xref: /freebsd/sys/dev/e1000/if_em.c (revision 3984400149a53982f1254cfaf7b73fd2acda460a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* $FreeBSD$ */
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33 
34 #define em_mac_min e1000_82571
35 #define igb_mac_min e1000_82575
36 
37 /*********************************************************************
38  *  Driver version:
39  *********************************************************************/
40 char em_driver_version[] = "7.6.1-k";
41 
42 /*********************************************************************
43  *  PCI Device ID Table
44  *
45  *  Used by probe to select devices to load on
46  *  Last field stores an index into e1000_strings
47  *  Last entry must be all 0s
48  *
49  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
50  *********************************************************************/
51 
52 static pci_vendor_info_t em_vendor_info_array[] =
53 {
54 	/* Intel(R) - lem-class legacy devices */
55 	PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) Legacy PRO/1000 MT 82540EM"),
56 	PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) Legacy PRO/1000 MT 82540EM (LOM)"),
57 	PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) Legacy PRO/1000 MT 82540EP"),
58 	PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) Legacy PRO/1000 MT 82540EP (LOM)"),
59 	PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) Legacy PRO/1000 MT 82540EP (Mobile)"),
60 
61 	PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) Legacy PRO/1000 MT 82541EI (Copper)"),
62 	PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) Legacy PRO/1000 82541ER"),
63 	PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) Legacy PRO/1000 MT 82541ER"),
64 	PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541EI (Mobile)"),
65 	PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) Legacy PRO/1000 MT 82541GI"),
66 	PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) Legacy PRO/1000 GT 82541PI"),
67 	PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541GI (Mobile)"),
68 
69 	PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) Legacy PRO/1000 82542 (Fiber)"),
70 
71 	PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) Legacy PRO/1000 F 82543GC (Fiber)"),
72 	PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) Legacy PRO/1000 T 82543GC (Copper)"),
73 
74 	PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) Legacy PRO/1000 XT 82544EI (Copper)"),
75 	PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) Legacy PRO/1000 XF 82544EI (Fiber)"),
76 	PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) Legacy PRO/1000 T 82544GC (Copper)"),
77 	PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) Legacy PRO/1000 XT 82544GC (LOM)"),
78 
79 	PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545EM (Copper)"),
80 	PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545EM (Fiber)"),
81 	PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545GM (Copper)"),
82 	PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545GM (Fiber)"),
83 	PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) Legacy PRO/1000 MB 82545GM (SERDES)"),
84 
85 	PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Copper)"),
86 	PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546EB (Fiber)"),
87 	PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Quad Copper"),
88 	PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546GB (Copper)"),
89 	PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546GB (Fiber)"),
90 	PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) Legacy PRO/1000 MB 82546GB (SERDES)"),
91 	PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) Legacy PRO/1000 P 82546GB (PCIe)"),
92 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
93 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
94 
95 	PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) Legacy PRO/1000 CT 82547EI"),
96 	PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) Legacy PRO/1000 CT 82547EI (Mobile)"),
97 	PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) Legacy PRO/1000 CT 82547GI"),
98 
99 	/* Intel(R) - em-class devices */
100 	PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Copper)"),
101 	PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 PF 82571EB/82571GB (Fiber)"),
102 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 PB 82571EB (SERDES)"),
103 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 82571EB (Dual Mezzanine)"),
104 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 82571EB (Quad Mezzanine)"),
105 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
106 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
107 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 PF 82571EB (Quad Fiber)"),
108 	PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571PT (Quad Copper)"),
109 	PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 PT 82572EI (Copper)"),
110 	PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 PT 82572EI (Copper)"),
111 	PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 PF 82572EI (Fiber)"),
112 	PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 82572EI (SERDES)"),
113 	PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 82573E (Copper)"),
114 	PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 82573E AMT (Copper)"),
115 	PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 82573L"),
116 	PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) 82583V"),
117 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) 80003ES2LAN (Copper)"),
118 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) 80003ES2LAN (SERDES)"),
119 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) 80003ES2LAN (Dual Copper)"),
120 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) 80003ES2LAN (Dual SERDES)"),
121 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) 82566MM ICH8 AMT (Mobile)"),
122 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) 82566DM ICH8 AMT"),
123 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) 82566DC ICH8"),
124 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) 82562V ICH8"),
125 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) 82562GT ICH8"),
126 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) 82562G ICH8"),
127 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) 82566MC ICH8"),
128 	PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) 82567V-3 ICH8"),
129 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) 82567LM ICH9 AMT"),
130 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) 82566DM-2 ICH9 AMT"),
131 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) 82566DC-2 ICH9"),
132 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) 82567LF ICH9"),
133 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) 82567V ICH9"),
134 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) 82562V-2 ICH9"),
135 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) 82562GT-2 ICH9"),
136 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) 82562G-2 ICH9"),
137 	PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) 82567LM-4 ICH9"),
138 	PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) Gigabit CT 82574L"),
139 	PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) 82574L-Apple"),
140 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) 82567LM-2 ICH10"),
141 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) 82567LF-2 ICH10"),
142 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) 82567V-2 ICH10"),
143 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) 82567LM-3 ICH10"),
144 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) 82567LF-3 ICH10"),
145 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) 82567V-4 ICH10"),
146 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) 82577LM"),
147 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) 82577LC"),
148 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) 82578DM"),
149 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) 82578DC"),
150 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) 82579LM"),
151 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) 82579V"),
152 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) I217-LM LPT"),
153 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) I217-V LPT"),
154 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) I218-LM LPTLP"),
155 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) I218-V LPTLP"),
156 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) I218-LM (2)"),
157 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) I218-V (2)"),
158 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) I218-LM (3)"),
159 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) I218-V (3)"),
160 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) I219-LM SPT"),
161 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) I219-V SPT"),
162 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) I219-LM SPT-H(2)"),
163 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) I219-V SPT-H(2)"),
164 	PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) I219-LM LBG(3)"),
165 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) I219-LM SPT(4)"),
166 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) I219-V SPT(4)"),
167 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) I219-LM SPT(5)"),
168 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) I219-V SPT(5)"),
169 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) I219-LM CNP(6)"),
170 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) I219-V CNP(6)"),
171 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) I219-LM CNP(7)"),
172 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) I219-V CNP(7)"),
173 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) I219-LM ICP(8)"),
174 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) I219-V ICP(8)"),
175 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) I219-LM ICP(9)"),
176 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) I219-V ICP(9)"),
177 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10, "Intel(R) I219-LM CMP(10)"),
178 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10, "Intel(R) I219-V CMP(10)"),
179 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11, "Intel(R) I219-LM CMP(11)"),
180 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11, "Intel(R) I219-V CMP(11)"),
181 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12, "Intel(R) I219-LM CMP(12)"),
182 	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12, "Intel(R) I219-V CMP(12)"),
183 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM13, "Intel(R) I219-LM TGP(13)"),
184 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V13, "Intel(R) I219-V TGP(13)"),
185 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM14, "Intel(R) I219-LM TGP(14)"),
186 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V14, "Intel(R) I219-V GTP(14)"),
187 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM15, "Intel(R) I219-LM TGP(15)"),
188 	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V15, "Intel(R) I219-V TGP(15)"),
189 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM16, "Intel(R) I219-LM ADL(16)"),
190 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V16, "Intel(R) I219-V ADL(16)"),
191 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM17, "Intel(R) I219-LM ADL(17)"),
192 	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V17, "Intel(R) I219-V ADL(17)"),
193 	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM18, "Intel(R) I219-LM MTP(18)"),
194 	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V18, "Intel(R) I219-V MTP(18)"),
195 	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM19, "Intel(R) I219-LM MTP(19)"),
196 	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V19, "Intel(R) I219-V MTP(19)"),
197 	/* required last entry */
198 	PVID_END
199 };
200 
201 static pci_vendor_info_t igb_vendor_info_array[] =
202 {
203 	/* Intel(R) - igb-class devices */
204 	PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 82575EB (Copper)"),
205 	PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 82575EB (SERDES)"),
206 	PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 VT 82575GB (Quad Copper)"),
207 	PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 82576"),
208 	PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 82576NS"),
209 	PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 82576NS (SERDES)"),
210 	PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 EF 82576 (Dual Fiber)"),
211 	PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 82576 (Dual SERDES)"),
212 	PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 ET 82576 (Quad SERDES)"),
213 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 ET 82576 (Quad Copper)"),
214 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 ET(2) 82576 (Quad Copper)"),
215 	PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 82576 Virtual Function"),
216 	PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) I340 82580 (Copper)"),
217 	PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) I340 82580 (Fiber)"),
218 	PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) I340 82580 (SERDES)"),
219 	PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) I340 82580 (SGMII)"),
220 	PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) I340-T2 82580 (Dual Copper)"),
221 	PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) I340-F4 82580 (Quad Fiber)"),
222 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) DH89XXCC (SERDES)"),
223 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) I347-AT4 DH89XXCC"),
224 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) DH89XXCC (SFP)"),
225 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) DH89XXCC (Backplane)"),
226 	PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) I350 (Copper)"),
227 	PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) I350 (Fiber)"),
228 	PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) I350 (SERDES)"),
229 	PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) I350 (SGMII)"),
230 	PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) I350 Virtual Function"),
231 	PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) I210 (Copper)"),
232 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) I210 IT (Copper)"),
233 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) I210 (OEM)"),
234 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) I210 Flashless (Copper)"),
235 	PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) I210 Flashless (SERDES)"),
236 	PVID(0x8086, E1000_DEV_ID_I210_SGMII_FLASHLESS, "Intel(R) I210 Flashless (SGMII)"),
237 	PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) I210 (Fiber)"),
238 	PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) I210 (SERDES)"),
239 	PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) I210 (SGMII)"),
240 	PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) I211 (Copper)"),
241 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) I354 (1.0 GbE Backplane)"),
242 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) I354 (2.5 GbE Backplane)"),
243 	PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) I354 (SGMII)"),
244 	/* required last entry */
245 	PVID_END
246 };
247 
248 /*********************************************************************
249  *  Function prototypes
250  *********************************************************************/
251 static void	*em_register(device_t dev);
252 static void	*igb_register(device_t dev);
253 static int	em_if_attach_pre(if_ctx_t ctx);
254 static int	em_if_attach_post(if_ctx_t ctx);
255 static int	em_if_detach(if_ctx_t ctx);
256 static int	em_if_shutdown(if_ctx_t ctx);
257 static int	em_if_suspend(if_ctx_t ctx);
258 static int	em_if_resume(if_ctx_t ctx);
259 
260 static int	em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets);
261 static int	em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets);
262 static void	em_if_queues_free(if_ctx_t ctx);
263 
264 static uint64_t	em_if_get_counter(if_ctx_t, ift_counter);
265 static void	em_if_init(if_ctx_t ctx);
266 static void	em_if_stop(if_ctx_t ctx);
267 static void	em_if_media_status(if_ctx_t, struct ifmediareq *);
268 static int	em_if_media_change(if_ctx_t ctx);
269 static int	em_if_mtu_set(if_ctx_t ctx, uint32_t mtu);
270 static void	em_if_timer(if_ctx_t ctx, uint16_t qid);
271 static void	em_if_vlan_register(if_ctx_t ctx, u16 vtag);
272 static void	em_if_vlan_unregister(if_ctx_t ctx, u16 vtag);
273 static void	em_if_watchdog_reset(if_ctx_t ctx);
274 static bool	em_if_needs_restart(if_ctx_t ctx, enum iflib_restart_event event);
275 
276 static void	em_identify_hardware(if_ctx_t ctx);
277 static int	em_allocate_pci_resources(if_ctx_t ctx);
278 static void	em_free_pci_resources(if_ctx_t ctx);
279 static void	em_reset(if_ctx_t ctx);
280 static int	em_setup_interface(if_ctx_t ctx);
281 static int	em_setup_msix(if_ctx_t ctx);
282 
283 static void	em_initialize_transmit_unit(if_ctx_t ctx);
284 static void	em_initialize_receive_unit(if_ctx_t ctx);
285 
286 static void	em_if_intr_enable(if_ctx_t ctx);
287 static void	em_if_intr_disable(if_ctx_t ctx);
288 static void	igb_if_intr_enable(if_ctx_t ctx);
289 static void	igb_if_intr_disable(if_ctx_t ctx);
290 static int	em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
291 static int	em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
292 static int	igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
293 static int	igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
294 static void	em_if_multi_set(if_ctx_t ctx);
295 static void	em_if_update_admin_status(if_ctx_t ctx);
296 static void	em_if_debug(if_ctx_t ctx);
297 static void	em_update_stats_counters(struct e1000_softc *);
298 static void	em_add_hw_stats(struct e1000_softc *);
299 static int	em_if_set_promisc(if_ctx_t ctx, int flags);
300 static bool	em_if_vlan_filter_capable(struct e1000_softc *);
301 static bool	em_if_vlan_filter_used(struct e1000_softc *);
302 static void	em_if_vlan_filter_enable(struct e1000_softc *);
303 static void	em_if_vlan_filter_disable(struct e1000_softc *);
304 static void	em_if_vlan_filter_write(struct e1000_softc *);
305 static void	em_setup_vlan_hw_support(struct e1000_softc *);
306 static int	em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
307 static void	em_print_nvm_info(struct e1000_softc *);
308 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
309 static int	em_get_rs(SYSCTL_HANDLER_ARGS);
310 static void	em_print_debug_info(struct e1000_softc *);
311 static int 	em_is_valid_ether_addr(u8 *);
312 static int	em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
313 static void	em_add_int_delay_sysctl(struct e1000_softc *, const char *,
314 		    const char *, struct em_int_delay_info *, int, int);
315 /* Management and WOL Support */
316 static void	em_init_manageability(struct e1000_softc *);
317 static void	em_release_manageability(struct e1000_softc *);
318 static void	em_get_hw_control(struct e1000_softc *);
319 static void	em_release_hw_control(struct e1000_softc *);
320 static void	em_get_wakeup(if_ctx_t ctx);
321 static void	em_enable_wakeup(if_ctx_t ctx);
322 static int	em_enable_phy_wakeup(struct e1000_softc *);
323 static void	em_disable_aspm(struct e1000_softc *);
324 
325 int		em_intr(void *arg);
326 
327 /* MSI-X handlers */
328 static int	em_if_msix_intr_assign(if_ctx_t, int);
329 static int	em_msix_link(void *);
330 static void	em_handle_link(void *context);
331 
332 static void	em_enable_vectors_82574(if_ctx_t);
333 
334 static int	em_set_flowcntl(SYSCTL_HANDLER_ARGS);
335 static int	em_sysctl_eee(SYSCTL_HANDLER_ARGS);
336 static void	em_if_led_func(if_ctx_t ctx, int onoff);
337 
338 static int	em_get_regs(SYSCTL_HANDLER_ARGS);
339 
340 static void	lem_smartspeed(struct e1000_softc *);
341 static void	igb_configure_queues(struct e1000_softc *);
342 
343 
344 /*********************************************************************
345  *  FreeBSD Device Interface Entry Points
346  *********************************************************************/
347 static device_method_t em_methods[] = {
348 	/* Device interface */
349 	DEVMETHOD(device_register, em_register),
350 	DEVMETHOD(device_probe, iflib_device_probe),
351 	DEVMETHOD(device_attach, iflib_device_attach),
352 	DEVMETHOD(device_detach, iflib_device_detach),
353 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
354 	DEVMETHOD(device_suspend, iflib_device_suspend),
355 	DEVMETHOD(device_resume, iflib_device_resume),
356 	DEVMETHOD_END
357 };
358 
359 static device_method_t igb_methods[] = {
360 	/* Device interface */
361 	DEVMETHOD(device_register, igb_register),
362 	DEVMETHOD(device_probe, iflib_device_probe),
363 	DEVMETHOD(device_attach, iflib_device_attach),
364 	DEVMETHOD(device_detach, iflib_device_detach),
365 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
366 	DEVMETHOD(device_suspend, iflib_device_suspend),
367 	DEVMETHOD(device_resume, iflib_device_resume),
368 	DEVMETHOD_END
369 };
370 
371 
372 static driver_t em_driver = {
373 	"em", em_methods, sizeof(struct e1000_softc),
374 };
375 
376 static devclass_t em_devclass;
377 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
378 
379 MODULE_DEPEND(em, pci, 1, 1, 1);
380 MODULE_DEPEND(em, ether, 1, 1, 1);
381 MODULE_DEPEND(em, iflib, 1, 1, 1);
382 
383 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
384 
385 static driver_t igb_driver = {
386 	"igb", igb_methods, sizeof(struct e1000_softc),
387 };
388 
389 static devclass_t igb_devclass;
390 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
391 
392 MODULE_DEPEND(igb, pci, 1, 1, 1);
393 MODULE_DEPEND(igb, ether, 1, 1, 1);
394 MODULE_DEPEND(igb, iflib, 1, 1, 1);
395 
396 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
397 
398 static device_method_t em_if_methods[] = {
399 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
400 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
401 	DEVMETHOD(ifdi_detach, em_if_detach),
402 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
403 	DEVMETHOD(ifdi_suspend, em_if_suspend),
404 	DEVMETHOD(ifdi_resume, em_if_resume),
405 	DEVMETHOD(ifdi_init, em_if_init),
406 	DEVMETHOD(ifdi_stop, em_if_stop),
407 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
408 	DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
409 	DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
410 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
411 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
412 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
413 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
414 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
415 	DEVMETHOD(ifdi_media_status, em_if_media_status),
416 	DEVMETHOD(ifdi_media_change, em_if_media_change),
417 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
418 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
419 	DEVMETHOD(ifdi_timer, em_if_timer),
420 	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
421 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
422 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
423 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
424 	DEVMETHOD(ifdi_led_func, em_if_led_func),
425 	DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
426 	DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
427 	DEVMETHOD(ifdi_debug, em_if_debug),
428 	DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
429 	DEVMETHOD_END
430 };
431 
432 static driver_t em_if_driver = {
433 	"em_if", em_if_methods, sizeof(struct e1000_softc)
434 };
435 
436 static device_method_t igb_if_methods[] = {
437 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
438 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
439 	DEVMETHOD(ifdi_detach, em_if_detach),
440 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
441 	DEVMETHOD(ifdi_suspend, em_if_suspend),
442 	DEVMETHOD(ifdi_resume, em_if_resume),
443 	DEVMETHOD(ifdi_init, em_if_init),
444 	DEVMETHOD(ifdi_stop, em_if_stop),
445 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
446 	DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
447 	DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
448 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
449 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
450 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
451 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
452 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
453 	DEVMETHOD(ifdi_media_status, em_if_media_status),
454 	DEVMETHOD(ifdi_media_change, em_if_media_change),
455 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
456 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
457 	DEVMETHOD(ifdi_timer, em_if_timer),
458 	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
459 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
460 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
461 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
462 	DEVMETHOD(ifdi_led_func, em_if_led_func),
463 	DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
464 	DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
465 	DEVMETHOD(ifdi_debug, em_if_debug),
466 	DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
467 	DEVMETHOD_END
468 };
469 
470 static driver_t igb_if_driver = {
471 	"igb_if", igb_if_methods, sizeof(struct e1000_softc)
472 };
473 
474 /*********************************************************************
475  *  Tunable default values.
476  *********************************************************************/
477 
478 #define EM_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
479 #define EM_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
480 
481 #define MAX_INTS_PER_SEC	8000
482 #define DEFAULT_ITR		(1000000000/(MAX_INTS_PER_SEC * 256))
483 
484 /* Allow common code without TSO */
485 #ifndef CSUM_TSO
486 #define CSUM_TSO	0
487 #endif
488 
489 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
490     "EM driver parameters");
491 
492 static int em_disable_crc_stripping = 0;
493 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
494     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
495 
496 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
497 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
498 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
499     0, "Default transmit interrupt delay in usecs");
500 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
501     0, "Default receive interrupt delay in usecs");
502 
503 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
504 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
505 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
506     &em_tx_abs_int_delay_dflt, 0,
507     "Default transmit interrupt delay limit in usecs");
508 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
509     &em_rx_abs_int_delay_dflt, 0,
510     "Default receive interrupt delay limit in usecs");
511 
512 static int em_smart_pwr_down = false;
513 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
514     0, "Set to true to leave smart power down enabled on newer adapters");
515 
516 /* Controls whether promiscuous also shows bad packets */
517 static int em_debug_sbp = false;
518 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
519     "Show bad packets in promiscuous mode");
520 
521 /* How many packets rxeof tries to clean at a time */
522 static int em_rx_process_limit = 100;
523 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
524     &em_rx_process_limit, 0,
525     "Maximum number of received packets to process "
526     "at a time, -1 means unlimited");
527 
528 /* Energy efficient ethernet - default to OFF */
529 static int eee_setting = 1;
530 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
531     "Enable Energy Efficient Ethernet");
532 
533 /*
534 ** Tuneable Interrupt rate
535 */
536 static int em_max_interrupt_rate = 8000;
537 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
538     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
539 
540 
541 
542 /* Global used in WOL setup with multiport cards */
543 static int global_quad_port_a = 0;
544 
545 extern struct if_txrx igb_txrx;
546 extern struct if_txrx em_txrx;
547 extern struct if_txrx lem_txrx;
548 
549 static struct if_shared_ctx em_sctx_init = {
550 	.isc_magic = IFLIB_MAGIC,
551 	.isc_q_align = PAGE_SIZE,
552 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
553 	.isc_tx_maxsegsize = PAGE_SIZE,
554 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
555 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
556 	.isc_rx_maxsize = MJUM9BYTES,
557 	.isc_rx_nsegments = 1,
558 	.isc_rx_maxsegsize = MJUM9BYTES,
559 	.isc_nfl = 1,
560 	.isc_nrxqs = 1,
561 	.isc_ntxqs = 1,
562 	.isc_admin_intrcnt = 1,
563 	.isc_vendor_info = em_vendor_info_array,
564 	.isc_driver_version = em_driver_version,
565 	.isc_driver = &em_if_driver,
566 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
567 
568 	.isc_nrxd_min = {EM_MIN_RXD},
569 	.isc_ntxd_min = {EM_MIN_TXD},
570 	.isc_nrxd_max = {EM_MAX_RXD},
571 	.isc_ntxd_max = {EM_MAX_TXD},
572 	.isc_nrxd_default = {EM_DEFAULT_RXD},
573 	.isc_ntxd_default = {EM_DEFAULT_TXD},
574 };
575 
576 static struct if_shared_ctx igb_sctx_init = {
577 	.isc_magic = IFLIB_MAGIC,
578 	.isc_q_align = PAGE_SIZE,
579 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
580 	.isc_tx_maxsegsize = PAGE_SIZE,
581 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
582 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
583 	.isc_rx_maxsize = MJUM9BYTES,
584 	.isc_rx_nsegments = 1,
585 	.isc_rx_maxsegsize = MJUM9BYTES,
586 	.isc_nfl = 1,
587 	.isc_nrxqs = 1,
588 	.isc_ntxqs = 1,
589 	.isc_admin_intrcnt = 1,
590 	.isc_vendor_info = igb_vendor_info_array,
591 	.isc_driver_version = em_driver_version,
592 	.isc_driver = &igb_if_driver,
593 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
594 
595 	.isc_nrxd_min = {EM_MIN_RXD},
596 	.isc_ntxd_min = {EM_MIN_TXD},
597 	.isc_nrxd_max = {IGB_MAX_RXD},
598 	.isc_ntxd_max = {IGB_MAX_TXD},
599 	.isc_nrxd_default = {EM_DEFAULT_RXD},
600 	.isc_ntxd_default = {EM_DEFAULT_TXD},
601 };
602 
603 /*****************************************************************
604  *
605  * Dump Registers
606  *
607  ****************************************************************/
608 #define IGB_REGS_LEN 739
609 
610 static int em_get_regs(SYSCTL_HANDLER_ARGS)
611 {
612 	struct e1000_softc *sc = (struct e1000_softc *)arg1;
613 	struct e1000_hw *hw = &sc->hw;
614 	struct sbuf *sb;
615 	u32 *regs_buff;
616 	int rc;
617 
618 	regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
619 	memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
620 
621 	rc = sysctl_wire_old_buffer(req, 0);
622 	MPASS(rc == 0);
623 	if (rc != 0) {
624 		free(regs_buff, M_DEVBUF);
625 		return (rc);
626 	}
627 
628 	sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
629 	MPASS(sb != NULL);
630 	if (sb == NULL) {
631 		free(regs_buff, M_DEVBUF);
632 		return (ENOMEM);
633 	}
634 
635 	/* General Registers */
636 	regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
637 	regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
638 	regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
639 	regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
640 	regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
641 	regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
642 	regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
643 	regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
644 	regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
645 	regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
646 	regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
647 	regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
648 	regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
649 	regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
650 	regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
651 	regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
652 	regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
653 	regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
654 	regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
655 	regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
656 	regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
657 	regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
658 
659 	sbuf_printf(sb, "General Registers\n");
660 	sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
661 	sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
662 	sbuf_printf(sb, "\tCTRL_EXT\t %08x\n\n", regs_buff[2]);
663 
664 	sbuf_printf(sb, "Interrupt Registers\n");
665 	sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
666 
667 	sbuf_printf(sb, "RX Registers\n");
668 	sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
669 	sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
670 	sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
671 	sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
672 	sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
673 	sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
674 	sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
675 
676 	sbuf_printf(sb, "TX Registers\n");
677 	sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
678 	sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
679 	sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
680 	sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
681 	sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
682 	sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
683 	sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
684 	sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
685 	sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
686 	sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
687 	sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
688 
689 	free(regs_buff, M_DEVBUF);
690 
691 #ifdef DUMP_DESCS
692 	{
693 		if_softc_ctx_t scctx = sc->shared;
694 		struct rx_ring *rxr = &rx_que->rxr;
695 		struct tx_ring *txr = &tx_que->txr;
696 		int ntxd = scctx->isc_ntxd[0];
697 		int nrxd = scctx->isc_nrxd[0];
698 		int j;
699 
700 	for (j = 0; j < nrxd; j++) {
701 		u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
702 		u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
703 		sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
704 	}
705 
706 	for (j = 0; j < min(ntxd, 256); j++) {
707 		unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
708 
709 		sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
710 			    j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
711 			    buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
712 
713 	}
714 	}
715 #endif
716 
717 	rc = sbuf_finish(sb);
718 	sbuf_delete(sb);
719 	return(rc);
720 }
721 
722 static void *
723 em_register(device_t dev)
724 {
725 	return (&em_sctx_init);
726 }
727 
728 static void *
729 igb_register(device_t dev)
730 {
731 	return (&igb_sctx_init);
732 }
733 
734 static int
735 em_set_num_queues(if_ctx_t ctx)
736 {
737 	struct e1000_softc *sc = iflib_get_softc(ctx);
738 	int maxqueues;
739 
740 	/* Sanity check based on HW */
741 	switch (sc->hw.mac.type) {
742 	case e1000_82576:
743 	case e1000_82580:
744 	case e1000_i350:
745 	case e1000_i354:
746 		maxqueues = 8;
747 		break;
748 	case e1000_i210:
749 	case e1000_82575:
750 		maxqueues = 4;
751 		break;
752 	case e1000_i211:
753 	case e1000_82574:
754 		maxqueues = 2;
755 		break;
756 	default:
757 		maxqueues = 1;
758 		break;
759 	}
760 
761 	return (maxqueues);
762 }
763 
764 #define	LEM_CAPS							\
765     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
766     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER
767 
768 #define	EM_CAPS								\
769     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
770     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |	\
771     IFCAP_LRO | IFCAP_VLAN_HWTSO
772 
773 #define	IGB_CAPS							\
774     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
775     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |	\
776     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 |\
777     IFCAP_TSO6
778 
779 /*********************************************************************
780  *  Device initialization routine
781  *
782  *  The attach entry point is called when the driver is being loaded.
783  *  This routine identifies the type of hardware, allocates all resources
784  *  and initializes the hardware.
785  *
786  *  return 0 on success, positive on failure
787  *********************************************************************/
788 static int
789 em_if_attach_pre(if_ctx_t ctx)
790 {
791 	struct e1000_softc *sc;
792 	if_softc_ctx_t scctx;
793 	device_t dev;
794 	struct e1000_hw *hw;
795 	int error = 0;
796 
797 	INIT_DEBUGOUT("em_if_attach_pre: begin");
798 	dev = iflib_get_dev(ctx);
799 	sc = iflib_get_softc(ctx);
800 
801 	sc->ctx = sc->osdep.ctx = ctx;
802 	sc->dev = sc->osdep.dev = dev;
803 	scctx = sc->shared = iflib_get_softc_ctx(ctx);
804 	sc->media = iflib_get_media(ctx);
805 	hw = &sc->hw;
806 
807 	sc->tx_process_limit = scctx->isc_ntxd[0];
808 
809 	/* SYSCTL stuff */
810 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
811 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
812 	    OID_AUTO, "nvm", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
813 	    sc, 0, em_sysctl_nvm_info, "I", "NVM Information");
814 
815 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
816 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
817 	    OID_AUTO, "debug", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
818 	    sc, 0, em_sysctl_debug_info, "I", "Debug Information");
819 
820 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
821 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
822 	    OID_AUTO, "fc", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
823 	    sc, 0, em_set_flowcntl, "I", "Flow Control");
824 
825 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
826 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
827 	    OID_AUTO, "reg_dump",
828 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
829 	    em_get_regs, "A", "Dump Registers");
830 
831 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
832 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
833 	    OID_AUTO, "rs_dump",
834 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
835 	    em_get_rs, "I", "Dump RS indexes");
836 
837 	/* Determine hardware and mac info */
838 	em_identify_hardware(ctx);
839 
840 	scctx->isc_tx_nsegments = EM_MAX_SCATTER;
841 	scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
842 	if (bootverbose)
843 		device_printf(dev, "attach_pre capping queues at %d\n",
844 		    scctx->isc_ntxqsets_max);
845 
846 	if (hw->mac.type >= igb_mac_min) {
847 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
848 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
849 		scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
850 		scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
851 		scctx->isc_txrx = &igb_txrx;
852 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
853 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
854 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
855 		scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
856 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
857 		     CSUM_IP6_TCP | CSUM_IP6_UDP;
858 		if (hw->mac.type != e1000_82575)
859 			scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
860 		/*
861 		** Some new devices, as with ixgbe, now may
862 		** use a different BAR, so we need to keep
863 		** track of which is used.
864 		*/
865 		scctx->isc_msix_bar = pci_msix_table_bar(dev);
866 	} else if (hw->mac.type >= em_mac_min) {
867 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
868 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
869 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
870 		scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
871 		scctx->isc_txrx = &em_txrx;
872 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
873 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
874 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
875 		scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
876 		/*
877 		 * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO}
878 		 * by default as we don't have workarounds for all associated
879 		 * silicon errata.  E. g., with several MACs such as 82573E,
880 		 * TSO only works at Gigabit speed and otherwise can cause the
881 		 * hardware to hang (which also would be next to impossible to
882 		 * work around given that already queued TSO-using descriptors
883 		 * would need to be flushed and vlan(4) reconfigured at runtime
884 		 * in case of a link speed change).  Moreover, MACs like 82579
885 		 * still can hang at Gigabit even with all publicly documented
886 		 * TSO workarounds implemented.  Generally, the penality of
887 		 * these workarounds is rather high and may involve copying
888 		 * mbuf data around so advantages of TSO lapse.  Still, TSO may
889 		 * work for a few MACs of this class - at least when sticking
890 		 * with Gigabit - in which case users may enable TSO manually.
891 		 */
892 		scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
893 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
894 		/*
895 		 * We support MSI-X with 82574 only, but indicate to iflib(4)
896 		 * that it shall give MSI at least a try with other devices.
897 		 */
898 		if (hw->mac.type == e1000_82574) {
899 			scctx->isc_msix_bar = pci_msix_table_bar(dev);;
900 		} else {
901 			scctx->isc_msix_bar = -1;
902 			scctx->isc_disable_msix = 1;
903 		}
904 	} else {
905 		scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
906 		scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
907 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
908 		scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
909 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP;
910 		scctx->isc_txrx = &lem_txrx;
911 		scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
912 		if (hw->mac.type < e1000_82543)
913 			scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM);
914 		/* 82541ER doesn't do HW tagging */
915 		if (hw->device_id == E1000_DEV_ID_82541ER || hw->device_id == E1000_DEV_ID_82541ER_LOM)
916 			scctx->isc_capenable &= ~IFCAP_VLAN_HWTAGGING;
917 		/* INTx only */
918 		scctx->isc_msix_bar = 0;
919 	}
920 
921 	/* Setup PCI resources */
922 	if (em_allocate_pci_resources(ctx)) {
923 		device_printf(dev, "Allocation of PCI resources failed\n");
924 		error = ENXIO;
925 		goto err_pci;
926 	}
927 
928 	/*
929 	** For ICH8 and family we need to
930 	** map the flash memory, and this
931 	** must happen after the MAC is
932 	** identified
933 	*/
934 	if ((hw->mac.type == e1000_ich8lan) ||
935 	    (hw->mac.type == e1000_ich9lan) ||
936 	    (hw->mac.type == e1000_ich10lan) ||
937 	    (hw->mac.type == e1000_pchlan) ||
938 	    (hw->mac.type == e1000_pch2lan) ||
939 	    (hw->mac.type == e1000_pch_lpt)) {
940 		int rid = EM_BAR_TYPE_FLASH;
941 		sc->flash = bus_alloc_resource_any(dev,
942 		    SYS_RES_MEMORY, &rid, RF_ACTIVE);
943 		if (sc->flash == NULL) {
944 			device_printf(dev, "Mapping of Flash failed\n");
945 			error = ENXIO;
946 			goto err_pci;
947 		}
948 		/* This is used in the shared code */
949 		hw->flash_address = (u8 *)sc->flash;
950 		sc->osdep.flash_bus_space_tag =
951 		    rman_get_bustag(sc->flash);
952 		sc->osdep.flash_bus_space_handle =
953 		    rman_get_bushandle(sc->flash);
954 	}
955 	/*
956 	** In the new SPT device flash is not  a
957 	** separate BAR, rather it is also in BAR0,
958 	** so use the same tag and an offset handle for the
959 	** FLASH read/write macros in the shared code.
960 	*/
961 	else if (hw->mac.type >= e1000_pch_spt) {
962 		sc->osdep.flash_bus_space_tag =
963 		    sc->osdep.mem_bus_space_tag;
964 		sc->osdep.flash_bus_space_handle =
965 		    sc->osdep.mem_bus_space_handle
966 		    + E1000_FLASH_BASE_ADDR;
967 	}
968 
969 	/* Do Shared Code initialization */
970 	error = e1000_setup_init_funcs(hw, true);
971 	if (error) {
972 		device_printf(dev, "Setup of Shared code failed, error %d\n",
973 		    error);
974 		error = ENXIO;
975 		goto err_pci;
976 	}
977 
978 	em_setup_msix(ctx);
979 	e1000_get_bus_info(hw);
980 
981 	/* Set up some sysctls for the tunable interrupt delays */
982 	em_add_int_delay_sysctl(sc, "rx_int_delay",
983 	    "receive interrupt delay in usecs", &sc->rx_int_delay,
984 	    E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
985 	em_add_int_delay_sysctl(sc, "tx_int_delay",
986 	    "transmit interrupt delay in usecs", &sc->tx_int_delay,
987 	    E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
988 	em_add_int_delay_sysctl(sc, "rx_abs_int_delay",
989 	    "receive interrupt delay limit in usecs",
990 	    &sc->rx_abs_int_delay,
991 	    E1000_REGISTER(hw, E1000_RADV),
992 	    em_rx_abs_int_delay_dflt);
993 	em_add_int_delay_sysctl(sc, "tx_abs_int_delay",
994 	    "transmit interrupt delay limit in usecs",
995 	    &sc->tx_abs_int_delay,
996 	    E1000_REGISTER(hw, E1000_TADV),
997 	    em_tx_abs_int_delay_dflt);
998 	em_add_int_delay_sysctl(sc, "itr",
999 	    "interrupt delay limit in usecs/4",
1000 	    &sc->tx_itr,
1001 	    E1000_REGISTER(hw, E1000_ITR),
1002 	    DEFAULT_ITR);
1003 
1004 	hw->mac.autoneg = DO_AUTO_NEG;
1005 	hw->phy.autoneg_wait_to_complete = false;
1006 	hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1007 
1008 	if (hw->mac.type < em_mac_min) {
1009 		e1000_init_script_state_82541(hw, true);
1010 		e1000_set_tbi_compatibility_82543(hw, true);
1011 	}
1012 	/* Copper options */
1013 	if (hw->phy.media_type == e1000_media_type_copper) {
1014 		hw->phy.mdix = AUTO_ALL_MODES;
1015 		hw->phy.disable_polarity_correction = false;
1016 		hw->phy.ms_type = EM_MASTER_SLAVE;
1017 	}
1018 
1019 	/*
1020 	 * Set the frame limits assuming
1021 	 * standard ethernet sized frames.
1022 	 */
1023 	scctx->isc_max_frame_size = hw->mac.max_frame_size =
1024 	    ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
1025 
1026 	/*
1027 	 * This controls when hardware reports transmit completion
1028 	 * status.
1029 	 */
1030 	hw->mac.report_tx_early = 1;
1031 
1032 	/* Allocate multicast array memory. */
1033 	sc->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
1034 	    MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1035 	if (sc->mta == NULL) {
1036 		device_printf(dev, "Can not allocate multicast setup array\n");
1037 		error = ENOMEM;
1038 		goto err_late;
1039 	}
1040 
1041 	/* Check SOL/IDER usage */
1042 	if (e1000_check_reset_block(hw))
1043 		device_printf(dev, "PHY reset is blocked"
1044 			      " due to SOL/IDER session.\n");
1045 
1046 	/* Sysctl for setting Energy Efficient Ethernet */
1047 	hw->dev_spec.ich8lan.eee_disable = eee_setting;
1048 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1049 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1050 	    OID_AUTO, "eee_control",
1051 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1052 	    sc, 0, em_sysctl_eee, "I",
1053 	    "Disable Energy Efficient Ethernet");
1054 
1055 	/*
1056 	** Start from a known state, this is
1057 	** important in reading the nvm and
1058 	** mac from that.
1059 	*/
1060 	e1000_reset_hw(hw);
1061 
1062 	/* Make sure we have a good EEPROM before we read from it */
1063 	if (e1000_validate_nvm_checksum(hw) < 0) {
1064 		/*
1065 		** Some PCI-E parts fail the first check due to
1066 		** the link being in sleep state, call it again,
1067 		** if it fails a second time its a real issue.
1068 		*/
1069 		if (e1000_validate_nvm_checksum(hw) < 0) {
1070 			device_printf(dev,
1071 			    "The EEPROM Checksum Is Not Valid\n");
1072 			error = EIO;
1073 			goto err_late;
1074 		}
1075 	}
1076 
1077 	/* Copy the permanent MAC address out of the EEPROM */
1078 	if (e1000_read_mac_addr(hw) < 0) {
1079 		device_printf(dev, "EEPROM read error while reading MAC"
1080 			      " address\n");
1081 		error = EIO;
1082 		goto err_late;
1083 	}
1084 
1085 	if (!em_is_valid_ether_addr(hw->mac.addr)) {
1086 		if (sc->vf_ifp) {
1087 			ether_gen_addr(iflib_get_ifp(ctx),
1088 			    (struct ether_addr *)hw->mac.addr);
1089 		} else {
1090 			device_printf(dev, "Invalid MAC address\n");
1091 			error = EIO;
1092 			goto err_late;
1093 		}
1094 	}
1095 
1096 	/* Disable ULP support */
1097 	e1000_disable_ulp_lpt_lp(hw, true);
1098 
1099 	/*
1100 	 * Get Wake-on-Lan and Management info for later use
1101 	 */
1102 	em_get_wakeup(ctx);
1103 
1104 	/* Enable only WOL MAGIC by default */
1105 	scctx->isc_capenable &= ~IFCAP_WOL;
1106 	if (sc->wol != 0)
1107 		scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1108 
1109 	iflib_set_mac(ctx, hw->mac.addr);
1110 
1111 	return (0);
1112 
1113 err_late:
1114 	em_release_hw_control(sc);
1115 err_pci:
1116 	em_free_pci_resources(ctx);
1117 	free(sc->mta, M_DEVBUF);
1118 
1119 	return (error);
1120 }
1121 
1122 static int
1123 em_if_attach_post(if_ctx_t ctx)
1124 {
1125 	struct e1000_softc *sc = iflib_get_softc(ctx);
1126 	struct e1000_hw *hw = &sc->hw;
1127 	int error = 0;
1128 
1129 	/* Setup OS specific network interface */
1130 	error = em_setup_interface(ctx);
1131 	if (error != 0) {
1132 		device_printf(sc->dev, "Interface setup failed: %d\n", error);
1133 		goto err_late;
1134 	}
1135 
1136 	em_reset(ctx);
1137 
1138 	/* Initialize statistics */
1139 	em_update_stats_counters(sc);
1140 	hw->mac.get_link_status = 1;
1141 	em_if_update_admin_status(ctx);
1142 	em_add_hw_stats(sc);
1143 
1144 	/* Non-AMT based hardware can now take control from firmware */
1145 	if (sc->has_manage && !sc->has_amt)
1146 		em_get_hw_control(sc);
1147 
1148 	INIT_DEBUGOUT("em_if_attach_post: end");
1149 
1150 	return (0);
1151 
1152 err_late:
1153 	/* upon attach_post() error, iflib calls _if_detach() to free resources. */
1154 	return (error);
1155 }
1156 
1157 /*********************************************************************
1158  *  Device removal routine
1159  *
1160  *  The detach entry point is called when the driver is being removed.
1161  *  This routine stops the adapter and deallocates all the resources
1162  *  that were allocated for driver operation.
1163  *
1164  *  return 0 on success, positive on failure
1165  *********************************************************************/
1166 static int
1167 em_if_detach(if_ctx_t ctx)
1168 {
1169 	struct e1000_softc	*sc = iflib_get_softc(ctx);
1170 
1171 	INIT_DEBUGOUT("em_if_detach: begin");
1172 
1173 	e1000_phy_hw_reset(&sc->hw);
1174 
1175 	em_release_manageability(sc);
1176 	em_release_hw_control(sc);
1177 	em_free_pci_resources(ctx);
1178 	free(sc->mta, M_DEVBUF);
1179 	sc->mta = NULL;
1180 
1181 	return (0);
1182 }
1183 
1184 /*********************************************************************
1185  *
1186  *  Shutdown entry point
1187  *
1188  **********************************************************************/
1189 
1190 static int
1191 em_if_shutdown(if_ctx_t ctx)
1192 {
1193 	return em_if_suspend(ctx);
1194 }
1195 
1196 /*
1197  * Suspend/resume device methods.
1198  */
1199 static int
1200 em_if_suspend(if_ctx_t ctx)
1201 {
1202 	struct e1000_softc *sc = iflib_get_softc(ctx);
1203 
1204 	em_release_manageability(sc);
1205 	em_release_hw_control(sc);
1206 	em_enable_wakeup(ctx);
1207 	return (0);
1208 }
1209 
1210 static int
1211 em_if_resume(if_ctx_t ctx)
1212 {
1213 	struct e1000_softc *sc = iflib_get_softc(ctx);
1214 
1215 	if (sc->hw.mac.type == e1000_pch2lan)
1216 		e1000_resume_workarounds_pchlan(&sc->hw);
1217 	em_if_init(ctx);
1218 	em_init_manageability(sc);
1219 
1220 	return(0);
1221 }
1222 
1223 static int
1224 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1225 {
1226 	int max_frame_size;
1227 	struct e1000_softc *sc = iflib_get_softc(ctx);
1228 	if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1229 
1230 	IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1231 
1232 	switch (sc->hw.mac.type) {
1233 	case e1000_82571:
1234 	case e1000_82572:
1235 	case e1000_ich9lan:
1236 	case e1000_ich10lan:
1237 	case e1000_pch2lan:
1238 	case e1000_pch_lpt:
1239 	case e1000_pch_spt:
1240 	case e1000_pch_cnp:
1241 	case e1000_pch_tgp:
1242 	case e1000_pch_adp:
1243 	case e1000_pch_mtp:
1244 	case e1000_82574:
1245 	case e1000_82583:
1246 	case e1000_80003es2lan:
1247 		/* 9K Jumbo Frame size */
1248 		max_frame_size = 9234;
1249 		break;
1250 	case e1000_pchlan:
1251 		max_frame_size = 4096;
1252 		break;
1253 	case e1000_82542:
1254 	case e1000_ich8lan:
1255 		/* Adapters that do not support jumbo frames */
1256 		max_frame_size = ETHER_MAX_LEN;
1257 		break;
1258 	default:
1259 		if (sc->hw.mac.type >= igb_mac_min)
1260 			max_frame_size = 9234;
1261 		else /* lem */
1262 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1263 	}
1264 	if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1265 		return (EINVAL);
1266 	}
1267 
1268 	scctx->isc_max_frame_size = sc->hw.mac.max_frame_size =
1269 	    mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1270 	return (0);
1271 }
1272 
1273 /*********************************************************************
1274  *  Init entry point
1275  *
1276  *  This routine is used in two ways. It is used by the stack as
1277  *  init entry point in network interface structure. It is also used
1278  *  by the driver as a hw/sw initialization routine to get to a
1279  *  consistent state.
1280  *
1281  **********************************************************************/
1282 static void
1283 em_if_init(if_ctx_t ctx)
1284 {
1285 	struct e1000_softc *sc = iflib_get_softc(ctx);
1286 	if_softc_ctx_t scctx = sc->shared;
1287 	struct ifnet *ifp = iflib_get_ifp(ctx);
1288 	struct em_tx_queue *tx_que;
1289 	int i;
1290 
1291 	INIT_DEBUGOUT("em_if_init: begin");
1292 
1293 	/* Get the latest mac address, User can use a LAA */
1294 	bcopy(if_getlladdr(ifp), sc->hw.mac.addr,
1295 	    ETHER_ADDR_LEN);
1296 
1297 	/* Put the address into the Receive Address Array */
1298 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1299 
1300 	/*
1301 	 * With the 82571 adapter, RAR[0] may be overwritten
1302 	 * when the other port is reset, we make a duplicate
1303 	 * in RAR[14] for that eventuality, this assures
1304 	 * the interface continues to function.
1305 	 */
1306 	if (sc->hw.mac.type == e1000_82571) {
1307 		e1000_set_laa_state_82571(&sc->hw, true);
1308 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1309 		    E1000_RAR_ENTRIES - 1);
1310 	}
1311 
1312 
1313 	/* Initialize the hardware */
1314 	em_reset(ctx);
1315 	em_if_update_admin_status(ctx);
1316 
1317 	for (i = 0, tx_que = sc->tx_queues; i < sc->tx_num_queues; i++, tx_que++) {
1318 		struct tx_ring *txr = &tx_que->txr;
1319 
1320 		txr->tx_rs_cidx = txr->tx_rs_pidx;
1321 
1322 		/* Initialize the last processed descriptor to be the end of
1323 		 * the ring, rather than the start, so that we avoid an
1324 		 * off-by-one error when calculating how many descriptors are
1325 		 * done in the credits_update function.
1326 		 */
1327 		txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1328 	}
1329 
1330 	/* Setup VLAN support, basic and offload if available */
1331 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1332 
1333 	/* Clear bad data from Rx FIFOs */
1334 	if (sc->hw.mac.type >= igb_mac_min)
1335 		e1000_rx_fifo_flush_base(&sc->hw);
1336 
1337 	/* Configure for OS presence */
1338 	em_init_manageability(sc);
1339 
1340 	/* Prepare transmit descriptors and buffers */
1341 	em_initialize_transmit_unit(ctx);
1342 
1343 	/* Setup Multicast table */
1344 	em_if_multi_set(ctx);
1345 
1346 	sc->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1347 	em_initialize_receive_unit(ctx);
1348 
1349 	/* Set up VLAN support and filter */
1350 	em_setup_vlan_hw_support(sc);
1351 
1352 	/* Don't lose promiscuous settings */
1353 	em_if_set_promisc(ctx, if_getflags(ifp));
1354 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1355 
1356 	/* MSI-X configuration for 82574 */
1357 	if (sc->hw.mac.type == e1000_82574) {
1358 		int tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1359 
1360 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1361 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1362 		/* Set the IVAR - interrupt vector routing. */
1363 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, sc->ivars);
1364 	} else if (sc->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1365 		igb_configure_queues(sc);
1366 
1367 	/* this clears any pending interrupts */
1368 	E1000_READ_REG(&sc->hw, E1000_ICR);
1369 	E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1370 
1371 	/* AMT based hardware can now take control from firmware */
1372 	if (sc->has_manage && sc->has_amt)
1373 		em_get_hw_control(sc);
1374 
1375 	/* Set Energy Efficient Ethernet */
1376 	if (sc->hw.mac.type >= igb_mac_min &&
1377 	    sc->hw.phy.media_type == e1000_media_type_copper) {
1378 		if (sc->hw.mac.type == e1000_i354)
1379 			e1000_set_eee_i354(&sc->hw, true, true);
1380 		else
1381 			e1000_set_eee_i350(&sc->hw, true, true);
1382 	}
1383 }
1384 
1385 /*********************************************************************
1386  *
1387  *  Fast Legacy/MSI Combined Interrupt Service routine
1388  *
1389  *********************************************************************/
1390 int
1391 em_intr(void *arg)
1392 {
1393 	struct e1000_softc *sc = arg;
1394 	if_ctx_t ctx = sc->ctx;
1395 	u32 reg_icr;
1396 
1397 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1398 
1399 	/* Hot eject? */
1400 	if (reg_icr == 0xffffffff)
1401 		return FILTER_STRAY;
1402 
1403 	/* Definitely not our interrupt. */
1404 	if (reg_icr == 0x0)
1405 		return FILTER_STRAY;
1406 
1407 	/*
1408 	 * Starting with the 82571 chip, bit 31 should be used to
1409 	 * determine whether the interrupt belongs to us.
1410 	 */
1411 	if (sc->hw.mac.type >= e1000_82571 &&
1412 	    (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1413 		return FILTER_STRAY;
1414 
1415 	/*
1416 	 * Only MSI-X interrupts have one-shot behavior by taking advantage
1417 	 * of the EIAC register.  Thus, explicitly disable interrupts.  This
1418 	 * also works around the MSI message reordering errata on certain
1419 	 * systems.
1420 	 */
1421 	IFDI_INTR_DISABLE(ctx);
1422 
1423 	/* Link status change */
1424 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1425 		em_handle_link(ctx);
1426 
1427 	if (reg_icr & E1000_ICR_RXO)
1428 		sc->rx_overruns++;
1429 
1430 	return (FILTER_SCHEDULE_THREAD);
1431 }
1432 
1433 static int
1434 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1435 {
1436 	struct e1000_softc *sc = iflib_get_softc(ctx);
1437 	struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
1438 
1439 	E1000_WRITE_REG(&sc->hw, E1000_IMS, rxq->eims);
1440 	return (0);
1441 }
1442 
1443 static int
1444 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1445 {
1446 	struct e1000_softc *sc = iflib_get_softc(ctx);
1447 	struct em_tx_queue *txq = &sc->tx_queues[txqid];
1448 
1449 	E1000_WRITE_REG(&sc->hw, E1000_IMS, txq->eims);
1450 	return (0);
1451 }
1452 
1453 static int
1454 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1455 {
1456 	struct e1000_softc *sc = iflib_get_softc(ctx);
1457 	struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
1458 
1459 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, rxq->eims);
1460 	return (0);
1461 }
1462 
1463 static int
1464 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1465 {
1466 	struct e1000_softc *sc = iflib_get_softc(ctx);
1467 	struct em_tx_queue *txq = &sc->tx_queues[txqid];
1468 
1469 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, txq->eims);
1470 	return (0);
1471 }
1472 
1473 /*********************************************************************
1474  *
1475  *  MSI-X RX Interrupt Service routine
1476  *
1477  **********************************************************************/
1478 static int
1479 em_msix_que(void *arg)
1480 {
1481 	struct em_rx_queue *que = arg;
1482 
1483 	++que->irqs;
1484 
1485 	return (FILTER_SCHEDULE_THREAD);
1486 }
1487 
1488 /*********************************************************************
1489  *
1490  *  MSI-X Link Fast Interrupt Service routine
1491  *
1492  **********************************************************************/
1493 static int
1494 em_msix_link(void *arg)
1495 {
1496 	struct e1000_softc *sc = arg;
1497 	u32 reg_icr;
1498 
1499 	++sc->link_irq;
1500 	MPASS(sc->hw.back != NULL);
1501 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1502 
1503 	if (reg_icr & E1000_ICR_RXO)
1504 		sc->rx_overruns++;
1505 
1506 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1507 		em_handle_link(sc->ctx);
1508 
1509 	/* Re-arm unconditionally */
1510 	if (sc->hw.mac.type >= igb_mac_min) {
1511 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
1512 		E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->link_mask);
1513 	} else if (sc->hw.mac.type == e1000_82574) {
1514 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC |
1515 		    E1000_IMS_OTHER);
1516 		/*
1517 		 * Because we must read the ICR for this interrupt it may
1518 		 * clear other causes using autoclear, for this reason we
1519 		 * simply create a soft interrupt for all these vectors.
1520 		 */
1521 		if (reg_icr)
1522 			E1000_WRITE_REG(&sc->hw, E1000_ICS, sc->ims);
1523 	} else
1524 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
1525 
1526 	return (FILTER_HANDLED);
1527 }
1528 
1529 static void
1530 em_handle_link(void *context)
1531 {
1532 	if_ctx_t ctx = context;
1533 	struct e1000_softc *sc = iflib_get_softc(ctx);
1534 
1535 	sc->hw.mac.get_link_status = 1;
1536 	iflib_admin_intr_deferred(ctx);
1537 }
1538 
1539 /*********************************************************************
1540  *
1541  *  Media Ioctl callback
1542  *
1543  *  This routine is called whenever the user queries the status of
1544  *  the interface using ifconfig.
1545  *
1546  **********************************************************************/
1547 static void
1548 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1549 {
1550 	struct e1000_softc *sc = iflib_get_softc(ctx);
1551 	u_char fiber_type = IFM_1000_SX;
1552 
1553 	INIT_DEBUGOUT("em_if_media_status: begin");
1554 
1555 	iflib_admin_intr_deferred(ctx);
1556 
1557 	ifmr->ifm_status = IFM_AVALID;
1558 	ifmr->ifm_active = IFM_ETHER;
1559 
1560 	if (!sc->link_active) {
1561 		return;
1562 	}
1563 
1564 	ifmr->ifm_status |= IFM_ACTIVE;
1565 
1566 	if ((sc->hw.phy.media_type == e1000_media_type_fiber) ||
1567 	    (sc->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1568 		if (sc->hw.mac.type == e1000_82545)
1569 			fiber_type = IFM_1000_LX;
1570 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1571 	} else {
1572 		switch (sc->link_speed) {
1573 		case 10:
1574 			ifmr->ifm_active |= IFM_10_T;
1575 			break;
1576 		case 100:
1577 			ifmr->ifm_active |= IFM_100_TX;
1578 			break;
1579 		case 1000:
1580 			ifmr->ifm_active |= IFM_1000_T;
1581 			break;
1582 		}
1583 		if (sc->link_duplex == FULL_DUPLEX)
1584 			ifmr->ifm_active |= IFM_FDX;
1585 		else
1586 			ifmr->ifm_active |= IFM_HDX;
1587 	}
1588 }
1589 
1590 /*********************************************************************
1591  *
1592  *  Media Ioctl callback
1593  *
1594  *  This routine is called when the user changes speed/duplex using
1595  *  media/mediopt option with ifconfig.
1596  *
1597  **********************************************************************/
1598 static int
1599 em_if_media_change(if_ctx_t ctx)
1600 {
1601 	struct e1000_softc *sc = iflib_get_softc(ctx);
1602 	struct ifmedia *ifm = iflib_get_media(ctx);
1603 
1604 	INIT_DEBUGOUT("em_if_media_change: begin");
1605 
1606 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1607 		return (EINVAL);
1608 
1609 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1610 	case IFM_AUTO:
1611 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1612 		sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1613 		break;
1614 	case IFM_1000_LX:
1615 	case IFM_1000_SX:
1616 	case IFM_1000_T:
1617 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1618 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1619 		break;
1620 	case IFM_100_TX:
1621 		sc->hw.mac.autoneg = false;
1622 		sc->hw.phy.autoneg_advertised = 0;
1623 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1624 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1625 		else
1626 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1627 		break;
1628 	case IFM_10_T:
1629 		sc->hw.mac.autoneg = false;
1630 		sc->hw.phy.autoneg_advertised = 0;
1631 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1632 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1633 		else
1634 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1635 		break;
1636 	default:
1637 		device_printf(sc->dev, "Unsupported media type\n");
1638 	}
1639 
1640 	em_if_init(ctx);
1641 
1642 	return (0);
1643 }
1644 
1645 static int
1646 em_if_set_promisc(if_ctx_t ctx, int flags)
1647 {
1648 	struct e1000_softc *sc = iflib_get_softc(ctx);
1649 	struct ifnet *ifp = iflib_get_ifp(ctx);
1650 	u32 reg_rctl;
1651 	int mcnt = 0;
1652 
1653 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1654 	reg_rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_UPE);
1655 	if (flags & IFF_ALLMULTI)
1656 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1657 	else
1658 		mcnt = min(if_llmaddr_count(ifp), MAX_NUM_MULTICAST_ADDRESSES);
1659 
1660 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1661 		reg_rctl &= (~E1000_RCTL_MPE);
1662 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1663 
1664 	if (flags & IFF_PROMISC) {
1665 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1666 		em_if_vlan_filter_disable(sc);
1667 		/* Turn this on if you want to see bad packets */
1668 		if (em_debug_sbp)
1669 			reg_rctl |= E1000_RCTL_SBP;
1670 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1671 	} else {
1672 		if (flags & IFF_ALLMULTI) {
1673 			reg_rctl |= E1000_RCTL_MPE;
1674 			reg_rctl &= ~E1000_RCTL_UPE;
1675 			E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1676 		}
1677 		if (em_if_vlan_filter_used(sc))
1678 			em_if_vlan_filter_enable(sc);
1679 	}
1680 	return (0);
1681 }
1682 
1683 static u_int
1684 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int idx)
1685 {
1686 	u8 *mta = arg;
1687 
1688 	if (idx == MAX_NUM_MULTICAST_ADDRESSES)
1689 		return (0);
1690 
1691 	bcopy(LLADDR(sdl), &mta[idx * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1692 
1693 	return (1);
1694 }
1695 
1696 /*********************************************************************
1697  *  Multicast Update
1698  *
1699  *  This routine is called whenever multicast address list is updated.
1700  *
1701  **********************************************************************/
1702 static void
1703 em_if_multi_set(if_ctx_t ctx)
1704 {
1705 	struct e1000_softc *sc = iflib_get_softc(ctx);
1706 	struct ifnet *ifp = iflib_get_ifp(ctx);
1707 	u8  *mta; /* Multicast array memory */
1708 	u32 reg_rctl = 0;
1709 	int mcnt = 0;
1710 
1711 	IOCTL_DEBUGOUT("em_set_multi: begin");
1712 
1713 	mta = sc->mta;
1714 	bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1715 
1716 	if (sc->hw.mac.type == e1000_82542 &&
1717 	    sc->hw.revision_id == E1000_REVISION_2) {
1718 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1719 		if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1720 			e1000_pci_clear_mwi(&sc->hw);
1721 		reg_rctl |= E1000_RCTL_RST;
1722 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1723 		msec_delay(5);
1724 	}
1725 
1726 	mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
1727 
1728 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1729 
1730 	if (if_getflags(ifp) & IFF_PROMISC)
1731 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1732 	else if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES ||
1733 	    if_getflags(ifp) & IFF_ALLMULTI) {
1734 		reg_rctl |= E1000_RCTL_MPE;
1735 		reg_rctl &= ~E1000_RCTL_UPE;
1736 	} else
1737 		reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1738 
1739 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1740 
1741 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1742 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1743 
1744 	if (sc->hw.mac.type == e1000_82542 &&
1745 	    sc->hw.revision_id == E1000_REVISION_2) {
1746 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1747 		reg_rctl &= ~E1000_RCTL_RST;
1748 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1749 		msec_delay(5);
1750 		if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1751 			e1000_pci_set_mwi(&sc->hw);
1752 	}
1753 }
1754 
1755 /*********************************************************************
1756  *  Timer routine
1757  *
1758  *  This routine schedules em_if_update_admin_status() to check for
1759  *  link status and to gather statistics as well as to perform some
1760  *  controller-specific hardware patting.
1761  *
1762  **********************************************************************/
1763 static void
1764 em_if_timer(if_ctx_t ctx, uint16_t qid)
1765 {
1766 
1767 	if (qid != 0)
1768 		return;
1769 
1770 	iflib_admin_intr_deferred(ctx);
1771 }
1772 
1773 static void
1774 em_if_update_admin_status(if_ctx_t ctx)
1775 {
1776 	struct e1000_softc *sc = iflib_get_softc(ctx);
1777 	struct e1000_hw *hw = &sc->hw;
1778 	device_t dev = iflib_get_dev(ctx);
1779 	u32 link_check, thstat, ctrl;
1780 
1781 	link_check = thstat = ctrl = 0;
1782 	/* Get the cached link value or read phy for real */
1783 	switch (hw->phy.media_type) {
1784 	case e1000_media_type_copper:
1785 		if (hw->mac.get_link_status) {
1786 			if (hw->mac.type == e1000_pch_spt)
1787 				msec_delay(50);
1788 			/* Do the work to read phy */
1789 			e1000_check_for_link(hw);
1790 			link_check = !hw->mac.get_link_status;
1791 			if (link_check) /* ESB2 fix */
1792 				e1000_cfg_on_link_up(hw);
1793 		} else {
1794 			link_check = true;
1795 		}
1796 		break;
1797 	case e1000_media_type_fiber:
1798 		e1000_check_for_link(hw);
1799 		link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1800 			    E1000_STATUS_LU);
1801 		break;
1802 	case e1000_media_type_internal_serdes:
1803 		e1000_check_for_link(hw);
1804 		link_check = hw->mac.serdes_has_link;
1805 		break;
1806 	/* VF device is type_unknown */
1807 	case e1000_media_type_unknown:
1808 		e1000_check_for_link(hw);
1809 		link_check = !hw->mac.get_link_status;
1810 		/* FALLTHROUGH */
1811 	default:
1812 		break;
1813 	}
1814 
1815 	/* Check for thermal downshift or shutdown */
1816 	if (hw->mac.type == e1000_i350) {
1817 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1818 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1819 	}
1820 
1821 	/* Now check for a transition */
1822 	if (link_check && (sc->link_active == 0)) {
1823 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1824 		    &sc->link_duplex);
1825 		/* Check if we must disable SPEED_MODE bit on PCI-E */
1826 		if ((sc->link_speed != SPEED_1000) &&
1827 		    ((hw->mac.type == e1000_82571) ||
1828 		    (hw->mac.type == e1000_82572))) {
1829 			int tarc0;
1830 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1831 			tarc0 &= ~TARC_SPEED_MODE_BIT;
1832 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1833 		}
1834 		if (bootverbose)
1835 			device_printf(dev, "Link is up %d Mbps %s\n",
1836 			    sc->link_speed,
1837 			    ((sc->link_duplex == FULL_DUPLEX) ?
1838 			    "Full Duplex" : "Half Duplex"));
1839 		sc->link_active = 1;
1840 		sc->smartspeed = 0;
1841 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
1842 		    E1000_CTRL_EXT_LINK_MODE_GMII &&
1843 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1844 			device_printf(dev, "Link: thermal downshift\n");
1845 		/* Delay Link Up for Phy update */
1846 		if (((hw->mac.type == e1000_i210) ||
1847 		    (hw->mac.type == e1000_i211)) &&
1848 		    (hw->phy.id == I210_I_PHY_ID))
1849 			msec_delay(I210_LINK_DELAY);
1850 		/* Reset if the media type changed. */
1851 		if (hw->dev_spec._82575.media_changed &&
1852 		    hw->mac.type >= igb_mac_min) {
1853 			hw->dev_spec._82575.media_changed = false;
1854 			sc->flags |= IGB_MEDIA_RESET;
1855 			em_reset(ctx);
1856 		}
1857 		iflib_link_state_change(ctx, LINK_STATE_UP,
1858 		    IF_Mbps(sc->link_speed));
1859 	} else if (!link_check && (sc->link_active == 1)) {
1860 		sc->link_speed = 0;
1861 		sc->link_duplex = 0;
1862 		sc->link_active = 0;
1863 		iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
1864 	}
1865 	em_update_stats_counters(sc);
1866 
1867 	/* Reset LAA into RAR[0] on 82571 */
1868 	if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
1869 		e1000_rar_set(hw, hw->mac.addr, 0);
1870 
1871 	if (hw->mac.type < em_mac_min)
1872 		lem_smartspeed(sc);
1873 }
1874 
1875 static void
1876 em_if_watchdog_reset(if_ctx_t ctx)
1877 {
1878 	struct e1000_softc *sc = iflib_get_softc(ctx);
1879 
1880 	/*
1881 	 * Just count the event; iflib(4) will already trigger a
1882 	 * sufficient reset of the controller.
1883 	 */
1884 	sc->watchdog_events++;
1885 }
1886 
1887 /*********************************************************************
1888  *
1889  *  This routine disables all traffic on the adapter by issuing a
1890  *  global reset on the MAC.
1891  *
1892  **********************************************************************/
1893 static void
1894 em_if_stop(if_ctx_t ctx)
1895 {
1896 	struct e1000_softc *sc = iflib_get_softc(ctx);
1897 
1898 	INIT_DEBUGOUT("em_if_stop: begin");
1899 
1900 	e1000_reset_hw(&sc->hw);
1901 	if (sc->hw.mac.type >= e1000_82544)
1902 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, 0);
1903 
1904 	e1000_led_off(&sc->hw);
1905 	e1000_cleanup_led(&sc->hw);
1906 }
1907 
1908 /*********************************************************************
1909  *
1910  *  Determine hardware revision.
1911  *
1912  **********************************************************************/
1913 static void
1914 em_identify_hardware(if_ctx_t ctx)
1915 {
1916 	device_t dev = iflib_get_dev(ctx);
1917 	struct e1000_softc *sc = iflib_get_softc(ctx);
1918 
1919 	/* Make sure our PCI config space has the necessary stuff set */
1920 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1921 
1922 	/* Save off the information about this board */
1923 	sc->hw.vendor_id = pci_get_vendor(dev);
1924 	sc->hw.device_id = pci_get_device(dev);
1925 	sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1926 	sc->hw.subsystem_vendor_id =
1927 	    pci_read_config(dev, PCIR_SUBVEND_0, 2);
1928 	sc->hw.subsystem_device_id =
1929 	    pci_read_config(dev, PCIR_SUBDEV_0, 2);
1930 
1931 	/* Do Shared Code Init and Setup */
1932 	if (e1000_set_mac_type(&sc->hw)) {
1933 		device_printf(dev, "Setup init failure\n");
1934 		return;
1935 	}
1936 
1937 	/* Are we a VF device? */
1938 	if ((sc->hw.mac.type == e1000_vfadapt) ||
1939 	    (sc->hw.mac.type == e1000_vfadapt_i350))
1940 		sc->vf_ifp = 1;
1941 	else
1942 		sc->vf_ifp = 0;
1943 }
1944 
1945 static int
1946 em_allocate_pci_resources(if_ctx_t ctx)
1947 {
1948 	struct e1000_softc *sc = iflib_get_softc(ctx);
1949 	device_t dev = iflib_get_dev(ctx);
1950 	int rid, val;
1951 
1952 	rid = PCIR_BAR(0);
1953 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1954 	    &rid, RF_ACTIVE);
1955 	if (sc->memory == NULL) {
1956 		device_printf(dev, "Unable to allocate bus resource: memory\n");
1957 		return (ENXIO);
1958 	}
1959 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
1960 	sc->osdep.mem_bus_space_handle =
1961 	    rman_get_bushandle(sc->memory);
1962 	sc->hw.hw_addr = (u8 *)&sc->osdep.mem_bus_space_handle;
1963 
1964 	/* Only older adapters use IO mapping */
1965 	if (sc->hw.mac.type < em_mac_min &&
1966 	    sc->hw.mac.type > e1000_82543) {
1967 		/* Figure our where our IO BAR is ? */
1968 		for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1969 			val = pci_read_config(dev, rid, 4);
1970 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1971 				break;
1972 			}
1973 			rid += 4;
1974 			/* check for 64bit BAR */
1975 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1976 				rid += 4;
1977 		}
1978 		if (rid >= PCIR_CIS) {
1979 			device_printf(dev, "Unable to locate IO BAR\n");
1980 			return (ENXIO);
1981 		}
1982 		sc->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
1983 		    &rid, RF_ACTIVE);
1984 		if (sc->ioport == NULL) {
1985 			device_printf(dev, "Unable to allocate bus resource: "
1986 			    "ioport\n");
1987 			return (ENXIO);
1988 		}
1989 		sc->hw.io_base = 0;
1990 		sc->osdep.io_bus_space_tag =
1991 		    rman_get_bustag(sc->ioport);
1992 		sc->osdep.io_bus_space_handle =
1993 		    rman_get_bushandle(sc->ioport);
1994 	}
1995 
1996 	sc->hw.back = &sc->osdep;
1997 
1998 	return (0);
1999 }
2000 
2001 /*********************************************************************
2002  *
2003  *  Set up the MSI-X Interrupt handlers
2004  *
2005  **********************************************************************/
2006 static int
2007 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
2008 {
2009 	struct e1000_softc *sc = iflib_get_softc(ctx);
2010 	struct em_rx_queue *rx_que = sc->rx_queues;
2011 	struct em_tx_queue *tx_que = sc->tx_queues;
2012 	int error, rid, i, vector = 0, rx_vectors;
2013 	char buf[16];
2014 
2015 	/* First set up ring resources */
2016 	for (i = 0; i < sc->rx_num_queues; i++, rx_que++, vector++) {
2017 		rid = vector + 1;
2018 		snprintf(buf, sizeof(buf), "rxq%d", i);
2019 		error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
2020 		if (error) {
2021 			device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
2022 			sc->rx_num_queues = i + 1;
2023 			goto fail;
2024 		}
2025 
2026 		rx_que->msix =  vector;
2027 
2028 		/*
2029 		 * Set the bit to enable interrupt
2030 		 * in E1000_IMS -- bits 20 and 21
2031 		 * are for RX0 and RX1, note this has
2032 		 * NOTHING to do with the MSI-X vector
2033 		 */
2034 		if (sc->hw.mac.type == e1000_82574) {
2035 			rx_que->eims = 1 << (20 + i);
2036 			sc->ims |= rx_que->eims;
2037 			sc->ivars |= (8 | rx_que->msix) << (i * 4);
2038 		} else if (sc->hw.mac.type == e1000_82575)
2039 			rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2040 		else
2041 			rx_que->eims = 1 << vector;
2042 	}
2043 	rx_vectors = vector;
2044 
2045 	vector = 0;
2046 	for (i = 0; i < sc->tx_num_queues; i++, tx_que++, vector++) {
2047 		snprintf(buf, sizeof(buf), "txq%d", i);
2048 		tx_que = &sc->tx_queues[i];
2049 		iflib_softirq_alloc_generic(ctx,
2050 		    &sc->rx_queues[i % sc->rx_num_queues].que_irq,
2051 		    IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2052 
2053 		tx_que->msix = (vector % sc->rx_num_queues);
2054 
2055 		/*
2056 		 * Set the bit to enable interrupt
2057 		 * in E1000_IMS -- bits 22 and 23
2058 		 * are for TX0 and TX1, note this has
2059 		 * NOTHING to do with the MSI-X vector
2060 		 */
2061 		if (sc->hw.mac.type == e1000_82574) {
2062 			tx_que->eims = 1 << (22 + i);
2063 			sc->ims |= tx_que->eims;
2064 			sc->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2065 		} else if (sc->hw.mac.type == e1000_82575) {
2066 			tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2067 		} else {
2068 			tx_que->eims = 1 << i;
2069 		}
2070 	}
2071 
2072 	/* Link interrupt */
2073 	rid = rx_vectors + 1;
2074 	error = iflib_irq_alloc_generic(ctx, &sc->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, sc, 0, "aq");
2075 
2076 	if (error) {
2077 		device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
2078 		goto fail;
2079 	}
2080 	sc->linkvec = rx_vectors;
2081 	if (sc->hw.mac.type < igb_mac_min) {
2082 		sc->ivars |=  (8 | rx_vectors) << 16;
2083 		sc->ivars |= 0x80000000;
2084 		/* Enable the "Other" interrupt type for link status change */
2085 		sc->ims |= E1000_IMS_OTHER;
2086 	}
2087 
2088 	return (0);
2089 fail:
2090 	iflib_irq_free(ctx, &sc->irq);
2091 	rx_que = sc->rx_queues;
2092 	for (int i = 0; i < sc->rx_num_queues; i++, rx_que++)
2093 		iflib_irq_free(ctx, &rx_que->que_irq);
2094 	return (error);
2095 }
2096 
2097 static void
2098 igb_configure_queues(struct e1000_softc *sc)
2099 {
2100 	struct e1000_hw *hw = &sc->hw;
2101 	struct em_rx_queue *rx_que;
2102 	struct em_tx_queue *tx_que;
2103 	u32 tmp, ivar = 0, newitr = 0;
2104 
2105 	/* First turn on RSS capability */
2106 	if (hw->mac.type != e1000_82575)
2107 		E1000_WRITE_REG(hw, E1000_GPIE,
2108 		    E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2109 		    E1000_GPIE_PBA | E1000_GPIE_NSICR);
2110 
2111 	/* Turn on MSI-X */
2112 	switch (hw->mac.type) {
2113 	case e1000_82580:
2114 	case e1000_i350:
2115 	case e1000_i354:
2116 	case e1000_i210:
2117 	case e1000_i211:
2118 	case e1000_vfadapt:
2119 	case e1000_vfadapt_i350:
2120 		/* RX entries */
2121 		for (int i = 0; i < sc->rx_num_queues; i++) {
2122 			u32 index = i >> 1;
2123 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2124 			rx_que = &sc->rx_queues[i];
2125 			if (i & 1) {
2126 				ivar &= 0xFF00FFFF;
2127 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2128 			} else {
2129 				ivar &= 0xFFFFFF00;
2130 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2131 			}
2132 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2133 		}
2134 		/* TX entries */
2135 		for (int i = 0; i < sc->tx_num_queues; i++) {
2136 			u32 index = i >> 1;
2137 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2138 			tx_que = &sc->tx_queues[i];
2139 			if (i & 1) {
2140 				ivar &= 0x00FFFFFF;
2141 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2142 			} else {
2143 				ivar &= 0xFFFF00FF;
2144 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2145 			}
2146 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2147 			sc->que_mask |= tx_que->eims;
2148 		}
2149 
2150 		/* And for the link interrupt */
2151 		ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
2152 		sc->link_mask = 1 << sc->linkvec;
2153 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2154 		break;
2155 	case e1000_82576:
2156 		/* RX entries */
2157 		for (int i = 0; i < sc->rx_num_queues; i++) {
2158 			u32 index = i & 0x7; /* Each IVAR has two entries */
2159 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2160 			rx_que = &sc->rx_queues[i];
2161 			if (i < 8) {
2162 				ivar &= 0xFFFFFF00;
2163 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2164 			} else {
2165 				ivar &= 0xFF00FFFF;
2166 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2167 			}
2168 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2169 			sc->que_mask |= rx_que->eims;
2170 		}
2171 		/* TX entries */
2172 		for (int i = 0; i < sc->tx_num_queues; i++) {
2173 			u32 index = i & 0x7; /* Each IVAR has two entries */
2174 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2175 			tx_que = &sc->tx_queues[i];
2176 			if (i < 8) {
2177 				ivar &= 0xFFFF00FF;
2178 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2179 			} else {
2180 				ivar &= 0x00FFFFFF;
2181 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2182 			}
2183 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2184 			sc->que_mask |= tx_que->eims;
2185 		}
2186 
2187 		/* And for the link interrupt */
2188 		ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
2189 		sc->link_mask = 1 << sc->linkvec;
2190 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2191 		break;
2192 
2193 	case e1000_82575:
2194 		/* enable MSI-X support*/
2195 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2196 		tmp |= E1000_CTRL_EXT_PBA_CLR;
2197 		/* Auto-Mask interrupts upon ICR read. */
2198 		tmp |= E1000_CTRL_EXT_EIAME;
2199 		tmp |= E1000_CTRL_EXT_IRCA;
2200 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2201 
2202 		/* Queues */
2203 		for (int i = 0; i < sc->rx_num_queues; i++) {
2204 			rx_que = &sc->rx_queues[i];
2205 			tmp = E1000_EICR_RX_QUEUE0 << i;
2206 			tmp |= E1000_EICR_TX_QUEUE0 << i;
2207 			rx_que->eims = tmp;
2208 			E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2209 			    i, rx_que->eims);
2210 			sc->que_mask |= rx_que->eims;
2211 		}
2212 
2213 		/* Link */
2214 		E1000_WRITE_REG(hw, E1000_MSIXBM(sc->linkvec),
2215 		    E1000_EIMS_OTHER);
2216 		sc->link_mask |= E1000_EIMS_OTHER;
2217 	default:
2218 		break;
2219 	}
2220 
2221 	/* Set the starting interrupt rate */
2222 	if (em_max_interrupt_rate > 0)
2223 		newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2224 
2225 	if (hw->mac.type == e1000_82575)
2226 		newitr |= newitr << 16;
2227 	else
2228 		newitr |= E1000_EITR_CNT_IGNR;
2229 
2230 	for (int i = 0; i < sc->rx_num_queues; i++) {
2231 		rx_que = &sc->rx_queues[i];
2232 		E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2233 	}
2234 
2235 	return;
2236 }
2237 
2238 static void
2239 em_free_pci_resources(if_ctx_t ctx)
2240 {
2241 	struct e1000_softc *sc = iflib_get_softc(ctx);
2242 	struct em_rx_queue *que = sc->rx_queues;
2243 	device_t dev = iflib_get_dev(ctx);
2244 
2245 	/* Release all MSI-X queue resources */
2246 	if (sc->intr_type == IFLIB_INTR_MSIX)
2247 		iflib_irq_free(ctx, &sc->irq);
2248 
2249 	if (que != NULL) {
2250 		for (int i = 0; i < sc->rx_num_queues; i++, que++) {
2251 			iflib_irq_free(ctx, &que->que_irq);
2252 		}
2253 	}
2254 
2255 	if (sc->memory != NULL) {
2256 		bus_release_resource(dev, SYS_RES_MEMORY,
2257 		    rman_get_rid(sc->memory), sc->memory);
2258 		sc->memory = NULL;
2259 	}
2260 
2261 	if (sc->flash != NULL) {
2262 		bus_release_resource(dev, SYS_RES_MEMORY,
2263 		    rman_get_rid(sc->flash), sc->flash);
2264 		sc->flash = NULL;
2265 	}
2266 
2267 	if (sc->ioport != NULL) {
2268 		bus_release_resource(dev, SYS_RES_IOPORT,
2269 		    rman_get_rid(sc->ioport), sc->ioport);
2270 		sc->ioport = NULL;
2271 	}
2272 }
2273 
2274 /* Set up MSI or MSI-X */
2275 static int
2276 em_setup_msix(if_ctx_t ctx)
2277 {
2278 	struct e1000_softc *sc = iflib_get_softc(ctx);
2279 
2280 	if (sc->hw.mac.type == e1000_82574) {
2281 		em_enable_vectors_82574(ctx);
2282 	}
2283 	return (0);
2284 }
2285 
2286 /*********************************************************************
2287  *
2288  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2289  *
2290  **********************************************************************/
2291 static void
2292 lem_smartspeed(struct e1000_softc *sc)
2293 {
2294 	u16 phy_tmp;
2295 
2296 	if (sc->link_active || (sc->hw.phy.type != e1000_phy_igp) ||
2297 	    sc->hw.mac.autoneg == 0 ||
2298 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2299 		return;
2300 
2301 	if (sc->smartspeed == 0) {
2302 		/* If Master/Slave config fault is asserted twice,
2303 		 * we assume back-to-back */
2304 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2305 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2306 			return;
2307 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2308 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2309 			e1000_read_phy_reg(&sc->hw,
2310 			    PHY_1000T_CTRL, &phy_tmp);
2311 			if(phy_tmp & CR_1000T_MS_ENABLE) {
2312 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2313 				e1000_write_phy_reg(&sc->hw,
2314 				    PHY_1000T_CTRL, phy_tmp);
2315 				sc->smartspeed++;
2316 				if(sc->hw.mac.autoneg &&
2317 				   !e1000_copper_link_autoneg(&sc->hw) &&
2318 				   !e1000_read_phy_reg(&sc->hw,
2319 				    PHY_CONTROL, &phy_tmp)) {
2320 					phy_tmp |= (MII_CR_AUTO_NEG_EN |
2321 						    MII_CR_RESTART_AUTO_NEG);
2322 					e1000_write_phy_reg(&sc->hw,
2323 					    PHY_CONTROL, phy_tmp);
2324 				}
2325 			}
2326 		}
2327 		return;
2328 	} else if(sc->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2329 		/* If still no link, perhaps using 2/3 pair cable */
2330 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2331 		phy_tmp |= CR_1000T_MS_ENABLE;
2332 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2333 		if(sc->hw.mac.autoneg &&
2334 		   !e1000_copper_link_autoneg(&sc->hw) &&
2335 		   !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2336 			phy_tmp |= (MII_CR_AUTO_NEG_EN |
2337 				    MII_CR_RESTART_AUTO_NEG);
2338 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2339 		}
2340 	}
2341 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2342 	if(sc->smartspeed++ == EM_SMARTSPEED_MAX)
2343 		sc->smartspeed = 0;
2344 }
2345 
2346 /*********************************************************************
2347  *
2348  *  Initialize the DMA Coalescing feature
2349  *
2350  **********************************************************************/
2351 static void
2352 igb_init_dmac(struct e1000_softc *sc, u32 pba)
2353 {
2354 	device_t	dev = sc->dev;
2355 	struct e1000_hw *hw = &sc->hw;
2356 	u32 		dmac, reg = ~E1000_DMACR_DMAC_EN;
2357 	u16		hwm;
2358 	u16		max_frame_size;
2359 
2360 	if (hw->mac.type == e1000_i211)
2361 		return;
2362 
2363 	max_frame_size = sc->shared->isc_max_frame_size;
2364 	if (hw->mac.type > e1000_82580) {
2365 
2366 		if (sc->dmac == 0) { /* Disabling it */
2367 			E1000_WRITE_REG(hw, E1000_DMACR, reg);
2368 			return;
2369 		} else
2370 			device_printf(dev, "DMA Coalescing enabled\n");
2371 
2372 		/* Set starting threshold */
2373 		E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2374 
2375 		hwm = 64 * pba - max_frame_size / 16;
2376 		if (hwm < 64 * (pba - 6))
2377 			hwm = 64 * (pba - 6);
2378 		reg = E1000_READ_REG(hw, E1000_FCRTC);
2379 		reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2380 		reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2381 		    & E1000_FCRTC_RTH_COAL_MASK);
2382 		E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2383 
2384 
2385 		dmac = pba - max_frame_size / 512;
2386 		if (dmac < pba - 10)
2387 			dmac = pba - 10;
2388 		reg = E1000_READ_REG(hw, E1000_DMACR);
2389 		reg &= ~E1000_DMACR_DMACTHR_MASK;
2390 		reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2391 		    & E1000_DMACR_DMACTHR_MASK);
2392 
2393 		/* transition to L0x or L1 if available..*/
2394 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2395 
2396 		/* Check if status is 2.5Gb backplane connection
2397 		* before configuration of watchdog timer, which is
2398 		* in msec values in 12.8usec intervals
2399 		* watchdog timer= msec values in 32usec intervals
2400 		* for non 2.5Gb connection
2401 		*/
2402 		if (hw->mac.type == e1000_i354) {
2403 			int status = E1000_READ_REG(hw, E1000_STATUS);
2404 			if ((status & E1000_STATUS_2P5_SKU) &&
2405 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2406 				reg |= ((sc->dmac * 5) >> 6);
2407 			else
2408 				reg |= (sc->dmac >> 5);
2409 		} else {
2410 			reg |= (sc->dmac >> 5);
2411 		}
2412 
2413 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
2414 
2415 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2416 
2417 		/* Set the interval before transition */
2418 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
2419 		if (hw->mac.type == e1000_i350)
2420 			reg |= IGB_DMCTLX_DCFLUSH_DIS;
2421 		/*
2422 		** in 2.5Gb connection, TTLX unit is 0.4 usec
2423 		** which is 0x4*2 = 0xA. But delay is still 4 usec
2424 		*/
2425 		if (hw->mac.type == e1000_i354) {
2426 			int status = E1000_READ_REG(hw, E1000_STATUS);
2427 			if ((status & E1000_STATUS_2P5_SKU) &&
2428 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2429 				reg |= 0xA;
2430 			else
2431 				reg |= 0x4;
2432 		} else {
2433 			reg |= 0x4;
2434 		}
2435 
2436 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2437 
2438 		/* free space in tx packet buffer to wake from DMA coal */
2439 		E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2440 		    (2 * max_frame_size)) >> 6);
2441 
2442 		/* make low power state decision controlled by DMA coal */
2443 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2444 		reg &= ~E1000_PCIEMISC_LX_DECISION;
2445 		E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2446 
2447 	} else if (hw->mac.type == e1000_82580) {
2448 		u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2449 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
2450 		    reg & ~E1000_PCIEMISC_LX_DECISION);
2451 		E1000_WRITE_REG(hw, E1000_DMACR, 0);
2452 	}
2453 }
2454 
2455 /*********************************************************************
2456  *
2457  *  Initialize the hardware to a configuration as specified by the
2458  *  sc structure.
2459  *
2460  **********************************************************************/
2461 static void
2462 em_reset(if_ctx_t ctx)
2463 {
2464 	device_t dev = iflib_get_dev(ctx);
2465 	struct e1000_softc *sc = iflib_get_softc(ctx);
2466 	struct ifnet *ifp = iflib_get_ifp(ctx);
2467 	struct e1000_hw *hw = &sc->hw;
2468 	u16 rx_buffer_size;
2469 	u32 pba;
2470 
2471 	INIT_DEBUGOUT("em_reset: begin");
2472 	/* Let the firmware know the OS is in control */
2473 	em_get_hw_control(sc);
2474 
2475 	/* Set up smart power down as default off on newer adapters. */
2476 	if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2477 	    hw->mac.type == e1000_82572)) {
2478 		u16 phy_tmp = 0;
2479 
2480 		/* Speed up time to link by disabling smart power down. */
2481 		e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2482 		phy_tmp &= ~IGP02E1000_PM_SPD;
2483 		e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2484 	}
2485 
2486 	/*
2487 	 * Packet Buffer Allocation (PBA)
2488 	 * Writing PBA sets the receive portion of the buffer
2489 	 * the remainder is used for the transmit buffer.
2490 	 */
2491 	switch (hw->mac.type) {
2492 	/* 82547: Total Packet Buffer is 40K */
2493 	case e1000_82547:
2494 	case e1000_82547_rev_2:
2495 		if (hw->mac.max_frame_size > 8192)
2496 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2497 		else
2498 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2499 		break;
2500 	/* 82571/82572/80003es2lan: Total Packet Buffer is 48K */
2501 	case e1000_82571:
2502 	case e1000_82572:
2503 	case e1000_80003es2lan:
2504 			pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2505 		break;
2506 	/* 82573: Total Packet Buffer is 32K */
2507 	case e1000_82573:
2508 			pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2509 		break;
2510 	case e1000_82574:
2511 	case e1000_82583:
2512 			pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2513 		break;
2514 	case e1000_ich8lan:
2515 		pba = E1000_PBA_8K;
2516 		break;
2517 	case e1000_ich9lan:
2518 	case e1000_ich10lan:
2519 		/* Boost Receive side for jumbo frames */
2520 		if (hw->mac.max_frame_size > 4096)
2521 			pba = E1000_PBA_14K;
2522 		else
2523 			pba = E1000_PBA_10K;
2524 		break;
2525 	case e1000_pchlan:
2526 	case e1000_pch2lan:
2527 	case e1000_pch_lpt:
2528 	case e1000_pch_spt:
2529 	case e1000_pch_cnp:
2530 	case e1000_pch_tgp:
2531 	case e1000_pch_adp:
2532 	case e1000_pch_mtp:
2533 		pba = E1000_PBA_26K;
2534 		break;
2535 	case e1000_82575:
2536 		pba = E1000_PBA_32K;
2537 		break;
2538 	case e1000_82576:
2539 	case e1000_vfadapt:
2540 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2541 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2542 		break;
2543 	case e1000_82580:
2544 	case e1000_i350:
2545 	case e1000_i354:
2546 	case e1000_vfadapt_i350:
2547 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2548 		pba = e1000_rxpbs_adjust_82580(pba);
2549 		break;
2550 	case e1000_i210:
2551 	case e1000_i211:
2552 		pba = E1000_PBA_34K;
2553 		break;
2554 	default:
2555 		/* Remaining devices assumed to have a Packet Buffer of 64K. */
2556 		if (hw->mac.max_frame_size > 8192)
2557 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2558 		else
2559 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2560 	}
2561 
2562 	/* Special needs in case of Jumbo frames */
2563 	if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
2564 		u32 tx_space, min_tx, min_rx;
2565 		pba = E1000_READ_REG(hw, E1000_PBA);
2566 		tx_space = pba >> 16;
2567 		pba &= 0xffff;
2568 		min_tx = (hw->mac.max_frame_size +
2569 		    sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
2570 		min_tx = roundup2(min_tx, 1024);
2571 		min_tx >>= 10;
2572 		min_rx = hw->mac.max_frame_size;
2573 		min_rx = roundup2(min_rx, 1024);
2574 		min_rx >>= 10;
2575 		if (tx_space < min_tx &&
2576 		    ((min_tx - tx_space) < pba)) {
2577 			pba = pba - (min_tx - tx_space);
2578 			/*
2579 			 * if short on rx space, rx wins
2580 			 * and must trump tx adjustment
2581 			 */
2582 			if (pba < min_rx)
2583 				pba = min_rx;
2584 		}
2585 		E1000_WRITE_REG(hw, E1000_PBA, pba);
2586 	}
2587 
2588 	if (hw->mac.type < igb_mac_min)
2589 		E1000_WRITE_REG(hw, E1000_PBA, pba);
2590 
2591 	INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
2592 
2593 	/*
2594 	 * These parameters control the automatic generation (Tx) and
2595 	 * response (Rx) to Ethernet PAUSE frames.
2596 	 * - High water mark should allow for at least two frames to be
2597 	 *   received after sending an XOFF.
2598 	 * - Low water mark works best when it is very near the high water mark.
2599 	 *   This allows the receiver to restart by sending XON when it has
2600 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
2601 	 *   restart after one full frame is pulled from the buffer. There
2602 	 *   could be several smaller frames in the buffer and if so they will
2603 	 *   not trigger the XON until their total number reduces the buffer
2604 	 *   by 1500.
2605 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2606 	 */
2607 	rx_buffer_size = (pba & 0xffff) << 10;
2608 	hw->fc.high_water = rx_buffer_size -
2609 	    roundup2(hw->mac.max_frame_size, 1024);
2610 	hw->fc.low_water = hw->fc.high_water - 1500;
2611 
2612 	if (sc->fc) /* locally set flow control value? */
2613 		hw->fc.requested_mode = sc->fc;
2614 	else
2615 		hw->fc.requested_mode = e1000_fc_full;
2616 
2617 	if (hw->mac.type == e1000_80003es2lan)
2618 		hw->fc.pause_time = 0xFFFF;
2619 	else
2620 		hw->fc.pause_time = EM_FC_PAUSE_TIME;
2621 
2622 	hw->fc.send_xon = true;
2623 
2624 	/* Device specific overrides/settings */
2625 	switch (hw->mac.type) {
2626 	case e1000_pchlan:
2627 		/* Workaround: no TX flow ctrl for PCH */
2628 		hw->fc.requested_mode = e1000_fc_rx_pause;
2629 		hw->fc.pause_time = 0xFFFF; /* override */
2630 		if (if_getmtu(ifp) > ETHERMTU) {
2631 			hw->fc.high_water = 0x3500;
2632 			hw->fc.low_water = 0x1500;
2633 		} else {
2634 			hw->fc.high_water = 0x5000;
2635 			hw->fc.low_water = 0x3000;
2636 		}
2637 		hw->fc.refresh_time = 0x1000;
2638 		break;
2639 	case e1000_pch2lan:
2640 	case e1000_pch_lpt:
2641 	case e1000_pch_spt:
2642 	case e1000_pch_cnp:
2643 	case e1000_pch_tgp:
2644 	case e1000_pch_adp:
2645 	case e1000_pch_mtp:
2646 		hw->fc.high_water = 0x5C20;
2647 		hw->fc.low_water = 0x5048;
2648 		hw->fc.pause_time = 0x0650;
2649 		hw->fc.refresh_time = 0x0400;
2650 		/* Jumbos need adjusted PBA */
2651 		if (if_getmtu(ifp) > ETHERMTU)
2652 			E1000_WRITE_REG(hw, E1000_PBA, 12);
2653 		else
2654 			E1000_WRITE_REG(hw, E1000_PBA, 26);
2655 		break;
2656 	case e1000_82575:
2657 	case e1000_82576:
2658 		/* 8-byte granularity */
2659 		hw->fc.low_water = hw->fc.high_water - 8;
2660 		break;
2661 	case e1000_82580:
2662 	case e1000_i350:
2663 	case e1000_i354:
2664 	case e1000_i210:
2665 	case e1000_i211:
2666 	case e1000_vfadapt:
2667 	case e1000_vfadapt_i350:
2668 		/* 16-byte granularity */
2669 		hw->fc.low_water = hw->fc.high_water - 16;
2670 		break;
2671 	case e1000_ich9lan:
2672 	case e1000_ich10lan:
2673 		if (if_getmtu(ifp) > ETHERMTU) {
2674 			hw->fc.high_water = 0x2800;
2675 			hw->fc.low_water = hw->fc.high_water - 8;
2676 			break;
2677 		}
2678 		/* FALLTHROUGH */
2679 	default:
2680 		if (hw->mac.type == e1000_80003es2lan)
2681 			hw->fc.pause_time = 0xFFFF;
2682 		break;
2683 	}
2684 
2685 	/* Issue a global reset */
2686 	e1000_reset_hw(hw);
2687 	if (hw->mac.type >= igb_mac_min) {
2688 		E1000_WRITE_REG(hw, E1000_WUC, 0);
2689 	} else {
2690 		E1000_WRITE_REG(hw, E1000_WUFC, 0);
2691 		em_disable_aspm(sc);
2692 	}
2693 	if (sc->flags & IGB_MEDIA_RESET) {
2694 		e1000_setup_init_funcs(hw, true);
2695 		e1000_get_bus_info(hw);
2696 		sc->flags &= ~IGB_MEDIA_RESET;
2697 	}
2698 	/* and a re-init */
2699 	if (e1000_init_hw(hw) < 0) {
2700 		device_printf(dev, "Hardware Initialization Failed\n");
2701 		return;
2702 	}
2703 	if (hw->mac.type >= igb_mac_min)
2704 		igb_init_dmac(sc, pba);
2705 
2706 	E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2707 	e1000_get_phy_info(hw);
2708 	e1000_check_for_link(hw);
2709 }
2710 
2711 /*
2712  * Initialise the RSS mapping for NICs that support multiple transmit/
2713  * receive rings.
2714  */
2715 
2716 #define RSSKEYLEN 10
2717 static void
2718 em_initialize_rss_mapping(struct e1000_softc *sc)
2719 {
2720 	uint8_t  rss_key[4 * RSSKEYLEN];
2721 	uint32_t reta = 0;
2722 	struct e1000_hw	*hw = &sc->hw;
2723 	int i;
2724 
2725 	/*
2726 	 * Configure RSS key
2727 	 */
2728 	arc4rand(rss_key, sizeof(rss_key), 0);
2729 	for (i = 0; i < RSSKEYLEN; ++i) {
2730 		uint32_t rssrk = 0;
2731 
2732 		rssrk = EM_RSSRK_VAL(rss_key, i);
2733 		E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2734 	}
2735 
2736 	/*
2737 	 * Configure RSS redirect table in following fashion:
2738 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2739 	 */
2740 	for (i = 0; i < sizeof(reta); ++i) {
2741 		uint32_t q;
2742 
2743 		q = (i % sc->rx_num_queues) << 7;
2744 		reta |= q << (8 * i);
2745 	}
2746 
2747 	for (i = 0; i < 32; ++i)
2748 		E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2749 
2750 	E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
2751 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2752 			E1000_MRQC_RSS_FIELD_IPV4 |
2753 			E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2754 			E1000_MRQC_RSS_FIELD_IPV6_EX |
2755 			E1000_MRQC_RSS_FIELD_IPV6);
2756 }
2757 
2758 static void
2759 igb_initialize_rss_mapping(struct e1000_softc *sc)
2760 {
2761 	struct e1000_hw *hw = &sc->hw;
2762 	int i;
2763 	int queue_id;
2764 	u32 reta;
2765 	u32 rss_key[10], mrqc, shift = 0;
2766 
2767 	/* XXX? */
2768 	if (hw->mac.type == e1000_82575)
2769 		shift = 6;
2770 
2771 	/*
2772 	 * The redirection table controls which destination
2773 	 * queue each bucket redirects traffic to.
2774 	 * Each DWORD represents four queues, with the LSB
2775 	 * being the first queue in the DWORD.
2776 	 *
2777 	 * This just allocates buckets to queues using round-robin
2778 	 * allocation.
2779 	 *
2780 	 * NOTE: It Just Happens to line up with the default
2781 	 * RSS allocation method.
2782 	 */
2783 
2784 	/* Warning FM follows */
2785 	reta = 0;
2786 	for (i = 0; i < 128; i++) {
2787 #ifdef RSS
2788 		queue_id = rss_get_indirection_to_bucket(i);
2789 		/*
2790 		 * If we have more queues than buckets, we'll
2791 		 * end up mapping buckets to a subset of the
2792 		 * queues.
2793 		 *
2794 		 * If we have more buckets than queues, we'll
2795 		 * end up instead assigning multiple buckets
2796 		 * to queues.
2797 		 *
2798 		 * Both are suboptimal, but we need to handle
2799 		 * the case so we don't go out of bounds
2800 		 * indexing arrays and such.
2801 		 */
2802 		queue_id = queue_id % sc->rx_num_queues;
2803 #else
2804 		queue_id = (i % sc->rx_num_queues);
2805 #endif
2806 		/* Adjust if required */
2807 		queue_id = queue_id << shift;
2808 
2809 		/*
2810 		 * The low 8 bits are for hash value (n+0);
2811 		 * The next 8 bits are for hash value (n+1), etc.
2812 		 */
2813 		reta = reta >> 8;
2814 		reta = reta | ( ((uint32_t) queue_id) << 24);
2815 		if ((i & 3) == 3) {
2816 			E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2817 			reta = 0;
2818 		}
2819 	}
2820 
2821 	/* Now fill in hash table */
2822 
2823 	/*
2824 	 * MRQC: Multiple Receive Queues Command
2825 	 * Set queuing to RSS control, number depends on the device.
2826 	 */
2827 	mrqc = E1000_MRQC_ENABLE_RSS_MQ;
2828 
2829 #ifdef RSS
2830 	/* XXX ew typecasting */
2831 	rss_getkey((uint8_t *) &rss_key);
2832 #else
2833 	arc4rand(&rss_key, sizeof(rss_key), 0);
2834 #endif
2835 	for (i = 0; i < 10; i++)
2836 		E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
2837 
2838 	/*
2839 	 * Configure the RSS fields to hash upon.
2840 	 */
2841 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2842 	    E1000_MRQC_RSS_FIELD_IPV4_TCP);
2843 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2844 	    E1000_MRQC_RSS_FIELD_IPV6_TCP);
2845 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2846 	    E1000_MRQC_RSS_FIELD_IPV6_UDP);
2847 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2848 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2849 
2850 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2851 }
2852 
2853 /*********************************************************************
2854  *
2855  *  Setup networking device structure and register interface media.
2856  *
2857  **********************************************************************/
2858 static int
2859 em_setup_interface(if_ctx_t ctx)
2860 {
2861 	struct ifnet *ifp = iflib_get_ifp(ctx);
2862 	struct e1000_softc *sc = iflib_get_softc(ctx);
2863 	if_softc_ctx_t scctx = sc->shared;
2864 
2865 	INIT_DEBUGOUT("em_setup_interface: begin");
2866 
2867 	/* Single Queue */
2868 	if (sc->tx_num_queues == 1) {
2869 		if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
2870 		if_setsendqready(ifp);
2871 	}
2872 
2873 	/*
2874 	 * Specify the media types supported by this adapter and register
2875 	 * callbacks to update media and link information
2876 	 */
2877 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2878 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
2879 		u_char fiber_type = IFM_1000_SX;	/* default type */
2880 
2881 		if (sc->hw.mac.type == e1000_82545)
2882 			fiber_type = IFM_1000_LX;
2883 		ifmedia_add(sc->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
2884 		ifmedia_add(sc->media, IFM_ETHER | fiber_type, 0, NULL);
2885 	} else {
2886 		ifmedia_add(sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
2887 		ifmedia_add(sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
2888 		ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2889 		ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
2890 		if (sc->hw.phy.type != e1000_phy_ife) {
2891 			ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2892 			ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2893 		}
2894 	}
2895 	ifmedia_add(sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2896 	ifmedia_set(sc->media, IFM_ETHER | IFM_AUTO);
2897 	return (0);
2898 }
2899 
2900 static int
2901 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
2902 {
2903 	struct e1000_softc *sc = iflib_get_softc(ctx);
2904 	if_softc_ctx_t scctx = sc->shared;
2905 	int error = E1000_SUCCESS;
2906 	struct em_tx_queue *que;
2907 	int i, j;
2908 
2909 	MPASS(sc->tx_num_queues > 0);
2910 	MPASS(sc->tx_num_queues == ntxqsets);
2911 
2912 	/* First allocate the top level queue structs */
2913 	if (!(sc->tx_queues =
2914 	    (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
2915 	    sc->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2916 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2917 		return(ENOMEM);
2918 	}
2919 
2920 	for (i = 0, que = sc->tx_queues; i < sc->tx_num_queues; i++, que++) {
2921 		/* Set up some basics */
2922 
2923 		struct tx_ring *txr = &que->txr;
2924 		txr->sc = que->sc = sc;
2925 		que->me = txr->me =  i;
2926 
2927 		/* Allocate report status array */
2928 		if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2929 			device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
2930 			error = ENOMEM;
2931 			goto fail;
2932 		}
2933 		for (j = 0; j < scctx->isc_ntxd[0]; j++)
2934 			txr->tx_rsq[j] = QIDX_INVALID;
2935 		/* get the virtual and physical address of the hardware queues */
2936 		txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
2937 		txr->tx_paddr = paddrs[i*ntxqs];
2938 	}
2939 
2940 	if (bootverbose)
2941 		device_printf(iflib_get_dev(ctx),
2942 		    "allocated for %d tx_queues\n", sc->tx_num_queues);
2943 	return (0);
2944 fail:
2945 	em_if_queues_free(ctx);
2946 	return (error);
2947 }
2948 
2949 static int
2950 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
2951 {
2952 	struct e1000_softc *sc = iflib_get_softc(ctx);
2953 	int error = E1000_SUCCESS;
2954 	struct em_rx_queue *que;
2955 	int i;
2956 
2957 	MPASS(sc->rx_num_queues > 0);
2958 	MPASS(sc->rx_num_queues == nrxqsets);
2959 
2960 	/* First allocate the top level queue structs */
2961 	if (!(sc->rx_queues =
2962 	    (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
2963 	    sc->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2964 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2965 		error = ENOMEM;
2966 		goto fail;
2967 	}
2968 
2969 	for (i = 0, que = sc->rx_queues; i < nrxqsets; i++, que++) {
2970 		/* Set up some basics */
2971 		struct rx_ring *rxr = &que->rxr;
2972 		rxr->sc = que->sc = sc;
2973 		rxr->que = que;
2974 		que->me = rxr->me =  i;
2975 
2976 		/* get the virtual and physical address of the hardware queues */
2977 		rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
2978 		rxr->rx_paddr = paddrs[i*nrxqs];
2979 	}
2980 
2981 	if (bootverbose)
2982 		device_printf(iflib_get_dev(ctx),
2983 		    "allocated for %d rx_queues\n", sc->rx_num_queues);
2984 
2985 	return (0);
2986 fail:
2987 	em_if_queues_free(ctx);
2988 	return (error);
2989 }
2990 
2991 static void
2992 em_if_queues_free(if_ctx_t ctx)
2993 {
2994 	struct e1000_softc *sc = iflib_get_softc(ctx);
2995 	struct em_tx_queue *tx_que = sc->tx_queues;
2996 	struct em_rx_queue *rx_que = sc->rx_queues;
2997 
2998 	if (tx_que != NULL) {
2999 		for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
3000 			struct tx_ring *txr = &tx_que->txr;
3001 			if (txr->tx_rsq == NULL)
3002 				break;
3003 
3004 			free(txr->tx_rsq, M_DEVBUF);
3005 			txr->tx_rsq = NULL;
3006 		}
3007 		free(sc->tx_queues, M_DEVBUF);
3008 		sc->tx_queues = NULL;
3009 	}
3010 
3011 	if (rx_que != NULL) {
3012 		free(sc->rx_queues, M_DEVBUF);
3013 		sc->rx_queues = NULL;
3014 	}
3015 }
3016 
3017 /*********************************************************************
3018  *
3019  *  Enable transmit unit.
3020  *
3021  **********************************************************************/
3022 static void
3023 em_initialize_transmit_unit(if_ctx_t ctx)
3024 {
3025 	struct e1000_softc *sc = iflib_get_softc(ctx);
3026 	if_softc_ctx_t scctx = sc->shared;
3027 	struct em_tx_queue *que;
3028 	struct tx_ring	*txr;
3029 	struct e1000_hw	*hw = &sc->hw;
3030 	u32 tctl, txdctl = 0, tarc, tipg = 0;
3031 
3032 	INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
3033 
3034 	for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
3035 		u64 bus_addr;
3036 		caddr_t offp, endp;
3037 
3038 		que = &sc->tx_queues[i];
3039 		txr = &que->txr;
3040 		bus_addr = txr->tx_paddr;
3041 
3042 		/* Clear checksum offload context. */
3043 		offp = (caddr_t)&txr->csum_flags;
3044 		endp = (caddr_t)(txr + 1);
3045 		bzero(offp, endp - offp);
3046 
3047 		/* Base and Len of TX Ring */
3048 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
3049 		    scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
3050 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
3051 		    (u32)(bus_addr >> 32));
3052 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
3053 		    (u32)bus_addr);
3054 		/* Init the HEAD/TAIL indices */
3055 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3056 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3057 
3058 		HW_DEBUGOUT2("Base = %x, Length = %x\n",
3059 		    E1000_READ_REG(hw, E1000_TDBAL(i)),
3060 		    E1000_READ_REG(hw, E1000_TDLEN(i)));
3061 
3062 		txdctl = 0; /* clear txdctl */
3063 		txdctl |= 0x1f; /* PTHRESH */
3064 		txdctl |= 1 << 8; /* HTHRESH */
3065 		txdctl |= 1 << 16;/* WTHRESH */
3066 		txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3067 		txdctl |= E1000_TXDCTL_GRAN;
3068 		txdctl |= 1 << 25; /* LWTHRESH */
3069 
3070 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3071 	}
3072 
3073 	/* Set the default values for the Tx Inter Packet Gap timer */
3074 	switch (hw->mac.type) {
3075 	case e1000_80003es2lan:
3076 		tipg = DEFAULT_82543_TIPG_IPGR1;
3077 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3078 		    E1000_TIPG_IPGR2_SHIFT;
3079 		break;
3080 	case e1000_82542:
3081 		tipg = DEFAULT_82542_TIPG_IPGT;
3082 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3083 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3084 		break;
3085 	default:
3086 		if (hw->phy.media_type == e1000_media_type_fiber ||
3087 		    hw->phy.media_type == e1000_media_type_internal_serdes)
3088 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3089 		else
3090 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3091 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3092 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3093 	}
3094 
3095 	E1000_WRITE_REG(hw, E1000_TIPG, tipg);
3096 	E1000_WRITE_REG(hw, E1000_TIDV, sc->tx_int_delay.value);
3097 
3098 	if(hw->mac.type >= e1000_82540)
3099 		E1000_WRITE_REG(hw, E1000_TADV,
3100 		    sc->tx_abs_int_delay.value);
3101 
3102 	if (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572) {
3103 		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3104 		tarc |= TARC_SPEED_MODE_BIT;
3105 		E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3106 	} else if (hw->mac.type == e1000_80003es2lan) {
3107 		/* errata: program both queues to unweighted RR */
3108 		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3109 		tarc |= 1;
3110 		E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3111 		tarc = E1000_READ_REG(hw, E1000_TARC(1));
3112 		tarc |= 1;
3113 		E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3114 	} else if (hw->mac.type == e1000_82574) {
3115 		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3116 		tarc |= TARC_ERRATA_BIT;
3117 		if ( sc->tx_num_queues > 1) {
3118 			tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3119 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3120 			E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3121 		} else
3122 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3123 	}
3124 
3125 	if (sc->tx_int_delay.value > 0)
3126 		sc->txd_cmd |= E1000_TXD_CMD_IDE;
3127 
3128 	/* Program the Transmit Control Register */
3129 	tctl = E1000_READ_REG(hw, E1000_TCTL);
3130 	tctl &= ~E1000_TCTL_CT;
3131 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3132 		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3133 
3134 	if (hw->mac.type >= e1000_82571)
3135 		tctl |= E1000_TCTL_MULR;
3136 
3137 	/* This write will effectively turn on the transmit unit. */
3138 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
3139 
3140 	/* SPT and KBL errata workarounds */
3141 	if (hw->mac.type == e1000_pch_spt) {
3142 		u32 reg;
3143 		reg = E1000_READ_REG(hw, E1000_IOSFPC);
3144 		reg |= E1000_RCTL_RDMTS_HEX;
3145 		E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3146 		/* i218-i219 Specification Update 1.5.4.5 */
3147 		reg = E1000_READ_REG(hw, E1000_TARC(0));
3148 		reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3149 		reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3150 		E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3151 	}
3152 }
3153 
3154 /*********************************************************************
3155  *
3156  *  Enable receive unit.
3157  *
3158  **********************************************************************/
3159 #define BSIZEPKT_ROUNDUP ((1<<E1000_SRRCTL_BSIZEPKT_SHIFT)-1)
3160 
3161 static void
3162 em_initialize_receive_unit(if_ctx_t ctx)
3163 {
3164 	struct e1000_softc *sc = iflib_get_softc(ctx);
3165 	if_softc_ctx_t scctx = sc->shared;
3166 	struct ifnet *ifp = iflib_get_ifp(ctx);
3167 	struct e1000_hw	*hw = &sc->hw;
3168 	struct em_rx_queue *que;
3169 	int i;
3170 	uint32_t rctl, rxcsum;
3171 
3172 	INIT_DEBUGOUT("em_initialize_receive_units: begin");
3173 
3174 	/*
3175 	 * Make sure receives are disabled while setting
3176 	 * up the descriptor ring
3177 	 */
3178 	rctl = E1000_READ_REG(hw, E1000_RCTL);
3179 	/* Do not disable if ever enabled on this hardware */
3180 	if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3181 		E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3182 
3183 	/* Setup the Receive Control Register */
3184 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3185 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3186 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3187 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3188 
3189 	/* Do not store bad packets */
3190 	rctl &= ~E1000_RCTL_SBP;
3191 
3192 	/* Enable Long Packet receive */
3193 	if (if_getmtu(ifp) > ETHERMTU)
3194 		rctl |= E1000_RCTL_LPE;
3195 	else
3196 		rctl &= ~E1000_RCTL_LPE;
3197 
3198 	/* Strip the CRC */
3199 	if (!em_disable_crc_stripping)
3200 		rctl |= E1000_RCTL_SECRC;
3201 
3202 	if (hw->mac.type >= e1000_82540) {
3203 		E1000_WRITE_REG(hw, E1000_RADV,
3204 		    sc->rx_abs_int_delay.value);
3205 
3206 		/*
3207 		 * Set the interrupt throttling rate. Value is calculated
3208 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3209 		 */
3210 		E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
3211 	}
3212 	E1000_WRITE_REG(hw, E1000_RDTR, sc->rx_int_delay.value);
3213 
3214 	if (hw->mac.type >= em_mac_min) {
3215 		uint32_t rfctl;
3216 		/* Use extended rx descriptor formats */
3217 		rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3218 		rfctl |= E1000_RFCTL_EXTEN;
3219 
3220 		/*
3221 		 * When using MSI-X interrupts we need to throttle
3222 		 * using the EITR register (82574 only)
3223 		 */
3224 		if (hw->mac.type == e1000_82574) {
3225 			for (int i = 0; i < 4; i++)
3226 				E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3227 				    DEFAULT_ITR);
3228 			/* Disable accelerated acknowledge */
3229 			rfctl |= E1000_RFCTL_ACK_DIS;
3230 		}
3231 		E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3232 	}
3233 
3234 	/* Set up L3 and L4 csum Rx descriptor offloads */
3235 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3236 	if (scctx->isc_capenable & IFCAP_RXCSUM) {
3237 		rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3238 		if (hw->mac.type > e1000_82575)
3239 			rxcsum |= E1000_RXCSUM_CRCOFL;
3240 		else if (hw->mac.type < em_mac_min &&
3241 		    scctx->isc_capenable & IFCAP_HWCSUM_IPV6)
3242 			rxcsum |= E1000_RXCSUM_IPV6OFL;
3243 	} else {
3244 		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3245 		if (hw->mac.type > e1000_82575)
3246 			rxcsum &= ~E1000_RXCSUM_CRCOFL;
3247 		else if (hw->mac.type < em_mac_min)
3248 			rxcsum &= ~E1000_RXCSUM_IPV6OFL;
3249 	}
3250 
3251 	if (sc->rx_num_queues > 1) {
3252 		/* RSS hash needed in the Rx descriptor */
3253 		rxcsum |= E1000_RXCSUM_PCSD;
3254 
3255 		if (hw->mac.type >= igb_mac_min)
3256 			igb_initialize_rss_mapping(sc);
3257 		else
3258 			em_initialize_rss_mapping(sc);
3259 	}
3260 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3261 
3262 	/*
3263 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3264 	 * long latencies are observed, like Lenovo X60. This
3265 	 * change eliminates the problem, but since having positive
3266 	 * values in RDTR is a known source of problems on other
3267 	 * platforms another solution is being sought.
3268 	 */
3269 	if (hw->mac.type == e1000_82573)
3270 		E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3271 
3272 	for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) {
3273 		struct rx_ring *rxr = &que->rxr;
3274 		/* Setup the Base and Length of the Rx Descriptor Ring */
3275 		u64 bus_addr = rxr->rx_paddr;
3276 #if 0
3277 		u32 rdt = sc->rx_num_queues -1;  /* default */
3278 #endif
3279 
3280 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
3281 		    scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
3282 		E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3283 		E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3284 		/* Setup the Head and Tail Descriptor Pointers */
3285 		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3286 		E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3287 	}
3288 
3289 	/*
3290 	 * Set PTHRESH for improved jumbo performance
3291 	 * According to 10.2.5.11 of Intel 82574 Datasheet,
3292 	 * RXDCTL(1) is written whenever RXDCTL(0) is written.
3293 	 * Only write to RXDCTL(1) if there is a need for different
3294 	 * settings.
3295 	 */
3296 	if ((hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_pch2lan ||
3297 	    hw->mac.type == e1000_ich10lan) && if_getmtu(ifp) > ETHERMTU) {
3298 		u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3299 		E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3300 	} else if (hw->mac.type == e1000_82574) {
3301 		for (int i = 0; i < sc->rx_num_queues; i++) {
3302 			u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3303 			rxdctl |= 0x20; /* PTHRESH */
3304 			rxdctl |= 4 << 8; /* HTHRESH */
3305 			rxdctl |= 4 << 16;/* WTHRESH */
3306 			rxdctl |= 1 << 24; /* Switch to granularity */
3307 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3308 		}
3309 	} else if (hw->mac.type >= igb_mac_min) {
3310 		u32 psize, srrctl = 0;
3311 
3312 		if (if_getmtu(ifp) > ETHERMTU) {
3313 			psize = scctx->isc_max_frame_size;
3314 			/* are we on a vlan? */
3315 			if (ifp->if_vlantrunk != NULL)
3316 				psize += VLAN_TAG_SIZE;
3317 
3318 			if (sc->vf_ifp)
3319 				e1000_rlpml_set_vf(hw, psize);
3320 			else
3321 				E1000_WRITE_REG(hw, E1000_RLPML, psize);
3322 		}
3323 
3324 		/* Set maximum packet buffer len */
3325 		srrctl |= (sc->rx_mbuf_sz + BSIZEPKT_ROUNDUP) >>
3326 		    E1000_SRRCTL_BSIZEPKT_SHIFT;
3327 
3328 		/*
3329 		 * If TX flow control is disabled and there's >1 queue defined,
3330 		 * enable DROP.
3331 		 *
3332 		 * This drops frames rather than hanging the RX MAC for all queues.
3333 		 */
3334 		if ((sc->rx_num_queues > 1) &&
3335 		    (sc->fc == e1000_fc_none ||
3336 		     sc->fc == e1000_fc_rx_pause)) {
3337 			srrctl |= E1000_SRRCTL_DROP_EN;
3338 		}
3339 			/* Setup the Base and Length of the Rx Descriptor Rings */
3340 		for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) {
3341 			struct rx_ring *rxr = &que->rxr;
3342 			u64 bus_addr = rxr->rx_paddr;
3343 			u32 rxdctl;
3344 
3345 #ifdef notyet
3346 			/* Configure for header split? -- ignore for now */
3347 			rxr->hdr_split = igb_header_split;
3348 #else
3349 			srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3350 #endif
3351 
3352 			E1000_WRITE_REG(hw, E1000_RDLEN(i),
3353 					scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3354 			E1000_WRITE_REG(hw, E1000_RDBAH(i),
3355 					(uint32_t)(bus_addr >> 32));
3356 			E1000_WRITE_REG(hw, E1000_RDBAL(i),
3357 					(uint32_t)bus_addr);
3358 			E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3359 			/* Enable this Queue */
3360 			rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3361 			rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3362 			rxdctl &= 0xFFF00000;
3363 			rxdctl |= IGB_RX_PTHRESH;
3364 			rxdctl |= IGB_RX_HTHRESH << 8;
3365 			rxdctl |= IGB_RX_WTHRESH << 16;
3366 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3367 		}
3368 	} else if (hw->mac.type >= e1000_pch2lan) {
3369 		if (if_getmtu(ifp) > ETHERMTU)
3370 			e1000_lv_jumbo_workaround_ich8lan(hw, true);
3371 		else
3372 			e1000_lv_jumbo_workaround_ich8lan(hw, false);
3373 	}
3374 
3375 	/* Make sure VLAN Filters are off */
3376 	rctl &= ~E1000_RCTL_VFE;
3377 
3378 	/* Set up packet buffer size, overridden by per queue srrctl on igb */
3379 	if (hw->mac.type < igb_mac_min) {
3380 		if (sc->rx_mbuf_sz > 2048 && sc->rx_mbuf_sz <= 4096)
3381 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3382 		else if (sc->rx_mbuf_sz > 4096 && sc->rx_mbuf_sz <= 8192)
3383 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3384 		else if (sc->rx_mbuf_sz > 8192)
3385 			rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX;
3386 		else {
3387 			rctl |= E1000_RCTL_SZ_2048;
3388 			rctl &= ~E1000_RCTL_BSEX;
3389 		}
3390 	} else
3391 		rctl |= E1000_RCTL_SZ_2048;
3392 
3393 	/*
3394 	 * rctl bits 11:10 are as follows
3395 	 * lem: reserved
3396 	 * em: DTYPE
3397 	 * igb: reserved
3398 	 * and should be 00 on all of the above
3399 	 */
3400 	rctl &= ~0x00000C00;
3401 
3402 	/* Write out the settings */
3403 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3404 
3405 	return;
3406 }
3407 
3408 static void
3409 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3410 {
3411 	struct e1000_softc *sc = iflib_get_softc(ctx);
3412 	u32 index, bit;
3413 
3414 	index = (vtag >> 5) & 0x7F;
3415 	bit = vtag & 0x1F;
3416 	sc->shadow_vfta[index] |= (1 << bit);
3417 	++sc->num_vlans;
3418 	em_if_vlan_filter_write(sc);
3419 }
3420 
3421 static void
3422 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3423 {
3424 	struct e1000_softc *sc = iflib_get_softc(ctx);
3425 	u32 index, bit;
3426 
3427 	index = (vtag >> 5) & 0x7F;
3428 	bit = vtag & 0x1F;
3429 	sc->shadow_vfta[index] &= ~(1 << bit);
3430 	--sc->num_vlans;
3431 	em_if_vlan_filter_write(sc);
3432 }
3433 
3434 static bool
3435 em_if_vlan_filter_capable(struct e1000_softc *sc)
3436 {
3437 	if_softc_ctx_t scctx = sc->shared;
3438 
3439 	if ((scctx->isc_capenable & IFCAP_VLAN_HWFILTER) &&
3440 	    !em_disable_crc_stripping)
3441 		return (true);
3442 
3443 	return (false);
3444 }
3445 
3446 static bool
3447 em_if_vlan_filter_used(struct e1000_softc *sc)
3448 {
3449 	if (!em_if_vlan_filter_capable(sc))
3450 		return (false);
3451 
3452 	for (int i = 0; i < EM_VFTA_SIZE; i++)
3453 		if (sc->shadow_vfta[i] != 0)
3454 			return (true);
3455 
3456 	return (false);
3457 }
3458 
3459 static void
3460 em_if_vlan_filter_enable(struct e1000_softc *sc)
3461 {
3462 	struct e1000_hw *hw = &sc->hw;
3463 	u32 reg;
3464 
3465 	reg = E1000_READ_REG(hw, E1000_RCTL);
3466 	reg &= ~E1000_RCTL_CFIEN;
3467 	reg |= E1000_RCTL_VFE;
3468 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
3469 }
3470 
3471 static void
3472 em_if_vlan_filter_disable(struct e1000_softc *sc)
3473 {
3474 	struct e1000_hw *hw = &sc->hw;
3475 	u32 reg;
3476 
3477 	reg = E1000_READ_REG(hw, E1000_RCTL);
3478 	reg &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
3479 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
3480 }
3481 
3482 static void
3483 em_if_vlan_filter_write(struct e1000_softc *sc)
3484 {
3485 	struct e1000_hw *hw = &sc->hw;
3486 
3487 	if (sc->vf_ifp)
3488 		return;
3489 
3490 	/* Disable interrupts for lem-class devices during the filter change */
3491 	if (hw->mac.type < em_mac_min)
3492 		em_if_intr_disable(sc->ctx);
3493 
3494 	for (int i = 0; i < EM_VFTA_SIZE; i++)
3495 		if (sc->shadow_vfta[i] != 0) {
3496 			/* XXXKB: incomplete VF support, we return early above */
3497 			if (sc->vf_ifp)
3498 				e1000_vfta_set_vf(hw, sc->shadow_vfta[i], true);
3499 			else
3500 				e1000_write_vfta(hw, i, sc->shadow_vfta[i]);
3501 		}
3502 
3503 	/* Re-enable interrupts for lem-class devices */
3504 	if (hw->mac.type < em_mac_min)
3505 		em_if_intr_enable(sc->ctx);
3506 }
3507 
3508 static void
3509 em_setup_vlan_hw_support(struct e1000_softc *sc)
3510 {
3511 	if_softc_ctx_t scctx = sc->shared;
3512 	struct e1000_hw *hw = &sc->hw;
3513 	u32 reg;
3514 
3515 	/* XXXKB: Return early if we are a VF until VF decap and filter management
3516 	 * is ready and tested.
3517 	 */
3518 	if (sc->vf_ifp)
3519 		return;
3520 
3521 	if (scctx->isc_capenable & IFCAP_VLAN_HWTAGGING &&
3522 	    !em_disable_crc_stripping) {
3523 		reg = E1000_READ_REG(hw, E1000_CTRL);
3524 		reg |= E1000_CTRL_VME;
3525 		E1000_WRITE_REG(hw, E1000_CTRL, reg);
3526 	} else {
3527 		reg = E1000_READ_REG(hw, E1000_CTRL);
3528 		reg &= ~E1000_CTRL_VME;
3529 		E1000_WRITE_REG(hw, E1000_CTRL, reg);
3530 	}
3531 
3532 	/* If we aren't doing HW filtering, we're done */
3533 	if (!em_if_vlan_filter_capable(sc))  {
3534 		em_if_vlan_filter_disable(sc);
3535 		return;
3536 	}
3537 
3538 	/*
3539 	 * A soft reset zero's out the VFTA, so
3540 	 * we need to repopulate it now.
3541 	 */
3542 	em_if_vlan_filter_write(sc);
3543 
3544 	/* Enable the Filter Table */
3545 	em_if_vlan_filter_enable(sc);
3546 }
3547 
3548 static void
3549 em_if_intr_enable(if_ctx_t ctx)
3550 {
3551 	struct e1000_softc *sc = iflib_get_softc(ctx);
3552 	struct e1000_hw *hw = &sc->hw;
3553 	u32 ims_mask = IMS_ENABLE_MASK;
3554 
3555 	if (sc->intr_type == IFLIB_INTR_MSIX) {
3556 		E1000_WRITE_REG(hw, EM_EIAC, sc->ims);
3557 		ims_mask |= sc->ims;
3558 	}
3559 	E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3560 	E1000_WRITE_FLUSH(hw);
3561 }
3562 
3563 static void
3564 em_if_intr_disable(if_ctx_t ctx)
3565 {
3566 	struct e1000_softc *sc = iflib_get_softc(ctx);
3567 	struct e1000_hw *hw = &sc->hw;
3568 
3569 	if (sc->intr_type == IFLIB_INTR_MSIX)
3570 		E1000_WRITE_REG(hw, EM_EIAC, 0);
3571 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3572 	E1000_WRITE_FLUSH(hw);
3573 }
3574 
3575 static void
3576 igb_if_intr_enable(if_ctx_t ctx)
3577 {
3578 	struct e1000_softc *sc = iflib_get_softc(ctx);
3579 	struct e1000_hw *hw = &sc->hw;
3580 	u32 mask;
3581 
3582 	if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
3583 		mask = (sc->que_mask | sc->link_mask);
3584 		E1000_WRITE_REG(hw, E1000_EIAC, mask);
3585 		E1000_WRITE_REG(hw, E1000_EIAM, mask);
3586 		E1000_WRITE_REG(hw, E1000_EIMS, mask);
3587 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3588 	} else
3589 		E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3590 	E1000_WRITE_FLUSH(hw);
3591 }
3592 
3593 static void
3594 igb_if_intr_disable(if_ctx_t ctx)
3595 {
3596 	struct e1000_softc *sc = iflib_get_softc(ctx);
3597 	struct e1000_hw *hw = &sc->hw;
3598 
3599 	if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
3600 		E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
3601 		E1000_WRITE_REG(hw, E1000_EIAC, 0);
3602 	}
3603 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3604 	E1000_WRITE_FLUSH(hw);
3605 }
3606 
3607 /*
3608  * Bit of a misnomer, what this really means is
3609  * to enable OS management of the system... aka
3610  * to disable special hardware management features
3611  */
3612 static void
3613 em_init_manageability(struct e1000_softc *sc)
3614 {
3615 	/* A shared code workaround */
3616 #define E1000_82542_MANC2H E1000_MANC2H
3617 	if (sc->has_manage) {
3618 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3619 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3620 
3621 		/* disable hardware interception of ARP */
3622 		manc &= ~(E1000_MANC_ARP_EN);
3623 
3624 		/* enable receiving management packets to the host */
3625 		manc |= E1000_MANC_EN_MNG2HOST;
3626 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3627 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3628 		manc2h |= E1000_MNG2HOST_PORT_623;
3629 		manc2h |= E1000_MNG2HOST_PORT_664;
3630 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3631 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3632 	}
3633 }
3634 
3635 /*
3636  * Give control back to hardware management
3637  * controller if there is one.
3638  */
3639 static void
3640 em_release_manageability(struct e1000_softc *sc)
3641 {
3642 	if (sc->has_manage) {
3643 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3644 
3645 		/* re-enable hardware interception of ARP */
3646 		manc |= E1000_MANC_ARP_EN;
3647 		manc &= ~E1000_MANC_EN_MNG2HOST;
3648 
3649 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3650 	}
3651 }
3652 
3653 /*
3654  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3655  * For ASF and Pass Through versions of f/w this means
3656  * that the driver is loaded. For AMT version type f/w
3657  * this means that the network i/f is open.
3658  */
3659 static void
3660 em_get_hw_control(struct e1000_softc *sc)
3661 {
3662 	u32 ctrl_ext, swsm;
3663 
3664 	if (sc->vf_ifp)
3665 		return;
3666 
3667 	if (sc->hw.mac.type == e1000_82573) {
3668 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3669 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3670 		    swsm | E1000_SWSM_DRV_LOAD);
3671 		return;
3672 	}
3673 	/* else */
3674 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3675 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3676 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3677 }
3678 
3679 /*
3680  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3681  * For ASF and Pass Through versions of f/w this means that
3682  * the driver is no longer loaded. For AMT versions of the
3683  * f/w this means that the network i/f is closed.
3684  */
3685 static void
3686 em_release_hw_control(struct e1000_softc *sc)
3687 {
3688 	u32 ctrl_ext, swsm;
3689 
3690 	if (!sc->has_manage)
3691 		return;
3692 
3693 	if (sc->hw.mac.type == e1000_82573) {
3694 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3695 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3696 		    swsm & ~E1000_SWSM_DRV_LOAD);
3697 		return;
3698 	}
3699 	/* else */
3700 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3701 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3702 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3703 	return;
3704 }
3705 
3706 static int
3707 em_is_valid_ether_addr(u8 *addr)
3708 {
3709 	char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3710 
3711 	if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3712 		return (false);
3713 	}
3714 
3715 	return (true);
3716 }
3717 
3718 /*
3719 ** Parse the interface capabilities with regard
3720 ** to both system management and wake-on-lan for
3721 ** later use.
3722 */
3723 static void
3724 em_get_wakeup(if_ctx_t ctx)
3725 {
3726 	struct e1000_softc *sc = iflib_get_softc(ctx);
3727 	device_t dev = iflib_get_dev(ctx);
3728 	u16 eeprom_data = 0, device_id, apme_mask;
3729 
3730 	sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
3731 	apme_mask = EM_EEPROM_APME;
3732 
3733 	switch (sc->hw.mac.type) {
3734 	case e1000_82542:
3735 	case e1000_82543:
3736 		break;
3737 	case e1000_82544:
3738 		e1000_read_nvm(&sc->hw,
3739 		    NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3740 		apme_mask = EM_82544_APME;
3741 		break;
3742 	case e1000_82546:
3743 	case e1000_82546_rev_3:
3744 		if (sc->hw.bus.func == 1) {
3745 			e1000_read_nvm(&sc->hw,
3746 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3747 			break;
3748 		} else
3749 			e1000_read_nvm(&sc->hw,
3750 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3751 		break;
3752 	case e1000_82573:
3753 	case e1000_82583:
3754 		sc->has_amt = true;
3755 		/* FALLTHROUGH */
3756 	case e1000_82571:
3757 	case e1000_82572:
3758 	case e1000_80003es2lan:
3759 		if (sc->hw.bus.func == 1) {
3760 			e1000_read_nvm(&sc->hw,
3761 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3762 			break;
3763 		} else
3764 			e1000_read_nvm(&sc->hw,
3765 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3766 		break;
3767 	case e1000_ich8lan:
3768 	case e1000_ich9lan:
3769 	case e1000_ich10lan:
3770 	case e1000_pchlan:
3771 	case e1000_pch2lan:
3772 	case e1000_pch_lpt:
3773 	case e1000_pch_spt:
3774 	case e1000_82575:	/* listing all igb devices */
3775 	case e1000_82576:
3776 	case e1000_82580:
3777 	case e1000_i350:
3778 	case e1000_i354:
3779 	case e1000_i210:
3780 	case e1000_i211:
3781 	case e1000_vfadapt:
3782 	case e1000_vfadapt_i350:
3783 		apme_mask = E1000_WUC_APME;
3784 		sc->has_amt = true;
3785 		eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC);
3786 		break;
3787 	default:
3788 		e1000_read_nvm(&sc->hw,
3789 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3790 		break;
3791 	}
3792 	if (eeprom_data & apme_mask)
3793 		sc->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
3794 	/*
3795 	 * We have the eeprom settings, now apply the special cases
3796 	 * where the eeprom may be wrong or the board won't support
3797 	 * wake on lan on a particular port
3798 	 */
3799 	device_id = pci_get_device(dev);
3800 	switch (device_id) {
3801 	case E1000_DEV_ID_82546GB_PCIE:
3802 		sc->wol = 0;
3803 		break;
3804 	case E1000_DEV_ID_82546EB_FIBER:
3805 	case E1000_DEV_ID_82546GB_FIBER:
3806 		/* Wake events only supported on port A for dual fiber
3807 		 * regardless of eeprom setting */
3808 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
3809 		    E1000_STATUS_FUNC_1)
3810 			sc->wol = 0;
3811 		break;
3812 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
3813 		/* if quad port adapter, disable WoL on all but port A */
3814 		if (global_quad_port_a != 0)
3815 			sc->wol = 0;
3816 		/* Reset for multiple quad port adapters */
3817 		if (++global_quad_port_a == 4)
3818 			global_quad_port_a = 0;
3819 		break;
3820 	case E1000_DEV_ID_82571EB_FIBER:
3821 		/* Wake events only supported on port A for dual fiber
3822 		 * regardless of eeprom setting */
3823 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
3824 		    E1000_STATUS_FUNC_1)
3825 			sc->wol = 0;
3826 		break;
3827 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
3828 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
3829 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
3830 		/* if quad port adapter, disable WoL on all but port A */
3831 		if (global_quad_port_a != 0)
3832 			sc->wol = 0;
3833 		/* Reset for multiple quad port adapters */
3834 		if (++global_quad_port_a == 4)
3835 			global_quad_port_a = 0;
3836 		break;
3837 	}
3838 	return;
3839 }
3840 
3841 
3842 /*
3843  * Enable PCI Wake On Lan capability
3844  */
3845 static void
3846 em_enable_wakeup(if_ctx_t ctx)
3847 {
3848 	struct e1000_softc *sc = iflib_get_softc(ctx);
3849 	device_t dev = iflib_get_dev(ctx);
3850 	if_t ifp = iflib_get_ifp(ctx);
3851 	int error = 0;
3852 	u32 pmc, ctrl, ctrl_ext, rctl;
3853 	u16 status;
3854 
3855 	if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
3856 		return;
3857 
3858 	/*
3859 	 * Determine type of Wakeup: note that wol
3860 	 * is set with all bits on by default.
3861 	 */
3862 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
3863 		sc->wol &= ~E1000_WUFC_MAG;
3864 
3865 	if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
3866 		sc->wol &= ~E1000_WUFC_EX;
3867 
3868 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
3869 		sc->wol &= ~E1000_WUFC_MC;
3870 	else {
3871 		rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
3872 		rctl |= E1000_RCTL_MPE;
3873 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
3874 	}
3875 
3876 	if (!(sc->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
3877 		goto pme;
3878 
3879 	/* Advertise the wakeup capability */
3880 	ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
3881 	ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
3882 	E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
3883 
3884 	/* Keep the laser running on Fiber adapters */
3885 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
3886 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
3887 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3888 		ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
3889 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, ctrl_ext);
3890 	}
3891 
3892 	if ((sc->hw.mac.type == e1000_ich8lan) ||
3893 	    (sc->hw.mac.type == e1000_pchlan) ||
3894 	    (sc->hw.mac.type == e1000_ich9lan) ||
3895 	    (sc->hw.mac.type == e1000_ich10lan))
3896 		e1000_suspend_workarounds_ich8lan(&sc->hw);
3897 
3898 	if ( sc->hw.mac.type >= e1000_pchlan) {
3899 		error = em_enable_phy_wakeup(sc);
3900 		if (error)
3901 			goto pme;
3902 	} else {
3903 		/* Enable wakeup by the MAC */
3904 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
3905 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
3906 	}
3907 
3908 	if (sc->hw.phy.type == e1000_phy_igp_3)
3909 		e1000_igp3_phy_powerdown_workaround_ich8lan(&sc->hw);
3910 
3911 pme:
3912 	status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
3913 	status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3914 	if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
3915 		status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3916 	pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
3917 
3918 	return;
3919 }
3920 
3921 /*
3922  * WOL in the newer chipset interfaces (pchlan)
3923  * require thing to be copied into the phy
3924  */
3925 static int
3926 em_enable_phy_wakeup(struct e1000_softc *sc)
3927 {
3928 	struct e1000_hw *hw = &sc->hw;
3929 	u32 mreg, ret = 0;
3930 	u16 preg;
3931 
3932 	/* copy MAC RARs to PHY RARs */
3933 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
3934 
3935 	/* copy MAC MTA to PHY MTA */
3936 	for (int i = 0; i < hw->mac.mta_reg_count; i++) {
3937 		mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
3938 		e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
3939 		e1000_write_phy_reg(hw, BM_MTA(i) + 1,
3940 		    (u16)((mreg >> 16) & 0xFFFF));
3941 	}
3942 
3943 	/* configure PHY Rx Control register */
3944 	e1000_read_phy_reg(hw, BM_RCTL, &preg);
3945 	mreg = E1000_READ_REG(hw, E1000_RCTL);
3946 	if (mreg & E1000_RCTL_UPE)
3947 		preg |= BM_RCTL_UPE;
3948 	if (mreg & E1000_RCTL_MPE)
3949 		preg |= BM_RCTL_MPE;
3950 	preg &= ~(BM_RCTL_MO_MASK);
3951 	if (mreg & E1000_RCTL_MO_3)
3952 		preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
3953 				<< BM_RCTL_MO_SHIFT);
3954 	if (mreg & E1000_RCTL_BAM)
3955 		preg |= BM_RCTL_BAM;
3956 	if (mreg & E1000_RCTL_PMCF)
3957 		preg |= BM_RCTL_PMCF;
3958 	mreg = E1000_READ_REG(hw, E1000_CTRL);
3959 	if (mreg & E1000_CTRL_RFCE)
3960 		preg |= BM_RCTL_RFCE;
3961 	e1000_write_phy_reg(hw, BM_RCTL, preg);
3962 
3963 	/* enable PHY wakeup in MAC register */
3964 	E1000_WRITE_REG(hw, E1000_WUC,
3965 	    E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
3966 	E1000_WRITE_REG(hw, E1000_WUFC, sc->wol);
3967 
3968 	/* configure and enable PHY wakeup in PHY registers */
3969 	e1000_write_phy_reg(hw, BM_WUFC, sc->wol);
3970 	e1000_write_phy_reg(hw, BM_WUC, E1000_WUC_PME_EN);
3971 
3972 	/* activate PHY wakeup */
3973 	ret = hw->phy.ops.acquire(hw);
3974 	if (ret) {
3975 		printf("Could not acquire PHY\n");
3976 		return ret;
3977 	}
3978 	e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3979 	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
3980 	ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
3981 	if (ret) {
3982 		printf("Could not read PHY page 769\n");
3983 		goto out;
3984 	}
3985 	preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
3986 	ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
3987 	if (ret)
3988 		printf("Could not set PHY Host Wakeup bit\n");
3989 out:
3990 	hw->phy.ops.release(hw);
3991 
3992 	return ret;
3993 }
3994 
3995 static void
3996 em_if_led_func(if_ctx_t ctx, int onoff)
3997 {
3998 	struct e1000_softc *sc = iflib_get_softc(ctx);
3999 
4000 	if (onoff) {
4001 		e1000_setup_led(&sc->hw);
4002 		e1000_led_on(&sc->hw);
4003 	} else {
4004 		e1000_led_off(&sc->hw);
4005 		e1000_cleanup_led(&sc->hw);
4006 	}
4007 }
4008 
4009 /*
4010  * Disable the L0S and L1 LINK states
4011  */
4012 static void
4013 em_disable_aspm(struct e1000_softc *sc)
4014 {
4015 	int base, reg;
4016 	u16 link_cap,link_ctrl;
4017 	device_t dev = sc->dev;
4018 
4019 	switch (sc->hw.mac.type) {
4020 	case e1000_82573:
4021 	case e1000_82574:
4022 	case e1000_82583:
4023 		break;
4024 	default:
4025 		return;
4026 	}
4027 	if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
4028 		return;
4029 	reg = base + PCIER_LINK_CAP;
4030 	link_cap = pci_read_config(dev, reg, 2);
4031 	if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
4032 		return;
4033 	reg = base + PCIER_LINK_CTL;
4034 	link_ctrl = pci_read_config(dev, reg, 2);
4035 	link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
4036 	pci_write_config(dev, reg, link_ctrl, 2);
4037 	return;
4038 }
4039 
4040 /**********************************************************************
4041  *
4042  *  Update the board statistics counters.
4043  *
4044  **********************************************************************/
4045 static void
4046 em_update_stats_counters(struct e1000_softc *sc)
4047 {
4048 	u64 prev_xoffrxc = sc->stats.xoffrxc;
4049 
4050 	if(sc->hw.phy.media_type == e1000_media_type_copper ||
4051 	   (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
4052 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
4053 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
4054 	}
4055 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
4056 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
4057 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
4058 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
4059 
4060 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
4061 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
4062 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
4063 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
4064 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
4065 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
4066 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
4067 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
4068 	/*
4069 	 ** For watchdog management we need to know if we have been
4070 	 ** paused during the last interval, so capture that here.
4071 	*/
4072 	if (sc->stats.xoffrxc != prev_xoffrxc)
4073 		sc->shared->isc_pause_frames = 1;
4074 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
4075 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
4076 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
4077 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
4078 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
4079 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
4080 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
4081 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
4082 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
4083 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
4084 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
4085 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
4086 
4087 	/* For the 64-bit byte counters the low dword must be read first. */
4088 	/* Both registers clear on the read of the high dword */
4089 
4090 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCL) +
4091 	    ((u64)E1000_READ_REG(&sc->hw, E1000_GORCH) << 32);
4092 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCL) +
4093 	    ((u64)E1000_READ_REG(&sc->hw, E1000_GOTCH) << 32);
4094 
4095 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
4096 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
4097 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
4098 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
4099 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
4100 
4101 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
4102 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
4103 
4104 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
4105 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
4106 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
4107 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
4108 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
4109 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
4110 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
4111 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
4112 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
4113 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
4114 
4115 	/* Interrupt Counts */
4116 
4117 	sc->stats.iac += E1000_READ_REG(&sc->hw, E1000_IAC);
4118 	sc->stats.icrxptc += E1000_READ_REG(&sc->hw, E1000_ICRXPTC);
4119 	sc->stats.icrxatc += E1000_READ_REG(&sc->hw, E1000_ICRXATC);
4120 	sc->stats.ictxptc += E1000_READ_REG(&sc->hw, E1000_ICTXPTC);
4121 	sc->stats.ictxatc += E1000_READ_REG(&sc->hw, E1000_ICTXATC);
4122 	sc->stats.ictxqec += E1000_READ_REG(&sc->hw, E1000_ICTXQEC);
4123 	sc->stats.ictxqmtc += E1000_READ_REG(&sc->hw, E1000_ICTXQMTC);
4124 	sc->stats.icrxdmtc += E1000_READ_REG(&sc->hw, E1000_ICRXDMTC);
4125 	sc->stats.icrxoc += E1000_READ_REG(&sc->hw, E1000_ICRXOC);
4126 
4127 	if (sc->hw.mac.type >= e1000_82543) {
4128 		sc->stats.algnerrc +=
4129 		E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
4130 		sc->stats.rxerrc +=
4131 		E1000_READ_REG(&sc->hw, E1000_RXERRC);
4132 		sc->stats.tncrs +=
4133 		E1000_READ_REG(&sc->hw, E1000_TNCRS);
4134 		sc->stats.cexterr +=
4135 		E1000_READ_REG(&sc->hw, E1000_CEXTERR);
4136 		sc->stats.tsctc +=
4137 		E1000_READ_REG(&sc->hw, E1000_TSCTC);
4138 		sc->stats.tsctfc +=
4139 		E1000_READ_REG(&sc->hw, E1000_TSCTFC);
4140 	}
4141 }
4142 
4143 static uint64_t
4144 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4145 {
4146 	struct e1000_softc *sc = iflib_get_softc(ctx);
4147 	struct ifnet *ifp = iflib_get_ifp(ctx);
4148 
4149 	switch (cnt) {
4150 	case IFCOUNTER_COLLISIONS:
4151 		return (sc->stats.colc);
4152 	case IFCOUNTER_IERRORS:
4153 		return (sc->dropped_pkts + sc->stats.rxerrc +
4154 		    sc->stats.crcerrs + sc->stats.algnerrc +
4155 		    sc->stats.ruc + sc->stats.roc +
4156 		    sc->stats.mpc + sc->stats.cexterr);
4157 	case IFCOUNTER_OERRORS:
4158 		return (sc->stats.ecol + sc->stats.latecol +
4159 		    sc->watchdog_events);
4160 	default:
4161 		return (if_get_counter_default(ifp, cnt));
4162 	}
4163 }
4164 
4165 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized
4166  * @ctx: iflib context
4167  * @event: event code to check
4168  *
4169  * Defaults to returning true for unknown events.
4170  *
4171  * @returns true if iflib needs to reinit the interface
4172  */
4173 static bool
4174 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
4175 {
4176 	switch (event) {
4177 	case IFLIB_RESTART_VLAN_CONFIG:
4178 		return (false);
4179 	default:
4180 		return (true);
4181 	}
4182 }
4183 
4184 /* Export a single 32-bit register via a read-only sysctl. */
4185 static int
4186 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4187 {
4188 	struct e1000_softc *sc;
4189 	u_int val;
4190 
4191 	sc = oidp->oid_arg1;
4192 	val = E1000_READ_REG(&sc->hw, oidp->oid_arg2);
4193 	return (sysctl_handle_int(oidp, &val, 0, req));
4194 }
4195 
4196 /*
4197  * Add sysctl variables, one per statistic, to the system.
4198  */
4199 static void
4200 em_add_hw_stats(struct e1000_softc *sc)
4201 {
4202 	device_t dev = iflib_get_dev(sc->ctx);
4203 	struct em_tx_queue *tx_que = sc->tx_queues;
4204 	struct em_rx_queue *rx_que = sc->rx_queues;
4205 
4206 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4207 	struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4208 	struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4209 	struct e1000_hw_stats *stats = &sc->stats;
4210 
4211 	struct sysctl_oid *stat_node, *queue_node, *int_node;
4212 	struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4213 
4214 #define QUEUE_NAME_LEN 32
4215 	char namebuf[QUEUE_NAME_LEN];
4216 
4217 	/* Driver Statistics */
4218 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4219 			CTLFLAG_RD, &sc->dropped_pkts,
4220 			"Driver dropped packets");
4221 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4222 			CTLFLAG_RD, &sc->link_irq,
4223 			"Link MSI-X IRQ Handled");
4224 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4225 			CTLFLAG_RD, &sc->rx_overruns,
4226 			"RX overruns");
4227 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4228 			CTLFLAG_RD, &sc->watchdog_events,
4229 			"Watchdog timeouts");
4230 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4231 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4232 	    sc, E1000_CTRL, em_sysctl_reg_handler, "IU",
4233 	    "Device Control Register");
4234 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4235 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4236 	    sc, E1000_RCTL, em_sysctl_reg_handler, "IU",
4237 	    "Receiver Control Register");
4238 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4239 			CTLFLAG_RD, &sc->hw.fc.high_water, 0,
4240 			"Flow Control High Watermark");
4241 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4242 			CTLFLAG_RD, &sc->hw.fc.low_water, 0,
4243 			"Flow Control Low Watermark");
4244 
4245 	for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
4246 		struct tx_ring *txr = &tx_que->txr;
4247 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4248 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4249 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
4250 		queue_list = SYSCTL_CHILDREN(queue_node);
4251 
4252 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4253 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
4254 		    E1000_TDH(txr->me), em_sysctl_reg_handler, "IU",
4255 		    "Transmit Descriptor Head");
4256 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4257 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
4258 		    E1000_TDT(txr->me), em_sysctl_reg_handler, "IU",
4259 		    "Transmit Descriptor Tail");
4260 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4261 				CTLFLAG_RD, &txr->tx_irq,
4262 				"Queue MSI-X Transmit Interrupts");
4263 	}
4264 
4265 	for (int j = 0; j < sc->rx_num_queues; j++, rx_que++) {
4266 		struct rx_ring *rxr = &rx_que->rxr;
4267 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4268 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4269 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
4270 		queue_list = SYSCTL_CHILDREN(queue_node);
4271 
4272 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4273 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
4274 		    E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU",
4275 		    "Receive Descriptor Head");
4276 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4277 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
4278 		    E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU",
4279 		    "Receive Descriptor Tail");
4280 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
4281 				CTLFLAG_RD, &rxr->rx_irq,
4282 				"Queue MSI-X Receive Interrupts");
4283 	}
4284 
4285 	/* MAC stats get their own sub node */
4286 
4287 	stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
4288 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
4289 	stat_list = SYSCTL_CHILDREN(stat_node);
4290 
4291 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
4292 			CTLFLAG_RD, &stats->ecol,
4293 			"Excessive collisions");
4294 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
4295 			CTLFLAG_RD, &stats->scc,
4296 			"Single collisions");
4297 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
4298 			CTLFLAG_RD, &stats->mcc,
4299 			"Multiple collisions");
4300 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
4301 			CTLFLAG_RD, &stats->latecol,
4302 			"Late collisions");
4303 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
4304 			CTLFLAG_RD, &stats->colc,
4305 			"Collision Count");
4306 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
4307 			CTLFLAG_RD, &sc->stats.symerrs,
4308 			"Symbol Errors");
4309 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
4310 			CTLFLAG_RD, &sc->stats.sec,
4311 			"Sequence Errors");
4312 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
4313 			CTLFLAG_RD, &sc->stats.dc,
4314 			"Defer Count");
4315 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
4316 			CTLFLAG_RD, &sc->stats.mpc,
4317 			"Missed Packets");
4318 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
4319 			CTLFLAG_RD, &sc->stats.rnbc,
4320 			"Receive No Buffers");
4321 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
4322 			CTLFLAG_RD, &sc->stats.ruc,
4323 			"Receive Undersize");
4324 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
4325 			CTLFLAG_RD, &sc->stats.rfc,
4326 			"Fragmented Packets Received ");
4327 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
4328 			CTLFLAG_RD, &sc->stats.roc,
4329 			"Oversized Packets Received");
4330 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
4331 			CTLFLAG_RD, &sc->stats.rjc,
4332 			"Recevied Jabber");
4333 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
4334 			CTLFLAG_RD, &sc->stats.rxerrc,
4335 			"Receive Errors");
4336 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
4337 			CTLFLAG_RD, &sc->stats.crcerrs,
4338 			"CRC errors");
4339 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
4340 			CTLFLAG_RD, &sc->stats.algnerrc,
4341 			"Alignment Errors");
4342 	/* On 82575 these are collision counts */
4343 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
4344 			CTLFLAG_RD, &sc->stats.cexterr,
4345 			"Collision/Carrier extension errors");
4346 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
4347 			CTLFLAG_RD, &sc->stats.xonrxc,
4348 			"XON Received");
4349 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
4350 			CTLFLAG_RD, &sc->stats.xontxc,
4351 			"XON Transmitted");
4352 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
4353 			CTLFLAG_RD, &sc->stats.xoffrxc,
4354 			"XOFF Received");
4355 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
4356 			CTLFLAG_RD, &sc->stats.xofftxc,
4357 			"XOFF Transmitted");
4358 
4359 	/* Packet Reception Stats */
4360 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
4361 			CTLFLAG_RD, &sc->stats.tpr,
4362 			"Total Packets Received ");
4363 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
4364 			CTLFLAG_RD, &sc->stats.gprc,
4365 			"Good Packets Received");
4366 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
4367 			CTLFLAG_RD, &sc->stats.bprc,
4368 			"Broadcast Packets Received");
4369 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
4370 			CTLFLAG_RD, &sc->stats.mprc,
4371 			"Multicast Packets Received");
4372 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
4373 			CTLFLAG_RD, &sc->stats.prc64,
4374 			"64 byte frames received ");
4375 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
4376 			CTLFLAG_RD, &sc->stats.prc127,
4377 			"65-127 byte frames received");
4378 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
4379 			CTLFLAG_RD, &sc->stats.prc255,
4380 			"128-255 byte frames received");
4381 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
4382 			CTLFLAG_RD, &sc->stats.prc511,
4383 			"256-511 byte frames received");
4384 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
4385 			CTLFLAG_RD, &sc->stats.prc1023,
4386 			"512-1023 byte frames received");
4387 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
4388 			CTLFLAG_RD, &sc->stats.prc1522,
4389 			"1023-1522 byte frames received");
4390 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
4391 			CTLFLAG_RD, &sc->stats.gorc,
4392 			"Good Octets Received");
4393 
4394 	/* Packet Transmission Stats */
4395 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
4396 			CTLFLAG_RD, &sc->stats.gotc,
4397 			"Good Octets Transmitted");
4398 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
4399 			CTLFLAG_RD, &sc->stats.tpt,
4400 			"Total Packets Transmitted");
4401 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
4402 			CTLFLAG_RD, &sc->stats.gptc,
4403 			"Good Packets Transmitted");
4404 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
4405 			CTLFLAG_RD, &sc->stats.bptc,
4406 			"Broadcast Packets Transmitted");
4407 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
4408 			CTLFLAG_RD, &sc->stats.mptc,
4409 			"Multicast Packets Transmitted");
4410 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
4411 			CTLFLAG_RD, &sc->stats.ptc64,
4412 			"64 byte frames transmitted ");
4413 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
4414 			CTLFLAG_RD, &sc->stats.ptc127,
4415 			"65-127 byte frames transmitted");
4416 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
4417 			CTLFLAG_RD, &sc->stats.ptc255,
4418 			"128-255 byte frames transmitted");
4419 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
4420 			CTLFLAG_RD, &sc->stats.ptc511,
4421 			"256-511 byte frames transmitted");
4422 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
4423 			CTLFLAG_RD, &sc->stats.ptc1023,
4424 			"512-1023 byte frames transmitted");
4425 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
4426 			CTLFLAG_RD, &sc->stats.ptc1522,
4427 			"1024-1522 byte frames transmitted");
4428 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
4429 			CTLFLAG_RD, &sc->stats.tsctc,
4430 			"TSO Contexts Transmitted");
4431 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
4432 			CTLFLAG_RD, &sc->stats.tsctfc,
4433 			"TSO Contexts Failed");
4434 
4435 
4436 	/* Interrupt Stats */
4437 
4438 	int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
4439 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
4440 	int_list = SYSCTL_CHILDREN(int_node);
4441 
4442 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
4443 			CTLFLAG_RD, &sc->stats.iac,
4444 			"Interrupt Assertion Count");
4445 
4446 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
4447 			CTLFLAG_RD, &sc->stats.icrxptc,
4448 			"Interrupt Cause Rx Pkt Timer Expire Count");
4449 
4450 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
4451 			CTLFLAG_RD, &sc->stats.icrxatc,
4452 			"Interrupt Cause Rx Abs Timer Expire Count");
4453 
4454 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
4455 			CTLFLAG_RD, &sc->stats.ictxptc,
4456 			"Interrupt Cause Tx Pkt Timer Expire Count");
4457 
4458 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
4459 			CTLFLAG_RD, &sc->stats.ictxatc,
4460 			"Interrupt Cause Tx Abs Timer Expire Count");
4461 
4462 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
4463 			CTLFLAG_RD, &sc->stats.ictxqec,
4464 			"Interrupt Cause Tx Queue Empty Count");
4465 
4466 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
4467 			CTLFLAG_RD, &sc->stats.ictxqmtc,
4468 			"Interrupt Cause Tx Queue Min Thresh Count");
4469 
4470 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4471 			CTLFLAG_RD, &sc->stats.icrxdmtc,
4472 			"Interrupt Cause Rx Desc Min Thresh Count");
4473 
4474 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4475 			CTLFLAG_RD, &sc->stats.icrxoc,
4476 			"Interrupt Cause Receiver Overrun Count");
4477 }
4478 
4479 /**********************************************************************
4480  *
4481  *  This routine provides a way to dump out the adapter eeprom,
4482  *  often a useful debug/service tool. This only dumps the first
4483  *  32 words, stuff that matters is in that extent.
4484  *
4485  **********************************************************************/
4486 static int
4487 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4488 {
4489 	struct e1000_softc *sc = (struct e1000_softc *)arg1;
4490 	int error;
4491 	int result;
4492 
4493 	result = -1;
4494 	error = sysctl_handle_int(oidp, &result, 0, req);
4495 
4496 	if (error || !req->newptr)
4497 		return (error);
4498 
4499 	/*
4500 	 * This value will cause a hex dump of the
4501 	 * first 32 16-bit words of the EEPROM to
4502 	 * the screen.
4503 	 */
4504 	if (result == 1)
4505 		em_print_nvm_info(sc);
4506 
4507 	return (error);
4508 }
4509 
4510 static void
4511 em_print_nvm_info(struct e1000_softc *sc)
4512 {
4513 	u16 eeprom_data;
4514 	int i, j, row = 0;
4515 
4516 	/* Its a bit crude, but it gets the job done */
4517 	printf("\nInterface EEPROM Dump:\n");
4518 	printf("Offset\n0x0000  ");
4519 	for (i = 0, j = 0; i < 32; i++, j++) {
4520 		if (j == 8) { /* Make the offset block */
4521 			j = 0; ++row;
4522 			printf("\n0x00%x0  ",row);
4523 		}
4524 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
4525 		printf("%04x ", eeprom_data);
4526 	}
4527 	printf("\n");
4528 }
4529 
4530 static int
4531 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4532 {
4533 	struct em_int_delay_info *info;
4534 	struct e1000_softc *sc;
4535 	u32 regval;
4536 	int error, usecs, ticks;
4537 
4538 	info = (struct em_int_delay_info *) arg1;
4539 	usecs = info->value;
4540 	error = sysctl_handle_int(oidp, &usecs, 0, req);
4541 	if (error != 0 || req->newptr == NULL)
4542 		return (error);
4543 	if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4544 		return (EINVAL);
4545 	info->value = usecs;
4546 	ticks = EM_USECS_TO_TICKS(usecs);
4547 	if (info->offset == E1000_ITR)	/* units are 256ns here */
4548 		ticks *= 4;
4549 
4550 	sc = info->sc;
4551 
4552 	regval = E1000_READ_OFFSET(&sc->hw, info->offset);
4553 	regval = (regval & ~0xffff) | (ticks & 0xffff);
4554 	/* Handle a few special cases. */
4555 	switch (info->offset) {
4556 	case E1000_RDTR:
4557 		break;
4558 	case E1000_TIDV:
4559 		if (ticks == 0) {
4560 			sc->txd_cmd &= ~E1000_TXD_CMD_IDE;
4561 			/* Don't write 0 into the TIDV register. */
4562 			regval++;
4563 		} else
4564 			sc->txd_cmd |= E1000_TXD_CMD_IDE;
4565 		break;
4566 	}
4567 	E1000_WRITE_OFFSET(&sc->hw, info->offset, regval);
4568 	return (0);
4569 }
4570 
4571 static void
4572 em_add_int_delay_sysctl(struct e1000_softc *sc, const char *name,
4573 	const char *description, struct em_int_delay_info *info,
4574 	int offset, int value)
4575 {
4576 	info->sc = sc;
4577 	info->offset = offset;
4578 	info->value = value;
4579 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
4580 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
4581 	    OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
4582 	    info, 0, em_sysctl_int_delay, "I", description);
4583 }
4584 
4585 /*
4586  * Set flow control using sysctl:
4587  * Flow control values:
4588  *      0 - off
4589  *      1 - rx pause
4590  *      2 - tx pause
4591  *      3 - full
4592  */
4593 static int
4594 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4595 {
4596 	int error;
4597 	static int input = 3; /* default is full */
4598 	struct e1000_softc	*sc = (struct e1000_softc *) arg1;
4599 
4600 	error = sysctl_handle_int(oidp, &input, 0, req);
4601 
4602 	if ((error) || (req->newptr == NULL))
4603 		return (error);
4604 
4605 	if (input == sc->fc) /* no change? */
4606 		return (error);
4607 
4608 	switch (input) {
4609 	case e1000_fc_rx_pause:
4610 	case e1000_fc_tx_pause:
4611 	case e1000_fc_full:
4612 	case e1000_fc_none:
4613 		sc->hw.fc.requested_mode = input;
4614 		sc->fc = input;
4615 		break;
4616 	default:
4617 		/* Do nothing */
4618 		return (error);
4619 	}
4620 
4621 	sc->hw.fc.current_mode = sc->hw.fc.requested_mode;
4622 	e1000_force_mac_fc(&sc->hw);
4623 	return (error);
4624 }
4625 
4626 /*
4627  * Manage Energy Efficient Ethernet:
4628  * Control values:
4629  *     0/1 - enabled/disabled
4630  */
4631 static int
4632 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
4633 {
4634 	struct e1000_softc *sc = (struct e1000_softc *) arg1;
4635 	int error, value;
4636 
4637 	value = sc->hw.dev_spec.ich8lan.eee_disable;
4638 	error = sysctl_handle_int(oidp, &value, 0, req);
4639 	if (error || req->newptr == NULL)
4640 		return (error);
4641 	sc->hw.dev_spec.ich8lan.eee_disable = (value != 0);
4642 	em_if_init(sc->ctx);
4643 
4644 	return (0);
4645 }
4646 
4647 static int
4648 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4649 {
4650 	struct e1000_softc *sc;
4651 	int error;
4652 	int result;
4653 
4654 	result = -1;
4655 	error = sysctl_handle_int(oidp, &result, 0, req);
4656 
4657 	if (error || !req->newptr)
4658 		return (error);
4659 
4660 	if (result == 1) {
4661 		sc = (struct e1000_softc *) arg1;
4662 		em_print_debug_info(sc);
4663 	}
4664 
4665 	return (error);
4666 }
4667 
4668 static int
4669 em_get_rs(SYSCTL_HANDLER_ARGS)
4670 {
4671 	struct e1000_softc *sc = (struct e1000_softc *) arg1;
4672 	int error;
4673 	int result;
4674 
4675 	result = 0;
4676 	error = sysctl_handle_int(oidp, &result, 0, req);
4677 
4678 	if (error || !req->newptr || result != 1)
4679 		return (error);
4680 	em_dump_rs(sc);
4681 
4682 	return (error);
4683 }
4684 
4685 static void
4686 em_if_debug(if_ctx_t ctx)
4687 {
4688 	em_dump_rs(iflib_get_softc(ctx));
4689 }
4690 
4691 /*
4692  * This routine is meant to be fluid, add whatever is
4693  * needed for debugging a problem.  -jfv
4694  */
4695 static void
4696 em_print_debug_info(struct e1000_softc *sc)
4697 {
4698 	device_t dev = iflib_get_dev(sc->ctx);
4699 	struct ifnet *ifp = iflib_get_ifp(sc->ctx);
4700 	struct tx_ring *txr = &sc->tx_queues->txr;
4701 	struct rx_ring *rxr = &sc->rx_queues->rxr;
4702 
4703 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
4704 		printf("Interface is RUNNING ");
4705 	else
4706 		printf("Interface is NOT RUNNING\n");
4707 
4708 	if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
4709 		printf("and INACTIVE\n");
4710 	else
4711 		printf("and ACTIVE\n");
4712 
4713 	for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
4714 		device_printf(dev, "TX Queue %d ------\n", i);
4715 		device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4716 			E1000_READ_REG(&sc->hw, E1000_TDH(i)),
4717 			E1000_READ_REG(&sc->hw, E1000_TDT(i)));
4718 
4719 	}
4720 	for (int j=0; j < sc->rx_num_queues; j++, rxr++) {
4721 		device_printf(dev, "RX Queue %d ------\n", j);
4722 		device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4723 			E1000_READ_REG(&sc->hw, E1000_RDH(j)),
4724 			E1000_READ_REG(&sc->hw, E1000_RDT(j)));
4725 	}
4726 }
4727 
4728 /*
4729  * 82574 only:
4730  * Write a new value to the EEPROM increasing the number of MSI-X
4731  * vectors from 3 to 5, for proper multiqueue support.
4732  */
4733 static void
4734 em_enable_vectors_82574(if_ctx_t ctx)
4735 {
4736 	struct e1000_softc *sc = iflib_get_softc(ctx);
4737 	struct e1000_hw *hw = &sc->hw;
4738 	device_t dev = iflib_get_dev(ctx);
4739 	u16 edata;
4740 
4741 	e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4742 	if (bootverbose)
4743 		device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
4744 	if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
4745 		device_printf(dev, "Writing to eeprom: increasing "
4746 		    "reported MSI-X vectors from 3 to 5...\n");
4747 		edata &= ~(EM_NVM_MSIX_N_MASK);
4748 		edata |= 4 << EM_NVM_MSIX_N_SHIFT;
4749 		e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4750 		e1000_update_nvm_checksum(hw);
4751 		device_printf(dev, "Writing to eeprom: done\n");
4752 	}
4753 }
4754