1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* $FreeBSD$ */ 30 #include "if_em.h" 31 #include <sys/sbuf.h> 32 #include <machine/_inttypes.h> 33 34 #define em_mac_min e1000_82547 35 #define igb_mac_min e1000_82575 36 37 /********************************************************************* 38 * Driver version: 39 *********************************************************************/ 40 char em_driver_version[] = "7.6.1-k"; 41 42 /********************************************************************* 43 * PCI Device ID Table 44 * 45 * Used by probe to select devices to load on 46 * Last field stores an index into e1000_strings 47 * Last entry must be all 0s 48 * 49 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index } 50 *********************************************************************/ 51 52 static pci_vendor_info_t em_vendor_info_array[] = 53 { 54 /* Intel(R) PRO/1000 Network Connection - Legacy em*/ 55 PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) PRO/1000 Network Connection"), 56 PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) PRO/1000 Network Connection"), 57 PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) PRO/1000 Network Connection"), 58 PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) PRO/1000 Network Connection"), 59 PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) PRO/1000 Network Connection"), 60 61 PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) PRO/1000 Network Connection"), 62 PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) PRO/1000 Network Connection"), 63 PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) PRO/1000 Network Connection"), 64 PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) PRO/1000 Network Connection"), 65 PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) PRO/1000 Network Connection"), 66 PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) PRO/1000 Network Connection"), 67 PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) PRO/1000 Network Connection"), 68 69 PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) PRO/1000 Network Connection"), 70 71 PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) PRO/1000 Network Connection"), 72 PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) PRO/1000 Network Connection"), 73 74 PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) PRO/1000 Network Connection"), 75 PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) PRO/1000 Network Connection"), 76 PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) PRO/1000 Network Connection"), 77 PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) PRO/1000 Network Connection"), 78 79 PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) PRO/1000 Network Connection"), 80 PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) PRO/1000 Network Connection"), 81 PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) PRO/1000 Network Connection"), 82 PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) PRO/1000 Network Connection"), 83 PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) PRO/1000 Network Connection"), 84 85 PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) PRO/1000 Network Connection"), 86 PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) PRO/1000 Network Connection"), 87 PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), 88 PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) PRO/1000 Network Connection"), 89 PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) PRO/1000 Network Connection"), 90 PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) PRO/1000 Network Connection"), 91 PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) PRO/1000 Network Connection"), 92 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), 93 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) PRO/1000 Network Connection"), 94 95 PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) PRO/1000 Network Connection"), 96 PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) PRO/1000 Network Connection"), 97 PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) PRO/1000 Network Connection"), 98 99 /* Intel(R) PRO/1000 Network Connection - em */ 100 PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 Network Connection"), 101 PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 Network Connection"), 102 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 Network Connection"), 103 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 Network Connection"), 104 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 Network Connection"), 105 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), 106 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 Network Connection"), 107 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 Network Connection"), 108 PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), 109 PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 Network Connection"), 110 PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 Network Connection"), 111 PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 Network Connection"), 112 PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 Network Connection"), 113 PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 Network Connection"), 114 PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 Network Connection"), 115 PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 Network Connection"), 116 PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) PRO/1000 Network Connection"), 117 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) PRO/1000 Network Connection"), 118 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) PRO/1000 Network Connection"), 119 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) PRO/1000 Network Connection"), 120 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) PRO/1000 Network Connection"), 121 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"), 122 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) PRO/1000 Network Connection"), 123 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) PRO/1000 Network Connection"), 124 PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) PRO/1000 Network Connection"), 125 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) PRO/1000 Network Connection"), 126 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) PRO/1000 Network Connection"), 127 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) PRO/1000 Network Connection"), 128 PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) PRO/1000 Network Connection"), 129 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"), 130 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) PRO/1000 Network Connection"), 131 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) PRO/1000 Network Connection"), 132 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) PRO/1000 Network Connection"), 133 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) PRO/1000 Network Connection"), 134 PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) PRO/1000 Network Connection"), 135 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) PRO/1000 Network Connection"), 136 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) PRO/1000 Network Connection"), 137 PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) PRO/1000 Network Connection"), 138 PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) PRO/1000 Network Connection"), 139 PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) PRO/1000 Network Connection"), 140 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) PRO/1000 Network Connection"), 141 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) PRO/1000 Network Connection"), 142 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) PRO/1000 Network Connection"), 143 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) PRO/1000 Network Connection"), 144 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) PRO/1000 Network Connection"), 145 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) PRO/1000 Network Connection"), 146 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) PRO/1000 Network Connection"), 147 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) PRO/1000 Network Connection"), 148 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) PRO/1000 Network Connection"), 149 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) PRO/1000 Network Connection"), 150 PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) PRO/1000 Network Connection"), 151 PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) PRO/1000 Network Connection"), 152 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) PRO/1000 Network Connection"), 153 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) PRO/1000 Network Connection"), 154 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) PRO/1000 Network Connection"), 155 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) PRO/1000 Network Connection"), 156 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) PRO/1000 Network Connection"), 157 PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) PRO/1000 Network Connection"), 158 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) PRO/1000 Network Connection"), 159 PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) PRO/1000 Network Connection"), 160 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) PRO/1000 Network Connection"), 161 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) PRO/1000 Network Connection"), 162 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) PRO/1000 Network Connection"), 163 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) PRO/1000 Network Connection"), 164 PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) PRO/1000 Network Connection"), 165 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) PRO/1000 Network Connection"), 166 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) PRO/1000 Network Connection"), 167 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) PRO/1000 Network Connection"), 168 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) PRO/1000 Network Connection"), 169 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) PRO/1000 Network Connection"), 170 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) PRO/1000 Network Connection"), 171 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) PRO/1000 Network Connection"), 172 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) PRO/1000 Network Connection"), 173 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) PRO/1000 Network Connection"), 174 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) PRO/1000 Network Connection"), 175 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) PRO/1000 Network Connection"), 176 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) PRO/1000 Network Connection"), 177 /* required last entry */ 178 PVID_END 179 }; 180 181 static pci_vendor_info_t igb_vendor_info_array[] = 182 { 183 /* Intel(R) PRO/1000 Network Connection - igb */ 184 PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 185 PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 186 PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 187 PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 PCI-Express Network Driver"), 188 PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 189 PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 190 PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 191 PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 192 PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 PCI-Express Network Driver"), 193 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 194 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 PCI-Express Network Driver"), 195 PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"), 196 PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 197 PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 198 PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 199 PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 200 PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) PRO/1000 PCI-Express Network Driver"), 201 PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 202 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 203 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 204 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) PRO/1000 PCI-Express Network Driver"), 205 PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) PRO/1000 PCI-Express Network Driver"), 206 PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 207 PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 208 PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 209 PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 210 PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"), 211 PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 212 PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) PRO/1000 PCI-Express Network Driver"), 213 PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) PRO/1000 PCI-Express Network Driver"), 214 PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 215 PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 216 PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 217 PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 218 PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 219 PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 220 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 221 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 222 PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 223 /* required last entry */ 224 PVID_END 225 }; 226 227 /********************************************************************* 228 * Function prototypes 229 *********************************************************************/ 230 static void *em_register(device_t dev); 231 static void *igb_register(device_t dev); 232 static int em_if_attach_pre(if_ctx_t ctx); 233 static int em_if_attach_post(if_ctx_t ctx); 234 static int em_if_detach(if_ctx_t ctx); 235 static int em_if_shutdown(if_ctx_t ctx); 236 static int em_if_suspend(if_ctx_t ctx); 237 static int em_if_resume(if_ctx_t ctx); 238 239 static int em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets); 240 static int em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets); 241 static void em_if_queues_free(if_ctx_t ctx); 242 243 static uint64_t em_if_get_counter(if_ctx_t, ift_counter); 244 static void em_if_init(if_ctx_t ctx); 245 static void em_if_stop(if_ctx_t ctx); 246 static void em_if_media_status(if_ctx_t, struct ifmediareq *); 247 static int em_if_media_change(if_ctx_t ctx); 248 static int em_if_mtu_set(if_ctx_t ctx, uint32_t mtu); 249 static void em_if_timer(if_ctx_t ctx, uint16_t qid); 250 static void em_if_vlan_register(if_ctx_t ctx, u16 vtag); 251 static void em_if_vlan_unregister(if_ctx_t ctx, u16 vtag); 252 253 static void em_identify_hardware(if_ctx_t ctx); 254 static int em_allocate_pci_resources(if_ctx_t ctx); 255 static void em_free_pci_resources(if_ctx_t ctx); 256 static void em_reset(if_ctx_t ctx); 257 static int em_setup_interface(if_ctx_t ctx); 258 static int em_setup_msix(if_ctx_t ctx); 259 260 static void em_initialize_transmit_unit(if_ctx_t ctx); 261 static void em_initialize_receive_unit(if_ctx_t ctx); 262 263 static void em_if_enable_intr(if_ctx_t ctx); 264 static void em_if_disable_intr(if_ctx_t ctx); 265 static int em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid); 266 static int em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid); 267 static void em_if_multi_set(if_ctx_t ctx); 268 static void em_if_update_admin_status(if_ctx_t ctx); 269 static void em_if_debug(if_ctx_t ctx); 270 static void em_update_stats_counters(struct adapter *); 271 static void em_add_hw_stats(struct adapter *adapter); 272 static int em_if_set_promisc(if_ctx_t ctx, int flags); 273 static void em_setup_vlan_hw_support(struct adapter *); 274 static int em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS); 275 static void em_print_nvm_info(struct adapter *); 276 static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS); 277 static int em_get_rs(SYSCTL_HANDLER_ARGS); 278 static void em_print_debug_info(struct adapter *); 279 static int em_is_valid_ether_addr(u8 *); 280 static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS); 281 static void em_add_int_delay_sysctl(struct adapter *, const char *, 282 const char *, struct em_int_delay_info *, int, int); 283 /* Management and WOL Support */ 284 static void em_init_manageability(struct adapter *); 285 static void em_release_manageability(struct adapter *); 286 static void em_get_hw_control(struct adapter *); 287 static void em_release_hw_control(struct adapter *); 288 static void em_get_wakeup(if_ctx_t ctx); 289 static void em_enable_wakeup(if_ctx_t ctx); 290 static int em_enable_phy_wakeup(struct adapter *); 291 static void em_disable_aspm(struct adapter *); 292 293 int em_intr(void *arg); 294 static void em_disable_promisc(if_ctx_t ctx); 295 296 /* MSIX handlers */ 297 static int em_if_msix_intr_assign(if_ctx_t, int); 298 static int em_msix_link(void *); 299 static void em_handle_link(void *context); 300 301 static void em_enable_vectors_82574(if_ctx_t); 302 303 static int em_set_flowcntl(SYSCTL_HANDLER_ARGS); 304 static int em_sysctl_eee(SYSCTL_HANDLER_ARGS); 305 static void em_if_led_func(if_ctx_t ctx, int onoff); 306 307 static int em_get_regs(SYSCTL_HANDLER_ARGS); 308 309 static void lem_smartspeed(struct adapter *adapter); 310 static void igb_configure_queues(struct adapter *adapter); 311 312 313 /********************************************************************* 314 * FreeBSD Device Interface Entry Points 315 *********************************************************************/ 316 static device_method_t em_methods[] = { 317 /* Device interface */ 318 DEVMETHOD(device_register, em_register), 319 DEVMETHOD(device_probe, iflib_device_probe), 320 DEVMETHOD(device_attach, iflib_device_attach), 321 DEVMETHOD(device_detach, iflib_device_detach), 322 DEVMETHOD(device_shutdown, iflib_device_shutdown), 323 DEVMETHOD(device_suspend, iflib_device_suspend), 324 DEVMETHOD(device_resume, iflib_device_resume), 325 DEVMETHOD_END 326 }; 327 328 static device_method_t igb_methods[] = { 329 /* Device interface */ 330 DEVMETHOD(device_register, igb_register), 331 DEVMETHOD(device_probe, iflib_device_probe), 332 DEVMETHOD(device_attach, iflib_device_attach), 333 DEVMETHOD(device_detach, iflib_device_detach), 334 DEVMETHOD(device_shutdown, iflib_device_shutdown), 335 DEVMETHOD(device_suspend, iflib_device_suspend), 336 DEVMETHOD(device_resume, iflib_device_resume), 337 DEVMETHOD_END 338 }; 339 340 341 static driver_t em_driver = { 342 "em", em_methods, sizeof(struct adapter), 343 }; 344 345 static devclass_t em_devclass; 346 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0); 347 348 MODULE_DEPEND(em, pci, 1, 1, 1); 349 MODULE_DEPEND(em, ether, 1, 1, 1); 350 MODULE_DEPEND(em, iflib, 1, 1, 1); 351 352 IFLIB_PNP_INFO(pci, em, em_vendor_info_array); 353 354 static driver_t igb_driver = { 355 "igb", igb_methods, sizeof(struct adapter), 356 }; 357 358 static devclass_t igb_devclass; 359 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0); 360 361 MODULE_DEPEND(igb, pci, 1, 1, 1); 362 MODULE_DEPEND(igb, ether, 1, 1, 1); 363 MODULE_DEPEND(igb, iflib, 1, 1, 1); 364 365 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array); 366 367 static device_method_t em_if_methods[] = { 368 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre), 369 DEVMETHOD(ifdi_attach_post, em_if_attach_post), 370 DEVMETHOD(ifdi_detach, em_if_detach), 371 DEVMETHOD(ifdi_shutdown, em_if_shutdown), 372 DEVMETHOD(ifdi_suspend, em_if_suspend), 373 DEVMETHOD(ifdi_resume, em_if_resume), 374 DEVMETHOD(ifdi_init, em_if_init), 375 DEVMETHOD(ifdi_stop, em_if_stop), 376 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign), 377 DEVMETHOD(ifdi_intr_enable, em_if_enable_intr), 378 DEVMETHOD(ifdi_intr_disable, em_if_disable_intr), 379 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc), 380 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc), 381 DEVMETHOD(ifdi_queues_free, em_if_queues_free), 382 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status), 383 DEVMETHOD(ifdi_multi_set, em_if_multi_set), 384 DEVMETHOD(ifdi_media_status, em_if_media_status), 385 DEVMETHOD(ifdi_media_change, em_if_media_change), 386 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set), 387 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc), 388 DEVMETHOD(ifdi_timer, em_if_timer), 389 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register), 390 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister), 391 DEVMETHOD(ifdi_get_counter, em_if_get_counter), 392 DEVMETHOD(ifdi_led_func, em_if_led_func), 393 DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable), 394 DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable), 395 DEVMETHOD(ifdi_debug, em_if_debug), 396 DEVMETHOD_END 397 }; 398 399 /* 400 * note that if (adapter->msix_mem) is replaced by: 401 * if (adapter->intr_type == IFLIB_INTR_MSIX) 402 */ 403 static driver_t em_if_driver = { 404 "em_if", em_if_methods, sizeof(struct adapter) 405 }; 406 407 /********************************************************************* 408 * Tunable default values. 409 *********************************************************************/ 410 411 #define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000) 412 #define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024) 413 414 #define MAX_INTS_PER_SEC 8000 415 #define DEFAULT_ITR (1000000000/(MAX_INTS_PER_SEC * 256)) 416 417 /* Allow common code without TSO */ 418 #ifndef CSUM_TSO 419 #define CSUM_TSO 0 420 #endif 421 422 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD, 0, "EM driver parameters"); 423 424 static int em_disable_crc_stripping = 0; 425 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN, 426 &em_disable_crc_stripping, 0, "Disable CRC Stripping"); 427 428 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV); 429 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR); 430 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt, 431 0, "Default transmit interrupt delay in usecs"); 432 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt, 433 0, "Default receive interrupt delay in usecs"); 434 435 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV); 436 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV); 437 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN, 438 &em_tx_abs_int_delay_dflt, 0, 439 "Default transmit interrupt delay limit in usecs"); 440 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN, 441 &em_rx_abs_int_delay_dflt, 0, 442 "Default receive interrupt delay limit in usecs"); 443 444 static int em_smart_pwr_down = FALSE; 445 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down, 446 0, "Set to true to leave smart power down enabled on newer adapters"); 447 448 /* Controls whether promiscuous also shows bad packets */ 449 static int em_debug_sbp = TRUE; 450 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0, 451 "Show bad packets in promiscuous mode"); 452 453 /* How many packets rxeof tries to clean at a time */ 454 static int em_rx_process_limit = 100; 455 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN, 456 &em_rx_process_limit, 0, 457 "Maximum number of received packets to process " 458 "at a time, -1 means unlimited"); 459 460 /* Energy efficient ethernet - default to OFF */ 461 static int eee_setting = 1; 462 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0, 463 "Enable Energy Efficient Ethernet"); 464 465 /* 466 ** Tuneable Interrupt rate 467 */ 468 static int em_max_interrupt_rate = 8000; 469 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN, 470 &em_max_interrupt_rate, 0, "Maximum interrupts per second"); 471 472 473 474 /* Global used in WOL setup with multiport cards */ 475 static int global_quad_port_a = 0; 476 477 extern struct if_txrx igb_txrx; 478 extern struct if_txrx em_txrx; 479 extern struct if_txrx lem_txrx; 480 481 static struct if_shared_ctx em_sctx_init = { 482 .isc_magic = IFLIB_MAGIC, 483 .isc_q_align = PAGE_SIZE, 484 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 485 .isc_tx_maxsegsize = PAGE_SIZE, 486 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 487 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE, 488 .isc_rx_maxsize = MJUM9BYTES, 489 .isc_rx_nsegments = 1, 490 .isc_rx_maxsegsize = MJUM9BYTES, 491 .isc_nfl = 1, 492 .isc_nrxqs = 1, 493 .isc_ntxqs = 1, 494 .isc_admin_intrcnt = 1, 495 .isc_vendor_info = em_vendor_info_array, 496 .isc_driver_version = em_driver_version, 497 .isc_driver = &em_if_driver, 498 .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM, 499 500 .isc_nrxd_min = {EM_MIN_RXD}, 501 .isc_ntxd_min = {EM_MIN_TXD}, 502 .isc_nrxd_max = {EM_MAX_RXD}, 503 .isc_ntxd_max = {EM_MAX_TXD}, 504 .isc_nrxd_default = {EM_DEFAULT_RXD}, 505 .isc_ntxd_default = {EM_DEFAULT_TXD}, 506 }; 507 508 if_shared_ctx_t em_sctx = &em_sctx_init; 509 510 static struct if_shared_ctx igb_sctx_init = { 511 .isc_magic = IFLIB_MAGIC, 512 .isc_q_align = PAGE_SIZE, 513 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 514 .isc_tx_maxsegsize = PAGE_SIZE, 515 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 516 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE, 517 .isc_rx_maxsize = MJUM9BYTES, 518 .isc_rx_nsegments = 1, 519 .isc_rx_maxsegsize = MJUM9BYTES, 520 .isc_nfl = 1, 521 .isc_nrxqs = 1, 522 .isc_ntxqs = 1, 523 .isc_admin_intrcnt = 1, 524 .isc_vendor_info = igb_vendor_info_array, 525 .isc_driver_version = em_driver_version, 526 .isc_driver = &em_if_driver, 527 .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM, 528 529 .isc_nrxd_min = {EM_MIN_RXD}, 530 .isc_ntxd_min = {EM_MIN_TXD}, 531 .isc_nrxd_max = {IGB_MAX_RXD}, 532 .isc_ntxd_max = {IGB_MAX_TXD}, 533 .isc_nrxd_default = {EM_DEFAULT_RXD}, 534 .isc_ntxd_default = {EM_DEFAULT_TXD}, 535 }; 536 537 if_shared_ctx_t igb_sctx = &igb_sctx_init; 538 539 /***************************************************************** 540 * 541 * Dump Registers 542 * 543 ****************************************************************/ 544 #define IGB_REGS_LEN 739 545 546 static int em_get_regs(SYSCTL_HANDLER_ARGS) 547 { 548 struct adapter *adapter = (struct adapter *)arg1; 549 struct e1000_hw *hw = &adapter->hw; 550 struct sbuf *sb; 551 u32 *regs_buff; 552 int rc; 553 554 regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK); 555 memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32)); 556 557 rc = sysctl_wire_old_buffer(req, 0); 558 MPASS(rc == 0); 559 if (rc != 0) { 560 free(regs_buff, M_DEVBUF); 561 return (rc); 562 } 563 564 sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req); 565 MPASS(sb != NULL); 566 if (sb == NULL) { 567 free(regs_buff, M_DEVBUF); 568 return (ENOMEM); 569 } 570 571 /* General Registers */ 572 regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL); 573 regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS); 574 regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT); 575 regs_buff[3] = E1000_READ_REG(hw, E1000_ICR); 576 regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL); 577 regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0)); 578 regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0)); 579 regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0)); 580 regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0)); 581 regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0)); 582 regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0)); 583 regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL); 584 regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0)); 585 regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0)); 586 regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0)); 587 regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0)); 588 regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0)); 589 regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0)); 590 regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH); 591 regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT); 592 regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS); 593 regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC); 594 595 sbuf_printf(sb, "General Registers\n"); 596 sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]); 597 sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]); 598 sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]); 599 600 sbuf_printf(sb, "Interrupt Registers\n"); 601 sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]); 602 603 sbuf_printf(sb, "RX Registers\n"); 604 sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]); 605 sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]); 606 sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]); 607 sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]); 608 sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]); 609 sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]); 610 sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]); 611 612 sbuf_printf(sb, "TX Registers\n"); 613 sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]); 614 sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]); 615 sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]); 616 sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]); 617 sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]); 618 sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]); 619 sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]); 620 sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]); 621 sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]); 622 sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]); 623 sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]); 624 625 free(regs_buff, M_DEVBUF); 626 627 #ifdef DUMP_DESCS 628 { 629 if_softc_ctx_t scctx = adapter->shared; 630 struct rx_ring *rxr = &rx_que->rxr; 631 struct tx_ring *txr = &tx_que->txr; 632 int ntxd = scctx->isc_ntxd[0]; 633 int nrxd = scctx->isc_nrxd[0]; 634 int j; 635 636 for (j = 0; j < nrxd; j++) { 637 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error); 638 u32 length = le32toh(rxr->rx_base[j].wb.upper.length); 639 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 " Error:%d Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length); 640 } 641 642 for (j = 0; j < min(ntxd, 256); j++) { 643 unsigned int *ptr = (unsigned int *)&txr->tx_base[j]; 644 645 sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x eop: %d DD=%d\n", 646 j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop, 647 buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0); 648 649 } 650 } 651 #endif 652 653 rc = sbuf_finish(sb); 654 sbuf_delete(sb); 655 return(rc); 656 } 657 658 static void * 659 em_register(device_t dev) 660 { 661 return (em_sctx); 662 } 663 664 static void * 665 igb_register(device_t dev) 666 { 667 return (igb_sctx); 668 } 669 670 static int 671 em_set_num_queues(if_ctx_t ctx) 672 { 673 struct adapter *adapter = iflib_get_softc(ctx); 674 int maxqueues; 675 676 /* Sanity check based on HW */ 677 switch (adapter->hw.mac.type) { 678 case e1000_82576: 679 case e1000_82580: 680 case e1000_i350: 681 case e1000_i354: 682 maxqueues = 8; 683 break; 684 case e1000_i210: 685 case e1000_82575: 686 maxqueues = 4; 687 break; 688 case e1000_i211: 689 case e1000_82574: 690 maxqueues = 2; 691 break; 692 default: 693 maxqueues = 1; 694 break; 695 } 696 697 return (maxqueues); 698 } 699 700 #define LEM_CAPS \ 701 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ 702 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER 703 704 #define EM_CAPS \ 705 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ 706 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \ 707 IFCAP_LRO | IFCAP_VLAN_HWTSO 708 709 #define IGB_CAPS \ 710 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ 711 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \ 712 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6; 713 714 /********************************************************************* 715 * Device initialization routine 716 * 717 * The attach entry point is called when the driver is being loaded. 718 * This routine identifies the type of hardware, allocates all resources 719 * and initializes the hardware. 720 * 721 * return 0 on success, positive on failure 722 *********************************************************************/ 723 724 static int 725 em_if_attach_pre(if_ctx_t ctx) 726 { 727 struct adapter *adapter; 728 if_softc_ctx_t scctx; 729 device_t dev; 730 struct e1000_hw *hw; 731 int error = 0; 732 733 INIT_DEBUGOUT("em_if_attach_pre begin"); 734 dev = iflib_get_dev(ctx); 735 adapter = iflib_get_softc(ctx); 736 737 if (resource_disabled("em", device_get_unit(dev))) { 738 device_printf(dev, "Disabled by device hint\n"); 739 return (ENXIO); 740 } 741 742 adapter->ctx = adapter->osdep.ctx = ctx; 743 adapter->dev = adapter->osdep.dev = dev; 744 scctx = adapter->shared = iflib_get_softc_ctx(ctx); 745 adapter->media = iflib_get_media(ctx); 746 hw = &adapter->hw; 747 748 adapter->tx_process_limit = scctx->isc_ntxd[0]; 749 750 /* SYSCTL stuff */ 751 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 752 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 753 OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, 754 em_sysctl_nvm_info, "I", "NVM Information"); 755 756 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 757 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 758 OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, 759 em_sysctl_debug_info, "I", "Debug Information"); 760 761 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 762 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 763 OID_AUTO, "fc", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, 764 em_set_flowcntl, "I", "Flow Control"); 765 766 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 767 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 768 OID_AUTO, "reg_dump", CTLTYPE_STRING | CTLFLAG_RD, adapter, 0, 769 em_get_regs, "A", "Dump Registers"); 770 771 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 772 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 773 OID_AUTO, "rs_dump", CTLTYPE_INT | CTLFLAG_RW, adapter, 0, 774 em_get_rs, "I", "Dump RS indexes"); 775 776 /* Determine hardware and mac info */ 777 em_identify_hardware(ctx); 778 779 scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR); 780 scctx->isc_tx_nsegments = EM_MAX_SCATTER; 781 scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx); 782 device_printf(dev, "attach_pre capping queues at %d\n", scctx->isc_ntxqsets_max); 783 784 if (adapter->hw.mac.type >= igb_mac_min) { 785 int try_second_bar; 786 787 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN); 788 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN); 789 scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc); 790 scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc); 791 scctx->isc_txrx = &igb_txrx; 792 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER; 793 scctx->isc_tx_tso_size_max = EM_TSO_SIZE; 794 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE; 795 scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS; 796 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO | CSUM_IP6_TCP \ 797 | CSUM_IP6_UDP | CSUM_IP6_TCP; 798 if (adapter->hw.mac.type != e1000_82575) 799 scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP; 800 801 /* 802 ** Some new devices, as with ixgbe, now may 803 ** use a different BAR, so we need to keep 804 ** track of which is used. 805 */ 806 try_second_bar = pci_read_config(dev, scctx->isc_msix_bar, 4); 807 if (try_second_bar == 0) 808 scctx->isc_msix_bar += 4; 809 } else if (adapter->hw.mac.type >= em_mac_min) { 810 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN); 811 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN); 812 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc); 813 scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended); 814 scctx->isc_txrx = &em_txrx; 815 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER; 816 scctx->isc_tx_tso_size_max = EM_TSO_SIZE; 817 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE; 818 scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS; 819 /* 820 * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO} 821 * by default as we don't have workarounds for all associated 822 * silicon errata. E. g., with several MACs such as 82573E, 823 * TSO only works at Gigabit speed and otherwise can cause the 824 * hardware to hang (which also would be next to impossible to 825 * work around given that already queued TSO-using descriptors 826 * would need to be flushed and vlan(4) reconfigured at runtime 827 * in case of a link speed change). Moreover, MACs like 82579 828 * still can hang at Gigabit even with all publicly documented 829 * TSO workarounds implemented. Generally, the penality of 830 * these workarounds is rather high and may involve copying 831 * mbuf data around so advantages of TSO lapse. Still, TSO may 832 * work for a few MACs of this class - at least when sticking 833 * with Gigabit - in which case users may enable TSO manually. 834 */ 835 scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO); 836 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO; 837 } else { 838 scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN); 839 scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN); 840 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc); 841 scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc); 842 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP; 843 scctx->isc_txrx = &lem_txrx; 844 scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS; 845 if (adapter->hw.mac.type < e1000_82543) 846 scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM); 847 scctx->isc_msix_bar = 0; 848 } 849 850 /* Setup PCI resources */ 851 if (em_allocate_pci_resources(ctx)) { 852 device_printf(dev, "Allocation of PCI resources failed\n"); 853 error = ENXIO; 854 goto err_pci; 855 } 856 857 /* 858 ** For ICH8 and family we need to 859 ** map the flash memory, and this 860 ** must happen after the MAC is 861 ** identified 862 */ 863 if ((hw->mac.type == e1000_ich8lan) || 864 (hw->mac.type == e1000_ich9lan) || 865 (hw->mac.type == e1000_ich10lan) || 866 (hw->mac.type == e1000_pchlan) || 867 (hw->mac.type == e1000_pch2lan) || 868 (hw->mac.type == e1000_pch_lpt)) { 869 int rid = EM_BAR_TYPE_FLASH; 870 adapter->flash = bus_alloc_resource_any(dev, 871 SYS_RES_MEMORY, &rid, RF_ACTIVE); 872 if (adapter->flash == NULL) { 873 device_printf(dev, "Mapping of Flash failed\n"); 874 error = ENXIO; 875 goto err_pci; 876 } 877 /* This is used in the shared code */ 878 hw->flash_address = (u8 *)adapter->flash; 879 adapter->osdep.flash_bus_space_tag = 880 rman_get_bustag(adapter->flash); 881 adapter->osdep.flash_bus_space_handle = 882 rman_get_bushandle(adapter->flash); 883 } 884 /* 885 ** In the new SPT device flash is not a 886 ** separate BAR, rather it is also in BAR0, 887 ** so use the same tag and an offset handle for the 888 ** FLASH read/write macros in the shared code. 889 */ 890 else if (hw->mac.type >= e1000_pch_spt) { 891 adapter->osdep.flash_bus_space_tag = 892 adapter->osdep.mem_bus_space_tag; 893 adapter->osdep.flash_bus_space_handle = 894 adapter->osdep.mem_bus_space_handle 895 + E1000_FLASH_BASE_ADDR; 896 } 897 898 /* Do Shared Code initialization */ 899 error = e1000_setup_init_funcs(hw, TRUE); 900 if (error) { 901 device_printf(dev, "Setup of Shared code failed, error %d\n", 902 error); 903 error = ENXIO; 904 goto err_pci; 905 } 906 907 em_setup_msix(ctx); 908 e1000_get_bus_info(hw); 909 910 /* Set up some sysctls for the tunable interrupt delays */ 911 em_add_int_delay_sysctl(adapter, "rx_int_delay", 912 "receive interrupt delay in usecs", &adapter->rx_int_delay, 913 E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt); 914 em_add_int_delay_sysctl(adapter, "tx_int_delay", 915 "transmit interrupt delay in usecs", &adapter->tx_int_delay, 916 E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt); 917 em_add_int_delay_sysctl(adapter, "rx_abs_int_delay", 918 "receive interrupt delay limit in usecs", 919 &adapter->rx_abs_int_delay, 920 E1000_REGISTER(hw, E1000_RADV), 921 em_rx_abs_int_delay_dflt); 922 em_add_int_delay_sysctl(adapter, "tx_abs_int_delay", 923 "transmit interrupt delay limit in usecs", 924 &adapter->tx_abs_int_delay, 925 E1000_REGISTER(hw, E1000_TADV), 926 em_tx_abs_int_delay_dflt); 927 em_add_int_delay_sysctl(adapter, "itr", 928 "interrupt delay limit in usecs/4", 929 &adapter->tx_itr, 930 E1000_REGISTER(hw, E1000_ITR), 931 DEFAULT_ITR); 932 933 hw->mac.autoneg = DO_AUTO_NEG; 934 hw->phy.autoneg_wait_to_complete = FALSE; 935 hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; 936 937 if (adapter->hw.mac.type < em_mac_min) { 938 e1000_init_script_state_82541(&adapter->hw, TRUE); 939 e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE); 940 } 941 /* Copper options */ 942 if (hw->phy.media_type == e1000_media_type_copper) { 943 hw->phy.mdix = AUTO_ALL_MODES; 944 hw->phy.disable_polarity_correction = FALSE; 945 hw->phy.ms_type = EM_MASTER_SLAVE; 946 } 947 948 /* 949 * Set the frame limits assuming 950 * standard ethernet sized frames. 951 */ 952 scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size = 953 ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE; 954 955 /* 956 * This controls when hardware reports transmit completion 957 * status. 958 */ 959 hw->mac.report_tx_early = 1; 960 961 /* Allocate multicast array memory. */ 962 adapter->mta = malloc(sizeof(u8) * ETH_ADDR_LEN * 963 MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT); 964 if (adapter->mta == NULL) { 965 device_printf(dev, "Can not allocate multicast setup array\n"); 966 error = ENOMEM; 967 goto err_late; 968 } 969 970 /* Check SOL/IDER usage */ 971 if (e1000_check_reset_block(hw)) 972 device_printf(dev, "PHY reset is blocked" 973 " due to SOL/IDER session.\n"); 974 975 /* Sysctl for setting Energy Efficient Ethernet */ 976 hw->dev_spec.ich8lan.eee_disable = eee_setting; 977 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 978 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 979 OID_AUTO, "eee_control", CTLTYPE_INT|CTLFLAG_RW, 980 adapter, 0, em_sysctl_eee, "I", 981 "Disable Energy Efficient Ethernet"); 982 983 /* 984 ** Start from a known state, this is 985 ** important in reading the nvm and 986 ** mac from that. 987 */ 988 e1000_reset_hw(hw); 989 990 /* Make sure we have a good EEPROM before we read from it */ 991 if (e1000_validate_nvm_checksum(hw) < 0) { 992 /* 993 ** Some PCI-E parts fail the first check due to 994 ** the link being in sleep state, call it again, 995 ** if it fails a second time its a real issue. 996 */ 997 if (e1000_validate_nvm_checksum(hw) < 0) { 998 device_printf(dev, 999 "The EEPROM Checksum Is Not Valid\n"); 1000 error = EIO; 1001 goto err_late; 1002 } 1003 } 1004 1005 /* Copy the permanent MAC address out of the EEPROM */ 1006 if (e1000_read_mac_addr(hw) < 0) { 1007 device_printf(dev, "EEPROM read error while reading MAC" 1008 " address\n"); 1009 error = EIO; 1010 goto err_late; 1011 } 1012 1013 if (!em_is_valid_ether_addr(hw->mac.addr)) { 1014 device_printf(dev, "Invalid MAC address\n"); 1015 error = EIO; 1016 goto err_late; 1017 } 1018 1019 /* Disable ULP support */ 1020 e1000_disable_ulp_lpt_lp(hw, TRUE); 1021 1022 /* 1023 * Get Wake-on-Lan and Management info for later use 1024 */ 1025 em_get_wakeup(ctx); 1026 1027 /* Enable only WOL MAGIC by default */ 1028 scctx->isc_capenable &= ~IFCAP_WOL; 1029 if (adapter->wol != 0) 1030 scctx->isc_capenable |= IFCAP_WOL_MAGIC; 1031 1032 iflib_set_mac(ctx, hw->mac.addr); 1033 1034 return (0); 1035 1036 err_late: 1037 em_release_hw_control(adapter); 1038 err_pci: 1039 em_free_pci_resources(ctx); 1040 free(adapter->mta, M_DEVBUF); 1041 1042 return (error); 1043 } 1044 1045 static int 1046 em_if_attach_post(if_ctx_t ctx) 1047 { 1048 struct adapter *adapter = iflib_get_softc(ctx); 1049 struct e1000_hw *hw = &adapter->hw; 1050 int error = 0; 1051 1052 /* Setup OS specific network interface */ 1053 error = em_setup_interface(ctx); 1054 if (error != 0) { 1055 goto err_late; 1056 } 1057 1058 em_reset(ctx); 1059 1060 /* Initialize statistics */ 1061 em_update_stats_counters(adapter); 1062 hw->mac.get_link_status = 1; 1063 em_if_update_admin_status(ctx); 1064 em_add_hw_stats(adapter); 1065 1066 /* Non-AMT based hardware can now take control from firmware */ 1067 if (adapter->has_manage && !adapter->has_amt) 1068 em_get_hw_control(adapter); 1069 1070 INIT_DEBUGOUT("em_if_attach_post: end"); 1071 1072 return (error); 1073 1074 err_late: 1075 em_release_hw_control(adapter); 1076 em_free_pci_resources(ctx); 1077 em_if_queues_free(ctx); 1078 free(adapter->mta, M_DEVBUF); 1079 1080 return (error); 1081 } 1082 1083 /********************************************************************* 1084 * Device removal routine 1085 * 1086 * The detach entry point is called when the driver is being removed. 1087 * This routine stops the adapter and deallocates all the resources 1088 * that were allocated for driver operation. 1089 * 1090 * return 0 on success, positive on failure 1091 *********************************************************************/ 1092 1093 static int 1094 em_if_detach(if_ctx_t ctx) 1095 { 1096 struct adapter *adapter = iflib_get_softc(ctx); 1097 1098 INIT_DEBUGOUT("em_detach: begin"); 1099 1100 e1000_phy_hw_reset(&adapter->hw); 1101 1102 em_release_manageability(adapter); 1103 em_release_hw_control(adapter); 1104 em_free_pci_resources(ctx); 1105 1106 return (0); 1107 } 1108 1109 /********************************************************************* 1110 * 1111 * Shutdown entry point 1112 * 1113 **********************************************************************/ 1114 1115 static int 1116 em_if_shutdown(if_ctx_t ctx) 1117 { 1118 return em_if_suspend(ctx); 1119 } 1120 1121 /* 1122 * Suspend/resume device methods. 1123 */ 1124 static int 1125 em_if_suspend(if_ctx_t ctx) 1126 { 1127 struct adapter *adapter = iflib_get_softc(ctx); 1128 1129 em_release_manageability(adapter); 1130 em_release_hw_control(adapter); 1131 em_enable_wakeup(ctx); 1132 return (0); 1133 } 1134 1135 static int 1136 em_if_resume(if_ctx_t ctx) 1137 { 1138 struct adapter *adapter = iflib_get_softc(ctx); 1139 1140 if (adapter->hw.mac.type == e1000_pch2lan) 1141 e1000_resume_workarounds_pchlan(&adapter->hw); 1142 em_if_init(ctx); 1143 em_init_manageability(adapter); 1144 1145 return(0); 1146 } 1147 1148 static int 1149 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu) 1150 { 1151 int max_frame_size; 1152 struct adapter *adapter = iflib_get_softc(ctx); 1153 if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx); 1154 1155 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)"); 1156 1157 switch (adapter->hw.mac.type) { 1158 case e1000_82571: 1159 case e1000_82572: 1160 case e1000_ich9lan: 1161 case e1000_ich10lan: 1162 case e1000_pch2lan: 1163 case e1000_pch_lpt: 1164 case e1000_pch_spt: 1165 case e1000_pch_cnp: 1166 case e1000_82574: 1167 case e1000_82583: 1168 case e1000_80003es2lan: 1169 /* 9K Jumbo Frame size */ 1170 max_frame_size = 9234; 1171 break; 1172 case e1000_pchlan: 1173 max_frame_size = 4096; 1174 break; 1175 case e1000_82542: 1176 case e1000_ich8lan: 1177 /* Adapters that do not support jumbo frames */ 1178 max_frame_size = ETHER_MAX_LEN; 1179 break; 1180 default: 1181 if (adapter->hw.mac.type >= igb_mac_min) 1182 max_frame_size = 9234; 1183 else /* lem */ 1184 max_frame_size = MAX_JUMBO_FRAME_SIZE; 1185 } 1186 if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) { 1187 return (EINVAL); 1188 } 1189 1190 scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size = 1191 mtu + ETHER_HDR_LEN + ETHER_CRC_LEN; 1192 return (0); 1193 } 1194 1195 /********************************************************************* 1196 * Init entry point 1197 * 1198 * This routine is used in two ways. It is used by the stack as 1199 * init entry point in network interface structure. It is also used 1200 * by the driver as a hw/sw initialization routine to get to a 1201 * consistent state. 1202 * 1203 * return 0 on success, positive on failure 1204 **********************************************************************/ 1205 1206 static void 1207 em_if_init(if_ctx_t ctx) 1208 { 1209 struct adapter *adapter = iflib_get_softc(ctx); 1210 struct ifnet *ifp = iflib_get_ifp(ctx); 1211 struct em_tx_queue *tx_que; 1212 int i; 1213 INIT_DEBUGOUT("em_if_init: begin"); 1214 1215 /* Get the latest mac address, User can use a LAA */ 1216 bcopy(if_getlladdr(ifp), adapter->hw.mac.addr, 1217 ETHER_ADDR_LEN); 1218 1219 /* Put the address into the Receive Address Array */ 1220 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); 1221 1222 /* 1223 * With the 82571 adapter, RAR[0] may be overwritten 1224 * when the other port is reset, we make a duplicate 1225 * in RAR[14] for that eventuality, this assures 1226 * the interface continues to function. 1227 */ 1228 if (adapter->hw.mac.type == e1000_82571) { 1229 e1000_set_laa_state_82571(&adapter->hw, TRUE); 1230 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 1231 E1000_RAR_ENTRIES - 1); 1232 } 1233 1234 1235 /* Initialize the hardware */ 1236 em_reset(ctx); 1237 em_if_update_admin_status(ctx); 1238 1239 for (i = 0, tx_que = adapter->tx_queues; i < adapter->tx_num_queues; i++, tx_que++) { 1240 struct tx_ring *txr = &tx_que->txr; 1241 1242 txr->tx_rs_cidx = txr->tx_rs_pidx = txr->tx_cidx_processed = 0; 1243 } 1244 1245 /* Setup VLAN support, basic and offload if available */ 1246 E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN); 1247 1248 /* Clear bad data from Rx FIFOs */ 1249 if (adapter->hw.mac.type >= igb_mac_min) 1250 e1000_rx_fifo_flush_82575(&adapter->hw); 1251 1252 /* Configure for OS presence */ 1253 em_init_manageability(adapter); 1254 1255 /* Prepare transmit descriptors and buffers */ 1256 em_initialize_transmit_unit(ctx); 1257 1258 /* Setup Multicast table */ 1259 em_if_multi_set(ctx); 1260 1261 /* 1262 * Figure out the desired mbuf 1263 * pool for doing jumbos 1264 */ 1265 if (adapter->hw.mac.max_frame_size <= 2048) 1266 adapter->rx_mbuf_sz = MCLBYTES; 1267 #ifndef CONTIGMALLOC_WORKS 1268 else 1269 adapter->rx_mbuf_sz = MJUMPAGESIZE; 1270 #else 1271 else if (adapter->hw.mac.max_frame_size <= 4096) 1272 adapter->rx_mbuf_sz = MJUMPAGESIZE; 1273 else 1274 adapter->rx_mbuf_sz = MJUM9BYTES; 1275 #endif 1276 em_initialize_receive_unit(ctx); 1277 1278 /* Use real VLAN Filter support? */ 1279 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) { 1280 if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) 1281 /* Use real VLAN Filter support */ 1282 em_setup_vlan_hw_support(adapter); 1283 else { 1284 u32 ctrl; 1285 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL); 1286 ctrl |= E1000_CTRL_VME; 1287 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl); 1288 } 1289 } 1290 1291 /* Don't lose promiscuous settings */ 1292 em_if_set_promisc(ctx, IFF_PROMISC); 1293 e1000_clear_hw_cntrs_base_generic(&adapter->hw); 1294 1295 /* MSI/X configuration for 82574 */ 1296 if (adapter->hw.mac.type == e1000_82574) { 1297 int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); 1298 1299 tmp |= E1000_CTRL_EXT_PBA_CLR; 1300 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp); 1301 /* Set the IVAR - interrupt vector routing. */ 1302 E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars); 1303 } else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */ 1304 igb_configure_queues(adapter); 1305 1306 /* this clears any pending interrupts */ 1307 E1000_READ_REG(&adapter->hw, E1000_ICR); 1308 E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC); 1309 1310 /* AMT based hardware can now take control from firmware */ 1311 if (adapter->has_manage && adapter->has_amt) 1312 em_get_hw_control(adapter); 1313 1314 /* Set Energy Efficient Ethernet */ 1315 if (adapter->hw.mac.type >= igb_mac_min && 1316 adapter->hw.phy.media_type == e1000_media_type_copper) { 1317 if (adapter->hw.mac.type == e1000_i354) 1318 e1000_set_eee_i354(&adapter->hw, TRUE, TRUE); 1319 else 1320 e1000_set_eee_i350(&adapter->hw, TRUE, TRUE); 1321 } 1322 } 1323 1324 /********************************************************************* 1325 * 1326 * Fast Legacy/MSI Combined Interrupt Service routine 1327 * 1328 *********************************************************************/ 1329 int 1330 em_intr(void *arg) 1331 { 1332 struct adapter *adapter = arg; 1333 if_ctx_t ctx = adapter->ctx; 1334 u32 reg_icr; 1335 1336 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR); 1337 1338 if (adapter->intr_type != IFLIB_INTR_LEGACY) 1339 goto skip_stray; 1340 /* Hot eject? */ 1341 if (reg_icr == 0xffffffff) 1342 return FILTER_STRAY; 1343 1344 /* Definitely not our interrupt. */ 1345 if (reg_icr == 0x0) 1346 return FILTER_STRAY; 1347 1348 /* 1349 * Starting with the 82571 chip, bit 31 should be used to 1350 * determine whether the interrupt belongs to us. 1351 */ 1352 if (adapter->hw.mac.type >= e1000_82571 && 1353 (reg_icr & E1000_ICR_INT_ASSERTED) == 0) 1354 return FILTER_STRAY; 1355 1356 skip_stray: 1357 /* Link status change */ 1358 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 1359 adapter->hw.mac.get_link_status = 1; 1360 iflib_admin_intr_deferred(ctx); 1361 } 1362 1363 if (reg_icr & E1000_ICR_RXO) 1364 adapter->rx_overruns++; 1365 1366 return (FILTER_SCHEDULE_THREAD); 1367 } 1368 1369 static void 1370 igb_rx_enable_queue(struct adapter *adapter, struct em_rx_queue *rxq) 1371 { 1372 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims); 1373 } 1374 1375 static void 1376 em_rx_enable_queue(struct adapter *adapter, struct em_rx_queue *rxq) 1377 { 1378 E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims); 1379 } 1380 1381 static void 1382 igb_tx_enable_queue(struct adapter *adapter, struct em_tx_queue *txq) 1383 { 1384 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txq->eims); 1385 } 1386 1387 static void 1388 em_tx_enable_queue(struct adapter *adapter, struct em_tx_queue *txq) 1389 { 1390 E1000_WRITE_REG(&adapter->hw, E1000_IMS, txq->eims); 1391 } 1392 1393 static int 1394 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid) 1395 { 1396 struct adapter *adapter = iflib_get_softc(ctx); 1397 struct em_rx_queue *rxq = &adapter->rx_queues[rxqid]; 1398 1399 if (adapter->hw.mac.type >= igb_mac_min) 1400 igb_rx_enable_queue(adapter, rxq); 1401 else 1402 em_rx_enable_queue(adapter, rxq); 1403 return (0); 1404 } 1405 1406 static int 1407 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid) 1408 { 1409 struct adapter *adapter = iflib_get_softc(ctx); 1410 struct em_tx_queue *txq = &adapter->tx_queues[txqid]; 1411 1412 if (adapter->hw.mac.type >= igb_mac_min) 1413 igb_tx_enable_queue(adapter, txq); 1414 else 1415 em_tx_enable_queue(adapter, txq); 1416 return (0); 1417 } 1418 1419 /********************************************************************* 1420 * 1421 * MSIX RX Interrupt Service routine 1422 * 1423 **********************************************************************/ 1424 static int 1425 em_msix_que(void *arg) 1426 { 1427 struct em_rx_queue *que = arg; 1428 1429 ++que->irqs; 1430 1431 return (FILTER_SCHEDULE_THREAD); 1432 } 1433 1434 /********************************************************************* 1435 * 1436 * MSIX Link Fast Interrupt Service routine 1437 * 1438 **********************************************************************/ 1439 static int 1440 em_msix_link(void *arg) 1441 { 1442 struct adapter *adapter = arg; 1443 u32 reg_icr; 1444 1445 ++adapter->link_irq; 1446 MPASS(adapter->hw.back != NULL); 1447 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR); 1448 1449 if (reg_icr & E1000_ICR_RXO) 1450 adapter->rx_overruns++; 1451 1452 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 1453 em_handle_link(adapter->ctx); 1454 } else { 1455 E1000_WRITE_REG(&adapter->hw, E1000_IMS, 1456 EM_MSIX_LINK | E1000_IMS_LSC); 1457 if (adapter->hw.mac.type >= igb_mac_min) 1458 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask); 1459 } 1460 1461 /* 1462 * Because we must read the ICR for this interrupt 1463 * it may clear other causes using autoclear, for 1464 * this reason we simply create a soft interrupt 1465 * for all these vectors. 1466 */ 1467 if (reg_icr && adapter->hw.mac.type < igb_mac_min) { 1468 E1000_WRITE_REG(&adapter->hw, 1469 E1000_ICS, adapter->ims); 1470 } 1471 1472 return (FILTER_HANDLED); 1473 } 1474 1475 static void 1476 em_handle_link(void *context) 1477 { 1478 if_ctx_t ctx = context; 1479 struct adapter *adapter = iflib_get_softc(ctx); 1480 1481 adapter->hw.mac.get_link_status = 1; 1482 iflib_admin_intr_deferred(ctx); 1483 } 1484 1485 1486 /********************************************************************* 1487 * 1488 * Media Ioctl callback 1489 * 1490 * This routine is called whenever the user queries the status of 1491 * the interface using ifconfig. 1492 * 1493 **********************************************************************/ 1494 static void 1495 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr) 1496 { 1497 struct adapter *adapter = iflib_get_softc(ctx); 1498 u_char fiber_type = IFM_1000_SX; 1499 1500 INIT_DEBUGOUT("em_if_media_status: begin"); 1501 1502 iflib_admin_intr_deferred(ctx); 1503 1504 ifmr->ifm_status = IFM_AVALID; 1505 ifmr->ifm_active = IFM_ETHER; 1506 1507 if (!adapter->link_active) { 1508 return; 1509 } 1510 1511 ifmr->ifm_status |= IFM_ACTIVE; 1512 1513 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || 1514 (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) { 1515 if (adapter->hw.mac.type == e1000_82545) 1516 fiber_type = IFM_1000_LX; 1517 ifmr->ifm_active |= fiber_type | IFM_FDX; 1518 } else { 1519 switch (adapter->link_speed) { 1520 case 10: 1521 ifmr->ifm_active |= IFM_10_T; 1522 break; 1523 case 100: 1524 ifmr->ifm_active |= IFM_100_TX; 1525 break; 1526 case 1000: 1527 ifmr->ifm_active |= IFM_1000_T; 1528 break; 1529 } 1530 if (adapter->link_duplex == FULL_DUPLEX) 1531 ifmr->ifm_active |= IFM_FDX; 1532 else 1533 ifmr->ifm_active |= IFM_HDX; 1534 } 1535 } 1536 1537 /********************************************************************* 1538 * 1539 * Media Ioctl callback 1540 * 1541 * This routine is called when the user changes speed/duplex using 1542 * media/mediopt option with ifconfig. 1543 * 1544 **********************************************************************/ 1545 static int 1546 em_if_media_change(if_ctx_t ctx) 1547 { 1548 struct adapter *adapter = iflib_get_softc(ctx); 1549 struct ifmedia *ifm = iflib_get_media(ctx); 1550 1551 INIT_DEBUGOUT("em_if_media_change: begin"); 1552 1553 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 1554 return (EINVAL); 1555 1556 switch (IFM_SUBTYPE(ifm->ifm_media)) { 1557 case IFM_AUTO: 1558 adapter->hw.mac.autoneg = DO_AUTO_NEG; 1559 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; 1560 break; 1561 case IFM_1000_LX: 1562 case IFM_1000_SX: 1563 case IFM_1000_T: 1564 adapter->hw.mac.autoneg = DO_AUTO_NEG; 1565 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 1566 break; 1567 case IFM_100_TX: 1568 adapter->hw.mac.autoneg = FALSE; 1569 adapter->hw.phy.autoneg_advertised = 0; 1570 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) 1571 adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL; 1572 else 1573 adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF; 1574 break; 1575 case IFM_10_T: 1576 adapter->hw.mac.autoneg = FALSE; 1577 adapter->hw.phy.autoneg_advertised = 0; 1578 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) 1579 adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL; 1580 else 1581 adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF; 1582 break; 1583 default: 1584 device_printf(adapter->dev, "Unsupported media type\n"); 1585 } 1586 1587 em_if_init(ctx); 1588 1589 return (0); 1590 } 1591 1592 static int 1593 em_if_set_promisc(if_ctx_t ctx, int flags) 1594 { 1595 struct adapter *adapter = iflib_get_softc(ctx); 1596 u32 reg_rctl; 1597 1598 em_disable_promisc(ctx); 1599 1600 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1601 1602 if (flags & IFF_PROMISC) { 1603 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 1604 /* Turn this on if you want to see bad packets */ 1605 if (em_debug_sbp) 1606 reg_rctl |= E1000_RCTL_SBP; 1607 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1608 } else if (flags & IFF_ALLMULTI) { 1609 reg_rctl |= E1000_RCTL_MPE; 1610 reg_rctl &= ~E1000_RCTL_UPE; 1611 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1612 } 1613 return (0); 1614 } 1615 1616 static void 1617 em_disable_promisc(if_ctx_t ctx) 1618 { 1619 struct adapter *adapter = iflib_get_softc(ctx); 1620 struct ifnet *ifp = iflib_get_ifp(ctx); 1621 u32 reg_rctl; 1622 int mcnt = 0; 1623 1624 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1625 reg_rctl &= (~E1000_RCTL_UPE); 1626 if (if_getflags(ifp) & IFF_ALLMULTI) 1627 mcnt = MAX_NUM_MULTICAST_ADDRESSES; 1628 else 1629 mcnt = if_multiaddr_count(ifp, MAX_NUM_MULTICAST_ADDRESSES); 1630 /* Don't disable if in MAX groups */ 1631 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES) 1632 reg_rctl &= (~E1000_RCTL_MPE); 1633 reg_rctl &= (~E1000_RCTL_SBP); 1634 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1635 } 1636 1637 1638 /********************************************************************* 1639 * Multicast Update 1640 * 1641 * This routine is called whenever multicast address list is updated. 1642 * 1643 **********************************************************************/ 1644 1645 static void 1646 em_if_multi_set(if_ctx_t ctx) 1647 { 1648 struct adapter *adapter = iflib_get_softc(ctx); 1649 struct ifnet *ifp = iflib_get_ifp(ctx); 1650 u32 reg_rctl = 0; 1651 u8 *mta; /* Multicast array memory */ 1652 int mcnt = 0; 1653 1654 IOCTL_DEBUGOUT("em_set_multi: begin"); 1655 1656 mta = adapter->mta; 1657 bzero(mta, sizeof(u8) * ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES); 1658 1659 if (adapter->hw.mac.type == e1000_82542 && 1660 adapter->hw.revision_id == E1000_REVISION_2) { 1661 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1662 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) 1663 e1000_pci_clear_mwi(&adapter->hw); 1664 reg_rctl |= E1000_RCTL_RST; 1665 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1666 msec_delay(5); 1667 } 1668 1669 if_multiaddr_array(ifp, mta, &mcnt, MAX_NUM_MULTICAST_ADDRESSES); 1670 1671 if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) { 1672 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1673 reg_rctl |= E1000_RCTL_MPE; 1674 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1675 } else 1676 e1000_update_mc_addr_list(&adapter->hw, mta, mcnt); 1677 1678 if (adapter->hw.mac.type == e1000_82542 && 1679 adapter->hw.revision_id == E1000_REVISION_2) { 1680 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1681 reg_rctl &= ~E1000_RCTL_RST; 1682 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1683 msec_delay(5); 1684 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) 1685 e1000_pci_set_mwi(&adapter->hw); 1686 } 1687 } 1688 1689 1690 /********************************************************************* 1691 * Timer routine 1692 * 1693 * This routine checks for link status and updates statistics. 1694 * 1695 **********************************************************************/ 1696 1697 static void 1698 em_if_timer(if_ctx_t ctx, uint16_t qid) 1699 { 1700 struct adapter *adapter = iflib_get_softc(ctx); 1701 struct em_rx_queue *que; 1702 int i; 1703 int trigger = 0; 1704 1705 if (qid != 0) 1706 return; 1707 1708 iflib_admin_intr_deferred(ctx); 1709 1710 /* Mask to use in the irq trigger */ 1711 if (adapter->intr_type == IFLIB_INTR_MSIX) { 1712 for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) 1713 trigger |= que->eims; 1714 } else { 1715 trigger = E1000_ICS_RXDMT0; 1716 } 1717 } 1718 1719 1720 static void 1721 em_if_update_admin_status(if_ctx_t ctx) 1722 { 1723 struct adapter *adapter = iflib_get_softc(ctx); 1724 struct e1000_hw *hw = &adapter->hw; 1725 device_t dev = iflib_get_dev(ctx); 1726 u32 link_check, thstat, ctrl; 1727 1728 link_check = thstat = ctrl = 0; 1729 /* Get the cached link value or read phy for real */ 1730 switch (hw->phy.media_type) { 1731 case e1000_media_type_copper: 1732 if (hw->mac.get_link_status) { 1733 if (hw->mac.type == e1000_pch_spt) 1734 msec_delay(50); 1735 /* Do the work to read phy */ 1736 e1000_check_for_link(hw); 1737 link_check = !hw->mac.get_link_status; 1738 if (link_check) /* ESB2 fix */ 1739 e1000_cfg_on_link_up(hw); 1740 } else { 1741 link_check = TRUE; 1742 } 1743 break; 1744 case e1000_media_type_fiber: 1745 e1000_check_for_link(hw); 1746 link_check = (E1000_READ_REG(hw, E1000_STATUS) & 1747 E1000_STATUS_LU); 1748 break; 1749 case e1000_media_type_internal_serdes: 1750 e1000_check_for_link(hw); 1751 link_check = adapter->hw.mac.serdes_has_link; 1752 break; 1753 /* VF device is type_unknown */ 1754 case e1000_media_type_unknown: 1755 e1000_check_for_link(hw); 1756 link_check = !hw->mac.get_link_status; 1757 /* FALLTHROUGH */ 1758 default: 1759 break; 1760 } 1761 1762 /* Check for thermal downshift or shutdown */ 1763 if (hw->mac.type == e1000_i350) { 1764 thstat = E1000_READ_REG(hw, E1000_THSTAT); 1765 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT); 1766 } 1767 1768 /* Now check for a transition */ 1769 if (link_check && (adapter->link_active == 0)) { 1770 e1000_get_speed_and_duplex(hw, &adapter->link_speed, 1771 &adapter->link_duplex); 1772 /* Check if we must disable SPEED_MODE bit on PCI-E */ 1773 if ((adapter->link_speed != SPEED_1000) && 1774 ((hw->mac.type == e1000_82571) || 1775 (hw->mac.type == e1000_82572))) { 1776 int tarc0; 1777 tarc0 = E1000_READ_REG(hw, E1000_TARC(0)); 1778 tarc0 &= ~TARC_SPEED_MODE_BIT; 1779 E1000_WRITE_REG(hw, E1000_TARC(0), tarc0); 1780 } 1781 if (bootverbose) 1782 device_printf(dev, "Link is up %d Mbps %s\n", 1783 adapter->link_speed, 1784 ((adapter->link_duplex == FULL_DUPLEX) ? 1785 "Full Duplex" : "Half Duplex")); 1786 adapter->link_active = 1; 1787 adapter->smartspeed = 0; 1788 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) == 1789 E1000_CTRL_EXT_LINK_MODE_GMII && 1790 (thstat & E1000_THSTAT_LINK_THROTTLE)) 1791 device_printf(dev, "Link: thermal downshift\n"); 1792 /* Delay Link Up for Phy update */ 1793 if (((hw->mac.type == e1000_i210) || 1794 (hw->mac.type == e1000_i211)) && 1795 (hw->phy.id == I210_I_PHY_ID)) 1796 msec_delay(I210_LINK_DELAY); 1797 /* Reset if the media type changed. */ 1798 if ((hw->dev_spec._82575.media_changed) && 1799 (adapter->hw.mac.type >= igb_mac_min)) { 1800 hw->dev_spec._82575.media_changed = false; 1801 adapter->flags |= IGB_MEDIA_RESET; 1802 em_reset(ctx); 1803 } 1804 iflib_link_state_change(ctx, LINK_STATE_UP, 1805 IF_Mbps(adapter->link_speed)); 1806 printf("Link state changed to up\n"); 1807 } else if (!link_check && (adapter->link_active == 1)) { 1808 adapter->link_speed = 0; 1809 adapter->link_duplex = 0; 1810 adapter->link_active = 0; 1811 iflib_link_state_change(ctx, LINK_STATE_DOWN, 0); 1812 printf("Link state changed to down\n"); 1813 } 1814 em_update_stats_counters(adapter); 1815 1816 /* Reset LAA into RAR[0] on 82571 */ 1817 if ((adapter->hw.mac.type == e1000_82571) && 1818 e1000_get_laa_state_82571(&adapter->hw)) 1819 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); 1820 1821 if (adapter->hw.mac.type < em_mac_min) 1822 lem_smartspeed(adapter); 1823 1824 E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK | E1000_IMS_LSC); 1825 } 1826 1827 /********************************************************************* 1828 * 1829 * This routine disables all traffic on the adapter by issuing a 1830 * global reset on the MAC and deallocates TX/RX buffers. 1831 * 1832 * This routine should always be called with BOTH the CORE 1833 * and TX locks. 1834 **********************************************************************/ 1835 1836 static void 1837 em_if_stop(if_ctx_t ctx) 1838 { 1839 struct adapter *adapter = iflib_get_softc(ctx); 1840 1841 INIT_DEBUGOUT("em_stop: begin"); 1842 1843 e1000_reset_hw(&adapter->hw); 1844 if (adapter->hw.mac.type >= e1000_82544) 1845 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0); 1846 1847 e1000_led_off(&adapter->hw); 1848 e1000_cleanup_led(&adapter->hw); 1849 } 1850 1851 1852 /********************************************************************* 1853 * 1854 * Determine hardware revision. 1855 * 1856 **********************************************************************/ 1857 static void 1858 em_identify_hardware(if_ctx_t ctx) 1859 { 1860 device_t dev = iflib_get_dev(ctx); 1861 struct adapter *adapter = iflib_get_softc(ctx); 1862 1863 /* Make sure our PCI config space has the necessary stuff set */ 1864 adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2); 1865 1866 /* Save off the information about this board */ 1867 adapter->hw.vendor_id = pci_get_vendor(dev); 1868 adapter->hw.device_id = pci_get_device(dev); 1869 adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1); 1870 adapter->hw.subsystem_vendor_id = 1871 pci_read_config(dev, PCIR_SUBVEND_0, 2); 1872 adapter->hw.subsystem_device_id = 1873 pci_read_config(dev, PCIR_SUBDEV_0, 2); 1874 1875 /* Do Shared Code Init and Setup */ 1876 if (e1000_set_mac_type(&adapter->hw)) { 1877 device_printf(dev, "Setup init failure\n"); 1878 return; 1879 } 1880 } 1881 1882 static int 1883 em_allocate_pci_resources(if_ctx_t ctx) 1884 { 1885 struct adapter *adapter = iflib_get_softc(ctx); 1886 device_t dev = iflib_get_dev(ctx); 1887 int rid, val; 1888 1889 rid = PCIR_BAR(0); 1890 adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 1891 &rid, RF_ACTIVE); 1892 if (adapter->memory == NULL) { 1893 device_printf(dev, "Unable to allocate bus resource: memory\n"); 1894 return (ENXIO); 1895 } 1896 adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->memory); 1897 adapter->osdep.mem_bus_space_handle = 1898 rman_get_bushandle(adapter->memory); 1899 adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle; 1900 1901 /* Only older adapters use IO mapping */ 1902 if (adapter->hw.mac.type < em_mac_min && 1903 adapter->hw.mac.type > e1000_82543) { 1904 /* Figure our where our IO BAR is ? */ 1905 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) { 1906 val = pci_read_config(dev, rid, 4); 1907 if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) { 1908 adapter->io_rid = rid; 1909 break; 1910 } 1911 rid += 4; 1912 /* check for 64bit BAR */ 1913 if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT) 1914 rid += 4; 1915 } 1916 if (rid >= PCIR_CIS) { 1917 device_printf(dev, "Unable to locate IO BAR\n"); 1918 return (ENXIO); 1919 } 1920 adapter->ioport = bus_alloc_resource_any(dev, 1921 SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE); 1922 if (adapter->ioport == NULL) { 1923 device_printf(dev, "Unable to allocate bus resource: " 1924 "ioport\n"); 1925 return (ENXIO); 1926 } 1927 adapter->hw.io_base = 0; 1928 adapter->osdep.io_bus_space_tag = 1929 rman_get_bustag(adapter->ioport); 1930 adapter->osdep.io_bus_space_handle = 1931 rman_get_bushandle(adapter->ioport); 1932 } 1933 1934 adapter->hw.back = &adapter->osdep; 1935 1936 return (0); 1937 } 1938 1939 /********************************************************************* 1940 * 1941 * Setup the MSIX Interrupt handlers 1942 * 1943 **********************************************************************/ 1944 static int 1945 em_if_msix_intr_assign(if_ctx_t ctx, int msix) 1946 { 1947 struct adapter *adapter = iflib_get_softc(ctx); 1948 struct em_rx_queue *rx_que = adapter->rx_queues; 1949 struct em_tx_queue *tx_que = adapter->tx_queues; 1950 int error, rid, i, vector = 0, rx_vectors; 1951 char buf[16]; 1952 1953 /* First set up ring resources */ 1954 for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) { 1955 rid = vector + 1; 1956 snprintf(buf, sizeof(buf), "rxq%d", i); 1957 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf); 1958 if (error) { 1959 device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error); 1960 adapter->rx_num_queues = i + 1; 1961 goto fail; 1962 } 1963 1964 rx_que->msix = vector; 1965 1966 /* 1967 * Set the bit to enable interrupt 1968 * in E1000_IMS -- bits 20 and 21 1969 * are for RX0 and RX1, note this has 1970 * NOTHING to do with the MSIX vector 1971 */ 1972 if (adapter->hw.mac.type == e1000_82574) { 1973 rx_que->eims = 1 << (20 + i); 1974 adapter->ims |= rx_que->eims; 1975 adapter->ivars |= (8 | rx_que->msix) << (i * 4); 1976 } else if (adapter->hw.mac.type == e1000_82575) 1977 rx_que->eims = E1000_EICR_TX_QUEUE0 << vector; 1978 else 1979 rx_que->eims = 1 << vector; 1980 } 1981 rx_vectors = vector; 1982 1983 vector = 0; 1984 for (i = 0; i < adapter->tx_num_queues; i++, tx_que++, vector++) { 1985 snprintf(buf, sizeof(buf), "txq%d", i); 1986 tx_que = &adapter->tx_queues[i]; 1987 iflib_softirq_alloc_generic(ctx, 1988 &adapter->rx_queues[i % adapter->rx_num_queues].que_irq, 1989 IFLIB_INTR_TX, tx_que, tx_que->me, buf); 1990 1991 tx_que->msix = (vector % adapter->tx_num_queues); 1992 1993 /* 1994 * Set the bit to enable interrupt 1995 * in E1000_IMS -- bits 22 and 23 1996 * are for TX0 and TX1, note this has 1997 * NOTHING to do with the MSIX vector 1998 */ 1999 if (adapter->hw.mac.type == e1000_82574) { 2000 tx_que->eims = 1 << (22 + i); 2001 adapter->ims |= tx_que->eims; 2002 adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4)); 2003 } else if (adapter->hw.mac.type == e1000_82575) { 2004 tx_que->eims = E1000_EICR_TX_QUEUE0 << (i % adapter->tx_num_queues); 2005 } else { 2006 tx_que->eims = 1 << (i % adapter->tx_num_queues); 2007 } 2008 } 2009 2010 /* Link interrupt */ 2011 rid = rx_vectors + 1; 2012 error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq"); 2013 2014 if (error) { 2015 device_printf(iflib_get_dev(ctx), "Failed to register admin handler"); 2016 goto fail; 2017 } 2018 adapter->linkvec = rx_vectors; 2019 if (adapter->hw.mac.type < igb_mac_min) { 2020 adapter->ivars |= (8 | rx_vectors) << 16; 2021 adapter->ivars |= 0x80000000; 2022 } 2023 return (0); 2024 fail: 2025 iflib_irq_free(ctx, &adapter->irq); 2026 rx_que = adapter->rx_queues; 2027 for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++) 2028 iflib_irq_free(ctx, &rx_que->que_irq); 2029 return (error); 2030 } 2031 2032 static void 2033 igb_configure_queues(struct adapter *adapter) 2034 { 2035 struct e1000_hw *hw = &adapter->hw; 2036 struct em_rx_queue *rx_que; 2037 struct em_tx_queue *tx_que; 2038 u32 tmp, ivar = 0, newitr = 0; 2039 2040 /* First turn on RSS capability */ 2041 if (adapter->hw.mac.type != e1000_82575) 2042 E1000_WRITE_REG(hw, E1000_GPIE, 2043 E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME | 2044 E1000_GPIE_PBA | E1000_GPIE_NSICR); 2045 2046 /* Turn on MSIX */ 2047 switch (adapter->hw.mac.type) { 2048 case e1000_82580: 2049 case e1000_i350: 2050 case e1000_i354: 2051 case e1000_i210: 2052 case e1000_i211: 2053 case e1000_vfadapt: 2054 case e1000_vfadapt_i350: 2055 /* RX entries */ 2056 for (int i = 0; i < adapter->rx_num_queues; i++) { 2057 u32 index = i >> 1; 2058 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2059 rx_que = &adapter->rx_queues[i]; 2060 if (i & 1) { 2061 ivar &= 0xFF00FFFF; 2062 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16; 2063 } else { 2064 ivar &= 0xFFFFFF00; 2065 ivar |= rx_que->msix | E1000_IVAR_VALID; 2066 } 2067 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2068 } 2069 /* TX entries */ 2070 for (int i = 0; i < adapter->tx_num_queues; i++) { 2071 u32 index = i >> 1; 2072 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2073 tx_que = &adapter->tx_queues[i]; 2074 if (i & 1) { 2075 ivar &= 0x00FFFFFF; 2076 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24; 2077 } else { 2078 ivar &= 0xFFFF00FF; 2079 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8; 2080 } 2081 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2082 adapter->que_mask |= tx_que->eims; 2083 } 2084 2085 /* And for the link interrupt */ 2086 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8; 2087 adapter->link_mask = 1 << adapter->linkvec; 2088 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); 2089 break; 2090 case e1000_82576: 2091 /* RX entries */ 2092 for (int i = 0; i < adapter->rx_num_queues; i++) { 2093 u32 index = i & 0x7; /* Each IVAR has two entries */ 2094 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2095 rx_que = &adapter->rx_queues[i]; 2096 if (i < 8) { 2097 ivar &= 0xFFFFFF00; 2098 ivar |= rx_que->msix | E1000_IVAR_VALID; 2099 } else { 2100 ivar &= 0xFF00FFFF; 2101 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16; 2102 } 2103 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2104 adapter->que_mask |= rx_que->eims; 2105 } 2106 /* TX entries */ 2107 for (int i = 0; i < adapter->tx_num_queues; i++) { 2108 u32 index = i & 0x7; /* Each IVAR has two entries */ 2109 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2110 tx_que = &adapter->tx_queues[i]; 2111 if (i < 8) { 2112 ivar &= 0xFFFF00FF; 2113 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8; 2114 } else { 2115 ivar &= 0x00FFFFFF; 2116 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24; 2117 } 2118 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2119 adapter->que_mask |= tx_que->eims; 2120 } 2121 2122 /* And for the link interrupt */ 2123 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8; 2124 adapter->link_mask = 1 << adapter->linkvec; 2125 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); 2126 break; 2127 2128 case e1000_82575: 2129 /* enable MSI-X support*/ 2130 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT); 2131 tmp |= E1000_CTRL_EXT_PBA_CLR; 2132 /* Auto-Mask interrupts upon ICR read. */ 2133 tmp |= E1000_CTRL_EXT_EIAME; 2134 tmp |= E1000_CTRL_EXT_IRCA; 2135 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp); 2136 2137 /* Queues */ 2138 for (int i = 0; i < adapter->rx_num_queues; i++) { 2139 rx_que = &adapter->rx_queues[i]; 2140 tmp = E1000_EICR_RX_QUEUE0 << i; 2141 tmp |= E1000_EICR_TX_QUEUE0 << i; 2142 rx_que->eims = tmp; 2143 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 2144 i, rx_que->eims); 2145 adapter->que_mask |= rx_que->eims; 2146 } 2147 2148 /* Link */ 2149 E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec), 2150 E1000_EIMS_OTHER); 2151 adapter->link_mask |= E1000_EIMS_OTHER; 2152 default: 2153 break; 2154 } 2155 2156 /* Set the starting interrupt rate */ 2157 if (em_max_interrupt_rate > 0) 2158 newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC; 2159 2160 if (hw->mac.type == e1000_82575) 2161 newitr |= newitr << 16; 2162 else 2163 newitr |= E1000_EITR_CNT_IGNR; 2164 2165 for (int i = 0; i < adapter->rx_num_queues; i++) { 2166 rx_que = &adapter->rx_queues[i]; 2167 E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr); 2168 } 2169 2170 return; 2171 } 2172 2173 static void 2174 em_free_pci_resources(if_ctx_t ctx) 2175 { 2176 struct adapter *adapter = iflib_get_softc(ctx); 2177 struct em_rx_queue *que = adapter->rx_queues; 2178 device_t dev = iflib_get_dev(ctx); 2179 2180 /* Release all msix queue resources */ 2181 if (adapter->intr_type == IFLIB_INTR_MSIX) 2182 iflib_irq_free(ctx, &adapter->irq); 2183 2184 for (int i = 0; i < adapter->rx_num_queues; i++, que++) { 2185 iflib_irq_free(ctx, &que->que_irq); 2186 } 2187 2188 /* First release all the interrupt resources */ 2189 if (adapter->memory != NULL) { 2190 bus_release_resource(dev, SYS_RES_MEMORY, 2191 PCIR_BAR(0), adapter->memory); 2192 adapter->memory = NULL; 2193 } 2194 2195 if (adapter->flash != NULL) { 2196 bus_release_resource(dev, SYS_RES_MEMORY, 2197 EM_FLASH, adapter->flash); 2198 adapter->flash = NULL; 2199 } 2200 if (adapter->ioport != NULL) 2201 bus_release_resource(dev, SYS_RES_IOPORT, 2202 adapter->io_rid, adapter->ioport); 2203 } 2204 2205 /* Setup MSI or MSI/X */ 2206 static int 2207 em_setup_msix(if_ctx_t ctx) 2208 { 2209 struct adapter *adapter = iflib_get_softc(ctx); 2210 2211 if (adapter->hw.mac.type == e1000_82574) { 2212 em_enable_vectors_82574(ctx); 2213 } 2214 return (0); 2215 } 2216 2217 /********************************************************************* 2218 * 2219 * Initialize the hardware to a configuration 2220 * as specified by the adapter structure. 2221 * 2222 **********************************************************************/ 2223 2224 static void 2225 lem_smartspeed(struct adapter *adapter) 2226 { 2227 u16 phy_tmp; 2228 2229 if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) || 2230 adapter->hw.mac.autoneg == 0 || 2231 (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0) 2232 return; 2233 2234 if (adapter->smartspeed == 0) { 2235 /* If Master/Slave config fault is asserted twice, 2236 * we assume back-to-back */ 2237 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp); 2238 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT)) 2239 return; 2240 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp); 2241 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) { 2242 e1000_read_phy_reg(&adapter->hw, 2243 PHY_1000T_CTRL, &phy_tmp); 2244 if(phy_tmp & CR_1000T_MS_ENABLE) { 2245 phy_tmp &= ~CR_1000T_MS_ENABLE; 2246 e1000_write_phy_reg(&adapter->hw, 2247 PHY_1000T_CTRL, phy_tmp); 2248 adapter->smartspeed++; 2249 if(adapter->hw.mac.autoneg && 2250 !e1000_copper_link_autoneg(&adapter->hw) && 2251 !e1000_read_phy_reg(&adapter->hw, 2252 PHY_CONTROL, &phy_tmp)) { 2253 phy_tmp |= (MII_CR_AUTO_NEG_EN | 2254 MII_CR_RESTART_AUTO_NEG); 2255 e1000_write_phy_reg(&adapter->hw, 2256 PHY_CONTROL, phy_tmp); 2257 } 2258 } 2259 } 2260 return; 2261 } else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) { 2262 /* If still no link, perhaps using 2/3 pair cable */ 2263 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp); 2264 phy_tmp |= CR_1000T_MS_ENABLE; 2265 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp); 2266 if(adapter->hw.mac.autoneg && 2267 !e1000_copper_link_autoneg(&adapter->hw) && 2268 !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) { 2269 phy_tmp |= (MII_CR_AUTO_NEG_EN | 2270 MII_CR_RESTART_AUTO_NEG); 2271 e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp); 2272 } 2273 } 2274 /* Restart process after EM_SMARTSPEED_MAX iterations */ 2275 if(adapter->smartspeed++ == EM_SMARTSPEED_MAX) 2276 adapter->smartspeed = 0; 2277 } 2278 2279 /********************************************************************* 2280 * 2281 * Initialize the DMA Coalescing feature 2282 * 2283 **********************************************************************/ 2284 static void 2285 igb_init_dmac(struct adapter *adapter, u32 pba) 2286 { 2287 device_t dev = adapter->dev; 2288 struct e1000_hw *hw = &adapter->hw; 2289 u32 dmac, reg = ~E1000_DMACR_DMAC_EN; 2290 u16 hwm; 2291 u16 max_frame_size; 2292 2293 if (hw->mac.type == e1000_i211) 2294 return; 2295 2296 max_frame_size = adapter->shared->isc_max_frame_size; 2297 if (hw->mac.type > e1000_82580) { 2298 2299 if (adapter->dmac == 0) { /* Disabling it */ 2300 E1000_WRITE_REG(hw, E1000_DMACR, reg); 2301 return; 2302 } else 2303 device_printf(dev, "DMA Coalescing enabled\n"); 2304 2305 /* Set starting threshold */ 2306 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0); 2307 2308 hwm = 64 * pba - max_frame_size / 16; 2309 if (hwm < 64 * (pba - 6)) 2310 hwm = 64 * (pba - 6); 2311 reg = E1000_READ_REG(hw, E1000_FCRTC); 2312 reg &= ~E1000_FCRTC_RTH_COAL_MASK; 2313 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) 2314 & E1000_FCRTC_RTH_COAL_MASK); 2315 E1000_WRITE_REG(hw, E1000_FCRTC, reg); 2316 2317 2318 dmac = pba - max_frame_size / 512; 2319 if (dmac < pba - 10) 2320 dmac = pba - 10; 2321 reg = E1000_READ_REG(hw, E1000_DMACR); 2322 reg &= ~E1000_DMACR_DMACTHR_MASK; 2323 reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT) 2324 & E1000_DMACR_DMACTHR_MASK); 2325 2326 /* transition to L0x or L1 if available..*/ 2327 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); 2328 2329 /* Check if status is 2.5Gb backplane connection 2330 * before configuration of watchdog timer, which is 2331 * in msec values in 12.8usec intervals 2332 * watchdog timer= msec values in 32usec intervals 2333 * for non 2.5Gb connection 2334 */ 2335 if (hw->mac.type == e1000_i354) { 2336 int status = E1000_READ_REG(hw, E1000_STATUS); 2337 if ((status & E1000_STATUS_2P5_SKU) && 2338 (!(status & E1000_STATUS_2P5_SKU_OVER))) 2339 reg |= ((adapter->dmac * 5) >> 6); 2340 else 2341 reg |= (adapter->dmac >> 5); 2342 } else { 2343 reg |= (adapter->dmac >> 5); 2344 } 2345 2346 E1000_WRITE_REG(hw, E1000_DMACR, reg); 2347 2348 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0); 2349 2350 /* Set the interval before transition */ 2351 reg = E1000_READ_REG(hw, E1000_DMCTLX); 2352 if (hw->mac.type == e1000_i350) 2353 reg |= IGB_DMCTLX_DCFLUSH_DIS; 2354 /* 2355 ** in 2.5Gb connection, TTLX unit is 0.4 usec 2356 ** which is 0x4*2 = 0xA. But delay is still 4 usec 2357 */ 2358 if (hw->mac.type == e1000_i354) { 2359 int status = E1000_READ_REG(hw, E1000_STATUS); 2360 if ((status & E1000_STATUS_2P5_SKU) && 2361 (!(status & E1000_STATUS_2P5_SKU_OVER))) 2362 reg |= 0xA; 2363 else 2364 reg |= 0x4; 2365 } else { 2366 reg |= 0x4; 2367 } 2368 2369 E1000_WRITE_REG(hw, E1000_DMCTLX, reg); 2370 2371 /* free space in tx packet buffer to wake from DMA coal */ 2372 E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE - 2373 (2 * max_frame_size)) >> 6); 2374 2375 /* make low power state decision controlled by DMA coal */ 2376 reg = E1000_READ_REG(hw, E1000_PCIEMISC); 2377 reg &= ~E1000_PCIEMISC_LX_DECISION; 2378 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg); 2379 2380 } else if (hw->mac.type == e1000_82580) { 2381 u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC); 2382 E1000_WRITE_REG(hw, E1000_PCIEMISC, 2383 reg & ~E1000_PCIEMISC_LX_DECISION); 2384 E1000_WRITE_REG(hw, E1000_DMACR, 0); 2385 } 2386 } 2387 2388 static void 2389 em_reset(if_ctx_t ctx) 2390 { 2391 device_t dev = iflib_get_dev(ctx); 2392 struct adapter *adapter = iflib_get_softc(ctx); 2393 struct ifnet *ifp = iflib_get_ifp(ctx); 2394 struct e1000_hw *hw = &adapter->hw; 2395 u16 rx_buffer_size; 2396 u32 pba; 2397 2398 INIT_DEBUGOUT("em_reset: begin"); 2399 /* Let the firmware know the OS is in control */ 2400 em_get_hw_control(adapter); 2401 2402 /* Set up smart power down as default off on newer adapters. */ 2403 if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 || 2404 hw->mac.type == e1000_82572)) { 2405 u16 phy_tmp = 0; 2406 2407 /* Speed up time to link by disabling smart power down. */ 2408 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp); 2409 phy_tmp &= ~IGP02E1000_PM_SPD; 2410 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp); 2411 } 2412 2413 /* 2414 * Packet Buffer Allocation (PBA) 2415 * Writing PBA sets the receive portion of the buffer 2416 * the remainder is used for the transmit buffer. 2417 */ 2418 switch (hw->mac.type) { 2419 /* Total Packet Buffer on these is 48K */ 2420 case e1000_82571: 2421 case e1000_82572: 2422 case e1000_80003es2lan: 2423 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */ 2424 break; 2425 case e1000_82573: /* 82573: Total Packet Buffer is 32K */ 2426 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */ 2427 break; 2428 case e1000_82574: 2429 case e1000_82583: 2430 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */ 2431 break; 2432 case e1000_ich8lan: 2433 pba = E1000_PBA_8K; 2434 break; 2435 case e1000_ich9lan: 2436 case e1000_ich10lan: 2437 /* Boost Receive side for jumbo frames */ 2438 if (adapter->hw.mac.max_frame_size > 4096) 2439 pba = E1000_PBA_14K; 2440 else 2441 pba = E1000_PBA_10K; 2442 break; 2443 case e1000_pchlan: 2444 case e1000_pch2lan: 2445 case e1000_pch_lpt: 2446 case e1000_pch_spt: 2447 case e1000_pch_cnp: 2448 pba = E1000_PBA_26K; 2449 break; 2450 case e1000_82575: 2451 pba = E1000_PBA_32K; 2452 break; 2453 case e1000_82576: 2454 case e1000_vfadapt: 2455 pba = E1000_READ_REG(hw, E1000_RXPBS); 2456 pba &= E1000_RXPBS_SIZE_MASK_82576; 2457 break; 2458 case e1000_82580: 2459 case e1000_i350: 2460 case e1000_i354: 2461 case e1000_vfadapt_i350: 2462 pba = E1000_READ_REG(hw, E1000_RXPBS); 2463 pba = e1000_rxpbs_adjust_82580(pba); 2464 break; 2465 case e1000_i210: 2466 case e1000_i211: 2467 pba = E1000_PBA_34K; 2468 break; 2469 default: 2470 if (adapter->hw.mac.max_frame_size > 8192) 2471 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */ 2472 else 2473 pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */ 2474 } 2475 2476 /* Special needs in case of Jumbo frames */ 2477 if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) { 2478 u32 tx_space, min_tx, min_rx; 2479 pba = E1000_READ_REG(hw, E1000_PBA); 2480 tx_space = pba >> 16; 2481 pba &= 0xffff; 2482 min_tx = (adapter->hw.mac.max_frame_size + 2483 sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2; 2484 min_tx = roundup2(min_tx, 1024); 2485 min_tx >>= 10; 2486 min_rx = adapter->hw.mac.max_frame_size; 2487 min_rx = roundup2(min_rx, 1024); 2488 min_rx >>= 10; 2489 if (tx_space < min_tx && 2490 ((min_tx - tx_space) < pba)) { 2491 pba = pba - (min_tx - tx_space); 2492 /* 2493 * if short on rx space, rx wins 2494 * and must trump tx adjustment 2495 */ 2496 if (pba < min_rx) 2497 pba = min_rx; 2498 } 2499 E1000_WRITE_REG(hw, E1000_PBA, pba); 2500 } 2501 2502 if (hw->mac.type < igb_mac_min) 2503 E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba); 2504 2505 INIT_DEBUGOUT1("em_reset: pba=%dK",pba); 2506 2507 /* 2508 * These parameters control the automatic generation (Tx) and 2509 * response (Rx) to Ethernet PAUSE frames. 2510 * - High water mark should allow for at least two frames to be 2511 * received after sending an XOFF. 2512 * - Low water mark works best when it is very near the high water mark. 2513 * This allows the receiver to restart by sending XON when it has 2514 * drained a bit. Here we use an arbitrary value of 1500 which will 2515 * restart after one full frame is pulled from the buffer. There 2516 * could be several smaller frames in the buffer and if so they will 2517 * not trigger the XON until their total number reduces the buffer 2518 * by 1500. 2519 * - The pause time is fairly large at 1000 x 512ns = 512 usec. 2520 */ 2521 rx_buffer_size = (pba & 0xffff) << 10; 2522 hw->fc.high_water = rx_buffer_size - 2523 roundup2(adapter->hw.mac.max_frame_size, 1024); 2524 hw->fc.low_water = hw->fc.high_water - 1500; 2525 2526 if (adapter->fc) /* locally set flow control value? */ 2527 hw->fc.requested_mode = adapter->fc; 2528 else 2529 hw->fc.requested_mode = e1000_fc_full; 2530 2531 if (hw->mac.type == e1000_80003es2lan) 2532 hw->fc.pause_time = 0xFFFF; 2533 else 2534 hw->fc.pause_time = EM_FC_PAUSE_TIME; 2535 2536 hw->fc.send_xon = TRUE; 2537 2538 /* Device specific overrides/settings */ 2539 switch (hw->mac.type) { 2540 case e1000_pchlan: 2541 /* Workaround: no TX flow ctrl for PCH */ 2542 hw->fc.requested_mode = e1000_fc_rx_pause; 2543 hw->fc.pause_time = 0xFFFF; /* override */ 2544 if (if_getmtu(ifp) > ETHERMTU) { 2545 hw->fc.high_water = 0x3500; 2546 hw->fc.low_water = 0x1500; 2547 } else { 2548 hw->fc.high_water = 0x5000; 2549 hw->fc.low_water = 0x3000; 2550 } 2551 hw->fc.refresh_time = 0x1000; 2552 break; 2553 case e1000_pch2lan: 2554 case e1000_pch_lpt: 2555 case e1000_pch_spt: 2556 case e1000_pch_cnp: 2557 hw->fc.high_water = 0x5C20; 2558 hw->fc.low_water = 0x5048; 2559 hw->fc.pause_time = 0x0650; 2560 hw->fc.refresh_time = 0x0400; 2561 /* Jumbos need adjusted PBA */ 2562 if (if_getmtu(ifp) > ETHERMTU) 2563 E1000_WRITE_REG(hw, E1000_PBA, 12); 2564 else 2565 E1000_WRITE_REG(hw, E1000_PBA, 26); 2566 break; 2567 case e1000_82575: 2568 case e1000_82576: 2569 /* 8-byte granularity */ 2570 hw->fc.low_water = hw->fc.high_water - 8; 2571 break; 2572 case e1000_82580: 2573 case e1000_i350: 2574 case e1000_i354: 2575 case e1000_i210: 2576 case e1000_i211: 2577 case e1000_vfadapt: 2578 case e1000_vfadapt_i350: 2579 /* 16-byte granularity */ 2580 hw->fc.low_water = hw->fc.high_water - 16; 2581 break; 2582 case e1000_ich9lan: 2583 case e1000_ich10lan: 2584 if (if_getmtu(ifp) > ETHERMTU) { 2585 hw->fc.high_water = 0x2800; 2586 hw->fc.low_water = hw->fc.high_water - 8; 2587 break; 2588 } 2589 /* FALLTHROUGH */ 2590 default: 2591 if (hw->mac.type == e1000_80003es2lan) 2592 hw->fc.pause_time = 0xFFFF; 2593 break; 2594 } 2595 2596 /* Issue a global reset */ 2597 e1000_reset_hw(hw); 2598 if (adapter->hw.mac.type >= igb_mac_min) { 2599 E1000_WRITE_REG(hw, E1000_WUC, 0); 2600 } else { 2601 E1000_WRITE_REG(hw, E1000_WUFC, 0); 2602 em_disable_aspm(adapter); 2603 } 2604 if (adapter->flags & IGB_MEDIA_RESET) { 2605 e1000_setup_init_funcs(hw, TRUE); 2606 e1000_get_bus_info(hw); 2607 adapter->flags &= ~IGB_MEDIA_RESET; 2608 } 2609 /* and a re-init */ 2610 if (e1000_init_hw(hw) < 0) { 2611 device_printf(dev, "Hardware Initialization Failed\n"); 2612 return; 2613 } 2614 if (adapter->hw.mac.type >= igb_mac_min) 2615 igb_init_dmac(adapter, pba); 2616 2617 E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN); 2618 e1000_get_phy_info(hw); 2619 e1000_check_for_link(hw); 2620 } 2621 2622 #define RSSKEYLEN 10 2623 static void 2624 em_initialize_rss_mapping(struct adapter *adapter) 2625 { 2626 uint8_t rss_key[4 * RSSKEYLEN]; 2627 uint32_t reta = 0; 2628 struct e1000_hw *hw = &adapter->hw; 2629 int i; 2630 2631 /* 2632 * Configure RSS key 2633 */ 2634 arc4rand(rss_key, sizeof(rss_key), 0); 2635 for (i = 0; i < RSSKEYLEN; ++i) { 2636 uint32_t rssrk = 0; 2637 2638 rssrk = EM_RSSRK_VAL(rss_key, i); 2639 E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk); 2640 } 2641 2642 /* 2643 * Configure RSS redirect table in following fashion: 2644 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)] 2645 */ 2646 for (i = 0; i < sizeof(reta); ++i) { 2647 uint32_t q; 2648 2649 q = (i % adapter->rx_num_queues) << 7; 2650 reta |= q << (8 * i); 2651 } 2652 2653 for (i = 0; i < 32; ++i) 2654 E1000_WRITE_REG(hw, E1000_RETA(i), reta); 2655 2656 E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q | 2657 E1000_MRQC_RSS_FIELD_IPV4_TCP | 2658 E1000_MRQC_RSS_FIELD_IPV4 | 2659 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX | 2660 E1000_MRQC_RSS_FIELD_IPV6_EX | 2661 E1000_MRQC_RSS_FIELD_IPV6); 2662 2663 } 2664 2665 static void 2666 igb_initialize_rss_mapping(struct adapter *adapter) 2667 { 2668 struct e1000_hw *hw = &adapter->hw; 2669 int i; 2670 int queue_id; 2671 u32 reta; 2672 u32 rss_key[10], mrqc, shift = 0; 2673 2674 /* XXX? */ 2675 if (adapter->hw.mac.type == e1000_82575) 2676 shift = 6; 2677 2678 /* 2679 * The redirection table controls which destination 2680 * queue each bucket redirects traffic to. 2681 * Each DWORD represents four queues, with the LSB 2682 * being the first queue in the DWORD. 2683 * 2684 * This just allocates buckets to queues using round-robin 2685 * allocation. 2686 * 2687 * NOTE: It Just Happens to line up with the default 2688 * RSS allocation method. 2689 */ 2690 2691 /* Warning FM follows */ 2692 reta = 0; 2693 for (i = 0; i < 128; i++) { 2694 #ifdef RSS 2695 queue_id = rss_get_indirection_to_bucket(i); 2696 /* 2697 * If we have more queues than buckets, we'll 2698 * end up mapping buckets to a subset of the 2699 * queues. 2700 * 2701 * If we have more buckets than queues, we'll 2702 * end up instead assigning multiple buckets 2703 * to queues. 2704 * 2705 * Both are suboptimal, but we need to handle 2706 * the case so we don't go out of bounds 2707 * indexing arrays and such. 2708 */ 2709 queue_id = queue_id % adapter->rx_num_queues; 2710 #else 2711 queue_id = (i % adapter->rx_num_queues); 2712 #endif 2713 /* Adjust if required */ 2714 queue_id = queue_id << shift; 2715 2716 /* 2717 * The low 8 bits are for hash value (n+0); 2718 * The next 8 bits are for hash value (n+1), etc. 2719 */ 2720 reta = reta >> 8; 2721 reta = reta | ( ((uint32_t) queue_id) << 24); 2722 if ((i & 3) == 3) { 2723 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta); 2724 reta = 0; 2725 } 2726 } 2727 2728 /* Now fill in hash table */ 2729 2730 /* 2731 * MRQC: Multiple Receive Queues Command 2732 * Set queuing to RSS control, number depends on the device. 2733 */ 2734 mrqc = E1000_MRQC_ENABLE_RSS_8Q; 2735 2736 #ifdef RSS 2737 /* XXX ew typecasting */ 2738 rss_getkey((uint8_t *) &rss_key); 2739 #else 2740 arc4rand(&rss_key, sizeof(rss_key), 0); 2741 #endif 2742 for (i = 0; i < 10; i++) 2743 E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]); 2744 2745 /* 2746 * Configure the RSS fields to hash upon. 2747 */ 2748 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 | 2749 E1000_MRQC_RSS_FIELD_IPV4_TCP); 2750 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 | 2751 E1000_MRQC_RSS_FIELD_IPV6_TCP); 2752 mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP | 2753 E1000_MRQC_RSS_FIELD_IPV6_UDP); 2754 mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX | 2755 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); 2756 2757 E1000_WRITE_REG(hw, E1000_MRQC, mrqc); 2758 } 2759 2760 /********************************************************************* 2761 * 2762 * Setup networking device structure and register an interface. 2763 * 2764 **********************************************************************/ 2765 static int 2766 em_setup_interface(if_ctx_t ctx) 2767 { 2768 struct ifnet *ifp = iflib_get_ifp(ctx); 2769 struct adapter *adapter = iflib_get_softc(ctx); 2770 if_softc_ctx_t scctx = adapter->shared; 2771 2772 INIT_DEBUGOUT("em_setup_interface: begin"); 2773 2774 /* Single Queue */ 2775 if (adapter->tx_num_queues == 1) { 2776 if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1); 2777 if_setsendqready(ifp); 2778 } 2779 2780 /* 2781 * Specify the media types supported by this adapter and register 2782 * callbacks to update media and link information 2783 */ 2784 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || 2785 (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) { 2786 u_char fiber_type = IFM_1000_SX; /* default type */ 2787 2788 if (adapter->hw.mac.type == e1000_82545) 2789 fiber_type = IFM_1000_LX; 2790 ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL); 2791 ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL); 2792 } else { 2793 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL); 2794 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL); 2795 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL); 2796 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); 2797 if (adapter->hw.phy.type != e1000_phy_ife) { 2798 ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); 2799 ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL); 2800 } 2801 } 2802 ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL); 2803 ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO); 2804 return (0); 2805 } 2806 2807 static int 2808 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets) 2809 { 2810 struct adapter *adapter = iflib_get_softc(ctx); 2811 if_softc_ctx_t scctx = adapter->shared; 2812 int error = E1000_SUCCESS; 2813 struct em_tx_queue *que; 2814 int i, j; 2815 2816 MPASS(adapter->tx_num_queues > 0); 2817 MPASS(adapter->tx_num_queues == ntxqsets); 2818 2819 /* First allocate the top level queue structs */ 2820 if (!(adapter->tx_queues = 2821 (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) * 2822 adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { 2823 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n"); 2824 return(ENOMEM); 2825 } 2826 2827 for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) { 2828 /* Set up some basics */ 2829 2830 struct tx_ring *txr = &que->txr; 2831 txr->adapter = que->adapter = adapter; 2832 que->me = txr->me = i; 2833 2834 /* Allocate report status array */ 2835 if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) { 2836 device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n"); 2837 error = ENOMEM; 2838 goto fail; 2839 } 2840 for (j = 0; j < scctx->isc_ntxd[0]; j++) 2841 txr->tx_rsq[j] = QIDX_INVALID; 2842 /* get the virtual and physical address of the hardware queues */ 2843 txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs]; 2844 txr->tx_paddr = paddrs[i*ntxqs]; 2845 } 2846 2847 device_printf(iflib_get_dev(ctx), "allocated for %d tx_queues\n", adapter->tx_num_queues); 2848 return (0); 2849 fail: 2850 em_if_queues_free(ctx); 2851 return (error); 2852 } 2853 2854 static int 2855 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets) 2856 { 2857 struct adapter *adapter = iflib_get_softc(ctx); 2858 int error = E1000_SUCCESS; 2859 struct em_rx_queue *que; 2860 int i; 2861 2862 MPASS(adapter->rx_num_queues > 0); 2863 MPASS(adapter->rx_num_queues == nrxqsets); 2864 2865 /* First allocate the top level queue structs */ 2866 if (!(adapter->rx_queues = 2867 (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) * 2868 adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { 2869 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n"); 2870 error = ENOMEM; 2871 goto fail; 2872 } 2873 2874 for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) { 2875 /* Set up some basics */ 2876 struct rx_ring *rxr = &que->rxr; 2877 rxr->adapter = que->adapter = adapter; 2878 rxr->que = que; 2879 que->me = rxr->me = i; 2880 2881 /* get the virtual and physical address of the hardware queues */ 2882 rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs]; 2883 rxr->rx_paddr = paddrs[i*nrxqs]; 2884 } 2885 2886 device_printf(iflib_get_dev(ctx), "allocated for %d rx_queues\n", adapter->rx_num_queues); 2887 2888 return (0); 2889 fail: 2890 em_if_queues_free(ctx); 2891 return (error); 2892 } 2893 2894 static void 2895 em_if_queues_free(if_ctx_t ctx) 2896 { 2897 struct adapter *adapter = iflib_get_softc(ctx); 2898 struct em_tx_queue *tx_que = adapter->tx_queues; 2899 struct em_rx_queue *rx_que = adapter->rx_queues; 2900 2901 if (tx_que != NULL) { 2902 for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) { 2903 struct tx_ring *txr = &tx_que->txr; 2904 if (txr->tx_rsq == NULL) 2905 break; 2906 2907 free(txr->tx_rsq, M_DEVBUF); 2908 txr->tx_rsq = NULL; 2909 } 2910 free(adapter->tx_queues, M_DEVBUF); 2911 adapter->tx_queues = NULL; 2912 } 2913 2914 if (rx_que != NULL) { 2915 free(adapter->rx_queues, M_DEVBUF); 2916 adapter->rx_queues = NULL; 2917 } 2918 2919 em_release_hw_control(adapter); 2920 2921 if (adapter->mta != NULL) { 2922 free(adapter->mta, M_DEVBUF); 2923 } 2924 } 2925 2926 /********************************************************************* 2927 * 2928 * Enable transmit unit. 2929 * 2930 **********************************************************************/ 2931 static void 2932 em_initialize_transmit_unit(if_ctx_t ctx) 2933 { 2934 struct adapter *adapter = iflib_get_softc(ctx); 2935 if_softc_ctx_t scctx = adapter->shared; 2936 struct em_tx_queue *que; 2937 struct tx_ring *txr; 2938 struct e1000_hw *hw = &adapter->hw; 2939 u32 tctl, txdctl = 0, tarc, tipg = 0; 2940 2941 INIT_DEBUGOUT("em_initialize_transmit_unit: begin"); 2942 2943 for (int i = 0; i < adapter->tx_num_queues; i++, txr++) { 2944 u64 bus_addr; 2945 caddr_t offp, endp; 2946 2947 que = &adapter->tx_queues[i]; 2948 txr = &que->txr; 2949 bus_addr = txr->tx_paddr; 2950 2951 /* Clear checksum offload context. */ 2952 offp = (caddr_t)&txr->csum_flags; 2953 endp = (caddr_t)(txr + 1); 2954 bzero(offp, endp - offp); 2955 2956 /* Base and Len of TX Ring */ 2957 E1000_WRITE_REG(hw, E1000_TDLEN(i), 2958 scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc)); 2959 E1000_WRITE_REG(hw, E1000_TDBAH(i), 2960 (u32)(bus_addr >> 32)); 2961 E1000_WRITE_REG(hw, E1000_TDBAL(i), 2962 (u32)bus_addr); 2963 /* Init the HEAD/TAIL indices */ 2964 E1000_WRITE_REG(hw, E1000_TDT(i), 0); 2965 E1000_WRITE_REG(hw, E1000_TDH(i), 0); 2966 2967 HW_DEBUGOUT2("Base = %x, Length = %x\n", 2968 E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)), 2969 E1000_READ_REG(&adapter->hw, E1000_TDLEN(i))); 2970 2971 txdctl = 0; /* clear txdctl */ 2972 txdctl |= 0x1f; /* PTHRESH */ 2973 txdctl |= 1 << 8; /* HTHRESH */ 2974 txdctl |= 1 << 16;/* WTHRESH */ 2975 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */ 2976 txdctl |= E1000_TXDCTL_GRAN; 2977 txdctl |= 1 << 25; /* LWTHRESH */ 2978 2979 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl); 2980 } 2981 2982 /* Set the default values for the Tx Inter Packet Gap timer */ 2983 switch (adapter->hw.mac.type) { 2984 case e1000_80003es2lan: 2985 tipg = DEFAULT_82543_TIPG_IPGR1; 2986 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 << 2987 E1000_TIPG_IPGR2_SHIFT; 2988 break; 2989 case e1000_82542: 2990 tipg = DEFAULT_82542_TIPG_IPGT; 2991 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; 2992 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; 2993 break; 2994 default: 2995 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || 2996 (adapter->hw.phy.media_type == 2997 e1000_media_type_internal_serdes)) 2998 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 2999 else 3000 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 3001 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; 3002 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; 3003 } 3004 3005 E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg); 3006 E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value); 3007 3008 if(adapter->hw.mac.type >= e1000_82540) 3009 E1000_WRITE_REG(&adapter->hw, E1000_TADV, 3010 adapter->tx_abs_int_delay.value); 3011 3012 if ((adapter->hw.mac.type == e1000_82571) || 3013 (adapter->hw.mac.type == e1000_82572)) { 3014 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0)); 3015 tarc |= TARC_SPEED_MODE_BIT; 3016 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); 3017 } else if (adapter->hw.mac.type == e1000_80003es2lan) { 3018 /* errata: program both queues to unweighted RR */ 3019 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0)); 3020 tarc |= 1; 3021 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); 3022 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1)); 3023 tarc |= 1; 3024 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc); 3025 } else if (adapter->hw.mac.type == e1000_82574) { 3026 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0)); 3027 tarc |= TARC_ERRATA_BIT; 3028 if ( adapter->tx_num_queues > 1) { 3029 tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX); 3030 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); 3031 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc); 3032 } else 3033 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); 3034 } 3035 3036 if (adapter->tx_int_delay.value > 0) 3037 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 3038 3039 /* Program the Transmit Control Register */ 3040 tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL); 3041 tctl &= ~E1000_TCTL_CT; 3042 tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN | 3043 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT)); 3044 3045 if (adapter->hw.mac.type >= e1000_82571) 3046 tctl |= E1000_TCTL_MULR; 3047 3048 /* This write will effectively turn on the transmit unit. */ 3049 E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl); 3050 3051 /* SPT and KBL errata workarounds */ 3052 if (hw->mac.type == e1000_pch_spt) { 3053 u32 reg; 3054 reg = E1000_READ_REG(hw, E1000_IOSFPC); 3055 reg |= E1000_RCTL_RDMTS_HEX; 3056 E1000_WRITE_REG(hw, E1000_IOSFPC, reg); 3057 /* i218-i219 Specification Update 1.5.4.5 */ 3058 reg = E1000_READ_REG(hw, E1000_TARC(0)); 3059 reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ; 3060 reg |= E1000_TARC0_CB_MULTIQ_2_REQ; 3061 E1000_WRITE_REG(hw, E1000_TARC(0), reg); 3062 } 3063 } 3064 3065 /********************************************************************* 3066 * 3067 * Enable receive unit. 3068 * 3069 **********************************************************************/ 3070 3071 static void 3072 em_initialize_receive_unit(if_ctx_t ctx) 3073 { 3074 struct adapter *adapter = iflib_get_softc(ctx); 3075 if_softc_ctx_t scctx = adapter->shared; 3076 struct ifnet *ifp = iflib_get_ifp(ctx); 3077 struct e1000_hw *hw = &adapter->hw; 3078 struct em_rx_queue *que; 3079 int i; 3080 u32 rctl, rxcsum, rfctl; 3081 3082 INIT_DEBUGOUT("em_initialize_receive_units: begin"); 3083 3084 /* 3085 * Make sure receives are disabled while setting 3086 * up the descriptor ring 3087 */ 3088 rctl = E1000_READ_REG(hw, E1000_RCTL); 3089 /* Do not disable if ever enabled on this hardware */ 3090 if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583)) 3091 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); 3092 3093 /* Setup the Receive Control Register */ 3094 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 3095 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | 3096 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 3097 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 3098 3099 /* Do not store bad packets */ 3100 rctl &= ~E1000_RCTL_SBP; 3101 3102 /* Enable Long Packet receive */ 3103 if (if_getmtu(ifp) > ETHERMTU) 3104 rctl |= E1000_RCTL_LPE; 3105 else 3106 rctl &= ~E1000_RCTL_LPE; 3107 3108 /* Strip the CRC */ 3109 if (!em_disable_crc_stripping) 3110 rctl |= E1000_RCTL_SECRC; 3111 3112 if (adapter->hw.mac.type >= e1000_82540) { 3113 E1000_WRITE_REG(&adapter->hw, E1000_RADV, 3114 adapter->rx_abs_int_delay.value); 3115 3116 /* 3117 * Set the interrupt throttling rate. Value is calculated 3118 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) 3119 */ 3120 E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR); 3121 } 3122 E1000_WRITE_REG(&adapter->hw, E1000_RDTR, 3123 adapter->rx_int_delay.value); 3124 3125 /* Use extended rx descriptor formats */ 3126 rfctl = E1000_READ_REG(hw, E1000_RFCTL); 3127 rfctl |= E1000_RFCTL_EXTEN; 3128 /* 3129 * When using MSIX interrupts we need to throttle 3130 * using the EITR register (82574 only) 3131 */ 3132 if (hw->mac.type == e1000_82574) { 3133 for (int i = 0; i < 4; i++) 3134 E1000_WRITE_REG(hw, E1000_EITR_82574(i), 3135 DEFAULT_ITR); 3136 /* Disable accelerated acknowledge */ 3137 rfctl |= E1000_RFCTL_ACK_DIS; 3138 } 3139 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); 3140 3141 rxcsum = E1000_READ_REG(hw, E1000_RXCSUM); 3142 if (if_getcapenable(ifp) & IFCAP_RXCSUM && 3143 adapter->hw.mac.type >= e1000_82543) { 3144 if (adapter->tx_num_queues > 1) { 3145 if (adapter->hw.mac.type >= igb_mac_min) { 3146 rxcsum |= E1000_RXCSUM_PCSD; 3147 if (hw->mac.type != e1000_82575) 3148 rxcsum |= E1000_RXCSUM_CRCOFL; 3149 } else 3150 rxcsum |= E1000_RXCSUM_TUOFL | 3151 E1000_RXCSUM_IPOFL | 3152 E1000_RXCSUM_PCSD; 3153 } else { 3154 if (adapter->hw.mac.type >= igb_mac_min) 3155 rxcsum |= E1000_RXCSUM_IPPCSE; 3156 else 3157 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL; 3158 if (adapter->hw.mac.type > e1000_82575) 3159 rxcsum |= E1000_RXCSUM_CRCOFL; 3160 } 3161 } else 3162 rxcsum &= ~E1000_RXCSUM_TUOFL; 3163 3164 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum); 3165 3166 if (adapter->rx_num_queues > 1) { 3167 if (adapter->hw.mac.type >= igb_mac_min) 3168 igb_initialize_rss_mapping(adapter); 3169 else 3170 em_initialize_rss_mapping(adapter); 3171 } 3172 3173 /* 3174 * XXX TEMPORARY WORKAROUND: on some systems with 82573 3175 * long latencies are observed, like Lenovo X60. This 3176 * change eliminates the problem, but since having positive 3177 * values in RDTR is a known source of problems on other 3178 * platforms another solution is being sought. 3179 */ 3180 if (hw->mac.type == e1000_82573) 3181 E1000_WRITE_REG(hw, E1000_RDTR, 0x20); 3182 3183 for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) { 3184 struct rx_ring *rxr = &que->rxr; 3185 /* Setup the Base and Length of the Rx Descriptor Ring */ 3186 u64 bus_addr = rxr->rx_paddr; 3187 #if 0 3188 u32 rdt = adapter->rx_num_queues -1; /* default */ 3189 #endif 3190 3191 E1000_WRITE_REG(hw, E1000_RDLEN(i), 3192 scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended)); 3193 E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32)); 3194 E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr); 3195 /* Setup the Head and Tail Descriptor Pointers */ 3196 E1000_WRITE_REG(hw, E1000_RDH(i), 0); 3197 E1000_WRITE_REG(hw, E1000_RDT(i), 0); 3198 } 3199 3200 /* 3201 * Set PTHRESH for improved jumbo performance 3202 * According to 10.2.5.11 of Intel 82574 Datasheet, 3203 * RXDCTL(1) is written whenever RXDCTL(0) is written. 3204 * Only write to RXDCTL(1) if there is a need for different 3205 * settings. 3206 */ 3207 3208 if (((adapter->hw.mac.type == e1000_ich9lan) || 3209 (adapter->hw.mac.type == e1000_pch2lan) || 3210 (adapter->hw.mac.type == e1000_ich10lan)) && 3211 (if_getmtu(ifp) > ETHERMTU)) { 3212 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0)); 3213 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3); 3214 } else if (adapter->hw.mac.type == e1000_82574) { 3215 for (int i = 0; i < adapter->rx_num_queues; i++) { 3216 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i)); 3217 rxdctl |= 0x20; /* PTHRESH */ 3218 rxdctl |= 4 << 8; /* HTHRESH */ 3219 rxdctl |= 4 << 16;/* WTHRESH */ 3220 rxdctl |= 1 << 24; /* Switch to granularity */ 3221 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); 3222 } 3223 } else if (adapter->hw.mac.type >= igb_mac_min) { 3224 u32 psize, srrctl = 0; 3225 3226 if (if_getmtu(ifp) > ETHERMTU) { 3227 /* Set maximum packet len */ 3228 if (adapter->rx_mbuf_sz <= 4096) { 3229 srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 3230 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX; 3231 } else if (adapter->rx_mbuf_sz > 4096) { 3232 srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 3233 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX; 3234 } 3235 psize = scctx->isc_max_frame_size; 3236 /* are we on a vlan? */ 3237 if (ifp->if_vlantrunk != NULL) 3238 psize += VLAN_TAG_SIZE; 3239 E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize); 3240 } else { 3241 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 3242 rctl |= E1000_RCTL_SZ_2048; 3243 } 3244 3245 /* 3246 * If TX flow control is disabled and there's >1 queue defined, 3247 * enable DROP. 3248 * 3249 * This drops frames rather than hanging the RX MAC for all queues. 3250 */ 3251 if ((adapter->rx_num_queues > 1) && 3252 (adapter->fc == e1000_fc_none || 3253 adapter->fc == e1000_fc_rx_pause)) { 3254 srrctl |= E1000_SRRCTL_DROP_EN; 3255 } 3256 /* Setup the Base and Length of the Rx Descriptor Rings */ 3257 for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) { 3258 struct rx_ring *rxr = &que->rxr; 3259 u64 bus_addr = rxr->rx_paddr; 3260 u32 rxdctl; 3261 3262 #ifdef notyet 3263 /* Configure for header split? -- ignore for now */ 3264 rxr->hdr_split = igb_header_split; 3265 #else 3266 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 3267 #endif 3268 3269 E1000_WRITE_REG(hw, E1000_RDLEN(i), 3270 scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc)); 3271 E1000_WRITE_REG(hw, E1000_RDBAH(i), 3272 (uint32_t)(bus_addr >> 32)); 3273 E1000_WRITE_REG(hw, E1000_RDBAL(i), 3274 (uint32_t)bus_addr); 3275 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl); 3276 /* Enable this Queue */ 3277 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i)); 3278 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 3279 rxdctl &= 0xFFF00000; 3280 rxdctl |= IGB_RX_PTHRESH; 3281 rxdctl |= IGB_RX_HTHRESH << 8; 3282 rxdctl |= IGB_RX_WTHRESH << 16; 3283 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); 3284 } 3285 } else if (adapter->hw.mac.type >= e1000_pch2lan) { 3286 if (if_getmtu(ifp) > ETHERMTU) 3287 e1000_lv_jumbo_workaround_ich8lan(hw, TRUE); 3288 else 3289 e1000_lv_jumbo_workaround_ich8lan(hw, FALSE); 3290 } 3291 3292 /* Make sure VLAN Filters are off */ 3293 rctl &= ~E1000_RCTL_VFE; 3294 3295 if (adapter->hw.mac.type < igb_mac_min) { 3296 if (adapter->rx_mbuf_sz == MCLBYTES) 3297 rctl |= E1000_RCTL_SZ_2048; 3298 else if (adapter->rx_mbuf_sz == MJUMPAGESIZE) 3299 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX; 3300 else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) 3301 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX; 3302 3303 /* ensure we clear use DTYPE of 00 here */ 3304 rctl &= ~0x00000C00; 3305 } 3306 3307 /* Write out the settings */ 3308 E1000_WRITE_REG(hw, E1000_RCTL, rctl); 3309 3310 return; 3311 } 3312 3313 static void 3314 em_if_vlan_register(if_ctx_t ctx, u16 vtag) 3315 { 3316 struct adapter *adapter = iflib_get_softc(ctx); 3317 u32 index, bit; 3318 3319 index = (vtag >> 5) & 0x7F; 3320 bit = vtag & 0x1F; 3321 adapter->shadow_vfta[index] |= (1 << bit); 3322 ++adapter->num_vlans; 3323 } 3324 3325 static void 3326 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag) 3327 { 3328 struct adapter *adapter = iflib_get_softc(ctx); 3329 u32 index, bit; 3330 3331 index = (vtag >> 5) & 0x7F; 3332 bit = vtag & 0x1F; 3333 adapter->shadow_vfta[index] &= ~(1 << bit); 3334 --adapter->num_vlans; 3335 } 3336 3337 static void 3338 em_setup_vlan_hw_support(struct adapter *adapter) 3339 { 3340 struct e1000_hw *hw = &adapter->hw; 3341 u32 reg; 3342 3343 /* 3344 * We get here thru init_locked, meaning 3345 * a soft reset, this has already cleared 3346 * the VFTA and other state, so if there 3347 * have been no vlan's registered do nothing. 3348 */ 3349 if (adapter->num_vlans == 0) 3350 return; 3351 3352 /* 3353 * A soft reset zero's out the VFTA, so 3354 * we need to repopulate it now. 3355 */ 3356 for (int i = 0; i < EM_VFTA_SIZE; i++) 3357 if (adapter->shadow_vfta[i] != 0) 3358 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, 3359 i, adapter->shadow_vfta[i]); 3360 3361 reg = E1000_READ_REG(hw, E1000_CTRL); 3362 reg |= E1000_CTRL_VME; 3363 E1000_WRITE_REG(hw, E1000_CTRL, reg); 3364 3365 /* Enable the Filter Table */ 3366 reg = E1000_READ_REG(hw, E1000_RCTL); 3367 reg &= ~E1000_RCTL_CFIEN; 3368 reg |= E1000_RCTL_VFE; 3369 E1000_WRITE_REG(hw, E1000_RCTL, reg); 3370 } 3371 3372 static void 3373 em_if_enable_intr(if_ctx_t ctx) 3374 { 3375 struct adapter *adapter = iflib_get_softc(ctx); 3376 struct e1000_hw *hw = &adapter->hw; 3377 u32 ims_mask = IMS_ENABLE_MASK; 3378 3379 if (hw->mac.type == e1000_82574) { 3380 E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK); 3381 ims_mask |= adapter->ims; 3382 } else if (adapter->intr_type == IFLIB_INTR_MSIX && hw->mac.type >= igb_mac_min) { 3383 u32 mask = (adapter->que_mask | adapter->link_mask); 3384 3385 E1000_WRITE_REG(&adapter->hw, E1000_EIAC, mask); 3386 E1000_WRITE_REG(&adapter->hw, E1000_EIAM, mask); 3387 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, mask); 3388 ims_mask = E1000_IMS_LSC; 3389 } 3390 3391 E1000_WRITE_REG(hw, E1000_IMS, ims_mask); 3392 } 3393 3394 static void 3395 em_if_disable_intr(if_ctx_t ctx) 3396 { 3397 struct adapter *adapter = iflib_get_softc(ctx); 3398 struct e1000_hw *hw = &adapter->hw; 3399 3400 if (adapter->intr_type == IFLIB_INTR_MSIX) { 3401 if (hw->mac.type >= igb_mac_min) 3402 E1000_WRITE_REG(&adapter->hw, E1000_EIMC, ~0); 3403 E1000_WRITE_REG(&adapter->hw, E1000_EIAC, 0); 3404 } 3405 E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff); 3406 } 3407 3408 /* 3409 * Bit of a misnomer, what this really means is 3410 * to enable OS management of the system... aka 3411 * to disable special hardware management features 3412 */ 3413 static void 3414 em_init_manageability(struct adapter *adapter) 3415 { 3416 /* A shared code workaround */ 3417 #define E1000_82542_MANC2H E1000_MANC2H 3418 if (adapter->has_manage) { 3419 int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H); 3420 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC); 3421 3422 /* disable hardware interception of ARP */ 3423 manc &= ~(E1000_MANC_ARP_EN); 3424 3425 /* enable receiving management packets to the host */ 3426 manc |= E1000_MANC_EN_MNG2HOST; 3427 #define E1000_MNG2HOST_PORT_623 (1 << 5) 3428 #define E1000_MNG2HOST_PORT_664 (1 << 6) 3429 manc2h |= E1000_MNG2HOST_PORT_623; 3430 manc2h |= E1000_MNG2HOST_PORT_664; 3431 E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h); 3432 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc); 3433 } 3434 } 3435 3436 /* 3437 * Give control back to hardware management 3438 * controller if there is one. 3439 */ 3440 static void 3441 em_release_manageability(struct adapter *adapter) 3442 { 3443 if (adapter->has_manage) { 3444 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC); 3445 3446 /* re-enable hardware interception of ARP */ 3447 manc |= E1000_MANC_ARP_EN; 3448 manc &= ~E1000_MANC_EN_MNG2HOST; 3449 3450 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc); 3451 } 3452 } 3453 3454 /* 3455 * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit. 3456 * For ASF and Pass Through versions of f/w this means 3457 * that the driver is loaded. For AMT version type f/w 3458 * this means that the network i/f is open. 3459 */ 3460 static void 3461 em_get_hw_control(struct adapter *adapter) 3462 { 3463 u32 ctrl_ext, swsm; 3464 3465 if (adapter->vf_ifp) 3466 return; 3467 3468 if (adapter->hw.mac.type == e1000_82573) { 3469 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM); 3470 E1000_WRITE_REG(&adapter->hw, E1000_SWSM, 3471 swsm | E1000_SWSM_DRV_LOAD); 3472 return; 3473 } 3474 /* else */ 3475 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); 3476 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, 3477 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 3478 } 3479 3480 /* 3481 * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. 3482 * For ASF and Pass Through versions of f/w this means that 3483 * the driver is no longer loaded. For AMT versions of the 3484 * f/w this means that the network i/f is closed. 3485 */ 3486 static void 3487 em_release_hw_control(struct adapter *adapter) 3488 { 3489 u32 ctrl_ext, swsm; 3490 3491 if (!adapter->has_manage) 3492 return; 3493 3494 if (adapter->hw.mac.type == e1000_82573) { 3495 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM); 3496 E1000_WRITE_REG(&adapter->hw, E1000_SWSM, 3497 swsm & ~E1000_SWSM_DRV_LOAD); 3498 return; 3499 } 3500 /* else */ 3501 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); 3502 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, 3503 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 3504 return; 3505 } 3506 3507 static int 3508 em_is_valid_ether_addr(u8 *addr) 3509 { 3510 char zero_addr[6] = { 0, 0, 0, 0, 0, 0 }; 3511 3512 if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) { 3513 return (FALSE); 3514 } 3515 3516 return (TRUE); 3517 } 3518 3519 /* 3520 ** Parse the interface capabilities with regard 3521 ** to both system management and wake-on-lan for 3522 ** later use. 3523 */ 3524 static void 3525 em_get_wakeup(if_ctx_t ctx) 3526 { 3527 struct adapter *adapter = iflib_get_softc(ctx); 3528 device_t dev = iflib_get_dev(ctx); 3529 u16 eeprom_data = 0, device_id, apme_mask; 3530 3531 adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw); 3532 apme_mask = EM_EEPROM_APME; 3533 3534 switch (adapter->hw.mac.type) { 3535 case e1000_82542: 3536 case e1000_82543: 3537 break; 3538 case e1000_82544: 3539 e1000_read_nvm(&adapter->hw, 3540 NVM_INIT_CONTROL2_REG, 1, &eeprom_data); 3541 apme_mask = EM_82544_APME; 3542 break; 3543 case e1000_82546: 3544 case e1000_82546_rev_3: 3545 if (adapter->hw.bus.func == 1) { 3546 e1000_read_nvm(&adapter->hw, 3547 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 3548 break; 3549 } else 3550 e1000_read_nvm(&adapter->hw, 3551 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3552 break; 3553 case e1000_82573: 3554 case e1000_82583: 3555 adapter->has_amt = TRUE; 3556 /* FALLTHROUGH */ 3557 case e1000_82571: 3558 case e1000_82572: 3559 case e1000_80003es2lan: 3560 if (adapter->hw.bus.func == 1) { 3561 e1000_read_nvm(&adapter->hw, 3562 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 3563 break; 3564 } else 3565 e1000_read_nvm(&adapter->hw, 3566 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3567 break; 3568 case e1000_ich8lan: 3569 case e1000_ich9lan: 3570 case e1000_ich10lan: 3571 case e1000_pchlan: 3572 case e1000_pch2lan: 3573 case e1000_pch_lpt: 3574 case e1000_pch_spt: 3575 case e1000_82575: /* listing all igb devices */ 3576 case e1000_82576: 3577 case e1000_82580: 3578 case e1000_i350: 3579 case e1000_i354: 3580 case e1000_i210: 3581 case e1000_i211: 3582 case e1000_vfadapt: 3583 case e1000_vfadapt_i350: 3584 apme_mask = E1000_WUC_APME; 3585 adapter->has_amt = TRUE; 3586 eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC); 3587 break; 3588 default: 3589 e1000_read_nvm(&adapter->hw, 3590 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3591 break; 3592 } 3593 if (eeprom_data & apme_mask) 3594 adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC); 3595 /* 3596 * We have the eeprom settings, now apply the special cases 3597 * where the eeprom may be wrong or the board won't support 3598 * wake on lan on a particular port 3599 */ 3600 device_id = pci_get_device(dev); 3601 switch (device_id) { 3602 case E1000_DEV_ID_82546GB_PCIE: 3603 adapter->wol = 0; 3604 break; 3605 case E1000_DEV_ID_82546EB_FIBER: 3606 case E1000_DEV_ID_82546GB_FIBER: 3607 /* Wake events only supported on port A for dual fiber 3608 * regardless of eeprom setting */ 3609 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) & 3610 E1000_STATUS_FUNC_1) 3611 adapter->wol = 0; 3612 break; 3613 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 3614 /* if quad port adapter, disable WoL on all but port A */ 3615 if (global_quad_port_a != 0) 3616 adapter->wol = 0; 3617 /* Reset for multiple quad port adapters */ 3618 if (++global_quad_port_a == 4) 3619 global_quad_port_a = 0; 3620 break; 3621 case E1000_DEV_ID_82571EB_FIBER: 3622 /* Wake events only supported on port A for dual fiber 3623 * regardless of eeprom setting */ 3624 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) & 3625 E1000_STATUS_FUNC_1) 3626 adapter->wol = 0; 3627 break; 3628 case E1000_DEV_ID_82571EB_QUAD_COPPER: 3629 case E1000_DEV_ID_82571EB_QUAD_FIBER: 3630 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 3631 /* if quad port adapter, disable WoL on all but port A */ 3632 if (global_quad_port_a != 0) 3633 adapter->wol = 0; 3634 /* Reset for multiple quad port adapters */ 3635 if (++global_quad_port_a == 4) 3636 global_quad_port_a = 0; 3637 break; 3638 } 3639 return; 3640 } 3641 3642 3643 /* 3644 * Enable PCI Wake On Lan capability 3645 */ 3646 static void 3647 em_enable_wakeup(if_ctx_t ctx) 3648 { 3649 struct adapter *adapter = iflib_get_softc(ctx); 3650 device_t dev = iflib_get_dev(ctx); 3651 if_t ifp = iflib_get_ifp(ctx); 3652 int error = 0; 3653 u32 pmc, ctrl, ctrl_ext, rctl; 3654 u16 status; 3655 3656 if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0) 3657 return; 3658 3659 /* 3660 * Determine type of Wakeup: note that wol 3661 * is set with all bits on by default. 3662 */ 3663 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0) 3664 adapter->wol &= ~E1000_WUFC_MAG; 3665 3666 if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0) 3667 adapter->wol &= ~E1000_WUFC_EX; 3668 3669 if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0) 3670 adapter->wol &= ~E1000_WUFC_MC; 3671 else { 3672 rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 3673 rctl |= E1000_RCTL_MPE; 3674 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl); 3675 } 3676 3677 if (!(adapter->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC))) 3678 goto pme; 3679 3680 /* Advertise the wakeup capability */ 3681 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL); 3682 ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3); 3683 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl); 3684 3685 /* Keep the laser running on Fiber adapters */ 3686 if (adapter->hw.phy.media_type == e1000_media_type_fiber || 3687 adapter->hw.phy.media_type == e1000_media_type_internal_serdes) { 3688 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); 3689 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; 3690 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext); 3691 } 3692 3693 if ((adapter->hw.mac.type == e1000_ich8lan) || 3694 (adapter->hw.mac.type == e1000_pchlan) || 3695 (adapter->hw.mac.type == e1000_ich9lan) || 3696 (adapter->hw.mac.type == e1000_ich10lan)) 3697 e1000_suspend_workarounds_ich8lan(&adapter->hw); 3698 3699 if ( adapter->hw.mac.type >= e1000_pchlan) { 3700 error = em_enable_phy_wakeup(adapter); 3701 if (error) 3702 goto pme; 3703 } else { 3704 /* Enable wakeup by the MAC */ 3705 E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN); 3706 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol); 3707 } 3708 3709 if (adapter->hw.phy.type == e1000_phy_igp_3) 3710 e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); 3711 3712 pme: 3713 status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2); 3714 status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 3715 if (!error && (if_getcapenable(ifp) & IFCAP_WOL)) 3716 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 3717 pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2); 3718 3719 return; 3720 } 3721 3722 /* 3723 * WOL in the newer chipset interfaces (pchlan) 3724 * require thing to be copied into the phy 3725 */ 3726 static int 3727 em_enable_phy_wakeup(struct adapter *adapter) 3728 { 3729 struct e1000_hw *hw = &adapter->hw; 3730 u32 mreg, ret = 0; 3731 u16 preg; 3732 3733 /* copy MAC RARs to PHY RARs */ 3734 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 3735 3736 /* copy MAC MTA to PHY MTA */ 3737 for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) { 3738 mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); 3739 e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF)); 3740 e1000_write_phy_reg(hw, BM_MTA(i) + 1, 3741 (u16)((mreg >> 16) & 0xFFFF)); 3742 } 3743 3744 /* configure PHY Rx Control register */ 3745 e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg); 3746 mreg = E1000_READ_REG(hw, E1000_RCTL); 3747 if (mreg & E1000_RCTL_UPE) 3748 preg |= BM_RCTL_UPE; 3749 if (mreg & E1000_RCTL_MPE) 3750 preg |= BM_RCTL_MPE; 3751 preg &= ~(BM_RCTL_MO_MASK); 3752 if (mreg & E1000_RCTL_MO_3) 3753 preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) 3754 << BM_RCTL_MO_SHIFT); 3755 if (mreg & E1000_RCTL_BAM) 3756 preg |= BM_RCTL_BAM; 3757 if (mreg & E1000_RCTL_PMCF) 3758 preg |= BM_RCTL_PMCF; 3759 mreg = E1000_READ_REG(hw, E1000_CTRL); 3760 if (mreg & E1000_CTRL_RFCE) 3761 preg |= BM_RCTL_RFCE; 3762 e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg); 3763 3764 /* enable PHY wakeup in MAC register */ 3765 E1000_WRITE_REG(hw, E1000_WUC, 3766 E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME); 3767 E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol); 3768 3769 /* configure and enable PHY wakeup in PHY registers */ 3770 e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol); 3771 e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN); 3772 3773 /* activate PHY wakeup */ 3774 ret = hw->phy.ops.acquire(hw); 3775 if (ret) { 3776 printf("Could not acquire PHY\n"); 3777 return ret; 3778 } 3779 e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 3780 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT)); 3781 ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg); 3782 if (ret) { 3783 printf("Could not read PHY page 769\n"); 3784 goto out; 3785 } 3786 preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; 3787 ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg); 3788 if (ret) 3789 printf("Could not set PHY Host Wakeup bit\n"); 3790 out: 3791 hw->phy.ops.release(hw); 3792 3793 return ret; 3794 } 3795 3796 static void 3797 em_if_led_func(if_ctx_t ctx, int onoff) 3798 { 3799 struct adapter *adapter = iflib_get_softc(ctx); 3800 3801 if (onoff) { 3802 e1000_setup_led(&adapter->hw); 3803 e1000_led_on(&adapter->hw); 3804 } else { 3805 e1000_led_off(&adapter->hw); 3806 e1000_cleanup_led(&adapter->hw); 3807 } 3808 } 3809 3810 /* 3811 * Disable the L0S and L1 LINK states 3812 */ 3813 static void 3814 em_disable_aspm(struct adapter *adapter) 3815 { 3816 int base, reg; 3817 u16 link_cap,link_ctrl; 3818 device_t dev = adapter->dev; 3819 3820 switch (adapter->hw.mac.type) { 3821 case e1000_82573: 3822 case e1000_82574: 3823 case e1000_82583: 3824 break; 3825 default: 3826 return; 3827 } 3828 if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0) 3829 return; 3830 reg = base + PCIER_LINK_CAP; 3831 link_cap = pci_read_config(dev, reg, 2); 3832 if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0) 3833 return; 3834 reg = base + PCIER_LINK_CTL; 3835 link_ctrl = pci_read_config(dev, reg, 2); 3836 link_ctrl &= ~PCIEM_LINK_CTL_ASPMC; 3837 pci_write_config(dev, reg, link_ctrl, 2); 3838 return; 3839 } 3840 3841 /********************************************************************** 3842 * 3843 * Update the board statistics counters. 3844 * 3845 **********************************************************************/ 3846 static void 3847 em_update_stats_counters(struct adapter *adapter) 3848 { 3849 3850 if(adapter->hw.phy.media_type == e1000_media_type_copper || 3851 (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) { 3852 adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS); 3853 adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC); 3854 } 3855 adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS); 3856 adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC); 3857 adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC); 3858 adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL); 3859 3860 adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC); 3861 adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL); 3862 adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC); 3863 adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC); 3864 adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC); 3865 adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC); 3866 adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC); 3867 adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC); 3868 /* 3869 ** For watchdog management we need to know if we have been 3870 ** paused during the last interval, so capture that here. 3871 */ 3872 adapter->shared->isc_pause_frames = adapter->stats.xoffrxc; 3873 adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC); 3874 adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC); 3875 adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64); 3876 adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127); 3877 adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255); 3878 adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511); 3879 adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023); 3880 adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522); 3881 adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC); 3882 adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC); 3883 adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC); 3884 adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC); 3885 3886 /* For the 64-bit byte counters the low dword must be read first. */ 3887 /* Both registers clear on the read of the high dword */ 3888 3889 adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) + 3890 ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32); 3891 adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) + 3892 ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32); 3893 3894 adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC); 3895 adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC); 3896 adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC); 3897 adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC); 3898 adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC); 3899 3900 adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH); 3901 adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH); 3902 3903 adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR); 3904 adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT); 3905 adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64); 3906 adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127); 3907 adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255); 3908 adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511); 3909 adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023); 3910 adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522); 3911 adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC); 3912 adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC); 3913 3914 /* Interrupt Counts */ 3915 3916 adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC); 3917 adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC); 3918 adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC); 3919 adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC); 3920 adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC); 3921 adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC); 3922 adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC); 3923 adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC); 3924 adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC); 3925 3926 if (adapter->hw.mac.type >= e1000_82543) { 3927 adapter->stats.algnerrc += 3928 E1000_READ_REG(&adapter->hw, E1000_ALGNERRC); 3929 adapter->stats.rxerrc += 3930 E1000_READ_REG(&adapter->hw, E1000_RXERRC); 3931 adapter->stats.tncrs += 3932 E1000_READ_REG(&adapter->hw, E1000_TNCRS); 3933 adapter->stats.cexterr += 3934 E1000_READ_REG(&adapter->hw, E1000_CEXTERR); 3935 adapter->stats.tsctc += 3936 E1000_READ_REG(&adapter->hw, E1000_TSCTC); 3937 adapter->stats.tsctfc += 3938 E1000_READ_REG(&adapter->hw, E1000_TSCTFC); 3939 } 3940 } 3941 3942 static uint64_t 3943 em_if_get_counter(if_ctx_t ctx, ift_counter cnt) 3944 { 3945 struct adapter *adapter = iflib_get_softc(ctx); 3946 struct ifnet *ifp = iflib_get_ifp(ctx); 3947 3948 switch (cnt) { 3949 case IFCOUNTER_COLLISIONS: 3950 return (adapter->stats.colc); 3951 case IFCOUNTER_IERRORS: 3952 return (adapter->dropped_pkts + adapter->stats.rxerrc + 3953 adapter->stats.crcerrs + adapter->stats.algnerrc + 3954 adapter->stats.ruc + adapter->stats.roc + 3955 adapter->stats.mpc + adapter->stats.cexterr); 3956 case IFCOUNTER_OERRORS: 3957 return (adapter->stats.ecol + adapter->stats.latecol + 3958 adapter->watchdog_events); 3959 default: 3960 return (if_get_counter_default(ifp, cnt)); 3961 } 3962 } 3963 3964 /* Export a single 32-bit register via a read-only sysctl. */ 3965 static int 3966 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS) 3967 { 3968 struct adapter *adapter; 3969 u_int val; 3970 3971 adapter = oidp->oid_arg1; 3972 val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2); 3973 return (sysctl_handle_int(oidp, &val, 0, req)); 3974 } 3975 3976 /* 3977 * Add sysctl variables, one per statistic, to the system. 3978 */ 3979 static void 3980 em_add_hw_stats(struct adapter *adapter) 3981 { 3982 device_t dev = iflib_get_dev(adapter->ctx); 3983 struct em_tx_queue *tx_que = adapter->tx_queues; 3984 struct em_rx_queue *rx_que = adapter->rx_queues; 3985 3986 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev); 3987 struct sysctl_oid *tree = device_get_sysctl_tree(dev); 3988 struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree); 3989 struct e1000_hw_stats *stats = &adapter->stats; 3990 3991 struct sysctl_oid *stat_node, *queue_node, *int_node; 3992 struct sysctl_oid_list *stat_list, *queue_list, *int_list; 3993 3994 #define QUEUE_NAME_LEN 32 3995 char namebuf[QUEUE_NAME_LEN]; 3996 3997 /* Driver Statistics */ 3998 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped", 3999 CTLFLAG_RD, &adapter->dropped_pkts, 4000 "Driver dropped packets"); 4001 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq", 4002 CTLFLAG_RD, &adapter->link_irq, 4003 "Link MSIX IRQ Handled"); 4004 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "mbuf_defrag_fail", 4005 CTLFLAG_RD, &adapter->mbuf_defrag_failed, 4006 "Defragmenting mbuf chain failed"); 4007 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_dma_fail", 4008 CTLFLAG_RD, &adapter->no_tx_dma_setup, 4009 "Driver tx dma failure in xmit"); 4010 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns", 4011 CTLFLAG_RD, &adapter->rx_overruns, 4012 "RX overruns"); 4013 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts", 4014 CTLFLAG_RD, &adapter->watchdog_events, 4015 "Watchdog timeouts"); 4016 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control", 4017 CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_CTRL, 4018 em_sysctl_reg_handler, "IU", 4019 "Device Control Register"); 4020 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control", 4021 CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_RCTL, 4022 em_sysctl_reg_handler, "IU", 4023 "Receiver Control Register"); 4024 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water", 4025 CTLFLAG_RD, &adapter->hw.fc.high_water, 0, 4026 "Flow Control High Watermark"); 4027 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water", 4028 CTLFLAG_RD, &adapter->hw.fc.low_water, 0, 4029 "Flow Control Low Watermark"); 4030 4031 for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) { 4032 struct tx_ring *txr = &tx_que->txr; 4033 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i); 4034 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, 4035 CTLFLAG_RD, NULL, "TX Queue Name"); 4036 queue_list = SYSCTL_CHILDREN(queue_node); 4037 4038 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head", 4039 CTLTYPE_UINT | CTLFLAG_RD, adapter, 4040 E1000_TDH(txr->me), 4041 em_sysctl_reg_handler, "IU", 4042 "Transmit Descriptor Head"); 4043 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail", 4044 CTLTYPE_UINT | CTLFLAG_RD, adapter, 4045 E1000_TDT(txr->me), 4046 em_sysctl_reg_handler, "IU", 4047 "Transmit Descriptor Tail"); 4048 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq", 4049 CTLFLAG_RD, &txr->tx_irq, 4050 "Queue MSI-X Transmit Interrupts"); 4051 } 4052 4053 for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) { 4054 struct rx_ring *rxr = &rx_que->rxr; 4055 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j); 4056 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, 4057 CTLFLAG_RD, NULL, "RX Queue Name"); 4058 queue_list = SYSCTL_CHILDREN(queue_node); 4059 4060 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head", 4061 CTLTYPE_UINT | CTLFLAG_RD, adapter, 4062 E1000_RDH(rxr->me), 4063 em_sysctl_reg_handler, "IU", 4064 "Receive Descriptor Head"); 4065 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail", 4066 CTLTYPE_UINT | CTLFLAG_RD, adapter, 4067 E1000_RDT(rxr->me), 4068 em_sysctl_reg_handler, "IU", 4069 "Receive Descriptor Tail"); 4070 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq", 4071 CTLFLAG_RD, &rxr->rx_irq, 4072 "Queue MSI-X Receive Interrupts"); 4073 } 4074 4075 /* MAC stats get their own sub node */ 4076 4077 stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats", 4078 CTLFLAG_RD, NULL, "Statistics"); 4079 stat_list = SYSCTL_CHILDREN(stat_node); 4080 4081 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll", 4082 CTLFLAG_RD, &stats->ecol, 4083 "Excessive collisions"); 4084 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll", 4085 CTLFLAG_RD, &stats->scc, 4086 "Single collisions"); 4087 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll", 4088 CTLFLAG_RD, &stats->mcc, 4089 "Multiple collisions"); 4090 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll", 4091 CTLFLAG_RD, &stats->latecol, 4092 "Late collisions"); 4093 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count", 4094 CTLFLAG_RD, &stats->colc, 4095 "Collision Count"); 4096 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors", 4097 CTLFLAG_RD, &adapter->stats.symerrs, 4098 "Symbol Errors"); 4099 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors", 4100 CTLFLAG_RD, &adapter->stats.sec, 4101 "Sequence Errors"); 4102 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count", 4103 CTLFLAG_RD, &adapter->stats.dc, 4104 "Defer Count"); 4105 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets", 4106 CTLFLAG_RD, &adapter->stats.mpc, 4107 "Missed Packets"); 4108 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff", 4109 CTLFLAG_RD, &adapter->stats.rnbc, 4110 "Receive No Buffers"); 4111 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize", 4112 CTLFLAG_RD, &adapter->stats.ruc, 4113 "Receive Undersize"); 4114 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented", 4115 CTLFLAG_RD, &adapter->stats.rfc, 4116 "Fragmented Packets Received "); 4117 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize", 4118 CTLFLAG_RD, &adapter->stats.roc, 4119 "Oversized Packets Received"); 4120 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber", 4121 CTLFLAG_RD, &adapter->stats.rjc, 4122 "Recevied Jabber"); 4123 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs", 4124 CTLFLAG_RD, &adapter->stats.rxerrc, 4125 "Receive Errors"); 4126 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs", 4127 CTLFLAG_RD, &adapter->stats.crcerrs, 4128 "CRC errors"); 4129 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs", 4130 CTLFLAG_RD, &adapter->stats.algnerrc, 4131 "Alignment Errors"); 4132 /* On 82575 these are collision counts */ 4133 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs", 4134 CTLFLAG_RD, &adapter->stats.cexterr, 4135 "Collision/Carrier extension errors"); 4136 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd", 4137 CTLFLAG_RD, &adapter->stats.xonrxc, 4138 "XON Received"); 4139 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd", 4140 CTLFLAG_RD, &adapter->stats.xontxc, 4141 "XON Transmitted"); 4142 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd", 4143 CTLFLAG_RD, &adapter->stats.xoffrxc, 4144 "XOFF Received"); 4145 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd", 4146 CTLFLAG_RD, &adapter->stats.xofftxc, 4147 "XOFF Transmitted"); 4148 4149 /* Packet Reception Stats */ 4150 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd", 4151 CTLFLAG_RD, &adapter->stats.tpr, 4152 "Total Packets Received "); 4153 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd", 4154 CTLFLAG_RD, &adapter->stats.gprc, 4155 "Good Packets Received"); 4156 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd", 4157 CTLFLAG_RD, &adapter->stats.bprc, 4158 "Broadcast Packets Received"); 4159 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd", 4160 CTLFLAG_RD, &adapter->stats.mprc, 4161 "Multicast Packets Received"); 4162 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64", 4163 CTLFLAG_RD, &adapter->stats.prc64, 4164 "64 byte frames received "); 4165 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127", 4166 CTLFLAG_RD, &adapter->stats.prc127, 4167 "65-127 byte frames received"); 4168 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255", 4169 CTLFLAG_RD, &adapter->stats.prc255, 4170 "128-255 byte frames received"); 4171 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511", 4172 CTLFLAG_RD, &adapter->stats.prc511, 4173 "256-511 byte frames received"); 4174 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023", 4175 CTLFLAG_RD, &adapter->stats.prc1023, 4176 "512-1023 byte frames received"); 4177 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522", 4178 CTLFLAG_RD, &adapter->stats.prc1522, 4179 "1023-1522 byte frames received"); 4180 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd", 4181 CTLFLAG_RD, &adapter->stats.gorc, 4182 "Good Octets Received"); 4183 4184 /* Packet Transmission Stats */ 4185 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd", 4186 CTLFLAG_RD, &adapter->stats.gotc, 4187 "Good Octets Transmitted"); 4188 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd", 4189 CTLFLAG_RD, &adapter->stats.tpt, 4190 "Total Packets Transmitted"); 4191 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd", 4192 CTLFLAG_RD, &adapter->stats.gptc, 4193 "Good Packets Transmitted"); 4194 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd", 4195 CTLFLAG_RD, &adapter->stats.bptc, 4196 "Broadcast Packets Transmitted"); 4197 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd", 4198 CTLFLAG_RD, &adapter->stats.mptc, 4199 "Multicast Packets Transmitted"); 4200 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64", 4201 CTLFLAG_RD, &adapter->stats.ptc64, 4202 "64 byte frames transmitted "); 4203 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127", 4204 CTLFLAG_RD, &adapter->stats.ptc127, 4205 "65-127 byte frames transmitted"); 4206 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255", 4207 CTLFLAG_RD, &adapter->stats.ptc255, 4208 "128-255 byte frames transmitted"); 4209 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511", 4210 CTLFLAG_RD, &adapter->stats.ptc511, 4211 "256-511 byte frames transmitted"); 4212 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023", 4213 CTLFLAG_RD, &adapter->stats.ptc1023, 4214 "512-1023 byte frames transmitted"); 4215 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522", 4216 CTLFLAG_RD, &adapter->stats.ptc1522, 4217 "1024-1522 byte frames transmitted"); 4218 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd", 4219 CTLFLAG_RD, &adapter->stats.tsctc, 4220 "TSO Contexts Transmitted"); 4221 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail", 4222 CTLFLAG_RD, &adapter->stats.tsctfc, 4223 "TSO Contexts Failed"); 4224 4225 4226 /* Interrupt Stats */ 4227 4228 int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts", 4229 CTLFLAG_RD, NULL, "Interrupt Statistics"); 4230 int_list = SYSCTL_CHILDREN(int_node); 4231 4232 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts", 4233 CTLFLAG_RD, &adapter->stats.iac, 4234 "Interrupt Assertion Count"); 4235 4236 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer", 4237 CTLFLAG_RD, &adapter->stats.icrxptc, 4238 "Interrupt Cause Rx Pkt Timer Expire Count"); 4239 4240 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer", 4241 CTLFLAG_RD, &adapter->stats.icrxatc, 4242 "Interrupt Cause Rx Abs Timer Expire Count"); 4243 4244 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer", 4245 CTLFLAG_RD, &adapter->stats.ictxptc, 4246 "Interrupt Cause Tx Pkt Timer Expire Count"); 4247 4248 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer", 4249 CTLFLAG_RD, &adapter->stats.ictxatc, 4250 "Interrupt Cause Tx Abs Timer Expire Count"); 4251 4252 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty", 4253 CTLFLAG_RD, &adapter->stats.ictxqec, 4254 "Interrupt Cause Tx Queue Empty Count"); 4255 4256 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh", 4257 CTLFLAG_RD, &adapter->stats.ictxqmtc, 4258 "Interrupt Cause Tx Queue Min Thresh Count"); 4259 4260 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh", 4261 CTLFLAG_RD, &adapter->stats.icrxdmtc, 4262 "Interrupt Cause Rx Desc Min Thresh Count"); 4263 4264 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun", 4265 CTLFLAG_RD, &adapter->stats.icrxoc, 4266 "Interrupt Cause Receiver Overrun Count"); 4267 } 4268 4269 /********************************************************************** 4270 * 4271 * This routine provides a way to dump out the adapter eeprom, 4272 * often a useful debug/service tool. This only dumps the first 4273 * 32 words, stuff that matters is in that extent. 4274 * 4275 **********************************************************************/ 4276 static int 4277 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS) 4278 { 4279 struct adapter *adapter = (struct adapter *)arg1; 4280 int error; 4281 int result; 4282 4283 result = -1; 4284 error = sysctl_handle_int(oidp, &result, 0, req); 4285 4286 if (error || !req->newptr) 4287 return (error); 4288 4289 /* 4290 * This value will cause a hex dump of the 4291 * first 32 16-bit words of the EEPROM to 4292 * the screen. 4293 */ 4294 if (result == 1) 4295 em_print_nvm_info(adapter); 4296 4297 return (error); 4298 } 4299 4300 static void 4301 em_print_nvm_info(struct adapter *adapter) 4302 { 4303 u16 eeprom_data; 4304 int i, j, row = 0; 4305 4306 /* Its a bit crude, but it gets the job done */ 4307 printf("\nInterface EEPROM Dump:\n"); 4308 printf("Offset\n0x0000 "); 4309 for (i = 0, j = 0; i < 32; i++, j++) { 4310 if (j == 8) { /* Make the offset block */ 4311 j = 0; ++row; 4312 printf("\n0x00%x0 ",row); 4313 } 4314 e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data); 4315 printf("%04x ", eeprom_data); 4316 } 4317 printf("\n"); 4318 } 4319 4320 static int 4321 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS) 4322 { 4323 struct em_int_delay_info *info; 4324 struct adapter *adapter; 4325 u32 regval; 4326 int error, usecs, ticks; 4327 4328 info = (struct em_int_delay_info *) arg1; 4329 usecs = info->value; 4330 error = sysctl_handle_int(oidp, &usecs, 0, req); 4331 if (error != 0 || req->newptr == NULL) 4332 return (error); 4333 if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535)) 4334 return (EINVAL); 4335 info->value = usecs; 4336 ticks = EM_USECS_TO_TICKS(usecs); 4337 if (info->offset == E1000_ITR) /* units are 256ns here */ 4338 ticks *= 4; 4339 4340 adapter = info->adapter; 4341 4342 regval = E1000_READ_OFFSET(&adapter->hw, info->offset); 4343 regval = (regval & ~0xffff) | (ticks & 0xffff); 4344 /* Handle a few special cases. */ 4345 switch (info->offset) { 4346 case E1000_RDTR: 4347 break; 4348 case E1000_TIDV: 4349 if (ticks == 0) { 4350 adapter->txd_cmd &= ~E1000_TXD_CMD_IDE; 4351 /* Don't write 0 into the TIDV register. */ 4352 regval++; 4353 } else 4354 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 4355 break; 4356 } 4357 E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval); 4358 return (0); 4359 } 4360 4361 static void 4362 em_add_int_delay_sysctl(struct adapter *adapter, const char *name, 4363 const char *description, struct em_int_delay_info *info, 4364 int offset, int value) 4365 { 4366 info->adapter = adapter; 4367 info->offset = offset; 4368 info->value = value; 4369 SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev), 4370 SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)), 4371 OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, 4372 info, 0, em_sysctl_int_delay, "I", description); 4373 } 4374 4375 /* 4376 * Set flow control using sysctl: 4377 * Flow control values: 4378 * 0 - off 4379 * 1 - rx pause 4380 * 2 - tx pause 4381 * 3 - full 4382 */ 4383 static int 4384 em_set_flowcntl(SYSCTL_HANDLER_ARGS) 4385 { 4386 int error; 4387 static int input = 3; /* default is full */ 4388 struct adapter *adapter = (struct adapter *) arg1; 4389 4390 error = sysctl_handle_int(oidp, &input, 0, req); 4391 4392 if ((error) || (req->newptr == NULL)) 4393 return (error); 4394 4395 if (input == adapter->fc) /* no change? */ 4396 return (error); 4397 4398 switch (input) { 4399 case e1000_fc_rx_pause: 4400 case e1000_fc_tx_pause: 4401 case e1000_fc_full: 4402 case e1000_fc_none: 4403 adapter->hw.fc.requested_mode = input; 4404 adapter->fc = input; 4405 break; 4406 default: 4407 /* Do nothing */ 4408 return (error); 4409 } 4410 4411 adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode; 4412 e1000_force_mac_fc(&adapter->hw); 4413 return (error); 4414 } 4415 4416 /* 4417 * Manage Energy Efficient Ethernet: 4418 * Control values: 4419 * 0/1 - enabled/disabled 4420 */ 4421 static int 4422 em_sysctl_eee(SYSCTL_HANDLER_ARGS) 4423 { 4424 struct adapter *adapter = (struct adapter *) arg1; 4425 int error, value; 4426 4427 value = adapter->hw.dev_spec.ich8lan.eee_disable; 4428 error = sysctl_handle_int(oidp, &value, 0, req); 4429 if (error || req->newptr == NULL) 4430 return (error); 4431 adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0); 4432 em_if_init(adapter->ctx); 4433 4434 return (0); 4435 } 4436 4437 static int 4438 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS) 4439 { 4440 struct adapter *adapter; 4441 int error; 4442 int result; 4443 4444 result = -1; 4445 error = sysctl_handle_int(oidp, &result, 0, req); 4446 4447 if (error || !req->newptr) 4448 return (error); 4449 4450 if (result == 1) { 4451 adapter = (struct adapter *) arg1; 4452 em_print_debug_info(adapter); 4453 } 4454 4455 return (error); 4456 } 4457 4458 static int 4459 em_get_rs(SYSCTL_HANDLER_ARGS) 4460 { 4461 struct adapter *adapter = (struct adapter *) arg1; 4462 int error; 4463 int result; 4464 4465 result = 0; 4466 error = sysctl_handle_int(oidp, &result, 0, req); 4467 4468 if (error || !req->newptr || result != 1) 4469 return (error); 4470 em_dump_rs(adapter); 4471 4472 return (error); 4473 } 4474 4475 static void 4476 em_if_debug(if_ctx_t ctx) 4477 { 4478 em_dump_rs(iflib_get_softc(ctx)); 4479 } 4480 4481 /* 4482 * This routine is meant to be fluid, add whatever is 4483 * needed for debugging a problem. -jfv 4484 */ 4485 static void 4486 em_print_debug_info(struct adapter *adapter) 4487 { 4488 device_t dev = iflib_get_dev(adapter->ctx); 4489 struct ifnet *ifp = iflib_get_ifp(adapter->ctx); 4490 struct tx_ring *txr = &adapter->tx_queues->txr; 4491 struct rx_ring *rxr = &adapter->rx_queues->rxr; 4492 4493 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 4494 printf("Interface is RUNNING "); 4495 else 4496 printf("Interface is NOT RUNNING\n"); 4497 4498 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) 4499 printf("and INACTIVE\n"); 4500 else 4501 printf("and ACTIVE\n"); 4502 4503 for (int i = 0; i < adapter->tx_num_queues; i++, txr++) { 4504 device_printf(dev, "TX Queue %d ------\n", i); 4505 device_printf(dev, "hw tdh = %d, hw tdt = %d\n", 4506 E1000_READ_REG(&adapter->hw, E1000_TDH(i)), 4507 E1000_READ_REG(&adapter->hw, E1000_TDT(i))); 4508 4509 } 4510 for (int j=0; j < adapter->rx_num_queues; j++, rxr++) { 4511 device_printf(dev, "RX Queue %d ------\n", j); 4512 device_printf(dev, "hw rdh = %d, hw rdt = %d\n", 4513 E1000_READ_REG(&adapter->hw, E1000_RDH(j)), 4514 E1000_READ_REG(&adapter->hw, E1000_RDT(j))); 4515 } 4516 } 4517 4518 /* 4519 * 82574 only: 4520 * Write a new value to the EEPROM increasing the number of MSIX 4521 * vectors from 3 to 5, for proper multiqueue support. 4522 */ 4523 static void 4524 em_enable_vectors_82574(if_ctx_t ctx) 4525 { 4526 struct adapter *adapter = iflib_get_softc(ctx); 4527 struct e1000_hw *hw = &adapter->hw; 4528 device_t dev = iflib_get_dev(ctx); 4529 u16 edata; 4530 4531 e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata); 4532 printf("Current cap: %#06x\n", edata); 4533 if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) { 4534 device_printf(dev, "Writing to eeprom: increasing " 4535 "reported MSIX vectors from 3 to 5...\n"); 4536 edata &= ~(EM_NVM_MSIX_N_MASK); 4537 edata |= 4 << EM_NVM_MSIX_N_SHIFT; 4538 e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata); 4539 e1000_update_nvm_checksum(hw); 4540 device_printf(dev, "Writing to eeprom: done\n"); 4541 } 4542 } 4543