1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* $FreeBSD$ */ 30 #include "if_em.h" 31 #include <sys/sbuf.h> 32 #include <machine/_inttypes.h> 33 34 #define em_mac_min e1000_82547 35 #define igb_mac_min e1000_82575 36 37 /********************************************************************* 38 * Driver version: 39 *********************************************************************/ 40 char em_driver_version[] = "7.6.1-k"; 41 42 /********************************************************************* 43 * PCI Device ID Table 44 * 45 * Used by probe to select devices to load on 46 * Last field stores an index into e1000_strings 47 * Last entry must be all 0s 48 * 49 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index } 50 *********************************************************************/ 51 52 static pci_vendor_info_t em_vendor_info_array[] = 53 { 54 /* Intel(R) PRO/1000 Network Connection - Legacy em*/ 55 PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) PRO/1000 Network Connection"), 56 PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) PRO/1000 Network Connection"), 57 PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) PRO/1000 Network Connection"), 58 PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) PRO/1000 Network Connection"), 59 PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) PRO/1000 Network Connection"), 60 61 PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) PRO/1000 Network Connection"), 62 PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) PRO/1000 Network Connection"), 63 PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) PRO/1000 Network Connection"), 64 PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) PRO/1000 Network Connection"), 65 PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) PRO/1000 Network Connection"), 66 PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) PRO/1000 Network Connection"), 67 PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) PRO/1000 Network Connection"), 68 69 PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) PRO/1000 Network Connection"), 70 71 PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) PRO/1000 Network Connection"), 72 PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) PRO/1000 Network Connection"), 73 74 PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) PRO/1000 Network Connection"), 75 PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) PRO/1000 Network Connection"), 76 PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) PRO/1000 Network Connection"), 77 PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) PRO/1000 Network Connection"), 78 79 PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) PRO/1000 Network Connection"), 80 PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) PRO/1000 Network Connection"), 81 PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) PRO/1000 Network Connection"), 82 PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) PRO/1000 Network Connection"), 83 PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) PRO/1000 Network Connection"), 84 85 PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) PRO/1000 Network Connection"), 86 PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) PRO/1000 Network Connection"), 87 PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), 88 PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) PRO/1000 Network Connection"), 89 PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) PRO/1000 Network Connection"), 90 PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) PRO/1000 Network Connection"), 91 PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) PRO/1000 Network Connection"), 92 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), 93 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) PRO/1000 Network Connection"), 94 95 PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) PRO/1000 Network Connection"), 96 PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) PRO/1000 Network Connection"), 97 PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) PRO/1000 Network Connection"), 98 99 /* Intel(R) PRO/1000 Network Connection - em */ 100 PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 Network Connection"), 101 PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 Network Connection"), 102 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 Network Connection"), 103 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 Network Connection"), 104 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 Network Connection"), 105 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), 106 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 Network Connection"), 107 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 Network Connection"), 108 PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), 109 PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 Network Connection"), 110 PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 Network Connection"), 111 PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 Network Connection"), 112 PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 Network Connection"), 113 PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 Network Connection"), 114 PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 Network Connection"), 115 PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 Network Connection"), 116 PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) PRO/1000 Network Connection"), 117 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) PRO/1000 Network Connection"), 118 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) PRO/1000 Network Connection"), 119 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) PRO/1000 Network Connection"), 120 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) PRO/1000 Network Connection"), 121 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"), 122 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) PRO/1000 Network Connection"), 123 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) PRO/1000 Network Connection"), 124 PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) PRO/1000 Network Connection"), 125 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) PRO/1000 Network Connection"), 126 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) PRO/1000 Network Connection"), 127 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) PRO/1000 Network Connection"), 128 PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) PRO/1000 Network Connection"), 129 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"), 130 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) PRO/1000 Network Connection"), 131 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) PRO/1000 Network Connection"), 132 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) PRO/1000 Network Connection"), 133 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) PRO/1000 Network Connection"), 134 PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) PRO/1000 Network Connection"), 135 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) PRO/1000 Network Connection"), 136 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) PRO/1000 Network Connection"), 137 PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) PRO/1000 Network Connection"), 138 PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) PRO/1000 Network Connection"), 139 PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) PRO/1000 Network Connection"), 140 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) PRO/1000 Network Connection"), 141 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) PRO/1000 Network Connection"), 142 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) PRO/1000 Network Connection"), 143 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) PRO/1000 Network Connection"), 144 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) PRO/1000 Network Connection"), 145 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) PRO/1000 Network Connection"), 146 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) PRO/1000 Network Connection"), 147 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) PRO/1000 Network Connection"), 148 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) PRO/1000 Network Connection"), 149 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) PRO/1000 Network Connection"), 150 PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) PRO/1000 Network Connection"), 151 PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) PRO/1000 Network Connection"), 152 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) PRO/1000 Network Connection"), 153 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) PRO/1000 Network Connection"), 154 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) PRO/1000 Network Connection"), 155 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) PRO/1000 Network Connection"), 156 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) PRO/1000 Network Connection"), 157 PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) PRO/1000 Network Connection"), 158 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) PRO/1000 Network Connection"), 159 PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) PRO/1000 Network Connection"), 160 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) PRO/1000 Network Connection"), 161 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) PRO/1000 Network Connection"), 162 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) PRO/1000 Network Connection"), 163 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) PRO/1000 Network Connection"), 164 PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) PRO/1000 Network Connection"), 165 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) PRO/1000 Network Connection"), 166 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) PRO/1000 Network Connection"), 167 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) PRO/1000 Network Connection"), 168 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) PRO/1000 Network Connection"), 169 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) PRO/1000 Network Connection"), 170 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) PRO/1000 Network Connection"), 171 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) PRO/1000 Network Connection"), 172 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) PRO/1000 Network Connection"), 173 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) PRO/1000 Network Connection"), 174 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) PRO/1000 Network Connection"), 175 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) PRO/1000 Network Connection"), 176 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) PRO/1000 Network Connection"), 177 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10, "Intel(R) PRO/1000 Network Connection"), 178 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10, "Intel(R) PRO/1000 Network Connection"), 179 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11, "Intel(R) PRO/1000 Network Connection"), 180 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11, "Intel(R) PRO/1000 Network Connection"), 181 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12, "Intel(R) PRO/1000 Network Connection"), 182 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12, "Intel(R) PRO/1000 Network Connection"), 183 /* required last entry */ 184 PVID_END 185 }; 186 187 static pci_vendor_info_t igb_vendor_info_array[] = 188 { 189 /* Intel(R) PRO/1000 Network Connection - igb */ 190 PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 191 PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 192 PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 193 PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 PCI-Express Network Driver"), 194 PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 195 PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 196 PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 197 PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 198 PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 PCI-Express Network Driver"), 199 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 200 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 PCI-Express Network Driver"), 201 PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"), 202 PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 203 PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 204 PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 205 PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 206 PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) PRO/1000 PCI-Express Network Driver"), 207 PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 208 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 209 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 210 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) PRO/1000 PCI-Express Network Driver"), 211 PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) PRO/1000 PCI-Express Network Driver"), 212 PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 213 PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 214 PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 215 PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 216 PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"), 217 PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 218 PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) PRO/1000 PCI-Express Network Driver"), 219 PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) PRO/1000 PCI-Express Network Driver"), 220 PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 221 PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 222 PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 223 PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 224 PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 225 PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 226 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 227 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 228 PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 229 /* required last entry */ 230 PVID_END 231 }; 232 233 /********************************************************************* 234 * Function prototypes 235 *********************************************************************/ 236 static void *em_register(device_t dev); 237 static void *igb_register(device_t dev); 238 static int em_if_attach_pre(if_ctx_t ctx); 239 static int em_if_attach_post(if_ctx_t ctx); 240 static int em_if_detach(if_ctx_t ctx); 241 static int em_if_shutdown(if_ctx_t ctx); 242 static int em_if_suspend(if_ctx_t ctx); 243 static int em_if_resume(if_ctx_t ctx); 244 245 static int em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets); 246 static int em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets); 247 static void em_if_queues_free(if_ctx_t ctx); 248 249 static uint64_t em_if_get_counter(if_ctx_t, ift_counter); 250 static void em_if_init(if_ctx_t ctx); 251 static void em_if_stop(if_ctx_t ctx); 252 static void em_if_media_status(if_ctx_t, struct ifmediareq *); 253 static int em_if_media_change(if_ctx_t ctx); 254 static int em_if_mtu_set(if_ctx_t ctx, uint32_t mtu); 255 static void em_if_timer(if_ctx_t ctx, uint16_t qid); 256 static void em_if_vlan_register(if_ctx_t ctx, u16 vtag); 257 static void em_if_vlan_unregister(if_ctx_t ctx, u16 vtag); 258 static void em_if_watchdog_reset(if_ctx_t ctx); 259 static bool em_if_needs_restart(if_ctx_t ctx, enum iflib_restart_event event); 260 261 static void em_identify_hardware(if_ctx_t ctx); 262 static int em_allocate_pci_resources(if_ctx_t ctx); 263 static void em_free_pci_resources(if_ctx_t ctx); 264 static void em_reset(if_ctx_t ctx); 265 static int em_setup_interface(if_ctx_t ctx); 266 static int em_setup_msix(if_ctx_t ctx); 267 268 static void em_initialize_transmit_unit(if_ctx_t ctx); 269 static void em_initialize_receive_unit(if_ctx_t ctx); 270 271 static void em_if_intr_enable(if_ctx_t ctx); 272 static void em_if_intr_disable(if_ctx_t ctx); 273 static void igb_if_intr_enable(if_ctx_t ctx); 274 static void igb_if_intr_disable(if_ctx_t ctx); 275 static int em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid); 276 static int em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid); 277 static int igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid); 278 static int igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid); 279 static void em_if_multi_set(if_ctx_t ctx); 280 static void em_if_update_admin_status(if_ctx_t ctx); 281 static void em_if_debug(if_ctx_t ctx); 282 static void em_update_stats_counters(struct adapter *); 283 static void em_add_hw_stats(struct adapter *adapter); 284 static int em_if_set_promisc(if_ctx_t ctx, int flags); 285 static void em_setup_vlan_hw_support(struct adapter *); 286 static int em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS); 287 static void em_print_nvm_info(struct adapter *); 288 static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS); 289 static int em_get_rs(SYSCTL_HANDLER_ARGS); 290 static void em_print_debug_info(struct adapter *); 291 static int em_is_valid_ether_addr(u8 *); 292 static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS); 293 static void em_add_int_delay_sysctl(struct adapter *, const char *, 294 const char *, struct em_int_delay_info *, int, int); 295 /* Management and WOL Support */ 296 static void em_init_manageability(struct adapter *); 297 static void em_release_manageability(struct adapter *); 298 static void em_get_hw_control(struct adapter *); 299 static void em_release_hw_control(struct adapter *); 300 static void em_get_wakeup(if_ctx_t ctx); 301 static void em_enable_wakeup(if_ctx_t ctx); 302 static int em_enable_phy_wakeup(struct adapter *); 303 static void em_disable_aspm(struct adapter *); 304 305 int em_intr(void *arg); 306 static void em_disable_promisc(if_ctx_t ctx); 307 308 /* MSI-X handlers */ 309 static int em_if_msix_intr_assign(if_ctx_t, int); 310 static int em_msix_link(void *); 311 static void em_handle_link(void *context); 312 313 static void em_enable_vectors_82574(if_ctx_t); 314 315 static int em_set_flowcntl(SYSCTL_HANDLER_ARGS); 316 static int em_sysctl_eee(SYSCTL_HANDLER_ARGS); 317 static void em_if_led_func(if_ctx_t ctx, int onoff); 318 319 static int em_get_regs(SYSCTL_HANDLER_ARGS); 320 321 static void lem_smartspeed(struct adapter *adapter); 322 static void igb_configure_queues(struct adapter *adapter); 323 324 325 /********************************************************************* 326 * FreeBSD Device Interface Entry Points 327 *********************************************************************/ 328 static device_method_t em_methods[] = { 329 /* Device interface */ 330 DEVMETHOD(device_register, em_register), 331 DEVMETHOD(device_probe, iflib_device_probe), 332 DEVMETHOD(device_attach, iflib_device_attach), 333 DEVMETHOD(device_detach, iflib_device_detach), 334 DEVMETHOD(device_shutdown, iflib_device_shutdown), 335 DEVMETHOD(device_suspend, iflib_device_suspend), 336 DEVMETHOD(device_resume, iflib_device_resume), 337 DEVMETHOD_END 338 }; 339 340 static device_method_t igb_methods[] = { 341 /* Device interface */ 342 DEVMETHOD(device_register, igb_register), 343 DEVMETHOD(device_probe, iflib_device_probe), 344 DEVMETHOD(device_attach, iflib_device_attach), 345 DEVMETHOD(device_detach, iflib_device_detach), 346 DEVMETHOD(device_shutdown, iflib_device_shutdown), 347 DEVMETHOD(device_suspend, iflib_device_suspend), 348 DEVMETHOD(device_resume, iflib_device_resume), 349 DEVMETHOD_END 350 }; 351 352 353 static driver_t em_driver = { 354 "em", em_methods, sizeof(struct adapter), 355 }; 356 357 static devclass_t em_devclass; 358 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0); 359 360 MODULE_DEPEND(em, pci, 1, 1, 1); 361 MODULE_DEPEND(em, ether, 1, 1, 1); 362 MODULE_DEPEND(em, iflib, 1, 1, 1); 363 364 IFLIB_PNP_INFO(pci, em, em_vendor_info_array); 365 366 static driver_t igb_driver = { 367 "igb", igb_methods, sizeof(struct adapter), 368 }; 369 370 static devclass_t igb_devclass; 371 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0); 372 373 MODULE_DEPEND(igb, pci, 1, 1, 1); 374 MODULE_DEPEND(igb, ether, 1, 1, 1); 375 MODULE_DEPEND(igb, iflib, 1, 1, 1); 376 377 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array); 378 379 static device_method_t em_if_methods[] = { 380 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre), 381 DEVMETHOD(ifdi_attach_post, em_if_attach_post), 382 DEVMETHOD(ifdi_detach, em_if_detach), 383 DEVMETHOD(ifdi_shutdown, em_if_shutdown), 384 DEVMETHOD(ifdi_suspend, em_if_suspend), 385 DEVMETHOD(ifdi_resume, em_if_resume), 386 DEVMETHOD(ifdi_init, em_if_init), 387 DEVMETHOD(ifdi_stop, em_if_stop), 388 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign), 389 DEVMETHOD(ifdi_intr_enable, em_if_intr_enable), 390 DEVMETHOD(ifdi_intr_disable, em_if_intr_disable), 391 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc), 392 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc), 393 DEVMETHOD(ifdi_queues_free, em_if_queues_free), 394 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status), 395 DEVMETHOD(ifdi_multi_set, em_if_multi_set), 396 DEVMETHOD(ifdi_media_status, em_if_media_status), 397 DEVMETHOD(ifdi_media_change, em_if_media_change), 398 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set), 399 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc), 400 DEVMETHOD(ifdi_timer, em_if_timer), 401 DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset), 402 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register), 403 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister), 404 DEVMETHOD(ifdi_get_counter, em_if_get_counter), 405 DEVMETHOD(ifdi_led_func, em_if_led_func), 406 DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable), 407 DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable), 408 DEVMETHOD(ifdi_debug, em_if_debug), 409 DEVMETHOD(ifdi_needs_restart, em_if_needs_restart), 410 DEVMETHOD_END 411 }; 412 413 static driver_t em_if_driver = { 414 "em_if", em_if_methods, sizeof(struct adapter) 415 }; 416 417 static device_method_t igb_if_methods[] = { 418 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre), 419 DEVMETHOD(ifdi_attach_post, em_if_attach_post), 420 DEVMETHOD(ifdi_detach, em_if_detach), 421 DEVMETHOD(ifdi_shutdown, em_if_shutdown), 422 DEVMETHOD(ifdi_suspend, em_if_suspend), 423 DEVMETHOD(ifdi_resume, em_if_resume), 424 DEVMETHOD(ifdi_init, em_if_init), 425 DEVMETHOD(ifdi_stop, em_if_stop), 426 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign), 427 DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable), 428 DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable), 429 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc), 430 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc), 431 DEVMETHOD(ifdi_queues_free, em_if_queues_free), 432 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status), 433 DEVMETHOD(ifdi_multi_set, em_if_multi_set), 434 DEVMETHOD(ifdi_media_status, em_if_media_status), 435 DEVMETHOD(ifdi_media_change, em_if_media_change), 436 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set), 437 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc), 438 DEVMETHOD(ifdi_timer, em_if_timer), 439 DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset), 440 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register), 441 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister), 442 DEVMETHOD(ifdi_get_counter, em_if_get_counter), 443 DEVMETHOD(ifdi_led_func, em_if_led_func), 444 DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable), 445 DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable), 446 DEVMETHOD(ifdi_debug, em_if_debug), 447 DEVMETHOD(ifdi_needs_restart, em_if_needs_restart), 448 DEVMETHOD_END 449 }; 450 451 static driver_t igb_if_driver = { 452 "igb_if", igb_if_methods, sizeof(struct adapter) 453 }; 454 455 /********************************************************************* 456 * Tunable default values. 457 *********************************************************************/ 458 459 #define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000) 460 #define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024) 461 462 #define MAX_INTS_PER_SEC 8000 463 #define DEFAULT_ITR (1000000000/(MAX_INTS_PER_SEC * 256)) 464 465 /* Allow common code without TSO */ 466 #ifndef CSUM_TSO 467 #define CSUM_TSO 0 468 #endif 469 470 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 471 "EM driver parameters"); 472 473 static int em_disable_crc_stripping = 0; 474 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN, 475 &em_disable_crc_stripping, 0, "Disable CRC Stripping"); 476 477 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV); 478 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR); 479 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt, 480 0, "Default transmit interrupt delay in usecs"); 481 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt, 482 0, "Default receive interrupt delay in usecs"); 483 484 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV); 485 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV); 486 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN, 487 &em_tx_abs_int_delay_dflt, 0, 488 "Default transmit interrupt delay limit in usecs"); 489 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN, 490 &em_rx_abs_int_delay_dflt, 0, 491 "Default receive interrupt delay limit in usecs"); 492 493 static int em_smart_pwr_down = FALSE; 494 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down, 495 0, "Set to true to leave smart power down enabled on newer adapters"); 496 497 /* Controls whether promiscuous also shows bad packets */ 498 static int em_debug_sbp = TRUE; 499 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0, 500 "Show bad packets in promiscuous mode"); 501 502 /* How many packets rxeof tries to clean at a time */ 503 static int em_rx_process_limit = 100; 504 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN, 505 &em_rx_process_limit, 0, 506 "Maximum number of received packets to process " 507 "at a time, -1 means unlimited"); 508 509 /* Energy efficient ethernet - default to OFF */ 510 static int eee_setting = 1; 511 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0, 512 "Enable Energy Efficient Ethernet"); 513 514 /* 515 ** Tuneable Interrupt rate 516 */ 517 static int em_max_interrupt_rate = 8000; 518 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN, 519 &em_max_interrupt_rate, 0, "Maximum interrupts per second"); 520 521 522 523 /* Global used in WOL setup with multiport cards */ 524 static int global_quad_port_a = 0; 525 526 extern struct if_txrx igb_txrx; 527 extern struct if_txrx em_txrx; 528 extern struct if_txrx lem_txrx; 529 530 static struct if_shared_ctx em_sctx_init = { 531 .isc_magic = IFLIB_MAGIC, 532 .isc_q_align = PAGE_SIZE, 533 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 534 .isc_tx_maxsegsize = PAGE_SIZE, 535 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 536 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE, 537 .isc_rx_maxsize = MJUM9BYTES, 538 .isc_rx_nsegments = 1, 539 .isc_rx_maxsegsize = MJUM9BYTES, 540 .isc_nfl = 1, 541 .isc_nrxqs = 1, 542 .isc_ntxqs = 1, 543 .isc_admin_intrcnt = 1, 544 .isc_vendor_info = em_vendor_info_array, 545 .isc_driver_version = em_driver_version, 546 .isc_driver = &em_if_driver, 547 .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM, 548 549 .isc_nrxd_min = {EM_MIN_RXD}, 550 .isc_ntxd_min = {EM_MIN_TXD}, 551 .isc_nrxd_max = {EM_MAX_RXD}, 552 .isc_ntxd_max = {EM_MAX_TXD}, 553 .isc_nrxd_default = {EM_DEFAULT_RXD}, 554 .isc_ntxd_default = {EM_DEFAULT_TXD}, 555 }; 556 557 if_shared_ctx_t em_sctx = &em_sctx_init; 558 559 static struct if_shared_ctx igb_sctx_init = { 560 .isc_magic = IFLIB_MAGIC, 561 .isc_q_align = PAGE_SIZE, 562 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 563 .isc_tx_maxsegsize = PAGE_SIZE, 564 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 565 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE, 566 .isc_rx_maxsize = MJUM9BYTES, 567 .isc_rx_nsegments = 1, 568 .isc_rx_maxsegsize = MJUM9BYTES, 569 .isc_nfl = 1, 570 .isc_nrxqs = 1, 571 .isc_ntxqs = 1, 572 .isc_admin_intrcnt = 1, 573 .isc_vendor_info = igb_vendor_info_array, 574 .isc_driver_version = em_driver_version, 575 .isc_driver = &igb_if_driver, 576 .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM, 577 578 .isc_nrxd_min = {EM_MIN_RXD}, 579 .isc_ntxd_min = {EM_MIN_TXD}, 580 .isc_nrxd_max = {IGB_MAX_RXD}, 581 .isc_ntxd_max = {IGB_MAX_TXD}, 582 .isc_nrxd_default = {EM_DEFAULT_RXD}, 583 .isc_ntxd_default = {EM_DEFAULT_TXD}, 584 }; 585 586 if_shared_ctx_t igb_sctx = &igb_sctx_init; 587 588 /***************************************************************** 589 * 590 * Dump Registers 591 * 592 ****************************************************************/ 593 #define IGB_REGS_LEN 739 594 595 static int em_get_regs(SYSCTL_HANDLER_ARGS) 596 { 597 struct adapter *adapter = (struct adapter *)arg1; 598 struct e1000_hw *hw = &adapter->hw; 599 struct sbuf *sb; 600 u32 *regs_buff; 601 int rc; 602 603 regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK); 604 memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32)); 605 606 rc = sysctl_wire_old_buffer(req, 0); 607 MPASS(rc == 0); 608 if (rc != 0) { 609 free(regs_buff, M_DEVBUF); 610 return (rc); 611 } 612 613 sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req); 614 MPASS(sb != NULL); 615 if (sb == NULL) { 616 free(regs_buff, M_DEVBUF); 617 return (ENOMEM); 618 } 619 620 /* General Registers */ 621 regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL); 622 regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS); 623 regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT); 624 regs_buff[3] = E1000_READ_REG(hw, E1000_ICR); 625 regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL); 626 regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0)); 627 regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0)); 628 regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0)); 629 regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0)); 630 regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0)); 631 regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0)); 632 regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL); 633 regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0)); 634 regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0)); 635 regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0)); 636 regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0)); 637 regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0)); 638 regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0)); 639 regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH); 640 regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT); 641 regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS); 642 regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC); 643 644 sbuf_printf(sb, "General Registers\n"); 645 sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]); 646 sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]); 647 sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]); 648 649 sbuf_printf(sb, "Interrupt Registers\n"); 650 sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]); 651 652 sbuf_printf(sb, "RX Registers\n"); 653 sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]); 654 sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]); 655 sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]); 656 sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]); 657 sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]); 658 sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]); 659 sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]); 660 661 sbuf_printf(sb, "TX Registers\n"); 662 sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]); 663 sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]); 664 sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]); 665 sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]); 666 sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]); 667 sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]); 668 sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]); 669 sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]); 670 sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]); 671 sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]); 672 sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]); 673 674 free(regs_buff, M_DEVBUF); 675 676 #ifdef DUMP_DESCS 677 { 678 if_softc_ctx_t scctx = adapter->shared; 679 struct rx_ring *rxr = &rx_que->rxr; 680 struct tx_ring *txr = &tx_que->txr; 681 int ntxd = scctx->isc_ntxd[0]; 682 int nrxd = scctx->isc_nrxd[0]; 683 int j; 684 685 for (j = 0; j < nrxd; j++) { 686 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error); 687 u32 length = le32toh(rxr->rx_base[j].wb.upper.length); 688 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 " Error:%d Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length); 689 } 690 691 for (j = 0; j < min(ntxd, 256); j++) { 692 unsigned int *ptr = (unsigned int *)&txr->tx_base[j]; 693 694 sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x eop: %d DD=%d\n", 695 j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop, 696 buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0); 697 698 } 699 } 700 #endif 701 702 rc = sbuf_finish(sb); 703 sbuf_delete(sb); 704 return(rc); 705 } 706 707 static void * 708 em_register(device_t dev) 709 { 710 return (em_sctx); 711 } 712 713 static void * 714 igb_register(device_t dev) 715 { 716 return (igb_sctx); 717 } 718 719 static int 720 em_set_num_queues(if_ctx_t ctx) 721 { 722 struct adapter *adapter = iflib_get_softc(ctx); 723 int maxqueues; 724 725 /* Sanity check based on HW */ 726 switch (adapter->hw.mac.type) { 727 case e1000_82576: 728 case e1000_82580: 729 case e1000_i350: 730 case e1000_i354: 731 maxqueues = 8; 732 break; 733 case e1000_i210: 734 case e1000_82575: 735 maxqueues = 4; 736 break; 737 case e1000_i211: 738 case e1000_82574: 739 maxqueues = 2; 740 break; 741 default: 742 maxqueues = 1; 743 break; 744 } 745 746 return (maxqueues); 747 } 748 749 #define LEM_CAPS \ 750 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ 751 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER 752 753 #define EM_CAPS \ 754 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ 755 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \ 756 IFCAP_LRO | IFCAP_VLAN_HWTSO 757 758 #define IGB_CAPS \ 759 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ 760 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \ 761 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 |\ 762 IFCAP_TSO6 763 764 /********************************************************************* 765 * Device initialization routine 766 * 767 * The attach entry point is called when the driver is being loaded. 768 * This routine identifies the type of hardware, allocates all resources 769 * and initializes the hardware. 770 * 771 * return 0 on success, positive on failure 772 *********************************************************************/ 773 static int 774 em_if_attach_pre(if_ctx_t ctx) 775 { 776 struct adapter *adapter; 777 if_softc_ctx_t scctx; 778 device_t dev; 779 struct e1000_hw *hw; 780 int error = 0; 781 782 INIT_DEBUGOUT("em_if_attach_pre: begin"); 783 dev = iflib_get_dev(ctx); 784 adapter = iflib_get_softc(ctx); 785 786 adapter->ctx = adapter->osdep.ctx = ctx; 787 adapter->dev = adapter->osdep.dev = dev; 788 scctx = adapter->shared = iflib_get_softc_ctx(ctx); 789 adapter->media = iflib_get_media(ctx); 790 hw = &adapter->hw; 791 792 adapter->tx_process_limit = scctx->isc_ntxd[0]; 793 794 /* SYSCTL stuff */ 795 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 796 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 797 OID_AUTO, "nvm", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 798 adapter, 0, em_sysctl_nvm_info, "I", "NVM Information"); 799 800 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 801 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 802 OID_AUTO, "debug", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 803 adapter, 0, em_sysctl_debug_info, "I", "Debug Information"); 804 805 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 806 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 807 OID_AUTO, "fc", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 808 adapter, 0, em_set_flowcntl, "I", "Flow Control"); 809 810 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 811 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 812 OID_AUTO, "reg_dump", 813 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter, 0, 814 em_get_regs, "A", "Dump Registers"); 815 816 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 817 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 818 OID_AUTO, "rs_dump", 819 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, adapter, 0, 820 em_get_rs, "I", "Dump RS indexes"); 821 822 /* Determine hardware and mac info */ 823 em_identify_hardware(ctx); 824 825 scctx->isc_tx_nsegments = EM_MAX_SCATTER; 826 scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx); 827 if (bootverbose) 828 device_printf(dev, "attach_pre capping queues at %d\n", 829 scctx->isc_ntxqsets_max); 830 831 if (adapter->hw.mac.type >= igb_mac_min) { 832 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN); 833 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN); 834 scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc); 835 scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc); 836 scctx->isc_txrx = &igb_txrx; 837 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER; 838 scctx->isc_tx_tso_size_max = EM_TSO_SIZE; 839 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE; 840 scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS; 841 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO | 842 CSUM_IP6_TCP | CSUM_IP6_UDP; 843 if (adapter->hw.mac.type != e1000_82575) 844 scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP; 845 /* 846 ** Some new devices, as with ixgbe, now may 847 ** use a different BAR, so we need to keep 848 ** track of which is used. 849 */ 850 scctx->isc_msix_bar = pci_msix_table_bar(dev); 851 } else if (adapter->hw.mac.type >= em_mac_min) { 852 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN); 853 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN); 854 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc); 855 scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended); 856 scctx->isc_txrx = &em_txrx; 857 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER; 858 scctx->isc_tx_tso_size_max = EM_TSO_SIZE; 859 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE; 860 scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS; 861 /* 862 * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO} 863 * by default as we don't have workarounds for all associated 864 * silicon errata. E. g., with several MACs such as 82573E, 865 * TSO only works at Gigabit speed and otherwise can cause the 866 * hardware to hang (which also would be next to impossible to 867 * work around given that already queued TSO-using descriptors 868 * would need to be flushed and vlan(4) reconfigured at runtime 869 * in case of a link speed change). Moreover, MACs like 82579 870 * still can hang at Gigabit even with all publicly documented 871 * TSO workarounds implemented. Generally, the penality of 872 * these workarounds is rather high and may involve copying 873 * mbuf data around so advantages of TSO lapse. Still, TSO may 874 * work for a few MACs of this class - at least when sticking 875 * with Gigabit - in which case users may enable TSO manually. 876 */ 877 scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO); 878 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO; 879 /* 880 * We support MSI-X with 82574 only, but indicate to iflib(4) 881 * that it shall give MSI at least a try with other devices. 882 */ 883 if (adapter->hw.mac.type == e1000_82574) { 884 scctx->isc_msix_bar = pci_msix_table_bar(dev);; 885 } else { 886 scctx->isc_msix_bar = -1; 887 scctx->isc_disable_msix = 1; 888 } 889 } else { 890 scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN); 891 scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN); 892 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc); 893 scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc); 894 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP; 895 scctx->isc_txrx = &lem_txrx; 896 scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS; 897 if (adapter->hw.mac.type < e1000_82543) 898 scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM); 899 /* INTx only */ 900 scctx->isc_msix_bar = 0; 901 } 902 903 /* Setup PCI resources */ 904 if (em_allocate_pci_resources(ctx)) { 905 device_printf(dev, "Allocation of PCI resources failed\n"); 906 error = ENXIO; 907 goto err_pci; 908 } 909 910 /* 911 ** For ICH8 and family we need to 912 ** map the flash memory, and this 913 ** must happen after the MAC is 914 ** identified 915 */ 916 if ((hw->mac.type == e1000_ich8lan) || 917 (hw->mac.type == e1000_ich9lan) || 918 (hw->mac.type == e1000_ich10lan) || 919 (hw->mac.type == e1000_pchlan) || 920 (hw->mac.type == e1000_pch2lan) || 921 (hw->mac.type == e1000_pch_lpt)) { 922 int rid = EM_BAR_TYPE_FLASH; 923 adapter->flash = bus_alloc_resource_any(dev, 924 SYS_RES_MEMORY, &rid, RF_ACTIVE); 925 if (adapter->flash == NULL) { 926 device_printf(dev, "Mapping of Flash failed\n"); 927 error = ENXIO; 928 goto err_pci; 929 } 930 /* This is used in the shared code */ 931 hw->flash_address = (u8 *)adapter->flash; 932 adapter->osdep.flash_bus_space_tag = 933 rman_get_bustag(adapter->flash); 934 adapter->osdep.flash_bus_space_handle = 935 rman_get_bushandle(adapter->flash); 936 } 937 /* 938 ** In the new SPT device flash is not a 939 ** separate BAR, rather it is also in BAR0, 940 ** so use the same tag and an offset handle for the 941 ** FLASH read/write macros in the shared code. 942 */ 943 else if (hw->mac.type >= e1000_pch_spt) { 944 adapter->osdep.flash_bus_space_tag = 945 adapter->osdep.mem_bus_space_tag; 946 adapter->osdep.flash_bus_space_handle = 947 adapter->osdep.mem_bus_space_handle 948 + E1000_FLASH_BASE_ADDR; 949 } 950 951 /* Do Shared Code initialization */ 952 error = e1000_setup_init_funcs(hw, TRUE); 953 if (error) { 954 device_printf(dev, "Setup of Shared code failed, error %d\n", 955 error); 956 error = ENXIO; 957 goto err_pci; 958 } 959 960 em_setup_msix(ctx); 961 e1000_get_bus_info(hw); 962 963 /* Set up some sysctls for the tunable interrupt delays */ 964 em_add_int_delay_sysctl(adapter, "rx_int_delay", 965 "receive interrupt delay in usecs", &adapter->rx_int_delay, 966 E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt); 967 em_add_int_delay_sysctl(adapter, "tx_int_delay", 968 "transmit interrupt delay in usecs", &adapter->tx_int_delay, 969 E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt); 970 em_add_int_delay_sysctl(adapter, "rx_abs_int_delay", 971 "receive interrupt delay limit in usecs", 972 &adapter->rx_abs_int_delay, 973 E1000_REGISTER(hw, E1000_RADV), 974 em_rx_abs_int_delay_dflt); 975 em_add_int_delay_sysctl(adapter, "tx_abs_int_delay", 976 "transmit interrupt delay limit in usecs", 977 &adapter->tx_abs_int_delay, 978 E1000_REGISTER(hw, E1000_TADV), 979 em_tx_abs_int_delay_dflt); 980 em_add_int_delay_sysctl(adapter, "itr", 981 "interrupt delay limit in usecs/4", 982 &adapter->tx_itr, 983 E1000_REGISTER(hw, E1000_ITR), 984 DEFAULT_ITR); 985 986 hw->mac.autoneg = DO_AUTO_NEG; 987 hw->phy.autoneg_wait_to_complete = FALSE; 988 hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; 989 990 if (adapter->hw.mac.type < em_mac_min) { 991 e1000_init_script_state_82541(&adapter->hw, TRUE); 992 e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE); 993 } 994 /* Copper options */ 995 if (hw->phy.media_type == e1000_media_type_copper) { 996 hw->phy.mdix = AUTO_ALL_MODES; 997 hw->phy.disable_polarity_correction = FALSE; 998 hw->phy.ms_type = EM_MASTER_SLAVE; 999 } 1000 1001 /* 1002 * Set the frame limits assuming 1003 * standard ethernet sized frames. 1004 */ 1005 scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size = 1006 ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE; 1007 1008 /* 1009 * This controls when hardware reports transmit completion 1010 * status. 1011 */ 1012 hw->mac.report_tx_early = 1; 1013 1014 /* Allocate multicast array memory. */ 1015 adapter->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN * 1016 MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT); 1017 if (adapter->mta == NULL) { 1018 device_printf(dev, "Can not allocate multicast setup array\n"); 1019 error = ENOMEM; 1020 goto err_late; 1021 } 1022 1023 /* Check SOL/IDER usage */ 1024 if (e1000_check_reset_block(hw)) 1025 device_printf(dev, "PHY reset is blocked" 1026 " due to SOL/IDER session.\n"); 1027 1028 /* Sysctl for setting Energy Efficient Ethernet */ 1029 hw->dev_spec.ich8lan.eee_disable = eee_setting; 1030 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 1031 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 1032 OID_AUTO, "eee_control", 1033 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 1034 adapter, 0, em_sysctl_eee, "I", 1035 "Disable Energy Efficient Ethernet"); 1036 1037 /* 1038 ** Start from a known state, this is 1039 ** important in reading the nvm and 1040 ** mac from that. 1041 */ 1042 e1000_reset_hw(hw); 1043 1044 /* Make sure we have a good EEPROM before we read from it */ 1045 if (e1000_validate_nvm_checksum(hw) < 0) { 1046 /* 1047 ** Some PCI-E parts fail the first check due to 1048 ** the link being in sleep state, call it again, 1049 ** if it fails a second time its a real issue. 1050 */ 1051 if (e1000_validate_nvm_checksum(hw) < 0) { 1052 device_printf(dev, 1053 "The EEPROM Checksum Is Not Valid\n"); 1054 error = EIO; 1055 goto err_late; 1056 } 1057 } 1058 1059 /* Copy the permanent MAC address out of the EEPROM */ 1060 if (e1000_read_mac_addr(hw) < 0) { 1061 device_printf(dev, "EEPROM read error while reading MAC" 1062 " address\n"); 1063 error = EIO; 1064 goto err_late; 1065 } 1066 1067 if (!em_is_valid_ether_addr(hw->mac.addr)) { 1068 device_printf(dev, "Invalid MAC address\n"); 1069 error = EIO; 1070 goto err_late; 1071 } 1072 1073 /* Disable ULP support */ 1074 e1000_disable_ulp_lpt_lp(hw, TRUE); 1075 1076 /* 1077 * Get Wake-on-Lan and Management info for later use 1078 */ 1079 em_get_wakeup(ctx); 1080 1081 /* Enable only WOL MAGIC by default */ 1082 scctx->isc_capenable &= ~IFCAP_WOL; 1083 if (adapter->wol != 0) 1084 scctx->isc_capenable |= IFCAP_WOL_MAGIC; 1085 1086 iflib_set_mac(ctx, hw->mac.addr); 1087 1088 return (0); 1089 1090 err_late: 1091 em_release_hw_control(adapter); 1092 err_pci: 1093 em_free_pci_resources(ctx); 1094 free(adapter->mta, M_DEVBUF); 1095 1096 return (error); 1097 } 1098 1099 static int 1100 em_if_attach_post(if_ctx_t ctx) 1101 { 1102 struct adapter *adapter = iflib_get_softc(ctx); 1103 struct e1000_hw *hw = &adapter->hw; 1104 int error = 0; 1105 1106 /* Setup OS specific network interface */ 1107 error = em_setup_interface(ctx); 1108 if (error != 0) { 1109 goto err_late; 1110 } 1111 1112 em_reset(ctx); 1113 1114 /* Initialize statistics */ 1115 em_update_stats_counters(adapter); 1116 hw->mac.get_link_status = 1; 1117 em_if_update_admin_status(ctx); 1118 em_add_hw_stats(adapter); 1119 1120 /* Non-AMT based hardware can now take control from firmware */ 1121 if (adapter->has_manage && !adapter->has_amt) 1122 em_get_hw_control(adapter); 1123 1124 INIT_DEBUGOUT("em_if_attach_post: end"); 1125 1126 return (error); 1127 1128 err_late: 1129 em_release_hw_control(adapter); 1130 em_free_pci_resources(ctx); 1131 em_if_queues_free(ctx); 1132 free(adapter->mta, M_DEVBUF); 1133 1134 return (error); 1135 } 1136 1137 /********************************************************************* 1138 * Device removal routine 1139 * 1140 * The detach entry point is called when the driver is being removed. 1141 * This routine stops the adapter and deallocates all the resources 1142 * that were allocated for driver operation. 1143 * 1144 * return 0 on success, positive on failure 1145 *********************************************************************/ 1146 static int 1147 em_if_detach(if_ctx_t ctx) 1148 { 1149 struct adapter *adapter = iflib_get_softc(ctx); 1150 1151 INIT_DEBUGOUT("em_if_detach: begin"); 1152 1153 e1000_phy_hw_reset(&adapter->hw); 1154 1155 em_release_manageability(adapter); 1156 em_release_hw_control(adapter); 1157 em_free_pci_resources(ctx); 1158 1159 return (0); 1160 } 1161 1162 /********************************************************************* 1163 * 1164 * Shutdown entry point 1165 * 1166 **********************************************************************/ 1167 1168 static int 1169 em_if_shutdown(if_ctx_t ctx) 1170 { 1171 return em_if_suspend(ctx); 1172 } 1173 1174 /* 1175 * Suspend/resume device methods. 1176 */ 1177 static int 1178 em_if_suspend(if_ctx_t ctx) 1179 { 1180 struct adapter *adapter = iflib_get_softc(ctx); 1181 1182 em_release_manageability(adapter); 1183 em_release_hw_control(adapter); 1184 em_enable_wakeup(ctx); 1185 return (0); 1186 } 1187 1188 static int 1189 em_if_resume(if_ctx_t ctx) 1190 { 1191 struct adapter *adapter = iflib_get_softc(ctx); 1192 1193 if (adapter->hw.mac.type == e1000_pch2lan) 1194 e1000_resume_workarounds_pchlan(&adapter->hw); 1195 em_if_init(ctx); 1196 em_init_manageability(adapter); 1197 1198 return(0); 1199 } 1200 1201 static int 1202 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu) 1203 { 1204 int max_frame_size; 1205 struct adapter *adapter = iflib_get_softc(ctx); 1206 if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx); 1207 1208 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)"); 1209 1210 switch (adapter->hw.mac.type) { 1211 case e1000_82571: 1212 case e1000_82572: 1213 case e1000_ich9lan: 1214 case e1000_ich10lan: 1215 case e1000_pch2lan: 1216 case e1000_pch_lpt: 1217 case e1000_pch_spt: 1218 case e1000_pch_cnp: 1219 case e1000_82574: 1220 case e1000_82583: 1221 case e1000_80003es2lan: 1222 /* 9K Jumbo Frame size */ 1223 max_frame_size = 9234; 1224 break; 1225 case e1000_pchlan: 1226 max_frame_size = 4096; 1227 break; 1228 case e1000_82542: 1229 case e1000_ich8lan: 1230 /* Adapters that do not support jumbo frames */ 1231 max_frame_size = ETHER_MAX_LEN; 1232 break; 1233 default: 1234 if (adapter->hw.mac.type >= igb_mac_min) 1235 max_frame_size = 9234; 1236 else /* lem */ 1237 max_frame_size = MAX_JUMBO_FRAME_SIZE; 1238 } 1239 if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) { 1240 return (EINVAL); 1241 } 1242 1243 scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size = 1244 mtu + ETHER_HDR_LEN + ETHER_CRC_LEN; 1245 return (0); 1246 } 1247 1248 /********************************************************************* 1249 * Init entry point 1250 * 1251 * This routine is used in two ways. It is used by the stack as 1252 * init entry point in network interface structure. It is also used 1253 * by the driver as a hw/sw initialization routine to get to a 1254 * consistent state. 1255 * 1256 **********************************************************************/ 1257 static void 1258 em_if_init(if_ctx_t ctx) 1259 { 1260 struct adapter *adapter = iflib_get_softc(ctx); 1261 if_softc_ctx_t scctx = adapter->shared; 1262 struct ifnet *ifp = iflib_get_ifp(ctx); 1263 struct em_tx_queue *tx_que; 1264 int i; 1265 1266 INIT_DEBUGOUT("em_if_init: begin"); 1267 1268 /* Get the latest mac address, User can use a LAA */ 1269 bcopy(if_getlladdr(ifp), adapter->hw.mac.addr, 1270 ETHER_ADDR_LEN); 1271 1272 /* Put the address into the Receive Address Array */ 1273 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); 1274 1275 /* 1276 * With the 82571 adapter, RAR[0] may be overwritten 1277 * when the other port is reset, we make a duplicate 1278 * in RAR[14] for that eventuality, this assures 1279 * the interface continues to function. 1280 */ 1281 if (adapter->hw.mac.type == e1000_82571) { 1282 e1000_set_laa_state_82571(&adapter->hw, TRUE); 1283 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 1284 E1000_RAR_ENTRIES - 1); 1285 } 1286 1287 1288 /* Initialize the hardware */ 1289 em_reset(ctx); 1290 em_if_update_admin_status(ctx); 1291 1292 for (i = 0, tx_que = adapter->tx_queues; i < adapter->tx_num_queues; i++, tx_que++) { 1293 struct tx_ring *txr = &tx_que->txr; 1294 1295 txr->tx_rs_cidx = txr->tx_rs_pidx; 1296 1297 /* Initialize the last processed descriptor to be the end of 1298 * the ring, rather than the start, so that we avoid an 1299 * off-by-one error when calculating how many descriptors are 1300 * done in the credits_update function. 1301 */ 1302 txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1; 1303 } 1304 1305 /* Setup VLAN support, basic and offload if available */ 1306 E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN); 1307 1308 /* Clear bad data from Rx FIFOs */ 1309 if (adapter->hw.mac.type >= igb_mac_min) 1310 e1000_rx_fifo_flush_82575(&adapter->hw); 1311 1312 /* Configure for OS presence */ 1313 em_init_manageability(adapter); 1314 1315 /* Prepare transmit descriptors and buffers */ 1316 em_initialize_transmit_unit(ctx); 1317 1318 /* Setup Multicast table */ 1319 em_if_multi_set(ctx); 1320 1321 adapter->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx); 1322 em_initialize_receive_unit(ctx); 1323 1324 /* Use real VLAN Filter support? */ 1325 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) { 1326 if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) 1327 /* Use real VLAN Filter support */ 1328 em_setup_vlan_hw_support(adapter); 1329 else { 1330 u32 ctrl; 1331 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL); 1332 ctrl |= E1000_CTRL_VME; 1333 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl); 1334 } 1335 } else { 1336 u32 ctrl; 1337 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL); 1338 ctrl &= ~E1000_CTRL_VME; 1339 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl); 1340 } 1341 1342 /* Don't lose promiscuous settings */ 1343 em_if_set_promisc(ctx, if_getflags(ifp)); 1344 e1000_clear_hw_cntrs_base_generic(&adapter->hw); 1345 1346 /* MSI-X configuration for 82574 */ 1347 if (adapter->hw.mac.type == e1000_82574) { 1348 int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); 1349 1350 tmp |= E1000_CTRL_EXT_PBA_CLR; 1351 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp); 1352 /* Set the IVAR - interrupt vector routing. */ 1353 E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars); 1354 } else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */ 1355 igb_configure_queues(adapter); 1356 1357 /* this clears any pending interrupts */ 1358 E1000_READ_REG(&adapter->hw, E1000_ICR); 1359 E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC); 1360 1361 /* AMT based hardware can now take control from firmware */ 1362 if (adapter->has_manage && adapter->has_amt) 1363 em_get_hw_control(adapter); 1364 1365 /* Set Energy Efficient Ethernet */ 1366 if (adapter->hw.mac.type >= igb_mac_min && 1367 adapter->hw.phy.media_type == e1000_media_type_copper) { 1368 if (adapter->hw.mac.type == e1000_i354) 1369 e1000_set_eee_i354(&adapter->hw, TRUE, TRUE); 1370 else 1371 e1000_set_eee_i350(&adapter->hw, TRUE, TRUE); 1372 } 1373 } 1374 1375 /********************************************************************* 1376 * 1377 * Fast Legacy/MSI Combined Interrupt Service routine 1378 * 1379 *********************************************************************/ 1380 int 1381 em_intr(void *arg) 1382 { 1383 struct adapter *adapter = arg; 1384 if_ctx_t ctx = adapter->ctx; 1385 u32 reg_icr; 1386 1387 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR); 1388 1389 /* Hot eject? */ 1390 if (reg_icr == 0xffffffff) 1391 return FILTER_STRAY; 1392 1393 /* Definitely not our interrupt. */ 1394 if (reg_icr == 0x0) 1395 return FILTER_STRAY; 1396 1397 /* 1398 * Starting with the 82571 chip, bit 31 should be used to 1399 * determine whether the interrupt belongs to us. 1400 */ 1401 if (adapter->hw.mac.type >= e1000_82571 && 1402 (reg_icr & E1000_ICR_INT_ASSERTED) == 0) 1403 return FILTER_STRAY; 1404 1405 /* 1406 * Only MSI-X interrupts have one-shot behavior by taking advantage 1407 * of the EIAC register. Thus, explicitly disable interrupts. This 1408 * also works around the MSI message reordering errata on certain 1409 * systems. 1410 */ 1411 IFDI_INTR_DISABLE(ctx); 1412 1413 /* Link status change */ 1414 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) 1415 em_handle_link(ctx); 1416 1417 if (reg_icr & E1000_ICR_RXO) 1418 adapter->rx_overruns++; 1419 1420 return (FILTER_SCHEDULE_THREAD); 1421 } 1422 1423 static int 1424 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid) 1425 { 1426 struct adapter *adapter = iflib_get_softc(ctx); 1427 struct em_rx_queue *rxq = &adapter->rx_queues[rxqid]; 1428 1429 E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims); 1430 return (0); 1431 } 1432 1433 static int 1434 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid) 1435 { 1436 struct adapter *adapter = iflib_get_softc(ctx); 1437 struct em_tx_queue *txq = &adapter->tx_queues[txqid]; 1438 1439 E1000_WRITE_REG(&adapter->hw, E1000_IMS, txq->eims); 1440 return (0); 1441 } 1442 1443 static int 1444 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid) 1445 { 1446 struct adapter *adapter = iflib_get_softc(ctx); 1447 struct em_rx_queue *rxq = &adapter->rx_queues[rxqid]; 1448 1449 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims); 1450 return (0); 1451 } 1452 1453 static int 1454 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid) 1455 { 1456 struct adapter *adapter = iflib_get_softc(ctx); 1457 struct em_tx_queue *txq = &adapter->tx_queues[txqid]; 1458 1459 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txq->eims); 1460 return (0); 1461 } 1462 1463 /********************************************************************* 1464 * 1465 * MSI-X RX Interrupt Service routine 1466 * 1467 **********************************************************************/ 1468 static int 1469 em_msix_que(void *arg) 1470 { 1471 struct em_rx_queue *que = arg; 1472 1473 ++que->irqs; 1474 1475 return (FILTER_SCHEDULE_THREAD); 1476 } 1477 1478 /********************************************************************* 1479 * 1480 * MSI-X Link Fast Interrupt Service routine 1481 * 1482 **********************************************************************/ 1483 static int 1484 em_msix_link(void *arg) 1485 { 1486 struct adapter *adapter = arg; 1487 u32 reg_icr; 1488 1489 ++adapter->link_irq; 1490 MPASS(adapter->hw.back != NULL); 1491 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR); 1492 1493 if (reg_icr & E1000_ICR_RXO) 1494 adapter->rx_overruns++; 1495 1496 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 1497 em_handle_link(adapter->ctx); 1498 } else if (adapter->hw.mac.type == e1000_82574) { 1499 /* Only re-arm 82574 if em_if_update_admin_status() won't. */ 1500 E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK | 1501 E1000_IMS_LSC); 1502 } 1503 1504 if (adapter->hw.mac.type == e1000_82574) { 1505 /* 1506 * Because we must read the ICR for this interrupt it may 1507 * clear other causes using autoclear, for this reason we 1508 * simply create a soft interrupt for all these vectors. 1509 */ 1510 if (reg_icr) 1511 E1000_WRITE_REG(&adapter->hw, E1000_ICS, adapter->ims); 1512 } else { 1513 /* Re-arm unconditionally */ 1514 E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC); 1515 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask); 1516 } 1517 1518 return (FILTER_HANDLED); 1519 } 1520 1521 static void 1522 em_handle_link(void *context) 1523 { 1524 if_ctx_t ctx = context; 1525 struct adapter *adapter = iflib_get_softc(ctx); 1526 1527 adapter->hw.mac.get_link_status = 1; 1528 iflib_admin_intr_deferred(ctx); 1529 } 1530 1531 /********************************************************************* 1532 * 1533 * Media Ioctl callback 1534 * 1535 * This routine is called whenever the user queries the status of 1536 * the interface using ifconfig. 1537 * 1538 **********************************************************************/ 1539 static void 1540 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr) 1541 { 1542 struct adapter *adapter = iflib_get_softc(ctx); 1543 u_char fiber_type = IFM_1000_SX; 1544 1545 INIT_DEBUGOUT("em_if_media_status: begin"); 1546 1547 iflib_admin_intr_deferred(ctx); 1548 1549 ifmr->ifm_status = IFM_AVALID; 1550 ifmr->ifm_active = IFM_ETHER; 1551 1552 if (!adapter->link_active) { 1553 return; 1554 } 1555 1556 ifmr->ifm_status |= IFM_ACTIVE; 1557 1558 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || 1559 (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) { 1560 if (adapter->hw.mac.type == e1000_82545) 1561 fiber_type = IFM_1000_LX; 1562 ifmr->ifm_active |= fiber_type | IFM_FDX; 1563 } else { 1564 switch (adapter->link_speed) { 1565 case 10: 1566 ifmr->ifm_active |= IFM_10_T; 1567 break; 1568 case 100: 1569 ifmr->ifm_active |= IFM_100_TX; 1570 break; 1571 case 1000: 1572 ifmr->ifm_active |= IFM_1000_T; 1573 break; 1574 } 1575 if (adapter->link_duplex == FULL_DUPLEX) 1576 ifmr->ifm_active |= IFM_FDX; 1577 else 1578 ifmr->ifm_active |= IFM_HDX; 1579 } 1580 } 1581 1582 /********************************************************************* 1583 * 1584 * Media Ioctl callback 1585 * 1586 * This routine is called when the user changes speed/duplex using 1587 * media/mediopt option with ifconfig. 1588 * 1589 **********************************************************************/ 1590 static int 1591 em_if_media_change(if_ctx_t ctx) 1592 { 1593 struct adapter *adapter = iflib_get_softc(ctx); 1594 struct ifmedia *ifm = iflib_get_media(ctx); 1595 1596 INIT_DEBUGOUT("em_if_media_change: begin"); 1597 1598 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 1599 return (EINVAL); 1600 1601 switch (IFM_SUBTYPE(ifm->ifm_media)) { 1602 case IFM_AUTO: 1603 adapter->hw.mac.autoneg = DO_AUTO_NEG; 1604 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; 1605 break; 1606 case IFM_1000_LX: 1607 case IFM_1000_SX: 1608 case IFM_1000_T: 1609 adapter->hw.mac.autoneg = DO_AUTO_NEG; 1610 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 1611 break; 1612 case IFM_100_TX: 1613 adapter->hw.mac.autoneg = FALSE; 1614 adapter->hw.phy.autoneg_advertised = 0; 1615 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) 1616 adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL; 1617 else 1618 adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF; 1619 break; 1620 case IFM_10_T: 1621 adapter->hw.mac.autoneg = FALSE; 1622 adapter->hw.phy.autoneg_advertised = 0; 1623 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) 1624 adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL; 1625 else 1626 adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF; 1627 break; 1628 default: 1629 device_printf(adapter->dev, "Unsupported media type\n"); 1630 } 1631 1632 em_if_init(ctx); 1633 1634 return (0); 1635 } 1636 1637 static int 1638 em_if_set_promisc(if_ctx_t ctx, int flags) 1639 { 1640 struct adapter *adapter = iflib_get_softc(ctx); 1641 u32 reg_rctl; 1642 1643 em_disable_promisc(ctx); 1644 1645 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1646 1647 if (flags & IFF_PROMISC) { 1648 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 1649 /* Turn this on if you want to see bad packets */ 1650 if (em_debug_sbp) 1651 reg_rctl |= E1000_RCTL_SBP; 1652 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1653 } else if (flags & IFF_ALLMULTI) { 1654 reg_rctl |= E1000_RCTL_MPE; 1655 reg_rctl &= ~E1000_RCTL_UPE; 1656 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1657 } 1658 return (0); 1659 } 1660 1661 static void 1662 em_disable_promisc(if_ctx_t ctx) 1663 { 1664 struct adapter *adapter = iflib_get_softc(ctx); 1665 struct ifnet *ifp = iflib_get_ifp(ctx); 1666 u32 reg_rctl; 1667 int mcnt = 0; 1668 1669 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1670 reg_rctl &= (~E1000_RCTL_UPE); 1671 if (if_getflags(ifp) & IFF_ALLMULTI) 1672 mcnt = MAX_NUM_MULTICAST_ADDRESSES; 1673 else 1674 mcnt = if_llmaddr_count(ifp); 1675 /* Don't disable if in MAX groups */ 1676 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES) 1677 reg_rctl &= (~E1000_RCTL_MPE); 1678 reg_rctl &= (~E1000_RCTL_SBP); 1679 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1680 } 1681 1682 1683 static u_int 1684 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 1685 { 1686 u8 *mta = arg; 1687 1688 if (cnt == MAX_NUM_MULTICAST_ADDRESSES) 1689 return (1); 1690 1691 bcopy(LLADDR(sdl), &mta[cnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN); 1692 1693 return (1); 1694 } 1695 1696 /********************************************************************* 1697 * Multicast Update 1698 * 1699 * This routine is called whenever multicast address list is updated. 1700 * 1701 **********************************************************************/ 1702 1703 static void 1704 em_if_multi_set(if_ctx_t ctx) 1705 { 1706 struct adapter *adapter = iflib_get_softc(ctx); 1707 struct ifnet *ifp = iflib_get_ifp(ctx); 1708 u32 reg_rctl = 0; 1709 u8 *mta; /* Multicast array memory */ 1710 int mcnt = 0; 1711 1712 IOCTL_DEBUGOUT("em_set_multi: begin"); 1713 1714 mta = adapter->mta; 1715 bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES); 1716 1717 if (adapter->hw.mac.type == e1000_82542 && 1718 adapter->hw.revision_id == E1000_REVISION_2) { 1719 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1720 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) 1721 e1000_pci_clear_mwi(&adapter->hw); 1722 reg_rctl |= E1000_RCTL_RST; 1723 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1724 msec_delay(5); 1725 } 1726 1727 mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta); 1728 1729 if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) { 1730 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1731 reg_rctl |= E1000_RCTL_MPE; 1732 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1733 } else 1734 e1000_update_mc_addr_list(&adapter->hw, mta, mcnt); 1735 1736 if (adapter->hw.mac.type == e1000_82542 && 1737 adapter->hw.revision_id == E1000_REVISION_2) { 1738 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1739 reg_rctl &= ~E1000_RCTL_RST; 1740 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1741 msec_delay(5); 1742 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) 1743 e1000_pci_set_mwi(&adapter->hw); 1744 } 1745 } 1746 1747 /********************************************************************* 1748 * Timer routine 1749 * 1750 * This routine schedules em_if_update_admin_status() to check for 1751 * link status and to gather statistics as well as to perform some 1752 * controller-specific hardware patting. 1753 * 1754 **********************************************************************/ 1755 static void 1756 em_if_timer(if_ctx_t ctx, uint16_t qid) 1757 { 1758 1759 if (qid != 0) 1760 return; 1761 1762 iflib_admin_intr_deferred(ctx); 1763 } 1764 1765 static void 1766 em_if_update_admin_status(if_ctx_t ctx) 1767 { 1768 struct adapter *adapter = iflib_get_softc(ctx); 1769 struct e1000_hw *hw = &adapter->hw; 1770 device_t dev = iflib_get_dev(ctx); 1771 u32 link_check, thstat, ctrl; 1772 1773 link_check = thstat = ctrl = 0; 1774 /* Get the cached link value or read phy for real */ 1775 switch (hw->phy.media_type) { 1776 case e1000_media_type_copper: 1777 if (hw->mac.get_link_status) { 1778 if (hw->mac.type == e1000_pch_spt) 1779 msec_delay(50); 1780 /* Do the work to read phy */ 1781 e1000_check_for_link(hw); 1782 link_check = !hw->mac.get_link_status; 1783 if (link_check) /* ESB2 fix */ 1784 e1000_cfg_on_link_up(hw); 1785 } else { 1786 link_check = TRUE; 1787 } 1788 break; 1789 case e1000_media_type_fiber: 1790 e1000_check_for_link(hw); 1791 link_check = (E1000_READ_REG(hw, E1000_STATUS) & 1792 E1000_STATUS_LU); 1793 break; 1794 case e1000_media_type_internal_serdes: 1795 e1000_check_for_link(hw); 1796 link_check = adapter->hw.mac.serdes_has_link; 1797 break; 1798 /* VF device is type_unknown */ 1799 case e1000_media_type_unknown: 1800 e1000_check_for_link(hw); 1801 link_check = !hw->mac.get_link_status; 1802 /* FALLTHROUGH */ 1803 default: 1804 break; 1805 } 1806 1807 /* Check for thermal downshift or shutdown */ 1808 if (hw->mac.type == e1000_i350) { 1809 thstat = E1000_READ_REG(hw, E1000_THSTAT); 1810 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT); 1811 } 1812 1813 /* Now check for a transition */ 1814 if (link_check && (adapter->link_active == 0)) { 1815 e1000_get_speed_and_duplex(hw, &adapter->link_speed, 1816 &adapter->link_duplex); 1817 /* Check if we must disable SPEED_MODE bit on PCI-E */ 1818 if ((adapter->link_speed != SPEED_1000) && 1819 ((hw->mac.type == e1000_82571) || 1820 (hw->mac.type == e1000_82572))) { 1821 int tarc0; 1822 tarc0 = E1000_READ_REG(hw, E1000_TARC(0)); 1823 tarc0 &= ~TARC_SPEED_MODE_BIT; 1824 E1000_WRITE_REG(hw, E1000_TARC(0), tarc0); 1825 } 1826 if (bootverbose) 1827 device_printf(dev, "Link is up %d Mbps %s\n", 1828 adapter->link_speed, 1829 ((adapter->link_duplex == FULL_DUPLEX) ? 1830 "Full Duplex" : "Half Duplex")); 1831 adapter->link_active = 1; 1832 adapter->smartspeed = 0; 1833 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) == 1834 E1000_CTRL_EXT_LINK_MODE_GMII && 1835 (thstat & E1000_THSTAT_LINK_THROTTLE)) 1836 device_printf(dev, "Link: thermal downshift\n"); 1837 /* Delay Link Up for Phy update */ 1838 if (((hw->mac.type == e1000_i210) || 1839 (hw->mac.type == e1000_i211)) && 1840 (hw->phy.id == I210_I_PHY_ID)) 1841 msec_delay(I210_LINK_DELAY); 1842 /* Reset if the media type changed. */ 1843 if ((hw->dev_spec._82575.media_changed) && 1844 (adapter->hw.mac.type >= igb_mac_min)) { 1845 hw->dev_spec._82575.media_changed = false; 1846 adapter->flags |= IGB_MEDIA_RESET; 1847 em_reset(ctx); 1848 } 1849 iflib_link_state_change(ctx, LINK_STATE_UP, 1850 IF_Mbps(adapter->link_speed)); 1851 } else if (!link_check && (adapter->link_active == 1)) { 1852 adapter->link_speed = 0; 1853 adapter->link_duplex = 0; 1854 adapter->link_active = 0; 1855 iflib_link_state_change(ctx, LINK_STATE_DOWN, 0); 1856 } 1857 em_update_stats_counters(adapter); 1858 1859 /* Reset LAA into RAR[0] on 82571 */ 1860 if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw)) 1861 e1000_rar_set(hw, hw->mac.addr, 0); 1862 1863 if (hw->mac.type < em_mac_min) 1864 lem_smartspeed(adapter); 1865 else if (hw->mac.type == e1000_82574 && 1866 adapter->intr_type == IFLIB_INTR_MSIX) 1867 E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK | 1868 E1000_IMS_LSC); 1869 } 1870 1871 static void 1872 em_if_watchdog_reset(if_ctx_t ctx) 1873 { 1874 struct adapter *adapter = iflib_get_softc(ctx); 1875 1876 /* 1877 * Just count the event; iflib(4) will already trigger a 1878 * sufficient reset of the controller. 1879 */ 1880 adapter->watchdog_events++; 1881 } 1882 1883 /********************************************************************* 1884 * 1885 * This routine disables all traffic on the adapter by issuing a 1886 * global reset on the MAC. 1887 * 1888 **********************************************************************/ 1889 static void 1890 em_if_stop(if_ctx_t ctx) 1891 { 1892 struct adapter *adapter = iflib_get_softc(ctx); 1893 1894 INIT_DEBUGOUT("em_if_stop: begin"); 1895 1896 e1000_reset_hw(&adapter->hw); 1897 if (adapter->hw.mac.type >= e1000_82544) 1898 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0); 1899 1900 e1000_led_off(&adapter->hw); 1901 e1000_cleanup_led(&adapter->hw); 1902 } 1903 1904 /********************************************************************* 1905 * 1906 * Determine hardware revision. 1907 * 1908 **********************************************************************/ 1909 static void 1910 em_identify_hardware(if_ctx_t ctx) 1911 { 1912 device_t dev = iflib_get_dev(ctx); 1913 struct adapter *adapter = iflib_get_softc(ctx); 1914 1915 /* Make sure our PCI config space has the necessary stuff set */ 1916 adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2); 1917 1918 /* Save off the information about this board */ 1919 adapter->hw.vendor_id = pci_get_vendor(dev); 1920 adapter->hw.device_id = pci_get_device(dev); 1921 adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1); 1922 adapter->hw.subsystem_vendor_id = 1923 pci_read_config(dev, PCIR_SUBVEND_0, 2); 1924 adapter->hw.subsystem_device_id = 1925 pci_read_config(dev, PCIR_SUBDEV_0, 2); 1926 1927 /* Do Shared Code Init and Setup */ 1928 if (e1000_set_mac_type(&adapter->hw)) { 1929 device_printf(dev, "Setup init failure\n"); 1930 return; 1931 } 1932 } 1933 1934 static int 1935 em_allocate_pci_resources(if_ctx_t ctx) 1936 { 1937 struct adapter *adapter = iflib_get_softc(ctx); 1938 device_t dev = iflib_get_dev(ctx); 1939 int rid, val; 1940 1941 rid = PCIR_BAR(0); 1942 adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 1943 &rid, RF_ACTIVE); 1944 if (adapter->memory == NULL) { 1945 device_printf(dev, "Unable to allocate bus resource: memory\n"); 1946 return (ENXIO); 1947 } 1948 adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->memory); 1949 adapter->osdep.mem_bus_space_handle = 1950 rman_get_bushandle(adapter->memory); 1951 adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle; 1952 1953 /* Only older adapters use IO mapping */ 1954 if (adapter->hw.mac.type < em_mac_min && 1955 adapter->hw.mac.type > e1000_82543) { 1956 /* Figure our where our IO BAR is ? */ 1957 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) { 1958 val = pci_read_config(dev, rid, 4); 1959 if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) { 1960 break; 1961 } 1962 rid += 4; 1963 /* check for 64bit BAR */ 1964 if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT) 1965 rid += 4; 1966 } 1967 if (rid >= PCIR_CIS) { 1968 device_printf(dev, "Unable to locate IO BAR\n"); 1969 return (ENXIO); 1970 } 1971 adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT, 1972 &rid, RF_ACTIVE); 1973 if (adapter->ioport == NULL) { 1974 device_printf(dev, "Unable to allocate bus resource: " 1975 "ioport\n"); 1976 return (ENXIO); 1977 } 1978 adapter->hw.io_base = 0; 1979 adapter->osdep.io_bus_space_tag = 1980 rman_get_bustag(adapter->ioport); 1981 adapter->osdep.io_bus_space_handle = 1982 rman_get_bushandle(adapter->ioport); 1983 } 1984 1985 adapter->hw.back = &adapter->osdep; 1986 1987 return (0); 1988 } 1989 1990 /********************************************************************* 1991 * 1992 * Set up the MSI-X Interrupt handlers 1993 * 1994 **********************************************************************/ 1995 static int 1996 em_if_msix_intr_assign(if_ctx_t ctx, int msix) 1997 { 1998 struct adapter *adapter = iflib_get_softc(ctx); 1999 struct em_rx_queue *rx_que = adapter->rx_queues; 2000 struct em_tx_queue *tx_que = adapter->tx_queues; 2001 int error, rid, i, vector = 0, rx_vectors; 2002 char buf[16]; 2003 2004 /* First set up ring resources */ 2005 for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) { 2006 rid = vector + 1; 2007 snprintf(buf, sizeof(buf), "rxq%d", i); 2008 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf); 2009 if (error) { 2010 device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error); 2011 adapter->rx_num_queues = i + 1; 2012 goto fail; 2013 } 2014 2015 rx_que->msix = vector; 2016 2017 /* 2018 * Set the bit to enable interrupt 2019 * in E1000_IMS -- bits 20 and 21 2020 * are for RX0 and RX1, note this has 2021 * NOTHING to do with the MSI-X vector 2022 */ 2023 if (adapter->hw.mac.type == e1000_82574) { 2024 rx_que->eims = 1 << (20 + i); 2025 adapter->ims |= rx_que->eims; 2026 adapter->ivars |= (8 | rx_que->msix) << (i * 4); 2027 } else if (adapter->hw.mac.type == e1000_82575) 2028 rx_que->eims = E1000_EICR_TX_QUEUE0 << vector; 2029 else 2030 rx_que->eims = 1 << vector; 2031 } 2032 rx_vectors = vector; 2033 2034 vector = 0; 2035 for (i = 0; i < adapter->tx_num_queues; i++, tx_que++, vector++) { 2036 snprintf(buf, sizeof(buf), "txq%d", i); 2037 tx_que = &adapter->tx_queues[i]; 2038 iflib_softirq_alloc_generic(ctx, 2039 &adapter->rx_queues[i % adapter->rx_num_queues].que_irq, 2040 IFLIB_INTR_TX, tx_que, tx_que->me, buf); 2041 2042 tx_que->msix = (vector % adapter->rx_num_queues); 2043 2044 /* 2045 * Set the bit to enable interrupt 2046 * in E1000_IMS -- bits 22 and 23 2047 * are for TX0 and TX1, note this has 2048 * NOTHING to do with the MSI-X vector 2049 */ 2050 if (adapter->hw.mac.type == e1000_82574) { 2051 tx_que->eims = 1 << (22 + i); 2052 adapter->ims |= tx_que->eims; 2053 adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4)); 2054 } else if (adapter->hw.mac.type == e1000_82575) { 2055 tx_que->eims = E1000_EICR_TX_QUEUE0 << i; 2056 } else { 2057 tx_que->eims = 1 << i; 2058 } 2059 } 2060 2061 /* Link interrupt */ 2062 rid = rx_vectors + 1; 2063 error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq"); 2064 2065 if (error) { 2066 device_printf(iflib_get_dev(ctx), "Failed to register admin handler"); 2067 goto fail; 2068 } 2069 adapter->linkvec = rx_vectors; 2070 if (adapter->hw.mac.type < igb_mac_min) { 2071 adapter->ivars |= (8 | rx_vectors) << 16; 2072 adapter->ivars |= 0x80000000; 2073 } 2074 return (0); 2075 fail: 2076 iflib_irq_free(ctx, &adapter->irq); 2077 rx_que = adapter->rx_queues; 2078 for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++) 2079 iflib_irq_free(ctx, &rx_que->que_irq); 2080 return (error); 2081 } 2082 2083 static void 2084 igb_configure_queues(struct adapter *adapter) 2085 { 2086 struct e1000_hw *hw = &adapter->hw; 2087 struct em_rx_queue *rx_que; 2088 struct em_tx_queue *tx_que; 2089 u32 tmp, ivar = 0, newitr = 0; 2090 2091 /* First turn on RSS capability */ 2092 if (adapter->hw.mac.type != e1000_82575) 2093 E1000_WRITE_REG(hw, E1000_GPIE, 2094 E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME | 2095 E1000_GPIE_PBA | E1000_GPIE_NSICR); 2096 2097 /* Turn on MSI-X */ 2098 switch (adapter->hw.mac.type) { 2099 case e1000_82580: 2100 case e1000_i350: 2101 case e1000_i354: 2102 case e1000_i210: 2103 case e1000_i211: 2104 case e1000_vfadapt: 2105 case e1000_vfadapt_i350: 2106 /* RX entries */ 2107 for (int i = 0; i < adapter->rx_num_queues; i++) { 2108 u32 index = i >> 1; 2109 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2110 rx_que = &adapter->rx_queues[i]; 2111 if (i & 1) { 2112 ivar &= 0xFF00FFFF; 2113 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16; 2114 } else { 2115 ivar &= 0xFFFFFF00; 2116 ivar |= rx_que->msix | E1000_IVAR_VALID; 2117 } 2118 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2119 } 2120 /* TX entries */ 2121 for (int i = 0; i < adapter->tx_num_queues; i++) { 2122 u32 index = i >> 1; 2123 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2124 tx_que = &adapter->tx_queues[i]; 2125 if (i & 1) { 2126 ivar &= 0x00FFFFFF; 2127 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24; 2128 } else { 2129 ivar &= 0xFFFF00FF; 2130 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8; 2131 } 2132 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2133 adapter->que_mask |= tx_que->eims; 2134 } 2135 2136 /* And for the link interrupt */ 2137 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8; 2138 adapter->link_mask = 1 << adapter->linkvec; 2139 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); 2140 break; 2141 case e1000_82576: 2142 /* RX entries */ 2143 for (int i = 0; i < adapter->rx_num_queues; i++) { 2144 u32 index = i & 0x7; /* Each IVAR has two entries */ 2145 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2146 rx_que = &adapter->rx_queues[i]; 2147 if (i < 8) { 2148 ivar &= 0xFFFFFF00; 2149 ivar |= rx_que->msix | E1000_IVAR_VALID; 2150 } else { 2151 ivar &= 0xFF00FFFF; 2152 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16; 2153 } 2154 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2155 adapter->que_mask |= rx_que->eims; 2156 } 2157 /* TX entries */ 2158 for (int i = 0; i < adapter->tx_num_queues; i++) { 2159 u32 index = i & 0x7; /* Each IVAR has two entries */ 2160 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2161 tx_que = &adapter->tx_queues[i]; 2162 if (i < 8) { 2163 ivar &= 0xFFFF00FF; 2164 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8; 2165 } else { 2166 ivar &= 0x00FFFFFF; 2167 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24; 2168 } 2169 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2170 adapter->que_mask |= tx_que->eims; 2171 } 2172 2173 /* And for the link interrupt */ 2174 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8; 2175 adapter->link_mask = 1 << adapter->linkvec; 2176 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); 2177 break; 2178 2179 case e1000_82575: 2180 /* enable MSI-X support*/ 2181 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT); 2182 tmp |= E1000_CTRL_EXT_PBA_CLR; 2183 /* Auto-Mask interrupts upon ICR read. */ 2184 tmp |= E1000_CTRL_EXT_EIAME; 2185 tmp |= E1000_CTRL_EXT_IRCA; 2186 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp); 2187 2188 /* Queues */ 2189 for (int i = 0; i < adapter->rx_num_queues; i++) { 2190 rx_que = &adapter->rx_queues[i]; 2191 tmp = E1000_EICR_RX_QUEUE0 << i; 2192 tmp |= E1000_EICR_TX_QUEUE0 << i; 2193 rx_que->eims = tmp; 2194 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 2195 i, rx_que->eims); 2196 adapter->que_mask |= rx_que->eims; 2197 } 2198 2199 /* Link */ 2200 E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec), 2201 E1000_EIMS_OTHER); 2202 adapter->link_mask |= E1000_EIMS_OTHER; 2203 default: 2204 break; 2205 } 2206 2207 /* Set the starting interrupt rate */ 2208 if (em_max_interrupt_rate > 0) 2209 newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC; 2210 2211 if (hw->mac.type == e1000_82575) 2212 newitr |= newitr << 16; 2213 else 2214 newitr |= E1000_EITR_CNT_IGNR; 2215 2216 for (int i = 0; i < adapter->rx_num_queues; i++) { 2217 rx_que = &adapter->rx_queues[i]; 2218 E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr); 2219 } 2220 2221 return; 2222 } 2223 2224 static void 2225 em_free_pci_resources(if_ctx_t ctx) 2226 { 2227 struct adapter *adapter = iflib_get_softc(ctx); 2228 struct em_rx_queue *que = adapter->rx_queues; 2229 device_t dev = iflib_get_dev(ctx); 2230 2231 /* Release all MSI-X queue resources */ 2232 if (adapter->intr_type == IFLIB_INTR_MSIX) 2233 iflib_irq_free(ctx, &adapter->irq); 2234 2235 if (que != NULL) { 2236 for (int i = 0; i < adapter->rx_num_queues; i++, que++) { 2237 iflib_irq_free(ctx, &que->que_irq); 2238 } 2239 } 2240 2241 if (adapter->memory != NULL) { 2242 bus_release_resource(dev, SYS_RES_MEMORY, 2243 rman_get_rid(adapter->memory), adapter->memory); 2244 adapter->memory = NULL; 2245 } 2246 2247 if (adapter->flash != NULL) { 2248 bus_release_resource(dev, SYS_RES_MEMORY, 2249 rman_get_rid(adapter->flash), adapter->flash); 2250 adapter->flash = NULL; 2251 } 2252 2253 if (adapter->ioport != NULL) { 2254 bus_release_resource(dev, SYS_RES_IOPORT, 2255 rman_get_rid(adapter->ioport), adapter->ioport); 2256 adapter->ioport = NULL; 2257 } 2258 } 2259 2260 /* Set up MSI or MSI-X */ 2261 static int 2262 em_setup_msix(if_ctx_t ctx) 2263 { 2264 struct adapter *adapter = iflib_get_softc(ctx); 2265 2266 if (adapter->hw.mac.type == e1000_82574) { 2267 em_enable_vectors_82574(ctx); 2268 } 2269 return (0); 2270 } 2271 2272 /********************************************************************* 2273 * 2274 * Workaround for SmartSpeed on 82541 and 82547 controllers 2275 * 2276 **********************************************************************/ 2277 static void 2278 lem_smartspeed(struct adapter *adapter) 2279 { 2280 u16 phy_tmp; 2281 2282 if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) || 2283 adapter->hw.mac.autoneg == 0 || 2284 (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0) 2285 return; 2286 2287 if (adapter->smartspeed == 0) { 2288 /* If Master/Slave config fault is asserted twice, 2289 * we assume back-to-back */ 2290 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp); 2291 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT)) 2292 return; 2293 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp); 2294 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) { 2295 e1000_read_phy_reg(&adapter->hw, 2296 PHY_1000T_CTRL, &phy_tmp); 2297 if(phy_tmp & CR_1000T_MS_ENABLE) { 2298 phy_tmp &= ~CR_1000T_MS_ENABLE; 2299 e1000_write_phy_reg(&adapter->hw, 2300 PHY_1000T_CTRL, phy_tmp); 2301 adapter->smartspeed++; 2302 if(adapter->hw.mac.autoneg && 2303 !e1000_copper_link_autoneg(&adapter->hw) && 2304 !e1000_read_phy_reg(&adapter->hw, 2305 PHY_CONTROL, &phy_tmp)) { 2306 phy_tmp |= (MII_CR_AUTO_NEG_EN | 2307 MII_CR_RESTART_AUTO_NEG); 2308 e1000_write_phy_reg(&adapter->hw, 2309 PHY_CONTROL, phy_tmp); 2310 } 2311 } 2312 } 2313 return; 2314 } else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) { 2315 /* If still no link, perhaps using 2/3 pair cable */ 2316 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp); 2317 phy_tmp |= CR_1000T_MS_ENABLE; 2318 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp); 2319 if(adapter->hw.mac.autoneg && 2320 !e1000_copper_link_autoneg(&adapter->hw) && 2321 !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) { 2322 phy_tmp |= (MII_CR_AUTO_NEG_EN | 2323 MII_CR_RESTART_AUTO_NEG); 2324 e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp); 2325 } 2326 } 2327 /* Restart process after EM_SMARTSPEED_MAX iterations */ 2328 if(adapter->smartspeed++ == EM_SMARTSPEED_MAX) 2329 adapter->smartspeed = 0; 2330 } 2331 2332 /********************************************************************* 2333 * 2334 * Initialize the DMA Coalescing feature 2335 * 2336 **********************************************************************/ 2337 static void 2338 igb_init_dmac(struct adapter *adapter, u32 pba) 2339 { 2340 device_t dev = adapter->dev; 2341 struct e1000_hw *hw = &adapter->hw; 2342 u32 dmac, reg = ~E1000_DMACR_DMAC_EN; 2343 u16 hwm; 2344 u16 max_frame_size; 2345 2346 if (hw->mac.type == e1000_i211) 2347 return; 2348 2349 max_frame_size = adapter->shared->isc_max_frame_size; 2350 if (hw->mac.type > e1000_82580) { 2351 2352 if (adapter->dmac == 0) { /* Disabling it */ 2353 E1000_WRITE_REG(hw, E1000_DMACR, reg); 2354 return; 2355 } else 2356 device_printf(dev, "DMA Coalescing enabled\n"); 2357 2358 /* Set starting threshold */ 2359 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0); 2360 2361 hwm = 64 * pba - max_frame_size / 16; 2362 if (hwm < 64 * (pba - 6)) 2363 hwm = 64 * (pba - 6); 2364 reg = E1000_READ_REG(hw, E1000_FCRTC); 2365 reg &= ~E1000_FCRTC_RTH_COAL_MASK; 2366 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) 2367 & E1000_FCRTC_RTH_COAL_MASK); 2368 E1000_WRITE_REG(hw, E1000_FCRTC, reg); 2369 2370 2371 dmac = pba - max_frame_size / 512; 2372 if (dmac < pba - 10) 2373 dmac = pba - 10; 2374 reg = E1000_READ_REG(hw, E1000_DMACR); 2375 reg &= ~E1000_DMACR_DMACTHR_MASK; 2376 reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT) 2377 & E1000_DMACR_DMACTHR_MASK); 2378 2379 /* transition to L0x or L1 if available..*/ 2380 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); 2381 2382 /* Check if status is 2.5Gb backplane connection 2383 * before configuration of watchdog timer, which is 2384 * in msec values in 12.8usec intervals 2385 * watchdog timer= msec values in 32usec intervals 2386 * for non 2.5Gb connection 2387 */ 2388 if (hw->mac.type == e1000_i354) { 2389 int status = E1000_READ_REG(hw, E1000_STATUS); 2390 if ((status & E1000_STATUS_2P5_SKU) && 2391 (!(status & E1000_STATUS_2P5_SKU_OVER))) 2392 reg |= ((adapter->dmac * 5) >> 6); 2393 else 2394 reg |= (adapter->dmac >> 5); 2395 } else { 2396 reg |= (adapter->dmac >> 5); 2397 } 2398 2399 E1000_WRITE_REG(hw, E1000_DMACR, reg); 2400 2401 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0); 2402 2403 /* Set the interval before transition */ 2404 reg = E1000_READ_REG(hw, E1000_DMCTLX); 2405 if (hw->mac.type == e1000_i350) 2406 reg |= IGB_DMCTLX_DCFLUSH_DIS; 2407 /* 2408 ** in 2.5Gb connection, TTLX unit is 0.4 usec 2409 ** which is 0x4*2 = 0xA. But delay is still 4 usec 2410 */ 2411 if (hw->mac.type == e1000_i354) { 2412 int status = E1000_READ_REG(hw, E1000_STATUS); 2413 if ((status & E1000_STATUS_2P5_SKU) && 2414 (!(status & E1000_STATUS_2P5_SKU_OVER))) 2415 reg |= 0xA; 2416 else 2417 reg |= 0x4; 2418 } else { 2419 reg |= 0x4; 2420 } 2421 2422 E1000_WRITE_REG(hw, E1000_DMCTLX, reg); 2423 2424 /* free space in tx packet buffer to wake from DMA coal */ 2425 E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE - 2426 (2 * max_frame_size)) >> 6); 2427 2428 /* make low power state decision controlled by DMA coal */ 2429 reg = E1000_READ_REG(hw, E1000_PCIEMISC); 2430 reg &= ~E1000_PCIEMISC_LX_DECISION; 2431 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg); 2432 2433 } else if (hw->mac.type == e1000_82580) { 2434 u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC); 2435 E1000_WRITE_REG(hw, E1000_PCIEMISC, 2436 reg & ~E1000_PCIEMISC_LX_DECISION); 2437 E1000_WRITE_REG(hw, E1000_DMACR, 0); 2438 } 2439 } 2440 2441 /********************************************************************* 2442 * 2443 * Initialize the hardware to a configuration as specified by the 2444 * adapter structure. 2445 * 2446 **********************************************************************/ 2447 static void 2448 em_reset(if_ctx_t ctx) 2449 { 2450 device_t dev = iflib_get_dev(ctx); 2451 struct adapter *adapter = iflib_get_softc(ctx); 2452 struct ifnet *ifp = iflib_get_ifp(ctx); 2453 struct e1000_hw *hw = &adapter->hw; 2454 u16 rx_buffer_size; 2455 u32 pba; 2456 2457 INIT_DEBUGOUT("em_reset: begin"); 2458 /* Let the firmware know the OS is in control */ 2459 em_get_hw_control(adapter); 2460 2461 /* Set up smart power down as default off on newer adapters. */ 2462 if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 || 2463 hw->mac.type == e1000_82572)) { 2464 u16 phy_tmp = 0; 2465 2466 /* Speed up time to link by disabling smart power down. */ 2467 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp); 2468 phy_tmp &= ~IGP02E1000_PM_SPD; 2469 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp); 2470 } 2471 2472 /* 2473 * Packet Buffer Allocation (PBA) 2474 * Writing PBA sets the receive portion of the buffer 2475 * the remainder is used for the transmit buffer. 2476 */ 2477 switch (hw->mac.type) { 2478 /* Total Packet Buffer on these is 48K */ 2479 case e1000_82571: 2480 case e1000_82572: 2481 case e1000_80003es2lan: 2482 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */ 2483 break; 2484 case e1000_82573: /* 82573: Total Packet Buffer is 32K */ 2485 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */ 2486 break; 2487 case e1000_82574: 2488 case e1000_82583: 2489 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */ 2490 break; 2491 case e1000_ich8lan: 2492 pba = E1000_PBA_8K; 2493 break; 2494 case e1000_ich9lan: 2495 case e1000_ich10lan: 2496 /* Boost Receive side for jumbo frames */ 2497 if (adapter->hw.mac.max_frame_size > 4096) 2498 pba = E1000_PBA_14K; 2499 else 2500 pba = E1000_PBA_10K; 2501 break; 2502 case e1000_pchlan: 2503 case e1000_pch2lan: 2504 case e1000_pch_lpt: 2505 case e1000_pch_spt: 2506 case e1000_pch_cnp: 2507 pba = E1000_PBA_26K; 2508 break; 2509 case e1000_82575: 2510 pba = E1000_PBA_32K; 2511 break; 2512 case e1000_82576: 2513 case e1000_vfadapt: 2514 pba = E1000_READ_REG(hw, E1000_RXPBS); 2515 pba &= E1000_RXPBS_SIZE_MASK_82576; 2516 break; 2517 case e1000_82580: 2518 case e1000_i350: 2519 case e1000_i354: 2520 case e1000_vfadapt_i350: 2521 pba = E1000_READ_REG(hw, E1000_RXPBS); 2522 pba = e1000_rxpbs_adjust_82580(pba); 2523 break; 2524 case e1000_i210: 2525 case e1000_i211: 2526 pba = E1000_PBA_34K; 2527 break; 2528 default: 2529 if (adapter->hw.mac.max_frame_size > 8192) 2530 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */ 2531 else 2532 pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */ 2533 } 2534 2535 /* Special needs in case of Jumbo frames */ 2536 if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) { 2537 u32 tx_space, min_tx, min_rx; 2538 pba = E1000_READ_REG(hw, E1000_PBA); 2539 tx_space = pba >> 16; 2540 pba &= 0xffff; 2541 min_tx = (adapter->hw.mac.max_frame_size + 2542 sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2; 2543 min_tx = roundup2(min_tx, 1024); 2544 min_tx >>= 10; 2545 min_rx = adapter->hw.mac.max_frame_size; 2546 min_rx = roundup2(min_rx, 1024); 2547 min_rx >>= 10; 2548 if (tx_space < min_tx && 2549 ((min_tx - tx_space) < pba)) { 2550 pba = pba - (min_tx - tx_space); 2551 /* 2552 * if short on rx space, rx wins 2553 * and must trump tx adjustment 2554 */ 2555 if (pba < min_rx) 2556 pba = min_rx; 2557 } 2558 E1000_WRITE_REG(hw, E1000_PBA, pba); 2559 } 2560 2561 if (hw->mac.type < igb_mac_min) 2562 E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba); 2563 2564 INIT_DEBUGOUT1("em_reset: pba=%dK",pba); 2565 2566 /* 2567 * These parameters control the automatic generation (Tx) and 2568 * response (Rx) to Ethernet PAUSE frames. 2569 * - High water mark should allow for at least two frames to be 2570 * received after sending an XOFF. 2571 * - Low water mark works best when it is very near the high water mark. 2572 * This allows the receiver to restart by sending XON when it has 2573 * drained a bit. Here we use an arbitrary value of 1500 which will 2574 * restart after one full frame is pulled from the buffer. There 2575 * could be several smaller frames in the buffer and if so they will 2576 * not trigger the XON until their total number reduces the buffer 2577 * by 1500. 2578 * - The pause time is fairly large at 1000 x 512ns = 512 usec. 2579 */ 2580 rx_buffer_size = (pba & 0xffff) << 10; 2581 hw->fc.high_water = rx_buffer_size - 2582 roundup2(adapter->hw.mac.max_frame_size, 1024); 2583 hw->fc.low_water = hw->fc.high_water - 1500; 2584 2585 if (adapter->fc) /* locally set flow control value? */ 2586 hw->fc.requested_mode = adapter->fc; 2587 else 2588 hw->fc.requested_mode = e1000_fc_full; 2589 2590 if (hw->mac.type == e1000_80003es2lan) 2591 hw->fc.pause_time = 0xFFFF; 2592 else 2593 hw->fc.pause_time = EM_FC_PAUSE_TIME; 2594 2595 hw->fc.send_xon = TRUE; 2596 2597 /* Device specific overrides/settings */ 2598 switch (hw->mac.type) { 2599 case e1000_pchlan: 2600 /* Workaround: no TX flow ctrl for PCH */ 2601 hw->fc.requested_mode = e1000_fc_rx_pause; 2602 hw->fc.pause_time = 0xFFFF; /* override */ 2603 if (if_getmtu(ifp) > ETHERMTU) { 2604 hw->fc.high_water = 0x3500; 2605 hw->fc.low_water = 0x1500; 2606 } else { 2607 hw->fc.high_water = 0x5000; 2608 hw->fc.low_water = 0x3000; 2609 } 2610 hw->fc.refresh_time = 0x1000; 2611 break; 2612 case e1000_pch2lan: 2613 case e1000_pch_lpt: 2614 case e1000_pch_spt: 2615 case e1000_pch_cnp: 2616 hw->fc.high_water = 0x5C20; 2617 hw->fc.low_water = 0x5048; 2618 hw->fc.pause_time = 0x0650; 2619 hw->fc.refresh_time = 0x0400; 2620 /* Jumbos need adjusted PBA */ 2621 if (if_getmtu(ifp) > ETHERMTU) 2622 E1000_WRITE_REG(hw, E1000_PBA, 12); 2623 else 2624 E1000_WRITE_REG(hw, E1000_PBA, 26); 2625 break; 2626 case e1000_82575: 2627 case e1000_82576: 2628 /* 8-byte granularity */ 2629 hw->fc.low_water = hw->fc.high_water - 8; 2630 break; 2631 case e1000_82580: 2632 case e1000_i350: 2633 case e1000_i354: 2634 case e1000_i210: 2635 case e1000_i211: 2636 case e1000_vfadapt: 2637 case e1000_vfadapt_i350: 2638 /* 16-byte granularity */ 2639 hw->fc.low_water = hw->fc.high_water - 16; 2640 break; 2641 case e1000_ich9lan: 2642 case e1000_ich10lan: 2643 if (if_getmtu(ifp) > ETHERMTU) { 2644 hw->fc.high_water = 0x2800; 2645 hw->fc.low_water = hw->fc.high_water - 8; 2646 break; 2647 } 2648 /* FALLTHROUGH */ 2649 default: 2650 if (hw->mac.type == e1000_80003es2lan) 2651 hw->fc.pause_time = 0xFFFF; 2652 break; 2653 } 2654 2655 /* Issue a global reset */ 2656 e1000_reset_hw(hw); 2657 if (adapter->hw.mac.type >= igb_mac_min) { 2658 E1000_WRITE_REG(hw, E1000_WUC, 0); 2659 } else { 2660 E1000_WRITE_REG(hw, E1000_WUFC, 0); 2661 em_disable_aspm(adapter); 2662 } 2663 if (adapter->flags & IGB_MEDIA_RESET) { 2664 e1000_setup_init_funcs(hw, TRUE); 2665 e1000_get_bus_info(hw); 2666 adapter->flags &= ~IGB_MEDIA_RESET; 2667 } 2668 /* and a re-init */ 2669 if (e1000_init_hw(hw) < 0) { 2670 device_printf(dev, "Hardware Initialization Failed\n"); 2671 return; 2672 } 2673 if (adapter->hw.mac.type >= igb_mac_min) 2674 igb_init_dmac(adapter, pba); 2675 2676 E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN); 2677 e1000_get_phy_info(hw); 2678 e1000_check_for_link(hw); 2679 } 2680 2681 /* 2682 * Initialise the RSS mapping for NICs that support multiple transmit/ 2683 * receive rings. 2684 */ 2685 2686 #define RSSKEYLEN 10 2687 static void 2688 em_initialize_rss_mapping(struct adapter *adapter) 2689 { 2690 uint8_t rss_key[4 * RSSKEYLEN]; 2691 uint32_t reta = 0; 2692 struct e1000_hw *hw = &adapter->hw; 2693 int i; 2694 2695 /* 2696 * Configure RSS key 2697 */ 2698 arc4rand(rss_key, sizeof(rss_key), 0); 2699 for (i = 0; i < RSSKEYLEN; ++i) { 2700 uint32_t rssrk = 0; 2701 2702 rssrk = EM_RSSRK_VAL(rss_key, i); 2703 E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk); 2704 } 2705 2706 /* 2707 * Configure RSS redirect table in following fashion: 2708 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)] 2709 */ 2710 for (i = 0; i < sizeof(reta); ++i) { 2711 uint32_t q; 2712 2713 q = (i % adapter->rx_num_queues) << 7; 2714 reta |= q << (8 * i); 2715 } 2716 2717 for (i = 0; i < 32; ++i) 2718 E1000_WRITE_REG(hw, E1000_RETA(i), reta); 2719 2720 E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q | 2721 E1000_MRQC_RSS_FIELD_IPV4_TCP | 2722 E1000_MRQC_RSS_FIELD_IPV4 | 2723 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX | 2724 E1000_MRQC_RSS_FIELD_IPV6_EX | 2725 E1000_MRQC_RSS_FIELD_IPV6); 2726 } 2727 2728 static void 2729 igb_initialize_rss_mapping(struct adapter *adapter) 2730 { 2731 struct e1000_hw *hw = &adapter->hw; 2732 int i; 2733 int queue_id; 2734 u32 reta; 2735 u32 rss_key[10], mrqc, shift = 0; 2736 2737 /* XXX? */ 2738 if (adapter->hw.mac.type == e1000_82575) 2739 shift = 6; 2740 2741 /* 2742 * The redirection table controls which destination 2743 * queue each bucket redirects traffic to. 2744 * Each DWORD represents four queues, with the LSB 2745 * being the first queue in the DWORD. 2746 * 2747 * This just allocates buckets to queues using round-robin 2748 * allocation. 2749 * 2750 * NOTE: It Just Happens to line up with the default 2751 * RSS allocation method. 2752 */ 2753 2754 /* Warning FM follows */ 2755 reta = 0; 2756 for (i = 0; i < 128; i++) { 2757 #ifdef RSS 2758 queue_id = rss_get_indirection_to_bucket(i); 2759 /* 2760 * If we have more queues than buckets, we'll 2761 * end up mapping buckets to a subset of the 2762 * queues. 2763 * 2764 * If we have more buckets than queues, we'll 2765 * end up instead assigning multiple buckets 2766 * to queues. 2767 * 2768 * Both are suboptimal, but we need to handle 2769 * the case so we don't go out of bounds 2770 * indexing arrays and such. 2771 */ 2772 queue_id = queue_id % adapter->rx_num_queues; 2773 #else 2774 queue_id = (i % adapter->rx_num_queues); 2775 #endif 2776 /* Adjust if required */ 2777 queue_id = queue_id << shift; 2778 2779 /* 2780 * The low 8 bits are for hash value (n+0); 2781 * The next 8 bits are for hash value (n+1), etc. 2782 */ 2783 reta = reta >> 8; 2784 reta = reta | ( ((uint32_t) queue_id) << 24); 2785 if ((i & 3) == 3) { 2786 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta); 2787 reta = 0; 2788 } 2789 } 2790 2791 /* Now fill in hash table */ 2792 2793 /* 2794 * MRQC: Multiple Receive Queues Command 2795 * Set queuing to RSS control, number depends on the device. 2796 */ 2797 mrqc = E1000_MRQC_ENABLE_RSS_8Q; 2798 2799 #ifdef RSS 2800 /* XXX ew typecasting */ 2801 rss_getkey((uint8_t *) &rss_key); 2802 #else 2803 arc4rand(&rss_key, sizeof(rss_key), 0); 2804 #endif 2805 for (i = 0; i < 10; i++) 2806 E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]); 2807 2808 /* 2809 * Configure the RSS fields to hash upon. 2810 */ 2811 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 | 2812 E1000_MRQC_RSS_FIELD_IPV4_TCP); 2813 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 | 2814 E1000_MRQC_RSS_FIELD_IPV6_TCP); 2815 mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP | 2816 E1000_MRQC_RSS_FIELD_IPV6_UDP); 2817 mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX | 2818 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); 2819 2820 E1000_WRITE_REG(hw, E1000_MRQC, mrqc); 2821 } 2822 2823 /********************************************************************* 2824 * 2825 * Setup networking device structure and register interface media. 2826 * 2827 **********************************************************************/ 2828 static int 2829 em_setup_interface(if_ctx_t ctx) 2830 { 2831 struct ifnet *ifp = iflib_get_ifp(ctx); 2832 struct adapter *adapter = iflib_get_softc(ctx); 2833 if_softc_ctx_t scctx = adapter->shared; 2834 2835 INIT_DEBUGOUT("em_setup_interface: begin"); 2836 2837 /* Single Queue */ 2838 if (adapter->tx_num_queues == 1) { 2839 if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1); 2840 if_setsendqready(ifp); 2841 } 2842 2843 /* 2844 * Specify the media types supported by this adapter and register 2845 * callbacks to update media and link information 2846 */ 2847 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || 2848 (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) { 2849 u_char fiber_type = IFM_1000_SX; /* default type */ 2850 2851 if (adapter->hw.mac.type == e1000_82545) 2852 fiber_type = IFM_1000_LX; 2853 ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL); 2854 ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL); 2855 } else { 2856 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL); 2857 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL); 2858 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL); 2859 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); 2860 if (adapter->hw.phy.type != e1000_phy_ife) { 2861 ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); 2862 ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL); 2863 } 2864 } 2865 ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL); 2866 ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO); 2867 return (0); 2868 } 2869 2870 static int 2871 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets) 2872 { 2873 struct adapter *adapter = iflib_get_softc(ctx); 2874 if_softc_ctx_t scctx = adapter->shared; 2875 int error = E1000_SUCCESS; 2876 struct em_tx_queue *que; 2877 int i, j; 2878 2879 MPASS(adapter->tx_num_queues > 0); 2880 MPASS(adapter->tx_num_queues == ntxqsets); 2881 2882 /* First allocate the top level queue structs */ 2883 if (!(adapter->tx_queues = 2884 (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) * 2885 adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { 2886 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n"); 2887 return(ENOMEM); 2888 } 2889 2890 for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) { 2891 /* Set up some basics */ 2892 2893 struct tx_ring *txr = &que->txr; 2894 txr->adapter = que->adapter = adapter; 2895 que->me = txr->me = i; 2896 2897 /* Allocate report status array */ 2898 if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) { 2899 device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n"); 2900 error = ENOMEM; 2901 goto fail; 2902 } 2903 for (j = 0; j < scctx->isc_ntxd[0]; j++) 2904 txr->tx_rsq[j] = QIDX_INVALID; 2905 /* get the virtual and physical address of the hardware queues */ 2906 txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs]; 2907 txr->tx_paddr = paddrs[i*ntxqs]; 2908 } 2909 2910 if (bootverbose) 2911 device_printf(iflib_get_dev(ctx), 2912 "allocated for %d tx_queues\n", adapter->tx_num_queues); 2913 return (0); 2914 fail: 2915 em_if_queues_free(ctx); 2916 return (error); 2917 } 2918 2919 static int 2920 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets) 2921 { 2922 struct adapter *adapter = iflib_get_softc(ctx); 2923 int error = E1000_SUCCESS; 2924 struct em_rx_queue *que; 2925 int i; 2926 2927 MPASS(adapter->rx_num_queues > 0); 2928 MPASS(adapter->rx_num_queues == nrxqsets); 2929 2930 /* First allocate the top level queue structs */ 2931 if (!(adapter->rx_queues = 2932 (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) * 2933 adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { 2934 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n"); 2935 error = ENOMEM; 2936 goto fail; 2937 } 2938 2939 for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) { 2940 /* Set up some basics */ 2941 struct rx_ring *rxr = &que->rxr; 2942 rxr->adapter = que->adapter = adapter; 2943 rxr->que = que; 2944 que->me = rxr->me = i; 2945 2946 /* get the virtual and physical address of the hardware queues */ 2947 rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs]; 2948 rxr->rx_paddr = paddrs[i*nrxqs]; 2949 } 2950 2951 if (bootverbose) 2952 device_printf(iflib_get_dev(ctx), 2953 "allocated for %d rx_queues\n", adapter->rx_num_queues); 2954 2955 return (0); 2956 fail: 2957 em_if_queues_free(ctx); 2958 return (error); 2959 } 2960 2961 static void 2962 em_if_queues_free(if_ctx_t ctx) 2963 { 2964 struct adapter *adapter = iflib_get_softc(ctx); 2965 struct em_tx_queue *tx_que = adapter->tx_queues; 2966 struct em_rx_queue *rx_que = adapter->rx_queues; 2967 2968 if (tx_que != NULL) { 2969 for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) { 2970 struct tx_ring *txr = &tx_que->txr; 2971 if (txr->tx_rsq == NULL) 2972 break; 2973 2974 free(txr->tx_rsq, M_DEVBUF); 2975 txr->tx_rsq = NULL; 2976 } 2977 free(adapter->tx_queues, M_DEVBUF); 2978 adapter->tx_queues = NULL; 2979 } 2980 2981 if (rx_que != NULL) { 2982 free(adapter->rx_queues, M_DEVBUF); 2983 adapter->rx_queues = NULL; 2984 } 2985 2986 em_release_hw_control(adapter); 2987 2988 if (adapter->mta != NULL) { 2989 free(adapter->mta, M_DEVBUF); 2990 } 2991 } 2992 2993 /********************************************************************* 2994 * 2995 * Enable transmit unit. 2996 * 2997 **********************************************************************/ 2998 static void 2999 em_initialize_transmit_unit(if_ctx_t ctx) 3000 { 3001 struct adapter *adapter = iflib_get_softc(ctx); 3002 if_softc_ctx_t scctx = adapter->shared; 3003 struct em_tx_queue *que; 3004 struct tx_ring *txr; 3005 struct e1000_hw *hw = &adapter->hw; 3006 u32 tctl, txdctl = 0, tarc, tipg = 0; 3007 3008 INIT_DEBUGOUT("em_initialize_transmit_unit: begin"); 3009 3010 for (int i = 0; i < adapter->tx_num_queues; i++, txr++) { 3011 u64 bus_addr; 3012 caddr_t offp, endp; 3013 3014 que = &adapter->tx_queues[i]; 3015 txr = &que->txr; 3016 bus_addr = txr->tx_paddr; 3017 3018 /* Clear checksum offload context. */ 3019 offp = (caddr_t)&txr->csum_flags; 3020 endp = (caddr_t)(txr + 1); 3021 bzero(offp, endp - offp); 3022 3023 /* Base and Len of TX Ring */ 3024 E1000_WRITE_REG(hw, E1000_TDLEN(i), 3025 scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc)); 3026 E1000_WRITE_REG(hw, E1000_TDBAH(i), 3027 (u32)(bus_addr >> 32)); 3028 E1000_WRITE_REG(hw, E1000_TDBAL(i), 3029 (u32)bus_addr); 3030 /* Init the HEAD/TAIL indices */ 3031 E1000_WRITE_REG(hw, E1000_TDT(i), 0); 3032 E1000_WRITE_REG(hw, E1000_TDH(i), 0); 3033 3034 HW_DEBUGOUT2("Base = %x, Length = %x\n", 3035 E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)), 3036 E1000_READ_REG(&adapter->hw, E1000_TDLEN(i))); 3037 3038 txdctl = 0; /* clear txdctl */ 3039 txdctl |= 0x1f; /* PTHRESH */ 3040 txdctl |= 1 << 8; /* HTHRESH */ 3041 txdctl |= 1 << 16;/* WTHRESH */ 3042 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */ 3043 txdctl |= E1000_TXDCTL_GRAN; 3044 txdctl |= 1 << 25; /* LWTHRESH */ 3045 3046 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl); 3047 } 3048 3049 /* Set the default values for the Tx Inter Packet Gap timer */ 3050 switch (adapter->hw.mac.type) { 3051 case e1000_80003es2lan: 3052 tipg = DEFAULT_82543_TIPG_IPGR1; 3053 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 << 3054 E1000_TIPG_IPGR2_SHIFT; 3055 break; 3056 case e1000_82542: 3057 tipg = DEFAULT_82542_TIPG_IPGT; 3058 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; 3059 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; 3060 break; 3061 default: 3062 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || 3063 (adapter->hw.phy.media_type == 3064 e1000_media_type_internal_serdes)) 3065 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 3066 else 3067 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 3068 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; 3069 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; 3070 } 3071 3072 E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg); 3073 E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value); 3074 3075 if(adapter->hw.mac.type >= e1000_82540) 3076 E1000_WRITE_REG(&adapter->hw, E1000_TADV, 3077 adapter->tx_abs_int_delay.value); 3078 3079 if ((adapter->hw.mac.type == e1000_82571) || 3080 (adapter->hw.mac.type == e1000_82572)) { 3081 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0)); 3082 tarc |= TARC_SPEED_MODE_BIT; 3083 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); 3084 } else if (adapter->hw.mac.type == e1000_80003es2lan) { 3085 /* errata: program both queues to unweighted RR */ 3086 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0)); 3087 tarc |= 1; 3088 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); 3089 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1)); 3090 tarc |= 1; 3091 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc); 3092 } else if (adapter->hw.mac.type == e1000_82574) { 3093 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0)); 3094 tarc |= TARC_ERRATA_BIT; 3095 if ( adapter->tx_num_queues > 1) { 3096 tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX); 3097 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); 3098 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc); 3099 } else 3100 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); 3101 } 3102 3103 if (adapter->tx_int_delay.value > 0) 3104 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 3105 3106 /* Program the Transmit Control Register */ 3107 tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL); 3108 tctl &= ~E1000_TCTL_CT; 3109 tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN | 3110 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT)); 3111 3112 if (adapter->hw.mac.type >= e1000_82571) 3113 tctl |= E1000_TCTL_MULR; 3114 3115 /* This write will effectively turn on the transmit unit. */ 3116 E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl); 3117 3118 /* SPT and KBL errata workarounds */ 3119 if (hw->mac.type == e1000_pch_spt) { 3120 u32 reg; 3121 reg = E1000_READ_REG(hw, E1000_IOSFPC); 3122 reg |= E1000_RCTL_RDMTS_HEX; 3123 E1000_WRITE_REG(hw, E1000_IOSFPC, reg); 3124 /* i218-i219 Specification Update 1.5.4.5 */ 3125 reg = E1000_READ_REG(hw, E1000_TARC(0)); 3126 reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ; 3127 reg |= E1000_TARC0_CB_MULTIQ_2_REQ; 3128 E1000_WRITE_REG(hw, E1000_TARC(0), reg); 3129 } 3130 } 3131 3132 /********************************************************************* 3133 * 3134 * Enable receive unit. 3135 * 3136 **********************************************************************/ 3137 3138 static void 3139 em_initialize_receive_unit(if_ctx_t ctx) 3140 { 3141 struct adapter *adapter = iflib_get_softc(ctx); 3142 if_softc_ctx_t scctx = adapter->shared; 3143 struct ifnet *ifp = iflib_get_ifp(ctx); 3144 struct e1000_hw *hw = &adapter->hw; 3145 struct em_rx_queue *que; 3146 int i; 3147 u32 rctl, rxcsum, rfctl; 3148 3149 INIT_DEBUGOUT("em_initialize_receive_units: begin"); 3150 3151 /* 3152 * Make sure receives are disabled while setting 3153 * up the descriptor ring 3154 */ 3155 rctl = E1000_READ_REG(hw, E1000_RCTL); 3156 /* Do not disable if ever enabled on this hardware */ 3157 if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583)) 3158 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); 3159 3160 /* Setup the Receive Control Register */ 3161 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 3162 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | 3163 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 3164 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 3165 3166 /* Do not store bad packets */ 3167 rctl &= ~E1000_RCTL_SBP; 3168 3169 /* Enable Long Packet receive */ 3170 if (if_getmtu(ifp) > ETHERMTU) 3171 rctl |= E1000_RCTL_LPE; 3172 else 3173 rctl &= ~E1000_RCTL_LPE; 3174 3175 /* Strip the CRC */ 3176 if (!em_disable_crc_stripping) 3177 rctl |= E1000_RCTL_SECRC; 3178 3179 if (adapter->hw.mac.type >= e1000_82540) { 3180 E1000_WRITE_REG(&adapter->hw, E1000_RADV, 3181 adapter->rx_abs_int_delay.value); 3182 3183 /* 3184 * Set the interrupt throttling rate. Value is calculated 3185 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) 3186 */ 3187 E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR); 3188 } 3189 E1000_WRITE_REG(&adapter->hw, E1000_RDTR, 3190 adapter->rx_int_delay.value); 3191 3192 /* Use extended rx descriptor formats */ 3193 rfctl = E1000_READ_REG(hw, E1000_RFCTL); 3194 rfctl |= E1000_RFCTL_EXTEN; 3195 /* 3196 * When using MSI-X interrupts we need to throttle 3197 * using the EITR register (82574 only) 3198 */ 3199 if (hw->mac.type == e1000_82574) { 3200 for (int i = 0; i < 4; i++) 3201 E1000_WRITE_REG(hw, E1000_EITR_82574(i), 3202 DEFAULT_ITR); 3203 /* Disable accelerated acknowledge */ 3204 rfctl |= E1000_RFCTL_ACK_DIS; 3205 } 3206 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); 3207 3208 rxcsum = E1000_READ_REG(hw, E1000_RXCSUM); 3209 if (if_getcapenable(ifp) & IFCAP_RXCSUM && 3210 adapter->hw.mac.type >= e1000_82543) { 3211 if (adapter->tx_num_queues > 1) { 3212 if (adapter->hw.mac.type >= igb_mac_min) { 3213 rxcsum |= E1000_RXCSUM_PCSD; 3214 if (hw->mac.type != e1000_82575) 3215 rxcsum |= E1000_RXCSUM_CRCOFL; 3216 } else 3217 rxcsum |= E1000_RXCSUM_TUOFL | 3218 E1000_RXCSUM_IPOFL | 3219 E1000_RXCSUM_PCSD; 3220 } else { 3221 if (adapter->hw.mac.type >= igb_mac_min) 3222 rxcsum |= E1000_RXCSUM_IPPCSE; 3223 else 3224 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL; 3225 if (adapter->hw.mac.type > e1000_82575) 3226 rxcsum |= E1000_RXCSUM_CRCOFL; 3227 } 3228 } else 3229 rxcsum &= ~E1000_RXCSUM_TUOFL; 3230 3231 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum); 3232 3233 if (adapter->rx_num_queues > 1) { 3234 if (adapter->hw.mac.type >= igb_mac_min) 3235 igb_initialize_rss_mapping(adapter); 3236 else 3237 em_initialize_rss_mapping(adapter); 3238 } 3239 3240 /* 3241 * XXX TEMPORARY WORKAROUND: on some systems with 82573 3242 * long latencies are observed, like Lenovo X60. This 3243 * change eliminates the problem, but since having positive 3244 * values in RDTR is a known source of problems on other 3245 * platforms another solution is being sought. 3246 */ 3247 if (hw->mac.type == e1000_82573) 3248 E1000_WRITE_REG(hw, E1000_RDTR, 0x20); 3249 3250 for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) { 3251 struct rx_ring *rxr = &que->rxr; 3252 /* Setup the Base and Length of the Rx Descriptor Ring */ 3253 u64 bus_addr = rxr->rx_paddr; 3254 #if 0 3255 u32 rdt = adapter->rx_num_queues -1; /* default */ 3256 #endif 3257 3258 E1000_WRITE_REG(hw, E1000_RDLEN(i), 3259 scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended)); 3260 E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32)); 3261 E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr); 3262 /* Setup the Head and Tail Descriptor Pointers */ 3263 E1000_WRITE_REG(hw, E1000_RDH(i), 0); 3264 E1000_WRITE_REG(hw, E1000_RDT(i), 0); 3265 } 3266 3267 /* 3268 * Set PTHRESH for improved jumbo performance 3269 * According to 10.2.5.11 of Intel 82574 Datasheet, 3270 * RXDCTL(1) is written whenever RXDCTL(0) is written. 3271 * Only write to RXDCTL(1) if there is a need for different 3272 * settings. 3273 */ 3274 3275 if (((adapter->hw.mac.type == e1000_ich9lan) || 3276 (adapter->hw.mac.type == e1000_pch2lan) || 3277 (adapter->hw.mac.type == e1000_ich10lan)) && 3278 (if_getmtu(ifp) > ETHERMTU)) { 3279 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0)); 3280 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3); 3281 } else if (adapter->hw.mac.type == e1000_82574) { 3282 for (int i = 0; i < adapter->rx_num_queues; i++) { 3283 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i)); 3284 rxdctl |= 0x20; /* PTHRESH */ 3285 rxdctl |= 4 << 8; /* HTHRESH */ 3286 rxdctl |= 4 << 16;/* WTHRESH */ 3287 rxdctl |= 1 << 24; /* Switch to granularity */ 3288 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); 3289 } 3290 } else if (adapter->hw.mac.type >= igb_mac_min) { 3291 u32 psize, srrctl = 0; 3292 3293 if (if_getmtu(ifp) > ETHERMTU) { 3294 /* Set maximum packet len */ 3295 if (adapter->rx_mbuf_sz <= 4096) { 3296 srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 3297 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX; 3298 } else if (adapter->rx_mbuf_sz > 4096) { 3299 srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 3300 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX; 3301 } 3302 psize = scctx->isc_max_frame_size; 3303 /* are we on a vlan? */ 3304 if (ifp->if_vlantrunk != NULL) 3305 psize += VLAN_TAG_SIZE; 3306 E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize); 3307 } else { 3308 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 3309 rctl |= E1000_RCTL_SZ_2048; 3310 } 3311 3312 /* 3313 * If TX flow control is disabled and there's >1 queue defined, 3314 * enable DROP. 3315 * 3316 * This drops frames rather than hanging the RX MAC for all queues. 3317 */ 3318 if ((adapter->rx_num_queues > 1) && 3319 (adapter->fc == e1000_fc_none || 3320 adapter->fc == e1000_fc_rx_pause)) { 3321 srrctl |= E1000_SRRCTL_DROP_EN; 3322 } 3323 /* Setup the Base and Length of the Rx Descriptor Rings */ 3324 for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) { 3325 struct rx_ring *rxr = &que->rxr; 3326 u64 bus_addr = rxr->rx_paddr; 3327 u32 rxdctl; 3328 3329 #ifdef notyet 3330 /* Configure for header split? -- ignore for now */ 3331 rxr->hdr_split = igb_header_split; 3332 #else 3333 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 3334 #endif 3335 3336 E1000_WRITE_REG(hw, E1000_RDLEN(i), 3337 scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc)); 3338 E1000_WRITE_REG(hw, E1000_RDBAH(i), 3339 (uint32_t)(bus_addr >> 32)); 3340 E1000_WRITE_REG(hw, E1000_RDBAL(i), 3341 (uint32_t)bus_addr); 3342 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl); 3343 /* Enable this Queue */ 3344 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i)); 3345 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 3346 rxdctl &= 0xFFF00000; 3347 rxdctl |= IGB_RX_PTHRESH; 3348 rxdctl |= IGB_RX_HTHRESH << 8; 3349 rxdctl |= IGB_RX_WTHRESH << 16; 3350 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); 3351 } 3352 } else if (adapter->hw.mac.type >= e1000_pch2lan) { 3353 if (if_getmtu(ifp) > ETHERMTU) 3354 e1000_lv_jumbo_workaround_ich8lan(hw, TRUE); 3355 else 3356 e1000_lv_jumbo_workaround_ich8lan(hw, FALSE); 3357 } 3358 3359 /* Make sure VLAN Filters are off */ 3360 rctl &= ~E1000_RCTL_VFE; 3361 3362 if (adapter->hw.mac.type < igb_mac_min) { 3363 if (adapter->rx_mbuf_sz == MCLBYTES) 3364 rctl |= E1000_RCTL_SZ_2048; 3365 else if (adapter->rx_mbuf_sz == MJUMPAGESIZE) 3366 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX; 3367 else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) 3368 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX; 3369 3370 /* ensure we clear use DTYPE of 00 here */ 3371 rctl &= ~0x00000C00; 3372 } 3373 3374 /* Write out the settings */ 3375 E1000_WRITE_REG(hw, E1000_RCTL, rctl); 3376 3377 return; 3378 } 3379 3380 static void 3381 em_if_vlan_register(if_ctx_t ctx, u16 vtag) 3382 { 3383 struct adapter *adapter = iflib_get_softc(ctx); 3384 u32 index, bit; 3385 3386 index = (vtag >> 5) & 0x7F; 3387 bit = vtag & 0x1F; 3388 adapter->shadow_vfta[index] |= (1 << bit); 3389 ++adapter->num_vlans; 3390 } 3391 3392 static void 3393 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag) 3394 { 3395 struct adapter *adapter = iflib_get_softc(ctx); 3396 u32 index, bit; 3397 3398 index = (vtag >> 5) & 0x7F; 3399 bit = vtag & 0x1F; 3400 adapter->shadow_vfta[index] &= ~(1 << bit); 3401 --adapter->num_vlans; 3402 } 3403 3404 static void 3405 em_setup_vlan_hw_support(struct adapter *adapter) 3406 { 3407 struct e1000_hw *hw = &adapter->hw; 3408 u32 reg; 3409 3410 /* 3411 * We get here thru init_locked, meaning 3412 * a soft reset, this has already cleared 3413 * the VFTA and other state, so if there 3414 * have been no vlan's registered do nothing. 3415 */ 3416 if (adapter->num_vlans == 0) 3417 return; 3418 3419 /* 3420 * A soft reset zero's out the VFTA, so 3421 * we need to repopulate it now. 3422 */ 3423 for (int i = 0; i < EM_VFTA_SIZE; i++) 3424 if (adapter->shadow_vfta[i] != 0) 3425 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, 3426 i, adapter->shadow_vfta[i]); 3427 3428 reg = E1000_READ_REG(hw, E1000_CTRL); 3429 reg |= E1000_CTRL_VME; 3430 E1000_WRITE_REG(hw, E1000_CTRL, reg); 3431 3432 /* Enable the Filter Table */ 3433 reg = E1000_READ_REG(hw, E1000_RCTL); 3434 reg &= ~E1000_RCTL_CFIEN; 3435 reg |= E1000_RCTL_VFE; 3436 E1000_WRITE_REG(hw, E1000_RCTL, reg); 3437 } 3438 3439 static void 3440 em_if_intr_enable(if_ctx_t ctx) 3441 { 3442 struct adapter *adapter = iflib_get_softc(ctx); 3443 struct e1000_hw *hw = &adapter->hw; 3444 u32 ims_mask = IMS_ENABLE_MASK; 3445 3446 if (hw->mac.type == e1000_82574) { 3447 E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK); 3448 ims_mask |= adapter->ims; 3449 } 3450 E1000_WRITE_REG(hw, E1000_IMS, ims_mask); 3451 } 3452 3453 static void 3454 em_if_intr_disable(if_ctx_t ctx) 3455 { 3456 struct adapter *adapter = iflib_get_softc(ctx); 3457 struct e1000_hw *hw = &adapter->hw; 3458 3459 if (hw->mac.type == e1000_82574) 3460 E1000_WRITE_REG(hw, EM_EIAC, 0); 3461 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); 3462 } 3463 3464 static void 3465 igb_if_intr_enable(if_ctx_t ctx) 3466 { 3467 struct adapter *adapter = iflib_get_softc(ctx); 3468 struct e1000_hw *hw = &adapter->hw; 3469 u32 mask; 3470 3471 if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) { 3472 mask = (adapter->que_mask | adapter->link_mask); 3473 E1000_WRITE_REG(hw, E1000_EIAC, mask); 3474 E1000_WRITE_REG(hw, E1000_EIAM, mask); 3475 E1000_WRITE_REG(hw, E1000_EIMS, mask); 3476 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC); 3477 } else 3478 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK); 3479 E1000_WRITE_FLUSH(hw); 3480 } 3481 3482 static void 3483 igb_if_intr_disable(if_ctx_t ctx) 3484 { 3485 struct adapter *adapter = iflib_get_softc(ctx); 3486 struct e1000_hw *hw = &adapter->hw; 3487 3488 if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) { 3489 E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff); 3490 E1000_WRITE_REG(hw, E1000_EIAC, 0); 3491 } 3492 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); 3493 E1000_WRITE_FLUSH(hw); 3494 } 3495 3496 /* 3497 * Bit of a misnomer, what this really means is 3498 * to enable OS management of the system... aka 3499 * to disable special hardware management features 3500 */ 3501 static void 3502 em_init_manageability(struct adapter *adapter) 3503 { 3504 /* A shared code workaround */ 3505 #define E1000_82542_MANC2H E1000_MANC2H 3506 if (adapter->has_manage) { 3507 int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H); 3508 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC); 3509 3510 /* disable hardware interception of ARP */ 3511 manc &= ~(E1000_MANC_ARP_EN); 3512 3513 /* enable receiving management packets to the host */ 3514 manc |= E1000_MANC_EN_MNG2HOST; 3515 #define E1000_MNG2HOST_PORT_623 (1 << 5) 3516 #define E1000_MNG2HOST_PORT_664 (1 << 6) 3517 manc2h |= E1000_MNG2HOST_PORT_623; 3518 manc2h |= E1000_MNG2HOST_PORT_664; 3519 E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h); 3520 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc); 3521 } 3522 } 3523 3524 /* 3525 * Give control back to hardware management 3526 * controller if there is one. 3527 */ 3528 static void 3529 em_release_manageability(struct adapter *adapter) 3530 { 3531 if (adapter->has_manage) { 3532 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC); 3533 3534 /* re-enable hardware interception of ARP */ 3535 manc |= E1000_MANC_ARP_EN; 3536 manc &= ~E1000_MANC_EN_MNG2HOST; 3537 3538 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc); 3539 } 3540 } 3541 3542 /* 3543 * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit. 3544 * For ASF and Pass Through versions of f/w this means 3545 * that the driver is loaded. For AMT version type f/w 3546 * this means that the network i/f is open. 3547 */ 3548 static void 3549 em_get_hw_control(struct adapter *adapter) 3550 { 3551 u32 ctrl_ext, swsm; 3552 3553 if (adapter->vf_ifp) 3554 return; 3555 3556 if (adapter->hw.mac.type == e1000_82573) { 3557 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM); 3558 E1000_WRITE_REG(&adapter->hw, E1000_SWSM, 3559 swsm | E1000_SWSM_DRV_LOAD); 3560 return; 3561 } 3562 /* else */ 3563 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); 3564 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, 3565 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 3566 } 3567 3568 /* 3569 * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. 3570 * For ASF and Pass Through versions of f/w this means that 3571 * the driver is no longer loaded. For AMT versions of the 3572 * f/w this means that the network i/f is closed. 3573 */ 3574 static void 3575 em_release_hw_control(struct adapter *adapter) 3576 { 3577 u32 ctrl_ext, swsm; 3578 3579 if (!adapter->has_manage) 3580 return; 3581 3582 if (adapter->hw.mac.type == e1000_82573) { 3583 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM); 3584 E1000_WRITE_REG(&adapter->hw, E1000_SWSM, 3585 swsm & ~E1000_SWSM_DRV_LOAD); 3586 return; 3587 } 3588 /* else */ 3589 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); 3590 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, 3591 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 3592 return; 3593 } 3594 3595 static int 3596 em_is_valid_ether_addr(u8 *addr) 3597 { 3598 char zero_addr[6] = { 0, 0, 0, 0, 0, 0 }; 3599 3600 if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) { 3601 return (FALSE); 3602 } 3603 3604 return (TRUE); 3605 } 3606 3607 /* 3608 ** Parse the interface capabilities with regard 3609 ** to both system management and wake-on-lan for 3610 ** later use. 3611 */ 3612 static void 3613 em_get_wakeup(if_ctx_t ctx) 3614 { 3615 struct adapter *adapter = iflib_get_softc(ctx); 3616 device_t dev = iflib_get_dev(ctx); 3617 u16 eeprom_data = 0, device_id, apme_mask; 3618 3619 adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw); 3620 apme_mask = EM_EEPROM_APME; 3621 3622 switch (adapter->hw.mac.type) { 3623 case e1000_82542: 3624 case e1000_82543: 3625 break; 3626 case e1000_82544: 3627 e1000_read_nvm(&adapter->hw, 3628 NVM_INIT_CONTROL2_REG, 1, &eeprom_data); 3629 apme_mask = EM_82544_APME; 3630 break; 3631 case e1000_82546: 3632 case e1000_82546_rev_3: 3633 if (adapter->hw.bus.func == 1) { 3634 e1000_read_nvm(&adapter->hw, 3635 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 3636 break; 3637 } else 3638 e1000_read_nvm(&adapter->hw, 3639 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3640 break; 3641 case e1000_82573: 3642 case e1000_82583: 3643 adapter->has_amt = TRUE; 3644 /* FALLTHROUGH */ 3645 case e1000_82571: 3646 case e1000_82572: 3647 case e1000_80003es2lan: 3648 if (adapter->hw.bus.func == 1) { 3649 e1000_read_nvm(&adapter->hw, 3650 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 3651 break; 3652 } else 3653 e1000_read_nvm(&adapter->hw, 3654 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3655 break; 3656 case e1000_ich8lan: 3657 case e1000_ich9lan: 3658 case e1000_ich10lan: 3659 case e1000_pchlan: 3660 case e1000_pch2lan: 3661 case e1000_pch_lpt: 3662 case e1000_pch_spt: 3663 case e1000_82575: /* listing all igb devices */ 3664 case e1000_82576: 3665 case e1000_82580: 3666 case e1000_i350: 3667 case e1000_i354: 3668 case e1000_i210: 3669 case e1000_i211: 3670 case e1000_vfadapt: 3671 case e1000_vfadapt_i350: 3672 apme_mask = E1000_WUC_APME; 3673 adapter->has_amt = TRUE; 3674 eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC); 3675 break; 3676 default: 3677 e1000_read_nvm(&adapter->hw, 3678 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3679 break; 3680 } 3681 if (eeprom_data & apme_mask) 3682 adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC); 3683 /* 3684 * We have the eeprom settings, now apply the special cases 3685 * where the eeprom may be wrong or the board won't support 3686 * wake on lan on a particular port 3687 */ 3688 device_id = pci_get_device(dev); 3689 switch (device_id) { 3690 case E1000_DEV_ID_82546GB_PCIE: 3691 adapter->wol = 0; 3692 break; 3693 case E1000_DEV_ID_82546EB_FIBER: 3694 case E1000_DEV_ID_82546GB_FIBER: 3695 /* Wake events only supported on port A for dual fiber 3696 * regardless of eeprom setting */ 3697 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) & 3698 E1000_STATUS_FUNC_1) 3699 adapter->wol = 0; 3700 break; 3701 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 3702 /* if quad port adapter, disable WoL on all but port A */ 3703 if (global_quad_port_a != 0) 3704 adapter->wol = 0; 3705 /* Reset for multiple quad port adapters */ 3706 if (++global_quad_port_a == 4) 3707 global_quad_port_a = 0; 3708 break; 3709 case E1000_DEV_ID_82571EB_FIBER: 3710 /* Wake events only supported on port A for dual fiber 3711 * regardless of eeprom setting */ 3712 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) & 3713 E1000_STATUS_FUNC_1) 3714 adapter->wol = 0; 3715 break; 3716 case E1000_DEV_ID_82571EB_QUAD_COPPER: 3717 case E1000_DEV_ID_82571EB_QUAD_FIBER: 3718 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 3719 /* if quad port adapter, disable WoL on all but port A */ 3720 if (global_quad_port_a != 0) 3721 adapter->wol = 0; 3722 /* Reset for multiple quad port adapters */ 3723 if (++global_quad_port_a == 4) 3724 global_quad_port_a = 0; 3725 break; 3726 } 3727 return; 3728 } 3729 3730 3731 /* 3732 * Enable PCI Wake On Lan capability 3733 */ 3734 static void 3735 em_enable_wakeup(if_ctx_t ctx) 3736 { 3737 struct adapter *adapter = iflib_get_softc(ctx); 3738 device_t dev = iflib_get_dev(ctx); 3739 if_t ifp = iflib_get_ifp(ctx); 3740 int error = 0; 3741 u32 pmc, ctrl, ctrl_ext, rctl; 3742 u16 status; 3743 3744 if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0) 3745 return; 3746 3747 /* 3748 * Determine type of Wakeup: note that wol 3749 * is set with all bits on by default. 3750 */ 3751 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0) 3752 adapter->wol &= ~E1000_WUFC_MAG; 3753 3754 if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0) 3755 adapter->wol &= ~E1000_WUFC_EX; 3756 3757 if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0) 3758 adapter->wol &= ~E1000_WUFC_MC; 3759 else { 3760 rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 3761 rctl |= E1000_RCTL_MPE; 3762 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl); 3763 } 3764 3765 if (!(adapter->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC))) 3766 goto pme; 3767 3768 /* Advertise the wakeup capability */ 3769 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL); 3770 ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3); 3771 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl); 3772 3773 /* Keep the laser running on Fiber adapters */ 3774 if (adapter->hw.phy.media_type == e1000_media_type_fiber || 3775 adapter->hw.phy.media_type == e1000_media_type_internal_serdes) { 3776 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); 3777 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; 3778 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext); 3779 } 3780 3781 if ((adapter->hw.mac.type == e1000_ich8lan) || 3782 (adapter->hw.mac.type == e1000_pchlan) || 3783 (adapter->hw.mac.type == e1000_ich9lan) || 3784 (adapter->hw.mac.type == e1000_ich10lan)) 3785 e1000_suspend_workarounds_ich8lan(&adapter->hw); 3786 3787 if ( adapter->hw.mac.type >= e1000_pchlan) { 3788 error = em_enable_phy_wakeup(adapter); 3789 if (error) 3790 goto pme; 3791 } else { 3792 /* Enable wakeup by the MAC */ 3793 E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN); 3794 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol); 3795 } 3796 3797 if (adapter->hw.phy.type == e1000_phy_igp_3) 3798 e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); 3799 3800 pme: 3801 status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2); 3802 status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 3803 if (!error && (if_getcapenable(ifp) & IFCAP_WOL)) 3804 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 3805 pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2); 3806 3807 return; 3808 } 3809 3810 /* 3811 * WOL in the newer chipset interfaces (pchlan) 3812 * require thing to be copied into the phy 3813 */ 3814 static int 3815 em_enable_phy_wakeup(struct adapter *adapter) 3816 { 3817 struct e1000_hw *hw = &adapter->hw; 3818 u32 mreg, ret = 0; 3819 u16 preg; 3820 3821 /* copy MAC RARs to PHY RARs */ 3822 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 3823 3824 /* copy MAC MTA to PHY MTA */ 3825 for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) { 3826 mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); 3827 e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF)); 3828 e1000_write_phy_reg(hw, BM_MTA(i) + 1, 3829 (u16)((mreg >> 16) & 0xFFFF)); 3830 } 3831 3832 /* configure PHY Rx Control register */ 3833 e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg); 3834 mreg = E1000_READ_REG(hw, E1000_RCTL); 3835 if (mreg & E1000_RCTL_UPE) 3836 preg |= BM_RCTL_UPE; 3837 if (mreg & E1000_RCTL_MPE) 3838 preg |= BM_RCTL_MPE; 3839 preg &= ~(BM_RCTL_MO_MASK); 3840 if (mreg & E1000_RCTL_MO_3) 3841 preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) 3842 << BM_RCTL_MO_SHIFT); 3843 if (mreg & E1000_RCTL_BAM) 3844 preg |= BM_RCTL_BAM; 3845 if (mreg & E1000_RCTL_PMCF) 3846 preg |= BM_RCTL_PMCF; 3847 mreg = E1000_READ_REG(hw, E1000_CTRL); 3848 if (mreg & E1000_CTRL_RFCE) 3849 preg |= BM_RCTL_RFCE; 3850 e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg); 3851 3852 /* enable PHY wakeup in MAC register */ 3853 E1000_WRITE_REG(hw, E1000_WUC, 3854 E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME); 3855 E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol); 3856 3857 /* configure and enable PHY wakeup in PHY registers */ 3858 e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol); 3859 e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN); 3860 3861 /* activate PHY wakeup */ 3862 ret = hw->phy.ops.acquire(hw); 3863 if (ret) { 3864 printf("Could not acquire PHY\n"); 3865 return ret; 3866 } 3867 e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 3868 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT)); 3869 ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg); 3870 if (ret) { 3871 printf("Could not read PHY page 769\n"); 3872 goto out; 3873 } 3874 preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; 3875 ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg); 3876 if (ret) 3877 printf("Could not set PHY Host Wakeup bit\n"); 3878 out: 3879 hw->phy.ops.release(hw); 3880 3881 return ret; 3882 } 3883 3884 static void 3885 em_if_led_func(if_ctx_t ctx, int onoff) 3886 { 3887 struct adapter *adapter = iflib_get_softc(ctx); 3888 3889 if (onoff) { 3890 e1000_setup_led(&adapter->hw); 3891 e1000_led_on(&adapter->hw); 3892 } else { 3893 e1000_led_off(&adapter->hw); 3894 e1000_cleanup_led(&adapter->hw); 3895 } 3896 } 3897 3898 /* 3899 * Disable the L0S and L1 LINK states 3900 */ 3901 static void 3902 em_disable_aspm(struct adapter *adapter) 3903 { 3904 int base, reg; 3905 u16 link_cap,link_ctrl; 3906 device_t dev = adapter->dev; 3907 3908 switch (adapter->hw.mac.type) { 3909 case e1000_82573: 3910 case e1000_82574: 3911 case e1000_82583: 3912 break; 3913 default: 3914 return; 3915 } 3916 if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0) 3917 return; 3918 reg = base + PCIER_LINK_CAP; 3919 link_cap = pci_read_config(dev, reg, 2); 3920 if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0) 3921 return; 3922 reg = base + PCIER_LINK_CTL; 3923 link_ctrl = pci_read_config(dev, reg, 2); 3924 link_ctrl &= ~PCIEM_LINK_CTL_ASPMC; 3925 pci_write_config(dev, reg, link_ctrl, 2); 3926 return; 3927 } 3928 3929 /********************************************************************** 3930 * 3931 * Update the board statistics counters. 3932 * 3933 **********************************************************************/ 3934 static void 3935 em_update_stats_counters(struct adapter *adapter) 3936 { 3937 u64 prev_xoffrxc = adapter->stats.xoffrxc; 3938 3939 if(adapter->hw.phy.media_type == e1000_media_type_copper || 3940 (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) { 3941 adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS); 3942 adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC); 3943 } 3944 adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS); 3945 adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC); 3946 adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC); 3947 adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL); 3948 3949 adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC); 3950 adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL); 3951 adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC); 3952 adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC); 3953 adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC); 3954 adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC); 3955 adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC); 3956 adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC); 3957 /* 3958 ** For watchdog management we need to know if we have been 3959 ** paused during the last interval, so capture that here. 3960 */ 3961 if (adapter->stats.xoffrxc != prev_xoffrxc) 3962 adapter->shared->isc_pause_frames = 1; 3963 adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC); 3964 adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC); 3965 adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64); 3966 adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127); 3967 adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255); 3968 adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511); 3969 adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023); 3970 adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522); 3971 adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC); 3972 adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC); 3973 adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC); 3974 adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC); 3975 3976 /* For the 64-bit byte counters the low dword must be read first. */ 3977 /* Both registers clear on the read of the high dword */ 3978 3979 adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) + 3980 ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32); 3981 adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) + 3982 ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32); 3983 3984 adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC); 3985 adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC); 3986 adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC); 3987 adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC); 3988 adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC); 3989 3990 adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH); 3991 adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH); 3992 3993 adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR); 3994 adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT); 3995 adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64); 3996 adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127); 3997 adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255); 3998 adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511); 3999 adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023); 4000 adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522); 4001 adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC); 4002 adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC); 4003 4004 /* Interrupt Counts */ 4005 4006 adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC); 4007 adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC); 4008 adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC); 4009 adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC); 4010 adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC); 4011 adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC); 4012 adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC); 4013 adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC); 4014 adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC); 4015 4016 if (adapter->hw.mac.type >= e1000_82543) { 4017 adapter->stats.algnerrc += 4018 E1000_READ_REG(&adapter->hw, E1000_ALGNERRC); 4019 adapter->stats.rxerrc += 4020 E1000_READ_REG(&adapter->hw, E1000_RXERRC); 4021 adapter->stats.tncrs += 4022 E1000_READ_REG(&adapter->hw, E1000_TNCRS); 4023 adapter->stats.cexterr += 4024 E1000_READ_REG(&adapter->hw, E1000_CEXTERR); 4025 adapter->stats.tsctc += 4026 E1000_READ_REG(&adapter->hw, E1000_TSCTC); 4027 adapter->stats.tsctfc += 4028 E1000_READ_REG(&adapter->hw, E1000_TSCTFC); 4029 } 4030 } 4031 4032 static uint64_t 4033 em_if_get_counter(if_ctx_t ctx, ift_counter cnt) 4034 { 4035 struct adapter *adapter = iflib_get_softc(ctx); 4036 struct ifnet *ifp = iflib_get_ifp(ctx); 4037 4038 switch (cnt) { 4039 case IFCOUNTER_COLLISIONS: 4040 return (adapter->stats.colc); 4041 case IFCOUNTER_IERRORS: 4042 return (adapter->dropped_pkts + adapter->stats.rxerrc + 4043 adapter->stats.crcerrs + adapter->stats.algnerrc + 4044 adapter->stats.ruc + adapter->stats.roc + 4045 adapter->stats.mpc + adapter->stats.cexterr); 4046 case IFCOUNTER_OERRORS: 4047 return (adapter->stats.ecol + adapter->stats.latecol + 4048 adapter->watchdog_events); 4049 default: 4050 return (if_get_counter_default(ifp, cnt)); 4051 } 4052 } 4053 4054 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized 4055 * @ctx: iflib context 4056 * @event: event code to check 4057 * 4058 * Defaults to returning true for unknown events. 4059 * 4060 * @returns true if iflib needs to reinit the interface 4061 */ 4062 static bool 4063 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event) 4064 { 4065 switch (event) { 4066 case IFLIB_RESTART_VLAN_CONFIG: 4067 default: 4068 return (true); 4069 } 4070 } 4071 4072 /* Export a single 32-bit register via a read-only sysctl. */ 4073 static int 4074 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS) 4075 { 4076 struct adapter *adapter; 4077 u_int val; 4078 4079 adapter = oidp->oid_arg1; 4080 val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2); 4081 return (sysctl_handle_int(oidp, &val, 0, req)); 4082 } 4083 4084 /* 4085 * Add sysctl variables, one per statistic, to the system. 4086 */ 4087 static void 4088 em_add_hw_stats(struct adapter *adapter) 4089 { 4090 device_t dev = iflib_get_dev(adapter->ctx); 4091 struct em_tx_queue *tx_que = adapter->tx_queues; 4092 struct em_rx_queue *rx_que = adapter->rx_queues; 4093 4094 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev); 4095 struct sysctl_oid *tree = device_get_sysctl_tree(dev); 4096 struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree); 4097 struct e1000_hw_stats *stats = &adapter->stats; 4098 4099 struct sysctl_oid *stat_node, *queue_node, *int_node; 4100 struct sysctl_oid_list *stat_list, *queue_list, *int_list; 4101 4102 #define QUEUE_NAME_LEN 32 4103 char namebuf[QUEUE_NAME_LEN]; 4104 4105 /* Driver Statistics */ 4106 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped", 4107 CTLFLAG_RD, &adapter->dropped_pkts, 4108 "Driver dropped packets"); 4109 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq", 4110 CTLFLAG_RD, &adapter->link_irq, 4111 "Link MSI-X IRQ Handled"); 4112 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns", 4113 CTLFLAG_RD, &adapter->rx_overruns, 4114 "RX overruns"); 4115 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts", 4116 CTLFLAG_RD, &adapter->watchdog_events, 4117 "Watchdog timeouts"); 4118 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control", 4119 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 4120 adapter, E1000_CTRL, em_sysctl_reg_handler, "IU", 4121 "Device Control Register"); 4122 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control", 4123 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 4124 adapter, E1000_RCTL, em_sysctl_reg_handler, "IU", 4125 "Receiver Control Register"); 4126 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water", 4127 CTLFLAG_RD, &adapter->hw.fc.high_water, 0, 4128 "Flow Control High Watermark"); 4129 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water", 4130 CTLFLAG_RD, &adapter->hw.fc.low_water, 0, 4131 "Flow Control Low Watermark"); 4132 4133 for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) { 4134 struct tx_ring *txr = &tx_que->txr; 4135 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i); 4136 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, 4137 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name"); 4138 queue_list = SYSCTL_CHILDREN(queue_node); 4139 4140 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head", 4141 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter, 4142 E1000_TDH(txr->me), em_sysctl_reg_handler, "IU", 4143 "Transmit Descriptor Head"); 4144 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail", 4145 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter, 4146 E1000_TDT(txr->me), em_sysctl_reg_handler, "IU", 4147 "Transmit Descriptor Tail"); 4148 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq", 4149 CTLFLAG_RD, &txr->tx_irq, 4150 "Queue MSI-X Transmit Interrupts"); 4151 } 4152 4153 for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) { 4154 struct rx_ring *rxr = &rx_que->rxr; 4155 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j); 4156 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, 4157 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name"); 4158 queue_list = SYSCTL_CHILDREN(queue_node); 4159 4160 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head", 4161 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter, 4162 E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU", 4163 "Receive Descriptor Head"); 4164 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail", 4165 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter, 4166 E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU", 4167 "Receive Descriptor Tail"); 4168 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq", 4169 CTLFLAG_RD, &rxr->rx_irq, 4170 "Queue MSI-X Receive Interrupts"); 4171 } 4172 4173 /* MAC stats get their own sub node */ 4174 4175 stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats", 4176 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics"); 4177 stat_list = SYSCTL_CHILDREN(stat_node); 4178 4179 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll", 4180 CTLFLAG_RD, &stats->ecol, 4181 "Excessive collisions"); 4182 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll", 4183 CTLFLAG_RD, &stats->scc, 4184 "Single collisions"); 4185 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll", 4186 CTLFLAG_RD, &stats->mcc, 4187 "Multiple collisions"); 4188 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll", 4189 CTLFLAG_RD, &stats->latecol, 4190 "Late collisions"); 4191 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count", 4192 CTLFLAG_RD, &stats->colc, 4193 "Collision Count"); 4194 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors", 4195 CTLFLAG_RD, &adapter->stats.symerrs, 4196 "Symbol Errors"); 4197 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors", 4198 CTLFLAG_RD, &adapter->stats.sec, 4199 "Sequence Errors"); 4200 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count", 4201 CTLFLAG_RD, &adapter->stats.dc, 4202 "Defer Count"); 4203 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets", 4204 CTLFLAG_RD, &adapter->stats.mpc, 4205 "Missed Packets"); 4206 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff", 4207 CTLFLAG_RD, &adapter->stats.rnbc, 4208 "Receive No Buffers"); 4209 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize", 4210 CTLFLAG_RD, &adapter->stats.ruc, 4211 "Receive Undersize"); 4212 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented", 4213 CTLFLAG_RD, &adapter->stats.rfc, 4214 "Fragmented Packets Received "); 4215 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize", 4216 CTLFLAG_RD, &adapter->stats.roc, 4217 "Oversized Packets Received"); 4218 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber", 4219 CTLFLAG_RD, &adapter->stats.rjc, 4220 "Recevied Jabber"); 4221 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs", 4222 CTLFLAG_RD, &adapter->stats.rxerrc, 4223 "Receive Errors"); 4224 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs", 4225 CTLFLAG_RD, &adapter->stats.crcerrs, 4226 "CRC errors"); 4227 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs", 4228 CTLFLAG_RD, &adapter->stats.algnerrc, 4229 "Alignment Errors"); 4230 /* On 82575 these are collision counts */ 4231 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs", 4232 CTLFLAG_RD, &adapter->stats.cexterr, 4233 "Collision/Carrier extension errors"); 4234 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd", 4235 CTLFLAG_RD, &adapter->stats.xonrxc, 4236 "XON Received"); 4237 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd", 4238 CTLFLAG_RD, &adapter->stats.xontxc, 4239 "XON Transmitted"); 4240 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd", 4241 CTLFLAG_RD, &adapter->stats.xoffrxc, 4242 "XOFF Received"); 4243 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd", 4244 CTLFLAG_RD, &adapter->stats.xofftxc, 4245 "XOFF Transmitted"); 4246 4247 /* Packet Reception Stats */ 4248 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd", 4249 CTLFLAG_RD, &adapter->stats.tpr, 4250 "Total Packets Received "); 4251 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd", 4252 CTLFLAG_RD, &adapter->stats.gprc, 4253 "Good Packets Received"); 4254 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd", 4255 CTLFLAG_RD, &adapter->stats.bprc, 4256 "Broadcast Packets Received"); 4257 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd", 4258 CTLFLAG_RD, &adapter->stats.mprc, 4259 "Multicast Packets Received"); 4260 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64", 4261 CTLFLAG_RD, &adapter->stats.prc64, 4262 "64 byte frames received "); 4263 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127", 4264 CTLFLAG_RD, &adapter->stats.prc127, 4265 "65-127 byte frames received"); 4266 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255", 4267 CTLFLAG_RD, &adapter->stats.prc255, 4268 "128-255 byte frames received"); 4269 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511", 4270 CTLFLAG_RD, &adapter->stats.prc511, 4271 "256-511 byte frames received"); 4272 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023", 4273 CTLFLAG_RD, &adapter->stats.prc1023, 4274 "512-1023 byte frames received"); 4275 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522", 4276 CTLFLAG_RD, &adapter->stats.prc1522, 4277 "1023-1522 byte frames received"); 4278 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd", 4279 CTLFLAG_RD, &adapter->stats.gorc, 4280 "Good Octets Received"); 4281 4282 /* Packet Transmission Stats */ 4283 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd", 4284 CTLFLAG_RD, &adapter->stats.gotc, 4285 "Good Octets Transmitted"); 4286 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd", 4287 CTLFLAG_RD, &adapter->stats.tpt, 4288 "Total Packets Transmitted"); 4289 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd", 4290 CTLFLAG_RD, &adapter->stats.gptc, 4291 "Good Packets Transmitted"); 4292 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd", 4293 CTLFLAG_RD, &adapter->stats.bptc, 4294 "Broadcast Packets Transmitted"); 4295 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd", 4296 CTLFLAG_RD, &adapter->stats.mptc, 4297 "Multicast Packets Transmitted"); 4298 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64", 4299 CTLFLAG_RD, &adapter->stats.ptc64, 4300 "64 byte frames transmitted "); 4301 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127", 4302 CTLFLAG_RD, &adapter->stats.ptc127, 4303 "65-127 byte frames transmitted"); 4304 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255", 4305 CTLFLAG_RD, &adapter->stats.ptc255, 4306 "128-255 byte frames transmitted"); 4307 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511", 4308 CTLFLAG_RD, &adapter->stats.ptc511, 4309 "256-511 byte frames transmitted"); 4310 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023", 4311 CTLFLAG_RD, &adapter->stats.ptc1023, 4312 "512-1023 byte frames transmitted"); 4313 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522", 4314 CTLFLAG_RD, &adapter->stats.ptc1522, 4315 "1024-1522 byte frames transmitted"); 4316 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd", 4317 CTLFLAG_RD, &adapter->stats.tsctc, 4318 "TSO Contexts Transmitted"); 4319 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail", 4320 CTLFLAG_RD, &adapter->stats.tsctfc, 4321 "TSO Contexts Failed"); 4322 4323 4324 /* Interrupt Stats */ 4325 4326 int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts", 4327 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics"); 4328 int_list = SYSCTL_CHILDREN(int_node); 4329 4330 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts", 4331 CTLFLAG_RD, &adapter->stats.iac, 4332 "Interrupt Assertion Count"); 4333 4334 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer", 4335 CTLFLAG_RD, &adapter->stats.icrxptc, 4336 "Interrupt Cause Rx Pkt Timer Expire Count"); 4337 4338 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer", 4339 CTLFLAG_RD, &adapter->stats.icrxatc, 4340 "Interrupt Cause Rx Abs Timer Expire Count"); 4341 4342 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer", 4343 CTLFLAG_RD, &adapter->stats.ictxptc, 4344 "Interrupt Cause Tx Pkt Timer Expire Count"); 4345 4346 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer", 4347 CTLFLAG_RD, &adapter->stats.ictxatc, 4348 "Interrupt Cause Tx Abs Timer Expire Count"); 4349 4350 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty", 4351 CTLFLAG_RD, &adapter->stats.ictxqec, 4352 "Interrupt Cause Tx Queue Empty Count"); 4353 4354 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh", 4355 CTLFLAG_RD, &adapter->stats.ictxqmtc, 4356 "Interrupt Cause Tx Queue Min Thresh Count"); 4357 4358 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh", 4359 CTLFLAG_RD, &adapter->stats.icrxdmtc, 4360 "Interrupt Cause Rx Desc Min Thresh Count"); 4361 4362 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun", 4363 CTLFLAG_RD, &adapter->stats.icrxoc, 4364 "Interrupt Cause Receiver Overrun Count"); 4365 } 4366 4367 /********************************************************************** 4368 * 4369 * This routine provides a way to dump out the adapter eeprom, 4370 * often a useful debug/service tool. This only dumps the first 4371 * 32 words, stuff that matters is in that extent. 4372 * 4373 **********************************************************************/ 4374 static int 4375 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS) 4376 { 4377 struct adapter *adapter = (struct adapter *)arg1; 4378 int error; 4379 int result; 4380 4381 result = -1; 4382 error = sysctl_handle_int(oidp, &result, 0, req); 4383 4384 if (error || !req->newptr) 4385 return (error); 4386 4387 /* 4388 * This value will cause a hex dump of the 4389 * first 32 16-bit words of the EEPROM to 4390 * the screen. 4391 */ 4392 if (result == 1) 4393 em_print_nvm_info(adapter); 4394 4395 return (error); 4396 } 4397 4398 static void 4399 em_print_nvm_info(struct adapter *adapter) 4400 { 4401 u16 eeprom_data; 4402 int i, j, row = 0; 4403 4404 /* Its a bit crude, but it gets the job done */ 4405 printf("\nInterface EEPROM Dump:\n"); 4406 printf("Offset\n0x0000 "); 4407 for (i = 0, j = 0; i < 32; i++, j++) { 4408 if (j == 8) { /* Make the offset block */ 4409 j = 0; ++row; 4410 printf("\n0x00%x0 ",row); 4411 } 4412 e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data); 4413 printf("%04x ", eeprom_data); 4414 } 4415 printf("\n"); 4416 } 4417 4418 static int 4419 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS) 4420 { 4421 struct em_int_delay_info *info; 4422 struct adapter *adapter; 4423 u32 regval; 4424 int error, usecs, ticks; 4425 4426 info = (struct em_int_delay_info *) arg1; 4427 usecs = info->value; 4428 error = sysctl_handle_int(oidp, &usecs, 0, req); 4429 if (error != 0 || req->newptr == NULL) 4430 return (error); 4431 if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535)) 4432 return (EINVAL); 4433 info->value = usecs; 4434 ticks = EM_USECS_TO_TICKS(usecs); 4435 if (info->offset == E1000_ITR) /* units are 256ns here */ 4436 ticks *= 4; 4437 4438 adapter = info->adapter; 4439 4440 regval = E1000_READ_OFFSET(&adapter->hw, info->offset); 4441 regval = (regval & ~0xffff) | (ticks & 0xffff); 4442 /* Handle a few special cases. */ 4443 switch (info->offset) { 4444 case E1000_RDTR: 4445 break; 4446 case E1000_TIDV: 4447 if (ticks == 0) { 4448 adapter->txd_cmd &= ~E1000_TXD_CMD_IDE; 4449 /* Don't write 0 into the TIDV register. */ 4450 regval++; 4451 } else 4452 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 4453 break; 4454 } 4455 E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval); 4456 return (0); 4457 } 4458 4459 static void 4460 em_add_int_delay_sysctl(struct adapter *adapter, const char *name, 4461 const char *description, struct em_int_delay_info *info, 4462 int offset, int value) 4463 { 4464 info->adapter = adapter; 4465 info->offset = offset; 4466 info->value = value; 4467 SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev), 4468 SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)), 4469 OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 4470 info, 0, em_sysctl_int_delay, "I", description); 4471 } 4472 4473 /* 4474 * Set flow control using sysctl: 4475 * Flow control values: 4476 * 0 - off 4477 * 1 - rx pause 4478 * 2 - tx pause 4479 * 3 - full 4480 */ 4481 static int 4482 em_set_flowcntl(SYSCTL_HANDLER_ARGS) 4483 { 4484 int error; 4485 static int input = 3; /* default is full */ 4486 struct adapter *adapter = (struct adapter *) arg1; 4487 4488 error = sysctl_handle_int(oidp, &input, 0, req); 4489 4490 if ((error) || (req->newptr == NULL)) 4491 return (error); 4492 4493 if (input == adapter->fc) /* no change? */ 4494 return (error); 4495 4496 switch (input) { 4497 case e1000_fc_rx_pause: 4498 case e1000_fc_tx_pause: 4499 case e1000_fc_full: 4500 case e1000_fc_none: 4501 adapter->hw.fc.requested_mode = input; 4502 adapter->fc = input; 4503 break; 4504 default: 4505 /* Do nothing */ 4506 return (error); 4507 } 4508 4509 adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode; 4510 e1000_force_mac_fc(&adapter->hw); 4511 return (error); 4512 } 4513 4514 /* 4515 * Manage Energy Efficient Ethernet: 4516 * Control values: 4517 * 0/1 - enabled/disabled 4518 */ 4519 static int 4520 em_sysctl_eee(SYSCTL_HANDLER_ARGS) 4521 { 4522 struct adapter *adapter = (struct adapter *) arg1; 4523 int error, value; 4524 4525 value = adapter->hw.dev_spec.ich8lan.eee_disable; 4526 error = sysctl_handle_int(oidp, &value, 0, req); 4527 if (error || req->newptr == NULL) 4528 return (error); 4529 adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0); 4530 em_if_init(adapter->ctx); 4531 4532 return (0); 4533 } 4534 4535 static int 4536 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS) 4537 { 4538 struct adapter *adapter; 4539 int error; 4540 int result; 4541 4542 result = -1; 4543 error = sysctl_handle_int(oidp, &result, 0, req); 4544 4545 if (error || !req->newptr) 4546 return (error); 4547 4548 if (result == 1) { 4549 adapter = (struct adapter *) arg1; 4550 em_print_debug_info(adapter); 4551 } 4552 4553 return (error); 4554 } 4555 4556 static int 4557 em_get_rs(SYSCTL_HANDLER_ARGS) 4558 { 4559 struct adapter *adapter = (struct adapter *) arg1; 4560 int error; 4561 int result; 4562 4563 result = 0; 4564 error = sysctl_handle_int(oidp, &result, 0, req); 4565 4566 if (error || !req->newptr || result != 1) 4567 return (error); 4568 em_dump_rs(adapter); 4569 4570 return (error); 4571 } 4572 4573 static void 4574 em_if_debug(if_ctx_t ctx) 4575 { 4576 em_dump_rs(iflib_get_softc(ctx)); 4577 } 4578 4579 /* 4580 * This routine is meant to be fluid, add whatever is 4581 * needed for debugging a problem. -jfv 4582 */ 4583 static void 4584 em_print_debug_info(struct adapter *adapter) 4585 { 4586 device_t dev = iflib_get_dev(adapter->ctx); 4587 struct ifnet *ifp = iflib_get_ifp(adapter->ctx); 4588 struct tx_ring *txr = &adapter->tx_queues->txr; 4589 struct rx_ring *rxr = &adapter->rx_queues->rxr; 4590 4591 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 4592 printf("Interface is RUNNING "); 4593 else 4594 printf("Interface is NOT RUNNING\n"); 4595 4596 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) 4597 printf("and INACTIVE\n"); 4598 else 4599 printf("and ACTIVE\n"); 4600 4601 for (int i = 0; i < adapter->tx_num_queues; i++, txr++) { 4602 device_printf(dev, "TX Queue %d ------\n", i); 4603 device_printf(dev, "hw tdh = %d, hw tdt = %d\n", 4604 E1000_READ_REG(&adapter->hw, E1000_TDH(i)), 4605 E1000_READ_REG(&adapter->hw, E1000_TDT(i))); 4606 4607 } 4608 for (int j=0; j < adapter->rx_num_queues; j++, rxr++) { 4609 device_printf(dev, "RX Queue %d ------\n", j); 4610 device_printf(dev, "hw rdh = %d, hw rdt = %d\n", 4611 E1000_READ_REG(&adapter->hw, E1000_RDH(j)), 4612 E1000_READ_REG(&adapter->hw, E1000_RDT(j))); 4613 } 4614 } 4615 4616 /* 4617 * 82574 only: 4618 * Write a new value to the EEPROM increasing the number of MSI-X 4619 * vectors from 3 to 5, for proper multiqueue support. 4620 */ 4621 static void 4622 em_enable_vectors_82574(if_ctx_t ctx) 4623 { 4624 struct adapter *adapter = iflib_get_softc(ctx); 4625 struct e1000_hw *hw = &adapter->hw; 4626 device_t dev = iflib_get_dev(ctx); 4627 u16 edata; 4628 4629 e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata); 4630 if (bootverbose) 4631 device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata); 4632 if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) { 4633 device_printf(dev, "Writing to eeprom: increasing " 4634 "reported MSI-X vectors from 3 to 5...\n"); 4635 edata &= ~(EM_NVM_MSIX_N_MASK); 4636 edata |= 4 << EM_NVM_MSIX_N_SHIFT; 4637 e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata); 4638 e1000_update_nvm_checksum(hw); 4639 device_printf(dev, "Writing to eeprom: done\n"); 4640 } 4641 } 4642