop, em_if_stop),
401 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
402 	DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
403 	DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
404 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
405 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
406 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
407 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
408 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
409 	DEVMETHOD(ifdi_media_status, em_if_media_status),
410 	DEVMETHOD(ifdi_media_change, em_if_media_change),
411 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
412 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
413 	DEVMETHOD(ifdi_timer, em_if_timer),
414 	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
415 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
416 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
417 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
418 	DEVMETHOD(ifdi_led_func, em_if_led_func),
419 	DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
420 	DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
421 	DEVMETHOD(ifdi_debug, em_if_debug),
422 	DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
423 	DEVMETHOD_END
424 };
425 
426 static driver_t em_if_driver = {
427 	"em_if", em_if_methods, sizeof(struct adapter)
428 };
429 
430 static device_method_t igb_if_methods[] = {
431 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
432 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
433 	DEVMETHOD(ifdi_detach, em_if_detach),
434 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
435 	DEVMETHOD(ifdi_suspend, em_if_suspend),
436 	DEVMETHOD(ifdi_resume, em_if_resume),
437 	DEVMETHOD(ifdi_init, em_if_init),
438 	DEVMETHOD(ifdi_stop, em_if_stop),
439 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
440 	DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
441 	DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
442 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
443 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
444 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
445 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
446 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
447 	DEVMETHOD(ifdi_media_status, em_if_media_status),
448 	DEVMETHOD(ifdi_media_change, em_if_media_change),
449 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
450 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
451 	DEVMETHOD(ifdi_timer, em_if_timer),
452 	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
453 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
454 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
455 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
456 	DEVMETHOD(ifdi_led_func, em_if_led_func),
457 	DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
458 	DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
459 	DEVMETHOD(ifdi_debug, em_if_debug),
460 	DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
461 	DEVMETHOD_END
462 };
463 
464 static driver_t igb_if_driver = {
465 	"igb_if", igb_if_methods, sizeof(struct adapter)
466 };
467 
468 /*********************************************************************
469  *  Tunable default values.
470  *********************************************************************/
471 
472 #define EM_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
473 #define EM_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
474 
475 #define MAX_INTS_PER_SEC	8000
476 #define DEFAULT_ITR		(1000000000/(MAX_INTS_PER_SEC * 256))
477 
478 /* Allow common code without TSO */
479 #ifndef CSUM_TSO
480 #define CSUM_TSO	0
481 #endif
482 
483 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
484     "EM driver parameters");
485 
486 static int em_disable_crc_stripping = 0;
487 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
488     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
489 
490 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
491 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
492 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
493     0, "Default transmit interrupt delay in usecs");
494 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
495     0, "Default receive interrupt delay in usecs");
496 
497 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
498 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
499 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
500     &em_tx_abs_int_delay_dflt, 0,
501     "Default transmit interrupt delay limit in usecs");
502 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
503     &em_rx_abs_int_delay_dflt, 0,
504     "Default receive interrupt delay limit in usecs");
505 
506 static int em_smart_pwr_down = FALSE;
507 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
508     0, "Set to true to leave smart power down enabled on newer adapters");
509 
510 /* Controls whether promiscuous also shows bad packets */
511 static int em_debug_sbp = FALSE;
512 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
513     "Show bad packets in promiscuous mode");
514 
515 /* How many packets rxeof tries to clean at a time */
516 static int em_rx_process_limit = 100;
517 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
518     &em_rx_process_limit, 0,
519     "Maximum number of received packets to process "
520     "at a time, -1 means unlimited");
521 
522 /* Energy efficient ethernet - default to OFF */
523 static int eee_setting = 1;
524 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
525     "Enable Energy Efficient Ethernet");
526 
527 /*
528 ** Tuneable Interrupt rate
529 */
530 static int em_max_interrupt_rate = 8000;
531 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
532     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
533 
534 
535 
536 /* Global used in WOL setup with multiport cards */
537 static int global_quad_port_a = 0;
538 
539 extern struct if_txrx igb_txrx;
540 extern struct if_txrx em_txrx;
541 extern struct if_txrx lem_txrx;
542 
543 static struct if_shared_ctx em_sctx_init = {
544 	.isc_magic = IFLIB_MAGIC,
545 	.isc_q_align = PAGE_SIZE,
546 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
547 	.isc_tx_maxsegsize = PAGE_SIZE,
548 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
549 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
550 	.isc_rx_maxsize = MJUM9BYTES,
551 	.isc_rx_nsegments = 1,
552 	.isc_rx_maxsegsize = MJUM9BYTES,
553 	.isc_nfl = 1,
554 	.isc_nrxqs = 1,
555 	.isc_ntxqs = 1,
556 	.isc_admin_intrcnt = 1,
557 	.isc_vendor_info = em_vendor_info_array,
558 	.isc_driver_version = em_driver_version,
559 	.isc_driver = &em_if_driver,
560 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
561 
562 	.isc_nrxd_min = {EM_MIN_RXD},
563 	.isc_ntxd_min = {EM_MIN_TXD},
564 	.isc_nrxd_max = {EM_MAX_RXD},
565 	.isc_ntxd_max = {EM_MAX_TXD},
566 	.isc_nrxd_default = {EM_DEFAULT_RXD},
567 	.isc_ntxd_default = {EM_DEFAULT_TXD},
568 };
569 
570 static struct if_shared_ctx igb_sctx_init = {
571 	.isc_magic = IFLIB_MAGIC,
572 	.isc_q_align = PAGE_SIZE,
573 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
574 	.isc_tx_maxsegsize = PAGE_SIZE,
575 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
576 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
577 	.isc_rx_maxsize = MJUM9BYTES,
578 	.isc_rx_nsegments = 1,
579 	.isc_rx_maxsegsize = MJUM9BYTES,
580 	.isc_nfl = 1,
581 	.isc_nrxqs = 1,
582 	.isc_ntxqs = 1,
583 	.isc_admin_intrcnt = 1,
584 	.isc_vendor_info = igb_vendor_info_array,
585 	.isc_driver_version = em_driver_version,
586 	.isc_driver = &igb_if_driver,
587 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
588 
589 	.isc_nrxd_min = {EM_MIN_RXD},
590 	.isc_ntxd_min = {EM_MIN_TXD},
591 	.isc_nrxd_max = {IGB_MAX_RXD},
592 	.isc_ntxd_max = {IGB_MAX_TXD},
593 	.isc_nrxd_default = {EM_DEFAULT_RXD},
594 	.isc_ntxd_default = {EM_DEFAULT_TXD},
595 };
596 
597 /*****************************************************************
598  *
599  * Dump Registers
600  *
601  ****************************************************************/
602 #define IGB_REGS_LEN 739
603 
604 static int em_get_regs(SYSCTL_HANDLER_ARGS)
605 {
606 	struct adapter *adapter = (struct adapter *)arg1;
607 	struct e1000_hw *hw = &adapter->hw;
608 	struct sbuf *sb;
609 	u32 *regs_buff;
610 	int rc;
611 
612 	regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
613 	memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
614 
615 	rc = sysctl_wire_old_buffer(req, 0);
616 	MPASS(rc == 0);
617 	if (rc != 0) {
618 		free(regs_buff, M_DEVBUF);
619 		return (rc);
620 	}
621 
622 	sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
623 	MPASS(sb != NULL);
624 	if (sb == NULL) {
625 		free(regs_buff, M_DEVBUF);
626 		return (ENOMEM);
627 	}
628 
629 	/* General Registers */
630 	regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
631 	regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
632 	regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
633 	regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
634 	regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
635 	regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
636 	regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
637 	regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
638 	regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
639 	regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
640 	regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
641 	regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
642 	regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
643 	regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
644 	regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
645 	regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
646 	regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
647 	regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
648 	regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
649 	regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
650 	regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
651 	regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
652 
653 	sbuf_printf(sb, "General Registers\n");
654 	sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
655 	sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
656 	sbuf_printf(sb, "\tCTRL_EXT\t %08x\n\n", regs_buff[2]);
657 
658 	sbuf_printf(sb, "Interrupt Registers\n");
659 	sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
660 
661 	sbuf_printf(sb, "RX Registers\n");
662 	sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
663 	sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
664 	sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
665 	sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
666 	sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
667 	sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
668 	sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
669 
670 	sbuf_printf(sb, "TX Registers\n");
671 	sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
672 	sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
673 	sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
674 	sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
675 	sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
676 	sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
677 	sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
678 	sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
679 	sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
680 	sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
681 	sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
682 
683 	free(regs_buff, M_DEVBUF);
684 
685 #ifdef DUMP_DESCS
686 	{
687 		if_softc_ctx_t scctx = adapter->shared;
688 		struct rx_ring *rxr = &rx_que->rxr;
689 		struct tx_ring *txr = &tx_que->txr;
690 		int ntxd = scctx->isc_ntxd[0];
691 		int nrxd = scctx->isc_nrxd[0];
692 		int j;
693 
694 	for (j = 0; j < nrxd; j++) {
695 		u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
696 		u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
697 		sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
698 	}
699 
700 	for (j = 0; j < min(ntxd, 256); j++) {
701 		unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
702 
703 		sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
704 			    j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
705 			    buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
706 
707 	}
708 	}
709 #endif
710 
711 	rc = sbuf_finish(sb);
712 	sbuf_delete(sb);
713 	return(rc);
714 }
715 
716 static void *
717 em_register(device_t dev)
718 {
719 	return (&em_sctx_init);
720 }
721 
722 static void *
723 igb_register(device_t dev)
724 {
725 	return (&igb_sctx_init);
726 }
727 
728 static int
729 em_set_num_queues(if_ctx_t ctx)
730 {
731 	struct adapter *adapter = iflib_get_softc(ctx);
732 	int maxqueues;
733 
734 	/* Sanity check based on HW */
735 	switch (adapter->hw.mac.type) {
736 	case e1000_82576:
737 	case e1000_82580:
738 	case e1000_i350:
739 	case e1000_i354:
740 		maxqueues = 8;
741 		break;
742 	case e1000_i210:
743 	case e1000_82575:
744 		maxqueues = 4;
745 		break;
746 	case e1000_i211:
747 	case e1000_82574:
748 		maxqueues = 2;
749 		break;
750 	default:
751 		maxqueues = 1;
752 		break;
753 	}
754 
755 	return (maxqueues);
756 }
757 
758 #define	LEM_CAPS							\
759     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
760     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER
761 
762 #define	EM_CAPS								\
763     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
764     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |	\
765     IFCAP_LRO | IFCAP_VLAN_HWTSO
766 
767 #define	IGB_CAPS							\
768     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
769     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |	\
770     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 |\
771     IFCAP_TSO6
772 
773 /*********************************************************************
774  *  Device initialization routine
775  *
776  *  The attach entry point is called when the driver is being loaded.
777  *  This routine identifies the type of hardware, allocates all resources
778  *  and initializes the hardware.
779  *
780  *  return 0 on success, positive on failure
781  *********************************************************************/
782 static int
783 em_if_attach_pre(if_ctx_t ctx)
784 {
785 	struct adapter *adapter;
786 	if_softc_ctx_t scctx;
787 	device_t dev;
788 	struct e1000_hw *hw;
789 	int error = 0;
790 
791 	INIT_DEBUGOUT("em_if_attach_pre: begin");
792 	dev = iflib_get_dev(ctx);
793 	adapter = iflib_get_softc(ctx);
794 
795 	adapter->ctx = adapter->osdep.ctx = ctx;
796 	adapter->dev = adapter->osdep.dev = dev;
797 	scctx = adapter->shared = iflib_get_softc_ctx(ctx);
798 	adapter->media = iflib_get_media(ctx);
799 	hw = &adapter->hw;
800 
801 	adapter->tx_process_limit = scctx->isc_ntxd[0];
802 
803 	/* SYSCTL stuff */
804 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
805 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
806 	    OID_AUTO, "nvm", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
807 	    adapter, 0, em_sysctl_nvm_info, "I", "NVM Information");
808 
809 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
810 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
811 	    OID_AUTO, "debug", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
812 	    adapter, 0, em_sysctl_debug_info, "I", "Debug Information");
813 
814 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
815 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
816 	    OID_AUTO, "fc", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
817 	    adapter, 0, em_set_flowcntl, "I", "Flow Control");
818 
819 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
820 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
821 	    OID_AUTO, "reg_dump",
822 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter, 0,
823 	    em_get_regs, "A", "Dump Registers");
824 
825 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
826 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
827 	    OID_AUTO, "rs_dump",
828 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, adapter, 0,
829 	    em_get_rs, "I", "Dump RS indexes");
830 
831 	/* Determine hardware and mac info */
832 	em_identify_hardware(ctx);
833 
834 	scctx->isc_tx_nsegments = EM_MAX_SCATTER;
835 	scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
836 	if (bootverbose)
837 		device_printf(dev, "attach_pre capping queues at %d\n",
838 		    scctx->isc_ntxqsets_max);
839 
840 	if (hw->mac.type >= igb_mac_min) {
841 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
842 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
843 		scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
844 		scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
845 		scctx->isc_txrx = &igb_txrx;
846 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
847 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
848 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
849 		scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
850 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
851 		     CSUM_IP6_TCP | CSUM_IP6_UDP;
852 		if (hw->mac.type != e1000_82575)
853 			scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
854 		/*
855 		** Some new devices, as with ixgbe, now may
856 		** use a different BAR, so we need to keep
857 		** track of which is used.
858 		*/
859 		scctx->isc_msix_bar = pci_msix_table_bar(dev);
860 	} else if (hw->mac.type >= em_mac_min) {
861 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
862 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
863 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
864 		scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
865 		scctx->isc_txrx = &em_txrx;
866 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
867 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
868 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
869 		scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
870 		/*
871 		 * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO}
872 		 * by default as we don't have workarounds for all associated
873 		 * silicon errata.  E. g., with several MACs such as 82573E,
874 		 * TSO only works at Gigabit speed and otherwise can cause the
875 		 * hardware to hang (which also would be next to impossible to
876 		 * work around given that already queued TSO-using descriptors
877 		 * would need to be flushed and vlan(4) reconfigured at runtime
878 		 * in case of a link speed change).  Moreover, MACs like 82579
879 		 * still can hang at Gigabit even with all publicly documented
880 		 * TSO workarounds implemented.  Generally, the penality of
881 		 * these workarounds is rather high and may involve copying
882 		 * mbuf data around so advantages of TSO lapse.  Still, TSO may
883 		 * work for a few MACs of this class - at least when sticking
884 		 * with Gigabit - in which case users may enable TSO manually.
885 		 */
886 		scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
887 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
888 		/*
889 		 * We support MSI-X with 82574 only, but indicate to iflib(4)
890 		 * that it shall give MSI at least a try with other devices.
891 		 */
892 		if (hw->mac.type == e1000_82574) {
893 			scctx->isc_msix_bar = pci_msix_table_bar(dev);;
894 		} else {
895 			scctx->isc_msix_bar = -1;
896 			scctx->isc_disable_msix = 1;
897 		}
898 	} else {
899 		scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
900 		scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
901 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
902 		scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
903 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP;
904 		scctx->isc_txrx = &lem_txrx;
905 		scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
906 		if (hw->mac.type < e1000_82543)
907 			scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM);
908 		/* INTx only */
909 		scctx->isc_msix_bar = 0;
910 	}
911 
912 	/* Setup PCI resources */
913 	if (em_allocate_pci_resources(ctx)) {
914 		device_printf(dev, "Allocation of PCI resources failed\n");
915 		error = ENXIO;
916 		goto err_pci;
917 	}
918 
919 	/*
920 	** For ICH8 and family we need to
921 	** map the flash memory, and this
922 	** must happen after the MAC is
923 	** identified
924 	*/
925 	if ((hw->mac.type == e1000_ich8lan) ||
926 	    (hw->mac.type == e1000_ich9lan) ||
927 	    (hw->mac.type == e1000_ich10lan) ||
928 	    (hw->mac.type == e1000_pchlan) ||
929 	    (hw->mac.type == e1000_pch2lan) ||
930 	    (hw->mac.type == e1000_pch_lpt)) {
931 		int rid = EM_BAR_TYPE_FLASH;
932 		adapter->flash = bus_alloc_resource_any(dev,
933 		    SYS_RES_MEMORY, &rid, RF_ACTIVE);
934 		if (adapter->flash == NULL) {
935 			device_printf(dev, "Mapping of Flash failed\n");
936 			error = ENXIO;
937 			goto err_pci;
938 		}
939 		/* This is used in the shared code */
940 		hw->flash_address = (u8 *)adapter->flash;
941 		adapter->osdep.flash_bus_space_tag =
942 		    rman_get_bustag(adapter->flash);
943 		adapter->osdep.flash_bus_space_handle =
944 		    rman_get_bushandle(adapter->flash);
945 	}
946 	/*
947 	** In the new SPT device flash is not  a
948 	** separate BAR, rather it is also in BAR0,
949 	** so use the same tag and an offset handle for the
950 	** FLASH read/write macros in the shared code.
951 	*/
952 	else if (hw->mac.type >= e1000_pch_spt) {
953 		adapter->osdep.flash_bus_space_tag =
954 		    adapter->osdep.mem_bus_space_tag;
955 		adapter->osdep.flash_bus_space_handle =
956 		    adapter->osdep.mem_bus_space_handle
957 		    + E1000_FLASH_BASE_ADDR;
958 	}
959 
960 	/* Do Shared Code initialization */
961 	error = e1000_setup_init_funcs(hw, TRUE);
962 	if (error) {
963 		device_printf(dev, "Setup of Shared code failed, error %d\n",
964 		    error);
965 		error = ENXIO;
966 		goto err_pci;
967 	}
968 
969 	em_setup_msix(ctx);
970 	e1000_get_bus_info(hw);
971 
972 	/* Set up some sysctls for the tunable interrupt delays */
973 	em_add_int_delay_sysctl(adapter, "rx_int_delay",
974 	    "receive interrupt delay in usecs", &adapter->rx_int_delay,
975 	    E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
976 	em_add_int_delay_sysctl(adapter, "tx_int_delay",
977 	    "transmit interrupt delay in usecs", &adapter->tx_int_delay,
978 	    E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
979 	em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
980 	    "receive interrupt delay limit in usecs",
981 	    &adapter->rx_abs_int_delay,
982 	    E1000_REGISTER(hw, E1000_RADV),
983 	    em_rx_abs_int_delay_dflt);
984 	em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
985 	    "transmit interrupt delay limit in usecs",
986 	    &adapter->tx_abs_int_delay,
987 	    E1000_REGISTER(hw, E1000_TADV),
988 	    em_tx_abs_int_delay_dflt);
989 	em_add_int_delay_sysctl(adapter, "itr",
990 	    "interrupt delay limit in usecs/4",
991 	    &adapter->tx_itr,
992 	    E1000_REGISTER(hw, E1000_ITR),
993 	    DEFAULT_ITR);
994 
995 	hw->mac.autoneg = DO_AUTO_NEG;
996 	hw->phy.autoneg_wait_to_complete = FALSE;
997 	hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
998 
999 	if (hw->mac.type < em_mac_min) {
1000 		e1000_init_script_state_82541(hw, TRUE);
1001 		e1000_set_tbi_compatibility_82543(hw, TRUE);
1002 	}
1003 	/* Copper options */
1004 	if (hw->phy.media_type == e1000_media_type_copper) {
1005 		hw->phy.mdix = AUTO_ALL_MODES;
1006 		hw->phy.disable_polarity_correction = FALSE;
1007 		hw->phy.ms_type = EM_MASTER_SLAVE;
1008 	}
1009 
1010 	/*
1011 	 * Set the frame limits assuming
1012 	 * standard ethernet sized frames.
1013 	 */
1014 	scctx->isc_max_frame_size = hw->mac.max_frame_size =
1015 	    ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
1016 
1017 	/*
1018 	 * This controls when hardware reports transmit completion
1019 	 * status.
1020 	 */
1021 	hw->mac.report_tx_early = 1;
1022 
1023 	/* Allocate multicast array memory. */
1024 	adapter->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
1025 	    MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1026 	if (adapter->mta == NULL) {
1027 		device_printf(dev, "Can not allocate multicast setup array\n");
1028 		error = ENOMEM;
1029 		goto err_late;
1030 	}
1031 
1032 	/* Check SOL/IDER usage */
1033 	if (e1000_check_reset_block(hw))
1034 		device_printf(dev, "PHY reset is blocked"
1035 			      " due to SOL/IDER session.\n");
1036 
1037 	/* Sysctl for setting Energy Efficient Ethernet */
1038 	hw->dev_spec.ich8lan.eee_disable = eee_setting;
1039 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1040 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1041 	    OID_AUTO, "eee_control",
1042 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1043 	    adapter, 0, em_sysctl_eee, "I",
1044 	    "Disable Energy Efficient Ethernet");
1045 
1046 	/*
1047 	** Start from a known state, this is
1048 	** important in reading the nvm and
1049 	** mac from that.
1050 	*/
1051 	e1000_reset_hw(hw);
1052 
1053 	/* Make sure we have a good EEPROM before we read from it */
1054 	if (e1000_validate_nvm_checksum(hw) < 0) {
1055 		/*
1056 		** Some PCI-E parts fail the first check due to
1057 		** the link being in sleep state, call it again,
1058 		** if it fails a second time its a real issue.
1059 		*/
1060 		if (e1000_validate_nvm_checksum(hw) < 0) {
1061 			device_printf(dev,
1062 			    "The EEPROM Checksum Is Not Valid\n");
1063 			error = EIO;
1064 			goto err_late;
1065 		}
1066 	}
1067 
1068 	/* Copy the permanent MAC address out of the EEPROM */
1069 	if (e1000_read_mac_addr(hw) < 0) {
1070 		device_printf(dev, "EEPROM read error while reading MAC"
1071 			      " address\n");
1072 		error = EIO;
1073 		goto err_late;
1074 	}
1075 
1076 	if (!em_is_valid_ether_addr(hw->mac.addr)) {
1077 		if (adapter->vf_ifp) {
1078 			u8 addr[ETHER_ADDR_LEN];
1079 			arc4rand(&addr, sizeof(addr), 0);
1080 			addr[0] &= 0xFE;
1081 			addr[0] |= 0x02;
1082 			bcopy(addr, hw->mac.addr, sizeof(addr));
1083 		} else {
1084 			device_printf(dev, "Invalid MAC address\n");
1085 			error = EIO;
1086 			goto err_late;
1087 		}
1088 	}
1089 
1090 	/* Disable ULP support */
1091 	e1000_disable_ulp_lpt_lp(hw, TRUE);
1092 
1093 	/*
1094 	 * Get Wake-on-Lan and Management info for later use
1095 	 */
1096 	em_get_wakeup(ctx);
1097 
1098 	/* Enable only WOL MAGIC by default */
1099 	scctx->isc_capenable &= ~IFCAP_WOL;
1100 	if (adapter->wol != 0)
1101 		scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1102 
1103 	iflib_set_mac(ctx, hw->mac.addr);
1104 
1105 	return (0);
1106 
1107 err_late:
1108 	em_release_hw_control(adapter);
1109 err_pci:
1110 	em_free_pci_resources(ctx);
1111 	free(adapter->mta, M_DEVBUF);
1112 
1113 	return (error);
1114 }
1115 
1116 static int
1117 em_if_attach_post(if_ctx_t ctx)
1118 {
1119 	struct adapter *adapter = iflib_get_softc(ctx);
1120 	struct e1000_hw *hw = &adapter->hw;
1121 	int error = 0;
1122 
1123 	/* Setup OS specific network interface */
1124 	error = em_setup_interface(ctx);
1125 	if (error != 0) {
1126 		device_printf(adapter->dev, "Interface setup failed: %d\n", error);
1127 		goto err_late;
1128 	}
1129 
1130 	em_reset(ctx);
1131 
1132 	/* Initialize statistics */
1133 	em_update_stats_counters(adapter);
1134 	hw->mac.get_link_status = 1;
1135 	em_if_update_admin_status(ctx);
1136 	em_add_hw_stats(adapter);
1137 
1138 	/* Non-AMT based hardware can now take control from firmware */
1139 	if (adapter->has_manage && !adapter->has_amt)
1140 		em_get_hw_control(adapter);
1141 
1142 	INIT_DEBUGOUT("em_if_attach_post: end");
1143 
1144 	return (0);
1145 
1146 err_late:
1147 	/* upon attach_post() error, iflib calls _if_detach() to free resources. */
1148 	return (error);
1149 }
1150 
1151 /*********************************************************************
1152  *  Device removal routine
1153  *
1154  *  The detach entry point is called when the driver is being removed.
1155  *  This routine stops the adapter and deallocates all the resources
1156  *  that were allocated for driver operation.
1157  *
1158  *  return 0 on success, positive on failure
1159  *********************************************************************/
1160 static int
1161 em_if_detach(if_ctx_t ctx)
1162 {
1163 	struct adapter	*adapter = iflib_get_softc(ctx);
1164 
1165 	INIT_DEBUGOUT("em_if_detach: begin");
1166 
1167 	e1000_phy_hw_reset(&adapter->hw);
1168 
1169 	em_release_manageability(adapter);
1170 	em_release_hw_control(adapter);
1171 	em_free_pci_resources(ctx);
1172 	free(adapter->mta, M_DEVBUF);
1173 	adapter->mta = NULL;
1174 
1175 	return (0);
1176 }
1177 
1178 /*********************************************************************
1179  *
1180  *  Shutdown entry point
1181  *
1182  **********************************************************************/
1183 
1184 static int
1185 em_if_shutdown(if_ctx_t ctx)
1186 {
1187 	return em_if_suspend(ctx);
1188 }
1189 
1190 /*
1191  * Suspend/resume device methods.
1192  */
1193 static int
1194 em_if_suspend(if_ctx_t ctx)
1195 {
1196 	struct adapter *adapter = iflib_get_softc(ctx);
1197 
1198 	em_release_manageability(adapter);
1199 	em_release_hw_control(adapter);
1200 	em_enable_wakeup(ctx);
1201 	return (0);
1202 }
1203 
1204 static int
1205 em_if_resume(if_ctx_t ctx)
1206 {
1207 	struct adapter *adapter = iflib_get_softc(ctx);
1208 
1209 	if (adapter->hw.mac.type == e1000_pch2lan)
1210 		e1000_resume_workarounds_pchlan(&adapter->hw);
1211 	em_if_init(ctx);
1212 	em_init_manageability(adapter);
1213 
1214 	return(0);
1215 }
1216 
1217 static int
1218 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1219 {
1220 	int max_frame_size;
1221 	struct adapter *adapter = iflib_get_softc(ctx);
1222 	if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1223 
1224 	IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1225 
1226 	switch (adapter->hw.mac.type) {
1227 	case e1000_82571:
1228 	case e1000_82572:
1229 	case e1000_ich9lan:
1230 	case e1000_ich10lan:
1231 	case e1000_pch2lan:
1232 	case e1000_pch_lpt:
1233 	case e1000_pch_spt:
1234 	case e1000_pch_cnp:
1235 	case e1000_pch_tgp:
1236 	case e1000_pch_adp:
1237 	case e1000_pch_mtp:
1238 	case e1000_82574:
1239 	case e1000_82583:
1240 	case e1000_80003es2lan:
1241 		/* 9K Jumbo Frame size */
1242 		max_frame_size = 9234;
1243 		break;
1244 	case e1000_pchlan:
1245 		max_frame_size = 4096;
1246 		break;
1247 	case e1000_82542:
1248 	case e1000_ich8lan:
1249 		/* Adapters that do not support jumbo frames */
1250 		max_frame_size = ETHER_MAX_LEN;
1251 		break;
1252 	default:
1253 		if (adapter->hw.mac.type >= igb_mac_min)
1254 			max_frame_size = 9234;
1255 		else /* lem */
1256 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1257 	}
1258 	if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1259 		return (EINVAL);
1260 	}
1261 
1262 	scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
1263 	    mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1264 	return (0);
1265 }
1266 
1267 /*********************************************************************
1268  *  Init entry point
1269  *
1270  *  This routine is used in two ways. It is used by the stack as
1271  *  init entry point in network interface structure. It is also used
1272  *  by the driver as a hw/sw initialization routine to get to a
1273  *  consistent state.
1274  *
1275  **********************************************************************/
1276 static void
1277 em_if_init(if_ctx_t ctx)
1278 {
1279 	struct adapter *adapter = iflib_get_softc(ctx);
1280 	if_softc_ctx_t scctx = adapter->shared;
1281 	struct ifnet *ifp = iflib_get_ifp(ctx);
1282 	struct em_tx_queue *tx_que;
1283 	int i;
1284 
1285 	INIT_DEBUGOUT("em_if_init: begin");
1286 
1287 	/* Get the latest mac address, User can use a LAA */
1288 	bcopy(if_getlladdr(ifp), adapter->hw.mac.addr,
1289 	    ETHER_ADDR_LEN);
1290 
1291 	/* Put the address into the Receive Address Array */
1292 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1293 
1294 	/*
1295 	 * With the 82571 adapter, RAR[0] may be overwritten
1296 	 * when the other port is reset, we make a duplicate
1297 	 * in RAR[14] for that eventuality, this assures
1298 	 * the interface continues to function.
1299 	 */
1300 	if (adapter->hw.mac.type == e1000_82571) {
1301 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1302 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1303 		    E1000_RAR_ENTRIES - 1);
1304 	}
1305 
1306 
1307 	/* Initialize the hardware */
1308 	em_reset(ctx);
1309 	em_if_update_admin_status(ctx);
1310 
1311 	for (i = 0, tx_que = adapter->tx_queues; i < adapter->tx_num_queues; i++, tx_que++) {
1312 		struct tx_ring *txr = &tx_que->txr;
1313 
1314 		txr->tx_rs_cidx = txr->tx_rs_pidx;
1315 
1316 		/* Initialize the last processed descriptor to be the end of
1317 		 * the ring, rather than the start, so that we avoid an
1318 		 * off-by-one error when calculating how many descriptors are
1319 		 * done in the credits_update function.
1320 		 */
1321 		txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1322 	}
1323 
1324 	/* Setup VLAN support, basic and offload if available */
1325 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1326 
1327 	/* Clear bad data from Rx FIFOs */
1328 	if (adapter->hw.mac.type >= igb_mac_min)
1329 		e1000_rx_fifo_flush_82575(&adapter->hw);
1330 
1331 	/* Configure for OS presence */
1332 	em_init_manageability(adapter);
1333 
1334 	/* Prepare transmit descriptors and buffers */
1335 	em_initialize_transmit_unit(ctx);
1336 
1337 	/* Setup Multicast table */
1338 	em_if_multi_set(ctx);
1339 
1340 	adapter->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1341 	em_initialize_receive_unit(ctx);
1342 
1343 	/* Use real VLAN Filter support? */
1344 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
1345 		if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
1346 			/* Use real VLAN Filter support */
1347 			em_setup_vlan_hw_support(adapter);
1348 		else {
1349 			u32 ctrl;
1350 			ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1351 			ctrl |= E1000_CTRL_VME;
1352 			E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1353 		}
1354 	} else {
1355 		u32 ctrl;
1356 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1357 		ctrl &= ~E1000_CTRL_VME;
1358 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1359 	}
1360 
1361 	/* Don't lose promiscuous settings */
1362 	em_if_set_promisc(ctx, if_getflags(ifp));
1363 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1364 
1365 	/* MSI-X configuration for 82574 */
1366 	if (adapter->hw.mac.type == e1000_82574) {
1367 		int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1368 
1369 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1370 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1371 		/* Set the IVAR - interrupt vector routing. */
1372 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars);
1373 	} else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1374 		igb_configure_queues(adapter);
1375 
1376 	/* this clears any pending interrupts */
1377 	E1000_READ_REG(&adapter->hw, E1000_ICR);
1378 	E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
1379 
1380 	/* AMT based hardware can now take control from firmware */
1381 	if (adapter->has_manage && adapter->has_amt)
1382 		em_get_hw_control(adapter);
1383 
1384 	/* Set Energy Efficient Ethernet */
1385 	if (adapter->hw.mac.type >= igb_mac_min &&
1386 	    adapter->hw.phy.media_type == e1000_media_type_copper) {
1387 		if (adapter->hw.mac.type == e1000_i354)
1388 			e1000_set_eee_i354(&adapter->hw, TRUE, TRUE);
1389 		else
1390 			e1000_set_eee_i350(&adapter->hw, TRUE, TRUE);
1391 	}
1392 }
1393 
1394 /*********************************************************************
1395  *
1396  *  Fast Legacy/MSI Combined Interrupt Service routine
1397  *
1398  *********************************************************************/
1399 int
1400 em_intr(void *arg)
1401 {
1402 	struct adapter *adapter = arg;
1403 	if_ctx_t ctx = adapter->ctx;
1404 	u32 reg_icr;
1405 
1406 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1407 
1408 	/* Hot eject? */
1409 	if (reg_icr == 0xffffffff)
1410 		return FILTER_STRAY;
1411 
1412 	/* Definitely not our interrupt. */
1413 	if (reg_icr == 0x0)
1414 		return FILTER_STRAY;
1415 
1416 	/*
1417 	 * Starting with the 82571 chip, bit 31 should be used to
1418 	 * determine whether the interrupt belongs to us.
1419 	 */
1420 	if (adapter->hw.mac.type >= e1000_82571 &&
1421 	    (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1422 		return FILTER_STRAY;
1423 
1424 	/*
1425 	 * Only MSI-X interrupts have one-shot behavior by taking advantage
1426 	 * of the EIAC register.  Thus, explicitly disable interrupts.  This
1427 	 * also works around the MSI message reordering errata on certain
1428 	 * systems.
1429 	 */
1430 	IFDI_INTR_DISABLE(ctx);
1431 
1432 	/* Link status change */
1433 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1434 		em_handle_link(ctx);
1435 
1436 	if (reg_icr & E1000_ICR_RXO)
1437 		adapter->rx_overruns++;
1438 
1439 	return (FILTER_SCHEDULE_THREAD);
1440 }
1441 
1442 static int
1443 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1444 {
1445 	struct adapter *adapter = iflib_get_softc(ctx);
1446 	struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1447 
1448 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims);
1449 	return (0);
1450 }
1451 
1452 static int
1453 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1454 {
1455 	struct adapter *adapter = iflib_get_softc(ctx);
1456 	struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1457 
1458 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, txq->eims);
1459 	return (0);
1460 }
1461 
1462 static int
1463 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1464 {
1465 	struct adapter *adapter = iflib_get_softc(ctx);
1466 	struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1467 
1468 	E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims);
1469 	return (0);
1470 }
1471 
1472 static int
1473 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1474 {
1475 	struct adapter *adapter = iflib_get_softc(ctx);
1476 	struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1477 
1478 	E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txq->eims);
1479 	return (0);
1480 }
1481 
1482 /*********************************************************************
1483  *
1484  *  MSI-X RX Interrupt Service routine
1485  *
1486  **********************************************************************/
1487 static int
1488 em_msix_que(void *arg)
1489 {
1490 	struct em_rx_queue *que = arg;
1491 
1492 	++que->irqs;
1493 
1494 	return (FILTER_SCHEDULE_THREAD);
1495 }
1496 
1497 /*********************************************************************
1498  *
1499  *  MSI-X Link Fast Interrupt Service routine
1500  *
1501  **********************************************************************/
1502 static int
1503 em_msix_link(void *arg)
1504 {
1505 	struct adapter *adapter = arg;
1506 	u32 reg_icr;
1507 	bool notlink = false;
1508 
1509 	++adapter->link_irq;
1510 	MPASS(adapter->hw.back != NULL);
1511 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1512 
1513 	if (reg_icr & E1000_ICR_RXO)
1514 		adapter->rx_overruns++;
1515 
1516 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1517 		em_handle_link(adapter->ctx);
1518 	else
1519 		notlink = true;
1520 
1521 	/* Re-arm for other/spurious interrupts */
1522 	if (notlink && adapter->hw.mac.type >= igb_mac_min) {
1523 		E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC);
1524 		E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
1525 	} else if (adapter->hw.mac.type == e1000_82574) {
1526 		if (notlink)
1527 			E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC |
1528 			    E1000_IMS_OTHER);
1529 		/*
1530 		 * Because we must read the ICR for this interrupt it may
1531 		 * clear other causes using autoclear, for this reason we
1532 		 * simply create a soft interrupt for all these vectors.
1533 		 */
1534 		if (reg_icr)
1535 			E1000_WRITE_REG(&adapter->hw, E1000_ICS, adapter->ims);
1536 	}
1537 
1538 	return (FILTER_HANDLED);
1539 }
1540 
1541 static void
1542 em_handle_link(void *context)
1543 {
1544 	if_ctx_t ctx = context;
1545 	struct adapter *adapter = iflib_get_softc(ctx);
1546 
1547 	adapter->hw.mac.get_link_status = 1;
1548 	iflib_admin_intr_deferred(ctx);
1549 }
1550 
1551 /*********************************************************************
1552  *
1553  *  Media Ioctl callback
1554  *
1555  *  This routine is called whenever the user queries the status of
1556  *  the interface using ifconfig.
1557  *
1558  **********************************************************************/
1559 static void
1560 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1561 {
1562 	struct adapter *adapter = iflib_get_softc(ctx);
1563 	u_char fiber_type = IFM_1000_SX;
1564 
1565 	INIT_DEBUGOUT("em_if_media_status: begin");
1566 
1567 	iflib_admin_intr_deferred(ctx);
1568 
1569 	ifmr->ifm_status = IFM_AVALID;
1570 	ifmr->ifm_active = IFM_ETHER;
1571 
1572 	if (!adapter->link_active) {
1573 		return;
1574 	}
1575 
1576 	ifmr->ifm_status |= IFM_ACTIVE;
1577 
1578 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
1579 	    (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1580 		if (adapter->hw.mac.type == e1000_82545)
1581 			fiber_type = IFM_1000_LX;
1582 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1583 	} else {
1584 		switch (adapter->link_speed) {
1585 		case 10:
1586 			ifmr->ifm_active |= IFM_10_T;
1587 			break;
1588 		case 100:
1589 			ifmr->ifm_active |= IFM_100_TX;
1590 			break;
1591 		case 1000:
1592 			ifmr->ifm_active |= IFM_1000_T;
1593 			break;
1594 		}
1595 		if (adapter->link_duplex == FULL_DUPLEX)
1596 			ifmr->ifm_active |= IFM_FDX;
1597 		else
1598 			ifmr->ifm_active |= IFM_HDX;
1599 	}
1600 }
1601 
1602 /*********************************************************************
1603  *
1604  *  Media Ioctl callback
1605  *
1606  *  This routine is called when the user changes speed/duplex using
1607  *  media/mediopt option with ifconfig.
1608  *
1609  **********************************************************************/
1610 static int
1611 em_if_media_change(if_ctx_t ctx)
1612 {
1613 	struct adapter *adapter = iflib_get_softc(ctx);
1614 	struct ifmedia *ifm = iflib_get_media(ctx);
1615 
1616 	INIT_DEBUGOUT("em_if_media_change: begin");
1617 
1618 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1619 		return (EINVAL);
1620 
1621 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1622 	case IFM_AUTO:
1623 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1624 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1625 		break;
1626 	case IFM_1000_LX:
1627 	case IFM_1000_SX:
1628 	case IFM_1000_T:
1629 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1630 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1631 		break;
1632 	case IFM_100_TX:
1633 		adapter->hw.mac.autoneg = FALSE;
1634 		adapter->hw.phy.autoneg_advertised = 0;
1635 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1636 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1637 		else
1638 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1639 		break;
1640 	case IFM_10_T:
1641 		adapter->hw.mac.autoneg = FALSE;
1642 		adapter->hw.phy.autoneg_advertised = 0;
1643 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1644 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1645 		else
1646 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1647 		break;
1648 	default:
1649 		device_printf(adapter->dev, "Unsupported media type\n");
1650 	}
1651 
1652 	em_if_init(ctx);
1653 
1654 	return (0);
1655 }
1656 
1657 static int
1658 em_if_set_promisc(if_ctx_t ctx, int flags)
1659 {
1660 	struct adapter *adapter = iflib_get_softc(ctx);
1661 	struct ifnet *ifp = iflib_get_ifp(ctx);
1662 	u32 reg_rctl;
1663 	int mcnt = 0;
1664 
1665 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1666 	reg_rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_UPE);
1667 	if (flags & IFF_ALLMULTI)
1668 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1669 	else
1670 		mcnt = min(if_llmaddr_count(ifp), MAX_NUM_MULTICAST_ADDRESSES);
1671 
1672 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1673 		reg_rctl &= (~E1000_RCTL_MPE);
1674 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1675 
1676 	if (flags & IFF_PROMISC) {
1677 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1678 		/* Turn this on if you want to see bad packets */
1679 		if (em_debug_sbp)
1680 			reg_rctl |= E1000_RCTL_SBP;
1681 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1682 	} else if (flags & IFF_ALLMULTI) {
1683 		reg_rctl |= E1000_RCTL_MPE;
1684 		reg_rctl &= ~E1000_RCTL_UPE;
1685 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1686 	}
1687 	return (0);
1688 }
1689 
1690 static u_int
1691 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int idx)
1692 {
1693 	u8 *mta = arg;
1694 
1695 	if (idx == MAX_NUM_MULTICAST_ADDRESSES)
1696 		return (0);
1697 
1698 	bcopy(LLADDR(sdl), &mta[idx * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1699 
1700 	return (1);
1701 }
1702 
1703 /*********************************************************************
1704  *  Multicast Update
1705  *
1706  *  This routine is called whenever multicast address list is updated.
1707  *
1708  **********************************************************************/
1709 static void
1710 em_if_multi_set(if_ctx_t ctx)
1711 {
1712 	struct adapter *adapter = iflib_get_softc(ctx);
1713 	struct ifnet *ifp = iflib_get_ifp(ctx);
1714 	u8  *mta; /* Multicast array memory */
1715 	u32 reg_rctl = 0;
1716 	int mcnt = 0;
1717 
1718 	IOCTL_DEBUGOUT("em_set_multi: begin");
1719 
1720 	mta = adapter->mta;
1721 	bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1722 
1723 	if (adapter->hw.mac.type == e1000_82542 &&
1724 	    adapter->hw.revision_id == E1000_REVISION_2) {
1725 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1726 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1727 			e1000_pci_clear_mwi(&adapter->hw);
1728 		reg_rctl |= E1000_RCTL_RST;
1729 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1730 		msec_delay(5);
1731 	}
1732 
1733 	mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
1734 
1735 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1736 
1737 	if (if_getflags(ifp) & IFF_PROMISC)
1738 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1739 	else if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES ||
1740 	    if_getflags(ifp) & IFF_ALLMULTI) {
1741 		reg_rctl |= E1000_RCTL_MPE;
1742 		reg_rctl &= ~E1000_RCTL_UPE;
1743 	} else
1744 		reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1745 
1746 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1747 
1748 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1749 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1750 
1751 	if (adapter->hw.mac.type == e1000_82542 &&
1752 	    adapter->hw.revision_id == E1000_REVISION_2) {
1753 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1754 		reg_rctl &= ~E1000_RCTL_RST;
1755 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1756 		msec_delay(5);
1757 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1758 			e1000_pci_set_mwi(&adapter->hw);
1759 	}
1760 }
1761 
1762 /*********************************************************************
1763  *  Timer routine
1764  *
1765  *  This routine schedules em_if_update_admin_status() to check for
1766  *  link status and to gather statistics as well as to perform some
1767  *  controller-specific hardware patting.
1768  *
1769  **********************************************************************/
1770 static void
1771 em_if_timer(if_ctx_t ctx, uint16_t qid)
1772 {
1773 
1774 	if (qid != 0)
1775 		return;
1776 
1777 	iflib_admin_intr_deferred(ctx);
1778 }
1779 
1780 static void
1781 em_if_update_admin_status(if_ctx_t ctx)
1782 {
1783 	struct adapter *adapter = iflib_get_softc(ctx);
1784 	struct e1000_hw *hw = &adapter->hw;
1785 	device_t dev = iflib_get_dev(ctx);
1786 	u32 link_check, thstat, ctrl;
1787 
1788 	link_check = thstat = ctrl = 0;
1789 	/* Get the cached link value or read phy for real */
1790 	switch (hw->phy.media_type) {
1791 	case e1000_media_type_copper:
1792 		if (hw->mac.get_link_status) {
1793 			if (hw->mac.type == e1000_pch_spt)
1794 				msec_delay(50);
1795 			/* Do the work to read phy */
1796 			e1000_check_for_link(hw);
1797 			link_check = !hw->mac.get_link_status;
1798 			if (link_check) /* ESB2 fix */
1799 				e1000_cfg_on_link_up(hw);
1800 		} else {
1801 			link_check = TRUE;
1802 		}
1803 		break;
1804 	case e1000_media_type_fiber:
1805 		e1000_check_for_link(hw);
1806 		link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1807 			    E1000_STATUS_LU);
1808 		break;
1809 	case e1000_media_type_internal_serdes:
1810 		e1000_check_for_link(hw);
1811 		link_check = hw->mac.serdes_has_link;
1812 		break;
1813 	/* VF device is type_unknown */
1814 	case e1000_media_type_unknown:
1815 		e1000_check_for_link(hw);
1816 		link_check = !hw->mac.get_link_status;
1817 		/* FALLTHROUGH */
1818 	default:
1819 		break;
1820 	}
1821 
1822 	/* Check for thermal downshift or shutdown */
1823 	if (hw->mac.type == e1000_i350) {
1824 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1825 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1826 	}
1827 
1828 	/* Now check for a transition */
1829 	if (link_check && (adapter->link_active == 0)) {
1830 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
1831 		    &adapter->link_duplex);
1832 		/* Check if we must disable SPEED_MODE bit on PCI-E */
1833 		if ((adapter->link_speed != SPEED_1000) &&
1834 		    ((hw->mac.type == e1000_82571) ||
1835 		    (hw->mac.type == e1000_82572))) {
1836 			int tarc0;
1837 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1838 			tarc0 &= ~TARC_SPEED_MODE_BIT;
1839 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1840 		}
1841 		if (bootverbose)
1842 			device_printf(dev, "Link is up %d Mbps %s\n",
1843 			    adapter->link_speed,
1844 			    ((adapter->link_duplex == FULL_DUPLEX) ?
1845 			    "Full Duplex" : "Half Duplex"));
1846 		adapter->link_active = 1;
1847 		adapter->smartspeed = 0;
1848 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
1849 		    E1000_CTRL_EXT_LINK_MODE_GMII &&
1850 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1851 			device_printf(dev, "Link: thermal downshift\n");
1852 		/* Delay Link Up for Phy update */
1853 		if (((hw->mac.type == e1000_i210) ||
1854 		    (hw->mac.type == e1000_i211)) &&
1855 		    (hw->phy.id == I210_I_PHY_ID))
1856 			msec_delay(I210_LINK_DELAY);
1857 		/* Reset if the media type changed. */
1858 		if (hw->dev_spec._82575.media_changed &&
1859 		    hw->mac.type >= igb_mac_min) {
1860 			hw->dev_spec._82575.media_changed = false;
1861 			adapter->flags |= IGB_MEDIA_RESET;
1862 			em_reset(ctx);
1863 		}
1864 		iflib_link_state_change(ctx, LINK_STATE_UP,
1865 		    IF_Mbps(adapter->link_speed));
1866 	} else if (!link_check && (adapter->link_active == 1)) {
1867 		adapter->link_speed = 0;
1868 		adapter->link_duplex = 0;
1869 		adapter->link_active = 0;
1870 		iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
1871 	}
1872 	em_update_stats_counters(adapter);
1873 
1874 	/* Reset LAA into RAR[0] on 82571 */
1875 	if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
1876 		e1000_rar_set(hw, hw->mac.addr, 0);
1877 
1878 	if (hw->mac.type < em_mac_min)
1879 		lem_smartspeed(adapter);
1880 	else if (hw->mac.type >= igb_mac_min &&
1881 	    adapter->intr_type == IFLIB_INTR_MSIX) {
1882 		E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC);
1883 		E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
1884 	} else if (hw->mac.type == e1000_82574 &&
1885 	    adapter->intr_type == IFLIB_INTR_MSIX)
1886 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1887 }
1888 
1889 static void
1890 em_if_watchdog_reset(if_ctx_t ctx)
1891 {
1892 	struct adapter *adapter = iflib_get_softc(ctx);
1893 
1894 	/*
1895 	 * Just count the event; iflib(4) will already trigger a
1896 	 * sufficient reset of the controller.
1897 	 */
1898 	adapter->watchdog_events++;
1899 }
1900 
1901 /*********************************************************************
1902  *
1903  *  This routine disables all traffic on the adapter by issuing a
1904  *  global reset on the MAC.
1905  *
1906  **********************************************************************/
1907 static void
1908 em_if_stop(if_ctx_t ctx)
1909 {
1910 	struct adapter *adapter = iflib_get_softc(ctx);
1911 
1912 	INIT_DEBUGOUT("em_if_stop: begin");
1913 
1914 	e1000_reset_hw(&adapter->hw);
1915 	if (adapter->hw.mac.type >= e1000_82544)
1916 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0);
1917 
1918 	e1000_led_off(&adapter->hw);
1919 	e1000_cleanup_led(&adapter->hw);
1920 }
1921 
1922 /*********************************************************************
1923  *
1924  *  Determine hardware revision.
1925  *
1926  **********************************************************************/
1927 static void
1928 em_identify_hardware(if_ctx_t ctx)
1929 {
1930 	device_t dev = iflib_get_dev(ctx);
1931 	struct adapter *adapter = iflib_get_softc(ctx);
1932 
1933 	/* Make sure our PCI config space has the necessary stuff set */
1934 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1935 
1936 	/* Save off the information about this board */
1937 	adapter->hw.vendor_id = pci_get_vendor(dev);
1938 	adapter->hw.device_id = pci_get_device(dev);
1939 	adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1940 	adapter->hw.subsystem_vendor_id =
1941 	    pci_read_config(dev, PCIR_SUBVEND_0, 2);
1942 	adapter->hw.subsystem_device_id =
1943 	    pci_read_config(dev, PCIR_SUBDEV_0, 2);
1944 
1945 	/* Do Shared Code Init and Setup */
1946 	if (e1000_set_mac_type(&adapter->hw)) {
1947 		device_printf(dev, "Setup init failure\n");
1948 		return;
1949 	}
1950 
1951 	/* Are we a VF device? */
1952 	if ((adapter->hw.mac.type == e1000_vfadapt) ||
1953 	    (adapter->hw.mac.type == e1000_vfadapt_i350))
1954 		adapter->vf_ifp = 1;
1955 	else
1956 		adapter->vf_ifp = 0;
1957 }
1958 
1959 static int
1960 em_allocate_pci_resources(if_ctx_t ctx)
1961 {
1962 	struct adapter *adapter = iflib_get_softc(ctx);
1963 	device_t dev = iflib_get_dev(ctx);
1964 	int rid, val;
1965 
1966 	rid = PCIR_BAR(0);
1967 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1968 	    &rid, RF_ACTIVE);
1969 	if (adapter->memory == NULL) {
1970 		device_printf(dev, "Unable to allocate bus resource: memory\n");
1971 		return (ENXIO);
1972 	}
1973 	adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->memory);
1974 	adapter->osdep.mem_bus_space_handle =
1975 	    rman_get_bushandle(adapter->memory);
1976 	adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
1977 
1978 	/* Only older adapters use IO mapping */
1979 	if (adapter->hw.mac.type < em_mac_min &&
1980 	    adapter->hw.mac.type > e1000_82543) {
1981 		/* Figure our where our IO BAR is ? */
1982 		for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1983 			val = pci_read_config(dev, rid, 4);
1984 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1985 				break;
1986 			}
1987 			rid += 4;
1988 			/* check for 64bit BAR */
1989 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1990 				rid += 4;
1991 		}
1992 		if (rid >= PCIR_CIS) {
1993 			device_printf(dev, "Unable to locate IO BAR\n");
1994 			return (ENXIO);
1995 		}
1996 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
1997 		    &rid, RF_ACTIVE);
1998 		if (adapter->ioport == NULL) {
1999 			device_printf(dev, "Unable to allocate bus resource: "
2000 			    "ioport\n");
2001 			return (ENXIO);
2002 		}
2003 		adapter->hw.io_base = 0;
2004 		adapter->osdep.io_bus_space_tag =
2005 		    rman_get_bustag(adapter->ioport);
2006 		adapter->osdep.io_bus_space_handle =
2007 		    rman_get_bushandle(adapter->ioport);
2008 	}
2009 
2010 	adapter->hw.back = &adapter->osdep;
2011 
2012 	return (0);
2013 }
2014 
2015 /*********************************************************************
2016  *
2017  *  Set up the MSI-X Interrupt handlers
2018  *
2019  **********************************************************************/
2020 static int
2021 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
2022 {
2023 	struct adapter *adapter = iflib_get_softc(ctx);
2024 	struct em_rx_queue *rx_que = adapter->rx_queues;
2025 	struct em_tx_queue *tx_que = adapter->tx_queues;
2026 	int error, rid, i, vector = 0, rx_vectors;
2027 	char buf[16];
2028 
2029 	/* First set up ring resources */
2030 	for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) {
2031 		rid = vector + 1;
2032 		snprintf(buf, sizeof(buf), "rxq%d", i);
2033 		error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
2034 		if (error) {
2035 			device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
2036 			adapter->rx_num_queues = i + 1;
2037 			goto fail;
2038 		}
2039 
2040 		rx_que->msix =  vector;
2041 
2042 		/*
2043 		 * Set the bit to enable interrupt
2044 		 * in E1000_IMS -- bits 20 and 21
2045 		 * are for RX0 and RX1, note this has
2046 		 * NOTHING to do with the MSI-X vector
2047 		 */
2048 		if (adapter->hw.mac.type == e1000_82574) {
2049 			rx_que->eims = 1 << (20 + i);
2050 			adapter->ims |= rx_que->eims;
2051 			adapter->ivars |= (8 | rx_que->msix) << (i * 4);
2052 		} else if (adapter->hw.mac.type == e1000_82575)
2053 			rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2054 		else
2055 			rx_que->eims = 1 << vector;
2056 	}
2057 	rx_vectors = vector;
2058 
2059 	vector = 0;
2060 	for (i = 0; i < adapter->tx_num_queues; i++, tx_que++, vector++) {
2061 		snprintf(buf, sizeof(buf), "txq%d", i);
2062 		tx_que = &adapter->tx_queues[i];
2063 		iflib_softirq_alloc_generic(ctx,
2064 		    &adapter->rx_queues[i % adapter->rx_num_queues].que_irq,
2065 		    IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2066 
2067 		tx_que->msix = (vector % adapter->rx_num_queues);
2068 
2069 		/*
2070 		 * Set the bit to enable interrupt
2071 		 * in E1000_IMS -- bits 22 and 23
2072 		 * are for TX0 and TX1, note this has
2073 		 * NOTHING to do with the MSI-X vector
2074 		 */
2075 		if (adapter->hw.mac.type == e1000_82574) {
2076 			tx_que->eims = 1 << (22 + i);
2077 			adapter->ims |= tx_que->eims;
2078 			adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2079 		} else if (adapter->hw.mac.type == e1000_82575) {
2080 			tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2081 		} else {
2082 			tx_que->eims = 1 << i;
2083 		}
2084 	}
2085 
2086 	/* Link interrupt */
2087 	rid = rx_vectors + 1;
2088 	error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq");
2089 
2090 	if (error) {
2091 		device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
2092 		goto fail;
2093 	}
2094 	adapter->linkvec = rx_vectors;
2095 	if (adapter->hw.mac.type < igb_mac_min) {
2096 		adapter->ivars |=  (8 | rx_vectors) << 16;
2097 		adapter->ivars |= 0x80000000;
2098 		/* Enable the "Other" interrupt type for link status change */
2099 		adapter->ims |= E1000_IMS_OTHER;
2100 	}
2101 
2102 	return (0);
2103 fail:
2104 	iflib_irq_free(ctx, &adapter->irq);
2105 	rx_que = adapter->rx_queues;
2106 	for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++)
2107 		iflib_irq_free(ctx, &rx_que->que_irq);
2108 	return (error);
2109 }
2110 
2111 static void
2112 igb_configure_queues(struct adapter *adapter)
2113 {
2114 	struct e1000_hw *hw = &adapter->hw;
2115 	struct em_rx_queue *rx_que;
2116 	struct em_tx_queue *tx_que;
2117 	u32 tmp, ivar = 0, newitr = 0;
2118 
2119 	/* First turn on RSS capability */
2120 	if (hw->mac.type != e1000_82575)
2121 		E1000_WRITE_REG(hw, E1000_GPIE,
2122 		    E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2123 		    E1000_GPIE_PBA | E1000_GPIE_NSICR);
2124 
2125 	/* Turn on MSI-X */
2126 	switch (hw->mac.type) {
2127 	case e1000_82580:
2128 	case e1000_i350:
2129 	case e1000_i354:
2130 	case e1000_i210:
2131 	case e1000_i211:
2132 	case e1000_vfadapt:
2133 	case e1000_vfadapt_i350:
2134 		/* RX entries */
2135 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2136 			u32 index = i >> 1;
2137 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2138 			rx_que = &adapter->rx_queues[i];
2139 			if (i & 1) {
2140 				ivar &= 0xFF00FFFF;
2141 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2142 			} else {
2143 				ivar &= 0xFFFFFF00;
2144 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2145 			}
2146 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2147 		}
2148 		/* TX entries */
2149 		for (int i = 0; i < adapter->tx_num_queues; i++) {
2150 			u32 index = i >> 1;
2151 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2152 			tx_que = &adapter->tx_queues[i];
2153 			if (i & 1) {
2154 				ivar &= 0x00FFFFFF;
2155 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2156 			} else {
2157 				ivar &= 0xFFFF00FF;
2158 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2159 			}
2160 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2161 			adapter->que_mask |= tx_que->eims;
2162 		}
2163 
2164 		/* And for the link interrupt */
2165 		ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2166 		adapter->link_mask = 1 << adapter->linkvec;
2167 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2168 		break;
2169 	case e1000_82576:
2170 		/* RX entries */
2171 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2172 			u32 index = i & 0x7; /* Each IVAR has two entries */
2173 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2174 			rx_que = &adapter->rx_queues[i];
2175 			if (i < 8) {
2176 				ivar &= 0xFFFFFF00;
2177 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2178 			} else {
2179 				ivar &= 0xFF00FFFF;
2180 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2181 			}
2182 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2183 			adapter->que_mask |= rx_que->eims;
2184 		}
2185 		/* TX entries */
2186 		for (int i = 0; i < adapter->tx_num_queues; i++) {
2187 			u32 index = i & 0x7; /* Each IVAR has two entries */
2188 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2189 			tx_que = &adapter->tx_queues[i];
2190 			if (i < 8) {
2191 				ivar &= 0xFFFF00FF;
2192 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2193 			} else {
2194 				ivar &= 0x00FFFFFF;
2195 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2196 			}
2197 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2198 			adapter->que_mask |= tx_que->eims;
2199 		}
2200 
2201 		/* And for the link interrupt */
2202 		ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2203 		adapter->link_mask = 1 << adapter->linkvec;
2204 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2205 		break;
2206 
2207 	case e1000_82575:
2208 		/* enable MSI-X support*/
2209 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2210 		tmp |= E1000_CTRL_EXT_PBA_CLR;
2211 		/* Auto-Mask interrupts upon ICR read. */
2212 		tmp |= E1000_CTRL_EXT_EIAME;
2213 		tmp |= E1000_CTRL_EXT_IRCA;
2214 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2215 
2216 		/* Queues */
2217 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2218 			rx_que = &adapter->rx_queues[i];
2219 			tmp = E1000_EICR_RX_QUEUE0 << i;
2220 			tmp |= E1000_EICR_TX_QUEUE0 << i;
2221 			rx_que->eims = tmp;
2222 			E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2223 			    i, rx_que->eims);
2224 			adapter->que_mask |= rx_que->eims;
2225 		}
2226 
2227 		/* Link */
2228 		E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
2229 		    E1000_EIMS_OTHER);
2230 		adapter->link_mask |= E1000_EIMS_OTHER;
2231 	default:
2232 		break;
2233 	}
2234 
2235 	/* Set the starting interrupt rate */
2236 	if (em_max_interrupt_rate > 0)
2237 		newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2238 
2239 	if (hw->mac.type == e1000_82575)
2240 		newitr |= newitr << 16;
2241 	else
2242 		newitr |= E1000_EITR_CNT_IGNR;
2243 
2244 	for (int i = 0; i < adapter->rx_num_queues; i++) {
2245 		rx_que = &adapter->rx_queues[i];
2246 		E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2247 	}
2248 
2249 	return;
2250 }
2251 
2252 static void
2253 em_free_pci_resources(if_ctx_t ctx)
2254 {
2255 	struct adapter *adapter = iflib_get_softc(ctx);
2256 	struct em_rx_queue *que = adapter->rx_queues;
2257 	device_t dev = iflib_get_dev(ctx);
2258 
2259 	/* Release all MSI-X queue resources */
2260 	if (adapter->intr_type == IFLIB_INTR_MSIX)
2261 		iflib_irq_free(ctx, &adapter->irq);
2262 
2263 	if (que != NULL) {
2264 		for (int i = 0; i < adapter->rx_num_queues; i++, que++) {
2265 			iflib_irq_free(ctx, &que->que_irq);
2266 		}
2267 	}
2268 
2269 	if (adapter->memory != NULL) {
2270 		bus_release_resource(dev, SYS_RES_MEMORY,
2271 		    rman_get_rid(adapter->memory), adapter->memory);
2272 		adapter->memory = NULL;
2273 	}
2274 
2275 	if (adapter->flash != NULL) {
2276 		bus_release_resource(dev, SYS_RES_MEMORY,
2277 		    rman_get_rid(adapter->flash), adapter->flash);
2278 		adapter->flash = NULL;
2279 	}
2280 
2281 	if (adapter->ioport != NULL) {
2282 		bus_release_resource(dev, SYS_RES_IOPORT,
2283 		    rman_get_rid(adapter->ioport), adapter->ioport);
2284 		adapter->ioport = NULL;
2285 	}
2286 }
2287 
2288 /* Set up MSI or MSI-X */
2289 static int
2290 em_setup_msix(if_ctx_t ctx)
2291 {
2292 	struct adapter *adapter = iflib_get_softc(ctx);
2293 
2294 	if (adapter->hw.mac.type == e1000_82574) {
2295 		em_enable_vectors_82574(ctx);
2296 	}
2297 	return (0);
2298 }
2299 
2300 /*********************************************************************
2301  *
2302  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2303  *
2304  **********************************************************************/
2305 static void
2306 lem_smartspeed(struct adapter *adapter)
2307 {
2308 	u16 phy_tmp;
2309 
2310 	if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
2311 	    adapter->hw.mac.autoneg == 0 ||
2312 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2313 		return;
2314 
2315 	if (adapter->smartspeed == 0) {
2316 		/* If Master/Slave config fault is asserted twice,
2317 		 * we assume back-to-back */
2318 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2319 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2320 			return;
2321 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2322 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2323 			e1000_read_phy_reg(&adapter->hw,
2324 			    PHY_1000T_CTRL, &phy_tmp);
2325 			if(phy_tmp & CR_1000T_MS_ENABLE) {
2326 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2327 				e1000_write_phy_reg(&adapter->hw,
2328 				    PHY_1000T_CTRL, phy_tmp);
2329 				adapter->smartspeed++;
2330 				if(adapter->hw.mac.autoneg &&
2331 				   !e1000_copper_link_autoneg(&adapter->hw) &&
2332 				   !e1000_read_phy_reg(&adapter->hw,
2333 				    PHY_CONTROL, &phy_tmp)) {
2334 					phy_tmp |= (MII_CR_AUTO_NEG_EN |
2335 						    MII_CR_RESTART_AUTO_NEG);
2336 					e1000_write_phy_reg(&adapter->hw,
2337 					    PHY_CONTROL, phy_tmp);
2338 				}
2339 			}
2340 		}
2341 		return;
2342 	} else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2343 		/* If still no link, perhaps using 2/3 pair cable */
2344 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2345 		phy_tmp |= CR_1000T_MS_ENABLE;
2346 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2347 		if(adapter->hw.mac.autoneg &&
2348 		   !e1000_copper_link_autoneg(&adapter->hw) &&
2349 		   !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2350 			phy_tmp |= (MII_CR_AUTO_NEG_EN |
2351 				    MII_CR_RESTART_AUTO_NEG);
2352 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2353 		}
2354 	}
2355 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2356 	if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2357 		adapter->smartspeed = 0;
2358 }
2359 
2360 /*********************************************************************
2361  *
2362  *  Initialize the DMA Coalescing feature
2363  *
2364  **********************************************************************/
2365 static void
2366 igb_init_dmac(struct adapter *adapter, u32 pba)
2367 {
2368 	device_t	dev = adapter->dev;
2369 	struct e1000_hw *hw = &adapter->hw;
2370 	u32 		dmac, reg = ~E1000_DMACR_DMAC_EN;
2371 	u16		hwm;
2372 	u16		max_frame_size;
2373 
2374 	if (hw->mac.type == e1000_i211)
2375 		return;
2376 
2377 	max_frame_size = adapter->shared->isc_max_frame_size;
2378 	if (hw->mac.type > e1000_82580) {
2379 
2380 		if (adapter->dmac == 0) { /* Disabling it */
2381 			E1000_WRITE_REG(hw, E1000_DMACR, reg);
2382 			return;
2383 		} else
2384 			device_printf(dev, "DMA Coalescing enabled\n");
2385 
2386 		/* Set starting threshold */
2387 		E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2388 
2389 		hwm = 64 * pba - max_frame_size / 16;
2390 		if (hwm < 64 * (pba - 6))
2391 			hwm = 64 * (pba - 6);
2392 		reg = E1000_READ_REG(hw, E1000_FCRTC);
2393 		reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2394 		reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2395 		    & E1000_FCRTC_RTH_COAL_MASK);
2396 		E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2397 
2398 
2399 		dmac = pba - max_frame_size / 512;
2400 		if (dmac < pba - 10)
2401 			dmac = pba - 10;
2402 		reg = E1000_READ_REG(hw, E1000_DMACR);
2403 		reg &= ~E1000_DMACR_DMACTHR_MASK;
2404 		reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2405 		    & E1000_DMACR_DMACTHR_MASK);
2406 
2407 		/* transition to L0x or L1 if available..*/
2408 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2409 
2410 		/* Check if status is 2.5Gb backplane connection
2411 		* before configuration of watchdog timer, which is
2412 		* in msec values in 12.8usec intervals
2413 		* watchdog timer= msec values in 32usec intervals
2414 		* for non 2.5Gb connection
2415 		*/
2416 		if (hw->mac.type == e1000_i354) {
2417 			int status = E1000_READ_REG(hw, E1000_STATUS);
2418 			if ((status & E1000_STATUS_2P5_SKU) &&
2419 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2420 				reg |= ((adapter->dmac * 5) >> 6);
2421 			else
2422 				reg |= (adapter->dmac >> 5);
2423 		} else {
2424 			reg |= (adapter->dmac >> 5);
2425 		}
2426 
2427 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
2428 
2429 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2430 
2431 		/* Set the interval before transition */
2432 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
2433 		if (hw->mac.type == e1000_i350)
2434 			reg |= IGB_DMCTLX_DCFLUSH_DIS;
2435 		/*
2436 		** in 2.5Gb connection, TTLX unit is 0.4 usec
2437 		** which is 0x4*2 = 0xA. But delay is still 4 usec
2438 		*/
2439 		if (hw->mac.type == e1000_i354) {
2440 			int status = E1000_READ_REG(hw, E1000_STATUS);
2441 			if ((status & E1000_STATUS_2P5_SKU) &&
2442 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2443 				reg |= 0xA;
2444 			else
2445 				reg |= 0x4;
2446 		} else {
2447 			reg |= 0x4;
2448 		}
2449 
2450 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2451 
2452 		/* free space in tx packet buffer to wake from DMA coal */
2453 		E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2454 		    (2 * max_frame_size)) >> 6);
2455 
2456 		/* make low power state decision controlled by DMA coal */
2457 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2458 		reg &= ~E1000_PCIEMISC_LX_DECISION;
2459 		E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2460 
2461 	} else if (hw->mac.type == e1000_82580) {
2462 		u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2463 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
2464 		    reg & ~E1000_PCIEMISC_LX_DECISION);
2465 		E1000_WRITE_REG(hw, E1000_DMACR, 0);
2466 	}
2467 }
2468 
2469 /*********************************************************************
2470  *
2471  *  Initialize the hardware to a configuration as specified by the
2472  *  adapter structure.
2473  *
2474  **********************************************************************/
2475 static void
2476 em_reset(if_ctx_t ctx)
2477 {
2478 	device_t dev = iflib_get_dev(ctx);
2479 	struct adapter *adapter = iflib_get_softc(ctx);
2480 	struct ifnet *ifp = iflib_get_ifp(ctx);
2481 	struct e1000_hw *hw = &adapter->hw;
2482 	u16 rx_buffer_size;
2483 	u32 pba;
2484 
2485 	INIT_DEBUGOUT("em_reset: begin");
2486 	/* Let the firmware know the OS is in control */
2487 	em_get_hw_control(adapter);
2488 
2489 	/* Set up smart power down as default off on newer adapters. */
2490 	if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2491 	    hw->mac.type == e1000_82572)) {
2492 		u16 phy_tmp = 0;
2493 
2494 		/* Speed up time to link by disabling smart power down. */
2495 		e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2496 		phy_tmp &= ~IGP02E1000_PM_SPD;
2497 		e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2498 	}
2499 
2500 	/*
2501 	 * Packet Buffer Allocation (PBA)
2502 	 * Writing PBA sets the receive portion of the buffer
2503 	 * the remainder is used for the transmit buffer.
2504 	 */
2505 	switch (hw->mac.type) {
2506 	/* 82547: Total Packet Buffer is 40K */
2507 	case e1000_82547:
2508 	case e1000_82547_rev_2:
2509 		if (hw->mac.max_frame_size > 8192)
2510 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2511 		else
2512 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2513 		break;
2514 	/* 82571/82572/80003es2lan: Total Packet Buffer is 48K */
2515 	case e1000_82571:
2516 	case e1000_82572:
2517 	case e1000_80003es2lan:
2518 			pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2519 		break;
2520 	/* 82573: Total Packet Buffer is 32K */
2521 	case e1000_82573:
2522 			pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2523 		break;
2524 	case e1000_82574:
2525 	case e1000_82583:
2526 			pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2527 		break;
2528 	case e1000_ich8lan:
2529 		pba = E1000_PBA_8K;
2530 		break;
2531 	case e1000_ich9lan:
2532 	case e1000_ich10lan:
2533 		/* Boost Receive side for jumbo frames */
2534 		if (hw->mac.max_frame_size > 4096)
2535 			pba = E1000_PBA_14K;
2536 		else
2537 			pba = E1000_PBA_10K;
2538 		break;
2539 	case e1000_pchlan:
2540 	case e1000_pch2lan:
2541 	case e1000_pch_lpt:
2542 	case e1000_pch_spt:
2543 	case e1000_pch_cnp:
2544 	case e1000_pch_tgp:
2545 	case e1000_pch_adp:
2546 	case e1000_pch_mtp:
2547 		pba = E1000_PBA_26K;
2548 		break;
2549 	case e1000_82575:
2550 		pba = E1000_PBA_32K;
2551 		break;
2552 	case e1000_82576:
2553 	case e1000_vfadapt:
2554 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2555 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2556 		break;
2557 	case e1000_82580:
2558 	case e1000_i350:
2559 	case e1000_i354:
2560 	case e1000_vfadapt_i350:
2561 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2562 		pba = e1000_rxpbs_adjust_82580(pba);
2563 		break;
2564 	case e1000_i210:
2565 	case e1000_i211:
2566 		pba = E1000_PBA_34K;
2567 		break;
2568 	default:
2569 		/* Remaining devices assumed to have a Packet Buffer of 64K. */
2570 		if (hw->mac.max_frame_size > 8192)
2571 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2572 		else
2573 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2574 	}
2575 
2576 	/* Special needs in case of Jumbo frames */
2577 	if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
2578 		u32 tx_space, min_tx, min_rx;
2579 		pba = E1000_READ_REG(hw, E1000_PBA);
2580 		tx_space = pba >> 16;
2581 		pba &= 0xffff;
2582 		min_tx = (hw->mac.max_frame_size +
2583 		    sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
2584 		min_tx = roundup2(min_tx, 1024);
2585 		min_tx >>= 10;
2586 		min_rx = hw->mac.max_frame_size;
2587 		min_rx = roundup2(min_rx, 1024);
2588 		min_rx >>= 10;
2589 		if (tx_space < min_tx &&
2590 		    ((min_tx - tx_space) < pba)) {
2591 			pba = pba - (min_tx - tx_space);
2592 			/*
2593 			 * if short on rx space, rx wins
2594 			 * and must trump tx adjustment
2595 			 */
2596 			if (pba < min_rx)
2597 				pba = min_rx;
2598 		}
2599 		E1000_WRITE_REG(hw, E1000_PBA, pba);
2600 	}
2601 
2602 	if (hw->mac.type < igb_mac_min)
2603 		E1000_WRITE_REG(hw, E1000_PBA, pba);
2604 
2605 	INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
2606 
2607 	/*
2608 	 * These parameters control the automatic generation (Tx) and
2609 	 * response (Rx) to Ethernet PAUSE frames.
2610 	 * - High water mark should allow for at least two frames to be
2611 	 *   received after sending an XOFF.
2612 	 * - Low water mark works best when it is very near the high water mark.
2613 	 *   This allows the receiver to restart by sending XON when it has
2614 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
2615 	 *   restart after one full frame is pulled from the buffer. There
2616 	 *   could be several smaller frames in the buffer and if so they will
2617 	 *   not trigger the XON until their total number reduces the buffer
2618 	 *   by 1500.
2619 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2620 	 */
2621 	rx_buffer_size = (pba & 0xffff) << 10;
2622 	hw->fc.high_water = rx_buffer_size -
2623 	    roundup2(hw->mac.max_frame_size, 1024);
2624 	hw->fc.low_water = hw->fc.high_water - 1500;
2625 
2626 	if (adapter->fc) /* locally set flow control value? */
2627 		hw->fc.requested_mode = adapter->fc;
2628 	else
2629 		hw->fc.requested_mode = e1000_fc_full;
2630 
2631 	if (hw->mac.type == e1000_80003es2lan)
2632 		hw->fc.pause_time = 0xFFFF;
2633 	else
2634 		hw->fc.pause_time = EM_FC_PAUSE_TIME;
2635 
2636 	hw->fc.send_xon = TRUE;
2637 
2638 	/* Device specific overrides/settings */
2639 	switch (hw->mac.type) {
2640 	case e1000_pchlan:
2641 		/* Workaround: no TX flow ctrl for PCH */
2642 		hw->fc.requested_mode = e1000_fc_rx_pause;
2643 		hw->fc.pause_time = 0xFFFF; /* override */
2644 		if (if_getmtu(ifp) > ETHERMTU) {
2645 			hw->fc.high_water = 0x3500;
2646 			hw->fc.low_water = 0x1500;
2647 		} else {
2648 			hw->fc.high_water = 0x5000;
2649 			hw->fc.low_water = 0x3000;
2650 		}
2651 		hw->fc.refresh_time = 0x1000;
2652 		break;
2653 	case e1000_pch2lan:
2654 	case e1000_pch_lpt:
2655 	case e1000_pch_spt:
2656 	case e1000_pch_cnp:
2657 	case e1000_pch_tgp:
2658 	case e1000_pch_adp:
2659 	case e1000_pch_mtp:
2660 		hw->fc.high_water = 0x5C20;
2661 		hw->fc.low_water = 0x5048;
2662 		hw->fc.pause_time = 0x0650;
2663 		hw->fc.refresh_time = 0x0400;
2664 		/* Jumbos need adjusted PBA */
2665 		if (if_getmtu(ifp) > ETHERMTU)
2666 			E1000_WRITE_REG(hw, E1000_PBA, 12);
2667 		else
2668 			E1000_WRITE_REG(hw, E1000_PBA, 26);
2669 		break;
2670 	case e1000_82575:
2671 	case e1000_82576:
2672 		/* 8-byte granularity */
2673 		hw->fc.low_water = hw->fc.high_water - 8;
2674 		break;
2675 	case e1000_82580:
2676 	case e1000_i350:
2677 	case e1000_i354:
2678 	case e1000_i210:
2679 	case e1000_i211:
2680 	case e1000_vfadapt:
2681 	case e1000_vfadapt_i350:
2682 		/* 16-byte granularity */
2683 		hw->fc.low_water = hw->fc.high_water - 16;
2684 		break;
2685 	case e1000_ich9lan:
2686 	case e1000_ich10lan:
2687 		if (if_getmtu(ifp) > ETHERMTU) {
2688 			hw->fc.high_water = 0x2800;
2689 			hw->fc.low_water = hw->fc.high_water - 8;
2690 			break;
2691 		}
2692 		/* FALLTHROUGH */
2693 	default:
2694 		if (hw->mac.type == e1000_80003es2lan)
2695 			hw->fc.pause_time = 0xFFFF;
2696 		break;
2697 	}
2698 
2699 	/* Issue a global reset */
2700 	e1000_reset_hw(hw);
2701 	if (hw->mac.type >= igb_mac_min) {
2702 		E1000_WRITE_REG(hw, E1000_WUC, 0);
2703 	} else {
2704 		E1000_WRITE_REG(hw, E1000_WUFC, 0);
2705 		em_disable_aspm(adapter);
2706 	}
2707 	if (adapter->flags & IGB_MEDIA_RESET) {
2708 		e1000_setup_init_funcs(hw, TRUE);
2709 		e1000_get_bus_info(hw);
2710 		adapter->flags &= ~IGB_MEDIA_RESET;
2711 	}
2712 	/* and a re-init */
2713 	if (e1000_init_hw(hw) < 0) {
2714 		device_printf(dev, "Hardware Initialization Failed\n");
2715 		return;
2716 	}
2717 	if (hw->mac.type >= igb_mac_min)
2718 		igb_init_dmac(adapter, pba);
2719 
2720 	E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2721 	e1000_get_phy_info(hw);
2722 	e1000_check_for_link(hw);
2723 }
2724 
2725 /*
2726  * Initialise the RSS mapping for NICs that support multiple transmit/
2727  * receive rings.
2728  */
2729 
2730 #define RSSKEYLEN 10
2731 static void
2732 em_initialize_rss_mapping(struct adapter *adapter)
2733 {
2734 	uint8_t  rss_key[4 * RSSKEYLEN];
2735 	uint32_t reta = 0;
2736 	struct e1000_hw	*hw = &adapter->hw;
2737 	int i;
2738 
2739 	/*
2740 	 * Configure RSS key
2741 	 */
2742 	arc4rand(rss_key, sizeof(rss_key), 0);
2743 	for (i = 0; i < RSSKEYLEN; ++i) {
2744 		uint32_t rssrk = 0;
2745 
2746 		rssrk = EM_RSSRK_VAL(rss_key, i);
2747 		E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2748 	}
2749 
2750 	/*
2751 	 * Configure RSS redirect table in following fashion:
2752 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2753 	 */
2754 	for (i = 0; i < sizeof(reta); ++i) {
2755 		uint32_t q;
2756 
2757 		q = (i % adapter->rx_num_queues) << 7;
2758 		reta |= q << (8 * i);
2759 	}
2760 
2761 	for (i = 0; i < 32; ++i)
2762 		E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2763 
2764 	E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
2765 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2766 			E1000_MRQC_RSS_FIELD_IPV4 |
2767 			E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2768 			E1000_MRQC_RSS_FIELD_IPV6_EX |
2769 			E1000_MRQC_RSS_FIELD_IPV6);
2770 }
2771 
2772 static void
2773 igb_initialize_rss_mapping(struct adapter *adapter)
2774 {
2775 	struct e1000_hw *hw = &adapter->hw;
2776 	int i;
2777 	int queue_id;
2778 	u32 reta;
2779 	u32 rss_key[10], mrqc, shift = 0;
2780 
2781 	/* XXX? */
2782 	if (hw->mac.type == e1000_82575)
2783 		shift = 6;
2784 
2785 	/*
2786 	 * The redirection table controls which destination
2787 	 * queue each bucket redirects traffic to.
2788 	 * Each DWORD represents four queues, with the LSB
2789 	 * being the first queue in the DWORD.
2790 	 *
2791 	 * This just allocates buckets to queues using round-robin
2792 	 * allocation.
2793 	 *
2794 	 * NOTE: It Just Happens to line up with the default
2795 	 * RSS allocation method.
2796 	 */
2797 
2798 	/* Warning FM follows */
2799 	reta = 0;
2800 	for (i = 0; i < 128; i++) {
2801 #ifdef RSS
2802 		queue_id = rss_get_indirection_to_bucket(i);
2803 		/*
2804 		 * If we have more queues than buckets, we'll
2805 		 * end up mapping buckets to a subset of the
2806 		 * queues.
2807 		 *
2808 		 * If we have more buckets than queues, we'll
2809 		 * end up instead assigning multiple buckets
2810 		 * to queues.
2811 		 *
2812 		 * Both are suboptimal, but we need to handle
2813 		 * the case so we don't go out of bounds
2814 		 * indexing arrays and such.
2815 		 */
2816 		queue_id = queue_id % adapter->rx_num_queues;
2817 #else
2818 		queue_id = (i % adapter->rx_num_queues);
2819 #endif
2820 		/* Adjust if required */
2821 		queue_id = queue_id << shift;
2822 
2823 		/*
2824 		 * The low 8 bits are for hash value (n+0);
2825 		 * The next 8 bits are for hash value (n+1), etc.
2826 		 */
2827 		reta = reta >> 8;
2828 		reta = reta | ( ((uint32_t) queue_id) << 24);
2829 		if ((i & 3) == 3) {
2830 			E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2831 			reta = 0;
2832 		}
2833 	}
2834 
2835 	/* Now fill in hash table */
2836 
2837 	/*
2838 	 * MRQC: Multiple Receive Queues Command
2839 	 * Set queuing to RSS control, number depends on the device.
2840 	 */
2841 	mrqc = E1000_MRQC_ENABLE_RSS_8Q;
2842 
2843 #ifdef RSS
2844 	/* XXX ew typecasting */
2845 	rss_getkey((uint8_t *) &rss_key);
2846 #else
2847 	arc4rand(&rss_key, sizeof(rss_key), 0);
2848 #endif
2849 	for (i = 0; i < 10; i++)
2850 		E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
2851 
2852 	/*
2853 	 * Configure the RSS fields to hash upon.
2854 	 */
2855 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2856 	    E1000_MRQC_RSS_FIELD_IPV4_TCP);
2857 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2858 	    E1000_MRQC_RSS_FIELD_IPV6_TCP);
2859 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2860 	    E1000_MRQC_RSS_FIELD_IPV6_UDP);
2861 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2862 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2863 
2864 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2865 }
2866 
2867 /*********************************************************************
2868  *
2869  *  Setup networking device structure and register interface media.
2870  *
2871  **********************************************************************/
2872 static int
2873 em_setup_interface(if_ctx_t ctx)
2874 {
2875 	struct ifnet *ifp = iflib_get_ifp(ctx);
2876 	struct adapter *adapter = iflib_get_softc(ctx);
2877 	if_softc_ctx_t scctx = adapter->shared;
2878 
2879 	INIT_DEBUGOUT("em_setup_interface: begin");
2880 
2881 	/* Single Queue */
2882 	if (adapter->tx_num_queues == 1) {
2883 		if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
2884 		if_setsendqready(ifp);
2885 	}
2886 
2887 	/*
2888 	 * Specify the media types supported by this adapter and register
2889 	 * callbacks to update media and link information
2890 	 */
2891 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2892 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2893 		u_char fiber_type = IFM_1000_SX;	/* default type */
2894 
2895 		if (adapter->hw.mac.type == e1000_82545)
2896 			fiber_type = IFM_1000_LX;
2897 		ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
2898 		ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2899 	} else {
2900 		ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2901 		ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
2902 		ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2903 		ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
2904 		if (adapter->hw.phy.type != e1000_phy_ife) {
2905 			ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2906 			ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2907 		}
2908 	}
2909 	ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2910 	ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO);
2911 	return (0);
2912 }
2913 
2914 static int
2915 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
2916 {
2917 	struct adapter *adapter = iflib_get_softc(ctx);
2918 	if_softc_ctx_t scctx = adapter->shared;
2919 	int error = E1000_SUCCESS;
2920 	struct em_tx_queue *que;
2921 	int i, j;
2922 
2923 	MPASS(adapter->tx_num_queues > 0);
2924 	MPASS(adapter->tx_num_queues == ntxqsets);
2925 
2926 	/* First allocate the top level queue structs */
2927 	if (!(adapter->tx_queues =
2928 	    (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
2929 	    adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2930 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2931 		return(ENOMEM);
2932 	}
2933 
2934 	for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) {
2935 		/* Set up some basics */
2936 
2937 		struct tx_ring *txr = &que->txr;
2938 		txr->adapter = que->adapter = adapter;
2939 		que->me = txr->me =  i;
2940 
2941 		/* Allocate report status array */
2942 		if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2943 			device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
2944 			error = ENOMEM;
2945 			goto fail;
2946 		}
2947 		for (j = 0; j < scctx->isc_ntxd[0]; j++)
2948 			txr->tx_rsq[j] = QIDX_INVALID;
2949 		/* get the virtual and physical address of the hardware queues */
2950 		txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
2951 		txr->tx_paddr = paddrs[i*ntxqs];
2952 	}
2953 
2954 	if (bootverbose)
2955 		device_printf(iflib_get_dev(ctx),
2956 		    "allocated for %d tx_queues\n", adapter->tx_num_queues);
2957 	return (0);
2958 fail:
2959 	em_if_queues_free(ctx);
2960 	return (error);
2961 }
2962 
2963 static int
2964 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
2965 {
2966 	struct adapter *adapter = iflib_get_softc(ctx);
2967 	int error = E1000_SUCCESS;
2968 	struct em_rx_queue *que;
2969 	int i;
2970 
2971 	MPASS(adapter->rx_num_queues > 0);
2972 	MPASS(adapter->rx_num_queues == nrxqsets);
2973 
2974 	/* First allocate the top level queue structs */
2975 	if (!(adapter->rx_queues =
2976 	    (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
2977 	    adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2978 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2979 		error = ENOMEM;
2980 		goto fail;
2981 	}
2982 
2983 	for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) {
2984 		/* Set up some basics */
2985 		struct rx_ring *rxr = &que->rxr;
2986 		rxr->adapter = que->adapter = adapter;
2987 		rxr->que = que;
2988 		que->me = rxr->me =  i;
2989 
2990 		/* get the virtual and physical address of the hardware queues */
2991 		rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
2992 		rxr->rx_paddr = paddrs[i*nrxqs];
2993 	}
2994 
2995 	if (bootverbose)
2996 		device_printf(iflib_get_dev(ctx),
2997 		    "allocated for %d rx_queues\n", adapter->rx_num_queues);
2998 
2999 	return (0);
3000 fail:
3001 	em_if_queues_free(ctx);
3002 	return (error);
3003 }
3004 
3005 static void
3006 em_if_queues_free(if_ctx_t ctx)
3007 {
3008 	struct adapter *adapter = iflib_get_softc(ctx);
3009 	struct em_tx_queue *tx_que = adapter->tx_queues;
3010 	struct em_rx_queue *rx_que = adapter->rx_queues;
3011 
3012 	if (tx_que != NULL) {
3013 		for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
3014 			struct tx_ring *txr = &tx_que->txr;
3015 			if (txr->tx_rsq == NULL)
3016 				break;
3017 
3018 			free(txr->tx_rsq, M_DEVBUF);
3019 			txr->tx_rsq = NULL;
3020 		}
3021 		free(adapter->tx_queues, M_DEVBUF);
3022 		adapter->tx_queues = NULL;
3023 	}
3024 
3025 	if (rx_que != NULL) {
3026 		free(adapter->rx_queues, M_DEVBUF);
3027 		adapter->rx_queues = NULL;
3028 	}
3029 }
3030 
3031 /*********************************************************************
3032  *
3033  *  Enable transmit unit.
3034  *
3035  **********************************************************************/
3036 static void
3037 em_initialize_transmit_unit(if_ctx_t ctx)
3038 {
3039 	struct adapter *adapter = iflib_get_softc(ctx);
3040 	if_softc_ctx_t scctx = adapter->shared;
3041 	struct em_tx_queue *que;
3042 	struct tx_ring	*txr;
3043 	struct e1000_hw	*hw = &adapter->hw;
3044 	u32 tctl, txdctl = 0, tarc, tipg = 0;
3045 
3046 	INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
3047 
3048 	for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
3049 		u64 bus_addr;
3050 		caddr_t offp, endp;
3051 
3052 		que = &adapter->tx_queues[i];
3053 		txr = &que->txr;
3054 		bus_addr = txr->tx_paddr;
3055 
3056 		/* Clear checksum offload context. */
3057 		offp = (caddr_t)&txr->csum_flags;
3058 		endp = (caddr_t)(txr + 1);
3059 		bzero(offp, endp - offp);
3060 
3061 		/* Base and Len of TX Ring */
3062 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
3063 		    scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
3064 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
3065 		    (u32)(bus_addr >> 32));
3066 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
3067 		    (u32)bus_addr);
3068 		/* Init the HEAD/TAIL indices */
3069 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3070 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3071 
3072 		HW_DEBUGOUT2("Base = %x, Length = %x\n",
3073 		    E1000_READ_REG(hw, E1000_TDBAL(i)),
3074 		    E1000_READ_REG(hw, E1000_TDLEN(i)));
3075 
3076 		txdctl = 0; /* clear txdctl */
3077 		txdctl |= 0x1f; /* PTHRESH */
3078 		txdctl |= 1 << 8; /* HTHRESH */
3079 		txdctl |= 1 << 16;/* WTHRESH */
3080 		txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3081 		txdctl |= E1000_TXDCTL_GRAN;
3082 		txdctl |= 1 << 25; /* LWTHRESH */
3083 
3084 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3085 	}
3086 
3087 	/* Set the default values for the Tx Inter Packet Gap timer */
3088 	switch (hw->mac.type) {
3089 	case e1000_80003es2lan:
3090 		tipg = DEFAULT_82543_TIPG_IPGR1;
3091 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3092 		    E1000_TIPG_IPGR2_SHIFT;
3093 		break;
3094 	case e1000_82542:
3095 		tipg = DEFAULT_82542_TIPG_IPGT;
3096 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3097 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3098 		break;
3099 	default:
3100 		if (hw->phy.media_type == e1000_media_type_fiber ||
3101 		    hw->phy.media_type == e1000_media_type_internal_serdes)
3102 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3103 		else
3104 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3105 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3106 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3107 	}
3108 
3109 	E1000_WRITE_REG(hw, E1000_TIPG, tipg);
3110 	E1000_WRITE_REG(hw, E1000_TIDV, adapter->tx_int_delay.value);
3111 
3112 	if(hw->mac.type >= e1000_82540)
3113 		E1000_WRITE_REG(hw, E1000_TADV,
3114 		    adapter->tx_abs_int_delay.value);
3115 
3116 	if (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572) {
3117 		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3118 		tarc |= TARC_SPEED_MODE_BIT;
3119 		E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3120 	} else if (hw->mac.type == e1000_80003es2lan) {
3121 		/* errata: program both queues to unweighted RR */
3122 		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3123 		tarc |= 1;
3124 		E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3125 		tarc = E1000_READ_REG(hw, E1000_TARC(1));
3126 		tarc |= 1;
3127 		E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3128 	} else if (hw->mac.type == e1000_82574) {
3129 		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3130 		tarc |= TARC_ERRATA_BIT;
3131 		if ( adapter->tx_num_queues > 1) {
3132 			tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3133 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3134 			E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3135 		} else
3136 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3137 	}
3138 
3139 	if (adapter->tx_int_delay.value > 0)
3140 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3141 
3142 	/* Program the Transmit Control Register */
3143 	tctl = E1000_READ_REG(hw, E1000_TCTL);
3144 	tctl &= ~E1000_TCTL_CT;
3145 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3146 		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3147 
3148 	if (hw->mac.type >= e1000_82571)
3149 		tctl |= E1000_TCTL_MULR;
3150 
3151 	/* This write will effectively turn on the transmit unit. */
3152 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
3153 
3154 	/* SPT and KBL errata workarounds */
3155 	if (hw->mac.type == e1000_pch_spt) {
3156 		u32 reg;
3157 		reg = E1000_READ_REG(hw, E1000_IOSFPC);
3158 		reg |= E1000_RCTL_RDMTS_HEX;
3159 		E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3160 		/* i218-i219 Specification Update 1.5.4.5 */
3161 		reg = E1000_READ_REG(hw, E1000_TARC(0));
3162 		reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3163 		reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3164 		E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3165 	}
3166 }
3167 
3168 /*********************************************************************
3169  *
3170  *  Enable receive unit.
3171  *
3172  **********************************************************************/
3173 #define BSIZEPKT_ROUNDUP ((1<<E1000_SRRCTL_BSIZEPKT_SHIFT)-1)
3174 
3175 static void
3176 em_initialize_receive_unit(if_ctx_t ctx)
3177 {
3178 	struct adapter *adapter = iflib_get_softc(ctx);
3179 	if_softc_ctx_t scctx = adapter->shared;
3180 	struct ifnet *ifp = iflib_get_ifp(ctx);
3181 	struct e1000_hw	*hw = &adapter->hw;
3182 	struct em_rx_queue *que;
3183 	int i;
3184 	uint32_t rctl, rxcsum;
3185 
3186 	INIT_DEBUGOUT("em_initialize_receive_units: begin");
3187 
3188 	/*
3189 	 * Make sure receives are disabled while setting
3190 	 * up the descriptor ring
3191 	 */
3192 	rctl = E1000_READ_REG(hw, E1000_RCTL);
3193 	/* Do not disable if ever enabled on this hardware */
3194 	if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3195 		E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3196 
3197 	/* Setup the Receive Control Register */
3198 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3199 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3200 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3201 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3202 
3203 	/* Do not store bad packets */
3204 	rctl &= ~E1000_RCTL_SBP;
3205 
3206 	/* Enable Long Packet receive */
3207 	if (if_getmtu(ifp) > ETHERMTU)
3208 		rctl |= E1000_RCTL_LPE;
3209 	else
3210 		rctl &= ~E1000_RCTL_LPE;
3211 
3212 	/* Strip the CRC */
3213 	if (!em_disable_crc_stripping)
3214 		rctl |= E1000_RCTL_SECRC;
3215 
3216 	if (hw->mac.type >= e1000_82540) {
3217 		E1000_WRITE_REG(hw, E1000_RADV,
3218 		    adapter->rx_abs_int_delay.value);
3219 
3220 		/*
3221 		 * Set the interrupt throttling rate. Value is calculated
3222 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3223 		 */
3224 		E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
3225 	}
3226 	E1000_WRITE_REG(hw, E1000_RDTR, adapter->rx_int_delay.value);
3227 
3228 	if (hw->mac.type >= em_mac_min) {
3229 		uint32_t rfctl;
3230 		/* Use extended rx descriptor formats */
3231 		rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3232 		rfctl |= E1000_RFCTL_EXTEN;
3233 
3234 		/*
3235 		 * When using MSI-X interrupts we need to throttle
3236 		 * using the EITR register (82574 only)
3237 		 */
3238 		if (hw->mac.type == e1000_82574) {
3239 			for (int i = 0; i < 4; i++)
3240 				E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3241 				    DEFAULT_ITR);
3242 			/* Disable accelerated acknowledge */
3243 			rfctl |= E1000_RFCTL_ACK_DIS;
3244 		}
3245 		E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3246 	}
3247 
3248 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3249 	if (if_getcapenable(ifp) & IFCAP_RXCSUM &&
3250 	    hw->mac.type >= e1000_82543) {
3251 		if (adapter->tx_num_queues > 1) {
3252 			if (hw->mac.type >= igb_mac_min) {
3253 				rxcsum |= E1000_RXCSUM_PCSD;
3254 				if (hw->mac.type != e1000_82575)
3255 					rxcsum |= E1000_RXCSUM_CRCOFL;
3256 			} else
3257 				rxcsum |= E1000_RXCSUM_TUOFL |
3258 					E1000_RXCSUM_IPOFL |
3259 					E1000_RXCSUM_PCSD;
3260 		} else {
3261 			if (hw->mac.type >= igb_mac_min)
3262 				rxcsum |= E1000_RXCSUM_IPPCSE;
3263 			else
3264 				rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3265 			if (hw->mac.type > e1000_82575)
3266 				rxcsum |= E1000_RXCSUM_CRCOFL;
3267 		}
3268 	} else
3269 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3270 
3271 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3272 
3273 	if (adapter->rx_num_queues > 1) {
3274 		if (hw->mac.type >= igb_mac_min)
3275 			igb_initialize_rss_mapping(adapter);
3276 		else
3277 			em_initialize_rss_mapping(adapter);
3278 	}
3279 
3280 	/*
3281 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3282 	 * long latencies are observed, like Lenovo X60. This
3283 	 * change eliminates the problem, but since having positive
3284 	 * values in RDTR is a known source of problems on other
3285 	 * platforms another solution is being sought.
3286 	 */
3287 	if (hw->mac.type == e1000_82573)
3288 		E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3289 
3290 	for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3291 		struct rx_ring *rxr = &que->rxr;
3292 		/* Setup the Base and Length of the Rx Descriptor Ring */
3293 		u64 bus_addr = rxr->rx_paddr;
3294 #if 0
3295 		u32 rdt = adapter->rx_num_queues -1;  /* default */
3296 #endif
3297 
3298 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
3299 		    scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
3300 		E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3301 		E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3302 		/* Setup the Head and Tail Descriptor Pointers */
3303 		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3304 		E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3305 	}
3306 
3307 	/*
3308 	 * Set PTHRESH for improved jumbo performance
3309 	 * According to 10.2.5.11 of Intel 82574 Datasheet,
3310 	 * RXDCTL(1) is written whenever RXDCTL(0) is written.
3311 	 * Only write to RXDCTL(1) if there is a need for different
3312 	 * settings.
3313 	 */
3314 	if ((hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_pch2lan ||
3315 	    hw->mac.type == e1000_ich10lan) && if_getmtu(ifp) > ETHERMTU) {
3316 		u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3317 		E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3318 	} else if (hw->mac.type == e1000_82574) {
3319 		for (int i = 0; i < adapter->rx_num_queues; i++) {
3320 			u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3321 			rxdctl |= 0x20; /* PTHRESH */
3322 			rxdctl |= 4 << 8; /* HTHRESH */
3323 			rxdctl |= 4 << 16;/* WTHRESH */
3324 			rxdctl |= 1 << 24; /* Switch to granularity */
3325 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3326 		}
3327 	} else if (hw->mac.type >= igb_mac_min) {
3328 		u32 psize, srrctl = 0;
3329 
3330 		if (if_getmtu(ifp) > ETHERMTU) {
3331 			psize = scctx->isc_max_frame_size;
3332 			/* are we on a vlan? */
3333 			if (ifp->if_vlantrunk != NULL)
3334 				psize += VLAN_TAG_SIZE;
3335 			E1000_WRITE_REG(hw, E1000_RLPML, psize);
3336 		}
3337 
3338 		/* Set maximum packet buffer len */
3339 		srrctl |= (adapter->rx_mbuf_sz + BSIZEPKT_ROUNDUP) >>
3340 		    E1000_SRRCTL_BSIZEPKT_SHIFT;
3341 
3342 		/*
3343 		 * If TX flow control is disabled and there's >1 queue defined,
3344 		 * enable DROP.
3345 		 *
3346 		 * This drops frames rather than hanging the RX MAC for all queues.
3347 		 */
3348 		if ((adapter->rx_num_queues > 1) &&
3349 		    (adapter->fc == e1000_fc_none ||
3350 		     adapter->fc == e1000_fc_rx_pause)) {
3351 			srrctl |= E1000_SRRCTL_DROP_EN;
3352 		}
3353 			/* Setup the Base and Length of the Rx Descriptor Rings */
3354 		for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3355 			struct rx_ring *rxr = &que->rxr;
3356 			u64 bus_addr = rxr->rx_paddr;
3357 			u32 rxdctl;
3358 
3359 #ifdef notyet
3360 			/* Configure for header split? -- ignore for now */
3361 			rxr->hdr_split = igb_header_split;
3362 #else
3363 			srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3364 #endif
3365 
3366 			E1000_WRITE_REG(hw, E1000_RDLEN(i),
3367 					scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3368 			E1000_WRITE_REG(hw, E1000_RDBAH(i),
3369 					(uint32_t)(bus_addr >> 32));
3370 			E1000_WRITE_REG(hw, E1000_RDBAL(i),
3371 					(uint32_t)bus_addr);
3372 			E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3373 			/* Enable this Queue */
3374 			rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3375 			rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3376 			rxdctl &= 0xFFF00000;
3377 			rxdctl |= IGB_RX_PTHRESH;
3378 			rxdctl |= IGB_RX_HTHRESH << 8;
3379 			rxdctl |= IGB_RX_WTHRESH << 16;
3380 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3381 		}
3382 	} else if (hw->mac.type >= e1000_pch2lan) {
3383 		if (if_getmtu(ifp) > ETHERMTU)
3384 			e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
3385 		else
3386 			e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
3387 	}
3388 
3389 	/* Make sure VLAN Filters are off */
3390 	rctl &= ~E1000_RCTL_VFE;
3391 
3392 	/* Set up packet buffer size, overridden by per queue srrctl on igb */
3393 	if (hw->mac.type < igb_mac_min) {
3394 		if (adapter->rx_mbuf_sz > 2048 && adapter->rx_mbuf_sz <= 4096)
3395 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3396 		else if (adapter->rx_mbuf_sz > 4096 && adapter->rx_mbuf_sz <= 8192)
3397 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3398 		else if (adapter->rx_mbuf_sz > 8192)
3399 			rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX;
3400 		else {
3401 			rctl |= E1000_RCTL_SZ_2048;
3402 			rctl &= ~E1000_RCTL_BSEX;
3403 		}
3404 	} else
3405 		rctl |= E1000_RCTL_SZ_2048;
3406 
3407 	/*
3408 	 * rctl bits 11:10 are as follows
3409 	 * lem: reserved
3410 	 * em: DTYPE
3411 	 * igb: reserved
3412 	 * and should be 00 on all of the above
3413 	 */
3414 	rctl &= ~0x00000C00;
3415 
3416 	/* Write out the settings */
3417 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3418 
3419 	return;
3420 }
3421 
3422 static void
3423 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3424 {
3425 	struct adapter *adapter = iflib_get_softc(ctx);
3426 	u32 index, bit;
3427 
3428 	index = (vtag >> 5) & 0x7F;
3429 	bit = vtag & 0x1F;
3430 	adapter->shadow_vfta[index] |= (1 << bit);
3431 	++adapter->num_vlans;
3432 }
3433 
3434 static void
3435 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3436 {
3437 	struct adapter *adapter = iflib_get_softc(ctx);
3438 	u32 index, bit;
3439 
3440 	index = (vtag >> 5) & 0x7F;
3441 	bit = vtag & 0x1F;
3442 	adapter->shadow_vfta[index] &= ~(1 << bit);
3443 	--adapter->num_vlans;
3444 }
3445 
3446 static void
3447 em_setup_vlan_hw_support(struct adapter *adapter)
3448 {
3449 	struct e1000_hw *hw = &adapter->hw;
3450 	u32 reg;
3451 
3452 	/*
3453 	 * We get here thru init_locked, meaning
3454 	 * a soft reset, this has already cleared
3455 	 * the VFTA and other state, so if there
3456 	 * have been no vlan's registered do nothing.
3457 	 */
3458 	if (adapter->num_vlans == 0)
3459 		return;
3460 
3461 	/*
3462 	 * A soft reset zero's out the VFTA, so
3463 	 * we need to repopulate it now.
3464 	 */
3465 	for (int i = 0; i < EM_VFTA_SIZE; i++)
3466 		if (adapter->shadow_vfta[i] != 0)
3467 			E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
3468 			    i, adapter->shadow_vfta[i]);
3469 
3470 	reg = E1000_READ_REG(hw, E1000_CTRL);
3471 	reg |= E1000_CTRL_VME;
3472 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
3473 
3474 	/* Enable the Filter Table */
3475 	reg = E1000_READ_REG(hw, E1000_RCTL);
3476 	reg &= ~E1000_RCTL_CFIEN;
3477 	reg |= E1000_RCTL_VFE;
3478 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
3479 }
3480 
3481 static void
3482 em_if_intr_enable(if_ctx_t ctx)
3483 {
3484 	struct adapter *adapter = iflib_get_softc(ctx);
3485 	struct e1000_hw *hw = &adapter->hw;
3486 	u32 ims_mask = IMS_ENABLE_MASK;
3487 
3488 	if (adapter->intr_type == IFLIB_INTR_MSIX) {
3489 		E1000_WRITE_REG(hw, EM_EIAC, adapter->ims);
3490 		ims_mask |= adapter->ims;
3491 	}
3492 	E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3493 }
3494 
3495 static void
3496 em_if_intr_disable(if_ctx_t ctx)
3497 {
3498 	struct adapter *adapter = iflib_get_softc(ctx);
3499 	struct e1000_hw *hw = &adapter->hw;
3500 
3501 	if (adapter->intr_type == IFLIB_INTR_MSIX)
3502 		E1000_WRITE_REG(hw, EM_EIAC, 0);
3503 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3504 }
3505 
3506 static void
3507 igb_if_intr_enable(if_ctx_t ctx)
3508 {
3509 	struct adapter *adapter = iflib_get_softc(ctx);
3510 	struct e1000_hw *hw = &adapter->hw;
3511 	u32 mask;
3512 
3513 	if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3514 		mask = (adapter->que_mask | adapter->link_mask);
3515 		E1000_WRITE_REG(hw, E1000_EIAC, mask);
3516 		E1000_WRITE_REG(hw, E1000_EIAM, mask);
3517 		E1000_WRITE_REG(hw, E1000_EIMS, mask);
3518 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3519 	} else
3520 		E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3521 	E1000_WRITE_FLUSH(hw);
3522 }
3523 
3524 static void
3525 igb_if_intr_disable(if_ctx_t ctx)
3526 {
3527 	struct adapter *adapter = iflib_get_softc(ctx);
3528 	struct e1000_hw *hw = &adapter->hw;
3529 
3530 	if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3531 		E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
3532 		E1000_WRITE_REG(hw, E1000_EIAC, 0);
3533 	}
3534 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3535 	E1000_WRITE_FLUSH(hw);
3536 }
3537 
3538 /*
3539  * Bit of a misnomer, what this really means is
3540  * to enable OS management of the system... aka
3541  * to disable special hardware management features
3542  */
3543 static void
3544 em_init_manageability(struct adapter *adapter)
3545 {
3546 	/* A shared code workaround */
3547 #define E1000_82542_MANC2H E1000_MANC2H
3548 	if (adapter->has_manage) {
3549 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3550 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3551 
3552 		/* disable hardware interception of ARP */
3553 		manc &= ~(E1000_MANC_ARP_EN);
3554 
3555 		/* enable receiving management packets to the host */
3556 		manc |= E1000_MANC_EN_MNG2HOST;
3557 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3558 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3559 		manc2h |= E1000_MNG2HOST_PORT_623;
3560 		manc2h |= E1000_MNG2HOST_PORT_664;
3561 		E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3562 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3563 	}
3564 }
3565 
3566 /*
3567  * Give control back to hardware management
3568  * controller if there is one.
3569  */
3570 static void
3571 em_release_manageability(struct adapter *adapter)
3572 {
3573 	if (adapter->has_manage) {
3574 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3575 
3576 		/* re-enable hardware interception of ARP */
3577 		manc |= E1000_MANC_ARP_EN;
3578 		manc &= ~E1000_MANC_EN_MNG2HOST;
3579 
3580 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3581 	}
3582 }
3583 
3584 /*
3585  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3586  * For ASF and Pass Through versions of f/w this means
3587  * that the driver is loaded. For AMT version type f/w
3588  * this means that the network i/f is open.
3589  */
3590 static void
3591 em_get_hw_control(struct adapter *adapter)
3592 {
3593 	u32 ctrl_ext, swsm;
3594 
3595 	if (adapter->vf_ifp)
3596 		return;
3597 
3598 	if (adapter->hw.mac.type == e1000_82573) {
3599 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3600 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3601 		    swsm | E1000_SWSM_DRV_LOAD);
3602 		return;
3603 	}
3604 	/* else */
3605 	ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3606 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3607 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3608 }
3609 
3610 /*
3611  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3612  * For ASF and Pass Through versions of f/w this means that
3613  * the driver is no longer loaded. For AMT versions of the
3614  * f/w this means that the network i/f is closed.
3615  */
3616 static void
3617 em_release_hw_control(struct adapter *adapter)
3618 {
3619 	u32 ctrl_ext, swsm;
3620 
3621 	if (!adapter->has_manage)
3622 		return;
3623 
3624 	if (adapter->hw.mac.type == e1000_82573) {
3625 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3626 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3627 		    swsm & ~E1000_SWSM_DRV_LOAD);
3628 		return;
3629 	}
3630 	/* else */
3631 	ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3632 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3633 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3634 	return;
3635 }
3636 
3637 static int
3638 em_is_valid_ether_addr(u8 *addr)
3639 {
3640 	char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3641 
3642 	if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3643 		return (FALSE);
3644 	}
3645 
3646 	return (TRUE);
3647 }
3648 
3649 /*
3650 ** Parse the interface capabilities with regard
3651 ** to both system management and wake-on-lan for
3652 ** later use.
3653 */
3654 static void
3655 em_get_wakeup(if_ctx_t ctx)
3656 {
3657 	struct adapter *adapter = iflib_get_softc(ctx);
3658 	device_t dev = iflib_get_dev(ctx);
3659 	u16 eeprom_data = 0, device_id, apme_mask;
3660 
3661 	adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
3662 	apme_mask = EM_EEPROM_APME;
3663 
3664 	switch (adapter->hw.mac.type) {
3665 	case e1000_82542:
3666 	case e1000_82543:
3667 		break;
3668 	case e1000_82544:
3669 		e1000_read_nvm(&adapter->hw,
3670 		    NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3671 		apme_mask = EM_82544_APME;
3672 		break;
3673 	case e1000_82546:
3674 	case e1000_82546_rev_3:
3675 		if (adapter->hw.bus.func == 1) {
3676 			e1000_read_nvm(&adapter->hw,
3677 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3678 			break;
3679 		} else
3680 			e1000_read_nvm(&adapter->hw,
3681 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3682 		break;
3683 	case e1000_82573:
3684 	case e1000_82583:
3685 		adapter->has_amt = TRUE;
3686 		/* FALLTHROUGH */
3687 	case e1000_82571:
3688 	case e1000_82572:
3689 	case e1000_80003es2lan:
3690 		if (adapter->hw.bus.func == 1) {
3691 			e1000_read_nvm(&adapter->hw,
3692 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3693 			break;
3694 		} else
3695 			e1000_read_nvm(&adapter->hw,
3696 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3697 		break;
3698 	case e1000_ich8lan:
3699 	case e1000_ich9lan:
3700 	case e1000_ich10lan:
3701 	case e1000_pchlan:
3702 	case e1000_pch2lan:
3703 	case e1000_pch_lpt:
3704 	case e1000_pch_spt:
3705 	case e1000_82575:	/* listing all igb devices */
3706 	case e1000_82576:
3707 	case e1000_82580:
3708 	case e1000_i350:
3709 	case e1000_i354:
3710 	case e1000_i210:
3711 	case e1000_i211:
3712 	case e1000_vfadapt:
3713 	case e1000_vfadapt_i350:
3714 		apme_mask = E1000_WUC_APME;
3715 		adapter->has_amt = TRUE;
3716 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
3717 		break;
3718 	default:
3719 		e1000_read_nvm(&adapter->hw,
3720 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3721 		break;
3722 	}
3723 	if (eeprom_data & apme_mask)
3724 		adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
3725 	/*
3726 	 * We have the eeprom settings, now apply the special cases
3727 	 * where the eeprom may be wrong or the board won't support
3728 	 * wake on lan on a particular port
3729 	 */
3730 	device_id = pci_get_device(dev);
3731 	switch (device_id) {
3732 	case E1000_DEV_ID_82546GB_PCIE:
3733 		adapter->wol = 0;
3734 		break;
3735 	case E1000_DEV_ID_82546EB_FIBER:
3736 	case E1000_DEV_ID_82546GB_FIBER:
3737 		/* Wake events only supported on port A for dual fiber
3738 		 * regardless of eeprom setting */
3739 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3740 		    E1000_STATUS_FUNC_1)
3741 			adapter->wol = 0;
3742 		break;
3743 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
3744 		/* if quad port adapter, disable WoL on all but port A */
3745 		if (global_quad_port_a != 0)
3746 			adapter->wol = 0;
3747 		/* Reset for multiple quad port adapters */
3748 		if (++global_quad_port_a == 4)
3749 			global_quad_port_a = 0;
3750 		break;
3751 	case E1000_DEV_ID_82571EB_FIBER:
3752 		/* Wake events only supported on port A for dual fiber
3753 		 * regardless of eeprom setting */
3754 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3755 		    E1000_STATUS_FUNC_1)
3756 			adapter->wol = 0;
3757 		break;
3758 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
3759 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
3760 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
3761 		/* if quad port adapter, disable WoL on all but port A */
3762 		if (global_quad_port_a != 0)
3763 			adapter->wol = 0;
3764 		/* Reset for multiple quad port adapters */
3765 		if (++global_quad_port_a == 4)
3766 			global_quad_port_a = 0;
3767 		break;
3768 	}
3769 	return;
3770 }
3771 
3772 
3773 /*
3774  * Enable PCI Wake On Lan capability
3775  */
3776 static void
3777 em_enable_wakeup(if_ctx_t ctx)
3778 {
3779 	struct adapter *adapter = iflib_get_softc(ctx);
3780 	device_t dev = iflib_get_dev(ctx);
3781 	if_t ifp = iflib_get_ifp(ctx);
3782 	int error = 0;
3783 	u32 pmc, ctrl, ctrl_ext, rctl;
3784 	u16 status;
3785 
3786 	if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
3787 		return;
3788 
3789 	/*
3790 	 * Determine type of Wakeup: note that wol
3791 	 * is set with all bits on by default.
3792 	 */
3793 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
3794 		adapter->wol &= ~E1000_WUFC_MAG;
3795 
3796 	if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
3797 		adapter->wol &= ~E1000_WUFC_EX;
3798 
3799 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
3800 		adapter->wol &= ~E1000_WUFC_MC;
3801 	else {
3802 		rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3803 		rctl |= E1000_RCTL_MPE;
3804 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3805 	}
3806 
3807 	if (!(adapter->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
3808 		goto pme;
3809 
3810 	/* Advertise the wakeup capability */
3811 	ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
3812 	ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
3813 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
3814 
3815 	/* Keep the laser running on Fiber adapters */
3816 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3817 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
3818 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3819 		ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
3820 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext);
3821 	}
3822 
3823 	if ((adapter->hw.mac.type == e1000_ich8lan) ||
3824 	    (adapter->hw.mac.type == e1000_pchlan) ||
3825 	    (adapter->hw.mac.type == e1000_ich9lan) ||
3826 	    (adapter->hw.mac.type == e1000_ich10lan))
3827 		e1000_suspend_workarounds_ich8lan(&adapter->hw);
3828 
3829 	if ( adapter->hw.mac.type >= e1000_pchlan) {
3830 		error = em_enable_phy_wakeup(adapter);
3831 		if (error)
3832 			goto pme;
3833 	} else {
3834 		/* Enable wakeup by the MAC */
3835 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
3836 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
3837 	}
3838 
3839 	if (adapter->hw.phy.type == e1000_phy_igp_3)
3840 		e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3841 
3842 pme:
3843 	status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
3844 	status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3845 	if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
3846 		status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3847 	pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
3848 
3849 	return;
3850 }
3851 
3852 /*
3853  * WOL in the newer chipset interfaces (pchlan)
3854  * require thing to be copied into the phy
3855  */
3856 static int
3857 em_enable_phy_wakeup(struct adapter *adapter)
3858 {
3859 	struct e1000_hw *hw = &adapter->hw;
3860 	u32 mreg, ret = 0;
3861 	u16 preg;
3862 
3863 	/* copy MAC RARs to PHY RARs */
3864 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
3865 
3866 	/* copy MAC MTA to PHY MTA */
3867 	for (int i = 0; i < hw->mac.mta_reg_count; i++) {
3868 		mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
3869 		e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
3870 		e1000_write_phy_reg(hw, BM_MTA(i) + 1,
3871 		    (u16)((mreg >> 16) & 0xFFFF));
3872 	}
3873 
3874 	/* configure PHY Rx Control register */
3875 	e1000_read_phy_reg(hw, BM_RCTL, &preg);
3876 	mreg = E1000_READ_REG(hw, E1000_RCTL);
3877 	if (mreg & E1000_RCTL_UPE)
3878 		preg |= BM_RCTL_UPE;
3879 	if (mreg & E1000_RCTL_MPE)
3880 		preg |= BM_RCTL_MPE;
3881 	preg &= ~(BM_RCTL_MO_MASK);
3882 	if (mreg & E1000_RCTL_MO_3)
3883 		preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
3884 				<< BM_RCTL_MO_SHIFT);
3885 	if (mreg & E1000_RCTL_BAM)
3886 		preg |= BM_RCTL_BAM;
3887 	if (mreg & E1000_RCTL_PMCF)
3888 		preg |= BM_RCTL_PMCF;
3889 	mreg = E1000_READ_REG(hw, E1000_CTRL);
3890 	if (mreg & E1000_CTRL_RFCE)
3891 		preg |= BM_RCTL_RFCE;
3892 	e1000_write_phy_reg(hw, BM_RCTL, preg);
3893 
3894 	/* enable PHY wakeup in MAC register */
3895 	E1000_WRITE_REG(hw, E1000_WUC,
3896 	    E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
3897 	E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol);
3898 
3899 	/* configure and enable PHY wakeup in PHY registers */
3900 	e1000_write_phy_reg(hw, BM_WUFC, adapter->wol);
3901 	e1000_write_phy_reg(hw, BM_WUC, E1000_WUC_PME_EN);
3902 
3903 	/* activate PHY wakeup */
3904 	ret = hw->phy.ops.acquire(hw);
3905 	if (ret) {
3906 		printf("Could not acquire PHY\n");
3907 		return ret;
3908 	}
3909 	e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3910 	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
3911 	ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
3912 	if (ret) {
3913 		printf("Could not read PHY page 769\n");
3914 		goto out;
3915 	}
3916 	preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
3917 	ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
3918 	if (ret)
3919 		printf("Could not set PHY Host Wakeup bit\n");
3920 out:
3921 	hw->phy.ops.release(hw);
3922 
3923 	return ret;
3924 }
3925 
3926 static void
3927 em_if_led_func(if_ctx_t ctx, int onoff)
3928 {
3929 	struct adapter *adapter = iflib_get_softc(ctx);
3930 
3931 	if (onoff) {
3932 		e1000_setup_led(&adapter->hw);
3933 		e1000_led_on(&adapter->hw);
3934 	} else {
3935 		e1000_led_off(&adapter->hw);
3936 		e1000_cleanup_led(&adapter->hw);
3937 	}
3938 }
3939 
3940 /*
3941  * Disable the L0S and L1 LINK states
3942  */
3943 static void
3944 em_disable_aspm(struct adapter *adapter)
3945 {
3946 	int base, reg;
3947 	u16 link_cap,link_ctrl;
3948 	device_t dev = adapter->dev;
3949 
3950 	switch (adapter->hw.mac.type) {
3951 	case e1000_82573:
3952 	case e1000_82574:
3953 	case e1000_82583:
3954 		break;
3955 	default:
3956 		return;
3957 	}
3958 	if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
3959 		return;
3960 	reg = base + PCIER_LINK_CAP;
3961 	link_cap = pci_read_config(dev, reg, 2);
3962 	if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
3963 		return;
3964 	reg = base + PCIER_LINK_CTL;
3965 	link_ctrl = pci_read_config(dev, reg, 2);
3966 	link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
3967 	pci_write_config(dev, reg, link_ctrl, 2);
3968 	return;
3969 }
3970 
3971 /**********************************************************************
3972  *
3973  *  Update the board statistics counters.
3974  *
3975  **********************************************************************/
3976 static void
3977 em_update_stats_counters(struct adapter *adapter)
3978 {
3979 	u64 prev_xoffrxc = adapter->stats.xoffrxc;
3980 
3981 	if(adapter->hw.phy.media_type == e1000_media_type_copper ||
3982 	   (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3983 		adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3984 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3985 	}
3986 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3987 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3988 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3989 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3990 
3991 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3992 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3993 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3994 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3995 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3996 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3997 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3998 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3999 	/*
4000 	 ** For watchdog management we need to know if we have been
4001 	 ** paused during the last interval, so capture that here.
4002 	*/
4003 	if (adapter->stats.xoffrxc != prev_xoffrxc)
4004 		adapter->shared->isc_pause_frames = 1;
4005 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
4006 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
4007 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
4008 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
4009 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
4010 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
4011 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
4012 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
4013 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
4014 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
4015 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
4016 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
4017 
4018 	/* For the 64-bit byte counters the low dword must be read first. */
4019 	/* Both registers clear on the read of the high dword */
4020 
4021 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) +
4022 	    ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32);
4023 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) +
4024 	    ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32);
4025 
4026 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
4027 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
4028 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
4029 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
4030 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
4031 
4032 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
4033 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
4034 
4035 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
4036 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
4037 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
4038 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
4039 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
4040 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
4041 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
4042 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
4043 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
4044 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
4045 
4046 	/* Interrupt Counts */
4047 
4048 	adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC);
4049 	adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC);
4050 	adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC);
4051 	adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC);
4052 	adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC);
4053 	adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC);
4054 	adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC);
4055 	adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC);
4056 	adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC);
4057 
4058 	if (adapter->hw.mac.type >= e1000_82543) {
4059 		adapter->stats.algnerrc +=
4060 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
4061 		adapter->stats.rxerrc +=
4062 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
4063 		adapter->stats.tncrs +=
4064 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
4065 		adapter->stats.cexterr +=
4066 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
4067 		adapter->stats.tsctc +=
4068 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
4069 		adapter->stats.tsctfc +=
4070 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
4071 	}
4072 }
4073 
4074 static uint64_t
4075 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4076 {
4077 	struct adapter *adapter = iflib_get_softc(ctx);
4078 	struct ifnet *ifp = iflib_get_ifp(ctx);
4079 
4080 	switch (cnt) {
4081 	case IFCOUNTER_COLLISIONS:
4082 		return (adapter->stats.colc);
4083 	case IFCOUNTER_IERRORS:
4084 		return (adapter->dropped_pkts + adapter->stats.rxerrc +
4085 		    adapter->stats.crcerrs + adapter->stats.algnerrc +
4086 		    adapter->stats.ruc + adapter->stats.roc +
4087 		    adapter->stats.mpc + adapter->stats.cexterr);
4088 	case IFCOUNTER_OERRORS:
4089 		return (adapter->stats.ecol + adapter->stats.latecol +
4090 		    adapter->watchdog_events);
4091 	default:
4092 		return (if_get_counter_default(ifp, cnt));
4093 	}
4094 }
4095 
4096 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized
4097  * @ctx: iflib context
4098  * @event: event code to check
4099  *
4100  * Defaults to returning true for unknown events.
4101  *
4102  * @returns true if iflib needs to reinit the interface
4103  */
4104 static bool
4105 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
4106 {
4107 	switch (event) {
4108 	case IFLIB_RESTART_VLAN_CONFIG:
4109 	default:
4110 		return (true);
4111 	}
4112 }
4113 
4114 /* Export a single 32-bit register via a read-only sysctl. */
4115 static int
4116 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4117 {
4118 	struct adapter *adapter;
4119 	u_int val;
4120 
4121 	adapter = oidp->oid_arg1;
4122 	val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
4123 	return (sysctl_handle_int(oidp, &val, 0, req));
4124 }
4125 
4126 /*
4127  * Add sysctl variables, one per statistic, to the system.
4128  */
4129 static void
4130 em_add_hw_stats(struct adapter *adapter)
4131 {
4132 	device_t dev = iflib_get_dev(adapter->ctx);
4133 	struct em_tx_queue *tx_que = adapter->tx_queues;
4134 	struct em_rx_queue *rx_que = adapter->rx_queues;
4135 
4136 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4137 	struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4138 	struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4139 	struct e1000_hw_stats *stats = &adapter->stats;
4140 
4141 	struct sysctl_oid *stat_node, *queue_node, *int_node;
4142 	struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4143 
4144 #define QUEUE_NAME_LEN 32
4145 	char namebuf[QUEUE_NAME_LEN];
4146 
4147 	/* Driver Statistics */
4148 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4149 			CTLFLAG_RD, &adapter->dropped_pkts,
4150 			"Driver dropped packets");
4151 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4152 			CTLFLAG_RD, &adapter->link_irq,
4153 			"Link MSI-X IRQ Handled");
4154 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4155 			CTLFLAG_RD, &adapter->rx_overruns,
4156 			"RX overruns");
4157 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4158 			CTLFLAG_RD, &adapter->watchdog_events,
4159 			"Watchdog timeouts");
4160 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4161 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4162 	    adapter, E1000_CTRL, em_sysctl_reg_handler, "IU",
4163 	    "Device Control Register");
4164 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4165 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4166 	    adapter, E1000_RCTL, em_sysctl_reg_handler, "IU",
4167 	    "Receiver Control Register");
4168 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4169 			CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
4170 			"Flow Control High Watermark");
4171 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4172 			CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
4173 			"Flow Control Low Watermark");
4174 
4175 	for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
4176 		struct tx_ring *txr = &tx_que->txr;
4177 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4178 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4179 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
4180 		queue_list = SYSCTL_CHILDREN(queue_node);
4181 
4182 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4183 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4184 		    E1000_TDH(txr->me), em_sysctl_reg_handler, "IU",
4185 		    "Transmit Descriptor Head");
4186 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4187 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4188 		    E1000_TDT(txr->me), em_sysctl_reg_handler, "IU",
4189 		    "Transmit Descriptor Tail");
4190 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4191 				CTLFLAG_RD, &txr->tx_irq,
4192 				"Queue MSI-X Transmit Interrupts");
4193 	}
4194 
4195 	for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) {
4196 		struct rx_ring *rxr = &rx_que->rxr;
4197 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4198 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4199 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
4200 		queue_list = SYSCTL_CHILDREN(queue_node);
4201 
4202 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4203 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4204 		    E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU",
4205 		    "Receive Descriptor Head");
4206 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4207 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4208 		    E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU",
4209 		    "Receive Descriptor Tail");
4210 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
4211 				CTLFLAG_RD, &rxr->rx_irq,
4212 				"Queue MSI-X Receive Interrupts");
4213 	}
4214 
4215 	/* MAC stats get their own sub node */
4216 
4217 	stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
4218 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
4219 	stat_list = SYSCTL_CHILDREN(stat_node);
4220 
4221 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
4222 			CTLFLAG_RD, &stats->ecol,
4223 			"Excessive collisions");
4224 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
4225 			CTLFLAG_RD, &stats->scc,
4226 			"Single collisions");
4227 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
4228 			CTLFLAG_RD, &stats->mcc,
4229 			"Multiple collisions");
4230 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
4231 			CTLFLAG_RD, &stats->latecol,
4232 			"Late collisions");
4233 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
4234 			CTLFLAG_RD, &stats->colc,
4235 			"Collision Count");
4236 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
4237 			CTLFLAG_RD, &adapter->stats.symerrs,
4238 			"Symbol Errors");
4239 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
4240 			CTLFLAG_RD, &adapter->stats.sec,
4241 			"Sequence Errors");
4242 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
4243 			CTLFLAG_RD, &adapter->stats.dc,
4244 			"Defer Count");
4245 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
4246 			CTLFLAG_RD, &adapter->stats.mpc,
4247 			"Missed Packets");
4248 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
4249 			CTLFLAG_RD, &adapter->stats.rnbc,
4250 			"Receive No Buffers");
4251 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
4252 			CTLFLAG_RD, &adapter->stats.ruc,
4253 			"Receive Undersize");
4254 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
4255 			CTLFLAG_RD, &adapter->stats.rfc,
4256 			"Fragmented Packets Received ");
4257 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
4258 			CTLFLAG_RD, &adapter->stats.roc,
4259 			"Oversized Packets Received");
4260 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
4261 			CTLFLAG_RD, &adapter->stats.rjc,
4262 			"Recevied Jabber");
4263 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
4264 			CTLFLAG_RD, &adapter->stats.rxerrc,
4265 			"Receive Errors");
4266 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
4267 			CTLFLAG_RD, &adapter->stats.crcerrs,
4268 			"CRC errors");
4269 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
4270 			CTLFLAG_RD, &adapter->stats.algnerrc,
4271 			"Alignment Errors");
4272 	/* On 82575 these are collision counts */
4273 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
4274 			CTLFLAG_RD, &adapter->stats.cexterr,
4275 			"Collision/Carrier extension errors");
4276 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
4277 			CTLFLAG_RD, &adapter->stats.xonrxc,
4278 			"XON Received");
4279 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
4280 			CTLFLAG_RD, &adapter->stats.xontxc,
4281 			"XON Transmitted");
4282 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
4283 			CTLFLAG_RD, &adapter->stats.xoffrxc,
4284 			"XOFF Received");
4285 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
4286 			CTLFLAG_RD, &adapter->stats.xofftxc,
4287 			"XOFF Transmitted");
4288 
4289 	/* Packet Reception Stats */
4290 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
4291 			CTLFLAG_RD, &adapter->stats.tpr,
4292 			"Total Packets Received ");
4293 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
4294 			CTLFLAG_RD, &adapter->stats.gprc,
4295 			"Good Packets Received");
4296 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
4297 			CTLFLAG_RD, &adapter->stats.bprc,
4298 			"Broadcast Packets Received");
4299 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
4300 			CTLFLAG_RD, &adapter->stats.mprc,
4301 			"Multicast Packets Received");
4302 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
4303 			CTLFLAG_RD, &adapter->stats.prc64,
4304 			"64 byte frames received ");
4305 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
4306 			CTLFLAG_RD, &adapter->stats.prc127,
4307 			"65-127 byte frames received");
4308 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
4309 			CTLFLAG_RD, &adapter->stats.prc255,
4310 			"128-255 byte frames received");
4311 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
4312 			CTLFLAG_RD, &adapter->stats.prc511,
4313 			"256-511 byte frames received");
4314 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
4315 			CTLFLAG_RD, &adapter->stats.prc1023,
4316 			"512-1023 byte frames received");
4317 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
4318 			CTLFLAG_RD, &adapter->stats.prc1522,
4319 			"1023-1522 byte frames received");
4320 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
4321 			CTLFLAG_RD, &adapter->stats.gorc,
4322 			"Good Octets Received");
4323 
4324 	/* Packet Transmission Stats */
4325 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
4326 			CTLFLAG_RD, &adapter->stats.gotc,
4327 			"Good Octets Transmitted");
4328 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
4329 			CTLFLAG_RD, &adapter->stats.tpt,
4330 			"Total Packets Transmitted");
4331 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
4332 			CTLFLAG_RD, &adapter->stats.gptc,
4333 			"Good Packets Transmitted");
4334 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
4335 			CTLFLAG_RD, &adapter->stats.bptc,
4336 			"Broadcast Packets Transmitted");
4337 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
4338 			CTLFLAG_RD, &adapter->stats.mptc,
4339 			"Multicast Packets Transmitted");
4340 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
4341 			CTLFLAG_RD, &adapter->stats.ptc64,
4342 			"64 byte frames transmitted ");
4343 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
4344 			CTLFLAG_RD, &adapter->stats.ptc127,
4345 			"65-127 byte frames transmitted");
4346 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
4347 			CTLFLAG_RD, &adapter->stats.ptc255,
4348 			"128-255 byte frames transmitted");
4349 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
4350 			CTLFLAG_RD, &adapter->stats.ptc511,
4351 			"256-511 byte frames transmitted");
4352 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
4353 			CTLFLAG_RD, &adapter->stats.ptc1023,
4354 			"512-1023 byte frames transmitted");
4355 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
4356 			CTLFLAG_RD, &adapter->stats.ptc1522,
4357 			"1024-1522 byte frames transmitted");
4358 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
4359 			CTLFLAG_RD, &adapter->stats.tsctc,
4360 			"TSO Contexts Transmitted");
4361 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
4362 			CTLFLAG_RD, &adapter->stats.tsctfc,
4363 			"TSO Contexts Failed");
4364 
4365 
4366 	/* Interrupt Stats */
4367 
4368 	int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
4369 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
4370 	int_list = SYSCTL_CHILDREN(int_node);
4371 
4372 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
4373 			CTLFLAG_RD, &adapter->stats.iac,
4374 			"Interrupt Assertion Count");
4375 
4376 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
4377 			CTLFLAG_RD, &adapter->stats.icrxptc,
4378 			"Interrupt Cause Rx Pkt Timer Expire Count");
4379 
4380 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
4381 			CTLFLAG_RD, &adapter->stats.icrxatc,
4382 			"Interrupt Cause Rx Abs Timer Expire Count");
4383 
4384 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
4385 			CTLFLAG_RD, &adapter->stats.ictxptc,
4386 			"Interrupt Cause Tx Pkt Timer Expire Count");
4387 
4388 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
4389 			CTLFLAG_RD, &adapter->stats.ictxatc,
4390 			"Interrupt Cause Tx Abs Timer Expire Count");
4391 
4392 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
4393 			CTLFLAG_RD, &adapter->stats.ictxqec,
4394 			"Interrupt Cause Tx Queue Empty Count");
4395 
4396 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
4397 			CTLFLAG_RD, &adapter->stats.ictxqmtc,
4398 			"Interrupt Cause Tx Queue Min Thresh Count");
4399 
4400 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4401 			CTLFLAG_RD, &adapter->stats.icrxdmtc,
4402 			"Interrupt Cause Rx Desc Min Thresh Count");
4403 
4404 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4405 			CTLFLAG_RD, &adapter->stats.icrxoc,
4406 			"Interrupt Cause Receiver Overrun Count");
4407 }
4408 
4409 /**********************************************************************
4410  *
4411  *  This routine provides a way to dump out the adapter eeprom,
4412  *  often a useful debug/service tool. This only dumps the first
4413  *  32 words, stuff that matters is in that extent.
4414  *
4415  **********************************************************************/
4416 static int
4417 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4418 {
4419 	struct adapter *adapter = (struct adapter *)arg1;
4420 	int error;
4421 	int result;
4422 
4423 	result = -1;
4424 	error = sysctl_handle_int(oidp, &result, 0, req);
4425 
4426 	if (error || !req->newptr)
4427 		return (error);
4428 
4429 	/*
4430 	 * This value will cause a hex dump of the
4431 	 * first 32 16-bit words of the EEPROM to
4432 	 * the screen.
4433 	 */
4434 	if (result == 1)
4435 		em_print_nvm_info(adapter);
4436 
4437 	return (error);
4438 }
4439 
4440 static void
4441 em_print_nvm_info(struct adapter *adapter)
4442 {
4443 	u16 eeprom_data;
4444 	int i, j, row = 0;
4445 
4446 	/* Its a bit crude, but it gets the job done */
4447 	printf("\nInterface EEPROM Dump:\n");
4448 	printf("Offset\n0x0000  ");
4449 	for (i = 0, j = 0; i < 32; i++, j++) {
4450 		if (j == 8) { /* Make the offset block */
4451 			j = 0; ++row;
4452 			printf("\n0x00%x0  ",row);
4453 		}
4454 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4455 		printf("%04x ", eeprom_data);
4456 	}
4457 	printf("\n");
4458 }
4459 
4460 static int
4461 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4462 {
4463 	struct em_int_delay_info *info;
4464 	struct adapter *adapter;
4465 	u32 regval;
4466 	int error, usecs, ticks;
4467 
4468 	info = (struct em_int_delay_info *) arg1;
4469 	usecs = info->value;
4470 	error = sysctl_handle_int(oidp, &usecs, 0, req);
4471 	if (error != 0 || req->newptr == NULL)
4472 		return (error);
4473 	if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4474 		return (EINVAL);
4475 	info->value = usecs;
4476 	ticks = EM_USECS_TO_TICKS(usecs);
4477 	if (info->offset == E1000_ITR)	/* units are 256ns here */
4478 		ticks *= 4;
4479 
4480 	adapter = info->adapter;
4481 
4482 	regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
4483 	regval = (regval & ~0xffff) | (ticks & 0xffff);
4484 	/* Handle a few special cases. */
4485 	switch (info->offset) {
4486 	case E1000_RDTR:
4487 		break;
4488 	case E1000_TIDV:
4489 		if (ticks == 0) {
4490 			adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
4491 			/* Don't write 0 into the TIDV register. */
4492 			regval++;
4493 		} else
4494 			adapter->txd_cmd |= E1000_TXD_CMD_IDE;
4495 		break;
4496 	}
4497 	E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
4498 	return (0);
4499 }
4500 
4501 static void
4502 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
4503 	const char *description, struct em_int_delay_info *info,
4504 	int offset, int value)
4505 {
4506 	info->adapter = adapter;
4507 	info->offset = offset;
4508 	info->value = value;
4509 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
4510 	    SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
4511 	    OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
4512 	    info, 0, em_sysctl_int_delay, "I", description);
4513 }
4514 
4515 /*
4516  * Set flow control using sysctl:
4517  * Flow control values:
4518  *      0 - off
4519  *      1 - rx pause
4520  *      2 - tx pause
4521  *      3 - full
4522  */
4523 static int
4524 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4525 {
4526 	int error;
4527 	static int input = 3; /* default is full */
4528 	struct adapter	*adapter = (struct adapter *) arg1;
4529 
4530 	error = sysctl_handle_int(oidp, &input, 0, req);
4531 
4532 	if ((error) || (req->newptr == NULL))
4533 		return (error);
4534 
4535 	if (input == adapter->fc) /* no change? */
4536 		return (error);
4537 
4538 	switch (input) {
4539 	case e1000_fc_rx_pause:
4540 	case e1000_fc_tx_pause:
4541 	case e1000_fc_full:
4542 	case e1000_fc_none:
4543 		adapter->hw.fc.requested_mode = input;
4544 		adapter->fc = input;
4545 		break;
4546 	default:
4547 		/* Do nothing */
4548 		return (error);
4549 	}
4550 
4551 	adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
4552 	e1000_force_mac_fc(&adapter->hw);
4553 	return (error);
4554 }
4555 
4556 /*
4557  * Manage Energy Efficient Ethernet:
4558  * Control values:
4559  *     0/1 - enabled/disabled
4560  */
4561 static int
4562 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
4563 {
4564 	struct adapter *adapter = (struct adapter *) arg1;
4565 	int error, value;
4566 
4567 	value = adapter->hw.dev_spec.ich8lan.eee_disable;
4568 	error = sysctl_handle_int(oidp, &value, 0, req);
4569 	if (error || req->newptr == NULL)
4570 		return (error);
4571 	adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0);
4572 	em_if_init(adapter->ctx);
4573 
4574 	return (0);
4575 }
4576 
4577 static int
4578 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4579 {
4580 	struct adapter *adapter;
4581 	int error;
4582 	int result;
4583 
4584 	result = -1;
4585 	error = sysctl_handle_int(oidp, &result, 0, req);
4586 
4587 	if (error || !req->newptr)
4588 		return (error);
4589 
4590 	if (result == 1) {
4591 		adapter = (struct adapter *) arg1;
4592 		em_print_debug_info(adapter);
4593 	}
4594 
4595 	return (error);
4596 }
4597 
4598 static int
4599 em_get_rs(SYSCTL_HANDLER_ARGS)
4600 {
4601 	struct adapter *adapter = (struct adapter *) arg1;
4602 	int error;
4603 	int result;
4604 
4605 	result = 0;
4606 	error = sysctl_handle_int(oidp, &result, 0, req);
4607 
4608 	if (error || !req->newptr || result != 1)
4609 		return (error);
4610 	em_dump_rs(adapter);
4611 
4612 	return (error);
4613 }
4614 
4615 static void
4616 em_if_debug(if_ctx_t ctx)
4617 {
4618 	em_dump_rs(iflib_get_softc(ctx));
4619 }
4620 
4621 /*
4622  * This routine is meant to be fluid, add whatever is
4623  * needed for debugging a problem.  -jfv
4624  */
4625 static void
4626 em_print_debug_info(struct adapter *adapter)
4627 {
4628 	device_t dev = iflib_get_dev(adapter->ctx);
4629 	struct ifnet *ifp = iflib_get_ifp(adapter->ctx);
4630 	struct tx_ring *txr = &adapter->tx_queues->txr;
4631 	struct rx_ring *rxr = &adapter->rx_queues->rxr;
4632 
4633 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
4634 		printf("Interface is RUNNING ");
4635 	else
4636 		printf("Interface is NOT RUNNING\n");
4637 
4638 	if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
4639 		printf("and INACTIVE\n");
4640 	else
4641 		printf("and ACTIVE\n");
4642 
4643 	for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
4644 		device_printf(dev, "TX Queue %d ------\n", i);
4645 		device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4646 			E1000_READ_REG(&adapter->hw, E1000_TDH(i)),
4647 			E1000_READ_REG(&adapter->hw, E1000_TDT(i)));
4648 
4649 	}
4650 	for (int j=0; j < adapter->rx_num_queues; j++, rxr++) {
4651 		device_printf(dev, "RX Queue %d ------\n", j);
4652 		device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4653 			E1000_READ_REG(&adapter->hw, E1000_RDH(j)),
4654 			E1000_READ_REG(&adapter->hw, E1000_RDT(j)));
4655 	}
4656 }
4657 
4658 /*
4659  * 82574 only:
4660  * Write a new value to the EEPROM increasing the number of MSI-X
4661  * vectors from 3 to 5, for proper multiqueue support.
4662  */
4663 static void
4664 em_enable_vectors_82574(if_ctx_t ctx)
4665 {
4666 	struct adapter *adapter = iflib_get_softc(ctx);
4667 	struct e1000_hw *hw = &adapter->hw;
4668 	device_t dev = iflib_get_dev(ctx);
4669 	u16 edata;
4670 
4671 	e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4672 	if (bootverbose)
4673 		device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
4674 	if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
4675 		device_printf(dev, "Writing to eeprom: increasing "
4676 		    "reported MSI-X vectors from 3 to 5...\n");
4677 		edata &= ~(EM_NVM_MSIX_N_MASK);
4678 		edata |= 4 << EM_NVM_MSIX_N_SHIFT;
4679 		e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4680 		e1000_update_nvm_checksum(hw);
4681 		device_printf(dev, "Writing to eeprom: done\n");
4682 	}
4683 }
4684