1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* $FreeBSD$ */ 30 #include "if_em.h" 31 #include <sys/sbuf.h> 32 #include <machine/_inttypes.h> 33 34 #define em_mac_min e1000_82571 35 #define igb_mac_min e1000_82575 36 37 /********************************************************************* 38 * Driver version: 39 *********************************************************************/ 40 char em_driver_version[] = "7.6.1-k"; 41 42 /********************************************************************* 43 * PCI Device ID Table 44 * 45 * Used by probe to select devices to load on 46 * Last field stores an index into e1000_strings 47 * Last entry must be all 0s 48 * 49 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index } 50 *********************************************************************/ 51 52 static pci_vendor_info_t em_vendor_info_array[] = 53 { 54 /* Intel(R) - lem-class legacy devices */ 55 PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) Legacy PRO/1000 MT 82540EM"), 56 PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) Legacy PRO/1000 MT 82540EM (LOM)"), 57 PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) Legacy PRO/1000 MT 82540EP"), 58 PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) Legacy PRO/1000 MT 82540EP (LOM)"), 59 PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) Legacy PRO/1000 MT 82540EP (Mobile)"), 60 61 PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) Legacy PRO/1000 MT 82541EI (Copper)"), 62 PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) Legacy PRO/1000 82541ER"), 63 PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) Legacy PRO/1000 MT 82541ER"), 64 PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541EI (Mobile)"), 65 PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) Legacy PRO/1000 MT 82541GI"), 66 PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) Legacy PRO/1000 GT 82541PI"), 67 PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541GI (Mobile)"), 68 69 PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) Legacy PRO/1000 82542 (Fiber)"), 70 71 PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) Legacy PRO/1000 F 82543GC (Fiber)"), 72 PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) Legacy PRO/1000 T 82543GC (Copper)"), 73 74 PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) Legacy PRO/1000 XT 82544EI (Copper)"), 75 PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) Legacy PRO/1000 XF 82544EI (Fiber)"), 76 PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) Legacy PRO/1000 T 82544GC (Copper)"), 77 PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) Legacy PRO/1000 XT 82544GC (LOM)"), 78 79 PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545EM (Copper)"), 80 PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545EM (Fiber)"), 81 PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545GM (Copper)"), 82 PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545GM (Fiber)"), 83 PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) Legacy PRO/1000 MB 82545GM (SERDES)"), 84 85 PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Copper)"), 86 PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546EB (Fiber)"), 87 PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Quad Copper"), 88 PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546GB (Copper)"), 89 PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546GB (Fiber)"), 90 PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) Legacy PRO/1000 MB 82546GB (SERDES)"), 91 PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) Legacy PRO/1000 P 82546GB (PCIe)"), 92 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"), 93 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"), 94 95 PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) Legacy PRO/1000 CT 82547EI"), 96 PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) Legacy PRO/1000 CT 82547EI (Mobile)"), 97 PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) Legacy PRO/1000 CT 82547GI"), 98 99 /* Intel(R) - em-class devices */ 100 PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Copper)"), 101 PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 PF 82571EB/82571GB (Fiber)"), 102 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 PB 82571EB (SERDES)"), 103 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 82571EB (Dual Mezzanine)"), 104 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 82571EB (Quad Mezzanine)"), 105 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"), 106 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"), 107 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 PF 82571EB (Quad Fiber)"), 108 PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571PT (Quad Copper)"), 109 PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 PT 82572EI (Copper)"), 110 PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 PT 82572EI (Copper)"), 111 PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 PF 82572EI (Fiber)"), 112 PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 82572EI (SERDES)"), 113 PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 82573E (Copper)"), 114 PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 82573E AMT (Copper)"), 115 PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 82573L"), 116 PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) 82583V"), 117 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) 80003ES2LAN (Copper)"), 118 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) 80003ES2LAN (SERDES)"), 119 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) 80003ES2LAN (Dual Copper)"), 120 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) 80003ES2LAN (Dual SERDES)"), 121 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) 82566MM ICH8 AMT (Mobile)"), 122 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) 82566DM ICH8 AMT"), 123 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) 82566DC ICH8"), 124 PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) 82562V ICH8"), 125 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) 82562GT ICH8"), 126 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) 82562G ICH8"), 127 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) 82566MC ICH8"), 128 PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) 82567V-3 ICH8"), 129 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) 82567LM ICH9 AMT"), 130 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) 82566DM-2 ICH9 AMT"), 131 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) 82566DC-2 ICH9"), 132 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) 82567LF ICH9"), 133 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) 82567V ICH9"), 134 PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) 82562V-2 ICH9"), 135 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) 82562GT-2 ICH9"), 136 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) 82562G-2 ICH9"), 137 PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) 82567LM-4 ICH9"), 138 PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) Gigabit CT 82574L"), 139 PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) 82574L-Apple"), 140 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) 82567LM-2 ICH10"), 141 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) 82567LF-2 ICH10"), 142 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) 82567V-2 ICH10"), 143 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) 82567LM-3 ICH10"), 144 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) 82567LF-3 ICH10"), 145 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) 82567V-4 ICH10"), 146 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) 82577LM"), 147 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) 82577LC"), 148 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) 82578DM"), 149 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) 82578DC"), 150 PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) 82579LM"), 151 PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) 82579V"), 152 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) I217-LM LPT"), 153 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) I217-V LPT"), 154 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) I218-LM LPTLP"), 155 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) I218-V LPTLP"), 156 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) I218-LM (2)"), 157 PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) I218-V (2)"), 158 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) I218-LM (3)"), 159 PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) I218-V (3)"), 160 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) I219-LM SPT"), 161 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) I219-V SPT"), 162 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) I219-LM SPT-H(2)"), 163 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) I219-V SPT-H(2)"), 164 PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) I219-LM LBG(3)"), 165 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) I219-LM SPT(4)"), 166 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) I219-V SPT(4)"), 167 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) I219-LM SPT(5)"), 168 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) I219-V SPT(5)"), 169 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) I219-LM CNP(6)"), 170 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) I219-V CNP(6)"), 171 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) I219-LM CNP(7)"), 172 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) I219-V CNP(7)"), 173 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) I219-LM ICP(8)"), 174 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) I219-V ICP(8)"), 175 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) I219-LM ICP(9)"), 176 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) I219-V ICP(9)"), 177 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10, "Intel(R) I219-LM CMP(10)"), 178 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10, "Intel(R) I219-V CMP(10)"), 179 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11, "Intel(R) I219-LM CMP(11)"), 180 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11, "Intel(R) I219-V CMP(11)"), 181 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12, "Intel(R) I219-LM CMP(12)"), 182 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12, "Intel(R) I219-V CMP(12)"), 183 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM13, "Intel(R) I219-LM TGP(13)"), 184 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V13, "Intel(R) I219-V TGP(13)"), 185 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM14, "Intel(R) I219-LM TGP(14)"), 186 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V14, "Intel(R) I219-V GTP(14)"), 187 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM15, "Intel(R) I219-LM TGP(15)"), 188 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V15, "Intel(R) I219-V TGP(15)"), 189 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM16, "Intel(R) I219-LM ADL(16)"), 190 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V16, "Intel(R) I219-V ADL(16)"), 191 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM17, "Intel(R) I219-LM ADL(17)"), 192 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V17, "Intel(R) I219-V ADL(17)"), 193 PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM18, "Intel(R) I219-LM MTP(18)"), 194 PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V18, "Intel(R) I219-V MTP(18)"), 195 PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM19, "Intel(R) I219-LM MTP(19)"), 196 PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V19, "Intel(R) I219-V MTP(19)"), 197 /* required last entry */ 198 PVID_END 199 }; 200 201 static pci_vendor_info_t igb_vendor_info_array[] = 202 { 203 /* Intel(R) - igb-class devices */ 204 PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 82575EB (Copper)"), 205 PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 82575EB (SERDES)"), 206 PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 VT 82575GB (Quad Copper)"), 207 PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 82576"), 208 PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 82576NS"), 209 PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 82576NS (SERDES)"), 210 PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 EF 82576 (Dual Fiber)"), 211 PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 82576 (Dual SERDES)"), 212 PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 ET 82576 (Quad SERDES)"), 213 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 ET 82576 (Quad Copper)"), 214 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 ET(2) 82576 (Quad Copper)"), 215 PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 82576 Virtual Function"), 216 PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) I340 82580 (Copper)"), 217 PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) I340 82580 (Fiber)"), 218 PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) I340 82580 (SERDES)"), 219 PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) I340 82580 (SGMII)"), 220 PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) I340-T2 82580 (Dual Copper)"), 221 PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) I340-F4 82580 (Quad Fiber)"), 222 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) DH89XXCC (SERDES)"), 223 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) I347-AT4 DH89XXCC"), 224 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) DH89XXCC (SFP)"), 225 PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) DH89XXCC (Backplane)"), 226 PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) I350 (Copper)"), 227 PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) I350 (Fiber)"), 228 PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) I350 (SERDES)"), 229 PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) I350 (SGMII)"), 230 PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) I350 Virtual Function"), 231 PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) I210 (Copper)"), 232 PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) I210 IT (Copper)"), 233 PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) I210 (OEM)"), 234 PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) I210 Flashless (Copper)"), 235 PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) I210 Flashless (SERDES)"), 236 PVID(0x8086, E1000_DEV_ID_I210_SGMII_FLASHLESS, "Intel(R) I210 Flashless (SGMII)"), 237 PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) I210 (Fiber)"), 238 PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) I210 (SERDES)"), 239 PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) I210 (SGMII)"), 240 PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) I211 (Copper)"), 241 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) I354 (1.0 GbE Backplane)"), 242 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) I354 (2.5 GbE Backplane)"), 243 PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) I354 (SGMII)"), 244 /* required last entry */ 245 PVID_END 246 }; 247 248 /********************************************************************* 249 * Function prototypes 250 *********************************************************************/ 251 static void *em_register(device_t dev); 252 static void *igb_register(device_t dev); 253 static int em_if_attach_pre(if_ctx_t ctx); 254 static int em_if_attach_post(if_ctx_t ctx); 255 static int em_if_detach(if_ctx_t ctx); 256 static int em_if_shutdown(if_ctx_t ctx); 257 static int em_if_suspend(if_ctx_t ctx); 258 static int em_if_resume(if_ctx_t ctx); 259 260 static int em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets); 261 static int em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets); 262 static void em_if_queues_free(if_ctx_t ctx); 263 264 static uint64_t em_if_get_counter(if_ctx_t, ift_counter); 265 static void em_if_init(if_ctx_t ctx); 266 static void em_if_stop(if_ctx_t ctx); 267 static void em_if_media_status(if_ctx_t, struct ifmediareq *); 268 static int em_if_media_change(if_ctx_t ctx); 269 static int em_if_mtu_set(if_ctx_t ctx, uint32_t mtu); 270 static void em_if_timer(if_ctx_t ctx, uint16_t qid); 271 static void em_if_vlan_register(if_ctx_t ctx, u16 vtag); 272 static void em_if_vlan_unregister(if_ctx_t ctx, u16 vtag); 273 static void em_if_watchdog_reset(if_ctx_t ctx); 274 static bool em_if_needs_restart(if_ctx_t ctx, enum iflib_restart_event event); 275 276 static void em_identify_hardware(if_ctx_t ctx); 277 static int em_allocate_pci_resources(if_ctx_t ctx); 278 static void em_free_pci_resources(if_ctx_t ctx); 279 static void em_reset(if_ctx_t ctx); 280 static int em_setup_interface(if_ctx_t ctx); 281 static int em_setup_msix(if_ctx_t ctx); 282 283 static void em_initialize_transmit_unit(if_ctx_t ctx); 284 static void em_initialize_receive_unit(if_ctx_t ctx); 285 286 static void em_if_intr_enable(if_ctx_t ctx); 287 static void em_if_intr_disable(if_ctx_t ctx); 288 static void igb_if_intr_enable(if_ctx_t ctx); 289 static void igb_if_intr_disable(if_ctx_t ctx); 290 static int em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid); 291 static int em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid); 292 static int igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid); 293 static int igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid); 294 static void em_if_multi_set(if_ctx_t ctx); 295 static void em_if_update_admin_status(if_ctx_t ctx); 296 static void em_if_debug(if_ctx_t ctx); 297 static void em_update_stats_counters(struct e1000_softc *); 298 static void em_add_hw_stats(struct e1000_softc *); 299 static int em_if_set_promisc(if_ctx_t ctx, int flags); 300 static bool em_if_vlan_filter_capable(struct e1000_softc *); 301 static bool em_if_vlan_filter_used(struct e1000_softc *); 302 static void em_if_vlan_filter_enable(struct e1000_softc *); 303 static void em_if_vlan_filter_disable(struct e1000_softc *); 304 static void em_if_vlan_filter_write(struct e1000_softc *); 305 static void em_setup_vlan_hw_support(struct e1000_softc *); 306 static int em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS); 307 static void em_print_nvm_info(struct e1000_softc *); 308 static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS); 309 static int em_get_rs(SYSCTL_HANDLER_ARGS); 310 static void em_print_debug_info(struct e1000_softc *); 311 static int em_is_valid_ether_addr(u8 *); 312 static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS); 313 static void em_add_int_delay_sysctl(struct e1000_softc *, const char *, 314 const char *, struct em_int_delay_info *, int, int); 315 /* Management and WOL Support */ 316 static void em_init_manageability(struct e1000_softc *); 317 static void em_release_manageability(struct e1000_softc *); 318 static void em_get_hw_control(struct e1000_softc *); 319 static void em_release_hw_control(struct e1000_softc *); 320 static void em_get_wakeup(if_ctx_t ctx); 321 static void em_enable_wakeup(if_ctx_t ctx); 322 static int em_enable_phy_wakeup(struct e1000_softc *); 323 static void em_disable_aspm(struct e1000_softc *); 324 325 int em_intr(void *arg); 326 327 /* MSI-X handlers */ 328 static int em_if_msix_intr_assign(if_ctx_t, int); 329 static int em_msix_link(void *); 330 static void em_handle_link(void *context); 331 332 static void em_enable_vectors_82574(if_ctx_t); 333 334 static int em_set_flowcntl(SYSCTL_HANDLER_ARGS); 335 static int em_sysctl_eee(SYSCTL_HANDLER_ARGS); 336 static void em_if_led_func(if_ctx_t ctx, int onoff); 337 338 static int em_get_regs(SYSCTL_HANDLER_ARGS); 339 340 static void lem_smartspeed(struct e1000_softc *); 341 static void igb_configure_queues(struct e1000_softc *); 342 343 344 /********************************************************************* 345 * FreeBSD Device Interface Entry Points 346 *********************************************************************/ 347 static device_method_t em_methods[] = { 348 /* Device interface */ 349 DEVMETHOD(device_register, em_register), 350 DEVMETHOD(device_probe, iflib_device_probe), 351 DEVMETHOD(device_attach, iflib_device_attach), 352 DEVMETHOD(device_detach, iflib_device_detach), 353 DEVMETHOD(device_shutdown, iflib_device_shutdown), 354 DEVMETHOD(device_suspend, iflib_device_suspend), 355 DEVMETHOD(device_resume, iflib_device_resume), 356 DEVMETHOD_END 357 }; 358 359 static device_method_t igb_methods[] = { 360 /* Device interface */ 361 DEVMETHOD(device_register, igb_register), 362 DEVMETHOD(device_probe, iflib_device_probe), 363 DEVMETHOD(device_attach, iflib_device_attach), 364 DEVMETHOD(device_detach, iflib_device_detach), 365 DEVMETHOD(device_shutdown, iflib_device_shutdown), 366 DEVMETHOD(device_suspend, iflib_device_suspend), 367 DEVMETHOD(device_resume, iflib_device_resume), 368 DEVMETHOD_END 369 }; 370 371 372 static driver_t em_driver = { 373 "em", em_methods, sizeof(struct e1000_softc), 374 }; 375 376 static devclass_t em_devclass; 377 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0); 378 379 MODULE_DEPEND(em, pci, 1, 1, 1); 380 MODULE_DEPEND(em, ether, 1, 1, 1); 381 MODULE_DEPEND(em, iflib, 1, 1, 1); 382 383 IFLIB_PNP_INFO(pci, em, em_vendor_info_array); 384 385 static driver_t igb_driver = { 386 "igb", igb_methods, sizeof(struct e1000_softc), 387 }; 388 389 static devclass_t igb_devclass; 390 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0); 391 392 MODULE_DEPEND(igb, pci, 1, 1, 1); 393 MODULE_DEPEND(igb, ether, 1, 1, 1); 394 MODULE_DEPEND(igb, iflib, 1, 1, 1); 395 396 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array); 397 398 static device_method_t em_if_methods[] = { 399 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre), 400 DEVMETHOD(ifdi_attach_post, em_if_attach_post), 401 DEVMETHOD(ifdi_detach, em_if_detach), 402 DEVMETHOD(ifdi_shutdown, em_if_shutdown), 403 DEVMETHOD(ifdi_suspend, em_if_suspend), 404 DEVMETHOD(ifdi_resume, em_if_resume), 405 DEVMETHOD(ifdi_init, em_if_init), 406 DEVMETHOD(ifdi_stop, em_if_stop), 407 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign), 408 DEVMETHOD(ifdi_intr_enable, em_if_intr_enable), 409 DEVMETHOD(ifdi_intr_disable, em_if_intr_disable), 410 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc), 411 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc), 412 DEVMETHOD(ifdi_queues_free, em_if_queues_free), 413 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status), 414 DEVMETHOD(ifdi_multi_set, em_if_multi_set), 415 DEVMETHOD(ifdi_media_status, em_if_media_status), 416 DEVMETHOD(ifdi_media_change, em_if_media_change), 417 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set), 418 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc), 419 DEVMETHOD(ifdi_timer, em_if_timer), 420 DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset), 421 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register), 422 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister), 423 DEVMETHOD(ifdi_get_counter, em_if_get_counter), 424 DEVMETHOD(ifdi_led_func, em_if_led_func), 425 DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable), 426 DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable), 427 DEVMETHOD(ifdi_debug, em_if_debug), 428 DEVMETHOD(ifdi_needs_restart, em_if_needs_restart), 429 DEVMETHOD_END 430 }; 431 432 static driver_t em_if_driver = { 433 "em_if", em_if_methods, sizeof(struct e1000_softc) 434 }; 435 436 static device_method_t igb_if_methods[] = { 437 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre), 438 DEVMETHOD(ifdi_attach_post, em_if_attach_post), 439 DEVMETHOD(ifdi_detach, em_if_detach), 440 DEVMETHOD(ifdi_shutdown, em_if_shutdown), 441 DEVMETHOD(ifdi_suspend, em_if_suspend), 442 DEVMETHOD(ifdi_resume, em_if_resume), 443 DEVMETHOD(ifdi_init, em_if_init), 444 DEVMETHOD(ifdi_stop, em_if_stop), 445 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign), 446 DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable), 447 DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable), 448 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc), 449 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc), 450 DEVMETHOD(ifdi_queues_free, em_if_queues_free), 451 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status), 452 DEVMETHOD(ifdi_multi_set, em_if_multi_set), 453 DEVMETHOD(ifdi_media_status, em_if_media_status), 454 DEVMETHOD(ifdi_media_change, em_if_media_change), 455 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set), 456 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc), 457 DEVMETHOD(ifdi_timer, em_if_timer), 458 DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset), 459 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register), 460 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister), 461 DEVMETHOD(ifdi_get_counter, em_if_get_counter), 462 DEVMETHOD(ifdi_led_func, em_if_led_func), 463 DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable), 464 DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable), 465 DEVMETHOD(ifdi_debug, em_if_debug), 466 DEVMETHOD(ifdi_needs_restart, em_if_needs_restart), 467 DEVMETHOD_END 468 }; 469 470 static driver_t igb_if_driver = { 471 "igb_if", igb_if_methods, sizeof(struct e1000_softc) 472 }; 473 474 /********************************************************************* 475 * Tunable default values. 476 *********************************************************************/ 477 478 #define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000) 479 #define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024) 480 481 #define MAX_INTS_PER_SEC 8000 482 #define DEFAULT_ITR (1000000000/(MAX_INTS_PER_SEC * 256)) 483 484 /* Allow common code without TSO */ 485 #ifndef CSUM_TSO 486 #define CSUM_TSO 0 487 #endif 488 489 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 490 "EM driver parameters"); 491 492 static int em_disable_crc_stripping = 0; 493 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN, 494 &em_disable_crc_stripping, 0, "Disable CRC Stripping"); 495 496 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV); 497 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR); 498 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt, 499 0, "Default transmit interrupt delay in usecs"); 500 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt, 501 0, "Default receive interrupt delay in usecs"); 502 503 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV); 504 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV); 505 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN, 506 &em_tx_abs_int_delay_dflt, 0, 507 "Default transmit interrupt delay limit in usecs"); 508 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN, 509 &em_rx_abs_int_delay_dflt, 0, 510 "Default receive interrupt delay limit in usecs"); 511 512 static int em_smart_pwr_down = false; 513 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down, 514 0, "Set to true to leave smart power down enabled on newer adapters"); 515 516 /* Controls whether promiscuous also shows bad packets */ 517 static int em_debug_sbp = false; 518 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0, 519 "Show bad packets in promiscuous mode"); 520 521 /* How many packets rxeof tries to clean at a time */ 522 static int em_rx_process_limit = 100; 523 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN, 524 &em_rx_process_limit, 0, 525 "Maximum number of received packets to process " 526 "at a time, -1 means unlimited"); 527 528 /* Energy efficient ethernet - default to OFF */ 529 static int eee_setting = 1; 530 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0, 531 "Enable Energy Efficient Ethernet"); 532 533 /* 534 ** Tuneable Interrupt rate 535 */ 536 static int em_max_interrupt_rate = 8000; 537 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN, 538 &em_max_interrupt_rate, 0, "Maximum interrupts per second"); 539 540 541 542 /* Global used in WOL setup with multiport cards */ 543 static int global_quad_port_a = 0; 544 545 extern struct if_txrx igb_txrx; 546 extern struct if_txrx em_txrx; 547 extern struct if_txrx lem_txrx; 548 549 static struct if_shared_ctx em_sctx_init = { 550 .isc_magic = IFLIB_MAGIC, 551 .isc_q_align = PAGE_SIZE, 552 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 553 .isc_tx_maxsegsize = PAGE_SIZE, 554 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 555 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE, 556 .isc_rx_maxsize = MJUM9BYTES, 557 .isc_rx_nsegments = 1, 558 .isc_rx_maxsegsize = MJUM9BYTES, 559 .isc_nfl = 1, 560 .isc_nrxqs = 1, 561 .isc_ntxqs = 1, 562 .isc_admin_intrcnt = 1, 563 .isc_vendor_info = em_vendor_info_array, 564 .isc_driver_version = em_driver_version, 565 .isc_driver = &em_if_driver, 566 .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM, 567 568 .isc_nrxd_min = {EM_MIN_RXD}, 569 .isc_ntxd_min = {EM_MIN_TXD}, 570 .isc_nrxd_max = {EM_MAX_RXD}, 571 .isc_ntxd_max = {EM_MAX_TXD}, 572 .isc_nrxd_default = {EM_DEFAULT_RXD}, 573 .isc_ntxd_default = {EM_DEFAULT_TXD}, 574 }; 575 576 static struct if_shared_ctx igb_sctx_init = { 577 .isc_magic = IFLIB_MAGIC, 578 .isc_q_align = PAGE_SIZE, 579 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 580 .isc_tx_maxsegsize = PAGE_SIZE, 581 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 582 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE, 583 .isc_rx_maxsize = MJUM9BYTES, 584 .isc_rx_nsegments = 1, 585 .isc_rx_maxsegsize = MJUM9BYTES, 586 .isc_nfl = 1, 587 .isc_nrxqs = 1, 588 .isc_ntxqs = 1, 589 .isc_admin_intrcnt = 1, 590 .isc_vendor_info = igb_vendor_info_array, 591 .isc_driver_version = em_driver_version, 592 .isc_driver = &igb_if_driver, 593 .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM, 594 595 .isc_nrxd_min = {EM_MIN_RXD}, 596 .isc_ntxd_min = {EM_MIN_TXD}, 597 .isc_nrxd_max = {IGB_MAX_RXD}, 598 .isc_ntxd_max = {IGB_MAX_TXD}, 599 .isc_nrxd_default = {EM_DEFAULT_RXD}, 600 .isc_ntxd_default = {EM_DEFAULT_TXD}, 601 }; 602 603 /***************************************************************** 604 * 605 * Dump Registers 606 * 607 ****************************************************************/ 608 #define IGB_REGS_LEN 739 609 610 static int em_get_regs(SYSCTL_HANDLER_ARGS) 611 { 612 struct e1000_softc *sc = (struct e1000_softc *)arg1; 613 struct e1000_hw *hw = &sc->hw; 614 struct sbuf *sb; 615 u32 *regs_buff; 616 int rc; 617 618 regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK); 619 memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32)); 620 621 rc = sysctl_wire_old_buffer(req, 0); 622 MPASS(rc == 0); 623 if (rc != 0) { 624 free(regs_buff, M_DEVBUF); 625 return (rc); 626 } 627 628 sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req); 629 MPASS(sb != NULL); 630 if (sb == NULL) { 631 free(regs_buff, M_DEVBUF); 632 return (ENOMEM); 633 } 634 635 /* General Registers */ 636 regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL); 637 regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS); 638 regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT); 639 regs_buff[3] = E1000_READ_REG(hw, E1000_ICR); 640 regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL); 641 regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0)); 642 regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0)); 643 regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0)); 644 regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0)); 645 regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0)); 646 regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0)); 647 regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL); 648 regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0)); 649 regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0)); 650 regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0)); 651 regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0)); 652 regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0)); 653 regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0)); 654 regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH); 655 regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT); 656 regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS); 657 regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC); 658 659 sbuf_printf(sb, "General Registers\n"); 660 sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]); 661 sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]); 662 sbuf_printf(sb, "\tCTRL_EXT\t %08x\n\n", regs_buff[2]); 663 664 sbuf_printf(sb, "Interrupt Registers\n"); 665 sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]); 666 667 sbuf_printf(sb, "RX Registers\n"); 668 sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]); 669 sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]); 670 sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]); 671 sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]); 672 sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]); 673 sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]); 674 sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]); 675 676 sbuf_printf(sb, "TX Registers\n"); 677 sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]); 678 sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]); 679 sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]); 680 sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]); 681 sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]); 682 sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]); 683 sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]); 684 sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]); 685 sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]); 686 sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]); 687 sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]); 688 689 free(regs_buff, M_DEVBUF); 690 691 #ifdef DUMP_DESCS 692 { 693 if_softc_ctx_t scctx = sc->shared; 694 struct rx_ring *rxr = &rx_que->rxr; 695 struct tx_ring *txr = &tx_que->txr; 696 int ntxd = scctx->isc_ntxd[0]; 697 int nrxd = scctx->isc_nrxd[0]; 698 int j; 699 700 for (j = 0; j < nrxd; j++) { 701 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error); 702 u32 length = le32toh(rxr->rx_base[j].wb.upper.length); 703 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 " Error:%d Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length); 704 } 705 706 for (j = 0; j < min(ntxd, 256); j++) { 707 unsigned int *ptr = (unsigned int *)&txr->tx_base[j]; 708 709 sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x eop: %d DD=%d\n", 710 j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop, 711 buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0); 712 713 } 714 } 715 #endif 716 717 rc = sbuf_finish(sb); 718 sbuf_delete(sb); 719 return(rc); 720 } 721 722 static void * 723 em_register(device_t dev) 724 { 725 return (&em_sctx_init); 726 } 727 728 static void * 729 igb_register(device_t dev) 730 { 731 return (&igb_sctx_init); 732 } 733 734 static int 735 em_set_num_queues(if_ctx_t ctx) 736 { 737 struct e1000_softc *sc = iflib_get_softc(ctx); 738 int maxqueues; 739 740 /* Sanity check based on HW */ 741 switch (sc->hw.mac.type) { 742 case e1000_82576: 743 case e1000_82580: 744 case e1000_i350: 745 case e1000_i354: 746 maxqueues = 8; 747 break; 748 case e1000_i210: 749 case e1000_82575: 750 maxqueues = 4; 751 break; 752 case e1000_i211: 753 case e1000_82574: 754 maxqueues = 2; 755 break; 756 default: 757 maxqueues = 1; 758 break; 759 } 760 761 return (maxqueues); 762 } 763 764 #define LEM_CAPS \ 765 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ 766 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER 767 768 #define EM_CAPS \ 769 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ 770 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \ 771 IFCAP_LRO | IFCAP_VLAN_HWTSO 772 773 #define IGB_CAPS \ 774 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ 775 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \ 776 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 |\ 777 IFCAP_TSO6 778 779 /********************************************************************* 780 * Device initialization routine 781 * 782 * The attach entry point is called when the driver is being loaded. 783 * This routine identifies the type of hardware, allocates all resources 784 * and initializes the hardware. 785 * 786 * return 0 on success, positive on failure 787 *********************************************************************/ 788 static int 789 em_if_attach_pre(if_ctx_t ctx) 790 { 791 struct e1000_softc *sc; 792 if_softc_ctx_t scctx; 793 device_t dev; 794 struct e1000_hw *hw; 795 int error = 0; 796 797 INIT_DEBUGOUT("em_if_attach_pre: begin"); 798 dev = iflib_get_dev(ctx); 799 sc = iflib_get_softc(ctx); 800 801 sc->ctx = sc->osdep.ctx = ctx; 802 sc->dev = sc->osdep.dev = dev; 803 scctx = sc->shared = iflib_get_softc_ctx(ctx); 804 sc->media = iflib_get_media(ctx); 805 hw = &sc->hw; 806 807 sc->tx_process_limit = scctx->isc_ntxd[0]; 808 809 /* SYSCTL stuff */ 810 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 811 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 812 OID_AUTO, "nvm", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 813 sc, 0, em_sysctl_nvm_info, "I", "NVM Information"); 814 815 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 816 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 817 OID_AUTO, "debug", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 818 sc, 0, em_sysctl_debug_info, "I", "Debug Information"); 819 820 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 821 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 822 OID_AUTO, "fc", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 823 sc, 0, em_set_flowcntl, "I", "Flow Control"); 824 825 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 826 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 827 OID_AUTO, "reg_dump", 828 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, 829 em_get_regs, "A", "Dump Registers"); 830 831 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 832 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 833 OID_AUTO, "rs_dump", 834 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 835 em_get_rs, "I", "Dump RS indexes"); 836 837 /* Determine hardware and mac info */ 838 em_identify_hardware(ctx); 839 840 scctx->isc_tx_nsegments = EM_MAX_SCATTER; 841 scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx); 842 if (bootverbose) 843 device_printf(dev, "attach_pre capping queues at %d\n", 844 scctx->isc_ntxqsets_max); 845 846 if (hw->mac.type >= igb_mac_min) { 847 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN); 848 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN); 849 scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc); 850 scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc); 851 scctx->isc_txrx = &igb_txrx; 852 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER; 853 scctx->isc_tx_tso_size_max = EM_TSO_SIZE; 854 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE; 855 scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS; 856 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO | 857 CSUM_IP6_TCP | CSUM_IP6_UDP; 858 if (hw->mac.type != e1000_82575) 859 scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP; 860 /* 861 ** Some new devices, as with ixgbe, now may 862 ** use a different BAR, so we need to keep 863 ** track of which is used. 864 */ 865 scctx->isc_msix_bar = pci_msix_table_bar(dev); 866 } else if (hw->mac.type >= em_mac_min) { 867 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN); 868 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN); 869 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc); 870 scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended); 871 scctx->isc_txrx = &em_txrx; 872 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER; 873 scctx->isc_tx_tso_size_max = EM_TSO_SIZE; 874 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE; 875 scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS; 876 /* 877 * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO} 878 * by default as we don't have workarounds for all associated 879 * silicon errata. E. g., with several MACs such as 82573E, 880 * TSO only works at Gigabit speed and otherwise can cause the 881 * hardware to hang (which also would be next to impossible to 882 * work around given that already queued TSO-using descriptors 883 * would need to be flushed and vlan(4) reconfigured at runtime 884 * in case of a link speed change). Moreover, MACs like 82579 885 * still can hang at Gigabit even with all publicly documented 886 * TSO workarounds implemented. Generally, the penality of 887 * these workarounds is rather high and may involve copying 888 * mbuf data around so advantages of TSO lapse. Still, TSO may 889 * work for a few MACs of this class - at least when sticking 890 * with Gigabit - in which case users may enable TSO manually. 891 */ 892 scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO); 893 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO; 894 /* 895 * We support MSI-X with 82574 only, but indicate to iflib(4) 896 * that it shall give MSI at least a try with other devices. 897 */ 898 if (hw->mac.type == e1000_82574) { 899 scctx->isc_msix_bar = pci_msix_table_bar(dev);; 900 } else { 901 scctx->isc_msix_bar = -1; 902 scctx->isc_disable_msix = 1; 903 } 904 } else { 905 scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN); 906 scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN); 907 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc); 908 scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc); 909 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP; 910 scctx->isc_txrx = &lem_txrx; 911 scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS; 912 if (hw->mac.type < e1000_82543) 913 scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM); 914 /* 82541ER doesn't do HW tagging */ 915 if (hw->device_id == E1000_DEV_ID_82541ER || hw->device_id == E1000_DEV_ID_82541ER_LOM) 916 scctx->isc_capenable &= ~IFCAP_VLAN_HWTAGGING; 917 /* INTx only */ 918 scctx->isc_msix_bar = 0; 919 } 920 921 /* Setup PCI resources */ 922 if (em_allocate_pci_resources(ctx)) { 923 device_printf(dev, "Allocation of PCI resources failed\n"); 924 error = ENXIO; 925 goto err_pci; 926 } 927 928 /* 929 ** For ICH8 and family we need to 930 ** map the flash memory, and this 931 ** must happen after the MAC is 932 ** identified 933 */ 934 if ((hw->mac.type == e1000_ich8lan) || 935 (hw->mac.type == e1000_ich9lan) || 936 (hw->mac.type == e1000_ich10lan) || 937 (hw->mac.type == e1000_pchlan) || 938 (hw->mac.type == e1000_pch2lan) || 939 (hw->mac.type == e1000_pch_lpt)) { 940 int rid = EM_BAR_TYPE_FLASH; 941 sc->flash = bus_alloc_resource_any(dev, 942 SYS_RES_MEMORY, &rid, RF_ACTIVE); 943 if (sc->flash == NULL) { 944 device_printf(dev, "Mapping of Flash failed\n"); 945 error = ENXIO; 946 goto err_pci; 947 } 948 /* This is used in the shared code */ 949 hw->flash_address = (u8 *)sc->flash; 950 sc->osdep.flash_bus_space_tag = 951 rman_get_bustag(sc->flash); 952 sc->osdep.flash_bus_space_handle = 953 rman_get_bushandle(sc->flash); 954 } 955 /* 956 ** In the new SPT device flash is not a 957 ** separate BAR, rather it is also in BAR0, 958 ** so use the same tag and an offset handle for the 959 ** FLASH read/write macros in the shared code. 960 */ 961 else if (hw->mac.type >= e1000_pch_spt) { 962 sc->osdep.flash_bus_space_tag = 963 sc->osdep.mem_bus_space_tag; 964 sc->osdep.flash_bus_space_handle = 965 sc->osdep.mem_bus_space_handle 966 + E1000_FLASH_BASE_ADDR; 967 } 968 969 /* Do Shared Code initialization */ 970 error = e1000_setup_init_funcs(hw, true); 971 if (error) { 972 device_printf(dev, "Setup of Shared code failed, error %d\n", 973 error); 974 error = ENXIO; 975 goto err_pci; 976 } 977 978 em_setup_msix(ctx); 979 e1000_get_bus_info(hw); 980 981 /* Set up some sysctls for the tunable interrupt delays */ 982 em_add_int_delay_sysctl(sc, "rx_int_delay", 983 "receive interrupt delay in usecs", &sc->rx_int_delay, 984 E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt); 985 em_add_int_delay_sysctl(sc, "tx_int_delay", 986 "transmit interrupt delay in usecs", &sc->tx_int_delay, 987 E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt); 988 em_add_int_delay_sysctl(sc, "rx_abs_int_delay", 989 "receive interrupt delay limit in usecs", 990 &sc->rx_abs_int_delay, 991 E1000_REGISTER(hw, E1000_RADV), 992 em_rx_abs_int_delay_dflt); 993 em_add_int_delay_sysctl(sc, "tx_abs_int_delay", 994 "transmit interrupt delay limit in usecs", 995 &sc->tx_abs_int_delay, 996 E1000_REGISTER(hw, E1000_TADV), 997 em_tx_abs_int_delay_dflt); 998 em_add_int_delay_sysctl(sc, "itr", 999 "interrupt delay limit in usecs/4", 1000 &sc->tx_itr, 1001 E1000_REGISTER(hw, E1000_ITR), 1002 DEFAULT_ITR); 1003 1004 hw->mac.autoneg = DO_AUTO_NEG; 1005 hw->phy.autoneg_wait_to_complete = false; 1006 hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; 1007 1008 if (hw->mac.type < em_mac_min) { 1009 e1000_init_script_state_82541(hw, true); 1010 e1000_set_tbi_compatibility_82543(hw, true); 1011 } 1012 /* Copper options */ 1013 if (hw->phy.media_type == e1000_media_type_copper) { 1014 hw->phy.mdix = AUTO_ALL_MODES; 1015 hw->phy.disable_polarity_correction = false; 1016 hw->phy.ms_type = EM_MASTER_SLAVE; 1017 } 1018 1019 /* 1020 * Set the frame limits assuming 1021 * standard ethernet sized frames. 1022 */ 1023 scctx->isc_max_frame_size = hw->mac.max_frame_size = 1024 ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE; 1025 1026 /* 1027 * This controls when hardware reports transmit completion 1028 * status. 1029 */ 1030 hw->mac.report_tx_early = 1; 1031 1032 /* Allocate multicast array memory. */ 1033 sc->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN * 1034 MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT); 1035 if (sc->mta == NULL) { 1036 device_printf(dev, "Can not allocate multicast setup array\n"); 1037 error = ENOMEM; 1038 goto err_late; 1039 } 1040 1041 /* Check SOL/IDER usage */ 1042 if (e1000_check_reset_block(hw)) 1043 device_printf(dev, "PHY reset is blocked" 1044 " due to SOL/IDER session.\n"); 1045 1046 /* Sysctl for setting Energy Efficient Ethernet */ 1047 hw->dev_spec.ich8lan.eee_disable = eee_setting; 1048 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 1049 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 1050 OID_AUTO, "eee_control", 1051 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 1052 sc, 0, em_sysctl_eee, "I", 1053 "Disable Energy Efficient Ethernet"); 1054 1055 /* 1056 ** Start from a known state, this is 1057 ** important in reading the nvm and 1058 ** mac from that. 1059 */ 1060 e1000_reset_hw(hw); 1061 1062 /* Make sure we have a good EEPROM before we read from it */ 1063 if (e1000_validate_nvm_checksum(hw) < 0) { 1064 /* 1065 ** Some PCI-E parts fail the first check due to 1066 ** the link being in sleep state, call it again, 1067 ** if it fails a second time its a real issue. 1068 */ 1069 if (e1000_validate_nvm_checksum(hw) < 0) { 1070 device_printf(dev, 1071 "The EEPROM Checksum Is Not Valid\n"); 1072 error = EIO; 1073 goto err_late; 1074 } 1075 } 1076 1077 /* Copy the permanent MAC address out of the EEPROM */ 1078 if (e1000_read_mac_addr(hw) < 0) { 1079 device_printf(dev, "EEPROM read error while reading MAC" 1080 " address\n"); 1081 error = EIO; 1082 goto err_late; 1083 } 1084 1085 if (!em_is_valid_ether_addr(hw->mac.addr)) { 1086 if (sc->vf_ifp) { 1087 ether_gen_addr(iflib_get_ifp(ctx), 1088 (struct ether_addr *)hw->mac.addr); 1089 } else { 1090 device_printf(dev, "Invalid MAC address\n"); 1091 error = EIO; 1092 goto err_late; 1093 } 1094 } 1095 1096 /* Disable ULP support */ 1097 e1000_disable_ulp_lpt_lp(hw, true); 1098 1099 /* 1100 * Get Wake-on-Lan and Management info for later use 1101 */ 1102 em_get_wakeup(ctx); 1103 1104 /* Enable only WOL MAGIC by default */ 1105 scctx->isc_capenable &= ~IFCAP_WOL; 1106 if (sc->wol != 0) 1107 scctx->isc_capenable |= IFCAP_WOL_MAGIC; 1108 1109 iflib_set_mac(ctx, hw->mac.addr); 1110 1111 return (0); 1112 1113 err_late: 1114 em_release_hw_control(sc); 1115 err_pci: 1116 em_free_pci_resources(ctx); 1117 free(sc->mta, M_DEVBUF); 1118 1119 return (error); 1120 } 1121 1122 static int 1123 em_if_attach_post(if_ctx_t ctx) 1124 { 1125 struct e1000_softc *sc = iflib_get_softc(ctx); 1126 struct e1000_hw *hw = &sc->hw; 1127 int error = 0; 1128 1129 /* Setup OS specific network interface */ 1130 error = em_setup_interface(ctx); 1131 if (error != 0) { 1132 device_printf(sc->dev, "Interface setup failed: %d\n", error); 1133 goto err_late; 1134 } 1135 1136 em_reset(ctx); 1137 1138 /* Initialize statistics */ 1139 em_update_stats_counters(sc); 1140 hw->mac.get_link_status = 1; 1141 em_if_update_admin_status(ctx); 1142 em_add_hw_stats(sc); 1143 1144 /* Non-AMT based hardware can now take control from firmware */ 1145 if (sc->has_manage && !sc->has_amt) 1146 em_get_hw_control(sc); 1147 1148 INIT_DEBUGOUT("em_if_attach_post: end"); 1149 1150 return (0); 1151 1152 err_late: 1153 /* upon attach_post() error, iflib calls _if_detach() to free resources. */ 1154 return (error); 1155 } 1156 1157 /********************************************************************* 1158 * Device removal routine 1159 * 1160 * The detach entry point is called when the driver is being removed. 1161 * This routine stops the adapter and deallocates all the resources 1162 * that were allocated for driver operation. 1163 * 1164 * return 0 on success, positive on failure 1165 *********************************************************************/ 1166 static int 1167 em_if_detach(if_ctx_t ctx) 1168 { 1169 struct e1000_softc *sc = iflib_get_softc(ctx); 1170 1171 INIT_DEBUGOUT("em_if_detach: begin"); 1172 1173 e1000_phy_hw_reset(&sc->hw); 1174 1175 em_release_manageability(sc); 1176 em_release_hw_control(sc); 1177 em_free_pci_resources(ctx); 1178 free(sc->mta, M_DEVBUF); 1179 sc->mta = NULL; 1180 1181 return (0); 1182 } 1183 1184 /********************************************************************* 1185 * 1186 * Shutdown entry point 1187 * 1188 **********************************************************************/ 1189 1190 static int 1191 em_if_shutdown(if_ctx_t ctx) 1192 { 1193 return em_if_suspend(ctx); 1194 } 1195 1196 /* 1197 * Suspend/resume device methods. 1198 */ 1199 static int 1200 em_if_suspend(if_ctx_t ctx) 1201 { 1202 struct e1000_softc *sc = iflib_get_softc(ctx); 1203 1204 em_release_manageability(sc); 1205 em_release_hw_control(sc); 1206 em_enable_wakeup(ctx); 1207 return (0); 1208 } 1209 1210 static int 1211 em_if_resume(if_ctx_t ctx) 1212 { 1213 struct e1000_softc *sc = iflib_get_softc(ctx); 1214 1215 if (sc->hw.mac.type == e1000_pch2lan) 1216 e1000_resume_workarounds_pchlan(&sc->hw); 1217 em_if_init(ctx); 1218 em_init_manageability(sc); 1219 1220 return(0); 1221 } 1222 1223 static int 1224 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu) 1225 { 1226 int max_frame_size; 1227 struct e1000_softc *sc = iflib_get_softc(ctx); 1228 if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx); 1229 1230 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)"); 1231 1232 switch (sc->hw.mac.type) { 1233 case e1000_82571: 1234 case e1000_82572: 1235 case e1000_ich9lan: 1236 case e1000_ich10lan: 1237 case e1000_pch2lan: 1238 case e1000_pch_lpt: 1239 case e1000_pch_spt: 1240 case e1000_pch_cnp: 1241 case e1000_pch_tgp: 1242 case e1000_pch_adp: 1243 case e1000_pch_mtp: 1244 case e1000_82574: 1245 case e1000_82583: 1246 case e1000_80003es2lan: 1247 /* 9K Jumbo Frame size */ 1248 max_frame_size = 9234; 1249 break; 1250 case e1000_pchlan: 1251 max_frame_size = 4096; 1252 break; 1253 case e1000_82542: 1254 case e1000_ich8lan: 1255 /* Adapters that do not support jumbo frames */ 1256 max_frame_size = ETHER_MAX_LEN; 1257 break; 1258 default: 1259 if (sc->hw.mac.type >= igb_mac_min) 1260 max_frame_size = 9234; 1261 else /* lem */ 1262 max_frame_size = MAX_JUMBO_FRAME_SIZE; 1263 } 1264 if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) { 1265 return (EINVAL); 1266 } 1267 1268 scctx->isc_max_frame_size = sc->hw.mac.max_frame_size = 1269 mtu + ETHER_HDR_LEN + ETHER_CRC_LEN; 1270 return (0); 1271 } 1272 1273 /********************************************************************* 1274 * Init entry point 1275 * 1276 * This routine is used in two ways. It is used by the stack as 1277 * init entry point in network interface structure. It is also used 1278 * by the driver as a hw/sw initialization routine to get to a 1279 * consistent state. 1280 * 1281 **********************************************************************/ 1282 static void 1283 em_if_init(if_ctx_t ctx) 1284 { 1285 struct e1000_softc *sc = iflib_get_softc(ctx); 1286 if_softc_ctx_t scctx = sc->shared; 1287 struct ifnet *ifp = iflib_get_ifp(ctx); 1288 struct em_tx_queue *tx_que; 1289 int i; 1290 1291 INIT_DEBUGOUT("em_if_init: begin"); 1292 1293 /* Get the latest mac address, User can use a LAA */ 1294 bcopy(if_getlladdr(ifp), sc->hw.mac.addr, 1295 ETHER_ADDR_LEN); 1296 1297 /* Put the address into the Receive Address Array */ 1298 e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0); 1299 1300 /* 1301 * With the 82571 adapter, RAR[0] may be overwritten 1302 * when the other port is reset, we make a duplicate 1303 * in RAR[14] for that eventuality, this assures 1304 * the interface continues to function. 1305 */ 1306 if (sc->hw.mac.type == e1000_82571) { 1307 e1000_set_laa_state_82571(&sc->hw, true); 1308 e1000_rar_set(&sc->hw, sc->hw.mac.addr, 1309 E1000_RAR_ENTRIES - 1); 1310 } 1311 1312 1313 /* Initialize the hardware */ 1314 em_reset(ctx); 1315 em_if_update_admin_status(ctx); 1316 1317 for (i = 0, tx_que = sc->tx_queues; i < sc->tx_num_queues; i++, tx_que++) { 1318 struct tx_ring *txr = &tx_que->txr; 1319 1320 txr->tx_rs_cidx = txr->tx_rs_pidx; 1321 1322 /* Initialize the last processed descriptor to be the end of 1323 * the ring, rather than the start, so that we avoid an 1324 * off-by-one error when calculating how many descriptors are 1325 * done in the credits_update function. 1326 */ 1327 txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1; 1328 } 1329 1330 /* Setup VLAN support, basic and offload if available */ 1331 E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN); 1332 1333 /* Clear bad data from Rx FIFOs */ 1334 if (sc->hw.mac.type >= igb_mac_min) 1335 e1000_rx_fifo_flush_base(&sc->hw); 1336 1337 /* Configure for OS presence */ 1338 em_init_manageability(sc); 1339 1340 /* Prepare transmit descriptors and buffers */ 1341 em_initialize_transmit_unit(ctx); 1342 1343 /* Setup Multicast table */ 1344 em_if_multi_set(ctx); 1345 1346 sc->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx); 1347 em_initialize_receive_unit(ctx); 1348 1349 /* Set up VLAN support and filter */ 1350 em_setup_vlan_hw_support(sc); 1351 1352 /* Don't lose promiscuous settings */ 1353 em_if_set_promisc(ctx, if_getflags(ifp)); 1354 e1000_clear_hw_cntrs_base_generic(&sc->hw); 1355 1356 /* MSI-X configuration for 82574 */ 1357 if (sc->hw.mac.type == e1000_82574) { 1358 int tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT); 1359 1360 tmp |= E1000_CTRL_EXT_PBA_CLR; 1361 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp); 1362 /* Set the IVAR - interrupt vector routing. */ 1363 E1000_WRITE_REG(&sc->hw, E1000_IVAR, sc->ivars); 1364 } else if (sc->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */ 1365 igb_configure_queues(sc); 1366 1367 /* this clears any pending interrupts */ 1368 E1000_READ_REG(&sc->hw, E1000_ICR); 1369 E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC); 1370 1371 /* AMT based hardware can now take control from firmware */ 1372 if (sc->has_manage && sc->has_amt) 1373 em_get_hw_control(sc); 1374 1375 /* Set Energy Efficient Ethernet */ 1376 if (sc->hw.mac.type >= igb_mac_min && 1377 sc->hw.phy.media_type == e1000_media_type_copper) { 1378 if (sc->hw.mac.type == e1000_i354) 1379 e1000_set_eee_i354(&sc->hw, true, true); 1380 else 1381 e1000_set_eee_i350(&sc->hw, true, true); 1382 } 1383 } 1384 1385 /********************************************************************* 1386 * 1387 * Fast Legacy/MSI Combined Interrupt Service routine 1388 * 1389 *********************************************************************/ 1390 int 1391 em_intr(void *arg) 1392 { 1393 struct e1000_softc *sc = arg; 1394 if_ctx_t ctx = sc->ctx; 1395 u32 reg_icr; 1396 1397 reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR); 1398 1399 /* Hot eject? */ 1400 if (reg_icr == 0xffffffff) 1401 return FILTER_STRAY; 1402 1403 /* Definitely not our interrupt. */ 1404 if (reg_icr == 0x0) 1405 return FILTER_STRAY; 1406 1407 /* 1408 * Starting with the 82571 chip, bit 31 should be used to 1409 * determine whether the interrupt belongs to us. 1410 */ 1411 if (sc->hw.mac.type >= e1000_82571 && 1412 (reg_icr & E1000_ICR_INT_ASSERTED) == 0) 1413 return FILTER_STRAY; 1414 1415 /* 1416 * Only MSI-X interrupts have one-shot behavior by taking advantage 1417 * of the EIAC register. Thus, explicitly disable interrupts. This 1418 * also works around the MSI message reordering errata on certain 1419 * systems. 1420 */ 1421 IFDI_INTR_DISABLE(ctx); 1422 1423 /* Link status change */ 1424 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) 1425 em_handle_link(ctx); 1426 1427 if (reg_icr & E1000_ICR_RXO) 1428 sc->rx_overruns++; 1429 1430 return (FILTER_SCHEDULE_THREAD); 1431 } 1432 1433 static int 1434 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid) 1435 { 1436 struct e1000_softc *sc = iflib_get_softc(ctx); 1437 struct em_rx_queue *rxq = &sc->rx_queues[rxqid]; 1438 1439 E1000_WRITE_REG(&sc->hw, E1000_IMS, rxq->eims); 1440 return (0); 1441 } 1442 1443 static int 1444 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid) 1445 { 1446 struct e1000_softc *sc = iflib_get_softc(ctx); 1447 struct em_tx_queue *txq = &sc->tx_queues[txqid]; 1448 1449 E1000_WRITE_REG(&sc->hw, E1000_IMS, txq->eims); 1450 return (0); 1451 } 1452 1453 static int 1454 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid) 1455 { 1456 struct e1000_softc *sc = iflib_get_softc(ctx); 1457 struct em_rx_queue *rxq = &sc->rx_queues[rxqid]; 1458 1459 E1000_WRITE_REG(&sc->hw, E1000_EIMS, rxq->eims); 1460 return (0); 1461 } 1462 1463 static int 1464 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid) 1465 { 1466 struct e1000_softc *sc = iflib_get_softc(ctx); 1467 struct em_tx_queue *txq = &sc->tx_queues[txqid]; 1468 1469 E1000_WRITE_REG(&sc->hw, E1000_EIMS, txq->eims); 1470 return (0); 1471 } 1472 1473 /********************************************************************* 1474 * 1475 * MSI-X RX Interrupt Service routine 1476 * 1477 **********************************************************************/ 1478 static int 1479 em_msix_que(void *arg) 1480 { 1481 struct em_rx_queue *que = arg; 1482 1483 ++que->irqs; 1484 1485 return (FILTER_SCHEDULE_THREAD); 1486 } 1487 1488 /********************************************************************* 1489 * 1490 * MSI-X Link Fast Interrupt Service routine 1491 * 1492 **********************************************************************/ 1493 static int 1494 em_msix_link(void *arg) 1495 { 1496 struct e1000_softc *sc = arg; 1497 u32 reg_icr; 1498 1499 ++sc->link_irq; 1500 MPASS(sc->hw.back != NULL); 1501 reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR); 1502 1503 if (reg_icr & E1000_ICR_RXO) 1504 sc->rx_overruns++; 1505 1506 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) 1507 em_handle_link(sc->ctx); 1508 1509 /* Re-arm unconditionally */ 1510 if (sc->hw.mac.type >= igb_mac_min) { 1511 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC); 1512 E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->link_mask); 1513 } else if (sc->hw.mac.type == e1000_82574) { 1514 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC | 1515 E1000_IMS_OTHER); 1516 /* 1517 * Because we must read the ICR for this interrupt it may 1518 * clear other causes using autoclear, for this reason we 1519 * simply create a soft interrupt for all these vectors. 1520 */ 1521 if (reg_icr) 1522 E1000_WRITE_REG(&sc->hw, E1000_ICS, sc->ims); 1523 } else 1524 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC); 1525 1526 return (FILTER_HANDLED); 1527 } 1528 1529 static void 1530 em_handle_link(void *context) 1531 { 1532 if_ctx_t ctx = context; 1533 struct e1000_softc *sc = iflib_get_softc(ctx); 1534 1535 sc->hw.mac.get_link_status = 1; 1536 iflib_admin_intr_deferred(ctx); 1537 } 1538 1539 /********************************************************************* 1540 * 1541 * Media Ioctl callback 1542 * 1543 * This routine is called whenever the user queries the status of 1544 * the interface using ifconfig. 1545 * 1546 **********************************************************************/ 1547 static void 1548 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr) 1549 { 1550 struct e1000_softc *sc = iflib_get_softc(ctx); 1551 u_char fiber_type = IFM_1000_SX; 1552 1553 INIT_DEBUGOUT("em_if_media_status: begin"); 1554 1555 iflib_admin_intr_deferred(ctx); 1556 1557 ifmr->ifm_status = IFM_AVALID; 1558 ifmr->ifm_active = IFM_ETHER; 1559 1560 if (!sc->link_active) { 1561 return; 1562 } 1563 1564 ifmr->ifm_status |= IFM_ACTIVE; 1565 1566 if ((sc->hw.phy.media_type == e1000_media_type_fiber) || 1567 (sc->hw.phy.media_type == e1000_media_type_internal_serdes)) { 1568 if (sc->hw.mac.type == e1000_82545) 1569 fiber_type = IFM_1000_LX; 1570 ifmr->ifm_active |= fiber_type | IFM_FDX; 1571 } else { 1572 switch (sc->link_speed) { 1573 case 10: 1574 ifmr->ifm_active |= IFM_10_T; 1575 break; 1576 case 100: 1577 ifmr->ifm_active |= IFM_100_TX; 1578 break; 1579 case 1000: 1580 ifmr->ifm_active |= IFM_1000_T; 1581 break; 1582 } 1583 if (sc->link_duplex == FULL_DUPLEX) 1584 ifmr->ifm_active |= IFM_FDX; 1585 else 1586 ifmr->ifm_active |= IFM_HDX; 1587 } 1588 } 1589 1590 /********************************************************************* 1591 * 1592 * Media Ioctl callback 1593 * 1594 * This routine is called when the user changes speed/duplex using 1595 * media/mediopt option with ifconfig. 1596 * 1597 **********************************************************************/ 1598 static int 1599 em_if_media_change(if_ctx_t ctx) 1600 { 1601 struct e1000_softc *sc = iflib_get_softc(ctx); 1602 struct ifmedia *ifm = iflib_get_media(ctx); 1603 1604 INIT_DEBUGOUT("em_if_media_change: begin"); 1605 1606 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 1607 return (EINVAL); 1608 1609 switch (IFM_SUBTYPE(ifm->ifm_media)) { 1610 case IFM_AUTO: 1611 sc->hw.mac.autoneg = DO_AUTO_NEG; 1612 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; 1613 break; 1614 case IFM_1000_LX: 1615 case IFM_1000_SX: 1616 case IFM_1000_T: 1617 sc->hw.mac.autoneg = DO_AUTO_NEG; 1618 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 1619 break; 1620 case IFM_100_TX: 1621 sc->hw.mac.autoneg = false; 1622 sc->hw.phy.autoneg_advertised = 0; 1623 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) 1624 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL; 1625 else 1626 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF; 1627 break; 1628 case IFM_10_T: 1629 sc->hw.mac.autoneg = false; 1630 sc->hw.phy.autoneg_advertised = 0; 1631 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) 1632 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL; 1633 else 1634 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF; 1635 break; 1636 default: 1637 device_printf(sc->dev, "Unsupported media type\n"); 1638 } 1639 1640 em_if_init(ctx); 1641 1642 return (0); 1643 } 1644 1645 static int 1646 em_if_set_promisc(if_ctx_t ctx, int flags) 1647 { 1648 struct e1000_softc *sc = iflib_get_softc(ctx); 1649 struct ifnet *ifp = iflib_get_ifp(ctx); 1650 u32 reg_rctl; 1651 int mcnt = 0; 1652 1653 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL); 1654 reg_rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_UPE); 1655 if (flags & IFF_ALLMULTI) 1656 mcnt = MAX_NUM_MULTICAST_ADDRESSES; 1657 else 1658 mcnt = min(if_llmaddr_count(ifp), MAX_NUM_MULTICAST_ADDRESSES); 1659 1660 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES) 1661 reg_rctl &= (~E1000_RCTL_MPE); 1662 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl); 1663 1664 if (flags & IFF_PROMISC) { 1665 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 1666 em_if_vlan_filter_disable(sc); 1667 /* Turn this on if you want to see bad packets */ 1668 if (em_debug_sbp) 1669 reg_rctl |= E1000_RCTL_SBP; 1670 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl); 1671 } else { 1672 if (flags & IFF_ALLMULTI) { 1673 reg_rctl |= E1000_RCTL_MPE; 1674 reg_rctl &= ~E1000_RCTL_UPE; 1675 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl); 1676 } 1677 if (em_if_vlan_filter_used(sc)) 1678 em_if_vlan_filter_enable(sc); 1679 } 1680 return (0); 1681 } 1682 1683 static u_int 1684 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int idx) 1685 { 1686 u8 *mta = arg; 1687 1688 if (idx == MAX_NUM_MULTICAST_ADDRESSES) 1689 return (0); 1690 1691 bcopy(LLADDR(sdl), &mta[idx * ETHER_ADDR_LEN], ETHER_ADDR_LEN); 1692 1693 return (1); 1694 } 1695 1696 /********************************************************************* 1697 * Multicast Update 1698 * 1699 * This routine is called whenever multicast address list is updated. 1700 * 1701 **********************************************************************/ 1702 static void 1703 em_if_multi_set(if_ctx_t ctx) 1704 { 1705 struct e1000_softc *sc = iflib_get_softc(ctx); 1706 struct ifnet *ifp = iflib_get_ifp(ctx); 1707 u8 *mta; /* Multicast array memory */ 1708 u32 reg_rctl = 0; 1709 int mcnt = 0; 1710 1711 IOCTL_DEBUGOUT("em_set_multi: begin"); 1712 1713 mta = sc->mta; 1714 bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES); 1715 1716 if (sc->hw.mac.type == e1000_82542 && 1717 sc->hw.revision_id == E1000_REVISION_2) { 1718 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL); 1719 if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) 1720 e1000_pci_clear_mwi(&sc->hw); 1721 reg_rctl |= E1000_RCTL_RST; 1722 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl); 1723 msec_delay(5); 1724 } 1725 1726 mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta); 1727 1728 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL); 1729 1730 if (if_getflags(ifp) & IFF_PROMISC) 1731 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 1732 else if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES || 1733 if_getflags(ifp) & IFF_ALLMULTI) { 1734 reg_rctl |= E1000_RCTL_MPE; 1735 reg_rctl &= ~E1000_RCTL_UPE; 1736 } else 1737 reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); 1738 1739 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl); 1740 1741 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES) 1742 e1000_update_mc_addr_list(&sc->hw, mta, mcnt); 1743 1744 if (sc->hw.mac.type == e1000_82542 && 1745 sc->hw.revision_id == E1000_REVISION_2) { 1746 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL); 1747 reg_rctl &= ~E1000_RCTL_RST; 1748 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl); 1749 msec_delay(5); 1750 if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) 1751 e1000_pci_set_mwi(&sc->hw); 1752 } 1753 } 1754 1755 /********************************************************************* 1756 * Timer routine 1757 * 1758 * This routine schedules em_if_update_admin_status() to check for 1759 * link status and to gather statistics as well as to perform some 1760 * controller-specific hardware patting. 1761 * 1762 **********************************************************************/ 1763 static void 1764 em_if_timer(if_ctx_t ctx, uint16_t qid) 1765 { 1766 1767 if (qid != 0) 1768 return; 1769 1770 iflib_admin_intr_deferred(ctx); 1771 } 1772 1773 static void 1774 em_if_update_admin_status(if_ctx_t ctx) 1775 { 1776 struct e1000_softc *sc = iflib_get_softc(ctx); 1777 struct e1000_hw *hw = &sc->hw; 1778 device_t dev = iflib_get_dev(ctx); 1779 u32 link_check, thstat, ctrl; 1780 1781 link_check = thstat = ctrl = 0; 1782 /* Get the cached link value or read phy for real */ 1783 switch (hw->phy.media_type) { 1784 case e1000_media_type_copper: 1785 if (hw->mac.get_link_status) { 1786 if (hw->mac.type == e1000_pch_spt) 1787 msec_delay(50); 1788 /* Do the work to read phy */ 1789 e1000_check_for_link(hw); 1790 link_check = !hw->mac.get_link_status; 1791 if (link_check) /* ESB2 fix */ 1792 e1000_cfg_on_link_up(hw); 1793 } else { 1794 link_check = true; 1795 } 1796 break; 1797 case e1000_media_type_fiber: 1798 e1000_check_for_link(hw); 1799 link_check = (E1000_READ_REG(hw, E1000_STATUS) & 1800 E1000_STATUS_LU); 1801 break; 1802 case e1000_media_type_internal_serdes: 1803 e1000_check_for_link(hw); 1804 link_check = hw->mac.serdes_has_link; 1805 break; 1806 /* VF device is type_unknown */ 1807 case e1000_media_type_unknown: 1808 e1000_check_for_link(hw); 1809 link_check = !hw->mac.get_link_status; 1810 /* FALLTHROUGH */ 1811 default: 1812 break; 1813 } 1814 1815 /* Check for thermal downshift or shutdown */ 1816 if (hw->mac.type == e1000_i350) { 1817 thstat = E1000_READ_REG(hw, E1000_THSTAT); 1818 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT); 1819 } 1820 1821 /* Now check for a transition */ 1822 if (link_check && (sc->link_active == 0)) { 1823 e1000_get_speed_and_duplex(hw, &sc->link_speed, 1824 &sc->link_duplex); 1825 /* Check if we must disable SPEED_MODE bit on PCI-E */ 1826 if ((sc->link_speed != SPEED_1000) && 1827 ((hw->mac.type == e1000_82571) || 1828 (hw->mac.type == e1000_82572))) { 1829 int tarc0; 1830 tarc0 = E1000_READ_REG(hw, E1000_TARC(0)); 1831 tarc0 &= ~TARC_SPEED_MODE_BIT; 1832 E1000_WRITE_REG(hw, E1000_TARC(0), tarc0); 1833 } 1834 if (bootverbose) 1835 device_printf(dev, "Link is up %d Mbps %s\n", 1836 sc->link_speed, 1837 ((sc->link_duplex == FULL_DUPLEX) ? 1838 "Full Duplex" : "Half Duplex")); 1839 sc->link_active = 1; 1840 sc->smartspeed = 0; 1841 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) == 1842 E1000_CTRL_EXT_LINK_MODE_GMII && 1843 (thstat & E1000_THSTAT_LINK_THROTTLE)) 1844 device_printf(dev, "Link: thermal downshift\n"); 1845 /* Delay Link Up for Phy update */ 1846 if (((hw->mac.type == e1000_i210) || 1847 (hw->mac.type == e1000_i211)) && 1848 (hw->phy.id == I210_I_PHY_ID)) 1849 msec_delay(I210_LINK_DELAY); 1850 /* Reset if the media type changed. */ 1851 if (hw->dev_spec._82575.media_changed && 1852 hw->mac.type >= igb_mac_min) { 1853 hw->dev_spec._82575.media_changed = false; 1854 sc->flags |= IGB_MEDIA_RESET; 1855 em_reset(ctx); 1856 } 1857 iflib_link_state_change(ctx, LINK_STATE_UP, 1858 IF_Mbps(sc->link_speed)); 1859 } else if (!link_check && (sc->link_active == 1)) { 1860 sc->link_speed = 0; 1861 sc->link_duplex = 0; 1862 sc->link_active = 0; 1863 iflib_link_state_change(ctx, LINK_STATE_DOWN, 0); 1864 } 1865 em_update_stats_counters(sc); 1866 1867 /* Reset LAA into RAR[0] on 82571 */ 1868 if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw)) 1869 e1000_rar_set(hw, hw->mac.addr, 0); 1870 1871 if (hw->mac.type < em_mac_min) 1872 lem_smartspeed(sc); 1873 } 1874 1875 static void 1876 em_if_watchdog_reset(if_ctx_t ctx) 1877 { 1878 struct e1000_softc *sc = iflib_get_softc(ctx); 1879 1880 /* 1881 * Just count the event; iflib(4) will already trigger a 1882 * sufficient reset of the controller. 1883 */ 1884 sc->watchdog_events++; 1885 } 1886 1887 /********************************************************************* 1888 * 1889 * This routine disables all traffic on the adapter by issuing a 1890 * global reset on the MAC. 1891 * 1892 **********************************************************************/ 1893 static void 1894 em_if_stop(if_ctx_t ctx) 1895 { 1896 struct e1000_softc *sc = iflib_get_softc(ctx); 1897 1898 INIT_DEBUGOUT("em_if_stop: begin"); 1899 1900 e1000_reset_hw(&sc->hw); 1901 if (sc->hw.mac.type >= e1000_82544) 1902 E1000_WRITE_REG(&sc->hw, E1000_WUFC, 0); 1903 1904 e1000_led_off(&sc->hw); 1905 e1000_cleanup_led(&sc->hw); 1906 } 1907 1908 /********************************************************************* 1909 * 1910 * Determine hardware revision. 1911 * 1912 **********************************************************************/ 1913 static void 1914 em_identify_hardware(if_ctx_t ctx) 1915 { 1916 device_t dev = iflib_get_dev(ctx); 1917 struct e1000_softc *sc = iflib_get_softc(ctx); 1918 1919 /* Make sure our PCI config space has the necessary stuff set */ 1920 sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2); 1921 1922 /* Save off the information about this board */ 1923 sc->hw.vendor_id = pci_get_vendor(dev); 1924 sc->hw.device_id = pci_get_device(dev); 1925 sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1); 1926 sc->hw.subsystem_vendor_id = 1927 pci_read_config(dev, PCIR_SUBVEND_0, 2); 1928 sc->hw.subsystem_device_id = 1929 pci_read_config(dev, PCIR_SUBDEV_0, 2); 1930 1931 /* Do Shared Code Init and Setup */ 1932 if (e1000_set_mac_type(&sc->hw)) { 1933 device_printf(dev, "Setup init failure\n"); 1934 return; 1935 } 1936 1937 /* Are we a VF device? */ 1938 if ((sc->hw.mac.type == e1000_vfadapt) || 1939 (sc->hw.mac.type == e1000_vfadapt_i350)) 1940 sc->vf_ifp = 1; 1941 else 1942 sc->vf_ifp = 0; 1943 } 1944 1945 static int 1946 em_allocate_pci_resources(if_ctx_t ctx) 1947 { 1948 struct e1000_softc *sc = iflib_get_softc(ctx); 1949 device_t dev = iflib_get_dev(ctx); 1950 int rid, val; 1951 1952 rid = PCIR_BAR(0); 1953 sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 1954 &rid, RF_ACTIVE); 1955 if (sc->memory == NULL) { 1956 device_printf(dev, "Unable to allocate bus resource: memory\n"); 1957 return (ENXIO); 1958 } 1959 sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory); 1960 sc->osdep.mem_bus_space_handle = 1961 rman_get_bushandle(sc->memory); 1962 sc->hw.hw_addr = (u8 *)&sc->osdep.mem_bus_space_handle; 1963 1964 /* Only older adapters use IO mapping */ 1965 if (sc->hw.mac.type < em_mac_min && 1966 sc->hw.mac.type > e1000_82543) { 1967 /* Figure our where our IO BAR is ? */ 1968 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) { 1969 val = pci_read_config(dev, rid, 4); 1970 if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) { 1971 break; 1972 } 1973 rid += 4; 1974 /* check for 64bit BAR */ 1975 if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT) 1976 rid += 4; 1977 } 1978 if (rid >= PCIR_CIS) { 1979 device_printf(dev, "Unable to locate IO BAR\n"); 1980 return (ENXIO); 1981 } 1982 sc->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT, 1983 &rid, RF_ACTIVE); 1984 if (sc->ioport == NULL) { 1985 device_printf(dev, "Unable to allocate bus resource: " 1986 "ioport\n"); 1987 return (ENXIO); 1988 } 1989 sc->hw.io_base = 0; 1990 sc->osdep.io_bus_space_tag = 1991 rman_get_bustag(sc->ioport); 1992 sc->osdep.io_bus_space_handle = 1993 rman_get_bushandle(sc->ioport); 1994 } 1995 1996 sc->hw.back = &sc->osdep; 1997 1998 return (0); 1999 } 2000 2001 /********************************************************************* 2002 * 2003 * Set up the MSI-X Interrupt handlers 2004 * 2005 **********************************************************************/ 2006 static int 2007 em_if_msix_intr_assign(if_ctx_t ctx, int msix) 2008 { 2009 struct e1000_softc *sc = iflib_get_softc(ctx); 2010 struct em_rx_queue *rx_que = sc->rx_queues; 2011 struct em_tx_queue *tx_que = sc->tx_queues; 2012 int error, rid, i, vector = 0, rx_vectors; 2013 char buf[16]; 2014 2015 /* First set up ring resources */ 2016 for (i = 0; i < sc->rx_num_queues; i++, rx_que++, vector++) { 2017 rid = vector + 1; 2018 snprintf(buf, sizeof(buf), "rxq%d", i); 2019 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf); 2020 if (error) { 2021 device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error); 2022 sc->rx_num_queues = i + 1; 2023 goto fail; 2024 } 2025 2026 rx_que->msix = vector; 2027 2028 /* 2029 * Set the bit to enable interrupt 2030 * in E1000_IMS -- bits 20 and 21 2031 * are for RX0 and RX1, note this has 2032 * NOTHING to do with the MSI-X vector 2033 */ 2034 if (sc->hw.mac.type == e1000_82574) { 2035 rx_que->eims = 1 << (20 + i); 2036 sc->ims |= rx_que->eims; 2037 sc->ivars |= (8 | rx_que->msix) << (i * 4); 2038 } else if (sc->hw.mac.type == e1000_82575) 2039 rx_que->eims = E1000_EICR_TX_QUEUE0 << vector; 2040 else 2041 rx_que->eims = 1 << vector; 2042 } 2043 rx_vectors = vector; 2044 2045 vector = 0; 2046 for (i = 0; i < sc->tx_num_queues; i++, tx_que++, vector++) { 2047 snprintf(buf, sizeof(buf), "txq%d", i); 2048 tx_que = &sc->tx_queues[i]; 2049 iflib_softirq_alloc_generic(ctx, 2050 &sc->rx_queues[i % sc->rx_num_queues].que_irq, 2051 IFLIB_INTR_TX, tx_que, tx_que->me, buf); 2052 2053 tx_que->msix = (vector % sc->rx_num_queues); 2054 2055 /* 2056 * Set the bit to enable interrupt 2057 * in E1000_IMS -- bits 22 and 23 2058 * are for TX0 and TX1, note this has 2059 * NOTHING to do with the MSI-X vector 2060 */ 2061 if (sc->hw.mac.type == e1000_82574) { 2062 tx_que->eims = 1 << (22 + i); 2063 sc->ims |= tx_que->eims; 2064 sc->ivars |= (8 | tx_que->msix) << (8 + (i * 4)); 2065 } else if (sc->hw.mac.type == e1000_82575) { 2066 tx_que->eims = E1000_EICR_TX_QUEUE0 << i; 2067 } else { 2068 tx_que->eims = 1 << i; 2069 } 2070 } 2071 2072 /* Link interrupt */ 2073 rid = rx_vectors + 1; 2074 error = iflib_irq_alloc_generic(ctx, &sc->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, sc, 0, "aq"); 2075 2076 if (error) { 2077 device_printf(iflib_get_dev(ctx), "Failed to register admin handler"); 2078 goto fail; 2079 } 2080 sc->linkvec = rx_vectors; 2081 if (sc->hw.mac.type < igb_mac_min) { 2082 sc->ivars |= (8 | rx_vectors) << 16; 2083 sc->ivars |= 0x80000000; 2084 /* Enable the "Other" interrupt type for link status change */ 2085 sc->ims |= E1000_IMS_OTHER; 2086 } 2087 2088 return (0); 2089 fail: 2090 iflib_irq_free(ctx, &sc->irq); 2091 rx_que = sc->rx_queues; 2092 for (int i = 0; i < sc->rx_num_queues; i++, rx_que++) 2093 iflib_irq_free(ctx, &rx_que->que_irq); 2094 return (error); 2095 } 2096 2097 static void 2098 igb_configure_queues(struct e1000_softc *sc) 2099 { 2100 struct e1000_hw *hw = &sc->hw; 2101 struct em_rx_queue *rx_que; 2102 struct em_tx_queue *tx_que; 2103 u32 tmp, ivar = 0, newitr = 0; 2104 2105 /* First turn on RSS capability */ 2106 if (hw->mac.type != e1000_82575) 2107 E1000_WRITE_REG(hw, E1000_GPIE, 2108 E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME | 2109 E1000_GPIE_PBA | E1000_GPIE_NSICR); 2110 2111 /* Turn on MSI-X */ 2112 switch (hw->mac.type) { 2113 case e1000_82580: 2114 case e1000_i350: 2115 case e1000_i354: 2116 case e1000_i210: 2117 case e1000_i211: 2118 case e1000_vfadapt: 2119 case e1000_vfadapt_i350: 2120 /* RX entries */ 2121 for (int i = 0; i < sc->rx_num_queues; i++) { 2122 u32 index = i >> 1; 2123 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2124 rx_que = &sc->rx_queues[i]; 2125 if (i & 1) { 2126 ivar &= 0xFF00FFFF; 2127 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16; 2128 } else { 2129 ivar &= 0xFFFFFF00; 2130 ivar |= rx_que->msix | E1000_IVAR_VALID; 2131 } 2132 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2133 } 2134 /* TX entries */ 2135 for (int i = 0; i < sc->tx_num_queues; i++) { 2136 u32 index = i >> 1; 2137 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2138 tx_que = &sc->tx_queues[i]; 2139 if (i & 1) { 2140 ivar &= 0x00FFFFFF; 2141 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24; 2142 } else { 2143 ivar &= 0xFFFF00FF; 2144 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8; 2145 } 2146 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2147 sc->que_mask |= tx_que->eims; 2148 } 2149 2150 /* And for the link interrupt */ 2151 ivar = (sc->linkvec | E1000_IVAR_VALID) << 8; 2152 sc->link_mask = 1 << sc->linkvec; 2153 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); 2154 break; 2155 case e1000_82576: 2156 /* RX entries */ 2157 for (int i = 0; i < sc->rx_num_queues; i++) { 2158 u32 index = i & 0x7; /* Each IVAR has two entries */ 2159 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2160 rx_que = &sc->rx_queues[i]; 2161 if (i < 8) { 2162 ivar &= 0xFFFFFF00; 2163 ivar |= rx_que->msix | E1000_IVAR_VALID; 2164 } else { 2165 ivar &= 0xFF00FFFF; 2166 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16; 2167 } 2168 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2169 sc->que_mask |= rx_que->eims; 2170 } 2171 /* TX entries */ 2172 for (int i = 0; i < sc->tx_num_queues; i++) { 2173 u32 index = i & 0x7; /* Each IVAR has two entries */ 2174 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2175 tx_que = &sc->tx_queues[i]; 2176 if (i < 8) { 2177 ivar &= 0xFFFF00FF; 2178 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8; 2179 } else { 2180 ivar &= 0x00FFFFFF; 2181 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24; 2182 } 2183 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2184 sc->que_mask |= tx_que->eims; 2185 } 2186 2187 /* And for the link interrupt */ 2188 ivar = (sc->linkvec | E1000_IVAR_VALID) << 8; 2189 sc->link_mask = 1 << sc->linkvec; 2190 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); 2191 break; 2192 2193 case e1000_82575: 2194 /* enable MSI-X support*/ 2195 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT); 2196 tmp |= E1000_CTRL_EXT_PBA_CLR; 2197 /* Auto-Mask interrupts upon ICR read. */ 2198 tmp |= E1000_CTRL_EXT_EIAME; 2199 tmp |= E1000_CTRL_EXT_IRCA; 2200 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp); 2201 2202 /* Queues */ 2203 for (int i = 0; i < sc->rx_num_queues; i++) { 2204 rx_que = &sc->rx_queues[i]; 2205 tmp = E1000_EICR_RX_QUEUE0 << i; 2206 tmp |= E1000_EICR_TX_QUEUE0 << i; 2207 rx_que->eims = tmp; 2208 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 2209 i, rx_que->eims); 2210 sc->que_mask |= rx_que->eims; 2211 } 2212 2213 /* Link */ 2214 E1000_WRITE_REG(hw, E1000_MSIXBM(sc->linkvec), 2215 E1000_EIMS_OTHER); 2216 sc->link_mask |= E1000_EIMS_OTHER; 2217 default: 2218 break; 2219 } 2220 2221 /* Set the starting interrupt rate */ 2222 if (em_max_interrupt_rate > 0) 2223 newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC; 2224 2225 if (hw->mac.type == e1000_82575) 2226 newitr |= newitr << 16; 2227 else 2228 newitr |= E1000_EITR_CNT_IGNR; 2229 2230 for (int i = 0; i < sc->rx_num_queues; i++) { 2231 rx_que = &sc->rx_queues[i]; 2232 E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr); 2233 } 2234 2235 return; 2236 } 2237 2238 static void 2239 em_free_pci_resources(if_ctx_t ctx) 2240 { 2241 struct e1000_softc *sc = iflib_get_softc(ctx); 2242 struct em_rx_queue *que = sc->rx_queues; 2243 device_t dev = iflib_get_dev(ctx); 2244 2245 /* Release all MSI-X queue resources */ 2246 if (sc->intr_type == IFLIB_INTR_MSIX) 2247 iflib_irq_free(ctx, &sc->irq); 2248 2249 if (que != NULL) { 2250 for (int i = 0; i < sc->rx_num_queues; i++, que++) { 2251 iflib_irq_free(ctx, &que->que_irq); 2252 } 2253 } 2254 2255 if (sc->memory != NULL) { 2256 bus_release_resource(dev, SYS_RES_MEMORY, 2257 rman_get_rid(sc->memory), sc->memory); 2258 sc->memory = NULL; 2259 } 2260 2261 if (sc->flash != NULL) { 2262 bus_release_resource(dev, SYS_RES_MEMORY, 2263 rman_get_rid(sc->flash), sc->flash); 2264 sc->flash = NULL; 2265 } 2266 2267 if (sc->ioport != NULL) { 2268 bus_release_resource(dev, SYS_RES_IOPORT, 2269 rman_get_rid(sc->ioport), sc->ioport); 2270 sc->ioport = NULL; 2271 } 2272 } 2273 2274 /* Set up MSI or MSI-X */ 2275 static int 2276 em_setup_msix(if_ctx_t ctx) 2277 { 2278 struct e1000_softc *sc = iflib_get_softc(ctx); 2279 2280 if (sc->hw.mac.type == e1000_82574) { 2281 em_enable_vectors_82574(ctx); 2282 } 2283 return (0); 2284 } 2285 2286 /********************************************************************* 2287 * 2288 * Workaround for SmartSpeed on 82541 and 82547 controllers 2289 * 2290 **********************************************************************/ 2291 static void 2292 lem_smartspeed(struct e1000_softc *sc) 2293 { 2294 u16 phy_tmp; 2295 2296 if (sc->link_active || (sc->hw.phy.type != e1000_phy_igp) || 2297 sc->hw.mac.autoneg == 0 || 2298 (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0) 2299 return; 2300 2301 if (sc->smartspeed == 0) { 2302 /* If Master/Slave config fault is asserted twice, 2303 * we assume back-to-back */ 2304 e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp); 2305 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT)) 2306 return; 2307 e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp); 2308 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) { 2309 e1000_read_phy_reg(&sc->hw, 2310 PHY_1000T_CTRL, &phy_tmp); 2311 if(phy_tmp & CR_1000T_MS_ENABLE) { 2312 phy_tmp &= ~CR_1000T_MS_ENABLE; 2313 e1000_write_phy_reg(&sc->hw, 2314 PHY_1000T_CTRL, phy_tmp); 2315 sc->smartspeed++; 2316 if(sc->hw.mac.autoneg && 2317 !e1000_copper_link_autoneg(&sc->hw) && 2318 !e1000_read_phy_reg(&sc->hw, 2319 PHY_CONTROL, &phy_tmp)) { 2320 phy_tmp |= (MII_CR_AUTO_NEG_EN | 2321 MII_CR_RESTART_AUTO_NEG); 2322 e1000_write_phy_reg(&sc->hw, 2323 PHY_CONTROL, phy_tmp); 2324 } 2325 } 2326 } 2327 return; 2328 } else if(sc->smartspeed == EM_SMARTSPEED_DOWNSHIFT) { 2329 /* If still no link, perhaps using 2/3 pair cable */ 2330 e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp); 2331 phy_tmp |= CR_1000T_MS_ENABLE; 2332 e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp); 2333 if(sc->hw.mac.autoneg && 2334 !e1000_copper_link_autoneg(&sc->hw) && 2335 !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) { 2336 phy_tmp |= (MII_CR_AUTO_NEG_EN | 2337 MII_CR_RESTART_AUTO_NEG); 2338 e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp); 2339 } 2340 } 2341 /* Restart process after EM_SMARTSPEED_MAX iterations */ 2342 if(sc->smartspeed++ == EM_SMARTSPEED_MAX) 2343 sc->smartspeed = 0; 2344 } 2345 2346 /********************************************************************* 2347 * 2348 * Initialize the DMA Coalescing feature 2349 * 2350 **********************************************************************/ 2351 static void 2352 igb_init_dmac(struct e1000_softc *sc, u32 pba) 2353 { 2354 device_t dev = sc->dev; 2355 struct e1000_hw *hw = &sc->hw; 2356 u32 dmac, reg = ~E1000_DMACR_DMAC_EN; 2357 u16 hwm; 2358 u16 max_frame_size; 2359 2360 if (hw->mac.type == e1000_i211) 2361 return; 2362 2363 max_frame_size = sc->shared->isc_max_frame_size; 2364 if (hw->mac.type > e1000_82580) { 2365 2366 if (sc->dmac == 0) { /* Disabling it */ 2367 E1000_WRITE_REG(hw, E1000_DMACR, reg); 2368 return; 2369 } else 2370 device_printf(dev, "DMA Coalescing enabled\n"); 2371 2372 /* Set starting threshold */ 2373 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0); 2374 2375 hwm = 64 * pba - max_frame_size / 16; 2376 if (hwm < 64 * (pba - 6)) 2377 hwm = 64 * (pba - 6); 2378 reg = E1000_READ_REG(hw, E1000_FCRTC); 2379 reg &= ~E1000_FCRTC_RTH_COAL_MASK; 2380 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) 2381 & E1000_FCRTC_RTH_COAL_MASK); 2382 E1000_WRITE_REG(hw, E1000_FCRTC, reg); 2383 2384 2385 dmac = pba - max_frame_size / 512; 2386 if (dmac < pba - 10) 2387 dmac = pba - 10; 2388 reg = E1000_READ_REG(hw, E1000_DMACR); 2389 reg &= ~E1000_DMACR_DMACTHR_MASK; 2390 reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT) 2391 & E1000_DMACR_DMACTHR_MASK); 2392 2393 /* transition to L0x or L1 if available..*/ 2394 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); 2395 2396 /* Check if status is 2.5Gb backplane connection 2397 * before configuration of watchdog timer, which is 2398 * in msec values in 12.8usec intervals 2399 * watchdog timer= msec values in 32usec intervals 2400 * for non 2.5Gb connection 2401 */ 2402 if (hw->mac.type == e1000_i354) { 2403 int status = E1000_READ_REG(hw, E1000_STATUS); 2404 if ((status & E1000_STATUS_2P5_SKU) && 2405 (!(status & E1000_STATUS_2P5_SKU_OVER))) 2406 reg |= ((sc->dmac * 5) >> 6); 2407 else 2408 reg |= (sc->dmac >> 5); 2409 } else { 2410 reg |= (sc->dmac >> 5); 2411 } 2412 2413 E1000_WRITE_REG(hw, E1000_DMACR, reg); 2414 2415 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0); 2416 2417 /* Set the interval before transition */ 2418 reg = E1000_READ_REG(hw, E1000_DMCTLX); 2419 if (hw->mac.type == e1000_i350) 2420 reg |= IGB_DMCTLX_DCFLUSH_DIS; 2421 /* 2422 ** in 2.5Gb connection, TTLX unit is 0.4 usec 2423 ** which is 0x4*2 = 0xA. But delay is still 4 usec 2424 */ 2425 if (hw->mac.type == e1000_i354) { 2426 int status = E1000_READ_REG(hw, E1000_STATUS); 2427 if ((status & E1000_STATUS_2P5_SKU) && 2428 (!(status & E1000_STATUS_2P5_SKU_OVER))) 2429 reg |= 0xA; 2430 else 2431 reg |= 0x4; 2432 } else { 2433 reg |= 0x4; 2434 } 2435 2436 E1000_WRITE_REG(hw, E1000_DMCTLX, reg); 2437 2438 /* free space in tx packet buffer to wake from DMA coal */ 2439 E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE - 2440 (2 * max_frame_size)) >> 6); 2441 2442 /* make low power state decision controlled by DMA coal */ 2443 reg = E1000_READ_REG(hw, E1000_PCIEMISC); 2444 reg &= ~E1000_PCIEMISC_LX_DECISION; 2445 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg); 2446 2447 } else if (hw->mac.type == e1000_82580) { 2448 u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC); 2449 E1000_WRITE_REG(hw, E1000_PCIEMISC, 2450 reg & ~E1000_PCIEMISC_LX_DECISION); 2451 E1000_WRITE_REG(hw, E1000_DMACR, 0); 2452 } 2453 } 2454 2455 /********************************************************************* 2456 * 2457 * Initialize the hardware to a configuration as specified by the 2458 * sc structure. 2459 * 2460 **********************************************************************/ 2461 static void 2462 em_reset(if_ctx_t ctx) 2463 { 2464 device_t dev = iflib_get_dev(ctx); 2465 struct e1000_softc *sc = iflib_get_softc(ctx); 2466 struct ifnet *ifp = iflib_get_ifp(ctx); 2467 struct e1000_hw *hw = &sc->hw; 2468 u16 rx_buffer_size; 2469 u32 pba; 2470 2471 INIT_DEBUGOUT("em_reset: begin"); 2472 /* Let the firmware know the OS is in control */ 2473 em_get_hw_control(sc); 2474 2475 /* Set up smart power down as default off on newer adapters. */ 2476 if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 || 2477 hw->mac.type == e1000_82572)) { 2478 u16 phy_tmp = 0; 2479 2480 /* Speed up time to link by disabling smart power down. */ 2481 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp); 2482 phy_tmp &= ~IGP02E1000_PM_SPD; 2483 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp); 2484 } 2485 2486 /* 2487 * Packet Buffer Allocation (PBA) 2488 * Writing PBA sets the receive portion of the buffer 2489 * the remainder is used for the transmit buffer. 2490 */ 2491 switch (hw->mac.type) { 2492 /* 82547: Total Packet Buffer is 40K */ 2493 case e1000_82547: 2494 case e1000_82547_rev_2: 2495 if (hw->mac.max_frame_size > 8192) 2496 pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */ 2497 else 2498 pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */ 2499 break; 2500 /* 82571/82572/80003es2lan: Total Packet Buffer is 48K */ 2501 case e1000_82571: 2502 case e1000_82572: 2503 case e1000_80003es2lan: 2504 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */ 2505 break; 2506 /* 82573: Total Packet Buffer is 32K */ 2507 case e1000_82573: 2508 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */ 2509 break; 2510 case e1000_82574: 2511 case e1000_82583: 2512 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */ 2513 break; 2514 case e1000_ich8lan: 2515 pba = E1000_PBA_8K; 2516 break; 2517 case e1000_ich9lan: 2518 case e1000_ich10lan: 2519 /* Boost Receive side for jumbo frames */ 2520 if (hw->mac.max_frame_size > 4096) 2521 pba = E1000_PBA_14K; 2522 else 2523 pba = E1000_PBA_10K; 2524 break; 2525 case e1000_pchlan: 2526 case e1000_pch2lan: 2527 case e1000_pch_lpt: 2528 case e1000_pch_spt: 2529 case e1000_pch_cnp: 2530 case e1000_pch_tgp: 2531 case e1000_pch_adp: 2532 case e1000_pch_mtp: 2533 pba = E1000_PBA_26K; 2534 break; 2535 case e1000_82575: 2536 pba = E1000_PBA_32K; 2537 break; 2538 case e1000_82576: 2539 case e1000_vfadapt: 2540 pba = E1000_READ_REG(hw, E1000_RXPBS); 2541 pba &= E1000_RXPBS_SIZE_MASK_82576; 2542 break; 2543 case e1000_82580: 2544 case e1000_i350: 2545 case e1000_i354: 2546 case e1000_vfadapt_i350: 2547 pba = E1000_READ_REG(hw, E1000_RXPBS); 2548 pba = e1000_rxpbs_adjust_82580(pba); 2549 break; 2550 case e1000_i210: 2551 case e1000_i211: 2552 pba = E1000_PBA_34K; 2553 break; 2554 default: 2555 /* Remaining devices assumed to have a Packet Buffer of 64K. */ 2556 if (hw->mac.max_frame_size > 8192) 2557 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */ 2558 else 2559 pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */ 2560 } 2561 2562 /* Special needs in case of Jumbo frames */ 2563 if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) { 2564 u32 tx_space, min_tx, min_rx; 2565 pba = E1000_READ_REG(hw, E1000_PBA); 2566 tx_space = pba >> 16; 2567 pba &= 0xffff; 2568 min_tx = (hw->mac.max_frame_size + 2569 sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2; 2570 min_tx = roundup2(min_tx, 1024); 2571 min_tx >>= 10; 2572 min_rx = hw->mac.max_frame_size; 2573 min_rx = roundup2(min_rx, 1024); 2574 min_rx >>= 10; 2575 if (tx_space < min_tx && 2576 ((min_tx - tx_space) < pba)) { 2577 pba = pba - (min_tx - tx_space); 2578 /* 2579 * if short on rx space, rx wins 2580 * and must trump tx adjustment 2581 */ 2582 if (pba < min_rx) 2583 pba = min_rx; 2584 } 2585 E1000_WRITE_REG(hw, E1000_PBA, pba); 2586 } 2587 2588 if (hw->mac.type < igb_mac_min) 2589 E1000_WRITE_REG(hw, E1000_PBA, pba); 2590 2591 INIT_DEBUGOUT1("em_reset: pba=%dK",pba); 2592 2593 /* 2594 * These parameters control the automatic generation (Tx) and 2595 * response (Rx) to Ethernet PAUSE frames. 2596 * - High water mark should allow for at least two frames to be 2597 * received after sending an XOFF. 2598 * - Low water mark works best when it is very near the high water mark. 2599 * This allows the receiver to restart by sending XON when it has 2600 * drained a bit. Here we use an arbitrary value of 1500 which will 2601 * restart after one full frame is pulled from the buffer. There 2602 * could be several smaller frames in the buffer and if so they will 2603 * not trigger the XON until their total number reduces the buffer 2604 * by 1500. 2605 * - The pause time is fairly large at 1000 x 512ns = 512 usec. 2606 */ 2607 rx_buffer_size = (pba & 0xffff) << 10; 2608 hw->fc.high_water = rx_buffer_size - 2609 roundup2(hw->mac.max_frame_size, 1024); 2610 hw->fc.low_water = hw->fc.high_water - 1500; 2611 2612 if (sc->fc) /* locally set flow control value? */ 2613 hw->fc.requested_mode = sc->fc; 2614 else 2615 hw->fc.requested_mode = e1000_fc_full; 2616 2617 if (hw->mac.type == e1000_80003es2lan) 2618 hw->fc.pause_time = 0xFFFF; 2619 else 2620 hw->fc.pause_time = EM_FC_PAUSE_TIME; 2621 2622 hw->fc.send_xon = true; 2623 2624 /* Device specific overrides/settings */ 2625 switch (hw->mac.type) { 2626 case e1000_pchlan: 2627 /* Workaround: no TX flow ctrl for PCH */ 2628 hw->fc.requested_mode = e1000_fc_rx_pause; 2629 hw->fc.pause_time = 0xFFFF; /* override */ 2630 if (if_getmtu(ifp) > ETHERMTU) { 2631 hw->fc.high_water = 0x3500; 2632 hw->fc.low_water = 0x1500; 2633 } else { 2634 hw->fc.high_water = 0x5000; 2635 hw->fc.low_water = 0x3000; 2636 } 2637 hw->fc.refresh_time = 0x1000; 2638 break; 2639 case e1000_pch2lan: 2640 case e1000_pch_lpt: 2641 case e1000_pch_spt: 2642 case e1000_pch_cnp: 2643 case e1000_pch_tgp: 2644 case e1000_pch_adp: 2645 case e1000_pch_mtp: 2646 hw->fc.high_water = 0x5C20; 2647 hw->fc.low_water = 0x5048; 2648 hw->fc.pause_time = 0x0650; 2649 hw->fc.refresh_time = 0x0400; 2650 /* Jumbos need adjusted PBA */ 2651 if (if_getmtu(ifp) > ETHERMTU) 2652 E1000_WRITE_REG(hw, E1000_PBA, 12); 2653 else 2654 E1000_WRITE_REG(hw, E1000_PBA, 26); 2655 break; 2656 case e1000_82575: 2657 case e1000_82576: 2658 /* 8-byte granularity */ 2659 hw->fc.low_water = hw->fc.high_water - 8; 2660 break; 2661 case e1000_82580: 2662 case e1000_i350: 2663 case e1000_i354: 2664 case e1000_i210: 2665 case e1000_i211: 2666 case e1000_vfadapt: 2667 case e1000_vfadapt_i350: 2668 /* 16-byte granularity */ 2669 hw->fc.low_water = hw->fc.high_water - 16; 2670 break; 2671 case e1000_ich9lan: 2672 case e1000_ich10lan: 2673 if (if_getmtu(ifp) > ETHERMTU) { 2674 hw->fc.high_water = 0x2800; 2675 hw->fc.low_water = hw->fc.high_water - 8; 2676 break; 2677 } 2678 /* FALLTHROUGH */ 2679 default: 2680 if (hw->mac.type == e1000_80003es2lan) 2681 hw->fc.pause_time = 0xFFFF; 2682 break; 2683 } 2684 2685 /* Issue a global reset */ 2686 e1000_reset_hw(hw); 2687 if (hw->mac.type >= igb_mac_min) { 2688 E1000_WRITE_REG(hw, E1000_WUC, 0); 2689 } else { 2690 E1000_WRITE_REG(hw, E1000_WUFC, 0); 2691 em_disable_aspm(sc); 2692 } 2693 if (sc->flags & IGB_MEDIA_RESET) { 2694 e1000_setup_init_funcs(hw, true); 2695 e1000_get_bus_info(hw); 2696 sc->flags &= ~IGB_MEDIA_RESET; 2697 } 2698 /* and a re-init */ 2699 if (e1000_init_hw(hw) < 0) { 2700 device_printf(dev, "Hardware Initialization Failed\n"); 2701 return; 2702 } 2703 if (hw->mac.type >= igb_mac_min) 2704 igb_init_dmac(sc, pba); 2705 2706 E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN); 2707 e1000_get_phy_info(hw); 2708 e1000_check_for_link(hw); 2709 } 2710 2711 /* 2712 * Initialise the RSS mapping for NICs that support multiple transmit/ 2713 * receive rings. 2714 */ 2715 2716 #define RSSKEYLEN 10 2717 static void 2718 em_initialize_rss_mapping(struct e1000_softc *sc) 2719 { 2720 uint8_t rss_key[4 * RSSKEYLEN]; 2721 uint32_t reta = 0; 2722 struct e1000_hw *hw = &sc->hw; 2723 int i; 2724 2725 /* 2726 * Configure RSS key 2727 */ 2728 arc4rand(rss_key, sizeof(rss_key), 0); 2729 for (i = 0; i < RSSKEYLEN; ++i) { 2730 uint32_t rssrk = 0; 2731 2732 rssrk = EM_RSSRK_VAL(rss_key, i); 2733 E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk); 2734 } 2735 2736 /* 2737 * Configure RSS redirect table in following fashion: 2738 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)] 2739 */ 2740 for (i = 0; i < sizeof(reta); ++i) { 2741 uint32_t q; 2742 2743 q = (i % sc->rx_num_queues) << 7; 2744 reta |= q << (8 * i); 2745 } 2746 2747 for (i = 0; i < 32; ++i) 2748 E1000_WRITE_REG(hw, E1000_RETA(i), reta); 2749 2750 E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q | 2751 E1000_MRQC_RSS_FIELD_IPV4_TCP | 2752 E1000_MRQC_RSS_FIELD_IPV4 | 2753 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX | 2754 E1000_MRQC_RSS_FIELD_IPV6_EX | 2755 E1000_MRQC_RSS_FIELD_IPV6); 2756 } 2757 2758 static void 2759 igb_initialize_rss_mapping(struct e1000_softc *sc) 2760 { 2761 struct e1000_hw *hw = &sc->hw; 2762 int i; 2763 int queue_id; 2764 u32 reta; 2765 u32 rss_key[10], mrqc, shift = 0; 2766 2767 /* XXX? */ 2768 if (hw->mac.type == e1000_82575) 2769 shift = 6; 2770 2771 /* 2772 * The redirection table controls which destination 2773 * queue each bucket redirects traffic to. 2774 * Each DWORD represents four queues, with the LSB 2775 * being the first queue in the DWORD. 2776 * 2777 * This just allocates buckets to queues using round-robin 2778 * allocation. 2779 * 2780 * NOTE: It Just Happens to line up with the default 2781 * RSS allocation method. 2782 */ 2783 2784 /* Warning FM follows */ 2785 reta = 0; 2786 for (i = 0; i < 128; i++) { 2787 #ifdef RSS 2788 queue_id = rss_get_indirection_to_bucket(i); 2789 /* 2790 * If we have more queues than buckets, we'll 2791 * end up mapping buckets to a subset of the 2792 * queues. 2793 * 2794 * If we have more buckets than queues, we'll 2795 * end up instead assigning multiple buckets 2796 * to queues. 2797 * 2798 * Both are suboptimal, but we need to handle 2799 * the case so we don't go out of bounds 2800 * indexing arrays and such. 2801 */ 2802 queue_id = queue_id % sc->rx_num_queues; 2803 #else 2804 queue_id = (i % sc->rx_num_queues); 2805 #endif 2806 /* Adjust if required */ 2807 queue_id = queue_id << shift; 2808 2809 /* 2810 * The low 8 bits are for hash value (n+0); 2811 * The next 8 bits are for hash value (n+1), etc. 2812 */ 2813 reta = reta >> 8; 2814 reta = reta | ( ((uint32_t) queue_id) << 24); 2815 if ((i & 3) == 3) { 2816 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta); 2817 reta = 0; 2818 } 2819 } 2820 2821 /* Now fill in hash table */ 2822 2823 /* 2824 * MRQC: Multiple Receive Queues Command 2825 * Set queuing to RSS control, number depends on the device. 2826 */ 2827 mrqc = E1000_MRQC_ENABLE_RSS_MQ; 2828 2829 #ifdef RSS 2830 /* XXX ew typecasting */ 2831 rss_getkey((uint8_t *) &rss_key); 2832 #else 2833 arc4rand(&rss_key, sizeof(rss_key), 0); 2834 #endif 2835 for (i = 0; i < 10; i++) 2836 E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]); 2837 2838 /* 2839 * Configure the RSS fields to hash upon. 2840 */ 2841 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 | 2842 E1000_MRQC_RSS_FIELD_IPV4_TCP); 2843 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 | 2844 E1000_MRQC_RSS_FIELD_IPV6_TCP); 2845 mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP | 2846 E1000_MRQC_RSS_FIELD_IPV6_UDP); 2847 mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX | 2848 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); 2849 2850 E1000_WRITE_REG(hw, E1000_MRQC, mrqc); 2851 } 2852 2853 /********************************************************************* 2854 * 2855 * Setup networking device structure and register interface media. 2856 * 2857 **********************************************************************/ 2858 static int 2859 em_setup_interface(if_ctx_t ctx) 2860 { 2861 struct ifnet *ifp = iflib_get_ifp(ctx); 2862 struct e1000_softc *sc = iflib_get_softc(ctx); 2863 if_softc_ctx_t scctx = sc->shared; 2864 2865 INIT_DEBUGOUT("em_setup_interface: begin"); 2866 2867 /* Single Queue */ 2868 if (sc->tx_num_queues == 1) { 2869 if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1); 2870 if_setsendqready(ifp); 2871 } 2872 2873 /* 2874 * Specify the media types supported by this adapter and register 2875 * callbacks to update media and link information 2876 */ 2877 if (sc->hw.phy.media_type == e1000_media_type_fiber || 2878 sc->hw.phy.media_type == e1000_media_type_internal_serdes) { 2879 u_char fiber_type = IFM_1000_SX; /* default type */ 2880 2881 if (sc->hw.mac.type == e1000_82545) 2882 fiber_type = IFM_1000_LX; 2883 ifmedia_add(sc->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL); 2884 ifmedia_add(sc->media, IFM_ETHER | fiber_type, 0, NULL); 2885 } else { 2886 ifmedia_add(sc->media, IFM_ETHER | IFM_10_T, 0, NULL); 2887 ifmedia_add(sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL); 2888 ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX, 0, NULL); 2889 ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); 2890 if (sc->hw.phy.type != e1000_phy_ife) { 2891 ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); 2892 ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T, 0, NULL); 2893 } 2894 } 2895 ifmedia_add(sc->media, IFM_ETHER | IFM_AUTO, 0, NULL); 2896 ifmedia_set(sc->media, IFM_ETHER | IFM_AUTO); 2897 return (0); 2898 } 2899 2900 static int 2901 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets) 2902 { 2903 struct e1000_softc *sc = iflib_get_softc(ctx); 2904 if_softc_ctx_t scctx = sc->shared; 2905 int error = E1000_SUCCESS; 2906 struct em_tx_queue *que; 2907 int i, j; 2908 2909 MPASS(sc->tx_num_queues > 0); 2910 MPASS(sc->tx_num_queues == ntxqsets); 2911 2912 /* First allocate the top level queue structs */ 2913 if (!(sc->tx_queues = 2914 (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) * 2915 sc->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { 2916 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n"); 2917 return(ENOMEM); 2918 } 2919 2920 for (i = 0, que = sc->tx_queues; i < sc->tx_num_queues; i++, que++) { 2921 /* Set up some basics */ 2922 2923 struct tx_ring *txr = &que->txr; 2924 txr->sc = que->sc = sc; 2925 que->me = txr->me = i; 2926 2927 /* Allocate report status array */ 2928 if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) { 2929 device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n"); 2930 error = ENOMEM; 2931 goto fail; 2932 } 2933 for (j = 0; j < scctx->isc_ntxd[0]; j++) 2934 txr->tx_rsq[j] = QIDX_INVALID; 2935 /* get the virtual and physical address of the hardware queues */ 2936 txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs]; 2937 txr->tx_paddr = paddrs[i*ntxqs]; 2938 } 2939 2940 if (bootverbose) 2941 device_printf(iflib_get_dev(ctx), 2942 "allocated for %d tx_queues\n", sc->tx_num_queues); 2943 return (0); 2944 fail: 2945 em_if_queues_free(ctx); 2946 return (error); 2947 } 2948 2949 static int 2950 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets) 2951 { 2952 struct e1000_softc *sc = iflib_get_softc(ctx); 2953 int error = E1000_SUCCESS; 2954 struct em_rx_queue *que; 2955 int i; 2956 2957 MPASS(sc->rx_num_queues > 0); 2958 MPASS(sc->rx_num_queues == nrxqsets); 2959 2960 /* First allocate the top level queue structs */ 2961 if (!(sc->rx_queues = 2962 (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) * 2963 sc->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { 2964 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n"); 2965 error = ENOMEM; 2966 goto fail; 2967 } 2968 2969 for (i = 0, que = sc->rx_queues; i < nrxqsets; i++, que++) { 2970 /* Set up some basics */ 2971 struct rx_ring *rxr = &que->rxr; 2972 rxr->sc = que->sc = sc; 2973 rxr->que = que; 2974 que->me = rxr->me = i; 2975 2976 /* get the virtual and physical address of the hardware queues */ 2977 rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs]; 2978 rxr->rx_paddr = paddrs[i*nrxqs]; 2979 } 2980 2981 if (bootverbose) 2982 device_printf(iflib_get_dev(ctx), 2983 "allocated for %d rx_queues\n", sc->rx_num_queues); 2984 2985 return (0); 2986 fail: 2987 em_if_queues_free(ctx); 2988 return (error); 2989 } 2990 2991 static void 2992 em_if_queues_free(if_ctx_t ctx) 2993 { 2994 struct e1000_softc *sc = iflib_get_softc(ctx); 2995 struct em_tx_queue *tx_que = sc->tx_queues; 2996 struct em_rx_queue *rx_que = sc->rx_queues; 2997 2998 if (tx_que != NULL) { 2999 for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) { 3000 struct tx_ring *txr = &tx_que->txr; 3001 if (txr->tx_rsq == NULL) 3002 break; 3003 3004 free(txr->tx_rsq, M_DEVBUF); 3005 txr->tx_rsq = NULL; 3006 } 3007 free(sc->tx_queues, M_DEVBUF); 3008 sc->tx_queues = NULL; 3009 } 3010 3011 if (rx_que != NULL) { 3012 free(sc->rx_queues, M_DEVBUF); 3013 sc->rx_queues = NULL; 3014 } 3015 } 3016 3017 /********************************************************************* 3018 * 3019 * Enable transmit unit. 3020 * 3021 **********************************************************************/ 3022 static void 3023 em_initialize_transmit_unit(if_ctx_t ctx) 3024 { 3025 struct e1000_softc *sc = iflib_get_softc(ctx); 3026 if_softc_ctx_t scctx = sc->shared; 3027 struct em_tx_queue *que; 3028 struct tx_ring *txr; 3029 struct e1000_hw *hw = &sc->hw; 3030 u32 tctl, txdctl = 0, tarc, tipg = 0; 3031 3032 INIT_DEBUGOUT("em_initialize_transmit_unit: begin"); 3033 3034 for (int i = 0; i < sc->tx_num_queues; i++, txr++) { 3035 u64 bus_addr; 3036 caddr_t offp, endp; 3037 3038 que = &sc->tx_queues[i]; 3039 txr = &que->txr; 3040 bus_addr = txr->tx_paddr; 3041 3042 /* Clear checksum offload context. */ 3043 offp = (caddr_t)&txr->csum_flags; 3044 endp = (caddr_t)(txr + 1); 3045 bzero(offp, endp - offp); 3046 3047 /* Base and Len of TX Ring */ 3048 E1000_WRITE_REG(hw, E1000_TDLEN(i), 3049 scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc)); 3050 E1000_WRITE_REG(hw, E1000_TDBAH(i), 3051 (u32)(bus_addr >> 32)); 3052 E1000_WRITE_REG(hw, E1000_TDBAL(i), 3053 (u32)bus_addr); 3054 /* Init the HEAD/TAIL indices */ 3055 E1000_WRITE_REG(hw, E1000_TDT(i), 0); 3056 E1000_WRITE_REG(hw, E1000_TDH(i), 0); 3057 3058 HW_DEBUGOUT2("Base = %x, Length = %x\n", 3059 E1000_READ_REG(hw, E1000_TDBAL(i)), 3060 E1000_READ_REG(hw, E1000_TDLEN(i))); 3061 3062 txdctl = 0; /* clear txdctl */ 3063 txdctl |= 0x1f; /* PTHRESH */ 3064 txdctl |= 1 << 8; /* HTHRESH */ 3065 txdctl |= 1 << 16;/* WTHRESH */ 3066 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */ 3067 txdctl |= E1000_TXDCTL_GRAN; 3068 txdctl |= 1 << 25; /* LWTHRESH */ 3069 3070 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl); 3071 } 3072 3073 /* Set the default values for the Tx Inter Packet Gap timer */ 3074 switch (hw->mac.type) { 3075 case e1000_80003es2lan: 3076 tipg = DEFAULT_82543_TIPG_IPGR1; 3077 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 << 3078 E1000_TIPG_IPGR2_SHIFT; 3079 break; 3080 case e1000_82542: 3081 tipg = DEFAULT_82542_TIPG_IPGT; 3082 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; 3083 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; 3084 break; 3085 default: 3086 if (hw->phy.media_type == e1000_media_type_fiber || 3087 hw->phy.media_type == e1000_media_type_internal_serdes) 3088 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 3089 else 3090 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 3091 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; 3092 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; 3093 } 3094 3095 E1000_WRITE_REG(hw, E1000_TIPG, tipg); 3096 E1000_WRITE_REG(hw, E1000_TIDV, sc->tx_int_delay.value); 3097 3098 if(hw->mac.type >= e1000_82540) 3099 E1000_WRITE_REG(hw, E1000_TADV, 3100 sc->tx_abs_int_delay.value); 3101 3102 if (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572) { 3103 tarc = E1000_READ_REG(hw, E1000_TARC(0)); 3104 tarc |= TARC_SPEED_MODE_BIT; 3105 E1000_WRITE_REG(hw, E1000_TARC(0), tarc); 3106 } else if (hw->mac.type == e1000_80003es2lan) { 3107 /* errata: program both queues to unweighted RR */ 3108 tarc = E1000_READ_REG(hw, E1000_TARC(0)); 3109 tarc |= 1; 3110 E1000_WRITE_REG(hw, E1000_TARC(0), tarc); 3111 tarc = E1000_READ_REG(hw, E1000_TARC(1)); 3112 tarc |= 1; 3113 E1000_WRITE_REG(hw, E1000_TARC(1), tarc); 3114 } else if (hw->mac.type == e1000_82574) { 3115 tarc = E1000_READ_REG(hw, E1000_TARC(0)); 3116 tarc |= TARC_ERRATA_BIT; 3117 if ( sc->tx_num_queues > 1) { 3118 tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX); 3119 E1000_WRITE_REG(hw, E1000_TARC(0), tarc); 3120 E1000_WRITE_REG(hw, E1000_TARC(1), tarc); 3121 } else 3122 E1000_WRITE_REG(hw, E1000_TARC(0), tarc); 3123 } 3124 3125 if (sc->tx_int_delay.value > 0) 3126 sc->txd_cmd |= E1000_TXD_CMD_IDE; 3127 3128 /* Program the Transmit Control Register */ 3129 tctl = E1000_READ_REG(hw, E1000_TCTL); 3130 tctl &= ~E1000_TCTL_CT; 3131 tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN | 3132 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT)); 3133 3134 if (hw->mac.type >= e1000_82571) 3135 tctl |= E1000_TCTL_MULR; 3136 3137 /* This write will effectively turn on the transmit unit. */ 3138 E1000_WRITE_REG(hw, E1000_TCTL, tctl); 3139 3140 /* SPT and KBL errata workarounds */ 3141 if (hw->mac.type == e1000_pch_spt) { 3142 u32 reg; 3143 reg = E1000_READ_REG(hw, E1000_IOSFPC); 3144 reg |= E1000_RCTL_RDMTS_HEX; 3145 E1000_WRITE_REG(hw, E1000_IOSFPC, reg); 3146 /* i218-i219 Specification Update 1.5.4.5 */ 3147 reg = E1000_READ_REG(hw, E1000_TARC(0)); 3148 reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ; 3149 reg |= E1000_TARC0_CB_MULTIQ_2_REQ; 3150 E1000_WRITE_REG(hw, E1000_TARC(0), reg); 3151 } 3152 } 3153 3154 /********************************************************************* 3155 * 3156 * Enable receive unit. 3157 * 3158 **********************************************************************/ 3159 #define BSIZEPKT_ROUNDUP ((1<<E1000_SRRCTL_BSIZEPKT_SHIFT)-1) 3160 3161 static void 3162 em_initialize_receive_unit(if_ctx_t ctx) 3163 { 3164 struct e1000_softc *sc = iflib_get_softc(ctx); 3165 if_softc_ctx_t scctx = sc->shared; 3166 struct ifnet *ifp = iflib_get_ifp(ctx); 3167 struct e1000_hw *hw = &sc->hw; 3168 struct em_rx_queue *que; 3169 int i; 3170 uint32_t rctl, rxcsum; 3171 3172 INIT_DEBUGOUT("em_initialize_receive_units: begin"); 3173 3174 /* 3175 * Make sure receives are disabled while setting 3176 * up the descriptor ring 3177 */ 3178 rctl = E1000_READ_REG(hw, E1000_RCTL); 3179 /* Do not disable if ever enabled on this hardware */ 3180 if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583)) 3181 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); 3182 3183 /* Setup the Receive Control Register */ 3184 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 3185 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | 3186 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 3187 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 3188 3189 /* Do not store bad packets */ 3190 rctl &= ~E1000_RCTL_SBP; 3191 3192 /* Enable Long Packet receive */ 3193 if (if_getmtu(ifp) > ETHERMTU) 3194 rctl |= E1000_RCTL_LPE; 3195 else 3196 rctl &= ~E1000_RCTL_LPE; 3197 3198 /* Strip the CRC */ 3199 if (!em_disable_crc_stripping) 3200 rctl |= E1000_RCTL_SECRC; 3201 3202 if (hw->mac.type >= e1000_82540) { 3203 E1000_WRITE_REG(hw, E1000_RADV, 3204 sc->rx_abs_int_delay.value); 3205 3206 /* 3207 * Set the interrupt throttling rate. Value is calculated 3208 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) 3209 */ 3210 E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR); 3211 } 3212 E1000_WRITE_REG(hw, E1000_RDTR, sc->rx_int_delay.value); 3213 3214 if (hw->mac.type >= em_mac_min) { 3215 uint32_t rfctl; 3216 /* Use extended rx descriptor formats */ 3217 rfctl = E1000_READ_REG(hw, E1000_RFCTL); 3218 rfctl |= E1000_RFCTL_EXTEN; 3219 3220 /* 3221 * When using MSI-X interrupts we need to throttle 3222 * using the EITR register (82574 only) 3223 */ 3224 if (hw->mac.type == e1000_82574) { 3225 for (int i = 0; i < 4; i++) 3226 E1000_WRITE_REG(hw, E1000_EITR_82574(i), 3227 DEFAULT_ITR); 3228 /* Disable accelerated acknowledge */ 3229 rfctl |= E1000_RFCTL_ACK_DIS; 3230 } 3231 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); 3232 } 3233 3234 /* Set up L3 and L4 csum Rx descriptor offloads */ 3235 rxcsum = E1000_READ_REG(hw, E1000_RXCSUM); 3236 if (scctx->isc_capenable & IFCAP_RXCSUM) { 3237 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL; 3238 if (hw->mac.type > e1000_82575) 3239 rxcsum |= E1000_RXCSUM_CRCOFL; 3240 else if (hw->mac.type < em_mac_min && 3241 scctx->isc_capenable & IFCAP_HWCSUM_IPV6) 3242 rxcsum |= E1000_RXCSUM_IPV6OFL; 3243 } else { 3244 rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL); 3245 if (hw->mac.type > e1000_82575) 3246 rxcsum &= ~E1000_RXCSUM_CRCOFL; 3247 else if (hw->mac.type < em_mac_min) 3248 rxcsum &= ~E1000_RXCSUM_IPV6OFL; 3249 } 3250 3251 if (sc->rx_num_queues > 1) { 3252 /* RSS hash needed in the Rx descriptor */ 3253 rxcsum |= E1000_RXCSUM_PCSD; 3254 3255 if (hw->mac.type >= igb_mac_min) 3256 igb_initialize_rss_mapping(sc); 3257 else 3258 em_initialize_rss_mapping(sc); 3259 } 3260 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum); 3261 3262 /* 3263 * XXX TEMPORARY WORKAROUND: on some systems with 82573 3264 * long latencies are observed, like Lenovo X60. This 3265 * change eliminates the problem, but since having positive 3266 * values in RDTR is a known source of problems on other 3267 * platforms another solution is being sought. 3268 */ 3269 if (hw->mac.type == e1000_82573) 3270 E1000_WRITE_REG(hw, E1000_RDTR, 0x20); 3271 3272 for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) { 3273 struct rx_ring *rxr = &que->rxr; 3274 /* Setup the Base and Length of the Rx Descriptor Ring */ 3275 u64 bus_addr = rxr->rx_paddr; 3276 #if 0 3277 u32 rdt = sc->rx_num_queues -1; /* default */ 3278 #endif 3279 3280 E1000_WRITE_REG(hw, E1000_RDLEN(i), 3281 scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended)); 3282 E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32)); 3283 E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr); 3284 /* Setup the Head and Tail Descriptor Pointers */ 3285 E1000_WRITE_REG(hw, E1000_RDH(i), 0); 3286 E1000_WRITE_REG(hw, E1000_RDT(i), 0); 3287 } 3288 3289 /* 3290 * Set PTHRESH for improved jumbo performance 3291 * According to 10.2.5.11 of Intel 82574 Datasheet, 3292 * RXDCTL(1) is written whenever RXDCTL(0) is written. 3293 * Only write to RXDCTL(1) if there is a need for different 3294 * settings. 3295 */ 3296 if ((hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_pch2lan || 3297 hw->mac.type == e1000_ich10lan) && if_getmtu(ifp) > ETHERMTU) { 3298 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0)); 3299 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3); 3300 } else if (hw->mac.type == e1000_82574) { 3301 for (int i = 0; i < sc->rx_num_queues; i++) { 3302 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i)); 3303 rxdctl |= 0x20; /* PTHRESH */ 3304 rxdctl |= 4 << 8; /* HTHRESH */ 3305 rxdctl |= 4 << 16;/* WTHRESH */ 3306 rxdctl |= 1 << 24; /* Switch to granularity */ 3307 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); 3308 } 3309 } else if (hw->mac.type >= igb_mac_min) { 3310 u32 psize, srrctl = 0; 3311 3312 if (if_getmtu(ifp) > ETHERMTU) { 3313 psize = scctx->isc_max_frame_size; 3314 /* are we on a vlan? */ 3315 if (ifp->if_vlantrunk != NULL) 3316 psize += VLAN_TAG_SIZE; 3317 3318 if (sc->vf_ifp) 3319 e1000_rlpml_set_vf(hw, psize); 3320 else 3321 E1000_WRITE_REG(hw, E1000_RLPML, psize); 3322 } 3323 3324 /* Set maximum packet buffer len */ 3325 srrctl |= (sc->rx_mbuf_sz + BSIZEPKT_ROUNDUP) >> 3326 E1000_SRRCTL_BSIZEPKT_SHIFT; 3327 3328 /* 3329 * If TX flow control is disabled and there's >1 queue defined, 3330 * enable DROP. 3331 * 3332 * This drops frames rather than hanging the RX MAC for all queues. 3333 */ 3334 if ((sc->rx_num_queues > 1) && 3335 (sc->fc == e1000_fc_none || 3336 sc->fc == e1000_fc_rx_pause)) { 3337 srrctl |= E1000_SRRCTL_DROP_EN; 3338 } 3339 /* Setup the Base and Length of the Rx Descriptor Rings */ 3340 for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) { 3341 struct rx_ring *rxr = &que->rxr; 3342 u64 bus_addr = rxr->rx_paddr; 3343 u32 rxdctl; 3344 3345 #ifdef notyet 3346 /* Configure for header split? -- ignore for now */ 3347 rxr->hdr_split = igb_header_split; 3348 #else 3349 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 3350 #endif 3351 3352 E1000_WRITE_REG(hw, E1000_RDLEN(i), 3353 scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc)); 3354 E1000_WRITE_REG(hw, E1000_RDBAH(i), 3355 (uint32_t)(bus_addr >> 32)); 3356 E1000_WRITE_REG(hw, E1000_RDBAL(i), 3357 (uint32_t)bus_addr); 3358 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl); 3359 /* Enable this Queue */ 3360 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i)); 3361 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 3362 rxdctl &= 0xFFF00000; 3363 rxdctl |= IGB_RX_PTHRESH; 3364 rxdctl |= IGB_RX_HTHRESH << 8; 3365 rxdctl |= IGB_RX_WTHRESH << 16; 3366 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); 3367 } 3368 } else if (hw->mac.type >= e1000_pch2lan) { 3369 if (if_getmtu(ifp) > ETHERMTU) 3370 e1000_lv_jumbo_workaround_ich8lan(hw, true); 3371 else 3372 e1000_lv_jumbo_workaround_ich8lan(hw, false); 3373 } 3374 3375 /* Make sure VLAN Filters are off */ 3376 rctl &= ~E1000_RCTL_VFE; 3377 3378 /* Set up packet buffer size, overridden by per queue srrctl on igb */ 3379 if (hw->mac.type < igb_mac_min) { 3380 if (sc->rx_mbuf_sz > 2048 && sc->rx_mbuf_sz <= 4096) 3381 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX; 3382 else if (sc->rx_mbuf_sz > 4096 && sc->rx_mbuf_sz <= 8192) 3383 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX; 3384 else if (sc->rx_mbuf_sz > 8192) 3385 rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX; 3386 else { 3387 rctl |= E1000_RCTL_SZ_2048; 3388 rctl &= ~E1000_RCTL_BSEX; 3389 } 3390 } else 3391 rctl |= E1000_RCTL_SZ_2048; 3392 3393 /* 3394 * rctl bits 11:10 are as follows 3395 * lem: reserved 3396 * em: DTYPE 3397 * igb: reserved 3398 * and should be 00 on all of the above 3399 */ 3400 rctl &= ~0x00000C00; 3401 3402 /* Write out the settings */ 3403 E1000_WRITE_REG(hw, E1000_RCTL, rctl); 3404 3405 return; 3406 } 3407 3408 static void 3409 em_if_vlan_register(if_ctx_t ctx, u16 vtag) 3410 { 3411 struct e1000_softc *sc = iflib_get_softc(ctx); 3412 u32 index, bit; 3413 3414 index = (vtag >> 5) & 0x7F; 3415 bit = vtag & 0x1F; 3416 sc->shadow_vfta[index] |= (1 << bit); 3417 ++sc->num_vlans; 3418 em_if_vlan_filter_write(sc); 3419 } 3420 3421 static void 3422 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag) 3423 { 3424 struct e1000_softc *sc = iflib_get_softc(ctx); 3425 u32 index, bit; 3426 3427 index = (vtag >> 5) & 0x7F; 3428 bit = vtag & 0x1F; 3429 sc->shadow_vfta[index] &= ~(1 << bit); 3430 --sc->num_vlans; 3431 em_if_vlan_filter_write(sc); 3432 } 3433 3434 static bool 3435 em_if_vlan_filter_capable(struct e1000_softc *sc) 3436 { 3437 if_softc_ctx_t scctx = sc->shared; 3438 3439 if ((scctx->isc_capenable & IFCAP_VLAN_HWFILTER) && 3440 !em_disable_crc_stripping) 3441 return (true); 3442 3443 return (false); 3444 } 3445 3446 static bool 3447 em_if_vlan_filter_used(struct e1000_softc *sc) 3448 { 3449 if (!em_if_vlan_filter_capable(sc)) 3450 return (false); 3451 3452 for (int i = 0; i < EM_VFTA_SIZE; i++) 3453 if (sc->shadow_vfta[i] != 0) 3454 return (true); 3455 3456 return (false); 3457 } 3458 3459 static void 3460 em_if_vlan_filter_enable(struct e1000_softc *sc) 3461 { 3462 struct e1000_hw *hw = &sc->hw; 3463 u32 reg; 3464 3465 reg = E1000_READ_REG(hw, E1000_RCTL); 3466 reg &= ~E1000_RCTL_CFIEN; 3467 reg |= E1000_RCTL_VFE; 3468 E1000_WRITE_REG(hw, E1000_RCTL, reg); 3469 } 3470 3471 static void 3472 em_if_vlan_filter_disable(struct e1000_softc *sc) 3473 { 3474 struct e1000_hw *hw = &sc->hw; 3475 u32 reg; 3476 3477 reg = E1000_READ_REG(hw, E1000_RCTL); 3478 reg &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN); 3479 E1000_WRITE_REG(hw, E1000_RCTL, reg); 3480 } 3481 3482 static void 3483 em_if_vlan_filter_write(struct e1000_softc *sc) 3484 { 3485 struct e1000_hw *hw = &sc->hw; 3486 3487 if (sc->vf_ifp) 3488 return; 3489 3490 /* Disable interrupts for lem-class devices during the filter change */ 3491 if (hw->mac.type < em_mac_min) 3492 em_if_intr_disable(sc->ctx); 3493 3494 for (int i = 0; i < EM_VFTA_SIZE; i++) 3495 if (sc->shadow_vfta[i] != 0) { 3496 /* XXXKB: incomplete VF support, we return early above */ 3497 if (sc->vf_ifp) 3498 e1000_vfta_set_vf(hw, sc->shadow_vfta[i], true); 3499 else 3500 e1000_write_vfta(hw, i, sc->shadow_vfta[i]); 3501 } 3502 3503 /* Re-enable interrupts for lem-class devices */ 3504 if (hw->mac.type < em_mac_min) 3505 em_if_intr_enable(sc->ctx); 3506 } 3507 3508 static void 3509 em_setup_vlan_hw_support(struct e1000_softc *sc) 3510 { 3511 if_softc_ctx_t scctx = sc->shared; 3512 struct e1000_hw *hw = &sc->hw; 3513 u32 reg; 3514 3515 /* XXXKB: Return early if we are a VF until VF decap and filter management 3516 * is ready and tested. 3517 */ 3518 if (sc->vf_ifp) 3519 return; 3520 3521 if (scctx->isc_capenable & IFCAP_VLAN_HWTAGGING && 3522 !em_disable_crc_stripping) { 3523 reg = E1000_READ_REG(hw, E1000_CTRL); 3524 reg |= E1000_CTRL_VME; 3525 E1000_WRITE_REG(hw, E1000_CTRL, reg); 3526 } else { 3527 reg = E1000_READ_REG(hw, E1000_CTRL); 3528 reg &= ~E1000_CTRL_VME; 3529 E1000_WRITE_REG(hw, E1000_CTRL, reg); 3530 } 3531 3532 /* If we aren't doing HW filtering, we're done */ 3533 if (!em_if_vlan_filter_capable(sc)) { 3534 em_if_vlan_filter_disable(sc); 3535 return; 3536 } 3537 3538 /* 3539 * A soft reset zero's out the VFTA, so 3540 * we need to repopulate it now. 3541 */ 3542 em_if_vlan_filter_write(sc); 3543 3544 /* Enable the Filter Table */ 3545 em_if_vlan_filter_enable(sc); 3546 } 3547 3548 static void 3549 em_if_intr_enable(if_ctx_t ctx) 3550 { 3551 struct e1000_softc *sc = iflib_get_softc(ctx); 3552 struct e1000_hw *hw = &sc->hw; 3553 u32 ims_mask = IMS_ENABLE_MASK; 3554 3555 if (sc->intr_type == IFLIB_INTR_MSIX) { 3556 E1000_WRITE_REG(hw, EM_EIAC, sc->ims); 3557 ims_mask |= sc->ims; 3558 } 3559 E1000_WRITE_REG(hw, E1000_IMS, ims_mask); 3560 E1000_WRITE_FLUSH(hw); 3561 } 3562 3563 static void 3564 em_if_intr_disable(if_ctx_t ctx) 3565 { 3566 struct e1000_softc *sc = iflib_get_softc(ctx); 3567 struct e1000_hw *hw = &sc->hw; 3568 3569 if (sc->intr_type == IFLIB_INTR_MSIX) 3570 E1000_WRITE_REG(hw, EM_EIAC, 0); 3571 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); 3572 E1000_WRITE_FLUSH(hw); 3573 } 3574 3575 static void 3576 igb_if_intr_enable(if_ctx_t ctx) 3577 { 3578 struct e1000_softc *sc = iflib_get_softc(ctx); 3579 struct e1000_hw *hw = &sc->hw; 3580 u32 mask; 3581 3582 if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) { 3583 mask = (sc->que_mask | sc->link_mask); 3584 E1000_WRITE_REG(hw, E1000_EIAC, mask); 3585 E1000_WRITE_REG(hw, E1000_EIAM, mask); 3586 E1000_WRITE_REG(hw, E1000_EIMS, mask); 3587 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC); 3588 } else 3589 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK); 3590 E1000_WRITE_FLUSH(hw); 3591 } 3592 3593 static void 3594 igb_if_intr_disable(if_ctx_t ctx) 3595 { 3596 struct e1000_softc *sc = iflib_get_softc(ctx); 3597 struct e1000_hw *hw = &sc->hw; 3598 3599 if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) { 3600 E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff); 3601 E1000_WRITE_REG(hw, E1000_EIAC, 0); 3602 } 3603 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); 3604 E1000_WRITE_FLUSH(hw); 3605 } 3606 3607 /* 3608 * Bit of a misnomer, what this really means is 3609 * to enable OS management of the system... aka 3610 * to disable special hardware management features 3611 */ 3612 static void 3613 em_init_manageability(struct e1000_softc *sc) 3614 { 3615 /* A shared code workaround */ 3616 #define E1000_82542_MANC2H E1000_MANC2H 3617 if (sc->has_manage) { 3618 int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H); 3619 int manc = E1000_READ_REG(&sc->hw, E1000_MANC); 3620 3621 /* disable hardware interception of ARP */ 3622 manc &= ~(E1000_MANC_ARP_EN); 3623 3624 /* enable receiving management packets to the host */ 3625 manc |= E1000_MANC_EN_MNG2HOST; 3626 #define E1000_MNG2HOST_PORT_623 (1 << 5) 3627 #define E1000_MNG2HOST_PORT_664 (1 << 6) 3628 manc2h |= E1000_MNG2HOST_PORT_623; 3629 manc2h |= E1000_MNG2HOST_PORT_664; 3630 E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h); 3631 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc); 3632 } 3633 } 3634 3635 /* 3636 * Give control back to hardware management 3637 * controller if there is one. 3638 */ 3639 static void 3640 em_release_manageability(struct e1000_softc *sc) 3641 { 3642 if (sc->has_manage) { 3643 int manc = E1000_READ_REG(&sc->hw, E1000_MANC); 3644 3645 /* re-enable hardware interception of ARP */ 3646 manc |= E1000_MANC_ARP_EN; 3647 manc &= ~E1000_MANC_EN_MNG2HOST; 3648 3649 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc); 3650 } 3651 } 3652 3653 /* 3654 * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit. 3655 * For ASF and Pass Through versions of f/w this means 3656 * that the driver is loaded. For AMT version type f/w 3657 * this means that the network i/f is open. 3658 */ 3659 static void 3660 em_get_hw_control(struct e1000_softc *sc) 3661 { 3662 u32 ctrl_ext, swsm; 3663 3664 if (sc->vf_ifp) 3665 return; 3666 3667 if (sc->hw.mac.type == e1000_82573) { 3668 swsm = E1000_READ_REG(&sc->hw, E1000_SWSM); 3669 E1000_WRITE_REG(&sc->hw, E1000_SWSM, 3670 swsm | E1000_SWSM_DRV_LOAD); 3671 return; 3672 } 3673 /* else */ 3674 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT); 3675 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, 3676 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 3677 } 3678 3679 /* 3680 * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. 3681 * For ASF and Pass Through versions of f/w this means that 3682 * the driver is no longer loaded. For AMT versions of the 3683 * f/w this means that the network i/f is closed. 3684 */ 3685 static void 3686 em_release_hw_control(struct e1000_softc *sc) 3687 { 3688 u32 ctrl_ext, swsm; 3689 3690 if (!sc->has_manage) 3691 return; 3692 3693 if (sc->hw.mac.type == e1000_82573) { 3694 swsm = E1000_READ_REG(&sc->hw, E1000_SWSM); 3695 E1000_WRITE_REG(&sc->hw, E1000_SWSM, 3696 swsm & ~E1000_SWSM_DRV_LOAD); 3697 return; 3698 } 3699 /* else */ 3700 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT); 3701 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, 3702 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 3703 return; 3704 } 3705 3706 static int 3707 em_is_valid_ether_addr(u8 *addr) 3708 { 3709 char zero_addr[6] = { 0, 0, 0, 0, 0, 0 }; 3710 3711 if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) { 3712 return (false); 3713 } 3714 3715 return (true); 3716 } 3717 3718 /* 3719 ** Parse the interface capabilities with regard 3720 ** to both system management and wake-on-lan for 3721 ** later use. 3722 */ 3723 static void 3724 em_get_wakeup(if_ctx_t ctx) 3725 { 3726 struct e1000_softc *sc = iflib_get_softc(ctx); 3727 device_t dev = iflib_get_dev(ctx); 3728 u16 eeprom_data = 0, device_id, apme_mask; 3729 3730 sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw); 3731 apme_mask = EM_EEPROM_APME; 3732 3733 switch (sc->hw.mac.type) { 3734 case e1000_82542: 3735 case e1000_82543: 3736 break; 3737 case e1000_82544: 3738 e1000_read_nvm(&sc->hw, 3739 NVM_INIT_CONTROL2_REG, 1, &eeprom_data); 3740 apme_mask = EM_82544_APME; 3741 break; 3742 case e1000_82546: 3743 case e1000_82546_rev_3: 3744 if (sc->hw.bus.func == 1) { 3745 e1000_read_nvm(&sc->hw, 3746 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 3747 break; 3748 } else 3749 e1000_read_nvm(&sc->hw, 3750 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3751 break; 3752 case e1000_82573: 3753 case e1000_82583: 3754 sc->has_amt = true; 3755 /* FALLTHROUGH */ 3756 case e1000_82571: 3757 case e1000_82572: 3758 case e1000_80003es2lan: 3759 if (sc->hw.bus.func == 1) { 3760 e1000_read_nvm(&sc->hw, 3761 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 3762 break; 3763 } else 3764 e1000_read_nvm(&sc->hw, 3765 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3766 break; 3767 case e1000_ich8lan: 3768 case e1000_ich9lan: 3769 case e1000_ich10lan: 3770 case e1000_pchlan: 3771 case e1000_pch2lan: 3772 case e1000_pch_lpt: 3773 case e1000_pch_spt: 3774 case e1000_82575: /* listing all igb devices */ 3775 case e1000_82576: 3776 case e1000_82580: 3777 case e1000_i350: 3778 case e1000_i354: 3779 case e1000_i210: 3780 case e1000_i211: 3781 case e1000_vfadapt: 3782 case e1000_vfadapt_i350: 3783 apme_mask = E1000_WUC_APME; 3784 sc->has_amt = true; 3785 eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC); 3786 break; 3787 default: 3788 e1000_read_nvm(&sc->hw, 3789 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3790 break; 3791 } 3792 if (eeprom_data & apme_mask) 3793 sc->wol = (E1000_WUFC_MAG | E1000_WUFC_MC); 3794 /* 3795 * We have the eeprom settings, now apply the special cases 3796 * where the eeprom may be wrong or the board won't support 3797 * wake on lan on a particular port 3798 */ 3799 device_id = pci_get_device(dev); 3800 switch (device_id) { 3801 case E1000_DEV_ID_82546GB_PCIE: 3802 sc->wol = 0; 3803 break; 3804 case E1000_DEV_ID_82546EB_FIBER: 3805 case E1000_DEV_ID_82546GB_FIBER: 3806 /* Wake events only supported on port A for dual fiber 3807 * regardless of eeprom setting */ 3808 if (E1000_READ_REG(&sc->hw, E1000_STATUS) & 3809 E1000_STATUS_FUNC_1) 3810 sc->wol = 0; 3811 break; 3812 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 3813 /* if quad port adapter, disable WoL on all but port A */ 3814 if (global_quad_port_a != 0) 3815 sc->wol = 0; 3816 /* Reset for multiple quad port adapters */ 3817 if (++global_quad_port_a == 4) 3818 global_quad_port_a = 0; 3819 break; 3820 case E1000_DEV_ID_82571EB_FIBER: 3821 /* Wake events only supported on port A for dual fiber 3822 * regardless of eeprom setting */ 3823 if (E1000_READ_REG(&sc->hw, E1000_STATUS) & 3824 E1000_STATUS_FUNC_1) 3825 sc->wol = 0; 3826 break; 3827 case E1000_DEV_ID_82571EB_QUAD_COPPER: 3828 case E1000_DEV_ID_82571EB_QUAD_FIBER: 3829 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 3830 /* if quad port adapter, disable WoL on all but port A */ 3831 if (global_quad_port_a != 0) 3832 sc->wol = 0; 3833 /* Reset for multiple quad port adapters */ 3834 if (++global_quad_port_a == 4) 3835 global_quad_port_a = 0; 3836 break; 3837 } 3838 return; 3839 } 3840 3841 3842 /* 3843 * Enable PCI Wake On Lan capability 3844 */ 3845 static void 3846 em_enable_wakeup(if_ctx_t ctx) 3847 { 3848 struct e1000_softc *sc = iflib_get_softc(ctx); 3849 device_t dev = iflib_get_dev(ctx); 3850 if_t ifp = iflib_get_ifp(ctx); 3851 int error = 0; 3852 u32 pmc, ctrl, ctrl_ext, rctl; 3853 u16 status; 3854 3855 if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0) 3856 return; 3857 3858 /* 3859 * Determine type of Wakeup: note that wol 3860 * is set with all bits on by default. 3861 */ 3862 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0) 3863 sc->wol &= ~E1000_WUFC_MAG; 3864 3865 if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0) 3866 sc->wol &= ~E1000_WUFC_EX; 3867 3868 if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0) 3869 sc->wol &= ~E1000_WUFC_MC; 3870 else { 3871 rctl = E1000_READ_REG(&sc->hw, E1000_RCTL); 3872 rctl |= E1000_RCTL_MPE; 3873 E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl); 3874 } 3875 3876 if (!(sc->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC))) 3877 goto pme; 3878 3879 /* Advertise the wakeup capability */ 3880 ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL); 3881 ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3); 3882 E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl); 3883 3884 /* Keep the laser running on Fiber adapters */ 3885 if (sc->hw.phy.media_type == e1000_media_type_fiber || 3886 sc->hw.phy.media_type == e1000_media_type_internal_serdes) { 3887 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT); 3888 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; 3889 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, ctrl_ext); 3890 } 3891 3892 if ((sc->hw.mac.type == e1000_ich8lan) || 3893 (sc->hw.mac.type == e1000_pchlan) || 3894 (sc->hw.mac.type == e1000_ich9lan) || 3895 (sc->hw.mac.type == e1000_ich10lan)) 3896 e1000_suspend_workarounds_ich8lan(&sc->hw); 3897 3898 if ( sc->hw.mac.type >= e1000_pchlan) { 3899 error = em_enable_phy_wakeup(sc); 3900 if (error) 3901 goto pme; 3902 } else { 3903 /* Enable wakeup by the MAC */ 3904 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN); 3905 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol); 3906 } 3907 3908 if (sc->hw.phy.type == e1000_phy_igp_3) 3909 e1000_igp3_phy_powerdown_workaround_ich8lan(&sc->hw); 3910 3911 pme: 3912 status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2); 3913 status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 3914 if (!error && (if_getcapenable(ifp) & IFCAP_WOL)) 3915 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 3916 pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2); 3917 3918 return; 3919 } 3920 3921 /* 3922 * WOL in the newer chipset interfaces (pchlan) 3923 * require thing to be copied into the phy 3924 */ 3925 static int 3926 em_enable_phy_wakeup(struct e1000_softc *sc) 3927 { 3928 struct e1000_hw *hw = &sc->hw; 3929 u32 mreg, ret = 0; 3930 u16 preg; 3931 3932 /* copy MAC RARs to PHY RARs */ 3933 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 3934 3935 /* copy MAC MTA to PHY MTA */ 3936 for (int i = 0; i < hw->mac.mta_reg_count; i++) { 3937 mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); 3938 e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF)); 3939 e1000_write_phy_reg(hw, BM_MTA(i) + 1, 3940 (u16)((mreg >> 16) & 0xFFFF)); 3941 } 3942 3943 /* configure PHY Rx Control register */ 3944 e1000_read_phy_reg(hw, BM_RCTL, &preg); 3945 mreg = E1000_READ_REG(hw, E1000_RCTL); 3946 if (mreg & E1000_RCTL_UPE) 3947 preg |= BM_RCTL_UPE; 3948 if (mreg & E1000_RCTL_MPE) 3949 preg |= BM_RCTL_MPE; 3950 preg &= ~(BM_RCTL_MO_MASK); 3951 if (mreg & E1000_RCTL_MO_3) 3952 preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) 3953 << BM_RCTL_MO_SHIFT); 3954 if (mreg & E1000_RCTL_BAM) 3955 preg |= BM_RCTL_BAM; 3956 if (mreg & E1000_RCTL_PMCF) 3957 preg |= BM_RCTL_PMCF; 3958 mreg = E1000_READ_REG(hw, E1000_CTRL); 3959 if (mreg & E1000_CTRL_RFCE) 3960 preg |= BM_RCTL_RFCE; 3961 e1000_write_phy_reg(hw, BM_RCTL, preg); 3962 3963 /* enable PHY wakeup in MAC register */ 3964 E1000_WRITE_REG(hw, E1000_WUC, 3965 E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME); 3966 E1000_WRITE_REG(hw, E1000_WUFC, sc->wol); 3967 3968 /* configure and enable PHY wakeup in PHY registers */ 3969 e1000_write_phy_reg(hw, BM_WUFC, sc->wol); 3970 e1000_write_phy_reg(hw, BM_WUC, E1000_WUC_PME_EN); 3971 3972 /* activate PHY wakeup */ 3973 ret = hw->phy.ops.acquire(hw); 3974 if (ret) { 3975 printf("Could not acquire PHY\n"); 3976 return ret; 3977 } 3978 e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 3979 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT)); 3980 ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg); 3981 if (ret) { 3982 printf("Could not read PHY page 769\n"); 3983 goto out; 3984 } 3985 preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; 3986 ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg); 3987 if (ret) 3988 printf("Could not set PHY Host Wakeup bit\n"); 3989 out: 3990 hw->phy.ops.release(hw); 3991 3992 return ret; 3993 } 3994 3995 static void 3996 em_if_led_func(if_ctx_t ctx, int onoff) 3997 { 3998 struct e1000_softc *sc = iflib_get_softc(ctx); 3999 4000 if (onoff) { 4001 e1000_setup_led(&sc->hw); 4002 e1000_led_on(&sc->hw); 4003 } else { 4004 e1000_led_off(&sc->hw); 4005 e1000_cleanup_led(&sc->hw); 4006 } 4007 } 4008 4009 /* 4010 * Disable the L0S and L1 LINK states 4011 */ 4012 static void 4013 em_disable_aspm(struct e1000_softc *sc) 4014 { 4015 int base, reg; 4016 u16 link_cap,link_ctrl; 4017 device_t dev = sc->dev; 4018 4019 switch (sc->hw.mac.type) { 4020 case e1000_82573: 4021 case e1000_82574: 4022 case e1000_82583: 4023 break; 4024 default: 4025 return; 4026 } 4027 if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0) 4028 return; 4029 reg = base + PCIER_LINK_CAP; 4030 link_cap = pci_read_config(dev, reg, 2); 4031 if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0) 4032 return; 4033 reg = base + PCIER_LINK_CTL; 4034 link_ctrl = pci_read_config(dev, reg, 2); 4035 link_ctrl &= ~PCIEM_LINK_CTL_ASPMC; 4036 pci_write_config(dev, reg, link_ctrl, 2); 4037 return; 4038 } 4039 4040 /********************************************************************** 4041 * 4042 * Update the board statistics counters. 4043 * 4044 **********************************************************************/ 4045 static void 4046 em_update_stats_counters(struct e1000_softc *sc) 4047 { 4048 u64 prev_xoffrxc = sc->stats.xoffrxc; 4049 4050 if(sc->hw.phy.media_type == e1000_media_type_copper || 4051 (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) { 4052 sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS); 4053 sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC); 4054 } 4055 sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS); 4056 sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC); 4057 sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC); 4058 sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL); 4059 4060 sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC); 4061 sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL); 4062 sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC); 4063 sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC); 4064 sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC); 4065 sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC); 4066 sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC); 4067 sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC); 4068 /* 4069 ** For watchdog management we need to know if we have been 4070 ** paused during the last interval, so capture that here. 4071 */ 4072 if (sc->stats.xoffrxc != prev_xoffrxc) 4073 sc->shared->isc_pause_frames = 1; 4074 sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC); 4075 sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC); 4076 sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64); 4077 sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127); 4078 sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255); 4079 sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511); 4080 sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023); 4081 sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522); 4082 sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC); 4083 sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC); 4084 sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC); 4085 sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC); 4086 4087 /* For the 64-bit byte counters the low dword must be read first. */ 4088 /* Both registers clear on the read of the high dword */ 4089 4090 sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCL) + 4091 ((u64)E1000_READ_REG(&sc->hw, E1000_GORCH) << 32); 4092 sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCL) + 4093 ((u64)E1000_READ_REG(&sc->hw, E1000_GOTCH) << 32); 4094 4095 sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC); 4096 sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC); 4097 sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC); 4098 sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC); 4099 sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC); 4100 4101 sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH); 4102 sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH); 4103 4104 sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR); 4105 sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT); 4106 sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64); 4107 sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127); 4108 sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255); 4109 sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511); 4110 sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023); 4111 sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522); 4112 sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC); 4113 sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC); 4114 4115 /* Interrupt Counts */ 4116 4117 sc->stats.iac += E1000_READ_REG(&sc->hw, E1000_IAC); 4118 sc->stats.icrxptc += E1000_READ_REG(&sc->hw, E1000_ICRXPTC); 4119 sc->stats.icrxatc += E1000_READ_REG(&sc->hw, E1000_ICRXATC); 4120 sc->stats.ictxptc += E1000_READ_REG(&sc->hw, E1000_ICTXPTC); 4121 sc->stats.ictxatc += E1000_READ_REG(&sc->hw, E1000_ICTXATC); 4122 sc->stats.ictxqec += E1000_READ_REG(&sc->hw, E1000_ICTXQEC); 4123 sc->stats.ictxqmtc += E1000_READ_REG(&sc->hw, E1000_ICTXQMTC); 4124 sc->stats.icrxdmtc += E1000_READ_REG(&sc->hw, E1000_ICRXDMTC); 4125 sc->stats.icrxoc += E1000_READ_REG(&sc->hw, E1000_ICRXOC); 4126 4127 if (sc->hw.mac.type >= e1000_82543) { 4128 sc->stats.algnerrc += 4129 E1000_READ_REG(&sc->hw, E1000_ALGNERRC); 4130 sc->stats.rxerrc += 4131 E1000_READ_REG(&sc->hw, E1000_RXERRC); 4132 sc->stats.tncrs += 4133 E1000_READ_REG(&sc->hw, E1000_TNCRS); 4134 sc->stats.cexterr += 4135 E1000_READ_REG(&sc->hw, E1000_CEXTERR); 4136 sc->stats.tsctc += 4137 E1000_READ_REG(&sc->hw, E1000_TSCTC); 4138 sc->stats.tsctfc += 4139 E1000_READ_REG(&sc->hw, E1000_TSCTFC); 4140 } 4141 } 4142 4143 static uint64_t 4144 em_if_get_counter(if_ctx_t ctx, ift_counter cnt) 4145 { 4146 struct e1000_softc *sc = iflib_get_softc(ctx); 4147 struct ifnet *ifp = iflib_get_ifp(ctx); 4148 4149 switch (cnt) { 4150 case IFCOUNTER_COLLISIONS: 4151 return (sc->stats.colc); 4152 case IFCOUNTER_IERRORS: 4153 return (sc->dropped_pkts + sc->stats.rxerrc + 4154 sc->stats.crcerrs + sc->stats.algnerrc + 4155 sc->stats.ruc + sc->stats.roc + 4156 sc->stats.mpc + sc->stats.cexterr); 4157 case IFCOUNTER_OERRORS: 4158 return (sc->stats.ecol + sc->stats.latecol + 4159 sc->watchdog_events); 4160 default: 4161 return (if_get_counter_default(ifp, cnt)); 4162 } 4163 } 4164 4165 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized 4166 * @ctx: iflib context 4167 * @event: event code to check 4168 * 4169 * Defaults to returning true for unknown events. 4170 * 4171 * @returns true if iflib needs to reinit the interface 4172 */ 4173 static bool 4174 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event) 4175 { 4176 switch (event) { 4177 case IFLIB_RESTART_VLAN_CONFIG: 4178 return (false); 4179 default: 4180 return (true); 4181 } 4182 } 4183 4184 /* Export a single 32-bit register via a read-only sysctl. */ 4185 static int 4186 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS) 4187 { 4188 struct e1000_softc *sc; 4189 u_int val; 4190 4191 sc = oidp->oid_arg1; 4192 val = E1000_READ_REG(&sc->hw, oidp->oid_arg2); 4193 return (sysctl_handle_int(oidp, &val, 0, req)); 4194 } 4195 4196 /* 4197 * Add sysctl variables, one per statistic, to the system. 4198 */ 4199 static void 4200 em_add_hw_stats(struct e1000_softc *sc) 4201 { 4202 device_t dev = iflib_get_dev(sc->ctx); 4203 struct em_tx_queue *tx_que = sc->tx_queues; 4204 struct em_rx_queue *rx_que = sc->rx_queues; 4205 4206 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev); 4207 struct sysctl_oid *tree = device_get_sysctl_tree(dev); 4208 struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree); 4209 struct e1000_hw_stats *stats = &sc->stats; 4210 4211 struct sysctl_oid *stat_node, *queue_node, *int_node; 4212 struct sysctl_oid_list *stat_list, *queue_list, *int_list; 4213 4214 #define QUEUE_NAME_LEN 32 4215 char namebuf[QUEUE_NAME_LEN]; 4216 4217 /* Driver Statistics */ 4218 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped", 4219 CTLFLAG_RD, &sc->dropped_pkts, 4220 "Driver dropped packets"); 4221 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq", 4222 CTLFLAG_RD, &sc->link_irq, 4223 "Link MSI-X IRQ Handled"); 4224 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns", 4225 CTLFLAG_RD, &sc->rx_overruns, 4226 "RX overruns"); 4227 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts", 4228 CTLFLAG_RD, &sc->watchdog_events, 4229 "Watchdog timeouts"); 4230 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control", 4231 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 4232 sc, E1000_CTRL, em_sysctl_reg_handler, "IU", 4233 "Device Control Register"); 4234 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control", 4235 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 4236 sc, E1000_RCTL, em_sysctl_reg_handler, "IU", 4237 "Receiver Control Register"); 4238 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water", 4239 CTLFLAG_RD, &sc->hw.fc.high_water, 0, 4240 "Flow Control High Watermark"); 4241 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water", 4242 CTLFLAG_RD, &sc->hw.fc.low_water, 0, 4243 "Flow Control Low Watermark"); 4244 4245 for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) { 4246 struct tx_ring *txr = &tx_que->txr; 4247 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i); 4248 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, 4249 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name"); 4250 queue_list = SYSCTL_CHILDREN(queue_node); 4251 4252 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head", 4253 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 4254 E1000_TDH(txr->me), em_sysctl_reg_handler, "IU", 4255 "Transmit Descriptor Head"); 4256 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail", 4257 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 4258 E1000_TDT(txr->me), em_sysctl_reg_handler, "IU", 4259 "Transmit Descriptor Tail"); 4260 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq", 4261 CTLFLAG_RD, &txr->tx_irq, 4262 "Queue MSI-X Transmit Interrupts"); 4263 } 4264 4265 for (int j = 0; j < sc->rx_num_queues; j++, rx_que++) { 4266 struct rx_ring *rxr = &rx_que->rxr; 4267 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j); 4268 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, 4269 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name"); 4270 queue_list = SYSCTL_CHILDREN(queue_node); 4271 4272 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head", 4273 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 4274 E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU", 4275 "Receive Descriptor Head"); 4276 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail", 4277 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 4278 E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU", 4279 "Receive Descriptor Tail"); 4280 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq", 4281 CTLFLAG_RD, &rxr->rx_irq, 4282 "Queue MSI-X Receive Interrupts"); 4283 } 4284 4285 /* MAC stats get their own sub node */ 4286 4287 stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats", 4288 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics"); 4289 stat_list = SYSCTL_CHILDREN(stat_node); 4290 4291 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll", 4292 CTLFLAG_RD, &stats->ecol, 4293 "Excessive collisions"); 4294 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll", 4295 CTLFLAG_RD, &stats->scc, 4296 "Single collisions"); 4297 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll", 4298 CTLFLAG_RD, &stats->mcc, 4299 "Multiple collisions"); 4300 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll", 4301 CTLFLAG_RD, &stats->latecol, 4302 "Late collisions"); 4303 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count", 4304 CTLFLAG_RD, &stats->colc, 4305 "Collision Count"); 4306 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors", 4307 CTLFLAG_RD, &sc->stats.symerrs, 4308 "Symbol Errors"); 4309 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors", 4310 CTLFLAG_RD, &sc->stats.sec, 4311 "Sequence Errors"); 4312 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count", 4313 CTLFLAG_RD, &sc->stats.dc, 4314 "Defer Count"); 4315 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets", 4316 CTLFLAG_RD, &sc->stats.mpc, 4317 "Missed Packets"); 4318 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff", 4319 CTLFLAG_RD, &sc->stats.rnbc, 4320 "Receive No Buffers"); 4321 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize", 4322 CTLFLAG_RD, &sc->stats.ruc, 4323 "Receive Undersize"); 4324 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented", 4325 CTLFLAG_RD, &sc->stats.rfc, 4326 "Fragmented Packets Received "); 4327 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize", 4328 CTLFLAG_RD, &sc->stats.roc, 4329 "Oversized Packets Received"); 4330 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber", 4331 CTLFLAG_RD, &sc->stats.rjc, 4332 "Recevied Jabber"); 4333 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs", 4334 CTLFLAG_RD, &sc->stats.rxerrc, 4335 "Receive Errors"); 4336 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs", 4337 CTLFLAG_RD, &sc->stats.crcerrs, 4338 "CRC errors"); 4339 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs", 4340 CTLFLAG_RD, &sc->stats.algnerrc, 4341 "Alignment Errors"); 4342 /* On 82575 these are collision counts */ 4343 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs", 4344 CTLFLAG_RD, &sc->stats.cexterr, 4345 "Collision/Carrier extension errors"); 4346 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd", 4347 CTLFLAG_RD, &sc->stats.xonrxc, 4348 "XON Received"); 4349 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd", 4350 CTLFLAG_RD, &sc->stats.xontxc, 4351 "XON Transmitted"); 4352 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd", 4353 CTLFLAG_RD, &sc->stats.xoffrxc, 4354 "XOFF Received"); 4355 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd", 4356 CTLFLAG_RD, &sc->stats.xofftxc, 4357 "XOFF Transmitted"); 4358 4359 /* Packet Reception Stats */ 4360 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd", 4361 CTLFLAG_RD, &sc->stats.tpr, 4362 "Total Packets Received "); 4363 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd", 4364 CTLFLAG_RD, &sc->stats.gprc, 4365 "Good Packets Received"); 4366 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd", 4367 CTLFLAG_RD, &sc->stats.bprc, 4368 "Broadcast Packets Received"); 4369 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd", 4370 CTLFLAG_RD, &sc->stats.mprc, 4371 "Multicast Packets Received"); 4372 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64", 4373 CTLFLAG_RD, &sc->stats.prc64, 4374 "64 byte frames received "); 4375 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127", 4376 CTLFLAG_RD, &sc->stats.prc127, 4377 "65-127 byte frames received"); 4378 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255", 4379 CTLFLAG_RD, &sc->stats.prc255, 4380 "128-255 byte frames received"); 4381 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511", 4382 CTLFLAG_RD, &sc->stats.prc511, 4383 "256-511 byte frames received"); 4384 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023", 4385 CTLFLAG_RD, &sc->stats.prc1023, 4386 "512-1023 byte frames received"); 4387 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522", 4388 CTLFLAG_RD, &sc->stats.prc1522, 4389 "1023-1522 byte frames received"); 4390 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd", 4391 CTLFLAG_RD, &sc->stats.gorc, 4392 "Good Octets Received"); 4393 4394 /* Packet Transmission Stats */ 4395 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd", 4396 CTLFLAG_RD, &sc->stats.gotc, 4397 "Good Octets Transmitted"); 4398 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd", 4399 CTLFLAG_RD, &sc->stats.tpt, 4400 "Total Packets Transmitted"); 4401 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd", 4402 CTLFLAG_RD, &sc->stats.gptc, 4403 "Good Packets Transmitted"); 4404 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd", 4405 CTLFLAG_RD, &sc->stats.bptc, 4406 "Broadcast Packets Transmitted"); 4407 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd", 4408 CTLFLAG_RD, &sc->stats.mptc, 4409 "Multicast Packets Transmitted"); 4410 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64", 4411 CTLFLAG_RD, &sc->stats.ptc64, 4412 "64 byte frames transmitted "); 4413 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127", 4414 CTLFLAG_RD, &sc->stats.ptc127, 4415 "65-127 byte frames transmitted"); 4416 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255", 4417 CTLFLAG_RD, &sc->stats.ptc255, 4418 "128-255 byte frames transmitted"); 4419 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511", 4420 CTLFLAG_RD, &sc->stats.ptc511, 4421 "256-511 byte frames transmitted"); 4422 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023", 4423 CTLFLAG_RD, &sc->stats.ptc1023, 4424 "512-1023 byte frames transmitted"); 4425 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522", 4426 CTLFLAG_RD, &sc->stats.ptc1522, 4427 "1024-1522 byte frames transmitted"); 4428 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd", 4429 CTLFLAG_RD, &sc->stats.tsctc, 4430 "TSO Contexts Transmitted"); 4431 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail", 4432 CTLFLAG_RD, &sc->stats.tsctfc, 4433 "TSO Contexts Failed"); 4434 4435 4436 /* Interrupt Stats */ 4437 4438 int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts", 4439 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics"); 4440 int_list = SYSCTL_CHILDREN(int_node); 4441 4442 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts", 4443 CTLFLAG_RD, &sc->stats.iac, 4444 "Interrupt Assertion Count"); 4445 4446 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer", 4447 CTLFLAG_RD, &sc->stats.icrxptc, 4448 "Interrupt Cause Rx Pkt Timer Expire Count"); 4449 4450 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer", 4451 CTLFLAG_RD, &sc->stats.icrxatc, 4452 "Interrupt Cause Rx Abs Timer Expire Count"); 4453 4454 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer", 4455 CTLFLAG_RD, &sc->stats.ictxptc, 4456 "Interrupt Cause Tx Pkt Timer Expire Count"); 4457 4458 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer", 4459 CTLFLAG_RD, &sc->stats.ictxatc, 4460 "Interrupt Cause Tx Abs Timer Expire Count"); 4461 4462 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty", 4463 CTLFLAG_RD, &sc->stats.ictxqec, 4464 "Interrupt Cause Tx Queue Empty Count"); 4465 4466 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh", 4467 CTLFLAG_RD, &sc->stats.ictxqmtc, 4468 "Interrupt Cause Tx Queue Min Thresh Count"); 4469 4470 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh", 4471 CTLFLAG_RD, &sc->stats.icrxdmtc, 4472 "Interrupt Cause Rx Desc Min Thresh Count"); 4473 4474 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun", 4475 CTLFLAG_RD, &sc->stats.icrxoc, 4476 "Interrupt Cause Receiver Overrun Count"); 4477 } 4478 4479 /********************************************************************** 4480 * 4481 * This routine provides a way to dump out the adapter eeprom, 4482 * often a useful debug/service tool. This only dumps the first 4483 * 32 words, stuff that matters is in that extent. 4484 * 4485 **********************************************************************/ 4486 static int 4487 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS) 4488 { 4489 struct e1000_softc *sc = (struct e1000_softc *)arg1; 4490 int error; 4491 int result; 4492 4493 result = -1; 4494 error = sysctl_handle_int(oidp, &result, 0, req); 4495 4496 if (error || !req->newptr) 4497 return (error); 4498 4499 /* 4500 * This value will cause a hex dump of the 4501 * first 32 16-bit words of the EEPROM to 4502 * the screen. 4503 */ 4504 if (result == 1) 4505 em_print_nvm_info(sc); 4506 4507 return (error); 4508 } 4509 4510 static void 4511 em_print_nvm_info(struct e1000_softc *sc) 4512 { 4513 u16 eeprom_data; 4514 int i, j, row = 0; 4515 4516 /* Its a bit crude, but it gets the job done */ 4517 printf("\nInterface EEPROM Dump:\n"); 4518 printf("Offset\n0x0000 "); 4519 for (i = 0, j = 0; i < 32; i++, j++) { 4520 if (j == 8) { /* Make the offset block */ 4521 j = 0; ++row; 4522 printf("\n0x00%x0 ",row); 4523 } 4524 e1000_read_nvm(&sc->hw, i, 1, &eeprom_data); 4525 printf("%04x ", eeprom_data); 4526 } 4527 printf("\n"); 4528 } 4529 4530 static int 4531 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS) 4532 { 4533 struct em_int_delay_info *info; 4534 struct e1000_softc *sc; 4535 u32 regval; 4536 int error, usecs, ticks; 4537 4538 info = (struct em_int_delay_info *) arg1; 4539 usecs = info->value; 4540 error = sysctl_handle_int(oidp, &usecs, 0, req); 4541 if (error != 0 || req->newptr == NULL) 4542 return (error); 4543 if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535)) 4544 return (EINVAL); 4545 info->value = usecs; 4546 ticks = EM_USECS_TO_TICKS(usecs); 4547 if (info->offset == E1000_ITR) /* units are 256ns here */ 4548 ticks *= 4; 4549 4550 sc = info->sc; 4551 4552 regval = E1000_READ_OFFSET(&sc->hw, info->offset); 4553 regval = (regval & ~0xffff) | (ticks & 0xffff); 4554 /* Handle a few special cases. */ 4555 switch (info->offset) { 4556 case E1000_RDTR: 4557 break; 4558 case E1000_TIDV: 4559 if (ticks == 0) { 4560 sc->txd_cmd &= ~E1000_TXD_CMD_IDE; 4561 /* Don't write 0 into the TIDV register. */ 4562 regval++; 4563 } else 4564 sc->txd_cmd |= E1000_TXD_CMD_IDE; 4565 break; 4566 } 4567 E1000_WRITE_OFFSET(&sc->hw, info->offset, regval); 4568 return (0); 4569 } 4570 4571 static void 4572 em_add_int_delay_sysctl(struct e1000_softc *sc, const char *name, 4573 const char *description, struct em_int_delay_info *info, 4574 int offset, int value) 4575 { 4576 info->sc = sc; 4577 info->offset = offset; 4578 info->value = value; 4579 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev), 4580 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), 4581 OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 4582 info, 0, em_sysctl_int_delay, "I", description); 4583 } 4584 4585 /* 4586 * Set flow control using sysctl: 4587 * Flow control values: 4588 * 0 - off 4589 * 1 - rx pause 4590 * 2 - tx pause 4591 * 3 - full 4592 */ 4593 static int 4594 em_set_flowcntl(SYSCTL_HANDLER_ARGS) 4595 { 4596 int error; 4597 static int input = 3; /* default is full */ 4598 struct e1000_softc *sc = (struct e1000_softc *) arg1; 4599 4600 error = sysctl_handle_int(oidp, &input, 0, req); 4601 4602 if ((error) || (req->newptr == NULL)) 4603 return (error); 4604 4605 if (input == sc->fc) /* no change? */ 4606 return (error); 4607 4608 switch (input) { 4609 case e1000_fc_rx_pause: 4610 case e1000_fc_tx_pause: 4611 case e1000_fc_full: 4612 case e1000_fc_none: 4613 sc->hw.fc.requested_mode = input; 4614 sc->fc = input; 4615 break; 4616 default: 4617 /* Do nothing */ 4618 return (error); 4619 } 4620 4621 sc->hw.fc.current_mode = sc->hw.fc.requested_mode; 4622 e1000_force_mac_fc(&sc->hw); 4623 return (error); 4624 } 4625 4626 /* 4627 * Manage Energy Efficient Ethernet: 4628 * Control values: 4629 * 0/1 - enabled/disabled 4630 */ 4631 static int 4632 em_sysctl_eee(SYSCTL_HANDLER_ARGS) 4633 { 4634 struct e1000_softc *sc = (struct e1000_softc *) arg1; 4635 int error, value; 4636 4637 value = sc->hw.dev_spec.ich8lan.eee_disable; 4638 error = sysctl_handle_int(oidp, &value, 0, req); 4639 if (error || req->newptr == NULL) 4640 return (error); 4641 sc->hw.dev_spec.ich8lan.eee_disable = (value != 0); 4642 em_if_init(sc->ctx); 4643 4644 return (0); 4645 } 4646 4647 static int 4648 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS) 4649 { 4650 struct e1000_softc *sc; 4651 int error; 4652 int result; 4653 4654 result = -1; 4655 error = sysctl_handle_int(oidp, &result, 0, req); 4656 4657 if (error || !req->newptr) 4658 return (error); 4659 4660 if (result == 1) { 4661 sc = (struct e1000_softc *) arg1; 4662 em_print_debug_info(sc); 4663 } 4664 4665 return (error); 4666 } 4667 4668 static int 4669 em_get_rs(SYSCTL_HANDLER_ARGS) 4670 { 4671 struct e1000_softc *sc = (struct e1000_softc *) arg1; 4672 int error; 4673 int result; 4674 4675 result = 0; 4676 error = sysctl_handle_int(oidp, &result, 0, req); 4677 4678 if (error || !req->newptr || result != 1) 4679 return (error); 4680 em_dump_rs(sc); 4681 4682 return (error); 4683 } 4684 4685 static void 4686 em_if_debug(if_ctx_t ctx) 4687 { 4688 em_dump_rs(iflib_get_softc(ctx)); 4689 } 4690 4691 /* 4692 * This routine is meant to be fluid, add whatever is 4693 * needed for debugging a problem. -jfv 4694 */ 4695 static void 4696 em_print_debug_info(struct e1000_softc *sc) 4697 { 4698 device_t dev = iflib_get_dev(sc->ctx); 4699 struct ifnet *ifp = iflib_get_ifp(sc->ctx); 4700 struct tx_ring *txr = &sc->tx_queues->txr; 4701 struct rx_ring *rxr = &sc->rx_queues->rxr; 4702 4703 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 4704 printf("Interface is RUNNING "); 4705 else 4706 printf("Interface is NOT RUNNING\n"); 4707 4708 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) 4709 printf("and INACTIVE\n"); 4710 else 4711 printf("and ACTIVE\n"); 4712 4713 for (int i = 0; i < sc->tx_num_queues; i++, txr++) { 4714 device_printf(dev, "TX Queue %d ------\n", i); 4715 device_printf(dev, "hw tdh = %d, hw tdt = %d\n", 4716 E1000_READ_REG(&sc->hw, E1000_TDH(i)), 4717 E1000_READ_REG(&sc->hw, E1000_TDT(i))); 4718 4719 } 4720 for (int j=0; j < sc->rx_num_queues; j++, rxr++) { 4721 device_printf(dev, "RX Queue %d ------\n", j); 4722 device_printf(dev, "hw rdh = %d, hw rdt = %d\n", 4723 E1000_READ_REG(&sc->hw, E1000_RDH(j)), 4724 E1000_READ_REG(&sc->hw, E1000_RDT(j))); 4725 } 4726 } 4727 4728 /* 4729 * 82574 only: 4730 * Write a new value to the EEPROM increasing the number of MSI-X 4731 * vectors from 3 to 5, for proper multiqueue support. 4732 */ 4733 static void 4734 em_enable_vectors_82574(if_ctx_t ctx) 4735 { 4736 struct e1000_softc *sc = iflib_get_softc(ctx); 4737 struct e1000_hw *hw = &sc->hw; 4738 device_t dev = iflib_get_dev(ctx); 4739 u16 edata; 4740 4741 e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata); 4742 if (bootverbose) 4743 device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata); 4744 if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) { 4745 device_printf(dev, "Writing to eeprom: increasing " 4746 "reported MSI-X vectors from 3 to 5...\n"); 4747 edata &= ~(EM_NVM_MSIX_N_MASK); 4748 edata |= 4 << EM_NVM_MSIX_N_SHIFT; 4749 e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata); 4750 e1000_update_nvm_checksum(hw); 4751 device_printf(dev, "Writing to eeprom: done\n"); 4752 } 4753 } 4754