xref: /freebsd/sys/dev/e1000/if_em.c (revision 3468ddce672350a6d974b4f0fdf3f4a56eaab0a0)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* $FreeBSD$ */
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33 
34 #define em_mac_min e1000_82547
35 #define igb_mac_min e1000_82575
36 
37 /*********************************************************************
38  *  Driver version:
39  *********************************************************************/
40 char em_driver_version[] = "7.6.1-k";
41 
42 /*********************************************************************
43  *  PCI Device ID Table
44  *
45  *  Used by probe to select devices to load on
46  *  Last field stores an index into e1000_strings
47  *  Last entry must be all 0s
48  *
49  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
50  *********************************************************************/
51 
52 static pci_vendor_info_t em_vendor_info_array[] =
53 {
54 	/* Intel(R) PRO/1000 Network Connection - Legacy em*/
55 	PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) PRO/1000 Network Connection"),
56 	PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) PRO/1000 Network Connection"),
57 	PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) PRO/1000 Network Connection"),
58 	PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) PRO/1000 Network Connection"),
59 	PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) PRO/1000 Network Connection"),
60 
61 	PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) PRO/1000 Network Connection"),
62 	PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) PRO/1000 Network Connection"),
63 	PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) PRO/1000 Network Connection"),
64 	PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
65 	PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) PRO/1000 Network Connection"),
66 	PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) PRO/1000 Network Connection"),
67 	PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
68 
69 	PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) PRO/1000 Network Connection"),
70 
71 	PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) PRO/1000 Network Connection"),
72 	PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
73 
74 	PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
75 	PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
76 	PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
77 	PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) PRO/1000 Network Connection"),
78 
79 	PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) PRO/1000 Network Connection"),
80 	PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) PRO/1000 Network Connection"),
81 	PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) PRO/1000 Network Connection"),
82 	PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) PRO/1000 Network Connection"),
83 	PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) PRO/1000 Network Connection"),
84 
85 	PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
86 	PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
87 	PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
88 	PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) PRO/1000 Network Connection"),
89 	PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) PRO/1000 Network Connection"),
90 	PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) PRO/1000 Network Connection"),
91 	PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) PRO/1000 Network Connection"),
92 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
93 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) PRO/1000 Network Connection"),
94 
95 	PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) PRO/1000 Network Connection"),
96 	PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
97 	PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) PRO/1000 Network Connection"),
98 
99 	/* Intel(R) PRO/1000 Network Connection - em */
100 	PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
101 	PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
102 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 Network Connection"),
103 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 Network Connection"),
104 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 Network Connection"),
105 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
106 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 Network Connection"),
107 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 Network Connection"),
108 	PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
109 	PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 Network Connection"),
110 	PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
111 	PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
112 	PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 Network Connection"),
113 	PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 Network Connection"),
114 	PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 Network Connection"),
115 	PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 Network Connection"),
116 	PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) PRO/1000 Network Connection"),
117 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) PRO/1000 Network Connection"),
118 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) PRO/1000 Network Connection"),
119 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) PRO/1000 Network Connection"),
120 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) PRO/1000 Network Connection"),
121 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
122 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
123 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) PRO/1000 Network Connection"),
124 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) PRO/1000 Network Connection"),
125 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
126 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) PRO/1000 Network Connection"),
127 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) PRO/1000 Network Connection"),
128 	PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) PRO/1000 Network Connection"),
129 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
130 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
131 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) PRO/1000 Network Connection"),
132 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) PRO/1000 Network Connection"),
133 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) PRO/1000 Network Connection"),
134 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) PRO/1000 Network Connection"),
135 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
136 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) PRO/1000 Network Connection"),
137 	PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) PRO/1000 Network Connection"),
138 	PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) PRO/1000 Network Connection"),
139 	PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) PRO/1000 Network Connection"),
140 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) PRO/1000 Network Connection"),
141 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) PRO/1000 Network Connection"),
142 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) PRO/1000 Network Connection"),
143 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) PRO/1000 Network Connection"),
144 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) PRO/1000 Network Connection"),
145 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) PRO/1000 Network Connection"),
146 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) PRO/1000 Network Connection"),
147 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) PRO/1000 Network Connection"),
148 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) PRO/1000 Network Connection"),
149 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) PRO/1000 Network Connection"),
150 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) PRO/1000 Network Connection"),
151 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) PRO/1000 Network Connection"),
152 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) PRO/1000 Network Connection"),
153 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) PRO/1000 Network Connection"),
154 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) PRO/1000 Network Connection"),
155 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) PRO/1000 Network Connection"),
156 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) PRO/1000 Network Connection"),
157 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) PRO/1000 Network Connection"),
158 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) PRO/1000 Network Connection"),
159 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) PRO/1000 Network Connection"),
160 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) PRO/1000 Network Connection"),
161 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) PRO/1000 Network Connection"),
162 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) PRO/1000 Network Connection"),
163 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) PRO/1000 Network Connection"),
164 	PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) PRO/1000 Network Connection"),
165 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) PRO/1000 Network Connection"),
166 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) PRO/1000 Network Connection"),
167 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) PRO/1000 Network Connection"),
168 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) PRO/1000 Network Connection"),
169 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) PRO/1000 Network Connection"),
170 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) PRO/1000 Network Connection"),
171 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) PRO/1000 Network Connection"),
172 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) PRO/1000 Network Connection"),
173 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) PRO/1000 Network Connection"),
174 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) PRO/1000 Network Connection"),
175 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) PRO/1000 Network Connection"),
176 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) PRO/1000 Network Connection"),
177 	/* required last entry */
178 	PVID_END
179 };
180 
181 static pci_vendor_info_t igb_vendor_info_array[] =
182 {
183 	/* Intel(R) PRO/1000 Network Connection - igb */
184 	PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
185 	PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
186 	PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
187 	PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 PCI-Express Network Driver"),
188 	PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
189 	PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
190 	PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
191 	PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
192 	PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 PCI-Express Network Driver"),
193 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
194 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 PCI-Express Network Driver"),
195 	PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
196 	PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
197 	PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
198 	PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
199 	PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
200 	PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) PRO/1000 PCI-Express Network Driver"),
201 	PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
202 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
203 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
204 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) PRO/1000 PCI-Express Network Driver"),
205 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) PRO/1000 PCI-Express Network Driver"),
206 	PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
207 	PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
208 	PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
209 	PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
210 	PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
211 	PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
212 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) PRO/1000 PCI-Express Network Driver"),
213 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) PRO/1000 PCI-Express Network Driver"),
214 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
215 	PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
216 	PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
217 	PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
218 	PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
219 	PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
220 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
221 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
222 	PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
223 	/* required last entry */
224 	PVID_END
225 };
226 
227 /*********************************************************************
228  *  Function prototypes
229  *********************************************************************/
230 static void	*em_register(device_t dev);
231 static void	*igb_register(device_t dev);
232 static int	em_if_attach_pre(if_ctx_t ctx);
233 static int	em_if_attach_post(if_ctx_t ctx);
234 static int	em_if_detach(if_ctx_t ctx);
235 static int	em_if_shutdown(if_ctx_t ctx);
236 static int	em_if_suspend(if_ctx_t ctx);
237 static int	em_if_resume(if_ctx_t ctx);
238 
239 static int	em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets);
240 static int	em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets);
241 static void	em_if_queues_free(if_ctx_t ctx);
242 
243 static uint64_t	em_if_get_counter(if_ctx_t, ift_counter);
244 static void	em_if_init(if_ctx_t ctx);
245 static void	em_if_stop(if_ctx_t ctx);
246 static void	em_if_media_status(if_ctx_t, struct ifmediareq *);
247 static int	em_if_media_change(if_ctx_t ctx);
248 static int	em_if_mtu_set(if_ctx_t ctx, uint32_t mtu);
249 static void	em_if_timer(if_ctx_t ctx, uint16_t qid);
250 static void	em_if_vlan_register(if_ctx_t ctx, u16 vtag);
251 static void	em_if_vlan_unregister(if_ctx_t ctx, u16 vtag);
252 
253 static void	em_identify_hardware(if_ctx_t ctx);
254 static int	em_allocate_pci_resources(if_ctx_t ctx);
255 static void	em_free_pci_resources(if_ctx_t ctx);
256 static void	em_reset(if_ctx_t ctx);
257 static int	em_setup_interface(if_ctx_t ctx);
258 static int	em_setup_msix(if_ctx_t ctx);
259 
260 static void	em_initialize_transmit_unit(if_ctx_t ctx);
261 static void	em_initialize_receive_unit(if_ctx_t ctx);
262 
263 static void	em_if_enable_intr(if_ctx_t ctx);
264 static void	em_if_disable_intr(if_ctx_t ctx);
265 static int	em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
266 static int	em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
267 static void	em_if_multi_set(if_ctx_t ctx);
268 static void	em_if_update_admin_status(if_ctx_t ctx);
269 static void	em_if_debug(if_ctx_t ctx);
270 static void	em_update_stats_counters(struct adapter *);
271 static void	em_add_hw_stats(struct adapter *adapter);
272 static int	em_if_set_promisc(if_ctx_t ctx, int flags);
273 static void	em_setup_vlan_hw_support(struct adapter *);
274 static int	em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
275 static void	em_print_nvm_info(struct adapter *);
276 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
277 static int	em_get_rs(SYSCTL_HANDLER_ARGS);
278 static void	em_print_debug_info(struct adapter *);
279 static int 	em_is_valid_ether_addr(u8 *);
280 static int	em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
281 static void	em_add_int_delay_sysctl(struct adapter *, const char *,
282 		    const char *, struct em_int_delay_info *, int, int);
283 /* Management and WOL Support */
284 static void	em_init_manageability(struct adapter *);
285 static void	em_release_manageability(struct adapter *);
286 static void	em_get_hw_control(struct adapter *);
287 static void	em_release_hw_control(struct adapter *);
288 static void	em_get_wakeup(if_ctx_t ctx);
289 static void	em_enable_wakeup(if_ctx_t ctx);
290 static int	em_enable_phy_wakeup(struct adapter *);
291 static void	em_disable_aspm(struct adapter *);
292 
293 int		em_intr(void *arg);
294 static void	em_disable_promisc(if_ctx_t ctx);
295 
296 /* MSIX handlers */
297 static int	em_if_msix_intr_assign(if_ctx_t, int);
298 static int	em_msix_link(void *);
299 static void	em_handle_link(void *context);
300 
301 static void	em_enable_vectors_82574(if_ctx_t);
302 
303 static int	em_set_flowcntl(SYSCTL_HANDLER_ARGS);
304 static int	em_sysctl_eee(SYSCTL_HANDLER_ARGS);
305 static void	em_if_led_func(if_ctx_t ctx, int onoff);
306 
307 static int	em_get_regs(SYSCTL_HANDLER_ARGS);
308 
309 static void	lem_smartspeed(struct adapter *adapter);
310 static void	igb_configure_queues(struct adapter *adapter);
311 
312 
313 /*********************************************************************
314  *  FreeBSD Device Interface Entry Points
315  *********************************************************************/
316 static device_method_t em_methods[] = {
317 	/* Device interface */
318 	DEVMETHOD(device_register, em_register),
319 	DEVMETHOD(device_probe, iflib_device_probe),
320 	DEVMETHOD(device_attach, iflib_device_attach),
321 	DEVMETHOD(device_detach, iflib_device_detach),
322 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
323 	DEVMETHOD(device_suspend, iflib_device_suspend),
324 	DEVMETHOD(device_resume, iflib_device_resume),
325 	DEVMETHOD_END
326 };
327 
328 static device_method_t igb_methods[] = {
329 	/* Device interface */
330 	DEVMETHOD(device_register, igb_register),
331 	DEVMETHOD(device_probe, iflib_device_probe),
332 	DEVMETHOD(device_attach, iflib_device_attach),
333 	DEVMETHOD(device_detach, iflib_device_detach),
334 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
335 	DEVMETHOD(device_suspend, iflib_device_suspend),
336 	DEVMETHOD(device_resume, iflib_device_resume),
337 	DEVMETHOD_END
338 };
339 
340 
341 static driver_t em_driver = {
342 	"em", em_methods, sizeof(struct adapter),
343 };
344 
345 static devclass_t em_devclass;
346 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
347 
348 MODULE_DEPEND(em, pci, 1, 1, 1);
349 MODULE_DEPEND(em, ether, 1, 1, 1);
350 MODULE_DEPEND(em, iflib, 1, 1, 1);
351 
352 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
353 
354 static driver_t igb_driver = {
355 	"igb", igb_methods, sizeof(struct adapter),
356 };
357 
358 static devclass_t igb_devclass;
359 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
360 
361 MODULE_DEPEND(igb, pci, 1, 1, 1);
362 MODULE_DEPEND(igb, ether, 1, 1, 1);
363 MODULE_DEPEND(igb, iflib, 1, 1, 1);
364 
365 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
366 
367 static device_method_t em_if_methods[] = {
368 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
369 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
370 	DEVMETHOD(ifdi_detach, em_if_detach),
371 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
372 	DEVMETHOD(ifdi_suspend, em_if_suspend),
373 	DEVMETHOD(ifdi_resume, em_if_resume),
374 	DEVMETHOD(ifdi_init, em_if_init),
375 	DEVMETHOD(ifdi_stop, em_if_stop),
376 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
377 	DEVMETHOD(ifdi_intr_enable, em_if_enable_intr),
378 	DEVMETHOD(ifdi_intr_disable, em_if_disable_intr),
379 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
380 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
381 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
382 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
383 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
384 	DEVMETHOD(ifdi_media_status, em_if_media_status),
385 	DEVMETHOD(ifdi_media_change, em_if_media_change),
386 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
387 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
388 	DEVMETHOD(ifdi_timer, em_if_timer),
389 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
390 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
391 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
392 	DEVMETHOD(ifdi_led_func, em_if_led_func),
393 	DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
394 	DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
395 	DEVMETHOD(ifdi_debug, em_if_debug),
396 	DEVMETHOD_END
397 };
398 
399 /*
400  * note that if (adapter->msix_mem) is replaced by:
401  * if (adapter->intr_type == IFLIB_INTR_MSIX)
402  */
403 static driver_t em_if_driver = {
404 	"em_if", em_if_methods, sizeof(struct adapter)
405 };
406 
407 /*********************************************************************
408  *  Tunable default values.
409  *********************************************************************/
410 
411 #define EM_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
412 #define EM_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
413 
414 #define MAX_INTS_PER_SEC	8000
415 #define DEFAULT_ITR		(1000000000/(MAX_INTS_PER_SEC * 256))
416 
417 /* Allow common code without TSO */
418 #ifndef CSUM_TSO
419 #define CSUM_TSO	0
420 #endif
421 
422 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD, 0, "EM driver parameters");
423 
424 static int em_disable_crc_stripping = 0;
425 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
426     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
427 
428 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
429 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
430 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
431     0, "Default transmit interrupt delay in usecs");
432 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
433     0, "Default receive interrupt delay in usecs");
434 
435 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
436 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
437 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
438     &em_tx_abs_int_delay_dflt, 0,
439     "Default transmit interrupt delay limit in usecs");
440 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
441     &em_rx_abs_int_delay_dflt, 0,
442     "Default receive interrupt delay limit in usecs");
443 
444 static int em_smart_pwr_down = FALSE;
445 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
446     0, "Set to true to leave smart power down enabled on newer adapters");
447 
448 /* Controls whether promiscuous also shows bad packets */
449 static int em_debug_sbp = TRUE;
450 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
451     "Show bad packets in promiscuous mode");
452 
453 /* How many packets rxeof tries to clean at a time */
454 static int em_rx_process_limit = 100;
455 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
456     &em_rx_process_limit, 0,
457     "Maximum number of received packets to process "
458     "at a time, -1 means unlimited");
459 
460 /* Energy efficient ethernet - default to OFF */
461 static int eee_setting = 1;
462 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
463     "Enable Energy Efficient Ethernet");
464 
465 /*
466 ** Tuneable Interrupt rate
467 */
468 static int em_max_interrupt_rate = 8000;
469 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
470     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
471 
472 
473 
474 /* Global used in WOL setup with multiport cards */
475 static int global_quad_port_a = 0;
476 
477 extern struct if_txrx igb_txrx;
478 extern struct if_txrx em_txrx;
479 extern struct if_txrx lem_txrx;
480 
481 static struct if_shared_ctx em_sctx_init = {
482 	.isc_magic = IFLIB_MAGIC,
483 	.isc_q_align = PAGE_SIZE,
484 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
485 	.isc_tx_maxsegsize = PAGE_SIZE,
486 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
487 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
488 	.isc_rx_maxsize = MJUM9BYTES,
489 	.isc_rx_nsegments = 1,
490 	.isc_rx_maxsegsize = MJUM9BYTES,
491 	.isc_nfl = 1,
492 	.isc_nrxqs = 1,
493 	.isc_ntxqs = 1,
494 	.isc_admin_intrcnt = 1,
495 	.isc_vendor_info = em_vendor_info_array,
496 	.isc_driver_version = em_driver_version,
497 	.isc_driver = &em_if_driver,
498 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
499 
500 	.isc_nrxd_min = {EM_MIN_RXD},
501 	.isc_ntxd_min = {EM_MIN_TXD},
502 	.isc_nrxd_max = {EM_MAX_RXD},
503 	.isc_ntxd_max = {EM_MAX_TXD},
504 	.isc_nrxd_default = {EM_DEFAULT_RXD},
505 	.isc_ntxd_default = {EM_DEFAULT_TXD},
506 };
507 
508 if_shared_ctx_t em_sctx = &em_sctx_init;
509 
510 static struct if_shared_ctx igb_sctx_init = {
511 	.isc_magic = IFLIB_MAGIC,
512 	.isc_q_align = PAGE_SIZE,
513 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
514 	.isc_tx_maxsegsize = PAGE_SIZE,
515 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
516 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
517 	.isc_rx_maxsize = MJUM9BYTES,
518 	.isc_rx_nsegments = 1,
519 	.isc_rx_maxsegsize = MJUM9BYTES,
520 	.isc_nfl = 1,
521 	.isc_nrxqs = 1,
522 	.isc_ntxqs = 1,
523 	.isc_admin_intrcnt = 1,
524 	.isc_vendor_info = igb_vendor_info_array,
525 	.isc_driver_version = em_driver_version,
526 	.isc_driver = &em_if_driver,
527 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
528 
529 	.isc_nrxd_min = {EM_MIN_RXD},
530 	.isc_ntxd_min = {EM_MIN_TXD},
531 	.isc_nrxd_max = {IGB_MAX_RXD},
532 	.isc_ntxd_max = {IGB_MAX_TXD},
533 	.isc_nrxd_default = {EM_DEFAULT_RXD},
534 	.isc_ntxd_default = {EM_DEFAULT_TXD},
535 };
536 
537 if_shared_ctx_t igb_sctx = &igb_sctx_init;
538 
539 /*****************************************************************
540  *
541  * Dump Registers
542  *
543  ****************************************************************/
544 #define IGB_REGS_LEN 739
545 
546 static int em_get_regs(SYSCTL_HANDLER_ARGS)
547 {
548 	struct adapter *adapter = (struct adapter *)arg1;
549 	struct e1000_hw *hw = &adapter->hw;
550 	struct sbuf *sb;
551 	u32 *regs_buff;
552 	int rc;
553 
554 	regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
555 	memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
556 
557 	rc = sysctl_wire_old_buffer(req, 0);
558 	MPASS(rc == 0);
559 	if (rc != 0) {
560 		free(regs_buff, M_DEVBUF);
561 		return (rc);
562 	}
563 
564 	sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
565 	MPASS(sb != NULL);
566 	if (sb == NULL) {
567 		free(regs_buff, M_DEVBUF);
568 		return (ENOMEM);
569 	}
570 
571 	/* General Registers */
572 	regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
573 	regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
574 	regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
575 	regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
576 	regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
577 	regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
578 	regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
579 	regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
580 	regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
581 	regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
582 	regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
583 	regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
584 	regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
585 	regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
586 	regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
587 	regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
588 	regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
589 	regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
590 	regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
591 	regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
592 	regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
593 	regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
594 
595 	sbuf_printf(sb, "General Registers\n");
596 	sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
597 	sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
598 	sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]);
599 
600 	sbuf_printf(sb, "Interrupt Registers\n");
601 	sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
602 
603 	sbuf_printf(sb, "RX Registers\n");
604 	sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
605 	sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
606 	sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
607 	sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
608 	sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
609 	sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
610 	sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
611 
612 	sbuf_printf(sb, "TX Registers\n");
613 	sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
614 	sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
615 	sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
616 	sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
617 	sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
618 	sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
619 	sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
620 	sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
621 	sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
622 	sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
623 	sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
624 
625 	free(regs_buff, M_DEVBUF);
626 
627 #ifdef DUMP_DESCS
628 	{
629 		if_softc_ctx_t scctx = adapter->shared;
630 		struct rx_ring *rxr = &rx_que->rxr;
631 		struct tx_ring *txr = &tx_que->txr;
632 		int ntxd = scctx->isc_ntxd[0];
633 		int nrxd = scctx->isc_nrxd[0];
634 		int j;
635 
636 	for (j = 0; j < nrxd; j++) {
637 		u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
638 		u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
639 		sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
640 	}
641 
642 	for (j = 0; j < min(ntxd, 256); j++) {
643 		unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
644 
645 		sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
646 			    j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
647 			    buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
648 
649 	}
650 	}
651 #endif
652 
653 	rc = sbuf_finish(sb);
654 	sbuf_delete(sb);
655 	return(rc);
656 }
657 
658 static void *
659 em_register(device_t dev)
660 {
661 	return (em_sctx);
662 }
663 
664 static void *
665 igb_register(device_t dev)
666 {
667 	return (igb_sctx);
668 }
669 
670 static int
671 em_set_num_queues(if_ctx_t ctx)
672 {
673 	struct adapter *adapter = iflib_get_softc(ctx);
674 	int maxqueues;
675 
676 	/* Sanity check based on HW */
677 	switch (adapter->hw.mac.type) {
678 	case e1000_82576:
679 	case e1000_82580:
680 	case e1000_i350:
681 	case e1000_i354:
682 		maxqueues = 8;
683 		break;
684 	case e1000_i210:
685 	case e1000_82575:
686 		maxqueues = 4;
687 		break;
688 	case e1000_i211:
689 	case e1000_82574:
690 		maxqueues = 2;
691 		break;
692 	default:
693 		maxqueues = 1;
694 		break;
695 	}
696 
697 	return (maxqueues);
698 }
699 
700 #define	LEM_CAPS							\
701     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
702     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER
703 
704 #define	EM_CAPS								\
705     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
706     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |	\
707     IFCAP_LRO | IFCAP_VLAN_HWTSO
708 
709 #define	IGB_CAPS							\
710     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
711     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |	\
712     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6;
713 
714 /*********************************************************************
715  *  Device initialization routine
716  *
717  *  The attach entry point is called when the driver is being loaded.
718  *  This routine identifies the type of hardware, allocates all resources
719  *  and initializes the hardware.
720  *
721  *  return 0 on success, positive on failure
722  *********************************************************************/
723 
724 static int
725 em_if_attach_pre(if_ctx_t ctx)
726 {
727 	struct adapter *adapter;
728 	if_softc_ctx_t scctx;
729 	device_t dev;
730 	struct e1000_hw *hw;
731 	int error = 0;
732 
733 	INIT_DEBUGOUT("em_if_attach_pre begin");
734 	dev = iflib_get_dev(ctx);
735 	adapter = iflib_get_softc(ctx);
736 
737 	if (resource_disabled("em", device_get_unit(dev))) {
738 		device_printf(dev, "Disabled by device hint\n");
739 		return (ENXIO);
740 	}
741 
742 	adapter->ctx = adapter->osdep.ctx = ctx;
743 	adapter->dev = adapter->osdep.dev = dev;
744 	scctx = adapter->shared = iflib_get_softc_ctx(ctx);
745 	adapter->media = iflib_get_media(ctx);
746 	hw = &adapter->hw;
747 
748 	adapter->tx_process_limit = scctx->isc_ntxd[0];
749 
750 	/* SYSCTL stuff */
751 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
752 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
753 	    OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
754 	    em_sysctl_nvm_info, "I", "NVM Information");
755 
756 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
757 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
758 	    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
759 	    em_sysctl_debug_info, "I", "Debug Information");
760 
761 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
762 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
763 	    OID_AUTO, "fc", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
764 	    em_set_flowcntl, "I", "Flow Control");
765 
766 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
767 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
768 	    OID_AUTO, "reg_dump", CTLTYPE_STRING | CTLFLAG_RD, adapter, 0,
769 	    em_get_regs, "A", "Dump Registers");
770 
771 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
772 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
773 	    OID_AUTO, "rs_dump", CTLTYPE_INT | CTLFLAG_RW, adapter, 0,
774 	    em_get_rs, "I", "Dump RS indexes");
775 
776 	/* Determine hardware and mac info */
777 	em_identify_hardware(ctx);
778 
779 	scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR);
780 	scctx->isc_tx_nsegments = EM_MAX_SCATTER;
781 	scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
782 	device_printf(dev, "attach_pre capping queues at %d\n", scctx->isc_ntxqsets_max);
783 
784 	if (adapter->hw.mac.type >= igb_mac_min) {
785 		int try_second_bar;
786 
787 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
788 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
789 		scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
790 		scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
791 		scctx->isc_txrx = &igb_txrx;
792 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
793 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
794 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
795 		scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
796 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO | CSUM_IP6_TCP \
797 			| CSUM_IP6_UDP | CSUM_IP6_TCP;
798 		if (adapter->hw.mac.type != e1000_82575)
799 			scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
800 
801 		/*
802 		** Some new devices, as with ixgbe, now may
803 		** use a different BAR, so we need to keep
804 		** track of which is used.
805 		*/
806 		try_second_bar = pci_read_config(dev, scctx->isc_msix_bar, 4);
807 		if (try_second_bar == 0)
808 			scctx->isc_msix_bar += 4;
809 	} else if (adapter->hw.mac.type >= em_mac_min) {
810 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
811 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
812 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
813 		scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
814 		scctx->isc_txrx = &em_txrx;
815 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
816 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
817 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
818 		scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
819 		/*
820 		 * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO}
821 		 * by default as we don't have workarounds for all associated
822 		 * silicon errata.  E. g., with several MACs such as 82573E,
823 		 * TSO only works at Gigabit speed and otherwise can cause the
824 		 * hardware to hang (which also would be next to impossible to
825 		 * work around given that already queued TSO-using descriptors
826 		 * would need to be flushed and vlan(4) reconfigured at runtime
827 		 * in case of a link speed change).  Moreover, MACs like 82579
828 		 * still can hang at Gigabit even with all publicly documented
829 		 * TSO workarounds implemented.  Generally, the penality of
830 		 * these workarounds is rather high and may involve copying
831 		 * mbuf data around so advantages of TSO lapse.  Still, TSO may
832 		 * work for a few MACs of this class - at least when sticking
833 		 * with Gigabit - in which case users may enable TSO manually.
834 		 */
835 		scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
836 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
837 	} else {
838 		scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
839 		scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
840 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
841 		scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
842 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP;
843 		scctx->isc_txrx = &lem_txrx;
844 		scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
845 		if (adapter->hw.mac.type < e1000_82543)
846 			scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM);
847 		scctx->isc_msix_bar = 0;
848 	}
849 
850 	/* Setup PCI resources */
851 	if (em_allocate_pci_resources(ctx)) {
852 		device_printf(dev, "Allocation of PCI resources failed\n");
853 		error = ENXIO;
854 		goto err_pci;
855 	}
856 
857 	/*
858 	** For ICH8 and family we need to
859 	** map the flash memory, and this
860 	** must happen after the MAC is
861 	** identified
862 	*/
863 	if ((hw->mac.type == e1000_ich8lan) ||
864 	    (hw->mac.type == e1000_ich9lan) ||
865 	    (hw->mac.type == e1000_ich10lan) ||
866 	    (hw->mac.type == e1000_pchlan) ||
867 	    (hw->mac.type == e1000_pch2lan) ||
868 	    (hw->mac.type == e1000_pch_lpt)) {
869 		int rid = EM_BAR_TYPE_FLASH;
870 		adapter->flash = bus_alloc_resource_any(dev,
871 		    SYS_RES_MEMORY, &rid, RF_ACTIVE);
872 		if (adapter->flash == NULL) {
873 			device_printf(dev, "Mapping of Flash failed\n");
874 			error = ENXIO;
875 			goto err_pci;
876 		}
877 		/* This is used in the shared code */
878 		hw->flash_address = (u8 *)adapter->flash;
879 		adapter->osdep.flash_bus_space_tag =
880 		    rman_get_bustag(adapter->flash);
881 		adapter->osdep.flash_bus_space_handle =
882 		    rman_get_bushandle(adapter->flash);
883 	}
884 	/*
885 	** In the new SPT device flash is not  a
886 	** separate BAR, rather it is also in BAR0,
887 	** so use the same tag and an offset handle for the
888 	** FLASH read/write macros in the shared code.
889 	*/
890 	else if (hw->mac.type >= e1000_pch_spt) {
891 		adapter->osdep.flash_bus_space_tag =
892 		    adapter->osdep.mem_bus_space_tag;
893 		adapter->osdep.flash_bus_space_handle =
894 		    adapter->osdep.mem_bus_space_handle
895 		    + E1000_FLASH_BASE_ADDR;
896 	}
897 
898 	/* Do Shared Code initialization */
899 	error = e1000_setup_init_funcs(hw, TRUE);
900 	if (error) {
901 		device_printf(dev, "Setup of Shared code failed, error %d\n",
902 		    error);
903 		error = ENXIO;
904 		goto err_pci;
905 	}
906 
907 	em_setup_msix(ctx);
908 	e1000_get_bus_info(hw);
909 
910 	/* Set up some sysctls for the tunable interrupt delays */
911 	em_add_int_delay_sysctl(adapter, "rx_int_delay",
912 	    "receive interrupt delay in usecs", &adapter->rx_int_delay,
913 	    E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
914 	em_add_int_delay_sysctl(adapter, "tx_int_delay",
915 	    "transmit interrupt delay in usecs", &adapter->tx_int_delay,
916 	    E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
917 	em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
918 	    "receive interrupt delay limit in usecs",
919 	    &adapter->rx_abs_int_delay,
920 	    E1000_REGISTER(hw, E1000_RADV),
921 	    em_rx_abs_int_delay_dflt);
922 	em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
923 	    "transmit interrupt delay limit in usecs",
924 	    &adapter->tx_abs_int_delay,
925 	    E1000_REGISTER(hw, E1000_TADV),
926 	    em_tx_abs_int_delay_dflt);
927 	em_add_int_delay_sysctl(adapter, "itr",
928 	    "interrupt delay limit in usecs/4",
929 	    &adapter->tx_itr,
930 	    E1000_REGISTER(hw, E1000_ITR),
931 	    DEFAULT_ITR);
932 
933 	hw->mac.autoneg = DO_AUTO_NEG;
934 	hw->phy.autoneg_wait_to_complete = FALSE;
935 	hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
936 
937 	if (adapter->hw.mac.type < em_mac_min) {
938 		e1000_init_script_state_82541(&adapter->hw, TRUE);
939 		e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
940 	}
941 	/* Copper options */
942 	if (hw->phy.media_type == e1000_media_type_copper) {
943 		hw->phy.mdix = AUTO_ALL_MODES;
944 		hw->phy.disable_polarity_correction = FALSE;
945 		hw->phy.ms_type = EM_MASTER_SLAVE;
946 	}
947 
948 	/*
949 	 * Set the frame limits assuming
950 	 * standard ethernet sized frames.
951 	 */
952 	scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
953 	    ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
954 
955 	/*
956 	 * This controls when hardware reports transmit completion
957 	 * status.
958 	 */
959 	hw->mac.report_tx_early = 1;
960 
961 	/* Allocate multicast array memory. */
962 	adapter->mta = malloc(sizeof(u8) * ETH_ADDR_LEN *
963 	    MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
964 	if (adapter->mta == NULL) {
965 		device_printf(dev, "Can not allocate multicast setup array\n");
966 		error = ENOMEM;
967 		goto err_late;
968 	}
969 
970 	/* Check SOL/IDER usage */
971 	if (e1000_check_reset_block(hw))
972 		device_printf(dev, "PHY reset is blocked"
973 			      " due to SOL/IDER session.\n");
974 
975 	/* Sysctl for setting Energy Efficient Ethernet */
976 	hw->dev_spec.ich8lan.eee_disable = eee_setting;
977 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
978 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
979 	    OID_AUTO, "eee_control", CTLTYPE_INT|CTLFLAG_RW,
980 	    adapter, 0, em_sysctl_eee, "I",
981 	    "Disable Energy Efficient Ethernet");
982 
983 	/*
984 	** Start from a known state, this is
985 	** important in reading the nvm and
986 	** mac from that.
987 	*/
988 	e1000_reset_hw(hw);
989 
990 	/* Make sure we have a good EEPROM before we read from it */
991 	if (e1000_validate_nvm_checksum(hw) < 0) {
992 		/*
993 		** Some PCI-E parts fail the first check due to
994 		** the link being in sleep state, call it again,
995 		** if it fails a second time its a real issue.
996 		*/
997 		if (e1000_validate_nvm_checksum(hw) < 0) {
998 			device_printf(dev,
999 			    "The EEPROM Checksum Is Not Valid\n");
1000 			error = EIO;
1001 			goto err_late;
1002 		}
1003 	}
1004 
1005 	/* Copy the permanent MAC address out of the EEPROM */
1006 	if (e1000_read_mac_addr(hw) < 0) {
1007 		device_printf(dev, "EEPROM read error while reading MAC"
1008 			      " address\n");
1009 		error = EIO;
1010 		goto err_late;
1011 	}
1012 
1013 	if (!em_is_valid_ether_addr(hw->mac.addr)) {
1014 		device_printf(dev, "Invalid MAC address\n");
1015 		error = EIO;
1016 		goto err_late;
1017 	}
1018 
1019 	/* Disable ULP support */
1020 	e1000_disable_ulp_lpt_lp(hw, TRUE);
1021 
1022 	/*
1023 	 * Get Wake-on-Lan and Management info for later use
1024 	 */
1025 	em_get_wakeup(ctx);
1026 
1027 	/* Enable only WOL MAGIC by default */
1028 	scctx->isc_capenable &= ~IFCAP_WOL;
1029 	if (adapter->wol != 0)
1030 		scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1031 
1032 	iflib_set_mac(ctx, hw->mac.addr);
1033 
1034 	return (0);
1035 
1036 err_late:
1037 	em_release_hw_control(adapter);
1038 err_pci:
1039 	em_free_pci_resources(ctx);
1040 	free(adapter->mta, M_DEVBUF);
1041 
1042 	return (error);
1043 }
1044 
1045 static int
1046 em_if_attach_post(if_ctx_t ctx)
1047 {
1048 	struct adapter *adapter = iflib_get_softc(ctx);
1049 	struct e1000_hw *hw = &adapter->hw;
1050 	int error = 0;
1051 
1052 	/* Setup OS specific network interface */
1053 	error = em_setup_interface(ctx);
1054 	if (error != 0) {
1055 		goto err_late;
1056 	}
1057 
1058 	em_reset(ctx);
1059 
1060 	/* Initialize statistics */
1061 	em_update_stats_counters(adapter);
1062 	hw->mac.get_link_status = 1;
1063 	em_if_update_admin_status(ctx);
1064 	em_add_hw_stats(adapter);
1065 
1066 	/* Non-AMT based hardware can now take control from firmware */
1067 	if (adapter->has_manage && !adapter->has_amt)
1068 		em_get_hw_control(adapter);
1069 
1070 	INIT_DEBUGOUT("em_if_attach_post: end");
1071 
1072 	return (error);
1073 
1074 err_late:
1075 	em_release_hw_control(adapter);
1076 	em_free_pci_resources(ctx);
1077 	em_if_queues_free(ctx);
1078 	free(adapter->mta, M_DEVBUF);
1079 
1080 	return (error);
1081 }
1082 
1083 /*********************************************************************
1084  *  Device removal routine
1085  *
1086  *  The detach entry point is called when the driver is being removed.
1087  *  This routine stops the adapter and deallocates all the resources
1088  *  that were allocated for driver operation.
1089  *
1090  *  return 0 on success, positive on failure
1091  *********************************************************************/
1092 
1093 static int
1094 em_if_detach(if_ctx_t ctx)
1095 {
1096 	struct adapter	*adapter = iflib_get_softc(ctx);
1097 
1098 	INIT_DEBUGOUT("em_detach: begin");
1099 
1100 	e1000_phy_hw_reset(&adapter->hw);
1101 
1102 	em_release_manageability(adapter);
1103 	em_release_hw_control(adapter);
1104 	em_free_pci_resources(ctx);
1105 
1106 	return (0);
1107 }
1108 
1109 /*********************************************************************
1110  *
1111  *  Shutdown entry point
1112  *
1113  **********************************************************************/
1114 
1115 static int
1116 em_if_shutdown(if_ctx_t ctx)
1117 {
1118 	return em_if_suspend(ctx);
1119 }
1120 
1121 /*
1122  * Suspend/resume device methods.
1123  */
1124 static int
1125 em_if_suspend(if_ctx_t ctx)
1126 {
1127 	struct adapter *adapter = iflib_get_softc(ctx);
1128 
1129 	em_release_manageability(adapter);
1130 	em_release_hw_control(adapter);
1131 	em_enable_wakeup(ctx);
1132 	return (0);
1133 }
1134 
1135 static int
1136 em_if_resume(if_ctx_t ctx)
1137 {
1138 	struct adapter *adapter = iflib_get_softc(ctx);
1139 
1140 	if (adapter->hw.mac.type == e1000_pch2lan)
1141 		e1000_resume_workarounds_pchlan(&adapter->hw);
1142 	em_if_init(ctx);
1143 	em_init_manageability(adapter);
1144 
1145 	return(0);
1146 }
1147 
1148 static int
1149 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1150 {
1151 	int max_frame_size;
1152 	struct adapter *adapter = iflib_get_softc(ctx);
1153 	if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1154 
1155 	 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1156 
1157 	switch (adapter->hw.mac.type) {
1158 	case e1000_82571:
1159 	case e1000_82572:
1160 	case e1000_ich9lan:
1161 	case e1000_ich10lan:
1162 	case e1000_pch2lan:
1163 	case e1000_pch_lpt:
1164 	case e1000_pch_spt:
1165 	case e1000_pch_cnp:
1166 	case e1000_82574:
1167 	case e1000_82583:
1168 	case e1000_80003es2lan:
1169 		/* 9K Jumbo Frame size */
1170 		max_frame_size = 9234;
1171 		break;
1172 	case e1000_pchlan:
1173 		max_frame_size = 4096;
1174 		break;
1175 	case e1000_82542:
1176 	case e1000_ich8lan:
1177 		/* Adapters that do not support jumbo frames */
1178 		max_frame_size = ETHER_MAX_LEN;
1179 		break;
1180 	default:
1181 		if (adapter->hw.mac.type >= igb_mac_min)
1182 			max_frame_size = 9234;
1183 		else /* lem */
1184 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1185 	}
1186 	if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1187 		return (EINVAL);
1188 	}
1189 
1190 	scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
1191 	    mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1192 	return (0);
1193 }
1194 
1195 /*********************************************************************
1196  *  Init entry point
1197  *
1198  *  This routine is used in two ways. It is used by the stack as
1199  *  init entry point in network interface structure. It is also used
1200  *  by the driver as a hw/sw initialization routine to get to a
1201  *  consistent state.
1202  *
1203  *  return 0 on success, positive on failure
1204  **********************************************************************/
1205 
1206 static void
1207 em_if_init(if_ctx_t ctx)
1208 {
1209 	struct adapter *adapter = iflib_get_softc(ctx);
1210 	struct ifnet *ifp = iflib_get_ifp(ctx);
1211 	struct em_tx_queue *tx_que;
1212 	int i;
1213 	INIT_DEBUGOUT("em_if_init: begin");
1214 
1215 	/* Get the latest mac address, User can use a LAA */
1216 	bcopy(if_getlladdr(ifp), adapter->hw.mac.addr,
1217 	    ETHER_ADDR_LEN);
1218 
1219 	/* Put the address into the Receive Address Array */
1220 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1221 
1222 	/*
1223 	 * With the 82571 adapter, RAR[0] may be overwritten
1224 	 * when the other port is reset, we make a duplicate
1225 	 * in RAR[14] for that eventuality, this assures
1226 	 * the interface continues to function.
1227 	 */
1228 	if (adapter->hw.mac.type == e1000_82571) {
1229 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1230 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1231 		    E1000_RAR_ENTRIES - 1);
1232 	}
1233 
1234 
1235 	/* Initialize the hardware */
1236 	em_reset(ctx);
1237 	em_if_update_admin_status(ctx);
1238 
1239 	for (i = 0, tx_que = adapter->tx_queues; i < adapter->tx_num_queues; i++, tx_que++) {
1240 		struct tx_ring *txr = &tx_que->txr;
1241 
1242 		txr->tx_rs_cidx = txr->tx_rs_pidx = txr->tx_cidx_processed = 0;
1243 	}
1244 
1245 	/* Setup VLAN support, basic and offload if available */
1246 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1247 
1248 	/* Clear bad data from Rx FIFOs */
1249 	if (adapter->hw.mac.type >= igb_mac_min)
1250 		e1000_rx_fifo_flush_82575(&adapter->hw);
1251 
1252 	/* Configure for OS presence */
1253 	em_init_manageability(adapter);
1254 
1255 	/* Prepare transmit descriptors and buffers */
1256 	em_initialize_transmit_unit(ctx);
1257 
1258 	/* Setup Multicast table */
1259 	em_if_multi_set(ctx);
1260 
1261 	/*
1262 	 * Figure out the desired mbuf
1263 	 * pool for doing jumbos
1264 	 */
1265 	if (adapter->hw.mac.max_frame_size <= 2048)
1266 		adapter->rx_mbuf_sz = MCLBYTES;
1267 #ifndef CONTIGMALLOC_WORKS
1268 	else
1269 		adapter->rx_mbuf_sz = MJUMPAGESIZE;
1270 #else
1271 	else if (adapter->hw.mac.max_frame_size <= 4096)
1272 		adapter->rx_mbuf_sz = MJUMPAGESIZE;
1273 	else
1274 		adapter->rx_mbuf_sz = MJUM9BYTES;
1275 #endif
1276 	em_initialize_receive_unit(ctx);
1277 
1278 	/* Use real VLAN Filter support? */
1279 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
1280 		if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
1281 			/* Use real VLAN Filter support */
1282 			em_setup_vlan_hw_support(adapter);
1283 		else {
1284 			u32 ctrl;
1285 			ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1286 			ctrl |= E1000_CTRL_VME;
1287 			E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1288 		}
1289 	}
1290 
1291 	/* Don't lose promiscuous settings */
1292 	em_if_set_promisc(ctx, IFF_PROMISC);
1293 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1294 
1295 	/* MSI/X configuration for 82574 */
1296 	if (adapter->hw.mac.type == e1000_82574) {
1297 		int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1298 
1299 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1300 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1301 		/* Set the IVAR - interrupt vector routing. */
1302 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars);
1303 	} else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1304 		igb_configure_queues(adapter);
1305 
1306 	/* this clears any pending interrupts */
1307 	E1000_READ_REG(&adapter->hw, E1000_ICR);
1308 	E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
1309 
1310 	/* AMT based hardware can now take control from firmware */
1311 	if (adapter->has_manage && adapter->has_amt)
1312 		em_get_hw_control(adapter);
1313 
1314 	/* Set Energy Efficient Ethernet */
1315 	if (adapter->hw.mac.type >= igb_mac_min &&
1316 	    adapter->hw.phy.media_type == e1000_media_type_copper) {
1317 		if (adapter->hw.mac.type == e1000_i354)
1318 			e1000_set_eee_i354(&adapter->hw, TRUE, TRUE);
1319 		else
1320 			e1000_set_eee_i350(&adapter->hw, TRUE, TRUE);
1321 	}
1322 }
1323 
1324 /*********************************************************************
1325  *
1326  *  Fast Legacy/MSI Combined Interrupt Service routine
1327  *
1328  *********************************************************************/
1329 int
1330 em_intr(void *arg)
1331 {
1332 	struct adapter *adapter = arg;
1333 	if_ctx_t ctx = adapter->ctx;
1334 	u32 reg_icr;
1335 
1336 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1337 
1338 	if (adapter->intr_type != IFLIB_INTR_LEGACY)
1339 		goto skip_stray;
1340 	/* Hot eject? */
1341 	if (reg_icr == 0xffffffff)
1342 		return FILTER_STRAY;
1343 
1344 	/* Definitely not our interrupt. */
1345 	if (reg_icr == 0x0)
1346 		return FILTER_STRAY;
1347 
1348 	/*
1349 	 * Starting with the 82571 chip, bit 31 should be used to
1350 	 * determine whether the interrupt belongs to us.
1351 	 */
1352 	if (adapter->hw.mac.type >= e1000_82571 &&
1353 	    (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1354 		return FILTER_STRAY;
1355 
1356 skip_stray:
1357 	/* Link status change */
1358 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1359 		adapter->hw.mac.get_link_status = 1;
1360 		iflib_admin_intr_deferred(ctx);
1361 	}
1362 
1363 	if (reg_icr & E1000_ICR_RXO)
1364 		adapter->rx_overruns++;
1365 
1366 	return (FILTER_SCHEDULE_THREAD);
1367 }
1368 
1369 static void
1370 igb_rx_enable_queue(struct adapter *adapter, struct em_rx_queue *rxq)
1371 {
1372 	E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims);
1373 }
1374 
1375 static void
1376 em_rx_enable_queue(struct adapter *adapter, struct em_rx_queue *rxq)
1377 {
1378 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims);
1379 }
1380 
1381 static void
1382 igb_tx_enable_queue(struct adapter *adapter, struct em_tx_queue *txq)
1383 {
1384 	E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txq->eims);
1385 }
1386 
1387 static void
1388 em_tx_enable_queue(struct adapter *adapter, struct em_tx_queue *txq)
1389 {
1390 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, txq->eims);
1391 }
1392 
1393 static int
1394 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1395 {
1396 	struct adapter *adapter = iflib_get_softc(ctx);
1397 	struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1398 
1399 	if (adapter->hw.mac.type >= igb_mac_min)
1400 		igb_rx_enable_queue(adapter, rxq);
1401 	else
1402 		em_rx_enable_queue(adapter, rxq);
1403 	return (0);
1404 }
1405 
1406 static int
1407 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1408 {
1409 	struct adapter *adapter = iflib_get_softc(ctx);
1410 	struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1411 
1412 	if (adapter->hw.mac.type >= igb_mac_min)
1413 		igb_tx_enable_queue(adapter, txq);
1414 	else
1415 		em_tx_enable_queue(adapter, txq);
1416 	return (0);
1417 }
1418 
1419 /*********************************************************************
1420  *
1421  *  MSIX RX Interrupt Service routine
1422  *
1423  **********************************************************************/
1424 static int
1425 em_msix_que(void *arg)
1426 {
1427 	struct em_rx_queue *que = arg;
1428 
1429 	++que->irqs;
1430 
1431 	return (FILTER_SCHEDULE_THREAD);
1432 }
1433 
1434 /*********************************************************************
1435  *
1436  *  MSIX Link Fast Interrupt Service routine
1437  *
1438  **********************************************************************/
1439 static int
1440 em_msix_link(void *arg)
1441 {
1442 	struct adapter *adapter = arg;
1443 	u32 reg_icr;
1444 
1445 	++adapter->link_irq;
1446 	MPASS(adapter->hw.back != NULL);
1447 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1448 
1449 	if (reg_icr & E1000_ICR_RXO)
1450 		adapter->rx_overruns++;
1451 
1452 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1453 		em_handle_link(adapter->ctx);
1454 	} else {
1455 		E1000_WRITE_REG(&adapter->hw, E1000_IMS,
1456 				EM_MSIX_LINK | E1000_IMS_LSC);
1457 		if (adapter->hw.mac.type >= igb_mac_min)
1458 			E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
1459 	}
1460 
1461 	/*
1462 	 * Because we must read the ICR for this interrupt
1463 	 * it may clear other causes using autoclear, for
1464 	 * this reason we simply create a soft interrupt
1465 	 * for all these vectors.
1466 	 */
1467 	if (reg_icr && adapter->hw.mac.type < igb_mac_min) {
1468 		E1000_WRITE_REG(&adapter->hw,
1469 			E1000_ICS, adapter->ims);
1470 	}
1471 
1472 	return (FILTER_HANDLED);
1473 }
1474 
1475 static void
1476 em_handle_link(void *context)
1477 {
1478 	if_ctx_t ctx = context;
1479 	struct adapter *adapter = iflib_get_softc(ctx);
1480 
1481 	adapter->hw.mac.get_link_status = 1;
1482 	iflib_admin_intr_deferred(ctx);
1483 }
1484 
1485 
1486 /*********************************************************************
1487  *
1488  *  Media Ioctl callback
1489  *
1490  *  This routine is called whenever the user queries the status of
1491  *  the interface using ifconfig.
1492  *
1493  **********************************************************************/
1494 static void
1495 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1496 {
1497 	struct adapter *adapter = iflib_get_softc(ctx);
1498 	u_char fiber_type = IFM_1000_SX;
1499 
1500 	INIT_DEBUGOUT("em_if_media_status: begin");
1501 
1502 	iflib_admin_intr_deferred(ctx);
1503 
1504 	ifmr->ifm_status = IFM_AVALID;
1505 	ifmr->ifm_active = IFM_ETHER;
1506 
1507 	if (!adapter->link_active) {
1508 		return;
1509 	}
1510 
1511 	ifmr->ifm_status |= IFM_ACTIVE;
1512 
1513 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
1514 	    (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1515 		if (adapter->hw.mac.type == e1000_82545)
1516 			fiber_type = IFM_1000_LX;
1517 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1518 	} else {
1519 		switch (adapter->link_speed) {
1520 		case 10:
1521 			ifmr->ifm_active |= IFM_10_T;
1522 			break;
1523 		case 100:
1524 			ifmr->ifm_active |= IFM_100_TX;
1525 			break;
1526 		case 1000:
1527 			ifmr->ifm_active |= IFM_1000_T;
1528 			break;
1529 		}
1530 		if (adapter->link_duplex == FULL_DUPLEX)
1531 			ifmr->ifm_active |= IFM_FDX;
1532 		else
1533 			ifmr->ifm_active |= IFM_HDX;
1534 	}
1535 }
1536 
1537 /*********************************************************************
1538  *
1539  *  Media Ioctl callback
1540  *
1541  *  This routine is called when the user changes speed/duplex using
1542  *  media/mediopt option with ifconfig.
1543  *
1544  **********************************************************************/
1545 static int
1546 em_if_media_change(if_ctx_t ctx)
1547 {
1548 	struct adapter *adapter = iflib_get_softc(ctx);
1549 	struct ifmedia *ifm = iflib_get_media(ctx);
1550 
1551 	INIT_DEBUGOUT("em_if_media_change: begin");
1552 
1553 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1554 		return (EINVAL);
1555 
1556 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1557 	case IFM_AUTO:
1558 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1559 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1560 		break;
1561 	case IFM_1000_LX:
1562 	case IFM_1000_SX:
1563 	case IFM_1000_T:
1564 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1565 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1566 		break;
1567 	case IFM_100_TX:
1568 		adapter->hw.mac.autoneg = FALSE;
1569 		adapter->hw.phy.autoneg_advertised = 0;
1570 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1571 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1572 		else
1573 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1574 		break;
1575 	case IFM_10_T:
1576 		adapter->hw.mac.autoneg = FALSE;
1577 		adapter->hw.phy.autoneg_advertised = 0;
1578 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1579 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1580 		else
1581 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1582 		break;
1583 	default:
1584 		device_printf(adapter->dev, "Unsupported media type\n");
1585 	}
1586 
1587 	em_if_init(ctx);
1588 
1589 	return (0);
1590 }
1591 
1592 static int
1593 em_if_set_promisc(if_ctx_t ctx, int flags)
1594 {
1595 	struct adapter *adapter = iflib_get_softc(ctx);
1596 	u32 reg_rctl;
1597 
1598 	em_disable_promisc(ctx);
1599 
1600 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1601 
1602 	if (flags & IFF_PROMISC) {
1603 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1604 		/* Turn this on if you want to see bad packets */
1605 		if (em_debug_sbp)
1606 			reg_rctl |= E1000_RCTL_SBP;
1607 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1608 	} else if (flags & IFF_ALLMULTI) {
1609 		reg_rctl |= E1000_RCTL_MPE;
1610 		reg_rctl &= ~E1000_RCTL_UPE;
1611 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1612 	}
1613 	return (0);
1614 }
1615 
1616 static void
1617 em_disable_promisc(if_ctx_t ctx)
1618 {
1619 	struct adapter *adapter = iflib_get_softc(ctx);
1620 	struct ifnet *ifp = iflib_get_ifp(ctx);
1621 	u32 reg_rctl;
1622 	int mcnt = 0;
1623 
1624 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1625 	reg_rctl &= (~E1000_RCTL_UPE);
1626 	if (if_getflags(ifp) & IFF_ALLMULTI)
1627 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1628 	else
1629 		mcnt = if_multiaddr_count(ifp, MAX_NUM_MULTICAST_ADDRESSES);
1630 	/* Don't disable if in MAX groups */
1631 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1632 		reg_rctl &=  (~E1000_RCTL_MPE);
1633 	reg_rctl &=  (~E1000_RCTL_SBP);
1634 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1635 }
1636 
1637 
1638 /*********************************************************************
1639  *  Multicast Update
1640  *
1641  *  This routine is called whenever multicast address list is updated.
1642  *
1643  **********************************************************************/
1644 
1645 static void
1646 em_if_multi_set(if_ctx_t ctx)
1647 {
1648 	struct adapter *adapter = iflib_get_softc(ctx);
1649 	struct ifnet *ifp = iflib_get_ifp(ctx);
1650 	u32 reg_rctl = 0;
1651 	u8  *mta; /* Multicast array memory */
1652 	int mcnt = 0;
1653 
1654 	IOCTL_DEBUGOUT("em_set_multi: begin");
1655 
1656 	mta = adapter->mta;
1657 	bzero(mta, sizeof(u8) * ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1658 
1659 	if (adapter->hw.mac.type == e1000_82542 &&
1660 	    adapter->hw.revision_id == E1000_REVISION_2) {
1661 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1662 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1663 			e1000_pci_clear_mwi(&adapter->hw);
1664 		reg_rctl |= E1000_RCTL_RST;
1665 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1666 		msec_delay(5);
1667 	}
1668 
1669 	if_multiaddr_array(ifp, mta, &mcnt, MAX_NUM_MULTICAST_ADDRESSES);
1670 
1671 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1672 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1673 		reg_rctl |= E1000_RCTL_MPE;
1674 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1675 	} else
1676 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1677 
1678 	if (adapter->hw.mac.type == e1000_82542 &&
1679 	    adapter->hw.revision_id == E1000_REVISION_2) {
1680 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1681 		reg_rctl &= ~E1000_RCTL_RST;
1682 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1683 		msec_delay(5);
1684 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1685 			e1000_pci_set_mwi(&adapter->hw);
1686 	}
1687 }
1688 
1689 
1690 /*********************************************************************
1691  *  Timer routine
1692  *
1693  *  This routine checks for link status and updates statistics.
1694  *
1695  **********************************************************************/
1696 
1697 static void
1698 em_if_timer(if_ctx_t ctx, uint16_t qid)
1699 {
1700 	struct adapter *adapter = iflib_get_softc(ctx);
1701 	struct em_rx_queue *que;
1702 	int i;
1703 	int trigger = 0;
1704 
1705 	if (qid != 0)
1706 		return;
1707 
1708 	iflib_admin_intr_deferred(ctx);
1709 
1710 	/* Mask to use in the irq trigger */
1711 	if (adapter->intr_type == IFLIB_INTR_MSIX) {
1712 		for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++)
1713 			trigger |= que->eims;
1714 	} else {
1715 		trigger = E1000_ICS_RXDMT0;
1716 	}
1717 }
1718 
1719 
1720 static void
1721 em_if_update_admin_status(if_ctx_t ctx)
1722 {
1723 	struct adapter *adapter = iflib_get_softc(ctx);
1724 	struct e1000_hw *hw = &adapter->hw;
1725 	struct ifnet *ifp = iflib_get_ifp(ctx);
1726 	device_t dev = iflib_get_dev(ctx);
1727 	u32 link_check, thstat, ctrl;
1728 
1729 	link_check = thstat = ctrl = 0;
1730 	/* Get the cached link value or read phy for real */
1731 	switch (hw->phy.media_type) {
1732 	case e1000_media_type_copper:
1733 		if (hw->mac.get_link_status) {
1734 			if (hw->mac.type == e1000_pch_spt)
1735 				msec_delay(50);
1736 			/* Do the work to read phy */
1737 			e1000_check_for_link(hw);
1738 			link_check = !hw->mac.get_link_status;
1739 			if (link_check) /* ESB2 fix */
1740 				e1000_cfg_on_link_up(hw);
1741 		} else {
1742 			link_check = TRUE;
1743 		}
1744 		break;
1745 	case e1000_media_type_fiber:
1746 		e1000_check_for_link(hw);
1747 		link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1748 			    E1000_STATUS_LU);
1749 		break;
1750 	case e1000_media_type_internal_serdes:
1751 		e1000_check_for_link(hw);
1752 		link_check = adapter->hw.mac.serdes_has_link;
1753 		break;
1754 	/* VF device is type_unknown */
1755 	case e1000_media_type_unknown:
1756 		e1000_check_for_link(hw);
1757 		link_check = !hw->mac.get_link_status;
1758 		/* FALLTHROUGH */
1759 	default:
1760 		break;
1761 	}
1762 
1763 	/* Check for thermal downshift or shutdown */
1764 	if (hw->mac.type == e1000_i350) {
1765 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1766 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1767 	}
1768 
1769 	/* Now check for a transition */
1770 	if (link_check && (adapter->link_active == 0)) {
1771 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
1772 		    &adapter->link_duplex);
1773 		/* Check if we must disable SPEED_MODE bit on PCI-E */
1774 		if ((adapter->link_speed != SPEED_1000) &&
1775 		    ((hw->mac.type == e1000_82571) ||
1776 		    (hw->mac.type == e1000_82572))) {
1777 			int tarc0;
1778 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1779 			tarc0 &= ~TARC_SPEED_MODE_BIT;
1780 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1781 		}
1782 		if (bootverbose)
1783 			device_printf(dev, "Link is up %d Mbps %s\n",
1784 			    adapter->link_speed,
1785 			    ((adapter->link_duplex == FULL_DUPLEX) ?
1786 			    "Full Duplex" : "Half Duplex"));
1787 		adapter->link_active = 1;
1788 		adapter->smartspeed = 0;
1789 		if_setbaudrate(ifp, adapter->link_speed * 1000000);
1790 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1791 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1792 			device_printf(dev, "Link: thermal downshift\n");
1793 		/* Delay Link Up for Phy update */
1794 		if (((hw->mac.type == e1000_i210) ||
1795 		    (hw->mac.type == e1000_i211)) &&
1796 		    (hw->phy.id == I210_I_PHY_ID))
1797 			msec_delay(I210_LINK_DELAY);
1798 		/* Reset if the media type changed. */
1799 		if ((hw->dev_spec._82575.media_changed) &&
1800 			(adapter->hw.mac.type >= igb_mac_min)) {
1801 			hw->dev_spec._82575.media_changed = false;
1802 			adapter->flags |= IGB_MEDIA_RESET;
1803 			em_reset(ctx);
1804 		}
1805 		iflib_link_state_change(ctx, LINK_STATE_UP, ifp->if_baudrate);
1806 		printf("Link state changed to up\n");
1807 	} else if (!link_check && (adapter->link_active == 1)) {
1808 		if_setbaudrate(ifp, 0);
1809 		adapter->link_speed = 0;
1810 		adapter->link_duplex = 0;
1811 		if (bootverbose)
1812 			device_printf(dev, "Link is Down\n");
1813 		adapter->link_active = 0;
1814 		iflib_link_state_change(ctx, LINK_STATE_DOWN, ifp->if_baudrate);
1815 		printf("link state changed to down\n");
1816 	}
1817 	em_update_stats_counters(adapter);
1818 
1819 	/* Reset LAA into RAR[0] on 82571 */
1820 	if ((adapter->hw.mac.type == e1000_82571) &&
1821 	    e1000_get_laa_state_82571(&adapter->hw))
1822 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1823 
1824 	if (adapter->hw.mac.type < em_mac_min)
1825 		lem_smartspeed(adapter);
1826 
1827 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK | E1000_IMS_LSC);
1828 }
1829 
1830 /*********************************************************************
1831  *
1832  *  This routine disables all traffic on the adapter by issuing a
1833  *  global reset on the MAC and deallocates TX/RX buffers.
1834  *
1835  *  This routine should always be called with BOTH the CORE
1836  *  and TX locks.
1837  **********************************************************************/
1838 
1839 static void
1840 em_if_stop(if_ctx_t ctx)
1841 {
1842 	struct adapter *adapter = iflib_get_softc(ctx);
1843 
1844 	INIT_DEBUGOUT("em_stop: begin");
1845 
1846 	e1000_reset_hw(&adapter->hw);
1847 	if (adapter->hw.mac.type >= e1000_82544)
1848 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0);
1849 
1850 	e1000_led_off(&adapter->hw);
1851 	e1000_cleanup_led(&adapter->hw);
1852 }
1853 
1854 
1855 /*********************************************************************
1856  *
1857  *  Determine hardware revision.
1858  *
1859  **********************************************************************/
1860 static void
1861 em_identify_hardware(if_ctx_t ctx)
1862 {
1863 	device_t dev = iflib_get_dev(ctx);
1864 	struct adapter *adapter = iflib_get_softc(ctx);
1865 
1866 	/* Make sure our PCI config space has the necessary stuff set */
1867 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1868 
1869 	/* Save off the information about this board */
1870 	adapter->hw.vendor_id = pci_get_vendor(dev);
1871 	adapter->hw.device_id = pci_get_device(dev);
1872 	adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1873 	adapter->hw.subsystem_vendor_id =
1874 	    pci_read_config(dev, PCIR_SUBVEND_0, 2);
1875 	adapter->hw.subsystem_device_id =
1876 	    pci_read_config(dev, PCIR_SUBDEV_0, 2);
1877 
1878 	/* Do Shared Code Init and Setup */
1879 	if (e1000_set_mac_type(&adapter->hw)) {
1880 		device_printf(dev, "Setup init failure\n");
1881 		return;
1882 	}
1883 }
1884 
1885 static int
1886 em_allocate_pci_resources(if_ctx_t ctx)
1887 {
1888 	struct adapter *adapter = iflib_get_softc(ctx);
1889 	device_t dev = iflib_get_dev(ctx);
1890 	int rid, val;
1891 
1892 	rid = PCIR_BAR(0);
1893 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1894 	    &rid, RF_ACTIVE);
1895 	if (adapter->memory == NULL) {
1896 		device_printf(dev, "Unable to allocate bus resource: memory\n");
1897 		return (ENXIO);
1898 	}
1899 	adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->memory);
1900 	adapter->osdep.mem_bus_space_handle =
1901 	    rman_get_bushandle(adapter->memory);
1902 	adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
1903 
1904 	/* Only older adapters use IO mapping */
1905 	if (adapter->hw.mac.type < em_mac_min &&
1906 	    adapter->hw.mac.type > e1000_82543) {
1907 		/* Figure our where our IO BAR is ? */
1908 		for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1909 			val = pci_read_config(dev, rid, 4);
1910 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1911 				adapter->io_rid = rid;
1912 				break;
1913 			}
1914 			rid += 4;
1915 			/* check for 64bit BAR */
1916 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1917 				rid += 4;
1918 		}
1919 		if (rid >= PCIR_CIS) {
1920 			device_printf(dev, "Unable to locate IO BAR\n");
1921 			return (ENXIO);
1922 		}
1923 		adapter->ioport = bus_alloc_resource_any(dev,
1924 		    SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE);
1925 		if (adapter->ioport == NULL) {
1926 			device_printf(dev, "Unable to allocate bus resource: "
1927 			    "ioport\n");
1928 			return (ENXIO);
1929 		}
1930 		adapter->hw.io_base = 0;
1931 		adapter->osdep.io_bus_space_tag =
1932 		    rman_get_bustag(adapter->ioport);
1933 		adapter->osdep.io_bus_space_handle =
1934 		    rman_get_bushandle(adapter->ioport);
1935 	}
1936 
1937 	adapter->hw.back = &adapter->osdep;
1938 
1939 	return (0);
1940 }
1941 
1942 /*********************************************************************
1943  *
1944  *  Setup the MSIX Interrupt handlers
1945  *
1946  **********************************************************************/
1947 static int
1948 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
1949 {
1950 	struct adapter *adapter = iflib_get_softc(ctx);
1951 	struct em_rx_queue *rx_que = adapter->rx_queues;
1952 	struct em_tx_queue *tx_que = adapter->tx_queues;
1953 	int error, rid, i, vector = 0, rx_vectors;
1954 	char buf[16];
1955 
1956 	/* First set up ring resources */
1957 	for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) {
1958 		rid = vector + 1;
1959 		snprintf(buf, sizeof(buf), "rxq%d", i);
1960 		error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
1961 		if (error) {
1962 			device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
1963 			adapter->rx_num_queues = i + 1;
1964 			goto fail;
1965 		}
1966 
1967 		rx_que->msix =  vector;
1968 
1969 		/*
1970 		 * Set the bit to enable interrupt
1971 		 * in E1000_IMS -- bits 20 and 21
1972 		 * are for RX0 and RX1, note this has
1973 		 * NOTHING to do with the MSIX vector
1974 		 */
1975 		if (adapter->hw.mac.type == e1000_82574) {
1976 			rx_que->eims = 1 << (20 + i);
1977 			adapter->ims |= rx_que->eims;
1978 			adapter->ivars |= (8 | rx_que->msix) << (i * 4);
1979 		} else if (adapter->hw.mac.type == e1000_82575)
1980 			rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
1981 		else
1982 			rx_que->eims = 1 << vector;
1983 	}
1984 	rx_vectors = vector;
1985 
1986 	vector = 0;
1987 	for (i = 0; i < adapter->tx_num_queues; i++, tx_que++, vector++) {
1988 		rid = vector + 1;
1989 		snprintf(buf, sizeof(buf), "txq%d", i);
1990 		tx_que = &adapter->tx_queues[i];
1991 		iflib_softirq_alloc_generic(ctx,
1992 		    &adapter->rx_queues[i % adapter->rx_num_queues].que_irq,
1993 		    IFLIB_INTR_TX, tx_que, tx_que->me, buf);
1994 
1995 		tx_que->msix = (vector % adapter->tx_num_queues);
1996 
1997 		/*
1998 		 * Set the bit to enable interrupt
1999 		 * in E1000_IMS -- bits 22 and 23
2000 		 * are for TX0 and TX1, note this has
2001 		 * NOTHING to do with the MSIX vector
2002 		 */
2003 		if (adapter->hw.mac.type == e1000_82574) {
2004 			tx_que->eims = 1 << (22 + i);
2005 			adapter->ims |= tx_que->eims;
2006 			adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2007 		} else if (adapter->hw.mac.type == e1000_82575) {
2008 			tx_que->eims = E1000_EICR_TX_QUEUE0 << (i %  adapter->tx_num_queues);
2009 		} else {
2010 			tx_que->eims = 1 << (i %  adapter->tx_num_queues);
2011 		}
2012 	}
2013 
2014 	/* Link interrupt */
2015 	rid = rx_vectors + 1;
2016 	error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq");
2017 
2018 	if (error) {
2019 		device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
2020 		goto fail;
2021 	}
2022 	adapter->linkvec = rx_vectors;
2023 	if (adapter->hw.mac.type < igb_mac_min) {
2024 		adapter->ivars |=  (8 | rx_vectors) << 16;
2025 		adapter->ivars |= 0x80000000;
2026 	}
2027 	return (0);
2028 fail:
2029 	iflib_irq_free(ctx, &adapter->irq);
2030 	rx_que = adapter->rx_queues;
2031 	for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++)
2032 		iflib_irq_free(ctx, &rx_que->que_irq);
2033 	return (error);
2034 }
2035 
2036 static void
2037 igb_configure_queues(struct adapter *adapter)
2038 {
2039 	struct e1000_hw *hw = &adapter->hw;
2040 	struct em_rx_queue *rx_que;
2041 	struct em_tx_queue *tx_que;
2042 	u32 tmp, ivar = 0, newitr = 0;
2043 
2044 	/* First turn on RSS capability */
2045 	if (adapter->hw.mac.type != e1000_82575)
2046 		E1000_WRITE_REG(hw, E1000_GPIE,
2047 		    E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2048 		    E1000_GPIE_PBA | E1000_GPIE_NSICR);
2049 
2050 	/* Turn on MSIX */
2051 	switch (adapter->hw.mac.type) {
2052 	case e1000_82580:
2053 	case e1000_i350:
2054 	case e1000_i354:
2055 	case e1000_i210:
2056 	case e1000_i211:
2057 	case e1000_vfadapt:
2058 	case e1000_vfadapt_i350:
2059 		/* RX entries */
2060 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2061 			u32 index = i >> 1;
2062 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2063 			rx_que = &adapter->rx_queues[i];
2064 			if (i & 1) {
2065 				ivar &= 0xFF00FFFF;
2066 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2067 			} else {
2068 				ivar &= 0xFFFFFF00;
2069 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2070 			}
2071 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2072 		}
2073 		/* TX entries */
2074 		for (int i = 0; i < adapter->tx_num_queues; i++) {
2075 			u32 index = i >> 1;
2076 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2077 			tx_que = &adapter->tx_queues[i];
2078 			if (i & 1) {
2079 				ivar &= 0x00FFFFFF;
2080 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2081 			} else {
2082 				ivar &= 0xFFFF00FF;
2083 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2084 			}
2085 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2086 			adapter->que_mask |= tx_que->eims;
2087 		}
2088 
2089 		/* And for the link interrupt */
2090 		ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2091 		adapter->link_mask = 1 << adapter->linkvec;
2092 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2093 		break;
2094 	case e1000_82576:
2095 		/* RX entries */
2096 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2097 			u32 index = i & 0x7; /* Each IVAR has two entries */
2098 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2099 			rx_que = &adapter->rx_queues[i];
2100 			if (i < 8) {
2101 				ivar &= 0xFFFFFF00;
2102 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2103 			} else {
2104 				ivar &= 0xFF00FFFF;
2105 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2106 			}
2107 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2108 			adapter->que_mask |= rx_que->eims;
2109 		}
2110 		/* TX entries */
2111 		for (int i = 0; i < adapter->tx_num_queues; i++) {
2112 			u32 index = i & 0x7; /* Each IVAR has two entries */
2113 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2114 			tx_que = &adapter->tx_queues[i];
2115 			if (i < 8) {
2116 				ivar &= 0xFFFF00FF;
2117 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2118 			} else {
2119 				ivar &= 0x00FFFFFF;
2120 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2121 			}
2122 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2123 			adapter->que_mask |= tx_que->eims;
2124 		}
2125 
2126 		/* And for the link interrupt */
2127 		ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2128 		adapter->link_mask = 1 << adapter->linkvec;
2129 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2130 		break;
2131 
2132 	case e1000_82575:
2133 		/* enable MSI-X support*/
2134 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2135 		tmp |= E1000_CTRL_EXT_PBA_CLR;
2136 		/* Auto-Mask interrupts upon ICR read. */
2137 		tmp |= E1000_CTRL_EXT_EIAME;
2138 		tmp |= E1000_CTRL_EXT_IRCA;
2139 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2140 
2141 		/* Queues */
2142 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2143 			rx_que = &adapter->rx_queues[i];
2144 			tmp = E1000_EICR_RX_QUEUE0 << i;
2145 			tmp |= E1000_EICR_TX_QUEUE0 << i;
2146 			rx_que->eims = tmp;
2147 			E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2148 			    i, rx_que->eims);
2149 			adapter->que_mask |= rx_que->eims;
2150 		}
2151 
2152 		/* Link */
2153 		E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
2154 		    E1000_EIMS_OTHER);
2155 		adapter->link_mask |= E1000_EIMS_OTHER;
2156 	default:
2157 		break;
2158 	}
2159 
2160 	/* Set the starting interrupt rate */
2161 	if (em_max_interrupt_rate > 0)
2162 		newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2163 
2164 	if (hw->mac.type == e1000_82575)
2165 		newitr |= newitr << 16;
2166 	else
2167 		newitr |= E1000_EITR_CNT_IGNR;
2168 
2169 	for (int i = 0; i < adapter->rx_num_queues; i++) {
2170 		rx_que = &adapter->rx_queues[i];
2171 		E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2172 	}
2173 
2174 	return;
2175 }
2176 
2177 static void
2178 em_free_pci_resources(if_ctx_t ctx)
2179 {
2180 	struct adapter *adapter = iflib_get_softc(ctx);
2181 	struct em_rx_queue *que = adapter->rx_queues;
2182 	device_t dev = iflib_get_dev(ctx);
2183 
2184 	/* Release all msix queue resources */
2185 	if (adapter->intr_type == IFLIB_INTR_MSIX)
2186 		iflib_irq_free(ctx, &adapter->irq);
2187 
2188 	for (int i = 0; i < adapter->rx_num_queues; i++, que++) {
2189 		iflib_irq_free(ctx, &que->que_irq);
2190 	}
2191 
2192 	/* First release all the interrupt resources */
2193 	if (adapter->memory != NULL) {
2194 		bus_release_resource(dev, SYS_RES_MEMORY,
2195 				     PCIR_BAR(0), adapter->memory);
2196 		adapter->memory = NULL;
2197 	}
2198 
2199 	if (adapter->flash != NULL) {
2200 		bus_release_resource(dev, SYS_RES_MEMORY,
2201 				     EM_FLASH, adapter->flash);
2202 		adapter->flash = NULL;
2203 	}
2204 	if (adapter->ioport != NULL)
2205 		bus_release_resource(dev, SYS_RES_IOPORT,
2206 		    adapter->io_rid, adapter->ioport);
2207 }
2208 
2209 /* Setup MSI or MSI/X */
2210 static int
2211 em_setup_msix(if_ctx_t ctx)
2212 {
2213 	struct adapter *adapter = iflib_get_softc(ctx);
2214 
2215 	if (adapter->hw.mac.type == e1000_82574) {
2216 		em_enable_vectors_82574(ctx);
2217 	}
2218 	return (0);
2219 }
2220 
2221 /*********************************************************************
2222  *
2223  *  Initialize the hardware to a configuration
2224  *  as specified by the adapter structure.
2225  *
2226  **********************************************************************/
2227 
2228 static void
2229 lem_smartspeed(struct adapter *adapter)
2230 {
2231 	u16 phy_tmp;
2232 
2233 	if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
2234 	    adapter->hw.mac.autoneg == 0 ||
2235 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2236 		return;
2237 
2238 	if (adapter->smartspeed == 0) {
2239 		/* If Master/Slave config fault is asserted twice,
2240 		 * we assume back-to-back */
2241 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2242 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2243 			return;
2244 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2245 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2246 			e1000_read_phy_reg(&adapter->hw,
2247 			    PHY_1000T_CTRL, &phy_tmp);
2248 			if(phy_tmp & CR_1000T_MS_ENABLE) {
2249 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2250 				e1000_write_phy_reg(&adapter->hw,
2251 				    PHY_1000T_CTRL, phy_tmp);
2252 				adapter->smartspeed++;
2253 				if(adapter->hw.mac.autoneg &&
2254 				   !e1000_copper_link_autoneg(&adapter->hw) &&
2255 				   !e1000_read_phy_reg(&adapter->hw,
2256 				    PHY_CONTROL, &phy_tmp)) {
2257 					phy_tmp |= (MII_CR_AUTO_NEG_EN |
2258 						    MII_CR_RESTART_AUTO_NEG);
2259 					e1000_write_phy_reg(&adapter->hw,
2260 					    PHY_CONTROL, phy_tmp);
2261 				}
2262 			}
2263 		}
2264 		return;
2265 	} else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2266 		/* If still no link, perhaps using 2/3 pair cable */
2267 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2268 		phy_tmp |= CR_1000T_MS_ENABLE;
2269 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2270 		if(adapter->hw.mac.autoneg &&
2271 		   !e1000_copper_link_autoneg(&adapter->hw) &&
2272 		   !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2273 			phy_tmp |= (MII_CR_AUTO_NEG_EN |
2274 				    MII_CR_RESTART_AUTO_NEG);
2275 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2276 		}
2277 	}
2278 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2279 	if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2280 		adapter->smartspeed = 0;
2281 }
2282 
2283 /*********************************************************************
2284  *
2285  *  Initialize the DMA Coalescing feature
2286  *
2287  **********************************************************************/
2288 static void
2289 igb_init_dmac(struct adapter *adapter, u32 pba)
2290 {
2291 	device_t	dev = adapter->dev;
2292 	struct e1000_hw *hw = &adapter->hw;
2293 	u32 		dmac, reg = ~E1000_DMACR_DMAC_EN;
2294 	u16		hwm;
2295 	u16		max_frame_size;
2296 
2297 	if (hw->mac.type == e1000_i211)
2298 		return;
2299 
2300 	max_frame_size = adapter->shared->isc_max_frame_size;
2301 	if (hw->mac.type > e1000_82580) {
2302 
2303 		if (adapter->dmac == 0) { /* Disabling it */
2304 			E1000_WRITE_REG(hw, E1000_DMACR, reg);
2305 			return;
2306 		} else
2307 			device_printf(dev, "DMA Coalescing enabled\n");
2308 
2309 		/* Set starting threshold */
2310 		E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2311 
2312 		hwm = 64 * pba - max_frame_size / 16;
2313 		if (hwm < 64 * (pba - 6))
2314 			hwm = 64 * (pba - 6);
2315 		reg = E1000_READ_REG(hw, E1000_FCRTC);
2316 		reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2317 		reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2318 		    & E1000_FCRTC_RTH_COAL_MASK);
2319 		E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2320 
2321 
2322 		dmac = pba - max_frame_size / 512;
2323 		if (dmac < pba - 10)
2324 			dmac = pba - 10;
2325 		reg = E1000_READ_REG(hw, E1000_DMACR);
2326 		reg &= ~E1000_DMACR_DMACTHR_MASK;
2327 		reg = ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2328 		    & E1000_DMACR_DMACTHR_MASK);
2329 
2330 		/* transition to L0x or L1 if available..*/
2331 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2332 
2333 		/* Check if status is 2.5Gb backplane connection
2334 		* before configuration of watchdog timer, which is
2335 		* in msec values in 12.8usec intervals
2336 		* watchdog timer= msec values in 32usec intervals
2337 		* for non 2.5Gb connection
2338 		*/
2339 		if (hw->mac.type == e1000_i354) {
2340 			int status = E1000_READ_REG(hw, E1000_STATUS);
2341 			if ((status & E1000_STATUS_2P5_SKU) &&
2342 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2343 				reg |= ((adapter->dmac * 5) >> 6);
2344 			else
2345 				reg |= (adapter->dmac >> 5);
2346 		} else {
2347 			reg |= (adapter->dmac >> 5);
2348 		}
2349 
2350 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
2351 
2352 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2353 
2354 		/* Set the interval before transition */
2355 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
2356 		if (hw->mac.type == e1000_i350)
2357 			reg |= IGB_DMCTLX_DCFLUSH_DIS;
2358 		/*
2359 		** in 2.5Gb connection, TTLX unit is 0.4 usec
2360 		** which is 0x4*2 = 0xA. But delay is still 4 usec
2361 		*/
2362 		if (hw->mac.type == e1000_i354) {
2363 			int status = E1000_READ_REG(hw, E1000_STATUS);
2364 			if ((status & E1000_STATUS_2P5_SKU) &&
2365 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2366 				reg |= 0xA;
2367 			else
2368 				reg |= 0x4;
2369 		} else {
2370 			reg |= 0x4;
2371 		}
2372 
2373 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2374 
2375 		/* free space in tx packet buffer to wake from DMA coal */
2376 		E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2377 		    (2 * max_frame_size)) >> 6);
2378 
2379 		/* make low power state decision controlled by DMA coal */
2380 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2381 		reg &= ~E1000_PCIEMISC_LX_DECISION;
2382 		E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2383 
2384 	} else if (hw->mac.type == e1000_82580) {
2385 		u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2386 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
2387 		    reg & ~E1000_PCIEMISC_LX_DECISION);
2388 		E1000_WRITE_REG(hw, E1000_DMACR, 0);
2389 	}
2390 }
2391 
2392 static void
2393 em_reset(if_ctx_t ctx)
2394 {
2395 	device_t dev = iflib_get_dev(ctx);
2396 	struct adapter *adapter = iflib_get_softc(ctx);
2397 	struct ifnet *ifp = iflib_get_ifp(ctx);
2398 	struct e1000_hw *hw = &adapter->hw;
2399 	u16 rx_buffer_size;
2400 	u32 pba;
2401 
2402 	INIT_DEBUGOUT("em_reset: begin");
2403 	/* Let the firmware know the OS is in control */
2404 	em_get_hw_control(adapter);
2405 
2406 	/* Set up smart power down as default off on newer adapters. */
2407 	if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2408 	    hw->mac.type == e1000_82572)) {
2409 		u16 phy_tmp = 0;
2410 
2411 		/* Speed up time to link by disabling smart power down. */
2412 		e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2413 		phy_tmp &= ~IGP02E1000_PM_SPD;
2414 		e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2415 	}
2416 
2417 	/*
2418 	 * Packet Buffer Allocation (PBA)
2419 	 * Writing PBA sets the receive portion of the buffer
2420 	 * the remainder is used for the transmit buffer.
2421 	 */
2422 	switch (hw->mac.type) {
2423 	/* Total Packet Buffer on these is 48K */
2424 	case e1000_82571:
2425 	case e1000_82572:
2426 	case e1000_80003es2lan:
2427 			pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2428 		break;
2429 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2430 			pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2431 		break;
2432 	case e1000_82574:
2433 	case e1000_82583:
2434 			pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2435 		break;
2436 	case e1000_ich8lan:
2437 		pba = E1000_PBA_8K;
2438 		break;
2439 	case e1000_ich9lan:
2440 	case e1000_ich10lan:
2441 		/* Boost Receive side for jumbo frames */
2442 		if (adapter->hw.mac.max_frame_size > 4096)
2443 			pba = E1000_PBA_14K;
2444 		else
2445 			pba = E1000_PBA_10K;
2446 		break;
2447 	case e1000_pchlan:
2448 	case e1000_pch2lan:
2449 	case e1000_pch_lpt:
2450 	case e1000_pch_spt:
2451 	case e1000_pch_cnp:
2452 		pba = E1000_PBA_26K;
2453 		break;
2454 	case e1000_82575:
2455 		pba = E1000_PBA_32K;
2456 		break;
2457 	case e1000_82576:
2458 	case e1000_vfadapt:
2459 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2460 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2461 		break;
2462 	case e1000_82580:
2463 	case e1000_i350:
2464 	case e1000_i354:
2465 	case e1000_vfadapt_i350:
2466 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2467 		pba = e1000_rxpbs_adjust_82580(pba);
2468 		break;
2469 	case e1000_i210:
2470 	case e1000_i211:
2471 		pba = E1000_PBA_34K;
2472 		break;
2473 	default:
2474 		if (adapter->hw.mac.max_frame_size > 8192)
2475 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2476 		else
2477 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2478 	}
2479 
2480 	/* Special needs in case of Jumbo frames */
2481 	if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
2482 		u32 tx_space, min_tx, min_rx;
2483 		pba = E1000_READ_REG(hw, E1000_PBA);
2484 		tx_space = pba >> 16;
2485 		pba &= 0xffff;
2486 		min_tx = (adapter->hw.mac.max_frame_size +
2487 		    sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
2488 		min_tx = roundup2(min_tx, 1024);
2489 		min_tx >>= 10;
2490 		min_rx = adapter->hw.mac.max_frame_size;
2491 		min_rx = roundup2(min_rx, 1024);
2492 		min_rx >>= 10;
2493 		if (tx_space < min_tx &&
2494 		    ((min_tx - tx_space) < pba)) {
2495 			pba = pba - (min_tx - tx_space);
2496 			/*
2497 			 * if short on rx space, rx wins
2498 			 * and must trump tx adjustment
2499 			 */
2500 			if (pba < min_rx)
2501 				pba = min_rx;
2502 		}
2503 		E1000_WRITE_REG(hw, E1000_PBA, pba);
2504 	}
2505 
2506 	if (hw->mac.type < igb_mac_min)
2507 		E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2508 
2509 	INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
2510 
2511 	/*
2512 	 * These parameters control the automatic generation (Tx) and
2513 	 * response (Rx) to Ethernet PAUSE frames.
2514 	 * - High water mark should allow for at least two frames to be
2515 	 *   received after sending an XOFF.
2516 	 * - Low water mark works best when it is very near the high water mark.
2517 	 *   This allows the receiver to restart by sending XON when it has
2518 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
2519 	 *   restart after one full frame is pulled from the buffer. There
2520 	 *   could be several smaller frames in the buffer and if so they will
2521 	 *   not trigger the XON until their total number reduces the buffer
2522 	 *   by 1500.
2523 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2524 	 */
2525 	rx_buffer_size = (pba & 0xffff) << 10;
2526 	hw->fc.high_water = rx_buffer_size -
2527 	    roundup2(adapter->hw.mac.max_frame_size, 1024);
2528 	hw->fc.low_water = hw->fc.high_water - 1500;
2529 
2530 	if (adapter->fc) /* locally set flow control value? */
2531 		hw->fc.requested_mode = adapter->fc;
2532 	else
2533 		hw->fc.requested_mode = e1000_fc_full;
2534 
2535 	if (hw->mac.type == e1000_80003es2lan)
2536 		hw->fc.pause_time = 0xFFFF;
2537 	else
2538 		hw->fc.pause_time = EM_FC_PAUSE_TIME;
2539 
2540 	hw->fc.send_xon = TRUE;
2541 
2542 	/* Device specific overrides/settings */
2543 	switch (hw->mac.type) {
2544 	case e1000_pchlan:
2545 		/* Workaround: no TX flow ctrl for PCH */
2546 		hw->fc.requested_mode = e1000_fc_rx_pause;
2547 		hw->fc.pause_time = 0xFFFF; /* override */
2548 		if (if_getmtu(ifp) > ETHERMTU) {
2549 			hw->fc.high_water = 0x3500;
2550 			hw->fc.low_water = 0x1500;
2551 		} else {
2552 			hw->fc.high_water = 0x5000;
2553 			hw->fc.low_water = 0x3000;
2554 		}
2555 		hw->fc.refresh_time = 0x1000;
2556 		break;
2557 	case e1000_pch2lan:
2558 	case e1000_pch_lpt:
2559 	case e1000_pch_spt:
2560 	case e1000_pch_cnp:
2561 		hw->fc.high_water = 0x5C20;
2562 		hw->fc.low_water = 0x5048;
2563 		hw->fc.pause_time = 0x0650;
2564 		hw->fc.refresh_time = 0x0400;
2565 		/* Jumbos need adjusted PBA */
2566 		if (if_getmtu(ifp) > ETHERMTU)
2567 			E1000_WRITE_REG(hw, E1000_PBA, 12);
2568 		else
2569 			E1000_WRITE_REG(hw, E1000_PBA, 26);
2570 		break;
2571 	case e1000_82575:
2572 	case e1000_82576:
2573 		/* 8-byte granularity */
2574 		hw->fc.low_water = hw->fc.high_water - 8;
2575 		break;
2576 	case e1000_82580:
2577 	case e1000_i350:
2578 	case e1000_i354:
2579 	case e1000_i210:
2580 	case e1000_i211:
2581 	case e1000_vfadapt:
2582 	case e1000_vfadapt_i350:
2583 		/* 16-byte granularity */
2584 		hw->fc.low_water = hw->fc.high_water - 16;
2585 		break;
2586 	case e1000_ich9lan:
2587 	case e1000_ich10lan:
2588 		if (if_getmtu(ifp) > ETHERMTU) {
2589 			hw->fc.high_water = 0x2800;
2590 			hw->fc.low_water = hw->fc.high_water - 8;
2591 			break;
2592 		}
2593 		/* FALLTHROUGH */
2594 	default:
2595 		if (hw->mac.type == e1000_80003es2lan)
2596 			hw->fc.pause_time = 0xFFFF;
2597 		break;
2598 	}
2599 
2600 	/* Issue a global reset */
2601 	e1000_reset_hw(hw);
2602 	if (adapter->hw.mac.type >= igb_mac_min) {
2603 		E1000_WRITE_REG(hw, E1000_WUC, 0);
2604 	} else {
2605 		E1000_WRITE_REG(hw, E1000_WUFC, 0);
2606 		em_disable_aspm(adapter);
2607 	}
2608 	if (adapter->flags & IGB_MEDIA_RESET) {
2609 		e1000_setup_init_funcs(hw, TRUE);
2610 		e1000_get_bus_info(hw);
2611 		adapter->flags &= ~IGB_MEDIA_RESET;
2612 	}
2613 	/* and a re-init */
2614 	if (e1000_init_hw(hw) < 0) {
2615 		device_printf(dev, "Hardware Initialization Failed\n");
2616 		return;
2617 	}
2618 	if (adapter->hw.mac.type >= igb_mac_min)
2619 		igb_init_dmac(adapter, pba);
2620 
2621 	E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2622 	e1000_get_phy_info(hw);
2623 	e1000_check_for_link(hw);
2624 }
2625 
2626 #define RSSKEYLEN 10
2627 static void
2628 em_initialize_rss_mapping(struct adapter *adapter)
2629 {
2630 	uint8_t  rss_key[4 * RSSKEYLEN];
2631 	uint32_t reta = 0;
2632 	struct e1000_hw	*hw = &adapter->hw;
2633 	int i;
2634 
2635 	/*
2636 	 * Configure RSS key
2637 	 */
2638 	arc4rand(rss_key, sizeof(rss_key), 0);
2639 	for (i = 0; i < RSSKEYLEN; ++i) {
2640 		uint32_t rssrk = 0;
2641 
2642 		rssrk = EM_RSSRK_VAL(rss_key, i);
2643 		E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2644 	}
2645 
2646 	/*
2647 	 * Configure RSS redirect table in following fashion:
2648 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2649 	 */
2650 	for (i = 0; i < sizeof(reta); ++i) {
2651 		uint32_t q;
2652 
2653 		q = (i % adapter->rx_num_queues) << 7;
2654 		reta |= q << (8 * i);
2655 	}
2656 
2657 	for (i = 0; i < 32; ++i)
2658 		E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2659 
2660 	E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
2661 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2662 			E1000_MRQC_RSS_FIELD_IPV4 |
2663 			E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2664 			E1000_MRQC_RSS_FIELD_IPV6_EX |
2665 			E1000_MRQC_RSS_FIELD_IPV6);
2666 
2667 }
2668 
2669 static void
2670 igb_initialize_rss_mapping(struct adapter *adapter)
2671 {
2672 	struct e1000_hw *hw = &adapter->hw;
2673 	int i;
2674 	int queue_id;
2675 	u32 reta;
2676 	u32 rss_key[10], mrqc, shift = 0;
2677 
2678 	/* XXX? */
2679 	if (adapter->hw.mac.type == e1000_82575)
2680 		shift = 6;
2681 
2682 	/*
2683 	 * The redirection table controls which destination
2684 	 * queue each bucket redirects traffic to.
2685 	 * Each DWORD represents four queues, with the LSB
2686 	 * being the first queue in the DWORD.
2687 	 *
2688 	 * This just allocates buckets to queues using round-robin
2689 	 * allocation.
2690 	 *
2691 	 * NOTE: It Just Happens to line up with the default
2692 	 * RSS allocation method.
2693 	 */
2694 
2695 	/* Warning FM follows */
2696 	reta = 0;
2697 	for (i = 0; i < 128; i++) {
2698 #ifdef RSS
2699 		queue_id = rss_get_indirection_to_bucket(i);
2700 		/*
2701 		 * If we have more queues than buckets, we'll
2702 		 * end up mapping buckets to a subset of the
2703 		 * queues.
2704 		 *
2705 		 * If we have more buckets than queues, we'll
2706 		 * end up instead assigning multiple buckets
2707 		 * to queues.
2708 		 *
2709 		 * Both are suboptimal, but we need to handle
2710 		 * the case so we don't go out of bounds
2711 		 * indexing arrays and such.
2712 		 */
2713 		queue_id = queue_id % adapter->rx_num_queues;
2714 #else
2715 		queue_id = (i % adapter->rx_num_queues);
2716 #endif
2717 		/* Adjust if required */
2718 		queue_id = queue_id << shift;
2719 
2720 		/*
2721 		 * The low 8 bits are for hash value (n+0);
2722 		 * The next 8 bits are for hash value (n+1), etc.
2723 		 */
2724 		reta = reta >> 8;
2725 		reta = reta | ( ((uint32_t) queue_id) << 24);
2726 		if ((i & 3) == 3) {
2727 			E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2728 			reta = 0;
2729 		}
2730 	}
2731 
2732 	/* Now fill in hash table */
2733 
2734 	/*
2735 	 * MRQC: Multiple Receive Queues Command
2736 	 * Set queuing to RSS control, number depends on the device.
2737 	 */
2738 	mrqc = E1000_MRQC_ENABLE_RSS_8Q;
2739 
2740 #ifdef RSS
2741 	/* XXX ew typecasting */
2742 	rss_getkey((uint8_t *) &rss_key);
2743 #else
2744 	arc4rand(&rss_key, sizeof(rss_key), 0);
2745 #endif
2746 	for (i = 0; i < 10; i++)
2747 		E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
2748 
2749 	/*
2750 	 * Configure the RSS fields to hash upon.
2751 	 */
2752 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2753 	    E1000_MRQC_RSS_FIELD_IPV4_TCP);
2754 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2755 	    E1000_MRQC_RSS_FIELD_IPV6_TCP);
2756 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2757 	    E1000_MRQC_RSS_FIELD_IPV6_UDP);
2758 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2759 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2760 
2761 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2762 }
2763 
2764 /*********************************************************************
2765  *
2766  *  Setup networking device structure and register an interface.
2767  *
2768  **********************************************************************/
2769 static int
2770 em_setup_interface(if_ctx_t ctx)
2771 {
2772 	struct ifnet *ifp = iflib_get_ifp(ctx);
2773 	struct adapter *adapter = iflib_get_softc(ctx);
2774 	if_softc_ctx_t scctx = adapter->shared;
2775 
2776 	INIT_DEBUGOUT("em_setup_interface: begin");
2777 
2778 	/* Single Queue */
2779 	if (adapter->tx_num_queues == 1) {
2780 		if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
2781 		if_setsendqready(ifp);
2782 	}
2783 
2784 	/*
2785 	 * Specify the media types supported by this adapter and register
2786 	 * callbacks to update media and link information
2787 	 */
2788 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
2789 	    (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
2790 		u_char fiber_type = IFM_1000_SX;	/* default type */
2791 
2792 		if (adapter->hw.mac.type == e1000_82545)
2793 			fiber_type = IFM_1000_LX;
2794 		ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
2795 		ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2796 	} else {
2797 		ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2798 		ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
2799 		ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2800 		ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
2801 		if (adapter->hw.phy.type != e1000_phy_ife) {
2802 			ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2803 			ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2804 		}
2805 	}
2806 	ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2807 	ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO);
2808 	return (0);
2809 }
2810 
2811 static int
2812 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
2813 {
2814 	struct adapter *adapter = iflib_get_softc(ctx);
2815 	if_softc_ctx_t scctx = adapter->shared;
2816 	int error = E1000_SUCCESS;
2817 	struct em_tx_queue *que;
2818 	int i, j;
2819 
2820 	MPASS(adapter->tx_num_queues > 0);
2821 	MPASS(adapter->tx_num_queues == ntxqsets);
2822 
2823 	/* First allocate the top level queue structs */
2824 	if (!(adapter->tx_queues =
2825 	    (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
2826 	    adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2827 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2828 		return(ENOMEM);
2829 	}
2830 
2831 	for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) {
2832 		/* Set up some basics */
2833 
2834 		struct tx_ring *txr = &que->txr;
2835 		txr->adapter = que->adapter = adapter;
2836 		que->me = txr->me =  i;
2837 
2838 		/* Allocate report status array */
2839 		if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2840 			device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
2841 			error = ENOMEM;
2842 			goto fail;
2843 		}
2844 		for (j = 0; j < scctx->isc_ntxd[0]; j++)
2845 			txr->tx_rsq[j] = QIDX_INVALID;
2846 		/* get the virtual and physical address of the hardware queues */
2847 		txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
2848 		txr->tx_paddr = paddrs[i*ntxqs];
2849 	}
2850 
2851 	device_printf(iflib_get_dev(ctx), "allocated for %d tx_queues\n", adapter->tx_num_queues);
2852 	return (0);
2853 fail:
2854 	em_if_queues_free(ctx);
2855 	return (error);
2856 }
2857 
2858 static int
2859 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
2860 {
2861 	struct adapter *adapter = iflib_get_softc(ctx);
2862 	int error = E1000_SUCCESS;
2863 	struct em_rx_queue *que;
2864 	int i;
2865 
2866 	MPASS(adapter->rx_num_queues > 0);
2867 	MPASS(adapter->rx_num_queues == nrxqsets);
2868 
2869 	/* First allocate the top level queue structs */
2870 	if (!(adapter->rx_queues =
2871 	    (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
2872 	    adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2873 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2874 		error = ENOMEM;
2875 		goto fail;
2876 	}
2877 
2878 	for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) {
2879 		/* Set up some basics */
2880 		struct rx_ring *rxr = &que->rxr;
2881 		rxr->adapter = que->adapter = adapter;
2882 		rxr->que = que;
2883 		que->me = rxr->me =  i;
2884 
2885 		/* get the virtual and physical address of the hardware queues */
2886 		rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
2887 		rxr->rx_paddr = paddrs[i*nrxqs];
2888 	}
2889 
2890 	device_printf(iflib_get_dev(ctx), "allocated for %d rx_queues\n", adapter->rx_num_queues);
2891 
2892 	return (0);
2893 fail:
2894 	em_if_queues_free(ctx);
2895 	return (error);
2896 }
2897 
2898 static void
2899 em_if_queues_free(if_ctx_t ctx)
2900 {
2901 	struct adapter *adapter = iflib_get_softc(ctx);
2902 	struct em_tx_queue *tx_que = adapter->tx_queues;
2903 	struct em_rx_queue *rx_que = adapter->rx_queues;
2904 
2905 	if (tx_que != NULL) {
2906 		for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
2907 			struct tx_ring *txr = &tx_que->txr;
2908 			if (txr->tx_rsq == NULL)
2909 				break;
2910 
2911 			free(txr->tx_rsq, M_DEVBUF);
2912 			txr->tx_rsq = NULL;
2913 		}
2914 		free(adapter->tx_queues, M_DEVBUF);
2915 		adapter->tx_queues = NULL;
2916 	}
2917 
2918 	if (rx_que != NULL) {
2919 		free(adapter->rx_queues, M_DEVBUF);
2920 		adapter->rx_queues = NULL;
2921 	}
2922 
2923 	em_release_hw_control(adapter);
2924 
2925 	if (adapter->mta != NULL) {
2926 		free(adapter->mta, M_DEVBUF);
2927 	}
2928 }
2929 
2930 /*********************************************************************
2931  *
2932  *  Enable transmit unit.
2933  *
2934  **********************************************************************/
2935 static void
2936 em_initialize_transmit_unit(if_ctx_t ctx)
2937 {
2938 	struct adapter *adapter = iflib_get_softc(ctx);
2939 	if_softc_ctx_t scctx = adapter->shared;
2940 	struct em_tx_queue *que;
2941 	struct tx_ring	*txr;
2942 	struct e1000_hw	*hw = &adapter->hw;
2943 	u32 tctl, txdctl = 0, tarc, tipg = 0;
2944 
2945 	INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
2946 
2947 	for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
2948 		u64 bus_addr;
2949 		caddr_t offp, endp;
2950 
2951 		que = &adapter->tx_queues[i];
2952 		txr = &que->txr;
2953 		bus_addr = txr->tx_paddr;
2954 
2955 		/* Clear checksum offload context. */
2956 		offp = (caddr_t)&txr->csum_flags;
2957 		endp = (caddr_t)(txr + 1);
2958 		bzero(offp, endp - offp);
2959 
2960 		/* Base and Len of TX Ring */
2961 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
2962 		    scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
2963 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
2964 		    (u32)(bus_addr >> 32));
2965 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
2966 		    (u32)bus_addr);
2967 		/* Init the HEAD/TAIL indices */
2968 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
2969 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
2970 
2971 		HW_DEBUGOUT2("Base = %x, Length = %x\n",
2972 		    E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)),
2973 		    E1000_READ_REG(&adapter->hw, E1000_TDLEN(i)));
2974 
2975 		txdctl = 0; /* clear txdctl */
2976 		txdctl |= 0x1f; /* PTHRESH */
2977 		txdctl |= 1 << 8; /* HTHRESH */
2978 		txdctl |= 1 << 16;/* WTHRESH */
2979 		txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
2980 		txdctl |= E1000_TXDCTL_GRAN;
2981 		txdctl |= 1 << 25; /* LWTHRESH */
2982 
2983 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
2984 	}
2985 
2986 	/* Set the default values for the Tx Inter Packet Gap timer */
2987 	switch (adapter->hw.mac.type) {
2988 	case e1000_80003es2lan:
2989 		tipg = DEFAULT_82543_TIPG_IPGR1;
2990 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2991 		    E1000_TIPG_IPGR2_SHIFT;
2992 		break;
2993 	case e1000_82542:
2994 		tipg = DEFAULT_82542_TIPG_IPGT;
2995 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2996 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2997 		break;
2998 	default:
2999 		if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
3000 		    (adapter->hw.phy.media_type ==
3001 		    e1000_media_type_internal_serdes))
3002 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3003 		else
3004 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3005 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3006 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3007 	}
3008 
3009 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
3010 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value);
3011 
3012 	if(adapter->hw.mac.type >= e1000_82540)
3013 		E1000_WRITE_REG(&adapter->hw, E1000_TADV,
3014 		    adapter->tx_abs_int_delay.value);
3015 
3016 	if ((adapter->hw.mac.type == e1000_82571) ||
3017 	    (adapter->hw.mac.type == e1000_82572)) {
3018 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3019 		tarc |= TARC_SPEED_MODE_BIT;
3020 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3021 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
3022 		/* errata: program both queues to unweighted RR */
3023 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3024 		tarc |= 1;
3025 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3026 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
3027 		tarc |= 1;
3028 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3029 	} else if (adapter->hw.mac.type == e1000_82574) {
3030 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3031 		tarc |= TARC_ERRATA_BIT;
3032 		if ( adapter->tx_num_queues > 1) {
3033 			tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3034 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3035 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3036 		} else
3037 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3038 	}
3039 
3040 	if (adapter->tx_int_delay.value > 0)
3041 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3042 
3043 	/* Program the Transmit Control Register */
3044 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
3045 	tctl &= ~E1000_TCTL_CT;
3046 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3047 		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3048 
3049 	if (adapter->hw.mac.type >= e1000_82571)
3050 		tctl |= E1000_TCTL_MULR;
3051 
3052 	/* This write will effectively turn on the transmit unit. */
3053 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
3054 
3055 	/* SPT and KBL errata workarounds */
3056 	if (hw->mac.type == e1000_pch_spt) {
3057 		u32 reg;
3058 		reg = E1000_READ_REG(hw, E1000_IOSFPC);
3059 		reg |= E1000_RCTL_RDMTS_HEX;
3060 		E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3061 		/* i218-i219 Specification Update 1.5.4.5 */
3062 		reg = E1000_READ_REG(hw, E1000_TARC(0));
3063 		reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3064 		reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3065 		E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3066 	}
3067 }
3068 
3069 /*********************************************************************
3070  *
3071  *  Enable receive unit.
3072  *
3073  **********************************************************************/
3074 
3075 static void
3076 em_initialize_receive_unit(if_ctx_t ctx)
3077 {
3078 	struct adapter *adapter = iflib_get_softc(ctx);
3079 	if_softc_ctx_t scctx = adapter->shared;
3080 	struct ifnet *ifp = iflib_get_ifp(ctx);
3081 	struct e1000_hw	*hw = &adapter->hw;
3082 	struct em_rx_queue *que;
3083 	int i;
3084 	u32 rctl, rxcsum, rfctl;
3085 
3086 	INIT_DEBUGOUT("em_initialize_receive_units: begin");
3087 
3088 	/*
3089 	 * Make sure receives are disabled while setting
3090 	 * up the descriptor ring
3091 	 */
3092 	rctl = E1000_READ_REG(hw, E1000_RCTL);
3093 	/* Do not disable if ever enabled on this hardware */
3094 	if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3095 		E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3096 
3097 	/* Setup the Receive Control Register */
3098 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3099 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3100 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3101 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3102 
3103 	/* Do not store bad packets */
3104 	rctl &= ~E1000_RCTL_SBP;
3105 
3106 	/* Enable Long Packet receive */
3107 	if (if_getmtu(ifp) > ETHERMTU)
3108 		rctl |= E1000_RCTL_LPE;
3109 	else
3110 		rctl &= ~E1000_RCTL_LPE;
3111 
3112 	/* Strip the CRC */
3113 	if (!em_disable_crc_stripping)
3114 		rctl |= E1000_RCTL_SECRC;
3115 
3116 	if (adapter->hw.mac.type >= e1000_82540) {
3117 		E1000_WRITE_REG(&adapter->hw, E1000_RADV,
3118 			    adapter->rx_abs_int_delay.value);
3119 
3120 		/*
3121 		 * Set the interrupt throttling rate. Value is calculated
3122 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3123 		 */
3124 		E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
3125 	}
3126 	E1000_WRITE_REG(&adapter->hw, E1000_RDTR,
3127 	    adapter->rx_int_delay.value);
3128 
3129 	/* Use extended rx descriptor formats */
3130 	rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3131 	rfctl |= E1000_RFCTL_EXTEN;
3132 	/*
3133 	 * When using MSIX interrupts we need to throttle
3134 	 * using the EITR register (82574 only)
3135 	 */
3136 	if (hw->mac.type == e1000_82574) {
3137 		for (int i = 0; i < 4; i++)
3138 			E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3139 			    DEFAULT_ITR);
3140 		/* Disable accelerated acknowledge */
3141 		rfctl |= E1000_RFCTL_ACK_DIS;
3142 	}
3143 	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3144 
3145 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3146 	if (if_getcapenable(ifp) & IFCAP_RXCSUM &&
3147 	    adapter->hw.mac.type >= e1000_82543) {
3148 		if (adapter->tx_num_queues > 1) {
3149 			if (adapter->hw.mac.type >= igb_mac_min) {
3150 				rxcsum |= E1000_RXCSUM_PCSD;
3151 				if (hw->mac.type != e1000_82575)
3152 					rxcsum |= E1000_RXCSUM_CRCOFL;
3153 			} else
3154 				rxcsum |= E1000_RXCSUM_TUOFL |
3155 					E1000_RXCSUM_IPOFL |
3156 					E1000_RXCSUM_PCSD;
3157 		} else {
3158 			if (adapter->hw.mac.type >= igb_mac_min)
3159 				rxcsum |= E1000_RXCSUM_IPPCSE;
3160 			else
3161 				rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3162 			if (adapter->hw.mac.type > e1000_82575)
3163 				rxcsum |= E1000_RXCSUM_CRCOFL;
3164 		}
3165 	} else
3166 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3167 
3168 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3169 
3170 	if (adapter->rx_num_queues > 1) {
3171 		if (adapter->hw.mac.type >= igb_mac_min)
3172 			igb_initialize_rss_mapping(adapter);
3173 		else
3174 			em_initialize_rss_mapping(adapter);
3175 	}
3176 
3177 	/*
3178 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3179 	 * long latencies are observed, like Lenovo X60. This
3180 	 * change eliminates the problem, but since having positive
3181 	 * values in RDTR is a known source of problems on other
3182 	 * platforms another solution is being sought.
3183 	 */
3184 	if (hw->mac.type == e1000_82573)
3185 		E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3186 
3187 	for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3188 		struct rx_ring *rxr = &que->rxr;
3189 		/* Setup the Base and Length of the Rx Descriptor Ring */
3190 		u64 bus_addr = rxr->rx_paddr;
3191 #if 0
3192 		u32 rdt = adapter->rx_num_queues -1;  /* default */
3193 #endif
3194 
3195 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
3196 		    scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
3197 		E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3198 		E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3199 		/* Setup the Head and Tail Descriptor Pointers */
3200 		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3201 		E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3202 	}
3203 
3204 	/*
3205 	 * Set PTHRESH for improved jumbo performance
3206 	 * According to 10.2.5.11 of Intel 82574 Datasheet,
3207 	 * RXDCTL(1) is written whenever RXDCTL(0) is written.
3208 	 * Only write to RXDCTL(1) if there is a need for different
3209 	 * settings.
3210 	 */
3211 
3212 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3213 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3214 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3215 	    (if_getmtu(ifp) > ETHERMTU)) {
3216 		u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3217 		E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3218 	} else if (adapter->hw.mac.type == e1000_82574) {
3219 		for (int i = 0; i < adapter->rx_num_queues; i++) {
3220 			u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3221 			rxdctl |= 0x20; /* PTHRESH */
3222 			rxdctl |= 4 << 8; /* HTHRESH */
3223 			rxdctl |= 4 << 16;/* WTHRESH */
3224 			rxdctl |= 1 << 24; /* Switch to granularity */
3225 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3226 		}
3227 	} else if (adapter->hw.mac.type >= igb_mac_min) {
3228 		u32 psize, srrctl = 0;
3229 
3230 		if (if_getmtu(ifp) > ETHERMTU) {
3231 			/* Set maximum packet len */
3232 			if (adapter->rx_mbuf_sz <= 4096) {
3233 				srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3234 				rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3235 			} else if (adapter->rx_mbuf_sz > 4096) {
3236 				srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3237 				rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3238 			}
3239 			psize = scctx->isc_max_frame_size;
3240 			/* are we on a vlan? */
3241 			if (ifp->if_vlantrunk != NULL)
3242 				psize += VLAN_TAG_SIZE;
3243 			E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
3244 		} else {
3245 			srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3246 			rctl |= E1000_RCTL_SZ_2048;
3247 		}
3248 
3249 		/*
3250 		 * If TX flow control is disabled and there's >1 queue defined,
3251 		 * enable DROP.
3252 		 *
3253 		 * This drops frames rather than hanging the RX MAC for all queues.
3254 		 */
3255 		if ((adapter->rx_num_queues > 1) &&
3256 		    (adapter->fc == e1000_fc_none ||
3257 		     adapter->fc == e1000_fc_rx_pause)) {
3258 			srrctl |= E1000_SRRCTL_DROP_EN;
3259 		}
3260 			/* Setup the Base and Length of the Rx Descriptor Rings */
3261 		for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3262 			struct rx_ring *rxr = &que->rxr;
3263 			u64 bus_addr = rxr->rx_paddr;
3264 			u32 rxdctl;
3265 
3266 #ifdef notyet
3267 			/* Configure for header split? -- ignore for now */
3268 			rxr->hdr_split = igb_header_split;
3269 #else
3270 			srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3271 #endif
3272 
3273 			E1000_WRITE_REG(hw, E1000_RDLEN(i),
3274 					scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3275 			E1000_WRITE_REG(hw, E1000_RDBAH(i),
3276 					(uint32_t)(bus_addr >> 32));
3277 			E1000_WRITE_REG(hw, E1000_RDBAL(i),
3278 					(uint32_t)bus_addr);
3279 			E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3280 			/* Enable this Queue */
3281 			rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3282 			rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3283 			rxdctl &= 0xFFF00000;
3284 			rxdctl |= IGB_RX_PTHRESH;
3285 			rxdctl |= IGB_RX_HTHRESH << 8;
3286 			rxdctl |= IGB_RX_WTHRESH << 16;
3287 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3288 		}
3289 	} else if (adapter->hw.mac.type >= e1000_pch2lan) {
3290 		if (if_getmtu(ifp) > ETHERMTU)
3291 			e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
3292 		else
3293 			e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
3294 	}
3295 
3296 	/* Make sure VLAN Filters are off */
3297 	rctl &= ~E1000_RCTL_VFE;
3298 
3299 	if (adapter->hw.mac.type < igb_mac_min) {
3300 		if (adapter->rx_mbuf_sz == MCLBYTES)
3301 			rctl |= E1000_RCTL_SZ_2048;
3302 		else if (adapter->rx_mbuf_sz == MJUMPAGESIZE)
3303 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3304 		else if (adapter->rx_mbuf_sz > MJUMPAGESIZE)
3305 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3306 
3307 		/* ensure we clear use DTYPE of 00 here */
3308 		rctl &= ~0x00000C00;
3309 	}
3310 
3311 	/* Write out the settings */
3312 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3313 
3314 	return;
3315 }
3316 
3317 static void
3318 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3319 {
3320 	struct adapter *adapter = iflib_get_softc(ctx);
3321 	u32 index, bit;
3322 
3323 	index = (vtag >> 5) & 0x7F;
3324 	bit = vtag & 0x1F;
3325 	adapter->shadow_vfta[index] |= (1 << bit);
3326 	++adapter->num_vlans;
3327 }
3328 
3329 static void
3330 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3331 {
3332 	struct adapter *adapter = iflib_get_softc(ctx);
3333 	u32 index, bit;
3334 
3335 	index = (vtag >> 5) & 0x7F;
3336 	bit = vtag & 0x1F;
3337 	adapter->shadow_vfta[index] &= ~(1 << bit);
3338 	--adapter->num_vlans;
3339 }
3340 
3341 static void
3342 em_setup_vlan_hw_support(struct adapter *adapter)
3343 {
3344 	struct e1000_hw *hw = &adapter->hw;
3345 	u32 reg;
3346 
3347 	/*
3348 	 * We get here thru init_locked, meaning
3349 	 * a soft reset, this has already cleared
3350 	 * the VFTA and other state, so if there
3351 	 * have been no vlan's registered do nothing.
3352 	 */
3353 	if (adapter->num_vlans == 0)
3354 		return;
3355 
3356 	/*
3357 	 * A soft reset zero's out the VFTA, so
3358 	 * we need to repopulate it now.
3359 	 */
3360 	for (int i = 0; i < EM_VFTA_SIZE; i++)
3361 		if (adapter->shadow_vfta[i] != 0)
3362 			E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
3363 			    i, adapter->shadow_vfta[i]);
3364 
3365 	reg = E1000_READ_REG(hw, E1000_CTRL);
3366 	reg |= E1000_CTRL_VME;
3367 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
3368 
3369 	/* Enable the Filter Table */
3370 	reg = E1000_READ_REG(hw, E1000_RCTL);
3371 	reg &= ~E1000_RCTL_CFIEN;
3372 	reg |= E1000_RCTL_VFE;
3373 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
3374 }
3375 
3376 static void
3377 em_if_enable_intr(if_ctx_t ctx)
3378 {
3379 	struct adapter *adapter = iflib_get_softc(ctx);
3380 	struct e1000_hw *hw = &adapter->hw;
3381 	u32 ims_mask = IMS_ENABLE_MASK;
3382 
3383 	if (hw->mac.type == e1000_82574) {
3384 		E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK);
3385 		ims_mask |= adapter->ims;
3386 	} else if (adapter->intr_type == IFLIB_INTR_MSIX && hw->mac.type >= igb_mac_min)  {
3387 		u32 mask = (adapter->que_mask | adapter->link_mask);
3388 
3389 		E1000_WRITE_REG(&adapter->hw, E1000_EIAC, mask);
3390 		E1000_WRITE_REG(&adapter->hw, E1000_EIAM, mask);
3391 		E1000_WRITE_REG(&adapter->hw, E1000_EIMS, mask);
3392 		ims_mask = E1000_IMS_LSC;
3393 	}
3394 
3395 	E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3396 }
3397 
3398 static void
3399 em_if_disable_intr(if_ctx_t ctx)
3400 {
3401 	struct adapter *adapter = iflib_get_softc(ctx);
3402 	struct e1000_hw *hw = &adapter->hw;
3403 
3404 	if (adapter->intr_type == IFLIB_INTR_MSIX) {
3405 		if (hw->mac.type >= igb_mac_min)
3406 			E1000_WRITE_REG(&adapter->hw, E1000_EIMC, ~0);
3407 		E1000_WRITE_REG(&adapter->hw, E1000_EIAC, 0);
3408 	}
3409 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
3410 }
3411 
3412 /*
3413  * Bit of a misnomer, what this really means is
3414  * to enable OS management of the system... aka
3415  * to disable special hardware management features
3416  */
3417 static void
3418 em_init_manageability(struct adapter *adapter)
3419 {
3420 	/* A shared code workaround */
3421 #define E1000_82542_MANC2H E1000_MANC2H
3422 	if (adapter->has_manage) {
3423 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3424 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3425 
3426 		/* disable hardware interception of ARP */
3427 		manc &= ~(E1000_MANC_ARP_EN);
3428 
3429 		/* enable receiving management packets to the host */
3430 		manc |= E1000_MANC_EN_MNG2HOST;
3431 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3432 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3433 		manc2h |= E1000_MNG2HOST_PORT_623;
3434 		manc2h |= E1000_MNG2HOST_PORT_664;
3435 		E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3436 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3437 	}
3438 }
3439 
3440 /*
3441  * Give control back to hardware management
3442  * controller if there is one.
3443  */
3444 static void
3445 em_release_manageability(struct adapter *adapter)
3446 {
3447 	if (adapter->has_manage) {
3448 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3449 
3450 		/* re-enable hardware interception of ARP */
3451 		manc |= E1000_MANC_ARP_EN;
3452 		manc &= ~E1000_MANC_EN_MNG2HOST;
3453 
3454 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3455 	}
3456 }
3457 
3458 /*
3459  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3460  * For ASF and Pass Through versions of f/w this means
3461  * that the driver is loaded. For AMT version type f/w
3462  * this means that the network i/f is open.
3463  */
3464 static void
3465 em_get_hw_control(struct adapter *adapter)
3466 {
3467 	u32 ctrl_ext, swsm;
3468 
3469 	if (adapter->vf_ifp)
3470 		return;
3471 
3472 	if (adapter->hw.mac.type == e1000_82573) {
3473 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3474 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3475 		    swsm | E1000_SWSM_DRV_LOAD);
3476 		return;
3477 	}
3478 	/* else */
3479 	ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3480 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3481 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3482 }
3483 
3484 /*
3485  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3486  * For ASF and Pass Through versions of f/w this means that
3487  * the driver is no longer loaded. For AMT versions of the
3488  * f/w this means that the network i/f is closed.
3489  */
3490 static void
3491 em_release_hw_control(struct adapter *adapter)
3492 {
3493 	u32 ctrl_ext, swsm;
3494 
3495 	if (!adapter->has_manage)
3496 		return;
3497 
3498 	if (adapter->hw.mac.type == e1000_82573) {
3499 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3500 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3501 		    swsm & ~E1000_SWSM_DRV_LOAD);
3502 		return;
3503 	}
3504 	/* else */
3505 	ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3506 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3507 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3508 	return;
3509 }
3510 
3511 static int
3512 em_is_valid_ether_addr(u8 *addr)
3513 {
3514 	char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3515 
3516 	if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3517 		return (FALSE);
3518 	}
3519 
3520 	return (TRUE);
3521 }
3522 
3523 /*
3524 ** Parse the interface capabilities with regard
3525 ** to both system management and wake-on-lan for
3526 ** later use.
3527 */
3528 static void
3529 em_get_wakeup(if_ctx_t ctx)
3530 {
3531 	struct adapter *adapter = iflib_get_softc(ctx);
3532 	device_t dev = iflib_get_dev(ctx);
3533 	u16 eeprom_data = 0, device_id, apme_mask;
3534 
3535 	adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
3536 	apme_mask = EM_EEPROM_APME;
3537 
3538 	switch (adapter->hw.mac.type) {
3539 	case e1000_82542:
3540 	case e1000_82543:
3541 		break;
3542 	case e1000_82544:
3543 		e1000_read_nvm(&adapter->hw,
3544 		    NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3545 		apme_mask = EM_82544_APME;
3546 		break;
3547 	case e1000_82546:
3548 	case e1000_82546_rev_3:
3549 		if (adapter->hw.bus.func == 1) {
3550 			e1000_read_nvm(&adapter->hw,
3551 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3552 			break;
3553 		} else
3554 			e1000_read_nvm(&adapter->hw,
3555 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3556 		break;
3557 	case e1000_82573:
3558 	case e1000_82583:
3559 		adapter->has_amt = TRUE;
3560 		/* FALLTHROUGH */
3561 	case e1000_82571:
3562 	case e1000_82572:
3563 	case e1000_80003es2lan:
3564 		if (adapter->hw.bus.func == 1) {
3565 			e1000_read_nvm(&adapter->hw,
3566 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3567 			break;
3568 		} else
3569 			e1000_read_nvm(&adapter->hw,
3570 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3571 		break;
3572 	case e1000_ich8lan:
3573 	case e1000_ich9lan:
3574 	case e1000_ich10lan:
3575 	case e1000_pchlan:
3576 	case e1000_pch2lan:
3577 	case e1000_pch_lpt:
3578 	case e1000_pch_spt:
3579 	case e1000_82575:	/* listing all igb devices */
3580 	case e1000_82576:
3581 	case e1000_82580:
3582 	case e1000_i350:
3583 	case e1000_i354:
3584 	case e1000_i210:
3585 	case e1000_i211:
3586 	case e1000_vfadapt:
3587 	case e1000_vfadapt_i350:
3588 		apme_mask = E1000_WUC_APME;
3589 		adapter->has_amt = TRUE;
3590 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
3591 		break;
3592 	default:
3593 		e1000_read_nvm(&adapter->hw,
3594 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3595 		break;
3596 	}
3597 	if (eeprom_data & apme_mask)
3598 		adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
3599 	/*
3600 	 * We have the eeprom settings, now apply the special cases
3601 	 * where the eeprom may be wrong or the board won't support
3602 	 * wake on lan on a particular port
3603 	 */
3604 	device_id = pci_get_device(dev);
3605 	switch (device_id) {
3606 	case E1000_DEV_ID_82546GB_PCIE:
3607 		adapter->wol = 0;
3608 		break;
3609 	case E1000_DEV_ID_82546EB_FIBER:
3610 	case E1000_DEV_ID_82546GB_FIBER:
3611 		/* Wake events only supported on port A for dual fiber
3612 		 * regardless of eeprom setting */
3613 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3614 		    E1000_STATUS_FUNC_1)
3615 			adapter->wol = 0;
3616 		break;
3617 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
3618 		/* if quad port adapter, disable WoL on all but port A */
3619 		if (global_quad_port_a != 0)
3620 			adapter->wol = 0;
3621 		/* Reset for multiple quad port adapters */
3622 		if (++global_quad_port_a == 4)
3623 			global_quad_port_a = 0;
3624 		break;
3625 	case E1000_DEV_ID_82571EB_FIBER:
3626 		/* Wake events only supported on port A for dual fiber
3627 		 * regardless of eeprom setting */
3628 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3629 		    E1000_STATUS_FUNC_1)
3630 			adapter->wol = 0;
3631 		break;
3632 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
3633 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
3634 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
3635 		/* if quad port adapter, disable WoL on all but port A */
3636 		if (global_quad_port_a != 0)
3637 			adapter->wol = 0;
3638 		/* Reset for multiple quad port adapters */
3639 		if (++global_quad_port_a == 4)
3640 			global_quad_port_a = 0;
3641 		break;
3642 	}
3643 	return;
3644 }
3645 
3646 
3647 /*
3648  * Enable PCI Wake On Lan capability
3649  */
3650 static void
3651 em_enable_wakeup(if_ctx_t ctx)
3652 {
3653 	struct adapter *adapter = iflib_get_softc(ctx);
3654 	device_t dev = iflib_get_dev(ctx);
3655 	if_t ifp = iflib_get_ifp(ctx);
3656 	int error = 0;
3657 	u32 pmc, ctrl, ctrl_ext, rctl;
3658 	u16 status;
3659 
3660 	if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
3661 		return;
3662 
3663 	/*
3664 	 * Determine type of Wakeup: note that wol
3665 	 * is set with all bits on by default.
3666 	 */
3667 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
3668 		adapter->wol &= ~E1000_WUFC_MAG;
3669 
3670 	if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
3671 		adapter->wol &= ~E1000_WUFC_EX;
3672 
3673 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
3674 		adapter->wol &= ~E1000_WUFC_MC;
3675 	else {
3676 		rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3677 		rctl |= E1000_RCTL_MPE;
3678 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3679 	}
3680 
3681 	if (!(adapter->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
3682 		goto pme;
3683 
3684 	/* Advertise the wakeup capability */
3685 	ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
3686 	ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
3687 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
3688 
3689 	/* Keep the laser running on Fiber adapters */
3690 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3691 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
3692 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3693 		ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
3694 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext);
3695 	}
3696 
3697 	if ((adapter->hw.mac.type == e1000_ich8lan) ||
3698 	    (adapter->hw.mac.type == e1000_pchlan) ||
3699 	    (adapter->hw.mac.type == e1000_ich9lan) ||
3700 	    (adapter->hw.mac.type == e1000_ich10lan))
3701 		e1000_suspend_workarounds_ich8lan(&adapter->hw);
3702 
3703 	if ( adapter->hw.mac.type >= e1000_pchlan) {
3704 		error = em_enable_phy_wakeup(adapter);
3705 		if (error)
3706 			goto pme;
3707 	} else {
3708 		/* Enable wakeup by the MAC */
3709 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
3710 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
3711 	}
3712 
3713 	if (adapter->hw.phy.type == e1000_phy_igp_3)
3714 		e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3715 
3716 pme:
3717 	status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
3718 	status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3719 	if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
3720 		status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3721 	pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
3722 
3723 	return;
3724 }
3725 
3726 /*
3727  * WOL in the newer chipset interfaces (pchlan)
3728  * require thing to be copied into the phy
3729  */
3730 static int
3731 em_enable_phy_wakeup(struct adapter *adapter)
3732 {
3733 	struct e1000_hw *hw = &adapter->hw;
3734 	u32 mreg, ret = 0;
3735 	u16 preg;
3736 
3737 	/* copy MAC RARs to PHY RARs */
3738 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
3739 
3740 	/* copy MAC MTA to PHY MTA */
3741 	for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
3742 		mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
3743 		e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
3744 		e1000_write_phy_reg(hw, BM_MTA(i) + 1,
3745 		    (u16)((mreg >> 16) & 0xFFFF));
3746 	}
3747 
3748 	/* configure PHY Rx Control register */
3749 	e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg);
3750 	mreg = E1000_READ_REG(hw, E1000_RCTL);
3751 	if (mreg & E1000_RCTL_UPE)
3752 		preg |= BM_RCTL_UPE;
3753 	if (mreg & E1000_RCTL_MPE)
3754 		preg |= BM_RCTL_MPE;
3755 	preg &= ~(BM_RCTL_MO_MASK);
3756 	if (mreg & E1000_RCTL_MO_3)
3757 		preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
3758 				<< BM_RCTL_MO_SHIFT);
3759 	if (mreg & E1000_RCTL_BAM)
3760 		preg |= BM_RCTL_BAM;
3761 	if (mreg & E1000_RCTL_PMCF)
3762 		preg |= BM_RCTL_PMCF;
3763 	mreg = E1000_READ_REG(hw, E1000_CTRL);
3764 	if (mreg & E1000_CTRL_RFCE)
3765 		preg |= BM_RCTL_RFCE;
3766 	e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg);
3767 
3768 	/* enable PHY wakeup in MAC register */
3769 	E1000_WRITE_REG(hw, E1000_WUC,
3770 	    E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
3771 	E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol);
3772 
3773 	/* configure and enable PHY wakeup in PHY registers */
3774 	e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol);
3775 	e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
3776 
3777 	/* activate PHY wakeup */
3778 	ret = hw->phy.ops.acquire(hw);
3779 	if (ret) {
3780 		printf("Could not acquire PHY\n");
3781 		return ret;
3782 	}
3783 	e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3784 	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
3785 	ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
3786 	if (ret) {
3787 		printf("Could not read PHY page 769\n");
3788 		goto out;
3789 	}
3790 	preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
3791 	ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
3792 	if (ret)
3793 		printf("Could not set PHY Host Wakeup bit\n");
3794 out:
3795 	hw->phy.ops.release(hw);
3796 
3797 	return ret;
3798 }
3799 
3800 static void
3801 em_if_led_func(if_ctx_t ctx, int onoff)
3802 {
3803 	struct adapter *adapter = iflib_get_softc(ctx);
3804 
3805 	if (onoff) {
3806 		e1000_setup_led(&adapter->hw);
3807 		e1000_led_on(&adapter->hw);
3808 	} else {
3809 		e1000_led_off(&adapter->hw);
3810 		e1000_cleanup_led(&adapter->hw);
3811 	}
3812 }
3813 
3814 /*
3815  * Disable the L0S and L1 LINK states
3816  */
3817 static void
3818 em_disable_aspm(struct adapter *adapter)
3819 {
3820 	int base, reg;
3821 	u16 link_cap,link_ctrl;
3822 	device_t dev = adapter->dev;
3823 
3824 	switch (adapter->hw.mac.type) {
3825 	case e1000_82573:
3826 	case e1000_82574:
3827 	case e1000_82583:
3828 		break;
3829 	default:
3830 		return;
3831 	}
3832 	if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
3833 		return;
3834 	reg = base + PCIER_LINK_CAP;
3835 	link_cap = pci_read_config(dev, reg, 2);
3836 	if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
3837 		return;
3838 	reg = base + PCIER_LINK_CTL;
3839 	link_ctrl = pci_read_config(dev, reg, 2);
3840 	link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
3841 	pci_write_config(dev, reg, link_ctrl, 2);
3842 	return;
3843 }
3844 
3845 /**********************************************************************
3846  *
3847  *  Update the board statistics counters.
3848  *
3849  **********************************************************************/
3850 static void
3851 em_update_stats_counters(struct adapter *adapter)
3852 {
3853 
3854 	if(adapter->hw.phy.media_type == e1000_media_type_copper ||
3855 	   (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3856 		adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3857 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3858 	}
3859 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3860 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3861 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3862 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3863 
3864 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3865 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3866 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3867 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3868 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3869 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3870 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3871 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3872 	/*
3873 	 ** For watchdog management we need to know if we have been
3874 	 ** paused during the last interval, so capture that here.
3875 	*/
3876 	adapter->shared->isc_pause_frames = adapter->stats.xoffrxc;
3877 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3878 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3879 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3880 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3881 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3882 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3883 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3884 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3885 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3886 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3887 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3888 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3889 
3890 	/* For the 64-bit byte counters the low dword must be read first. */
3891 	/* Both registers clear on the read of the high dword */
3892 
3893 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) +
3894 	    ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32);
3895 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) +
3896 	    ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32);
3897 
3898 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3899 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3900 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3901 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3902 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3903 
3904 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3905 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3906 
3907 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3908 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3909 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3910 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3911 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3912 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3913 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3914 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3915 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3916 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3917 
3918 	/* Interrupt Counts */
3919 
3920 	adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC);
3921 	adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC);
3922 	adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC);
3923 	adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC);
3924 	adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC);
3925 	adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC);
3926 	adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC);
3927 	adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC);
3928 	adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC);
3929 
3930 	if (adapter->hw.mac.type >= e1000_82543) {
3931 		adapter->stats.algnerrc +=
3932 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3933 		adapter->stats.rxerrc +=
3934 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3935 		adapter->stats.tncrs +=
3936 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3937 		adapter->stats.cexterr +=
3938 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3939 		adapter->stats.tsctc +=
3940 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3941 		adapter->stats.tsctfc +=
3942 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3943 	}
3944 }
3945 
3946 static uint64_t
3947 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
3948 {
3949 	struct adapter *adapter = iflib_get_softc(ctx);
3950 	struct ifnet *ifp = iflib_get_ifp(ctx);
3951 
3952 	switch (cnt) {
3953 	case IFCOUNTER_COLLISIONS:
3954 		return (adapter->stats.colc);
3955 	case IFCOUNTER_IERRORS:
3956 		return (adapter->dropped_pkts + adapter->stats.rxerrc +
3957 		    adapter->stats.crcerrs + adapter->stats.algnerrc +
3958 		    adapter->stats.ruc + adapter->stats.roc +
3959 		    adapter->stats.mpc + adapter->stats.cexterr);
3960 	case IFCOUNTER_OERRORS:
3961 		return (adapter->stats.ecol + adapter->stats.latecol +
3962 		    adapter->watchdog_events);
3963 	default:
3964 		return (if_get_counter_default(ifp, cnt));
3965 	}
3966 }
3967 
3968 /* Export a single 32-bit register via a read-only sysctl. */
3969 static int
3970 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
3971 {
3972 	struct adapter *adapter;
3973 	u_int val;
3974 
3975 	adapter = oidp->oid_arg1;
3976 	val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
3977 	return (sysctl_handle_int(oidp, &val, 0, req));
3978 }
3979 
3980 /*
3981  * Add sysctl variables, one per statistic, to the system.
3982  */
3983 static void
3984 em_add_hw_stats(struct adapter *adapter)
3985 {
3986 	device_t dev = iflib_get_dev(adapter->ctx);
3987 	struct em_tx_queue *tx_que = adapter->tx_queues;
3988 	struct em_rx_queue *rx_que = adapter->rx_queues;
3989 
3990 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
3991 	struct sysctl_oid *tree = device_get_sysctl_tree(dev);
3992 	struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
3993 	struct e1000_hw_stats *stats = &adapter->stats;
3994 
3995 	struct sysctl_oid *stat_node, *queue_node, *int_node;
3996 	struct sysctl_oid_list *stat_list, *queue_list, *int_list;
3997 
3998 #define QUEUE_NAME_LEN 32
3999 	char namebuf[QUEUE_NAME_LEN];
4000 
4001 	/* Driver Statistics */
4002 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4003 			CTLFLAG_RD, &adapter->dropped_pkts,
4004 			"Driver dropped packets");
4005 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4006 			CTLFLAG_RD, &adapter->link_irq,
4007 			"Link MSIX IRQ Handled");
4008 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "mbuf_defrag_fail",
4009 			 CTLFLAG_RD, &adapter->mbuf_defrag_failed,
4010 			 "Defragmenting mbuf chain failed");
4011 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_dma_fail",
4012 			CTLFLAG_RD, &adapter->no_tx_dma_setup,
4013 			"Driver tx dma failure in xmit");
4014 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4015 			CTLFLAG_RD, &adapter->rx_overruns,
4016 			"RX overruns");
4017 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4018 			CTLFLAG_RD, &adapter->watchdog_events,
4019 			"Watchdog timeouts");
4020 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4021 			CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_CTRL,
4022 			em_sysctl_reg_handler, "IU",
4023 			"Device Control Register");
4024 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4025 			CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_RCTL,
4026 			em_sysctl_reg_handler, "IU",
4027 			"Receiver Control Register");
4028 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4029 			CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
4030 			"Flow Control High Watermark");
4031 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4032 			CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
4033 			"Flow Control Low Watermark");
4034 
4035 	for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
4036 		struct tx_ring *txr = &tx_que->txr;
4037 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4038 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4039 					    CTLFLAG_RD, NULL, "TX Queue Name");
4040 		queue_list = SYSCTL_CHILDREN(queue_node);
4041 
4042 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4043 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
4044 				E1000_TDH(txr->me),
4045 				em_sysctl_reg_handler, "IU",
4046 				"Transmit Descriptor Head");
4047 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4048 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
4049 				E1000_TDT(txr->me),
4050 				em_sysctl_reg_handler, "IU",
4051 				"Transmit Descriptor Tail");
4052 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4053 				CTLFLAG_RD, &txr->tx_irq,
4054 				"Queue MSI-X Transmit Interrupts");
4055 	}
4056 
4057 	for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) {
4058 		struct rx_ring *rxr = &rx_que->rxr;
4059 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4060 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4061 					    CTLFLAG_RD, NULL, "RX Queue Name");
4062 		queue_list = SYSCTL_CHILDREN(queue_node);
4063 
4064 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4065 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
4066 				E1000_RDH(rxr->me),
4067 				em_sysctl_reg_handler, "IU",
4068 				"Receive Descriptor Head");
4069 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4070 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
4071 				E1000_RDT(rxr->me),
4072 				em_sysctl_reg_handler, "IU",
4073 				"Receive Descriptor Tail");
4074 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
4075 				CTLFLAG_RD, &rxr->rx_irq,
4076 				"Queue MSI-X Receive Interrupts");
4077 	}
4078 
4079 	/* MAC stats get their own sub node */
4080 
4081 	stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
4082 				    CTLFLAG_RD, NULL, "Statistics");
4083 	stat_list = SYSCTL_CHILDREN(stat_node);
4084 
4085 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
4086 			CTLFLAG_RD, &stats->ecol,
4087 			"Excessive collisions");
4088 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
4089 			CTLFLAG_RD, &stats->scc,
4090 			"Single collisions");
4091 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
4092 			CTLFLAG_RD, &stats->mcc,
4093 			"Multiple collisions");
4094 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
4095 			CTLFLAG_RD, &stats->latecol,
4096 			"Late collisions");
4097 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
4098 			CTLFLAG_RD, &stats->colc,
4099 			"Collision Count");
4100 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
4101 			CTLFLAG_RD, &adapter->stats.symerrs,
4102 			"Symbol Errors");
4103 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
4104 			CTLFLAG_RD, &adapter->stats.sec,
4105 			"Sequence Errors");
4106 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
4107 			CTLFLAG_RD, &adapter->stats.dc,
4108 			"Defer Count");
4109 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
4110 			CTLFLAG_RD, &adapter->stats.mpc,
4111 			"Missed Packets");
4112 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
4113 			CTLFLAG_RD, &adapter->stats.rnbc,
4114 			"Receive No Buffers");
4115 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
4116 			CTLFLAG_RD, &adapter->stats.ruc,
4117 			"Receive Undersize");
4118 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
4119 			CTLFLAG_RD, &adapter->stats.rfc,
4120 			"Fragmented Packets Received ");
4121 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
4122 			CTLFLAG_RD, &adapter->stats.roc,
4123 			"Oversized Packets Received");
4124 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
4125 			CTLFLAG_RD, &adapter->stats.rjc,
4126 			"Recevied Jabber");
4127 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
4128 			CTLFLAG_RD, &adapter->stats.rxerrc,
4129 			"Receive Errors");
4130 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
4131 			CTLFLAG_RD, &adapter->stats.crcerrs,
4132 			"CRC errors");
4133 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
4134 			CTLFLAG_RD, &adapter->stats.algnerrc,
4135 			"Alignment Errors");
4136 	/* On 82575 these are collision counts */
4137 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
4138 			CTLFLAG_RD, &adapter->stats.cexterr,
4139 			"Collision/Carrier extension errors");
4140 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
4141 			CTLFLAG_RD, &adapter->stats.xonrxc,
4142 			"XON Received");
4143 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
4144 			CTLFLAG_RD, &adapter->stats.xontxc,
4145 			"XON Transmitted");
4146 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
4147 			CTLFLAG_RD, &adapter->stats.xoffrxc,
4148 			"XOFF Received");
4149 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
4150 			CTLFLAG_RD, &adapter->stats.xofftxc,
4151 			"XOFF Transmitted");
4152 
4153 	/* Packet Reception Stats */
4154 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
4155 			CTLFLAG_RD, &adapter->stats.tpr,
4156 			"Total Packets Received ");
4157 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
4158 			CTLFLAG_RD, &adapter->stats.gprc,
4159 			"Good Packets Received");
4160 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
4161 			CTLFLAG_RD, &adapter->stats.bprc,
4162 			"Broadcast Packets Received");
4163 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
4164 			CTLFLAG_RD, &adapter->stats.mprc,
4165 			"Multicast Packets Received");
4166 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
4167 			CTLFLAG_RD, &adapter->stats.prc64,
4168 			"64 byte frames received ");
4169 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
4170 			CTLFLAG_RD, &adapter->stats.prc127,
4171 			"65-127 byte frames received");
4172 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
4173 			CTLFLAG_RD, &adapter->stats.prc255,
4174 			"128-255 byte frames received");
4175 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
4176 			CTLFLAG_RD, &adapter->stats.prc511,
4177 			"256-511 byte frames received");
4178 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
4179 			CTLFLAG_RD, &adapter->stats.prc1023,
4180 			"512-1023 byte frames received");
4181 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
4182 			CTLFLAG_RD, &adapter->stats.prc1522,
4183 			"1023-1522 byte frames received");
4184 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
4185 			CTLFLAG_RD, &adapter->stats.gorc,
4186 			"Good Octets Received");
4187 
4188 	/* Packet Transmission Stats */
4189 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
4190 			CTLFLAG_RD, &adapter->stats.gotc,
4191 			"Good Octets Transmitted");
4192 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
4193 			CTLFLAG_RD, &adapter->stats.tpt,
4194 			"Total Packets Transmitted");
4195 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
4196 			CTLFLAG_RD, &adapter->stats.gptc,
4197 			"Good Packets Transmitted");
4198 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
4199 			CTLFLAG_RD, &adapter->stats.bptc,
4200 			"Broadcast Packets Transmitted");
4201 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
4202 			CTLFLAG_RD, &adapter->stats.mptc,
4203 			"Multicast Packets Transmitted");
4204 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
4205 			CTLFLAG_RD, &adapter->stats.ptc64,
4206 			"64 byte frames transmitted ");
4207 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
4208 			CTLFLAG_RD, &adapter->stats.ptc127,
4209 			"65-127 byte frames transmitted");
4210 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
4211 			CTLFLAG_RD, &adapter->stats.ptc255,
4212 			"128-255 byte frames transmitted");
4213 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
4214 			CTLFLAG_RD, &adapter->stats.ptc511,
4215 			"256-511 byte frames transmitted");
4216 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
4217 			CTLFLAG_RD, &adapter->stats.ptc1023,
4218 			"512-1023 byte frames transmitted");
4219 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
4220 			CTLFLAG_RD, &adapter->stats.ptc1522,
4221 			"1024-1522 byte frames transmitted");
4222 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
4223 			CTLFLAG_RD, &adapter->stats.tsctc,
4224 			"TSO Contexts Transmitted");
4225 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
4226 			CTLFLAG_RD, &adapter->stats.tsctfc,
4227 			"TSO Contexts Failed");
4228 
4229 
4230 	/* Interrupt Stats */
4231 
4232 	int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
4233 				    CTLFLAG_RD, NULL, "Interrupt Statistics");
4234 	int_list = SYSCTL_CHILDREN(int_node);
4235 
4236 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
4237 			CTLFLAG_RD, &adapter->stats.iac,
4238 			"Interrupt Assertion Count");
4239 
4240 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
4241 			CTLFLAG_RD, &adapter->stats.icrxptc,
4242 			"Interrupt Cause Rx Pkt Timer Expire Count");
4243 
4244 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
4245 			CTLFLAG_RD, &adapter->stats.icrxatc,
4246 			"Interrupt Cause Rx Abs Timer Expire Count");
4247 
4248 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
4249 			CTLFLAG_RD, &adapter->stats.ictxptc,
4250 			"Interrupt Cause Tx Pkt Timer Expire Count");
4251 
4252 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
4253 			CTLFLAG_RD, &adapter->stats.ictxatc,
4254 			"Interrupt Cause Tx Abs Timer Expire Count");
4255 
4256 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
4257 			CTLFLAG_RD, &adapter->stats.ictxqec,
4258 			"Interrupt Cause Tx Queue Empty Count");
4259 
4260 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
4261 			CTLFLAG_RD, &adapter->stats.ictxqmtc,
4262 			"Interrupt Cause Tx Queue Min Thresh Count");
4263 
4264 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4265 			CTLFLAG_RD, &adapter->stats.icrxdmtc,
4266 			"Interrupt Cause Rx Desc Min Thresh Count");
4267 
4268 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4269 			CTLFLAG_RD, &adapter->stats.icrxoc,
4270 			"Interrupt Cause Receiver Overrun Count");
4271 }
4272 
4273 /**********************************************************************
4274  *
4275  *  This routine provides a way to dump out the adapter eeprom,
4276  *  often a useful debug/service tool. This only dumps the first
4277  *  32 words, stuff that matters is in that extent.
4278  *
4279  **********************************************************************/
4280 static int
4281 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4282 {
4283 	struct adapter *adapter = (struct adapter *)arg1;
4284 	int error;
4285 	int result;
4286 
4287 	result = -1;
4288 	error = sysctl_handle_int(oidp, &result, 0, req);
4289 
4290 	if (error || !req->newptr)
4291 		return (error);
4292 
4293 	/*
4294 	 * This value will cause a hex dump of the
4295 	 * first 32 16-bit words of the EEPROM to
4296 	 * the screen.
4297 	 */
4298 	if (result == 1)
4299 		em_print_nvm_info(adapter);
4300 
4301 	return (error);
4302 }
4303 
4304 static void
4305 em_print_nvm_info(struct adapter *adapter)
4306 {
4307 	u16 eeprom_data;
4308 	int i, j, row = 0;
4309 
4310 	/* Its a bit crude, but it gets the job done */
4311 	printf("\nInterface EEPROM Dump:\n");
4312 	printf("Offset\n0x0000  ");
4313 	for (i = 0, j = 0; i < 32; i++, j++) {
4314 		if (j == 8) { /* Make the offset block */
4315 			j = 0; ++row;
4316 			printf("\n0x00%x0  ",row);
4317 		}
4318 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4319 		printf("%04x ", eeprom_data);
4320 	}
4321 	printf("\n");
4322 }
4323 
4324 static int
4325 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4326 {
4327 	struct em_int_delay_info *info;
4328 	struct adapter *adapter;
4329 	u32 regval;
4330 	int error, usecs, ticks;
4331 
4332 	info = (struct em_int_delay_info *) arg1;
4333 	usecs = info->value;
4334 	error = sysctl_handle_int(oidp, &usecs, 0, req);
4335 	if (error != 0 || req->newptr == NULL)
4336 		return (error);
4337 	if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4338 		return (EINVAL);
4339 	info->value = usecs;
4340 	ticks = EM_USECS_TO_TICKS(usecs);
4341 	if (info->offset == E1000_ITR)	/* units are 256ns here */
4342 		ticks *= 4;
4343 
4344 	adapter = info->adapter;
4345 
4346 	regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
4347 	regval = (regval & ~0xffff) | (ticks & 0xffff);
4348 	/* Handle a few special cases. */
4349 	switch (info->offset) {
4350 	case E1000_RDTR:
4351 		break;
4352 	case E1000_TIDV:
4353 		if (ticks == 0) {
4354 			adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
4355 			/* Don't write 0 into the TIDV register. */
4356 			regval++;
4357 		} else
4358 			adapter->txd_cmd |= E1000_TXD_CMD_IDE;
4359 		break;
4360 	}
4361 	E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
4362 	return (0);
4363 }
4364 
4365 static void
4366 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
4367 	const char *description, struct em_int_delay_info *info,
4368 	int offset, int value)
4369 {
4370 	info->adapter = adapter;
4371 	info->offset = offset;
4372 	info->value = value;
4373 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
4374 	    SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
4375 	    OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
4376 	    info, 0, em_sysctl_int_delay, "I", description);
4377 }
4378 
4379 /*
4380  * Set flow control using sysctl:
4381  * Flow control values:
4382  *      0 - off
4383  *      1 - rx pause
4384  *      2 - tx pause
4385  *      3 - full
4386  */
4387 static int
4388 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4389 {
4390 	int error;
4391 	static int input = 3; /* default is full */
4392 	struct adapter	*adapter = (struct adapter *) arg1;
4393 
4394 	error = sysctl_handle_int(oidp, &input, 0, req);
4395 
4396 	if ((error) || (req->newptr == NULL))
4397 		return (error);
4398 
4399 	if (input == adapter->fc) /* no change? */
4400 		return (error);
4401 
4402 	switch (input) {
4403 	case e1000_fc_rx_pause:
4404 	case e1000_fc_tx_pause:
4405 	case e1000_fc_full:
4406 	case e1000_fc_none:
4407 		adapter->hw.fc.requested_mode = input;
4408 		adapter->fc = input;
4409 		break;
4410 	default:
4411 		/* Do nothing */
4412 		return (error);
4413 	}
4414 
4415 	adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
4416 	e1000_force_mac_fc(&adapter->hw);
4417 	return (error);
4418 }
4419 
4420 /*
4421  * Manage Energy Efficient Ethernet:
4422  * Control values:
4423  *     0/1 - enabled/disabled
4424  */
4425 static int
4426 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
4427 {
4428 	struct adapter *adapter = (struct adapter *) arg1;
4429 	int error, value;
4430 
4431 	value = adapter->hw.dev_spec.ich8lan.eee_disable;
4432 	error = sysctl_handle_int(oidp, &value, 0, req);
4433 	if (error || req->newptr == NULL)
4434 		return (error);
4435 	adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0);
4436 	em_if_init(adapter->ctx);
4437 
4438 	return (0);
4439 }
4440 
4441 static int
4442 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4443 {
4444 	struct adapter *adapter;
4445 	int error;
4446 	int result;
4447 
4448 	result = -1;
4449 	error = sysctl_handle_int(oidp, &result, 0, req);
4450 
4451 	if (error || !req->newptr)
4452 		return (error);
4453 
4454 	if (result == 1) {
4455 		adapter = (struct adapter *) arg1;
4456 		em_print_debug_info(adapter);
4457 	}
4458 
4459 	return (error);
4460 }
4461 
4462 static int
4463 em_get_rs(SYSCTL_HANDLER_ARGS)
4464 {
4465 	struct adapter *adapter = (struct adapter *) arg1;
4466 	int error;
4467 	int result;
4468 
4469 	result = 0;
4470 	error = sysctl_handle_int(oidp, &result, 0, req);
4471 
4472 	if (error || !req->newptr || result != 1)
4473 		return (error);
4474 	em_dump_rs(adapter);
4475 
4476 	return (error);
4477 }
4478 
4479 static void
4480 em_if_debug(if_ctx_t ctx)
4481 {
4482 	em_dump_rs(iflib_get_softc(ctx));
4483 }
4484 
4485 /*
4486  * This routine is meant to be fluid, add whatever is
4487  * needed for debugging a problem.  -jfv
4488  */
4489 static void
4490 em_print_debug_info(struct adapter *adapter)
4491 {
4492 	device_t dev = iflib_get_dev(adapter->ctx);
4493 	struct ifnet *ifp = iflib_get_ifp(adapter->ctx);
4494 	struct tx_ring *txr = &adapter->tx_queues->txr;
4495 	struct rx_ring *rxr = &adapter->rx_queues->rxr;
4496 
4497 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
4498 		printf("Interface is RUNNING ");
4499 	else
4500 		printf("Interface is NOT RUNNING\n");
4501 
4502 	if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
4503 		printf("and INACTIVE\n");
4504 	else
4505 		printf("and ACTIVE\n");
4506 
4507 	for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
4508 		device_printf(dev, "TX Queue %d ------\n", i);
4509 		device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4510 			E1000_READ_REG(&adapter->hw, E1000_TDH(i)),
4511 			E1000_READ_REG(&adapter->hw, E1000_TDT(i)));
4512 
4513 	}
4514 	for (int j=0; j < adapter->rx_num_queues; j++, rxr++) {
4515 		device_printf(dev, "RX Queue %d ------\n", j);
4516 		device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4517 			E1000_READ_REG(&adapter->hw, E1000_RDH(j)),
4518 			E1000_READ_REG(&adapter->hw, E1000_RDT(j)));
4519 	}
4520 }
4521 
4522 /*
4523  * 82574 only:
4524  * Write a new value to the EEPROM increasing the number of MSIX
4525  * vectors from 3 to 5, for proper multiqueue support.
4526  */
4527 static void
4528 em_enable_vectors_82574(if_ctx_t ctx)
4529 {
4530 	struct adapter *adapter = iflib_get_softc(ctx);
4531 	struct e1000_hw *hw = &adapter->hw;
4532 	device_t dev = iflib_get_dev(ctx);
4533 	u16 edata;
4534 
4535 	e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4536 	printf("Current cap: %#06x\n", edata);
4537 	if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
4538 		device_printf(dev, "Writing to eeprom: increasing "
4539 		    "reported MSIX vectors from 3 to 5...\n");
4540 		edata &= ~(EM_NVM_MSIX_N_MASK);
4541 		edata |= 4 << EM_NVM_MSIX_N_SHIFT;
4542 		e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4543 		e1000_update_nvm_checksum(hw);
4544 		device_printf(dev, "Writing to eeprom: done\n");
4545 	}
4546 }
4547