1 /*- 2 * Copyright (c) 2016 Matt Macy <mmacy@nextbsd.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /* $FreeBSD$ */ 28 #include "if_em.h" 29 #include <sys/sbuf.h> 30 #include <machine/_inttypes.h> 31 32 #define em_mac_min e1000_82547 33 #define igb_mac_min e1000_82575 34 35 /********************************************************************* 36 * Driver version: 37 *********************************************************************/ 38 char em_driver_version[] = "7.6.1-k"; 39 40 /********************************************************************* 41 * PCI Device ID Table 42 * 43 * Used by probe to select devices to load on 44 * Last field stores an index into e1000_strings 45 * Last entry must be all 0s 46 * 47 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index } 48 *********************************************************************/ 49 50 static pci_vendor_info_t em_vendor_info_array[] = 51 { 52 /* Intel(R) PRO/1000 Network Connection - Legacy em*/ 53 PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) PRO/1000 Network Connection"), 54 PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) PRO/1000 Network Connection"), 55 PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) PRO/1000 Network Connection"), 56 PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) PRO/1000 Network Connection"), 57 PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) PRO/1000 Network Connection"), 58 59 PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) PRO/1000 Network Connection"), 60 PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) PRO/1000 Network Connection"), 61 PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) PRO/1000 Network Connection"), 62 PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) PRO/1000 Network Connection"), 63 PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) PRO/1000 Network Connection"), 64 PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) PRO/1000 Network Connection"), 65 PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) PRO/1000 Network Connection"), 66 67 PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) PRO/1000 Network Connection"), 68 69 PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) PRO/1000 Network Connection"), 70 PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) PRO/1000 Network Connection"), 71 72 PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) PRO/1000 Network Connection"), 73 PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) PRO/1000 Network Connection"), 74 PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) PRO/1000 Network Connection"), 75 PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) PRO/1000 Network Connection"), 76 77 PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) PRO/1000 Network Connection"), 78 PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) PRO/1000 Network Connection"), 79 PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) PRO/1000 Network Connection"), 80 PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) PRO/1000 Network Connection"), 81 PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) PRO/1000 Network Connection"), 82 83 PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) PRO/1000 Network Connection"), 84 PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) PRO/1000 Network Connection"), 85 PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), 86 PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) PRO/1000 Network Connection"), 87 PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) PRO/1000 Network Connection"), 88 PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) PRO/1000 Network Connection"), 89 PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) PRO/1000 Network Connection"), 90 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), 91 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) PRO/1000 Network Connection"), 92 93 PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) PRO/1000 Network Connection"), 94 PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) PRO/1000 Network Connection"), 95 PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) PRO/1000 Network Connection"), 96 97 /* Intel(R) PRO/1000 Network Connection - em */ 98 PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 Network Connection"), 99 PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 Network Connection"), 100 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 Network Connection"), 101 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 Network Connection"), 102 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 Network Connection"), 103 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), 104 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 Network Connection"), 105 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 Network Connection"), 106 PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), 107 PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 Network Connection"), 108 PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 Network Connection"), 109 PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 Network Connection"), 110 PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 Network Connection"), 111 PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 Network Connection"), 112 PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 Network Connection"), 113 PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) PRO/1000 Network Connection"), 114 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) PRO/1000 Network Connection"), 115 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) PRO/1000 Network Connection"), 116 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) PRO/1000 Network Connection"), 117 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) PRO/1000 Network Connection"), 118 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"), 119 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) PRO/1000 Network Connection"), 120 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) PRO/1000 Network Connection"), 121 PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) PRO/1000 Network Connection"), 122 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) PRO/1000 Network Connection"), 123 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) PRO/1000 Network Connection"), 124 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) PRO/1000 Network Connection"), 125 PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) PRO/1000 Network Connection"), 126 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"), 127 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) PRO/1000 Network Connection"), 128 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) PRO/1000 Network Connection"), 129 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) PRO/1000 Network Connection"), 130 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) PRO/1000 Network Connection"), 131 PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) PRO/1000 Network Connection"), 132 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) PRO/1000 Network Connection"), 133 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) PRO/1000 Network Connection"), 134 PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) PRO/1000 Network Connection"), 135 PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) PRO/1000 Network Connection"), 136 PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) PRO/1000 Network Connection"), 137 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) PRO/1000 Network Connection"), 138 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) PRO/1000 Network Connection"), 139 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) PRO/1000 Network Connection"), 140 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) PRO/1000 Network Connection"), 141 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) PRO/1000 Network Connection"), 142 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) PRO/1000 Network Connection"), 143 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) PRO/1000 Network Connection"), 144 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) PRO/1000 Network Connection"), 145 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) PRO/1000 Network Connection"), 146 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) PRO/1000 Network Connection"), 147 PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) PRO/1000 Network Connection"), 148 PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) PRO/1000 Network Connection"), 149 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) PRO/1000 Network Connection"), 150 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) PRO/1000 Network Connection"), 151 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) PRO/1000 Network Connection"), 152 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) PRO/1000 Network Connection"), 153 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) PRO/1000 Network Connection"), 154 PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) PRO/1000 Network Connection"), 155 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) PRO/1000 Network Connection"), 156 PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) PRO/1000 Network Connection"), 157 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) PRO/1000 Network Connection"), 158 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) PRO/1000 Network Connection"), 159 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) PRO/1000 Network Connection"), 160 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) PRO/1000 Network Connection"), 161 PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) PRO/1000 Network Connection"), 162 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) PRO/1000 Network Connection"), 163 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) PRO/1000 Network Connection"), 164 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) PRO/1000 Network Connection"), 165 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) PRO/1000 Network Connection"), 166 /* required last entry */ 167 PVID_END 168 }; 169 170 static pci_vendor_info_t igb_vendor_info_array[] = 171 { 172 /* Intel(R) PRO/1000 Network Connection - em */ 173 PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 174 PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 175 PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 176 PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 PCI-Express Network Driver"), 177 PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 178 PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 179 PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 180 PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 181 PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 PCI-Express Network Driver"), 182 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 183 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 PCI-Express Network Driver"), 184 PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"), 185 PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 186 PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 187 PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 188 PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 189 PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) PRO/1000 PCI-Express Network Driver"), 190 PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 191 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 192 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 193 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) PRO/1000 PCI-Express Network Driver"), 194 PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) PRO/1000 PCI-Express Network Driver"), 195 PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 196 PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 197 PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 198 PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 199 PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"), 200 PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 201 PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) PRO/1000 PCI-Express Network Driver"), 202 PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) PRO/1000 PCI-Express Network Driver"), 203 PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 204 PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 205 PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 206 PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 207 PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 208 PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 209 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 210 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 211 PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 212 /* required last entry */ 213 PVID_END 214 }; 215 216 /********************************************************************* 217 * Function prototypes 218 *********************************************************************/ 219 static void *em_register(device_t dev); 220 static void *igb_register(device_t dev); 221 static int em_if_attach_pre(if_ctx_t ctx); 222 static int em_if_attach_post(if_ctx_t ctx); 223 static int em_if_detach(if_ctx_t ctx); 224 static int em_if_shutdown(if_ctx_t ctx); 225 static int em_if_suspend(if_ctx_t ctx); 226 static int em_if_resume(if_ctx_t ctx); 227 228 static int em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets); 229 static int em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets); 230 static void em_if_queues_free(if_ctx_t ctx); 231 232 static uint64_t em_if_get_counter(if_ctx_t, ift_counter); 233 static void em_if_init(if_ctx_t ctx); 234 static void em_if_stop(if_ctx_t ctx); 235 static void em_if_media_status(if_ctx_t, struct ifmediareq *); 236 static int em_if_media_change(if_ctx_t ctx); 237 static int em_if_mtu_set(if_ctx_t ctx, uint32_t mtu); 238 static void em_if_timer(if_ctx_t ctx, uint16_t qid); 239 static void em_if_vlan_register(if_ctx_t ctx, u16 vtag); 240 static void em_if_vlan_unregister(if_ctx_t ctx, u16 vtag); 241 242 static void em_identify_hardware(if_ctx_t ctx); 243 static int em_allocate_pci_resources(if_ctx_t ctx); 244 static void em_free_pci_resources(if_ctx_t ctx); 245 static void em_reset(if_ctx_t ctx); 246 static int em_setup_interface(if_ctx_t ctx); 247 static int em_setup_msix(if_ctx_t ctx); 248 249 static void em_initialize_transmit_unit(if_ctx_t ctx); 250 static void em_initialize_receive_unit(if_ctx_t ctx); 251 252 static void em_if_enable_intr(if_ctx_t ctx); 253 static void em_if_disable_intr(if_ctx_t ctx); 254 static int em_if_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid); 255 static void em_if_multi_set(if_ctx_t ctx); 256 static void em_if_update_admin_status(if_ctx_t ctx); 257 static void em_update_stats_counters(struct adapter *); 258 static void em_add_hw_stats(struct adapter *adapter); 259 static int em_if_set_promisc(if_ctx_t ctx, int flags); 260 static void em_setup_vlan_hw_support(struct adapter *); 261 static int em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS); 262 static void em_print_nvm_info(struct adapter *); 263 static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS); 264 static void em_print_debug_info(struct adapter *); 265 static int em_is_valid_ether_addr(u8 *); 266 static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS); 267 static void em_add_int_delay_sysctl(struct adapter *, const char *, 268 const char *, struct em_int_delay_info *, int, int); 269 /* Management and WOL Support */ 270 static void em_init_manageability(struct adapter *); 271 static void em_release_manageability(struct adapter *); 272 static void em_get_hw_control(struct adapter *); 273 static void em_release_hw_control(struct adapter *); 274 static void em_get_wakeup(if_ctx_t ctx); 275 static void em_enable_wakeup(if_ctx_t ctx); 276 static int em_enable_phy_wakeup(struct adapter *); 277 static void em_disable_aspm(struct adapter *); 278 279 int em_intr(void *arg); 280 static void em_disable_promisc(if_ctx_t ctx); 281 282 /* MSIX handlers */ 283 static int em_if_msix_intr_assign(if_ctx_t, int); 284 static int em_msix_link(void *); 285 static void em_handle_link(void *context); 286 287 static void em_enable_vectors_82574(if_ctx_t); 288 289 static void em_set_sysctl_value(struct adapter *, const char *, 290 const char *, int *, int); 291 static int em_set_flowcntl(SYSCTL_HANDLER_ARGS); 292 static int em_sysctl_eee(SYSCTL_HANDLER_ARGS); 293 static void em_if_led_func(if_ctx_t ctx, int onoff); 294 295 static void em_init_tx_ring(struct em_tx_queue *que); 296 static int em_get_regs(SYSCTL_HANDLER_ARGS); 297 298 static void lem_smartspeed(struct adapter *adapter); 299 static void igb_configure_queues(struct adapter *adapter); 300 301 302 /********************************************************************* 303 * FreeBSD Device Interface Entry Points 304 *********************************************************************/ 305 static device_method_t em_methods[] = { 306 /* Device interface */ 307 DEVMETHOD(device_register, em_register), 308 DEVMETHOD(device_probe, iflib_device_probe), 309 DEVMETHOD(device_attach, iflib_device_attach), 310 DEVMETHOD(device_detach, iflib_device_detach), 311 DEVMETHOD(device_shutdown, iflib_device_shutdown), 312 DEVMETHOD(device_suspend, iflib_device_suspend), 313 DEVMETHOD(device_resume, iflib_device_resume), 314 DEVMETHOD_END 315 }; 316 317 static device_method_t igb_methods[] = { 318 /* Device interface */ 319 DEVMETHOD(device_register, igb_register), 320 DEVMETHOD(device_probe, iflib_device_probe), 321 DEVMETHOD(device_attach, iflib_device_attach), 322 DEVMETHOD(device_detach, iflib_device_detach), 323 DEVMETHOD(device_shutdown, iflib_device_shutdown), 324 DEVMETHOD(device_suspend, iflib_device_suspend), 325 DEVMETHOD(device_resume, iflib_device_resume), 326 DEVMETHOD_END 327 }; 328 329 330 static driver_t em_driver = { 331 "em", em_methods, sizeof(struct adapter), 332 }; 333 334 static devclass_t em_devclass; 335 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0); 336 337 MODULE_DEPEND(em, pci, 1, 1, 1); 338 MODULE_DEPEND(em, ether, 1, 1, 1); 339 MODULE_DEPEND(em, iflib, 1, 1, 1); 340 341 static driver_t igb_driver = { 342 "igb", igb_methods, sizeof(struct adapter), 343 }; 344 345 static devclass_t igb_devclass; 346 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0); 347 348 MODULE_DEPEND(igb, pci, 1, 1, 1); 349 MODULE_DEPEND(igb, ether, 1, 1, 1); 350 MODULE_DEPEND(igb, iflib, 1, 1, 1); 351 352 353 static device_method_t em_if_methods[] = { 354 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre), 355 DEVMETHOD(ifdi_attach_post, em_if_attach_post), 356 DEVMETHOD(ifdi_detach, em_if_detach), 357 DEVMETHOD(ifdi_shutdown, em_if_shutdown), 358 DEVMETHOD(ifdi_suspend, em_if_suspend), 359 DEVMETHOD(ifdi_resume, em_if_resume), 360 DEVMETHOD(ifdi_init, em_if_init), 361 DEVMETHOD(ifdi_stop, em_if_stop), 362 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign), 363 DEVMETHOD(ifdi_intr_enable, em_if_enable_intr), 364 DEVMETHOD(ifdi_intr_disable, em_if_disable_intr), 365 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc), 366 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc), 367 DEVMETHOD(ifdi_queues_free, em_if_queues_free), 368 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status), 369 DEVMETHOD(ifdi_multi_set, em_if_multi_set), 370 DEVMETHOD(ifdi_media_status, em_if_media_status), 371 DEVMETHOD(ifdi_media_change, em_if_media_change), 372 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set), 373 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc), 374 DEVMETHOD(ifdi_timer, em_if_timer), 375 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register), 376 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister), 377 DEVMETHOD(ifdi_get_counter, em_if_get_counter), 378 DEVMETHOD(ifdi_led_func, em_if_led_func), 379 DEVMETHOD(ifdi_queue_intr_enable, em_if_queue_intr_enable), 380 DEVMETHOD_END 381 }; 382 383 /* 384 * note that if (adapter->msix_mem) is replaced by: 385 * if (adapter->intr_type == IFLIB_INTR_MSIX) 386 */ 387 static driver_t em_if_driver = { 388 "em_if", em_if_methods, sizeof(struct adapter) 389 }; 390 391 /********************************************************************* 392 * Tunable default values. 393 *********************************************************************/ 394 395 #define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000) 396 #define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024) 397 #define M_TSO_LEN 66 398 399 #define MAX_INTS_PER_SEC 8000 400 #define DEFAULT_ITR (1000000000/(MAX_INTS_PER_SEC * 256)) 401 402 /* Allow common code without TSO */ 403 #ifndef CSUM_TSO 404 #define CSUM_TSO 0 405 #endif 406 407 #define TSO_WORKAROUND 4 408 409 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD, 0, "EM driver parameters"); 410 411 static int em_disable_crc_stripping = 0; 412 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN, 413 &em_disable_crc_stripping, 0, "Disable CRC Stripping"); 414 415 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV); 416 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR); 417 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt, 418 0, "Default transmit interrupt delay in usecs"); 419 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt, 420 0, "Default receive interrupt delay in usecs"); 421 422 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV); 423 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV); 424 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN, 425 &em_tx_abs_int_delay_dflt, 0, 426 "Default transmit interrupt delay limit in usecs"); 427 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN, 428 &em_rx_abs_int_delay_dflt, 0, 429 "Default receive interrupt delay limit in usecs"); 430 431 static int em_smart_pwr_down = FALSE; 432 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down, 433 0, "Set to true to leave smart power down enabled on newer adapters"); 434 435 /* Controls whether promiscuous also shows bad packets */ 436 static int em_debug_sbp = TRUE; 437 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0, 438 "Show bad packets in promiscuous mode"); 439 440 /* How many packets rxeof tries to clean at a time */ 441 static int em_rx_process_limit = 100; 442 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN, 443 &em_rx_process_limit, 0, 444 "Maximum number of received packets to process " 445 "at a time, -1 means unlimited"); 446 447 /* Energy efficient ethernet - default to OFF */ 448 static int eee_setting = 1; 449 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0, 450 "Enable Energy Efficient Ethernet"); 451 452 /* 453 ** Tuneable Interrupt rate 454 */ 455 static int em_max_interrupt_rate = 8000; 456 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN, 457 &em_max_interrupt_rate, 0, "Maximum interrupts per second"); 458 459 460 461 /* Global used in WOL setup with multiport cards */ 462 static int global_quad_port_a = 0; 463 464 extern struct if_txrx igb_txrx; 465 extern struct if_txrx em_txrx; 466 extern struct if_txrx lem_txrx; 467 468 static struct if_shared_ctx em_sctx_init = { 469 .isc_magic = IFLIB_MAGIC, 470 .isc_q_align = PAGE_SIZE, 471 .isc_tx_maxsize = EM_TSO_SIZE, 472 .isc_tx_maxsegsize = PAGE_SIZE, 473 .isc_rx_maxsize = MJUM9BYTES, 474 .isc_rx_nsegments = 1, 475 .isc_rx_maxsegsize = MJUM9BYTES, 476 .isc_nfl = 1, 477 .isc_nrxqs = 1, 478 .isc_ntxqs = 1, 479 .isc_admin_intrcnt = 1, 480 .isc_vendor_info = em_vendor_info_array, 481 .isc_driver_version = em_driver_version, 482 .isc_driver = &em_if_driver, 483 .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP, 484 485 .isc_nrxd_min = {EM_MIN_RXD}, 486 .isc_ntxd_min = {EM_MIN_TXD}, 487 .isc_nrxd_max = {EM_MAX_RXD}, 488 .isc_ntxd_max = {EM_MAX_TXD}, 489 .isc_nrxd_default = {EM_DEFAULT_RXD}, 490 .isc_ntxd_default = {EM_DEFAULT_TXD}, 491 }; 492 493 if_shared_ctx_t em_sctx = &em_sctx_init; 494 495 496 static struct if_shared_ctx igb_sctx_init = { 497 .isc_magic = IFLIB_MAGIC, 498 .isc_q_align = PAGE_SIZE, 499 .isc_tx_maxsize = EM_TSO_SIZE, 500 .isc_tx_maxsegsize = PAGE_SIZE, 501 .isc_rx_maxsize = MJUM9BYTES, 502 .isc_rx_nsegments = 1, 503 .isc_rx_maxsegsize = MJUM9BYTES, 504 .isc_nfl = 1, 505 .isc_nrxqs = 1, 506 .isc_ntxqs = 1, 507 .isc_admin_intrcnt = 1, 508 .isc_vendor_info = igb_vendor_info_array, 509 .isc_driver_version = em_driver_version, 510 .isc_driver = &em_if_driver, 511 .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP, 512 513 .isc_nrxd_min = {EM_MIN_RXD}, 514 .isc_ntxd_min = {EM_MIN_TXD}, 515 .isc_nrxd_max = {EM_MAX_RXD}, 516 .isc_ntxd_max = {EM_MAX_TXD}, 517 .isc_nrxd_default = {EM_DEFAULT_RXD}, 518 .isc_ntxd_default = {EM_DEFAULT_TXD}, 519 }; 520 521 if_shared_ctx_t igb_sctx = &igb_sctx_init; 522 523 /***************************************************************** 524 * 525 * Dump Registers 526 * 527 ****************************************************************/ 528 #define IGB_REGS_LEN 739 529 530 static int em_get_regs(SYSCTL_HANDLER_ARGS) 531 { 532 struct adapter *adapter = (struct adapter *)arg1; 533 struct e1000_hw *hw = &adapter->hw; 534 535 struct sbuf *sb; 536 u32 *regs_buff = (u32 *)malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_NOWAIT); 537 int rc; 538 539 memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32)); 540 541 rc = sysctl_wire_old_buffer(req, 0); 542 MPASS(rc == 0); 543 if (rc != 0) 544 return (rc); 545 546 sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req); 547 MPASS(sb != NULL); 548 if (sb == NULL) 549 return (ENOMEM); 550 551 /* General Registers */ 552 regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL); 553 regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS); 554 regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT); 555 regs_buff[3] = E1000_READ_REG(hw, E1000_ICR); 556 regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL); 557 regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0)); 558 regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0)); 559 regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0)); 560 regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0)); 561 regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0)); 562 regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0)); 563 regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL); 564 regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0)); 565 regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0)); 566 regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0)); 567 regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0)); 568 regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0)); 569 regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0)); 570 regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH); 571 regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT); 572 regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS); 573 regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC); 574 575 sbuf_printf(sb, "General Registers\n"); 576 sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]); 577 sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]); 578 sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]); 579 580 sbuf_printf(sb, "Interrupt Registers\n"); 581 sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]); 582 583 sbuf_printf(sb, "RX Registers\n"); 584 sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]); 585 sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]); 586 sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]); 587 sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]); 588 sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]); 589 sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]); 590 sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]); 591 592 sbuf_printf(sb, "TX Registers\n"); 593 sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]); 594 sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]); 595 sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]); 596 sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]); 597 sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]); 598 sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]); 599 sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]); 600 sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]); 601 sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]); 602 sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]); 603 sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]); 604 605 #ifdef DUMP_DESCS 606 { 607 if_softc_ctx_t scctx = adapter->shared; 608 struct rx_ring *rxr = &rx_que->rxr; 609 struct tx_ring *txr = &tx_que->txr; 610 int ntxd = scctx->isc_ntxd[0]; 611 int nrxd = scctx->isc_nrxd[0]; 612 int j; 613 614 for (j = 0; j < nrxd; j++) { 615 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error); 616 u32 length = le32toh(rxr->rx_base[j].wb.upper.length); 617 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 " Error:%d Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length); 618 } 619 620 for (j = 0; j < min(ntxd, 256); j++) { 621 struct em_txbuffer *buf = &txr->tx_buffers[j]; 622 unsigned int *ptr = (unsigned int *)&txr->tx_base[j]; 623 624 sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x eop: %d DD=%d\n", 625 j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop, 626 buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0); 627 628 } 629 } 630 #endif 631 632 rc = sbuf_finish(sb); 633 sbuf_delete(sb); 634 return(rc); 635 } 636 637 static void * 638 em_register(device_t dev) 639 { 640 return (em_sctx); 641 } 642 643 static void * 644 igb_register(device_t dev) 645 { 646 return (igb_sctx); 647 } 648 649 static void 650 em_init_tx_ring(struct em_tx_queue *que) 651 { 652 struct adapter *sc = que->adapter; 653 if_softc_ctx_t scctx = sc->shared; 654 struct tx_ring *txr = &que->txr; 655 struct em_txbuffer *tx_buffer; 656 657 tx_buffer = txr->tx_buffers; 658 for (int i = 0; i < scctx->isc_ntxd[0]; i++, tx_buffer++) { 659 tx_buffer->eop = -1; 660 } 661 } 662 663 static int 664 em_set_num_queues(if_ctx_t ctx) 665 { 666 struct adapter *adapter = iflib_get_softc(ctx); 667 int maxqueues; 668 669 /* Sanity check based on HW */ 670 switch (adapter->hw.mac.type) { 671 case e1000_82576: 672 case e1000_82580: 673 case e1000_i350: 674 case e1000_i354: 675 maxqueues = 8; 676 break; 677 case e1000_i210: 678 case e1000_82575: 679 maxqueues = 4; 680 break; 681 case e1000_i211: 682 case e1000_82574: 683 maxqueues = 2; 684 break; 685 default: 686 maxqueues = 1; 687 break; 688 } 689 690 return (maxqueues); 691 } 692 693 694 #define EM_CAPS \ 695 IFCAP_TSO4 | IFCAP_TXCSUM | IFCAP_LRO | IFCAP_RXCSUM | IFCAP_VLAN_HWFILTER | IFCAP_WOL_MAGIC | \ 696 IFCAP_WOL_MCAST | IFCAP_WOL | IFCAP_VLAN_HWTSO | IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | \ 697 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU; 698 699 #define IGB_CAPS \ 700 IFCAP_TSO4 | IFCAP_TXCSUM | IFCAP_LRO | IFCAP_RXCSUM | IFCAP_VLAN_HWFILTER | IFCAP_WOL_MAGIC | \ 701 IFCAP_WOL_MCAST | IFCAP_WOL | IFCAP_VLAN_HWTSO | IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM | \ 702 IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU | IFCAP_TXCSUM_IPV6 | IFCAP_HWCSUM_IPV6 | IFCAP_JUMBO_MTU; 703 704 /********************************************************************* 705 * Device initialization routine 706 * 707 * The attach entry point is called when the driver is being loaded. 708 * This routine identifies the type of hardware, allocates all resources 709 * and initializes the hardware. 710 * 711 * return 0 on success, positive on failure 712 *********************************************************************/ 713 714 static int 715 em_if_attach_pre(if_ctx_t ctx) 716 { 717 struct adapter *adapter; 718 if_softc_ctx_t scctx; 719 device_t dev; 720 struct e1000_hw *hw; 721 int error = 0; 722 723 INIT_DEBUGOUT("em_if_attach_pre begin"); 724 dev = iflib_get_dev(ctx); 725 adapter = iflib_get_softc(ctx); 726 727 if (resource_disabled("em", device_get_unit(dev))) { 728 device_printf(dev, "Disabled by device hint\n"); 729 return (ENXIO); 730 } 731 732 adapter->ctx = ctx; 733 adapter->dev = adapter->osdep.dev = dev; 734 scctx = adapter->shared = iflib_get_softc_ctx(ctx); 735 adapter->media = iflib_get_media(ctx); 736 hw = &adapter->hw; 737 738 adapter->tx_process_limit = scctx->isc_ntxd[0]; 739 740 /* SYSCTL stuff */ 741 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 742 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 743 OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, 744 em_sysctl_nvm_info, "I", "NVM Information"); 745 746 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 747 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 748 OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, 749 em_sysctl_debug_info, "I", "Debug Information"); 750 751 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 752 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 753 OID_AUTO, "fc", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, 754 em_set_flowcntl, "I", "Flow Control"); 755 756 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 757 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 758 OID_AUTO, "reg_dump", CTLTYPE_STRING | CTLFLAG_RD, adapter, 0, 759 em_get_regs, "A", "Dump Registers"); 760 761 /* Determine hardware and mac info */ 762 em_identify_hardware(ctx); 763 764 /* Set isc_msix_bar */ 765 scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR); 766 scctx->isc_tx_nsegments = EM_MAX_SCATTER; 767 scctx->isc_tx_tso_segments_max = scctx->isc_tx_nsegments; 768 scctx->isc_tx_tso_size_max = EM_TSO_SIZE; 769 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE; 770 scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx); 771 device_printf(dev, "attach_pre capping queues at %d\n", scctx->isc_ntxqsets_max); 772 773 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO; 774 775 776 if (adapter->hw.mac.type >= igb_mac_min) { 777 int try_second_bar; 778 779 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN); 780 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN); 781 scctx->isc_txrx = &igb_txrx; 782 scctx->isc_capenable = IGB_CAPS; 783 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO | CSUM_IP6_TCP \ 784 | CSUM_IP6_UDP | CSUM_IP6_TCP; 785 if (adapter->hw.mac.type != e1000_82575) 786 scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP; 787 788 /* 789 ** Some new devices, as with ixgbe, now may 790 ** use a different BAR, so we need to keep 791 ** track of which is used. 792 */ 793 try_second_bar = pci_read_config(dev, scctx->isc_msix_bar, 4); 794 if (try_second_bar == 0) 795 scctx->isc_msix_bar += 4; 796 797 } else if (adapter->hw.mac.type >= em_mac_min) { 798 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN); 799 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN); 800 scctx->isc_txrx = &em_txrx; 801 scctx->isc_capenable = EM_CAPS; 802 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO; 803 } else { 804 scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN); 805 scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN); 806 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO; 807 scctx->isc_txrx = &lem_txrx; 808 scctx->isc_capenable = EM_CAPS; 809 if (adapter->hw.mac.type < e1000_82543) 810 scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM); 811 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO; 812 scctx->isc_msix_bar = 0; 813 } 814 815 /* Setup PCI resources */ 816 if (em_allocate_pci_resources(ctx)) { 817 device_printf(dev, "Allocation of PCI resources failed\n"); 818 error = ENXIO; 819 goto err_pci; 820 } 821 822 /* 823 ** For ICH8 and family we need to 824 ** map the flash memory, and this 825 ** must happen after the MAC is 826 ** identified 827 */ 828 if ((hw->mac.type == e1000_ich8lan) || 829 (hw->mac.type == e1000_ich9lan) || 830 (hw->mac.type == e1000_ich10lan) || 831 (hw->mac.type == e1000_pchlan) || 832 (hw->mac.type == e1000_pch2lan) || 833 (hw->mac.type == e1000_pch_lpt)) { 834 int rid = EM_BAR_TYPE_FLASH; 835 adapter->flash = bus_alloc_resource_any(dev, 836 SYS_RES_MEMORY, &rid, RF_ACTIVE); 837 if (adapter->flash == NULL) { 838 device_printf(dev, "Mapping of Flash failed\n"); 839 error = ENXIO; 840 goto err_pci; 841 } 842 /* This is used in the shared code */ 843 hw->flash_address = (u8 *)adapter->flash; 844 adapter->osdep.flash_bus_space_tag = 845 rman_get_bustag(adapter->flash); 846 adapter->osdep.flash_bus_space_handle = 847 rman_get_bushandle(adapter->flash); 848 } 849 /* 850 ** In the new SPT device flash is not a 851 ** separate BAR, rather it is also in BAR0, 852 ** so use the same tag and an offset handle for the 853 ** FLASH read/write macros in the shared code. 854 */ 855 else if (hw->mac.type == e1000_pch_spt) { 856 adapter->osdep.flash_bus_space_tag = 857 adapter->osdep.mem_bus_space_tag; 858 adapter->osdep.flash_bus_space_handle = 859 adapter->osdep.mem_bus_space_handle 860 + E1000_FLASH_BASE_ADDR; 861 } 862 863 /* Do Shared Code initialization */ 864 error = e1000_setup_init_funcs(hw, TRUE); 865 if (error) { 866 device_printf(dev, "Setup of Shared code failed, error %d\n", 867 error); 868 error = ENXIO; 869 goto err_pci; 870 } 871 872 em_setup_msix(ctx); 873 e1000_get_bus_info(hw); 874 875 /* Set up some sysctls for the tunable interrupt delays */ 876 em_add_int_delay_sysctl(adapter, "rx_int_delay", 877 "receive interrupt delay in usecs", &adapter->rx_int_delay, 878 E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt); 879 em_add_int_delay_sysctl(adapter, "tx_int_delay", 880 "transmit interrupt delay in usecs", &adapter->tx_int_delay, 881 E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt); 882 em_add_int_delay_sysctl(adapter, "rx_abs_int_delay", 883 "receive interrupt delay limit in usecs", 884 &adapter->rx_abs_int_delay, 885 E1000_REGISTER(hw, E1000_RADV), 886 em_rx_abs_int_delay_dflt); 887 em_add_int_delay_sysctl(adapter, "tx_abs_int_delay", 888 "transmit interrupt delay limit in usecs", 889 &adapter->tx_abs_int_delay, 890 E1000_REGISTER(hw, E1000_TADV), 891 em_tx_abs_int_delay_dflt); 892 em_add_int_delay_sysctl(adapter, "itr", 893 "interrupt delay limit in usecs/4", 894 &adapter->tx_itr, 895 E1000_REGISTER(hw, E1000_ITR), 896 DEFAULT_ITR); 897 898 /* Sysctl for limiting the amount of work done in the taskqueue */ 899 em_set_sysctl_value(adapter, "rx_processing_limit", 900 "max number of rx packets to process", &adapter->rx_process_limit, 901 em_rx_process_limit); 902 903 hw->mac.autoneg = DO_AUTO_NEG; 904 hw->phy.autoneg_wait_to_complete = FALSE; 905 hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; 906 907 if (adapter->hw.mac.type < em_mac_min) { 908 e1000_init_script_state_82541(&adapter->hw, TRUE); 909 e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE); 910 } 911 /* Copper options */ 912 if (hw->phy.media_type == e1000_media_type_copper) { 913 hw->phy.mdix = AUTO_ALL_MODES; 914 hw->phy.disable_polarity_correction = FALSE; 915 hw->phy.ms_type = EM_MASTER_SLAVE; 916 } 917 918 /* 919 * Set the frame limits assuming 920 * standard ethernet sized frames. 921 */ 922 adapter->hw.mac.max_frame_size = 923 ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE; 924 925 /* 926 * This controls when hardware reports transmit completion 927 * status. 928 */ 929 hw->mac.report_tx_early = 1; 930 931 /* Allocate multicast array memory. */ 932 adapter->mta = malloc(sizeof(u8) * ETH_ADDR_LEN * 933 MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT); 934 if (adapter->mta == NULL) { 935 device_printf(dev, "Can not allocate multicast setup array\n"); 936 error = ENOMEM; 937 goto err_late; 938 } 939 940 /* Check SOL/IDER usage */ 941 if (e1000_check_reset_block(hw)) 942 device_printf(dev, "PHY reset is blocked" 943 " due to SOL/IDER session.\n"); 944 945 /* Sysctl for setting Energy Efficient Ethernet */ 946 hw->dev_spec.ich8lan.eee_disable = eee_setting; 947 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 948 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 949 OID_AUTO, "eee_control", CTLTYPE_INT|CTLFLAG_RW, 950 adapter, 0, em_sysctl_eee, "I", 951 "Disable Energy Efficient Ethernet"); 952 953 /* 954 ** Start from a known state, this is 955 ** important in reading the nvm and 956 ** mac from that. 957 */ 958 e1000_reset_hw(hw); 959 960 /* Make sure we have a good EEPROM before we read from it */ 961 if (e1000_validate_nvm_checksum(hw) < 0) { 962 /* 963 ** Some PCI-E parts fail the first check due to 964 ** the link being in sleep state, call it again, 965 ** if it fails a second time its a real issue. 966 */ 967 if (e1000_validate_nvm_checksum(hw) < 0) { 968 device_printf(dev, 969 "The EEPROM Checksum Is Not Valid\n"); 970 error = EIO; 971 goto err_late; 972 } 973 } 974 975 /* Copy the permanent MAC address out of the EEPROM */ 976 if (e1000_read_mac_addr(hw) < 0) { 977 device_printf(dev, "EEPROM read error while reading MAC" 978 " address\n"); 979 error = EIO; 980 goto err_late; 981 } 982 983 if (!em_is_valid_ether_addr(hw->mac.addr)) { 984 device_printf(dev, "Invalid MAC address\n"); 985 error = EIO; 986 goto err_late; 987 } 988 989 /* Disable ULP support */ 990 e1000_disable_ulp_lpt_lp(hw, TRUE); 991 992 /* 993 * Get Wake-on-Lan and Management info for later use 994 */ 995 em_get_wakeup(ctx); 996 997 iflib_set_mac(ctx, hw->mac.addr); 998 999 return (0); 1000 1001 err_late: 1002 em_release_hw_control(adapter); 1003 err_pci: 1004 em_free_pci_resources(ctx); 1005 free(adapter->mta, M_DEVBUF); 1006 1007 return (error); 1008 } 1009 1010 static int 1011 em_if_attach_post(if_ctx_t ctx) 1012 { 1013 struct adapter *adapter = iflib_get_softc(ctx); 1014 struct e1000_hw *hw = &adapter->hw; 1015 int error = 0; 1016 1017 /* Setup OS specific network interface */ 1018 error = em_setup_interface(ctx); 1019 if (error != 0) { 1020 goto err_late; 1021 } 1022 1023 em_reset(ctx); 1024 1025 /* Initialize statistics */ 1026 em_update_stats_counters(adapter); 1027 hw->mac.get_link_status = 1; 1028 em_if_update_admin_status(ctx); 1029 em_add_hw_stats(adapter); 1030 1031 /* Non-AMT based hardware can now take control from firmware */ 1032 if (adapter->has_manage && !adapter->has_amt) 1033 em_get_hw_control(adapter); 1034 1035 INIT_DEBUGOUT("em_if_attach_post: end"); 1036 1037 return (error); 1038 1039 err_late: 1040 em_release_hw_control(adapter); 1041 em_free_pci_resources(ctx); 1042 em_if_queues_free(ctx); 1043 free(adapter->mta, M_DEVBUF); 1044 1045 return (error); 1046 } 1047 1048 /********************************************************************* 1049 * Device removal routine 1050 * 1051 * The detach entry point is called when the driver is being removed. 1052 * This routine stops the adapter and deallocates all the resources 1053 * that were allocated for driver operation. 1054 * 1055 * return 0 on success, positive on failure 1056 *********************************************************************/ 1057 1058 static int 1059 em_if_detach(if_ctx_t ctx) 1060 { 1061 struct adapter *adapter = iflib_get_softc(ctx); 1062 1063 INIT_DEBUGOUT("em_detach: begin"); 1064 1065 e1000_phy_hw_reset(&adapter->hw); 1066 1067 em_release_manageability(adapter); 1068 em_release_hw_control(adapter); 1069 em_free_pci_resources(ctx); 1070 1071 return (0); 1072 } 1073 1074 /********************************************************************* 1075 * 1076 * Shutdown entry point 1077 * 1078 **********************************************************************/ 1079 1080 static int 1081 em_if_shutdown(if_ctx_t ctx) 1082 { 1083 return em_if_suspend(ctx); 1084 } 1085 1086 /* 1087 * Suspend/resume device methods. 1088 */ 1089 static int 1090 em_if_suspend(if_ctx_t ctx) 1091 { 1092 struct adapter *adapter = iflib_get_softc(ctx); 1093 1094 em_release_manageability(adapter); 1095 em_release_hw_control(adapter); 1096 em_enable_wakeup(ctx); 1097 return (0); 1098 } 1099 1100 static int 1101 em_if_resume(if_ctx_t ctx) 1102 { 1103 struct adapter *adapter = iflib_get_softc(ctx); 1104 1105 if (adapter->hw.mac.type == e1000_pch2lan) 1106 e1000_resume_workarounds_pchlan(&adapter->hw); 1107 em_if_init(ctx); 1108 em_init_manageability(adapter); 1109 1110 return(0); 1111 } 1112 1113 static int 1114 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu) 1115 { 1116 int max_frame_size; 1117 struct adapter *adapter = iflib_get_softc(ctx); 1118 struct ifnet *ifp = iflib_get_ifp(ctx); 1119 1120 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)"); 1121 1122 switch (adapter->hw.mac.type) { 1123 case e1000_82571: 1124 case e1000_82572: 1125 case e1000_ich9lan: 1126 case e1000_ich10lan: 1127 case e1000_pch2lan: 1128 case e1000_pch_lpt: 1129 case e1000_pch_spt: 1130 case e1000_82574: 1131 case e1000_82583: 1132 case e1000_80003es2lan: /* 9K Jumbo Frame size */ 1133 max_frame_size = 9234; 1134 break; 1135 case e1000_pchlan: 1136 max_frame_size = 4096; 1137 break; 1138 /* Adapters that do not support jumbo frames */ 1139 case e1000_ich8lan: 1140 max_frame_size = ETHER_MAX_LEN; 1141 break; 1142 default: 1143 max_frame_size = MAX_JUMBO_FRAME_SIZE; 1144 } 1145 if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) { 1146 return (EINVAL); 1147 } 1148 1149 adapter->hw.mac.max_frame_size = if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN; 1150 return (0); 1151 } 1152 1153 /********************************************************************* 1154 * Init entry point 1155 * 1156 * This routine is used in two ways. It is used by the stack as 1157 * init entry point in network interface structure. It is also used 1158 * by the driver as a hw/sw initialization routine to get to a 1159 * consistent state. 1160 * 1161 * return 0 on success, positive on failure 1162 **********************************************************************/ 1163 1164 static void 1165 em_if_init(if_ctx_t ctx) 1166 { 1167 struct adapter *adapter = iflib_get_softc(ctx); 1168 struct ifnet *ifp = iflib_get_ifp(ctx); 1169 1170 INIT_DEBUGOUT("em_if_init: begin"); 1171 1172 /* Get the latest mac address, User can use a LAA */ 1173 bcopy(if_getlladdr(ifp), adapter->hw.mac.addr, 1174 ETHER_ADDR_LEN); 1175 1176 /* Put the address into the Receive Address Array */ 1177 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); 1178 1179 /* 1180 * With the 82571 adapter, RAR[0] may be overwritten 1181 * when the other port is reset, we make a duplicate 1182 * in RAR[14] for that eventuality, this assures 1183 * the interface continues to function. 1184 */ 1185 if (adapter->hw.mac.type == e1000_82571) { 1186 e1000_set_laa_state_82571(&adapter->hw, TRUE); 1187 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 1188 E1000_RAR_ENTRIES - 1); 1189 } 1190 1191 /* Initialize the hardware */ 1192 em_reset(ctx); 1193 em_if_update_admin_status(ctx); 1194 1195 /* Setup VLAN support, basic and offload if available */ 1196 E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN); 1197 1198 /* Clear bad data from Rx FIFOs */ 1199 if (adapter->hw.mac.type >= igb_mac_min) 1200 e1000_rx_fifo_flush_82575(&adapter->hw); 1201 1202 /* Configure for OS presence */ 1203 em_init_manageability(adapter); 1204 1205 /* Prepare transmit descriptors and buffers */ 1206 em_initialize_transmit_unit(ctx); 1207 1208 /* Setup Multicast table */ 1209 em_if_multi_set(ctx); 1210 1211 /* 1212 ** Figure out the desired mbuf 1213 ** pool for doing jumbos 1214 */ 1215 if (adapter->hw.mac.max_frame_size <= 2048) 1216 adapter->rx_mbuf_sz = MCLBYTES; 1217 else if (adapter->hw.mac.max_frame_size <= 4096) 1218 adapter->rx_mbuf_sz = MJUMPAGESIZE; 1219 else 1220 adapter->rx_mbuf_sz = MJUM9BYTES; 1221 1222 em_initialize_receive_unit(ctx); 1223 1224 /* Use real VLAN Filter support? */ 1225 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) { 1226 if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) 1227 /* Use real VLAN Filter support */ 1228 em_setup_vlan_hw_support(adapter); 1229 else { 1230 u32 ctrl; 1231 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL); 1232 ctrl |= E1000_CTRL_VME; 1233 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl); 1234 } 1235 } 1236 1237 /* Don't lose promiscuous settings */ 1238 em_if_set_promisc(ctx, IFF_PROMISC); 1239 e1000_clear_hw_cntrs_base_generic(&adapter->hw); 1240 1241 /* MSI/X configuration for 82574 */ 1242 if (adapter->hw.mac.type == e1000_82574) { 1243 int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); 1244 1245 tmp |= E1000_CTRL_EXT_PBA_CLR; 1246 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp); 1247 /* Set the IVAR - interrupt vector routing. */ 1248 E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars); 1249 } else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */ 1250 igb_configure_queues(adapter); 1251 1252 /* this clears any pending interrupts */ 1253 E1000_READ_REG(&adapter->hw, E1000_ICR); 1254 E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC); 1255 1256 /* AMT based hardware can now take control from firmware */ 1257 if (adapter->has_manage && adapter->has_amt) 1258 em_get_hw_control(adapter); 1259 1260 /* Set Energy Efficient Ethernet */ 1261 if (adapter->hw.mac.type >= igb_mac_min && 1262 adapter->hw.phy.media_type == e1000_media_type_copper) { 1263 if (adapter->hw.mac.type == e1000_i354) 1264 e1000_set_eee_i354(&adapter->hw, TRUE, TRUE); 1265 else 1266 e1000_set_eee_i350(&adapter->hw, TRUE, TRUE); 1267 } 1268 } 1269 1270 /********************************************************************* 1271 * 1272 * Fast Legacy/MSI Combined Interrupt Service routine 1273 * 1274 *********************************************************************/ 1275 int 1276 em_intr(void *arg) 1277 { 1278 struct adapter *adapter = arg; 1279 if_ctx_t ctx = adapter->ctx; 1280 u32 reg_icr; 1281 1282 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR); 1283 1284 if (adapter->intr_type != IFLIB_INTR_LEGACY) 1285 goto skip_stray; 1286 /* Hot eject? */ 1287 if (reg_icr == 0xffffffff) 1288 return FILTER_STRAY; 1289 1290 /* Definitely not our interrupt. */ 1291 if (reg_icr == 0x0) 1292 return FILTER_STRAY; 1293 1294 /* 1295 * Starting with the 82571 chip, bit 31 should be used to 1296 * determine whether the interrupt belongs to us. 1297 */ 1298 if (adapter->hw.mac.type >= e1000_82571 && 1299 (reg_icr & E1000_ICR_INT_ASSERTED) == 0) 1300 return FILTER_STRAY; 1301 1302 skip_stray: 1303 /* Link status change */ 1304 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 1305 adapter->hw.mac.get_link_status = 1; 1306 iflib_admin_intr_deferred(ctx); 1307 } 1308 1309 if (reg_icr & E1000_ICR_RXO) 1310 adapter->rx_overruns++; 1311 1312 return (FILTER_SCHEDULE_THREAD); 1313 } 1314 1315 static void 1316 igb_enable_queue(struct adapter *adapter, struct em_rx_queue *rxq) 1317 { 1318 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims); 1319 } 1320 1321 static void 1322 em_enable_queue(struct adapter *adapter, struct em_rx_queue *rxq) 1323 { 1324 E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims); 1325 } 1326 1327 static int 1328 em_if_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid) 1329 { 1330 struct adapter *adapter = iflib_get_softc(ctx); 1331 struct em_rx_queue *rxq = &adapter->rx_queues[rxqid]; 1332 1333 if (adapter->hw.mac.type >= igb_mac_min) 1334 igb_enable_queue(adapter, rxq); 1335 else 1336 em_enable_queue(adapter, rxq); 1337 return (0); 1338 } 1339 1340 /********************************************************************* 1341 * 1342 * MSIX RX Interrupt Service routine 1343 * 1344 **********************************************************************/ 1345 static int 1346 em_msix_que(void *arg) 1347 { 1348 struct em_rx_queue *que = arg; 1349 1350 ++que->irqs; 1351 1352 return (FILTER_SCHEDULE_THREAD); 1353 } 1354 1355 /********************************************************************* 1356 * 1357 * MSIX Link Fast Interrupt Service routine 1358 * 1359 **********************************************************************/ 1360 static int 1361 em_msix_link(void *arg) 1362 { 1363 struct adapter *adapter = arg; 1364 u32 reg_icr; 1365 1366 ++adapter->link_irq; 1367 MPASS(adapter->hw.back != NULL); 1368 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR); 1369 1370 if (reg_icr & E1000_ICR_RXO) 1371 adapter->rx_overruns++; 1372 1373 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 1374 em_handle_link(adapter->ctx); 1375 } else { 1376 E1000_WRITE_REG(&adapter->hw, E1000_IMS, 1377 EM_MSIX_LINK | E1000_IMS_LSC); 1378 if (adapter->hw.mac.type >= igb_mac_min) 1379 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask); 1380 1381 } 1382 1383 /* 1384 ** Because we must read the ICR for this interrupt 1385 ** it may clear other causes using autoclear, for 1386 ** this reason we simply create a soft interrupt 1387 ** for all these vectors. 1388 */ 1389 if (reg_icr && adapter->hw.mac.type < igb_mac_min) { 1390 E1000_WRITE_REG(&adapter->hw, 1391 E1000_ICS, adapter->ims); 1392 } 1393 1394 return (FILTER_HANDLED); 1395 } 1396 1397 static void 1398 em_handle_link(void *context) 1399 { 1400 if_ctx_t ctx = context; 1401 struct adapter *adapter = iflib_get_softc(ctx); 1402 1403 adapter->hw.mac.get_link_status = 1; 1404 iflib_admin_intr_deferred(ctx); 1405 } 1406 1407 1408 /********************************************************************* 1409 * 1410 * Media Ioctl callback 1411 * 1412 * This routine is called whenever the user queries the status of 1413 * the interface using ifconfig. 1414 * 1415 **********************************************************************/ 1416 static void 1417 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr) 1418 { 1419 struct adapter *adapter = iflib_get_softc(ctx); 1420 u_char fiber_type = IFM_1000_SX; 1421 1422 INIT_DEBUGOUT("em_if_media_status: begin"); 1423 1424 iflib_admin_intr_deferred(ctx); 1425 1426 ifmr->ifm_status = IFM_AVALID; 1427 ifmr->ifm_active = IFM_ETHER; 1428 1429 if (!adapter->link_active) { 1430 return; 1431 } 1432 1433 ifmr->ifm_status |= IFM_ACTIVE; 1434 1435 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || 1436 (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) { 1437 if (adapter->hw.mac.type == e1000_82545) 1438 fiber_type = IFM_1000_LX; 1439 ifmr->ifm_active |= fiber_type | IFM_FDX; 1440 } else { 1441 switch (adapter->link_speed) { 1442 case 10: 1443 ifmr->ifm_active |= IFM_10_T; 1444 break; 1445 case 100: 1446 ifmr->ifm_active |= IFM_100_TX; 1447 break; 1448 case 1000: 1449 ifmr->ifm_active |= IFM_1000_T; 1450 break; 1451 } 1452 if (adapter->link_duplex == FULL_DUPLEX) 1453 ifmr->ifm_active |= IFM_FDX; 1454 else 1455 ifmr->ifm_active |= IFM_HDX; 1456 } 1457 } 1458 1459 /********************************************************************* 1460 * 1461 * Media Ioctl callback 1462 * 1463 * This routine is called when the user changes speed/duplex using 1464 * media/mediopt option with ifconfig. 1465 * 1466 **********************************************************************/ 1467 static int 1468 em_if_media_change(if_ctx_t ctx) 1469 { 1470 struct adapter *adapter = iflib_get_softc(ctx); 1471 struct ifmedia *ifm = iflib_get_media(ctx); 1472 1473 INIT_DEBUGOUT("em_if_media_change: begin"); 1474 1475 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 1476 return (EINVAL); 1477 1478 switch (IFM_SUBTYPE(ifm->ifm_media)) { 1479 case IFM_AUTO: 1480 adapter->hw.mac.autoneg = DO_AUTO_NEG; 1481 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; 1482 break; 1483 case IFM_1000_LX: 1484 case IFM_1000_SX: 1485 case IFM_1000_T: 1486 adapter->hw.mac.autoneg = DO_AUTO_NEG; 1487 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 1488 break; 1489 case IFM_100_TX: 1490 adapter->hw.mac.autoneg = FALSE; 1491 adapter->hw.phy.autoneg_advertised = 0; 1492 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) 1493 adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL; 1494 else 1495 adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF; 1496 break; 1497 case IFM_10_T: 1498 adapter->hw.mac.autoneg = FALSE; 1499 adapter->hw.phy.autoneg_advertised = 0; 1500 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) 1501 adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL; 1502 else 1503 adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF; 1504 break; 1505 default: 1506 device_printf(adapter->dev, "Unsupported media type\n"); 1507 } 1508 1509 em_if_init(ctx); 1510 1511 return (0); 1512 } 1513 1514 static int 1515 em_if_set_promisc(if_ctx_t ctx, int flags) 1516 { 1517 struct adapter *adapter = iflib_get_softc(ctx); 1518 u32 reg_rctl; 1519 1520 em_disable_promisc(ctx); 1521 1522 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1523 1524 if (flags & IFF_PROMISC) { 1525 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 1526 /* Turn this on if you want to see bad packets */ 1527 if (em_debug_sbp) 1528 reg_rctl |= E1000_RCTL_SBP; 1529 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1530 } else if (flags & IFF_ALLMULTI) { 1531 reg_rctl |= E1000_RCTL_MPE; 1532 reg_rctl &= ~E1000_RCTL_UPE; 1533 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1534 } 1535 return (0); 1536 } 1537 1538 static void 1539 em_disable_promisc(if_ctx_t ctx) 1540 { 1541 struct adapter *adapter = iflib_get_softc(ctx); 1542 struct ifnet *ifp = iflib_get_ifp(ctx); 1543 u32 reg_rctl; 1544 int mcnt = 0; 1545 1546 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1547 reg_rctl &= (~E1000_RCTL_UPE); 1548 if (if_getflags(ifp) & IFF_ALLMULTI) 1549 mcnt = MAX_NUM_MULTICAST_ADDRESSES; 1550 else 1551 mcnt = if_multiaddr_count(ifp, MAX_NUM_MULTICAST_ADDRESSES); 1552 /* Don't disable if in MAX groups */ 1553 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES) 1554 reg_rctl &= (~E1000_RCTL_MPE); 1555 reg_rctl &= (~E1000_RCTL_SBP); 1556 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1557 } 1558 1559 1560 /********************************************************************* 1561 * Multicast Update 1562 * 1563 * This routine is called whenever multicast address list is updated. 1564 * 1565 **********************************************************************/ 1566 1567 static void 1568 em_if_multi_set(if_ctx_t ctx) 1569 { 1570 struct adapter *adapter = iflib_get_softc(ctx); 1571 struct ifnet *ifp = iflib_get_ifp(ctx); 1572 u32 reg_rctl = 0; 1573 u8 *mta; /* Multicast array memory */ 1574 int mcnt = 0; 1575 1576 IOCTL_DEBUGOUT("em_set_multi: begin"); 1577 1578 mta = adapter->mta; 1579 bzero(mta, sizeof(u8) * ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES); 1580 1581 if (adapter->hw.mac.type == e1000_82542 && 1582 adapter->hw.revision_id == E1000_REVISION_2) { 1583 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1584 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) 1585 e1000_pci_clear_mwi(&adapter->hw); 1586 reg_rctl |= E1000_RCTL_RST; 1587 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1588 msec_delay(5); 1589 } 1590 1591 if_multiaddr_array(ifp, mta, &mcnt, MAX_NUM_MULTICAST_ADDRESSES); 1592 1593 if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) { 1594 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1595 reg_rctl |= E1000_RCTL_MPE; 1596 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1597 } else 1598 e1000_update_mc_addr_list(&adapter->hw, mta, mcnt); 1599 1600 if (adapter->hw.mac.type == e1000_82542 && 1601 adapter->hw.revision_id == E1000_REVISION_2) { 1602 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1603 reg_rctl &= ~E1000_RCTL_RST; 1604 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1605 msec_delay(5); 1606 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) 1607 e1000_pci_set_mwi(&adapter->hw); 1608 } 1609 } 1610 1611 1612 /********************************************************************* 1613 * Timer routine 1614 * 1615 * This routine checks for link status and updates statistics. 1616 * 1617 **********************************************************************/ 1618 1619 static void 1620 em_if_timer(if_ctx_t ctx, uint16_t qid) 1621 { 1622 struct adapter *adapter = iflib_get_softc(ctx); 1623 struct em_rx_queue *que; 1624 int i; 1625 int trigger = 0; 1626 1627 em_if_update_admin_status(ctx); 1628 em_update_stats_counters(adapter); 1629 1630 /* Reset LAA into RAR[0] on 82571 */ 1631 if ((adapter->hw.mac.type == e1000_82571) && 1632 e1000_get_laa_state_82571(&adapter->hw)) 1633 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); 1634 1635 if (adapter->hw.mac.type < em_mac_min) 1636 lem_smartspeed(adapter); 1637 1638 /* Mask to use in the irq trigger */ 1639 if (adapter->intr_type == IFLIB_INTR_MSIX) { 1640 for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) 1641 trigger |= que->eims; 1642 } else { 1643 trigger = E1000_ICS_RXDMT0; 1644 } 1645 } 1646 1647 1648 static void 1649 em_if_update_admin_status(if_ctx_t ctx) 1650 { 1651 struct adapter *adapter = iflib_get_softc(ctx); 1652 struct e1000_hw *hw = &adapter->hw; 1653 struct ifnet *ifp = iflib_get_ifp(ctx); 1654 device_t dev = iflib_get_dev(ctx); 1655 u32 link_check = 0; 1656 1657 /* Get the cached link value or read phy for real */ 1658 switch (hw->phy.media_type) { 1659 case e1000_media_type_copper: 1660 if (hw->mac.get_link_status) { 1661 if (hw->mac.type == e1000_pch_spt) 1662 msec_delay(50); 1663 /* Do the work to read phy */ 1664 e1000_check_for_link(hw); 1665 link_check = !hw->mac.get_link_status; 1666 if (link_check) /* ESB2 fix */ 1667 e1000_cfg_on_link_up(hw); 1668 } else { 1669 link_check = TRUE; 1670 } 1671 break; 1672 case e1000_media_type_fiber: 1673 e1000_check_for_link(hw); 1674 link_check = (E1000_READ_REG(hw, E1000_STATUS) & 1675 E1000_STATUS_LU); 1676 break; 1677 case e1000_media_type_internal_serdes: 1678 e1000_check_for_link(hw); 1679 link_check = adapter->hw.mac.serdes_has_link; 1680 break; 1681 default: 1682 case e1000_media_type_unknown: 1683 break; 1684 } 1685 1686 /* Now check for a transition */ 1687 if (link_check && (adapter->link_active == 0)) { 1688 e1000_get_speed_and_duplex(hw, &adapter->link_speed, 1689 &adapter->link_duplex); 1690 /* Check if we must disable SPEED_MODE bit on PCI-E */ 1691 if ((adapter->link_speed != SPEED_1000) && 1692 ((hw->mac.type == e1000_82571) || 1693 (hw->mac.type == e1000_82572))) { 1694 int tarc0; 1695 tarc0 = E1000_READ_REG(hw, E1000_TARC(0)); 1696 tarc0 &= ~TARC_SPEED_MODE_BIT; 1697 E1000_WRITE_REG(hw, E1000_TARC(0), tarc0); 1698 } 1699 if (bootverbose) 1700 device_printf(dev, "Link is up %d Mbps %s\n", 1701 adapter->link_speed, 1702 ((adapter->link_duplex == FULL_DUPLEX) ? 1703 "Full Duplex" : "Half Duplex")); 1704 adapter->link_active = 1; 1705 adapter->smartspeed = 0; 1706 if_setbaudrate(ifp, adapter->link_speed * 1000000); 1707 iflib_link_state_change(ctx, LINK_STATE_UP, ifp->if_baudrate); 1708 printf("Link state changed to up\n"); 1709 } else if (!link_check && (adapter->link_active == 1)) { 1710 if_setbaudrate(ifp, 0); 1711 adapter->link_speed = 0; 1712 adapter->link_duplex = 0; 1713 if (bootverbose) 1714 device_printf(dev, "Link is Down\n"); 1715 adapter->link_active = 0; 1716 iflib_link_state_change(ctx, LINK_STATE_DOWN, ifp->if_baudrate); 1717 printf("link state changed to down\n"); 1718 } 1719 1720 E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK | E1000_IMS_LSC); 1721 } 1722 1723 /********************************************************************* 1724 * 1725 * This routine disables all traffic on the adapter by issuing a 1726 * global reset on the MAC and deallocates TX/RX buffers. 1727 * 1728 * This routine should always be called with BOTH the CORE 1729 * and TX locks. 1730 **********************************************************************/ 1731 1732 static void 1733 em_if_stop(if_ctx_t ctx) 1734 { 1735 struct adapter *adapter = iflib_get_softc(ctx); 1736 1737 INIT_DEBUGOUT("em_stop: begin"); 1738 1739 e1000_reset_hw(&adapter->hw); 1740 if (adapter->hw.mac.type >= e1000_82544) 1741 E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0); 1742 1743 e1000_led_off(&adapter->hw); 1744 e1000_cleanup_led(&adapter->hw); 1745 } 1746 1747 1748 /********************************************************************* 1749 * 1750 * Determine hardware revision. 1751 * 1752 **********************************************************************/ 1753 static void 1754 em_identify_hardware(if_ctx_t ctx) 1755 { 1756 device_t dev = iflib_get_dev(ctx); 1757 struct adapter *adapter = iflib_get_softc(ctx); 1758 1759 /* Make sure our PCI config space has the necessary stuff set */ 1760 adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2); 1761 1762 /* Save off the information about this board */ 1763 adapter->hw.vendor_id = pci_get_vendor(dev); 1764 adapter->hw.device_id = pci_get_device(dev); 1765 adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1); 1766 adapter->hw.subsystem_vendor_id = 1767 pci_read_config(dev, PCIR_SUBVEND_0, 2); 1768 adapter->hw.subsystem_device_id = 1769 pci_read_config(dev, PCIR_SUBDEV_0, 2); 1770 1771 /* Do Shared Code Init and Setup */ 1772 if (e1000_set_mac_type(&adapter->hw)) { 1773 device_printf(dev, "Setup init failure\n"); 1774 return; 1775 } 1776 } 1777 1778 static int 1779 em_allocate_pci_resources(if_ctx_t ctx) 1780 { 1781 struct adapter *adapter = iflib_get_softc(ctx); 1782 device_t dev = iflib_get_dev(ctx); 1783 int rid, val; 1784 1785 rid = PCIR_BAR(0); 1786 adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 1787 &rid, RF_ACTIVE); 1788 if (adapter->memory == NULL) { 1789 device_printf(dev, "Unable to allocate bus resource: memory\n"); 1790 return (ENXIO); 1791 } 1792 adapter->osdep.mem_bus_space_tag = 1793 rman_get_bustag(adapter->memory); 1794 adapter->osdep.mem_bus_space_handle = 1795 rman_get_bushandle(adapter->memory); 1796 adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle; 1797 1798 /* Only older adapters use IO mapping */ 1799 if (adapter->hw.mac.type < em_mac_min && 1800 adapter->hw.mac.type > e1000_82543) { 1801 /* Figure our where our IO BAR is ? */ 1802 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) { 1803 val = pci_read_config(dev, rid, 4); 1804 if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) { 1805 adapter->io_rid = rid; 1806 break; 1807 } 1808 rid += 4; 1809 /* check for 64bit BAR */ 1810 if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT) 1811 rid += 4; 1812 } 1813 if (rid >= PCIR_CIS) { 1814 device_printf(dev, "Unable to locate IO BAR\n"); 1815 return (ENXIO); 1816 } 1817 adapter->ioport = bus_alloc_resource_any(dev, 1818 SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE); 1819 if (adapter->ioport == NULL) { 1820 device_printf(dev, "Unable to allocate bus resource: " 1821 "ioport\n"); 1822 return (ENXIO); 1823 } 1824 adapter->hw.io_base = 0; 1825 adapter->osdep.io_bus_space_tag = 1826 rman_get_bustag(adapter->ioport); 1827 adapter->osdep.io_bus_space_handle = 1828 rman_get_bushandle(adapter->ioport); 1829 } 1830 1831 adapter->hw.back = &adapter->osdep; 1832 1833 return (0); 1834 } 1835 1836 /********************************************************************* 1837 * 1838 * Setup the MSIX Interrupt handlers 1839 * 1840 **********************************************************************/ 1841 static int 1842 em_if_msix_intr_assign(if_ctx_t ctx, int msix) 1843 { 1844 struct adapter *adapter = iflib_get_softc(ctx); 1845 struct em_rx_queue *rx_que = adapter->rx_queues; 1846 struct em_tx_queue *tx_que = adapter->tx_queues; 1847 int error, rid, i, vector = 0; 1848 char buf[16]; 1849 1850 /* First set up ring resources */ 1851 for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) { 1852 rid = vector +1; 1853 snprintf(buf, sizeof(buf), "rxq%d", i); 1854 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RX, em_msix_que, rx_que, rx_que->me, buf); 1855 if (error) { 1856 device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error); 1857 adapter->rx_num_queues = i + 1; 1858 goto fail; 1859 } 1860 1861 rx_que->msix = vector; 1862 1863 /* 1864 ** Set the bit to enable interrupt 1865 ** in E1000_IMS -- bits 20 and 21 1866 ** are for RX0 and RX1, note this has 1867 ** NOTHING to do with the MSIX vector 1868 */ 1869 if (adapter->hw.mac.type == e1000_82574) { 1870 rx_que->eims = 1 << (20 + i); 1871 adapter->ims |= rx_que->eims; 1872 adapter->ivars |= (8 | rx_que->msix) << (i * 4); 1873 } else if (adapter->hw.mac.type == e1000_82575) 1874 rx_que->eims = E1000_EICR_TX_QUEUE0 << vector; 1875 else 1876 rx_que->eims = 1 << vector; 1877 } 1878 1879 for (i = 0; i < adapter->tx_num_queues; i++, tx_que++) { 1880 rid = vector + 1; 1881 snprintf(buf, sizeof(buf), "txq%d", i); 1882 tx_que = &adapter->tx_queues[i]; 1883 iflib_softirq_alloc_generic(ctx, rid, IFLIB_INTR_TX, tx_que, tx_que->me, buf); 1884 1885 tx_que->msix = vector; 1886 1887 /* 1888 ** Set the bit to enable interrupt 1889 ** in E1000_IMS -- bits 22 and 23 1890 ** are for TX0 and TX1, note this has 1891 ** NOTHING to do with the MSIX vector 1892 */ 1893 if (adapter->hw.mac.type < igb_mac_min) { 1894 tx_que->eims = 1 << (22 + i); 1895 adapter->ims |= tx_que->eims; 1896 adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4)); 1897 } if (adapter->hw.mac.type == e1000_82575) 1898 tx_que->eims = E1000_EICR_TX_QUEUE0 << (i % adapter->tx_num_queues); 1899 else 1900 tx_que->eims = 1 << (i % adapter->tx_num_queues); 1901 } 1902 1903 /* Link interrupt */ 1904 rid = vector + 1; 1905 error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq"); 1906 1907 if (error) { 1908 device_printf(iflib_get_dev(ctx), "Failed to register admin handler"); 1909 goto fail; 1910 } 1911 adapter->linkvec = vector; 1912 if (adapter->hw.mac.type < igb_mac_min) { 1913 adapter->ivars |= (8 | vector) << 16; 1914 adapter->ivars |= 0x80000000; 1915 } 1916 return (0); 1917 fail: 1918 iflib_irq_free(ctx, &adapter->irq); 1919 rx_que = adapter->rx_queues; 1920 for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++) 1921 iflib_irq_free(ctx, &rx_que->que_irq); 1922 return (error); 1923 } 1924 1925 static void 1926 igb_configure_queues(struct adapter *adapter) 1927 { 1928 struct e1000_hw *hw = &adapter->hw; 1929 struct em_rx_queue *rx_que; 1930 struct em_tx_queue *tx_que; 1931 u32 tmp, ivar = 0, newitr = 0; 1932 1933 /* First turn on RSS capability */ 1934 if (adapter->hw.mac.type != e1000_82575) 1935 E1000_WRITE_REG(hw, E1000_GPIE, 1936 E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME | 1937 E1000_GPIE_PBA | E1000_GPIE_NSICR); 1938 1939 /* Turn on MSIX */ 1940 switch (adapter->hw.mac.type) { 1941 case e1000_82580: 1942 case e1000_i350: 1943 case e1000_i354: 1944 case e1000_i210: 1945 case e1000_i211: 1946 case e1000_vfadapt: 1947 case e1000_vfadapt_i350: 1948 /* RX entries */ 1949 for (int i = 0; i < adapter->rx_num_queues; i++) { 1950 u32 index = i >> 1; 1951 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 1952 rx_que = &adapter->rx_queues[i]; 1953 if (i & 1) { 1954 ivar &= 0xFF00FFFF; 1955 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16; 1956 } else { 1957 ivar &= 0xFFFFFF00; 1958 ivar |= rx_que->msix | E1000_IVAR_VALID; 1959 } 1960 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 1961 } 1962 /* TX entries */ 1963 for (int i = 0; i < adapter->tx_num_queues; i++) { 1964 u32 index = i >> 1; 1965 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 1966 tx_que = &adapter->tx_queues[i]; 1967 if (i & 1) { 1968 ivar &= 0x00FFFFFF; 1969 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24; 1970 } else { 1971 ivar &= 0xFFFF00FF; 1972 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8; 1973 } 1974 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 1975 adapter->que_mask |= tx_que->eims; 1976 } 1977 1978 /* And for the link interrupt */ 1979 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8; 1980 adapter->link_mask = 1 << adapter->linkvec; 1981 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); 1982 break; 1983 case e1000_82576: 1984 /* RX entries */ 1985 for (int i = 0; i < adapter->rx_num_queues; i++) { 1986 u32 index = i & 0x7; /* Each IVAR has two entries */ 1987 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 1988 rx_que = &adapter->rx_queues[i]; 1989 if (i < 8) { 1990 ivar &= 0xFFFFFF00; 1991 ivar |= rx_que->msix | E1000_IVAR_VALID; 1992 } else { 1993 ivar &= 0xFF00FFFF; 1994 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16; 1995 } 1996 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 1997 adapter->que_mask |= rx_que->eims; 1998 } 1999 /* TX entries */ 2000 for (int i = 0; i < adapter->tx_num_queues; i++) { 2001 u32 index = i & 0x7; /* Each IVAR has two entries */ 2002 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2003 tx_que = &adapter->tx_queues[i]; 2004 if (i < 8) { 2005 ivar &= 0xFFFF00FF; 2006 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8; 2007 } else { 2008 ivar &= 0x00FFFFFF; 2009 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24; 2010 } 2011 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2012 adapter->que_mask |= tx_que->eims; 2013 } 2014 2015 /* And for the link interrupt */ 2016 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8; 2017 adapter->link_mask = 1 << adapter->linkvec; 2018 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); 2019 break; 2020 2021 case e1000_82575: 2022 /* enable MSI-X support*/ 2023 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT); 2024 tmp |= E1000_CTRL_EXT_PBA_CLR; 2025 /* Auto-Mask interrupts upon ICR read. */ 2026 tmp |= E1000_CTRL_EXT_EIAME; 2027 tmp |= E1000_CTRL_EXT_IRCA; 2028 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp); 2029 2030 /* Queues */ 2031 for (int i = 0; i < adapter->rx_num_queues; i++) { 2032 rx_que = &adapter->rx_queues[i]; 2033 tmp = E1000_EICR_RX_QUEUE0 << i; 2034 tmp |= E1000_EICR_TX_QUEUE0 << i; 2035 rx_que->eims = tmp; 2036 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 2037 i, rx_que->eims); 2038 adapter->que_mask |= rx_que->eims; 2039 } 2040 2041 /* Link */ 2042 E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec), 2043 E1000_EIMS_OTHER); 2044 adapter->link_mask |= E1000_EIMS_OTHER; 2045 default: 2046 break; 2047 } 2048 2049 /* Set the starting interrupt rate */ 2050 if (em_max_interrupt_rate > 0) 2051 newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC; 2052 2053 if (hw->mac.type == e1000_82575) 2054 newitr |= newitr << 16; 2055 else 2056 newitr |= E1000_EITR_CNT_IGNR; 2057 2058 for (int i = 0; i < adapter->rx_num_queues; i++) { 2059 rx_que = &adapter->rx_queues[i]; 2060 E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr); 2061 } 2062 2063 return; 2064 } 2065 2066 static void 2067 em_free_pci_resources(if_ctx_t ctx) 2068 { 2069 struct adapter *adapter = iflib_get_softc(ctx); 2070 struct em_rx_queue *que = adapter->rx_queues; 2071 device_t dev = iflib_get_dev(ctx); 2072 2073 /* Release all msix queue resources */ 2074 if (adapter->intr_type == IFLIB_INTR_MSIX) 2075 iflib_irq_free(ctx, &adapter->irq); 2076 2077 for (int i = 0; i < adapter->rx_num_queues; i++, que++) { 2078 iflib_irq_free(ctx, &que->que_irq); 2079 } 2080 2081 2082 /* First release all the interrupt resources */ 2083 if (adapter->memory != NULL) { 2084 bus_release_resource(dev, SYS_RES_MEMORY, 2085 PCIR_BAR(0), adapter->memory); 2086 adapter->memory = NULL; 2087 } 2088 2089 if (adapter->flash != NULL) { 2090 bus_release_resource(dev, SYS_RES_MEMORY, 2091 EM_FLASH, adapter->flash); 2092 adapter->flash = NULL; 2093 } 2094 if (adapter->ioport != NULL) 2095 bus_release_resource(dev, SYS_RES_IOPORT, 2096 adapter->io_rid, adapter->ioport); 2097 } 2098 2099 /* Setup MSI or MSI/X */ 2100 static int 2101 em_setup_msix(if_ctx_t ctx) 2102 { 2103 struct adapter *adapter = iflib_get_softc(ctx); 2104 2105 if (adapter->hw.mac.type == e1000_82574) { 2106 em_enable_vectors_82574(ctx); 2107 } 2108 return (0); 2109 } 2110 2111 /********************************************************************* 2112 * 2113 * Initialize the hardware to a configuration 2114 * as specified by the adapter structure. 2115 * 2116 **********************************************************************/ 2117 2118 static void 2119 lem_smartspeed(struct adapter *adapter) 2120 { 2121 u16 phy_tmp; 2122 2123 if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) || 2124 adapter->hw.mac.autoneg == 0 || 2125 (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0) 2126 return; 2127 2128 if (adapter->smartspeed == 0) { 2129 /* If Master/Slave config fault is asserted twice, 2130 * we assume back-to-back */ 2131 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp); 2132 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT)) 2133 return; 2134 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp); 2135 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) { 2136 e1000_read_phy_reg(&adapter->hw, 2137 PHY_1000T_CTRL, &phy_tmp); 2138 if(phy_tmp & CR_1000T_MS_ENABLE) { 2139 phy_tmp &= ~CR_1000T_MS_ENABLE; 2140 e1000_write_phy_reg(&adapter->hw, 2141 PHY_1000T_CTRL, phy_tmp); 2142 adapter->smartspeed++; 2143 if(adapter->hw.mac.autoneg && 2144 !e1000_copper_link_autoneg(&adapter->hw) && 2145 !e1000_read_phy_reg(&adapter->hw, 2146 PHY_CONTROL, &phy_tmp)) { 2147 phy_tmp |= (MII_CR_AUTO_NEG_EN | 2148 MII_CR_RESTART_AUTO_NEG); 2149 e1000_write_phy_reg(&adapter->hw, 2150 PHY_CONTROL, phy_tmp); 2151 } 2152 } 2153 } 2154 return; 2155 } else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) { 2156 /* If still no link, perhaps using 2/3 pair cable */ 2157 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp); 2158 phy_tmp |= CR_1000T_MS_ENABLE; 2159 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp); 2160 if(adapter->hw.mac.autoneg && 2161 !e1000_copper_link_autoneg(&adapter->hw) && 2162 !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) { 2163 phy_tmp |= (MII_CR_AUTO_NEG_EN | 2164 MII_CR_RESTART_AUTO_NEG); 2165 e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp); 2166 } 2167 } 2168 /* Restart process after EM_SMARTSPEED_MAX iterations */ 2169 if(adapter->smartspeed++ == EM_SMARTSPEED_MAX) 2170 adapter->smartspeed = 0; 2171 } 2172 2173 2174 static void 2175 em_reset(if_ctx_t ctx) 2176 { 2177 device_t dev = iflib_get_dev(ctx); 2178 struct adapter *adapter = iflib_get_softc(ctx); 2179 struct ifnet *ifp = iflib_get_ifp(ctx); 2180 struct e1000_hw *hw = &adapter->hw; 2181 u16 rx_buffer_size; 2182 u32 pba; 2183 2184 INIT_DEBUGOUT("em_reset: begin"); 2185 2186 /* Set up smart power down as default off on newer adapters. */ 2187 if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 || 2188 hw->mac.type == e1000_82572)) { 2189 u16 phy_tmp = 0; 2190 2191 /* Speed up time to link by disabling smart power down. */ 2192 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp); 2193 phy_tmp &= ~IGP02E1000_PM_SPD; 2194 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp); 2195 } 2196 2197 /* 2198 * Packet Buffer Allocation (PBA) 2199 * Writing PBA sets the receive portion of the buffer 2200 * the remainder is used for the transmit buffer. 2201 */ 2202 switch (hw->mac.type) { 2203 /* Total Packet Buffer on these is 48K */ 2204 case e1000_82571: 2205 case e1000_82572: 2206 case e1000_80003es2lan: 2207 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */ 2208 break; 2209 case e1000_82573: /* 82573: Total Packet Buffer is 32K */ 2210 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */ 2211 break; 2212 case e1000_82574: 2213 case e1000_82583: 2214 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */ 2215 break; 2216 case e1000_ich8lan: 2217 pba = E1000_PBA_8K; 2218 break; 2219 case e1000_ich9lan: 2220 case e1000_ich10lan: 2221 /* Boost Receive side for jumbo frames */ 2222 if (adapter->hw.mac.max_frame_size > 4096) 2223 pba = E1000_PBA_14K; 2224 else 2225 pba = E1000_PBA_10K; 2226 break; 2227 case e1000_pchlan: 2228 case e1000_pch2lan: 2229 case e1000_pch_lpt: 2230 case e1000_pch_spt: 2231 pba = E1000_PBA_26K; 2232 break; 2233 default: 2234 if (adapter->hw.mac.max_frame_size > 8192) 2235 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */ 2236 else 2237 pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */ 2238 } 2239 E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba); 2240 2241 /* 2242 * These parameters control the automatic generation (Tx) and 2243 * response (Rx) to Ethernet PAUSE frames. 2244 * - High water mark should allow for at least two frames to be 2245 * received after sending an XOFF. 2246 * - Low water mark works best when it is very near the high water mark. 2247 * This allows the receiver to restart by sending XON when it has 2248 * drained a bit. Here we use an arbitrary value of 1500 which will 2249 * restart after one full frame is pulled from the buffer. There 2250 * could be several smaller frames in the buffer and if so they will 2251 * not trigger the XON until their total number reduces the buffer 2252 * by 1500. 2253 * - The pause time is fairly large at 1000 x 512ns = 512 usec. 2254 */ 2255 rx_buffer_size = ((E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10 ); 2256 hw->fc.high_water = rx_buffer_size - 2257 roundup2(adapter->hw.mac.max_frame_size, 1024); 2258 hw->fc.low_water = hw->fc.high_water - 1500; 2259 2260 if (adapter->fc) /* locally set flow control value? */ 2261 hw->fc.requested_mode = adapter->fc; 2262 else 2263 hw->fc.requested_mode = e1000_fc_full; 2264 2265 if (hw->mac.type == e1000_80003es2lan) 2266 hw->fc.pause_time = 0xFFFF; 2267 else 2268 hw->fc.pause_time = EM_FC_PAUSE_TIME; 2269 2270 hw->fc.send_xon = TRUE; 2271 2272 /* Device specific overrides/settings */ 2273 switch (hw->mac.type) { 2274 case e1000_pchlan: 2275 /* Workaround: no TX flow ctrl for PCH */ 2276 hw->fc.requested_mode = e1000_fc_rx_pause; 2277 hw->fc.pause_time = 0xFFFF; /* override */ 2278 if (if_getmtu(ifp) > ETHERMTU) { 2279 hw->fc.high_water = 0x3500; 2280 hw->fc.low_water = 0x1500; 2281 } else { 2282 hw->fc.high_water = 0x5000; 2283 hw->fc.low_water = 0x3000; 2284 } 2285 hw->fc.refresh_time = 0x1000; 2286 break; 2287 case e1000_pch2lan: 2288 case e1000_pch_lpt: 2289 case e1000_pch_spt: 2290 hw->fc.high_water = 0x5C20; 2291 hw->fc.low_water = 0x5048; 2292 hw->fc.pause_time = 0x0650; 2293 hw->fc.refresh_time = 0x0400; 2294 /* Jumbos need adjusted PBA */ 2295 if (if_getmtu(ifp) > ETHERMTU) 2296 E1000_WRITE_REG(hw, E1000_PBA, 12); 2297 else 2298 E1000_WRITE_REG(hw, E1000_PBA, 26); 2299 break; 2300 case e1000_ich9lan: 2301 case e1000_ich10lan: 2302 if (if_getmtu(ifp) > ETHERMTU) { 2303 hw->fc.high_water = 0x2800; 2304 hw->fc.low_water = hw->fc.high_water - 8; 2305 break; 2306 } 2307 /* else fall thru */ 2308 default: 2309 if (hw->mac.type == e1000_80003es2lan) 2310 hw->fc.pause_time = 0xFFFF; 2311 break; 2312 } 2313 2314 /* Issue a global reset */ 2315 e1000_reset_hw(hw); 2316 E1000_WRITE_REG(hw, E1000_WUC, 0); 2317 em_disable_aspm(adapter); 2318 /* and a re-init */ 2319 if (e1000_init_hw(hw) < 0) { 2320 device_printf(dev, "Hardware Initialization Failed\n"); 2321 return; 2322 } 2323 2324 E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN); 2325 e1000_get_phy_info(hw); 2326 e1000_check_for_link(hw); 2327 } 2328 2329 #define RSSKEYLEN 10 2330 static void 2331 em_initialize_rss_mapping(struct adapter *adapter) 2332 { 2333 uint8_t rss_key[4 * RSSKEYLEN]; 2334 uint32_t reta = 0; 2335 struct e1000_hw *hw = &adapter->hw; 2336 int i; 2337 2338 /* 2339 * Configure RSS key 2340 */ 2341 arc4rand(rss_key, sizeof(rss_key), 0); 2342 for (i = 0; i < RSSKEYLEN; ++i) { 2343 uint32_t rssrk = 0; 2344 2345 rssrk = EM_RSSRK_VAL(rss_key, i); 2346 E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk); 2347 } 2348 2349 /* 2350 * Configure RSS redirect table in following fashion: 2351 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)] 2352 */ 2353 for (i = 0; i < sizeof(reta); ++i) { 2354 uint32_t q; 2355 2356 q = (i % adapter->rx_num_queues) << 7; 2357 reta |= q << (8 * i); 2358 } 2359 2360 for (i = 0; i < 32; ++i) 2361 E1000_WRITE_REG(hw, E1000_RETA(i), reta); 2362 2363 E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q | 2364 E1000_MRQC_RSS_FIELD_IPV4_TCP | 2365 E1000_MRQC_RSS_FIELD_IPV4 | 2366 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX | 2367 E1000_MRQC_RSS_FIELD_IPV6_EX | 2368 E1000_MRQC_RSS_FIELD_IPV6); 2369 2370 } 2371 2372 static void 2373 igb_initialize_rss_mapping(struct adapter *adapter) 2374 { 2375 struct e1000_hw *hw = &adapter->hw; 2376 int i; 2377 int queue_id; 2378 u32 reta; 2379 u32 rss_key[10], mrqc, shift = 0; 2380 2381 /* XXX? */ 2382 if (adapter->hw.mac.type == e1000_82575) 2383 shift = 6; 2384 2385 /* 2386 * The redirection table controls which destination 2387 * queue each bucket redirects traffic to. 2388 * Each DWORD represents four queues, with the LSB 2389 * being the first queue in the DWORD. 2390 * 2391 * This just allocates buckets to queues using round-robin 2392 * allocation. 2393 * 2394 * NOTE: It Just Happens to line up with the default 2395 * RSS allocation method. 2396 */ 2397 2398 /* Warning FM follows */ 2399 reta = 0; 2400 for (i = 0; i < 128; i++) { 2401 #ifdef RSS 2402 queue_id = rss_get_indirection_to_bucket(i); 2403 /* 2404 * If we have more queues than buckets, we'll 2405 * end up mapping buckets to a subset of the 2406 * queues. 2407 * 2408 * If we have more buckets than queues, we'll 2409 * end up instead assigning multiple buckets 2410 * to queues. 2411 * 2412 * Both are suboptimal, but we need to handle 2413 * the case so we don't go out of bounds 2414 * indexing arrays and such. 2415 */ 2416 queue_id = queue_id % adapter->rx_num_queues; 2417 #else 2418 queue_id = (i % adapter->rx_num_queues); 2419 #endif 2420 /* Adjust if required */ 2421 queue_id = queue_id << shift; 2422 2423 /* 2424 * The low 8 bits are for hash value (n+0); 2425 * The next 8 bits are for hash value (n+1), etc. 2426 */ 2427 reta = reta >> 8; 2428 reta = reta | ( ((uint32_t) queue_id) << 24); 2429 if ((i & 3) == 3) { 2430 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta); 2431 reta = 0; 2432 } 2433 } 2434 2435 /* Now fill in hash table */ 2436 2437 /* 2438 * MRQC: Multiple Receive Queues Command 2439 * Set queuing to RSS control, number depends on the device. 2440 */ 2441 mrqc = E1000_MRQC_ENABLE_RSS_8Q; 2442 2443 #ifdef RSS 2444 /* XXX ew typecasting */ 2445 rss_getkey((uint8_t *) &rss_key); 2446 #else 2447 arc4rand(&rss_key, sizeof(rss_key), 0); 2448 #endif 2449 for (i = 0; i < 10; i++) 2450 E1000_WRITE_REG_ARRAY(hw, 2451 E1000_RSSRK(0), i, rss_key[i]); 2452 2453 /* 2454 * Configure the RSS fields to hash upon. 2455 */ 2456 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 | 2457 E1000_MRQC_RSS_FIELD_IPV4_TCP); 2458 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 | 2459 E1000_MRQC_RSS_FIELD_IPV6_TCP); 2460 mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP | 2461 E1000_MRQC_RSS_FIELD_IPV6_UDP); 2462 mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX | 2463 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); 2464 2465 E1000_WRITE_REG(hw, E1000_MRQC, mrqc); 2466 } 2467 2468 /********************************************************************* 2469 * 2470 * Setup networking device structure and register an interface. 2471 * 2472 **********************************************************************/ 2473 static int 2474 em_setup_interface(if_ctx_t ctx) 2475 { 2476 struct ifnet *ifp = iflib_get_ifp(ctx); 2477 struct adapter *adapter = iflib_get_softc(ctx); 2478 if_softc_ctx_t scctx = adapter->shared; 2479 uint64_t cap = 0; 2480 2481 INIT_DEBUGOUT("em_setup_interface: begin"); 2482 2483 /* TSO parameters */ 2484 ifp->if_hw_tsomax = IP_MAXPACKET; 2485 /* Take m_pullup(9)'s in em_xmit() w/ TSO into acount. */ 2486 ifp->if_hw_tsomaxsegcount = EM_MAX_SCATTER - 5; 2487 ifp->if_hw_tsomaxsegsize = EM_TSO_SEG_SIZE; 2488 2489 /* Single Queue */ 2490 if (adapter->tx_num_queues == 1) { 2491 if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1); 2492 if_setsendqready(ifp); 2493 } 2494 2495 cap = IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM | IFCAP_TSO4; 2496 cap |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU; 2497 2498 /* 2499 * Tell the upper layer(s) we 2500 * support full VLAN capability 2501 */ 2502 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); 2503 if_setcapabilitiesbit(ifp, cap, 0); 2504 2505 /* 2506 ** Don't turn this on by default, if vlans are 2507 ** created on another pseudo device (eg. lagg) 2508 ** then vlan events are not passed thru, breaking 2509 ** operation, but with HW FILTER off it works. If 2510 ** using vlans directly on the em driver you can 2511 ** enable this and get full hardware tag filtering. 2512 */ 2513 if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWFILTER,0); 2514 2515 /* Enable only WOL MAGIC by default */ 2516 if (adapter->wol) { 2517 if_setcapabilitiesbit(ifp, IFCAP_WOL, 0); 2518 if_setcapenablebit(ifp, IFCAP_WOL_MAGIC, 0); 2519 } 2520 2521 /* 2522 * Specify the media types supported by this adapter and register 2523 * callbacks to update media and link information 2524 */ 2525 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || 2526 (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) { 2527 u_char fiber_type = IFM_1000_SX; /* default type */ 2528 2529 if (adapter->hw.mac.type == e1000_82545) 2530 fiber_type = IFM_1000_LX; 2531 ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL); 2532 ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL); 2533 } else { 2534 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL); 2535 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL); 2536 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL); 2537 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); 2538 if (adapter->hw.phy.type != e1000_phy_ife) { 2539 ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); 2540 ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL); 2541 } 2542 } 2543 ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL); 2544 ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO); 2545 return (0); 2546 } 2547 2548 static int 2549 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets) 2550 { 2551 struct adapter *adapter = iflib_get_softc(ctx); 2552 if_softc_ctx_t scctx = adapter->shared; 2553 int error = E1000_SUCCESS; 2554 struct em_tx_queue *que; 2555 int i; 2556 2557 MPASS(adapter->tx_num_queues > 0); 2558 MPASS(adapter->tx_num_queues == ntxqsets); 2559 2560 /* First allocate the top level queue structs */ 2561 if (!(adapter->tx_queues = 2562 (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) * 2563 adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { 2564 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n"); 2565 return(ENOMEM); 2566 } 2567 2568 for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) { 2569 /* Set up some basics */ 2570 struct tx_ring *txr = &que->txr; 2571 txr->adapter = que->adapter = adapter; 2572 txr->que = que; 2573 que->me = txr->me = i; 2574 2575 /* Allocate transmit buffer memory */ 2576 if (!(txr->tx_buffers = (struct em_txbuffer *) malloc(sizeof(struct em_txbuffer) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) { 2577 device_printf(iflib_get_dev(ctx), "failed to allocate tx_buffer memory\n"); 2578 error = ENOMEM; 2579 goto fail; 2580 } 2581 2582 /* get the virtual and physical address of the hardware queues */ 2583 txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs]; 2584 txr->tx_paddr = paddrs[i*ntxqs]; 2585 2586 } 2587 2588 device_printf(iflib_get_dev(ctx), "allocated for %d tx_queues\n", adapter->tx_num_queues); 2589 return (0); 2590 fail: 2591 em_if_queues_free(ctx); 2592 return (error); 2593 } 2594 2595 static int 2596 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets) 2597 { 2598 struct adapter *adapter = iflib_get_softc(ctx); 2599 int error = E1000_SUCCESS; 2600 struct em_rx_queue *que; 2601 int i; 2602 2603 MPASS(adapter->rx_num_queues > 0); 2604 MPASS(adapter->rx_num_queues == nrxqsets); 2605 2606 /* First allocate the top level queue structs */ 2607 if (!(adapter->rx_queues = 2608 (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) * 2609 adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { 2610 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n"); 2611 error = ENOMEM; 2612 goto fail; 2613 } 2614 2615 for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) { 2616 /* Set up some basics */ 2617 struct rx_ring *rxr = &que->rxr; 2618 rxr->adapter = que->adapter = adapter; 2619 rxr->que = que; 2620 que->me = rxr->me = i; 2621 2622 /* get the virtual and physical address of the hardware queues */ 2623 rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs]; 2624 rxr->rx_paddr = paddrs[i*nrxqs]; 2625 } 2626 2627 device_printf(iflib_get_dev(ctx), "allocated for %d rx_queues\n", adapter->rx_num_queues); 2628 2629 return (0); 2630 fail: 2631 em_if_queues_free(ctx); 2632 return (error); 2633 } 2634 2635 static void 2636 em_if_queues_free(if_ctx_t ctx) 2637 { 2638 struct adapter *adapter = iflib_get_softc(ctx); 2639 struct em_tx_queue *tx_que = adapter->tx_queues; 2640 struct em_rx_queue *rx_que = adapter->rx_queues; 2641 2642 if (tx_que != NULL) { 2643 for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) { 2644 struct tx_ring *txr = &tx_que->txr; 2645 if (txr->tx_buffers == NULL) 2646 break; 2647 2648 free(txr->tx_buffers, M_DEVBUF); 2649 txr->tx_buffers = NULL; 2650 } 2651 free(adapter->tx_queues, M_DEVBUF); 2652 adapter->tx_queues = NULL; 2653 } 2654 2655 if (rx_que != NULL) { 2656 free(adapter->rx_queues, M_DEVBUF); 2657 adapter->rx_queues = NULL; 2658 } 2659 2660 em_release_hw_control(adapter); 2661 2662 if (adapter->mta != NULL) { 2663 free(adapter->mta, M_DEVBUF); 2664 } 2665 } 2666 2667 /********************************************************************* 2668 * 2669 * Enable transmit unit. 2670 * 2671 **********************************************************************/ 2672 static void 2673 em_initialize_transmit_unit(if_ctx_t ctx) 2674 { 2675 struct adapter *adapter = iflib_get_softc(ctx); 2676 if_softc_ctx_t scctx = adapter->shared; 2677 struct em_tx_queue *que; 2678 struct tx_ring *txr; 2679 struct e1000_hw *hw = &adapter->hw; 2680 u32 tctl, txdctl = 0, tarc, tipg = 0; 2681 2682 INIT_DEBUGOUT("em_initialize_transmit_unit: begin"); 2683 2684 for (int i = 0; i < adapter->tx_num_queues; i++, txr++) { 2685 u64 bus_addr; 2686 caddr_t offp, endp; 2687 2688 que = &adapter->tx_queues[i]; 2689 txr = &que->txr; 2690 bus_addr = txr->tx_paddr; 2691 2692 /*Enable all queues */ 2693 em_init_tx_ring(que); 2694 2695 /* Clear checksum offload context. */ 2696 offp = (caddr_t)&txr->csum_flags; 2697 endp = (caddr_t)(txr + 1); 2698 bzero(offp, endp - offp); 2699 2700 /* Base and Len of TX Ring */ 2701 E1000_WRITE_REG(hw, E1000_TDLEN(i), 2702 scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc)); 2703 E1000_WRITE_REG(hw, E1000_TDBAH(i), 2704 (u32)(bus_addr >> 32)); 2705 E1000_WRITE_REG(hw, E1000_TDBAL(i), 2706 (u32)bus_addr); 2707 /* Init the HEAD/TAIL indices */ 2708 E1000_WRITE_REG(hw, E1000_TDT(i), 0); 2709 E1000_WRITE_REG(hw, E1000_TDH(i), 0); 2710 2711 HW_DEBUGOUT2("Base = %x, Length = %x\n", 2712 E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)), 2713 E1000_READ_REG(&adapter->hw, E1000_TDLEN(i))); 2714 2715 txdctl = 0; /* clear txdctl */ 2716 txdctl |= 0x1f; /* PTHRESH */ 2717 txdctl |= 1 << 8; /* HTHRESH */ 2718 txdctl |= 1 << 16;/* WTHRESH */ 2719 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */ 2720 txdctl |= E1000_TXDCTL_GRAN; 2721 txdctl |= 1 << 25; /* LWTHRESH */ 2722 2723 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl); 2724 } 2725 2726 /* Set the default values for the Tx Inter Packet Gap timer */ 2727 switch (adapter->hw.mac.type) { 2728 case e1000_80003es2lan: 2729 tipg = DEFAULT_82543_TIPG_IPGR1; 2730 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 << 2731 E1000_TIPG_IPGR2_SHIFT; 2732 break; 2733 case e1000_82542: 2734 tipg = DEFAULT_82542_TIPG_IPGT; 2735 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; 2736 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; 2737 break; 2738 default: 2739 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || 2740 (adapter->hw.phy.media_type == 2741 e1000_media_type_internal_serdes)) 2742 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 2743 else 2744 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 2745 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; 2746 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; 2747 } 2748 2749 E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg); 2750 E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value); 2751 2752 if(adapter->hw.mac.type >= e1000_82540) 2753 E1000_WRITE_REG(&adapter->hw, E1000_TADV, 2754 adapter->tx_abs_int_delay.value); 2755 2756 if ((adapter->hw.mac.type == e1000_82571) || 2757 (adapter->hw.mac.type == e1000_82572)) { 2758 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0)); 2759 tarc |= TARC_SPEED_MODE_BIT; 2760 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); 2761 } else if (adapter->hw.mac.type == e1000_80003es2lan) { 2762 /* errata: program both queues to unweighted RR */ 2763 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0)); 2764 tarc |= 1; 2765 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); 2766 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1)); 2767 tarc |= 1; 2768 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc); 2769 } else if (adapter->hw.mac.type == e1000_82574) { 2770 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0)); 2771 tarc |= TARC_ERRATA_BIT; 2772 if ( adapter->tx_num_queues > 1) { 2773 tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX); 2774 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); 2775 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc); 2776 } else 2777 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); 2778 } 2779 2780 if (adapter->tx_int_delay.value > 0) 2781 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 2782 2783 /* Program the Transmit Control Register */ 2784 tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL); 2785 tctl &= ~E1000_TCTL_CT; 2786 tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN | 2787 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT)); 2788 2789 if (adapter->hw.mac.type >= e1000_82571) 2790 tctl |= E1000_TCTL_MULR; 2791 2792 /* This write will effectively turn on the transmit unit. */ 2793 E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl); 2794 2795 if (hw->mac.type == e1000_pch_spt) { 2796 u32 reg; 2797 reg = E1000_READ_REG(hw, E1000_IOSFPC); 2798 reg |= E1000_RCTL_RDMTS_HEX; 2799 E1000_WRITE_REG(hw, E1000_IOSFPC, reg); 2800 reg = E1000_READ_REG(hw, E1000_TARC(0)); 2801 reg |= E1000_TARC0_CB_MULTIQ_3_REQ; 2802 E1000_WRITE_REG(hw, E1000_TARC(0), reg); 2803 } 2804 } 2805 2806 /********************************************************************* 2807 * 2808 * Enable receive unit. 2809 * 2810 **********************************************************************/ 2811 2812 static void 2813 em_initialize_receive_unit(if_ctx_t ctx) 2814 { 2815 struct adapter *adapter = iflib_get_softc(ctx); 2816 if_softc_ctx_t scctx = adapter->shared; 2817 struct ifnet *ifp = iflib_get_ifp(ctx); 2818 struct e1000_hw *hw = &adapter->hw; 2819 struct em_rx_queue *que; 2820 int i; 2821 u32 rctl, rxcsum, rfctl; 2822 2823 INIT_DEBUGOUT("em_initialize_receive_units: begin"); 2824 2825 /* 2826 * Make sure receives are disabled while setting 2827 * up the descriptor ring 2828 */ 2829 rctl = E1000_READ_REG(hw, E1000_RCTL); 2830 /* Do not disable if ever enabled on this hardware */ 2831 if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583)) 2832 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); 2833 2834 /* Setup the Receive Control Register */ 2835 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 2836 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | 2837 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 2838 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 2839 2840 /* Do not store bad packets */ 2841 rctl &= ~E1000_RCTL_SBP; 2842 2843 /* Enable Long Packet receive */ 2844 if (if_getmtu(ifp) > ETHERMTU) 2845 rctl |= E1000_RCTL_LPE; 2846 else 2847 rctl &= ~E1000_RCTL_LPE; 2848 2849 /* Strip the CRC */ 2850 if (!em_disable_crc_stripping) 2851 rctl |= E1000_RCTL_SECRC; 2852 2853 if (adapter->hw.mac.type >= e1000_82540) { 2854 E1000_WRITE_REG(&adapter->hw, E1000_RADV, 2855 adapter->rx_abs_int_delay.value); 2856 2857 /* 2858 * Set the interrupt throttling rate. Value is calculated 2859 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) 2860 */ 2861 E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR); 2862 } 2863 E1000_WRITE_REG(&adapter->hw, E1000_RDTR, 2864 adapter->rx_int_delay.value); 2865 2866 /* Use extended rx descriptor formats */ 2867 rfctl = E1000_READ_REG(hw, E1000_RFCTL); 2868 rfctl |= E1000_RFCTL_EXTEN; 2869 /* 2870 ** When using MSIX interrupts we need to throttle 2871 ** using the EITR register (82574 only) 2872 */ 2873 if (hw->mac.type == e1000_82574) { 2874 for (int i = 0; i < 4; i++) 2875 E1000_WRITE_REG(hw, E1000_EITR_82574(i), 2876 DEFAULT_ITR); 2877 /* Disable accelerated acknowledge */ 2878 rfctl |= E1000_RFCTL_ACK_DIS; 2879 } 2880 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); 2881 2882 rxcsum = E1000_READ_REG(hw, E1000_RXCSUM); 2883 if (if_getcapenable(ifp) & IFCAP_RXCSUM && 2884 adapter->hw.mac.type >= e1000_82543) { 2885 if (adapter->tx_num_queues > 1) { 2886 if (adapter->hw.mac.type >= igb_mac_min) { 2887 rxcsum |= E1000_RXCSUM_PCSD; 2888 if (hw->mac.type != e1000_82575) 2889 rxcsum |= E1000_RXCSUM_CRCOFL; 2890 } else 2891 rxcsum |= E1000_RXCSUM_TUOFL | 2892 E1000_RXCSUM_IPOFL | 2893 E1000_RXCSUM_PCSD; 2894 } else { 2895 if (adapter->hw.mac.type >= igb_mac_min) 2896 rxcsum |= E1000_RXCSUM_IPPCSE; 2897 else 2898 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL; 2899 if (adapter->hw.mac.type > e1000_82575) 2900 rxcsum |= E1000_RXCSUM_CRCOFL; 2901 } 2902 } else 2903 rxcsum &= ~E1000_RXCSUM_TUOFL; 2904 2905 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum); 2906 2907 if (adapter->rx_num_queues > 1) { 2908 if (adapter->hw.mac.type >= igb_mac_min) 2909 igb_initialize_rss_mapping(adapter); 2910 else 2911 em_initialize_rss_mapping(adapter); 2912 } 2913 2914 /* 2915 ** XXX TEMPORARY WORKAROUND: on some systems with 82573 2916 ** long latencies are observed, like Lenovo X60. This 2917 ** change eliminates the problem, but since having positive 2918 ** values in RDTR is a known source of problems on other 2919 ** platforms another solution is being sought. 2920 */ 2921 if (hw->mac.type == e1000_82573) 2922 E1000_WRITE_REG(hw, E1000_RDTR, 0x20); 2923 2924 for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) { 2925 struct rx_ring *rxr = &que->rxr; 2926 /* Setup the Base and Length of the Rx Descriptor Ring */ 2927 u64 bus_addr = rxr->rx_paddr; 2928 #if 0 2929 u32 rdt = adapter->rx_num_queues -1; /* default */ 2930 #endif 2931 2932 E1000_WRITE_REG(hw, E1000_RDLEN(i), 2933 scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended)); 2934 E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32)); 2935 E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr); 2936 /* Setup the Head and Tail Descriptor Pointers */ 2937 E1000_WRITE_REG(hw, E1000_RDH(i), 0); 2938 E1000_WRITE_REG(hw, E1000_RDT(i), 0); 2939 } 2940 2941 /* 2942 * Set PTHRESH for improved jumbo performance 2943 * According to 10.2.5.11 of Intel 82574 Datasheet, 2944 * RXDCTL(1) is written whenever RXDCTL(0) is written. 2945 * Only write to RXDCTL(1) if there is a need for different 2946 * settings. 2947 */ 2948 2949 if (((adapter->hw.mac.type == e1000_ich9lan) || 2950 (adapter->hw.mac.type == e1000_pch2lan) || 2951 (adapter->hw.mac.type == e1000_ich10lan)) && 2952 (if_getmtu(ifp) > ETHERMTU)) { 2953 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0)); 2954 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3); 2955 } else if (adapter->hw.mac.type == e1000_82574) { 2956 for (int i = 0; i < adapter->rx_num_queues; i++) { 2957 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i)); 2958 rxdctl |= 0x20; /* PTHRESH */ 2959 rxdctl |= 4 << 8; /* HTHRESH */ 2960 rxdctl |= 4 << 16;/* WTHRESH */ 2961 rxdctl |= 1 << 24; /* Switch to granularity */ 2962 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); 2963 } 2964 } else if (adapter->hw.mac.type >= igb_mac_min) { 2965 u32 psize, srrctl = 0; 2966 2967 if (ifp->if_mtu > ETHERMTU) { 2968 rctl |= E1000_RCTL_LPE; 2969 2970 /* Set maximum packet len */ 2971 psize = scctx->isc_max_frame_size; 2972 if (psize <= 4096) { 2973 srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 2974 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX; 2975 } else if (psize > 4096) { 2976 srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 2977 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX; 2978 } 2979 2980 /* are we on a vlan? */ 2981 if (ifp->if_vlantrunk != NULL) 2982 psize += VLAN_TAG_SIZE; 2983 E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize); 2984 } else { 2985 rctl &= ~E1000_RCTL_LPE; 2986 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 2987 rctl |= E1000_RCTL_SZ_2048; 2988 } 2989 2990 /* 2991 * If TX flow control is disabled and there's >1 queue defined, 2992 * enable DROP. 2993 * 2994 * This drops frames rather than hanging the RX MAC for all queues. 2995 */ 2996 if ((adapter->rx_num_queues > 1) && 2997 (adapter->fc == e1000_fc_none || 2998 adapter->fc == e1000_fc_rx_pause)) { 2999 srrctl |= E1000_SRRCTL_DROP_EN; 3000 } 3001 /* Setup the Base and Length of the Rx Descriptor Rings */ 3002 for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) { 3003 struct rx_ring *rxr = &que->rxr; 3004 u64 bus_addr = rxr->rx_paddr; 3005 u32 rxdctl; 3006 3007 #ifdef notyet 3008 /* Configure for header split? -- ignore for now */ 3009 rxr->hdr_split = igb_header_split; 3010 #else 3011 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 3012 #endif 3013 3014 3015 E1000_WRITE_REG(hw, E1000_RDLEN(i), 3016 scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc)); 3017 E1000_WRITE_REG(hw, E1000_RDBAH(i), 3018 (uint32_t)(bus_addr >> 32)); 3019 E1000_WRITE_REG(hw, E1000_RDBAL(i), 3020 (uint32_t)bus_addr); 3021 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl); 3022 /* Enable this Queue */ 3023 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i)); 3024 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 3025 rxdctl &= 0xFFF00000; 3026 rxdctl |= IGB_RX_PTHRESH; 3027 rxdctl |= IGB_RX_HTHRESH << 8; 3028 rxdctl |= IGB_RX_WTHRESH << 16; 3029 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); 3030 } 3031 } 3032 if (adapter->hw.mac.type >= e1000_pch2lan) { 3033 if (if_getmtu(ifp) > ETHERMTU) 3034 e1000_lv_jumbo_workaround_ich8lan(hw, TRUE); 3035 else 3036 e1000_lv_jumbo_workaround_ich8lan(hw, FALSE); 3037 } 3038 3039 /* Make sure VLAN Filters are off */ 3040 rctl &= ~E1000_RCTL_VFE; 3041 3042 if (adapter->rx_mbuf_sz == MCLBYTES) 3043 rctl |= E1000_RCTL_SZ_2048; 3044 else if (adapter->rx_mbuf_sz == MJUMPAGESIZE) 3045 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX; 3046 else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) 3047 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX; 3048 3049 /* ensure we clear use DTYPE of 00 here */ 3050 rctl &= ~0x00000C00; 3051 /* Write out the settings */ 3052 E1000_WRITE_REG(hw, E1000_RCTL, rctl); 3053 3054 return; 3055 } 3056 3057 static void 3058 em_if_vlan_register(if_ctx_t ctx, u16 vtag) 3059 { 3060 struct adapter *adapter = iflib_get_softc(ctx); 3061 u32 index, bit; 3062 3063 index = (vtag >> 5) & 0x7F; 3064 bit = vtag & 0x1F; 3065 adapter->shadow_vfta[index] |= (1 << bit); 3066 ++adapter->num_vlans; 3067 } 3068 3069 static void 3070 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag) 3071 { 3072 struct adapter *adapter = iflib_get_softc(ctx); 3073 u32 index, bit; 3074 3075 index = (vtag >> 5) & 0x7F; 3076 bit = vtag & 0x1F; 3077 adapter->shadow_vfta[index] &= ~(1 << bit); 3078 --adapter->num_vlans; 3079 } 3080 3081 static void 3082 em_setup_vlan_hw_support(struct adapter *adapter) 3083 { 3084 struct e1000_hw *hw = &adapter->hw; 3085 u32 reg; 3086 3087 /* 3088 ** We get here thru init_locked, meaning 3089 ** a soft reset, this has already cleared 3090 ** the VFTA and other state, so if there 3091 ** have been no vlan's registered do nothing. 3092 */ 3093 if (adapter->num_vlans == 0) 3094 return; 3095 3096 /* 3097 ** A soft reset zero's out the VFTA, so 3098 ** we need to repopulate it now. 3099 */ 3100 for (int i = 0; i < EM_VFTA_SIZE; i++) 3101 if (adapter->shadow_vfta[i] != 0) 3102 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, 3103 i, adapter->shadow_vfta[i]); 3104 3105 reg = E1000_READ_REG(hw, E1000_CTRL); 3106 reg |= E1000_CTRL_VME; 3107 E1000_WRITE_REG(hw, E1000_CTRL, reg); 3108 3109 /* Enable the Filter Table */ 3110 reg = E1000_READ_REG(hw, E1000_RCTL); 3111 reg &= ~E1000_RCTL_CFIEN; 3112 reg |= E1000_RCTL_VFE; 3113 E1000_WRITE_REG(hw, E1000_RCTL, reg); 3114 } 3115 3116 static void 3117 em_if_enable_intr(if_ctx_t ctx) 3118 { 3119 struct adapter *adapter = iflib_get_softc(ctx); 3120 struct e1000_hw *hw = &adapter->hw; 3121 u32 ims_mask = IMS_ENABLE_MASK; 3122 3123 if (hw->mac.type == e1000_82574) { 3124 E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK); 3125 ims_mask |= adapter->ims; 3126 } if (adapter->intr_type == IFLIB_INTR_MSIX && hw->mac.type >= igb_mac_min) { 3127 u32 mask = (adapter->que_mask | adapter->link_mask); 3128 3129 E1000_WRITE_REG(&adapter->hw, E1000_EIAC, mask); 3130 E1000_WRITE_REG(&adapter->hw, E1000_EIAM, mask); 3131 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, mask); 3132 ims_mask = E1000_IMS_LSC; 3133 } 3134 3135 E1000_WRITE_REG(hw, E1000_IMS, ims_mask); 3136 } 3137 3138 static void 3139 em_if_disable_intr(if_ctx_t ctx) 3140 { 3141 struct adapter *adapter = iflib_get_softc(ctx); 3142 struct e1000_hw *hw = &adapter->hw; 3143 3144 if (adapter->intr_type == IFLIB_INTR_MSIX) { 3145 if (hw->mac.type >= igb_mac_min) 3146 E1000_WRITE_REG(&adapter->hw, E1000_EIMC, ~0); 3147 E1000_WRITE_REG(&adapter->hw, E1000_EIAC, 0); 3148 } 3149 E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff); 3150 } 3151 3152 /* 3153 * Bit of a misnomer, what this really means is 3154 * to enable OS management of the system... aka 3155 * to disable special hardware management features 3156 */ 3157 static void 3158 em_init_manageability(struct adapter *adapter) 3159 { 3160 /* A shared code workaround */ 3161 #define E1000_82542_MANC2H E1000_MANC2H 3162 if (adapter->has_manage) { 3163 int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H); 3164 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC); 3165 3166 /* disable hardware interception of ARP */ 3167 manc &= ~(E1000_MANC_ARP_EN); 3168 3169 /* enable receiving management packets to the host */ 3170 manc |= E1000_MANC_EN_MNG2HOST; 3171 #define E1000_MNG2HOST_PORT_623 (1 << 5) 3172 #define E1000_MNG2HOST_PORT_664 (1 << 6) 3173 manc2h |= E1000_MNG2HOST_PORT_623; 3174 manc2h |= E1000_MNG2HOST_PORT_664; 3175 E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h); 3176 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc); 3177 } 3178 } 3179 3180 /* 3181 * Give control back to hardware management 3182 * controller if there is one. 3183 */ 3184 static void 3185 em_release_manageability(struct adapter *adapter) 3186 { 3187 if (adapter->has_manage) { 3188 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC); 3189 3190 /* re-enable hardware interception of ARP */ 3191 manc |= E1000_MANC_ARP_EN; 3192 manc &= ~E1000_MANC_EN_MNG2HOST; 3193 3194 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc); 3195 } 3196 } 3197 3198 /* 3199 * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit. 3200 * For ASF and Pass Through versions of f/w this means 3201 * that the driver is loaded. For AMT version type f/w 3202 * this means that the network i/f is open. 3203 */ 3204 static void 3205 em_get_hw_control(struct adapter *adapter) 3206 { 3207 u32 ctrl_ext, swsm; 3208 3209 if (adapter->hw.mac.type == e1000_82573) { 3210 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM); 3211 E1000_WRITE_REG(&adapter->hw, E1000_SWSM, 3212 swsm | E1000_SWSM_DRV_LOAD); 3213 return; 3214 } 3215 /* else */ 3216 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); 3217 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, 3218 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 3219 return; 3220 } 3221 3222 /* 3223 * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. 3224 * For ASF and Pass Through versions of f/w this means that 3225 * the driver is no longer loaded. For AMT versions of the 3226 * f/w this means that the network i/f is closed. 3227 */ 3228 static void 3229 em_release_hw_control(struct adapter *adapter) 3230 { 3231 u32 ctrl_ext, swsm; 3232 3233 if (!adapter->has_manage) 3234 return; 3235 3236 if (adapter->hw.mac.type == e1000_82573) { 3237 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM); 3238 E1000_WRITE_REG(&adapter->hw, E1000_SWSM, 3239 swsm & ~E1000_SWSM_DRV_LOAD); 3240 return; 3241 } 3242 /* else */ 3243 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); 3244 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, 3245 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 3246 return; 3247 } 3248 3249 static int 3250 em_is_valid_ether_addr(u8 *addr) 3251 { 3252 char zero_addr[6] = { 0, 0, 0, 0, 0, 0 }; 3253 3254 if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) { 3255 return (FALSE); 3256 } 3257 3258 return (TRUE); 3259 } 3260 3261 /* 3262 ** Parse the interface capabilities with regard 3263 ** to both system management and wake-on-lan for 3264 ** later use. 3265 */ 3266 static void 3267 em_get_wakeup(if_ctx_t ctx) 3268 { 3269 struct adapter *adapter = iflib_get_softc(ctx); 3270 device_t dev = iflib_get_dev(ctx); 3271 u16 eeprom_data = 0, device_id, apme_mask; 3272 3273 adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw); 3274 apme_mask = EM_EEPROM_APME; 3275 3276 switch (adapter->hw.mac.type) { 3277 case e1000_82542: 3278 case e1000_82543: 3279 break; 3280 case e1000_82544: 3281 e1000_read_nvm(&adapter->hw, 3282 NVM_INIT_CONTROL2_REG, 1, &eeprom_data); 3283 apme_mask = EM_82544_APME; 3284 break; 3285 case e1000_82546: 3286 case e1000_82546_rev_3: 3287 if (adapter->hw.bus.func == 1) { 3288 e1000_read_nvm(&adapter->hw, 3289 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 3290 break; 3291 } else 3292 e1000_read_nvm(&adapter->hw, 3293 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3294 break; 3295 case e1000_82573: 3296 case e1000_82583: 3297 adapter->has_amt = TRUE; 3298 /* Falls thru */ 3299 case e1000_82571: 3300 case e1000_82572: 3301 case e1000_80003es2lan: 3302 if (adapter->hw.bus.func == 1) { 3303 e1000_read_nvm(&adapter->hw, 3304 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 3305 break; 3306 } else 3307 e1000_read_nvm(&adapter->hw, 3308 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3309 break; 3310 case e1000_ich8lan: 3311 case e1000_ich9lan: 3312 case e1000_ich10lan: 3313 case e1000_pchlan: 3314 case e1000_pch2lan: 3315 case e1000_pch_lpt: 3316 case e1000_pch_spt: 3317 apme_mask = E1000_WUC_APME; 3318 adapter->has_amt = TRUE; 3319 eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC); 3320 break; 3321 default: 3322 e1000_read_nvm(&adapter->hw, 3323 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3324 break; 3325 } 3326 if (eeprom_data & apme_mask) 3327 adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC); 3328 /* 3329 * We have the eeprom settings, now apply the special cases 3330 * where the eeprom may be wrong or the board won't support 3331 * wake on lan on a particular port 3332 */ 3333 device_id = pci_get_device(dev); 3334 switch (device_id) { 3335 case E1000_DEV_ID_82546GB_PCIE: 3336 adapter->wol = 0; 3337 break; 3338 case E1000_DEV_ID_82546EB_FIBER: 3339 case E1000_DEV_ID_82546GB_FIBER: 3340 /* Wake events only supported on port A for dual fiber 3341 * regardless of eeprom setting */ 3342 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) & 3343 E1000_STATUS_FUNC_1) 3344 adapter->wol = 0; 3345 break; 3346 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 3347 /* if quad port adapter, disable WoL on all but port A */ 3348 if (global_quad_port_a != 0) 3349 adapter->wol = 0; 3350 /* Reset for multiple quad port adapters */ 3351 if (++global_quad_port_a == 4) 3352 global_quad_port_a = 0; 3353 break; 3354 case E1000_DEV_ID_82571EB_FIBER: 3355 /* Wake events only supported on port A for dual fiber 3356 * regardless of eeprom setting */ 3357 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) & 3358 E1000_STATUS_FUNC_1) 3359 adapter->wol = 0; 3360 break; 3361 case E1000_DEV_ID_82571EB_QUAD_COPPER: 3362 case E1000_DEV_ID_82571EB_QUAD_FIBER: 3363 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 3364 /* if quad port adapter, disable WoL on all but port A */ 3365 if (global_quad_port_a != 0) 3366 adapter->wol = 0; 3367 /* Reset for multiple quad port adapters */ 3368 if (++global_quad_port_a == 4) 3369 global_quad_port_a = 0; 3370 break; 3371 } 3372 return; 3373 } 3374 3375 3376 /* 3377 * Enable PCI Wake On Lan capability 3378 */ 3379 static void 3380 em_enable_wakeup(if_ctx_t ctx) 3381 { 3382 struct adapter *adapter = iflib_get_softc(ctx); 3383 device_t dev = iflib_get_dev(ctx); 3384 if_t ifp = iflib_get_ifp(ctx); 3385 u32 pmc, ctrl, ctrl_ext, rctl, wuc; 3386 u16 status; 3387 3388 if ((pci_find_cap(dev, PCIY_PMG, &pmc) != 0)) 3389 return; 3390 3391 /* Advertise the wakeup capability */ 3392 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL); 3393 ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3); 3394 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl); 3395 wuc = E1000_READ_REG(&adapter->hw, E1000_WUC); 3396 wuc |= E1000_WUC_PME_EN ; 3397 E1000_WRITE_REG(&adapter->hw, E1000_WUC, wuc); 3398 3399 if ((adapter->hw.mac.type == e1000_ich8lan) || 3400 (adapter->hw.mac.type == e1000_pchlan) || 3401 (adapter->hw.mac.type == e1000_ich9lan) || 3402 (adapter->hw.mac.type == e1000_ich10lan)) 3403 e1000_suspend_workarounds_ich8lan(&adapter->hw); 3404 3405 /* Keep the laser running on Fiber adapters */ 3406 if (adapter->hw.phy.media_type == e1000_media_type_fiber || 3407 adapter->hw.phy.media_type == e1000_media_type_internal_serdes) { 3408 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); 3409 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; 3410 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext); 3411 } 3412 3413 /* 3414 ** Determine type of Wakeup: note that wol 3415 ** is set with all bits on by default. 3416 */ 3417 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0) 3418 adapter->wol &= ~E1000_WUFC_MAG; 3419 3420 if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0) 3421 adapter->wol &= ~E1000_WUFC_MC; 3422 else { 3423 rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 3424 rctl |= E1000_RCTL_MPE; 3425 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl); 3426 } 3427 3428 if ((adapter->hw.mac.type == e1000_pchlan) || 3429 (adapter->hw.mac.type == e1000_pch2lan) || 3430 (adapter->hw.mac.type == e1000_pch_lpt) || 3431 (adapter->hw.mac.type == e1000_pch_spt)) { 3432 if (em_enable_phy_wakeup(adapter)) 3433 return; 3434 } else { 3435 E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN); 3436 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol); 3437 } 3438 3439 if (adapter->hw.phy.type == e1000_phy_igp_3) 3440 e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); 3441 3442 /* Request PME */ 3443 status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2); 3444 status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 3445 if (if_getcapenable(ifp) & IFCAP_WOL) 3446 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 3447 pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2); 3448 3449 return; 3450 } 3451 3452 /* 3453 ** WOL in the newer chipset interfaces (pchlan) 3454 ** require thing to be copied into the phy 3455 */ 3456 static int 3457 em_enable_phy_wakeup(struct adapter *adapter) 3458 { 3459 struct e1000_hw *hw = &adapter->hw; 3460 u32 mreg, ret = 0; 3461 u16 preg; 3462 3463 /* copy MAC RARs to PHY RARs */ 3464 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 3465 3466 /* copy MAC MTA to PHY MTA */ 3467 for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) { 3468 mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); 3469 e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF)); 3470 e1000_write_phy_reg(hw, BM_MTA(i) + 1, 3471 (u16)((mreg >> 16) & 0xFFFF)); 3472 } 3473 3474 /* configure PHY Rx Control register */ 3475 e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg); 3476 mreg = E1000_READ_REG(hw, E1000_RCTL); 3477 if (mreg & E1000_RCTL_UPE) 3478 preg |= BM_RCTL_UPE; 3479 if (mreg & E1000_RCTL_MPE) 3480 preg |= BM_RCTL_MPE; 3481 preg &= ~(BM_RCTL_MO_MASK); 3482 if (mreg & E1000_RCTL_MO_3) 3483 preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) 3484 << BM_RCTL_MO_SHIFT); 3485 if (mreg & E1000_RCTL_BAM) 3486 preg |= BM_RCTL_BAM; 3487 if (mreg & E1000_RCTL_PMCF) 3488 preg |= BM_RCTL_PMCF; 3489 mreg = E1000_READ_REG(hw, E1000_CTRL); 3490 if (mreg & E1000_CTRL_RFCE) 3491 preg |= BM_RCTL_RFCE; 3492 e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg); 3493 3494 /* enable PHY wakeup in MAC register */ 3495 E1000_WRITE_REG(hw, E1000_WUC, 3496 E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN); 3497 E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol); 3498 3499 /* configure and enable PHY wakeup in PHY registers */ 3500 e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol); 3501 e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN); 3502 3503 /* activate PHY wakeup */ 3504 ret = hw->phy.ops.acquire(hw); 3505 if (ret) { 3506 printf("Could not acquire PHY\n"); 3507 return ret; 3508 } 3509 e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 3510 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT)); 3511 ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg); 3512 if (ret) { 3513 printf("Could not read PHY page 769\n"); 3514 goto out; 3515 } 3516 preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; 3517 ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg); 3518 if (ret) 3519 printf("Could not set PHY Host Wakeup bit\n"); 3520 out: 3521 hw->phy.ops.release(hw); 3522 3523 return ret; 3524 } 3525 3526 static void 3527 em_if_led_func(if_ctx_t ctx, int onoff) 3528 { 3529 struct adapter *adapter = iflib_get_softc(ctx); 3530 3531 if (onoff) { 3532 e1000_setup_led(&adapter->hw); 3533 e1000_led_on(&adapter->hw); 3534 } else { 3535 e1000_led_off(&adapter->hw); 3536 e1000_cleanup_led(&adapter->hw); 3537 } 3538 } 3539 3540 /* 3541 ** Disable the L0S and L1 LINK states 3542 */ 3543 static void 3544 em_disable_aspm(struct adapter *adapter) 3545 { 3546 int base, reg; 3547 u16 link_cap,link_ctrl; 3548 device_t dev = adapter->dev; 3549 3550 switch (adapter->hw.mac.type) { 3551 case e1000_82573: 3552 case e1000_82574: 3553 case e1000_82583: 3554 break; 3555 default: 3556 return; 3557 } 3558 if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0) 3559 return; 3560 reg = base + PCIER_LINK_CAP; 3561 link_cap = pci_read_config(dev, reg, 2); 3562 if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0) 3563 return; 3564 reg = base + PCIER_LINK_CTL; 3565 link_ctrl = pci_read_config(dev, reg, 2); 3566 link_ctrl &= ~PCIEM_LINK_CTL_ASPMC; 3567 pci_write_config(dev, reg, link_ctrl, 2); 3568 return; 3569 } 3570 3571 /********************************************************************** 3572 * 3573 * Update the board statistics counters. 3574 * 3575 **********************************************************************/ 3576 static void 3577 em_update_stats_counters(struct adapter *adapter) 3578 { 3579 3580 if(adapter->hw.phy.media_type == e1000_media_type_copper || 3581 (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) { 3582 adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS); 3583 adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC); 3584 } 3585 adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS); 3586 adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC); 3587 adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC); 3588 adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL); 3589 3590 adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC); 3591 adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL); 3592 adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC); 3593 adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC); 3594 adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC); 3595 adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC); 3596 adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC); 3597 adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC); 3598 adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC); 3599 adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC); 3600 adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64); 3601 adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127); 3602 adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255); 3603 adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511); 3604 adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023); 3605 adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522); 3606 adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC); 3607 adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC); 3608 adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC); 3609 adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC); 3610 3611 /* For the 64-bit byte counters the low dword must be read first. */ 3612 /* Both registers clear on the read of the high dword */ 3613 3614 adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) + 3615 ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32); 3616 adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) + 3617 ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32); 3618 3619 adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC); 3620 adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC); 3621 adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC); 3622 adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC); 3623 adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC); 3624 3625 adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH); 3626 adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH); 3627 3628 adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR); 3629 adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT); 3630 adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64); 3631 adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127); 3632 adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255); 3633 adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511); 3634 adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023); 3635 adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522); 3636 adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC); 3637 adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC); 3638 3639 /* Interrupt Counts */ 3640 3641 adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC); 3642 adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC); 3643 adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC); 3644 adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC); 3645 adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC); 3646 adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC); 3647 adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC); 3648 adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC); 3649 adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC); 3650 3651 if (adapter->hw.mac.type >= e1000_82543) { 3652 adapter->stats.algnerrc += 3653 E1000_READ_REG(&adapter->hw, E1000_ALGNERRC); 3654 adapter->stats.rxerrc += 3655 E1000_READ_REG(&adapter->hw, E1000_RXERRC); 3656 adapter->stats.tncrs += 3657 E1000_READ_REG(&adapter->hw, E1000_TNCRS); 3658 adapter->stats.cexterr += 3659 E1000_READ_REG(&adapter->hw, E1000_CEXTERR); 3660 adapter->stats.tsctc += 3661 E1000_READ_REG(&adapter->hw, E1000_TSCTC); 3662 adapter->stats.tsctfc += 3663 E1000_READ_REG(&adapter->hw, E1000_TSCTFC); 3664 } 3665 } 3666 3667 static uint64_t 3668 em_if_get_counter(if_ctx_t ctx, ift_counter cnt) 3669 { 3670 struct adapter *adapter = iflib_get_softc(ctx); 3671 struct ifnet *ifp = iflib_get_ifp(ctx); 3672 3673 switch (cnt) { 3674 case IFCOUNTER_COLLISIONS: 3675 return (adapter->stats.colc); 3676 case IFCOUNTER_IERRORS: 3677 return (adapter->dropped_pkts + adapter->stats.rxerrc + 3678 adapter->stats.crcerrs + adapter->stats.algnerrc + 3679 adapter->stats.ruc + adapter->stats.roc + 3680 adapter->stats.mpc + adapter->stats.cexterr); 3681 case IFCOUNTER_OERRORS: 3682 return (adapter->stats.ecol + adapter->stats.latecol + 3683 adapter->watchdog_events); 3684 default: 3685 return (if_get_counter_default(ifp, cnt)); 3686 } 3687 } 3688 3689 /* Export a single 32-bit register via a read-only sysctl. */ 3690 static int 3691 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS) 3692 { 3693 struct adapter *adapter; 3694 u_int val; 3695 3696 adapter = oidp->oid_arg1; 3697 val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2); 3698 return (sysctl_handle_int(oidp, &val, 0, req)); 3699 } 3700 3701 /* 3702 * Add sysctl variables, one per statistic, to the system. 3703 */ 3704 static void 3705 em_add_hw_stats(struct adapter *adapter) 3706 { 3707 device_t dev = iflib_get_dev(adapter->ctx); 3708 struct em_tx_queue *tx_que = adapter->tx_queues; 3709 struct em_rx_queue *rx_que = adapter->rx_queues; 3710 3711 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev); 3712 struct sysctl_oid *tree = device_get_sysctl_tree(dev); 3713 struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree); 3714 struct e1000_hw_stats *stats = &adapter->stats; 3715 3716 struct sysctl_oid *stat_node, *queue_node, *int_node; 3717 struct sysctl_oid_list *stat_list, *queue_list, *int_list; 3718 3719 #define QUEUE_NAME_LEN 32 3720 char namebuf[QUEUE_NAME_LEN]; 3721 3722 /* Driver Statistics */ 3723 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped", 3724 CTLFLAG_RD, &adapter->dropped_pkts, 3725 "Driver dropped packets"); 3726 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq", 3727 CTLFLAG_RD, &adapter->link_irq, 3728 "Link MSIX IRQ Handled"); 3729 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "mbuf_defrag_fail", 3730 CTLFLAG_RD, &adapter->mbuf_defrag_failed, 3731 "Defragmenting mbuf chain failed"); 3732 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_dma_fail", 3733 CTLFLAG_RD, &adapter->no_tx_dma_setup, 3734 "Driver tx dma failure in xmit"); 3735 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns", 3736 CTLFLAG_RD, &adapter->rx_overruns, 3737 "RX overruns"); 3738 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts", 3739 CTLFLAG_RD, &adapter->watchdog_events, 3740 "Watchdog timeouts"); 3741 3742 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control", 3743 CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_CTRL, 3744 em_sysctl_reg_handler, "IU", 3745 "Device Control Register"); 3746 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control", 3747 CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_RCTL, 3748 em_sysctl_reg_handler, "IU", 3749 "Receiver Control Register"); 3750 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water", 3751 CTLFLAG_RD, &adapter->hw.fc.high_water, 0, 3752 "Flow Control High Watermark"); 3753 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water", 3754 CTLFLAG_RD, &adapter->hw.fc.low_water, 0, 3755 "Flow Control Low Watermark"); 3756 3757 for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) { 3758 struct tx_ring *txr = &tx_que->txr; 3759 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i); 3760 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, 3761 CTLFLAG_RD, NULL, "TX Queue Name"); 3762 queue_list = SYSCTL_CHILDREN(queue_node); 3763 3764 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head", 3765 CTLTYPE_UINT | CTLFLAG_RD, adapter, 3766 E1000_TDH(txr->me), 3767 em_sysctl_reg_handler, "IU", 3768 "Transmit Descriptor Head"); 3769 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail", 3770 CTLTYPE_UINT | CTLFLAG_RD, adapter, 3771 E1000_TDT(txr->me), 3772 em_sysctl_reg_handler, "IU", 3773 "Transmit Descriptor Tail"); 3774 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq", 3775 CTLFLAG_RD, &txr->tx_irq, 3776 "Queue MSI-X Transmit Interrupts"); 3777 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "no_desc_avail", 3778 CTLFLAG_RD, &txr->no_desc_avail, 3779 "Queue No Descriptor Available"); 3780 } 3781 3782 for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) { 3783 struct rx_ring *rxr = &rx_que->rxr; 3784 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j); 3785 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, 3786 CTLFLAG_RD, NULL, "RX Queue Name"); 3787 queue_list = SYSCTL_CHILDREN(queue_node); 3788 3789 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head", 3790 CTLTYPE_UINT | CTLFLAG_RD, adapter, 3791 E1000_RDH(rxr->me), 3792 em_sysctl_reg_handler, "IU", 3793 "Receive Descriptor Head"); 3794 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail", 3795 CTLTYPE_UINT | CTLFLAG_RD, adapter, 3796 E1000_RDT(rxr->me), 3797 em_sysctl_reg_handler, "IU", 3798 "Receive Descriptor Tail"); 3799 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq", 3800 CTLFLAG_RD, &rxr->rx_irq, 3801 "Queue MSI-X Receive Interrupts"); 3802 } 3803 3804 /* MAC stats get their own sub node */ 3805 3806 stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats", 3807 CTLFLAG_RD, NULL, "Statistics"); 3808 stat_list = SYSCTL_CHILDREN(stat_node); 3809 3810 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll", 3811 CTLFLAG_RD, &stats->ecol, 3812 "Excessive collisions"); 3813 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll", 3814 CTLFLAG_RD, &stats->scc, 3815 "Single collisions"); 3816 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll", 3817 CTLFLAG_RD, &stats->mcc, 3818 "Multiple collisions"); 3819 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll", 3820 CTLFLAG_RD, &stats->latecol, 3821 "Late collisions"); 3822 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count", 3823 CTLFLAG_RD, &stats->colc, 3824 "Collision Count"); 3825 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors", 3826 CTLFLAG_RD, &adapter->stats.symerrs, 3827 "Symbol Errors"); 3828 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors", 3829 CTLFLAG_RD, &adapter->stats.sec, 3830 "Sequence Errors"); 3831 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count", 3832 CTLFLAG_RD, &adapter->stats.dc, 3833 "Defer Count"); 3834 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets", 3835 CTLFLAG_RD, &adapter->stats.mpc, 3836 "Missed Packets"); 3837 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff", 3838 CTLFLAG_RD, &adapter->stats.rnbc, 3839 "Receive No Buffers"); 3840 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize", 3841 CTLFLAG_RD, &adapter->stats.ruc, 3842 "Receive Undersize"); 3843 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented", 3844 CTLFLAG_RD, &adapter->stats.rfc, 3845 "Fragmented Packets Received "); 3846 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize", 3847 CTLFLAG_RD, &adapter->stats.roc, 3848 "Oversized Packets Received"); 3849 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber", 3850 CTLFLAG_RD, &adapter->stats.rjc, 3851 "Recevied Jabber"); 3852 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs", 3853 CTLFLAG_RD, &adapter->stats.rxerrc, 3854 "Receive Errors"); 3855 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs", 3856 CTLFLAG_RD, &adapter->stats.crcerrs, 3857 "CRC errors"); 3858 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs", 3859 CTLFLAG_RD, &adapter->stats.algnerrc, 3860 "Alignment Errors"); 3861 /* On 82575 these are collision counts */ 3862 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs", 3863 CTLFLAG_RD, &adapter->stats.cexterr, 3864 "Collision/Carrier extension errors"); 3865 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd", 3866 CTLFLAG_RD, &adapter->stats.xonrxc, 3867 "XON Received"); 3868 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd", 3869 CTLFLAG_RD, &adapter->stats.xontxc, 3870 "XON Transmitted"); 3871 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd", 3872 CTLFLAG_RD, &adapter->stats.xoffrxc, 3873 "XOFF Received"); 3874 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd", 3875 CTLFLAG_RD, &adapter->stats.xofftxc, 3876 "XOFF Transmitted"); 3877 3878 /* Packet Reception Stats */ 3879 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd", 3880 CTLFLAG_RD, &adapter->stats.tpr, 3881 "Total Packets Received "); 3882 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd", 3883 CTLFLAG_RD, &adapter->stats.gprc, 3884 "Good Packets Received"); 3885 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd", 3886 CTLFLAG_RD, &adapter->stats.bprc, 3887 "Broadcast Packets Received"); 3888 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd", 3889 CTLFLAG_RD, &adapter->stats.mprc, 3890 "Multicast Packets Received"); 3891 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64", 3892 CTLFLAG_RD, &adapter->stats.prc64, 3893 "64 byte frames received "); 3894 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127", 3895 CTLFLAG_RD, &adapter->stats.prc127, 3896 "65-127 byte frames received"); 3897 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255", 3898 CTLFLAG_RD, &adapter->stats.prc255, 3899 "128-255 byte frames received"); 3900 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511", 3901 CTLFLAG_RD, &adapter->stats.prc511, 3902 "256-511 byte frames received"); 3903 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023", 3904 CTLFLAG_RD, &adapter->stats.prc1023, 3905 "512-1023 byte frames received"); 3906 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522", 3907 CTLFLAG_RD, &adapter->stats.prc1522, 3908 "1023-1522 byte frames received"); 3909 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd", 3910 CTLFLAG_RD, &adapter->stats.gorc, 3911 "Good Octets Received"); 3912 3913 /* Packet Transmission Stats */ 3914 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd", 3915 CTLFLAG_RD, &adapter->stats.gotc, 3916 "Good Octets Transmitted"); 3917 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd", 3918 CTLFLAG_RD, &adapter->stats.tpt, 3919 "Total Packets Transmitted"); 3920 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd", 3921 CTLFLAG_RD, &adapter->stats.gptc, 3922 "Good Packets Transmitted"); 3923 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd", 3924 CTLFLAG_RD, &adapter->stats.bptc, 3925 "Broadcast Packets Transmitted"); 3926 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd", 3927 CTLFLAG_RD, &adapter->stats.mptc, 3928 "Multicast Packets Transmitted"); 3929 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64", 3930 CTLFLAG_RD, &adapter->stats.ptc64, 3931 "64 byte frames transmitted "); 3932 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127", 3933 CTLFLAG_RD, &adapter->stats.ptc127, 3934 "65-127 byte frames transmitted"); 3935 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255", 3936 CTLFLAG_RD, &adapter->stats.ptc255, 3937 "128-255 byte frames transmitted"); 3938 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511", 3939 CTLFLAG_RD, &adapter->stats.ptc511, 3940 "256-511 byte frames transmitted"); 3941 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023", 3942 CTLFLAG_RD, &adapter->stats.ptc1023, 3943 "512-1023 byte frames transmitted"); 3944 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522", 3945 CTLFLAG_RD, &adapter->stats.ptc1522, 3946 "1024-1522 byte frames transmitted"); 3947 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd", 3948 CTLFLAG_RD, &adapter->stats.tsctc, 3949 "TSO Contexts Transmitted"); 3950 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail", 3951 CTLFLAG_RD, &adapter->stats.tsctfc, 3952 "TSO Contexts Failed"); 3953 3954 3955 /* Interrupt Stats */ 3956 3957 int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts", 3958 CTLFLAG_RD, NULL, "Interrupt Statistics"); 3959 int_list = SYSCTL_CHILDREN(int_node); 3960 3961 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts", 3962 CTLFLAG_RD, &adapter->stats.iac, 3963 "Interrupt Assertion Count"); 3964 3965 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer", 3966 CTLFLAG_RD, &adapter->stats.icrxptc, 3967 "Interrupt Cause Rx Pkt Timer Expire Count"); 3968 3969 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer", 3970 CTLFLAG_RD, &adapter->stats.icrxatc, 3971 "Interrupt Cause Rx Abs Timer Expire Count"); 3972 3973 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer", 3974 CTLFLAG_RD, &adapter->stats.ictxptc, 3975 "Interrupt Cause Tx Pkt Timer Expire Count"); 3976 3977 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer", 3978 CTLFLAG_RD, &adapter->stats.ictxatc, 3979 "Interrupt Cause Tx Abs Timer Expire Count"); 3980 3981 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty", 3982 CTLFLAG_RD, &adapter->stats.ictxqec, 3983 "Interrupt Cause Tx Queue Empty Count"); 3984 3985 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh", 3986 CTLFLAG_RD, &adapter->stats.ictxqmtc, 3987 "Interrupt Cause Tx Queue Min Thresh Count"); 3988 3989 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh", 3990 CTLFLAG_RD, &adapter->stats.icrxdmtc, 3991 "Interrupt Cause Rx Desc Min Thresh Count"); 3992 3993 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun", 3994 CTLFLAG_RD, &adapter->stats.icrxoc, 3995 "Interrupt Cause Receiver Overrun Count"); 3996 } 3997 3998 /********************************************************************** 3999 * 4000 * This routine provides a way to dump out the adapter eeprom, 4001 * often a useful debug/service tool. This only dumps the first 4002 * 32 words, stuff that matters is in that extent. 4003 * 4004 **********************************************************************/ 4005 static int 4006 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS) 4007 { 4008 struct adapter *adapter = (struct adapter *)arg1; 4009 int error; 4010 int result; 4011 4012 result = -1; 4013 error = sysctl_handle_int(oidp, &result, 0, req); 4014 4015 if (error || !req->newptr) 4016 return (error); 4017 4018 /* 4019 * This value will cause a hex dump of the 4020 * first 32 16-bit words of the EEPROM to 4021 * the screen. 4022 */ 4023 if (result == 1) 4024 em_print_nvm_info(adapter); 4025 4026 return (error); 4027 } 4028 4029 static void 4030 em_print_nvm_info(struct adapter *adapter) 4031 { 4032 u16 eeprom_data; 4033 int i, j, row = 0; 4034 4035 /* Its a bit crude, but it gets the job done */ 4036 printf("\nInterface EEPROM Dump:\n"); 4037 printf("Offset\n0x0000 "); 4038 for (i = 0, j = 0; i < 32; i++, j++) { 4039 if (j == 8) { /* Make the offset block */ 4040 j = 0; ++row; 4041 printf("\n0x00%x0 ",row); 4042 } 4043 e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data); 4044 printf("%04x ", eeprom_data); 4045 } 4046 printf("\n"); 4047 } 4048 4049 static int 4050 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS) 4051 { 4052 struct em_int_delay_info *info; 4053 struct adapter *adapter; 4054 u32 regval; 4055 int error, usecs, ticks; 4056 4057 info = (struct em_int_delay_info *)arg1; 4058 usecs = info->value; 4059 error = sysctl_handle_int(oidp, &usecs, 0, req); 4060 if (error != 0 || req->newptr == NULL) 4061 return (error); 4062 if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535)) 4063 return (EINVAL); 4064 info->value = usecs; 4065 ticks = EM_USECS_TO_TICKS(usecs); 4066 if (info->offset == E1000_ITR) /* units are 256ns here */ 4067 ticks *= 4; 4068 4069 adapter = info->adapter; 4070 4071 regval = E1000_READ_OFFSET(&adapter->hw, info->offset); 4072 regval = (regval & ~0xffff) | (ticks & 0xffff); 4073 /* Handle a few special cases. */ 4074 switch (info->offset) { 4075 case E1000_RDTR: 4076 break; 4077 case E1000_TIDV: 4078 if (ticks == 0) { 4079 adapter->txd_cmd &= ~E1000_TXD_CMD_IDE; 4080 /* Don't write 0 into the TIDV register. */ 4081 regval++; 4082 } else 4083 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 4084 break; 4085 } 4086 E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval); 4087 return (0); 4088 } 4089 4090 static void 4091 em_add_int_delay_sysctl(struct adapter *adapter, const char *name, 4092 const char *description, struct em_int_delay_info *info, 4093 int offset, int value) 4094 { 4095 info->adapter = adapter; 4096 info->offset = offset; 4097 info->value = value; 4098 SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev), 4099 SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)), 4100 OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, 4101 info, 0, em_sysctl_int_delay, "I", description); 4102 } 4103 4104 static void 4105 em_set_sysctl_value(struct adapter *adapter, const char *name, 4106 const char *description, int *limit, int value) 4107 { 4108 *limit = value; 4109 SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev), 4110 SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)), 4111 OID_AUTO, name, CTLFLAG_RW, limit, value, description); 4112 } 4113 4114 4115 /* 4116 ** Set flow control using sysctl: 4117 ** Flow control values: 4118 ** 0 - off 4119 ** 1 - rx pause 4120 ** 2 - tx pause 4121 ** 3 - full 4122 */ 4123 static int 4124 em_set_flowcntl(SYSCTL_HANDLER_ARGS) 4125 { 4126 int error; 4127 static int input = 3; /* default is full */ 4128 struct adapter *adapter = (struct adapter *) arg1; 4129 4130 error = sysctl_handle_int(oidp, &input, 0, req); 4131 4132 if ((error) || (req->newptr == NULL)) 4133 return (error); 4134 4135 if (input == adapter->fc) /* no change? */ 4136 return (error); 4137 4138 switch (input) { 4139 case e1000_fc_rx_pause: 4140 case e1000_fc_tx_pause: 4141 case e1000_fc_full: 4142 case e1000_fc_none: 4143 adapter->hw.fc.requested_mode = input; 4144 adapter->fc = input; 4145 break; 4146 default: 4147 /* Do nothing */ 4148 return (error); 4149 } 4150 4151 adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode; 4152 e1000_force_mac_fc(&adapter->hw); 4153 return (error); 4154 } 4155 4156 /* 4157 ** Manage Energy Efficient Ethernet: 4158 ** Control values: 4159 ** 0/1 - enabled/disabled 4160 */ 4161 static int 4162 em_sysctl_eee(SYSCTL_HANDLER_ARGS) 4163 { 4164 struct adapter *adapter = (struct adapter *) arg1; 4165 int error, value; 4166 4167 value = adapter->hw.dev_spec.ich8lan.eee_disable; 4168 error = sysctl_handle_int(oidp, &value, 0, req); 4169 if (error || req->newptr == NULL) 4170 return (error); 4171 adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0); 4172 em_if_init(adapter->ctx); 4173 4174 return (0); 4175 } 4176 4177 static int 4178 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS) 4179 { 4180 struct adapter *adapter; 4181 int error; 4182 int result; 4183 4184 result = -1; 4185 error = sysctl_handle_int(oidp, &result, 0, req); 4186 4187 if (error || !req->newptr) 4188 return (error); 4189 4190 if (result == 1) { 4191 adapter = (struct adapter *)arg1; 4192 em_print_debug_info(adapter); 4193 } 4194 4195 return (error); 4196 } 4197 4198 /* 4199 ** This routine is meant to be fluid, add whatever is 4200 ** needed for debugging a problem. -jfv 4201 */ 4202 static void 4203 em_print_debug_info(struct adapter *adapter) 4204 { 4205 device_t dev = adapter->dev; 4206 struct tx_ring *txr = &adapter->tx_queues->txr; 4207 struct rx_ring *rxr = &adapter->rx_queues->rxr; 4208 4209 if (if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) 4210 printf("Interface is RUNNING "); 4211 else 4212 printf("Interface is NOT RUNNING\n"); 4213 4214 if (if_getdrvflags(adapter->ifp) & IFF_DRV_OACTIVE) 4215 printf("and INACTIVE\n"); 4216 else 4217 printf("and ACTIVE\n"); 4218 4219 for (int i = 0; i < adapter->tx_num_queues; i++, txr++) { 4220 device_printf(dev, "TX Queue %d ------\n", i); 4221 device_printf(dev, "hw tdh = %d, hw tdt = %d\n", 4222 E1000_READ_REG(&adapter->hw, E1000_TDH(i)), 4223 E1000_READ_REG(&adapter->hw, E1000_TDT(i))); 4224 4225 } 4226 for (int j=0; j < adapter->rx_num_queues; j++, rxr++) { 4227 device_printf(dev, "RX Queue %d ------\n", j); 4228 device_printf(dev, "hw rdh = %d, hw rdt = %d\n", 4229 E1000_READ_REG(&adapter->hw, E1000_RDH(j)), 4230 E1000_READ_REG(&adapter->hw, E1000_RDT(j))); 4231 } 4232 } 4233 4234 4235 /* 4236 * 82574 only: 4237 * Write a new value to the EEPROM increasing the number of MSIX 4238 * vectors from 3 to 5, for proper multiqueue support. 4239 */ 4240 static void 4241 em_enable_vectors_82574(if_ctx_t ctx) 4242 { 4243 struct adapter *adapter = iflib_get_softc(ctx); 4244 struct e1000_hw *hw = &adapter->hw; 4245 device_t dev = iflib_get_dev(ctx); 4246 u16 edata; 4247 4248 e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata); 4249 printf("Current cap: %#06x\n", edata); 4250 if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) { 4251 device_printf(dev, "Writing to eeprom: increasing " 4252 "reported MSIX vectors from 3 to 5...\n"); 4253 edata &= ~(EM_NVM_MSIX_N_MASK); 4254 edata |= 4 << EM_NVM_MSIX_N_SHIFT; 4255 e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata); 4256 e1000_update_nvm_checksum(hw); 4257 device_printf(dev, "Writing to eeprom: done\n"); 4258 } 4259 } 4260 4261 4262 #ifdef DDB 4263 DB_COMMAND(em_reset_dev, em_ddb_reset_dev) 4264 { 4265 devclass_t dc; 4266 int max_em; 4267 4268 dc = devclass_find("em"); 4269 max_em = devclass_get_maxunit(dc); 4270 4271 for (int index = 0; index < (max_em - 1); index++) { 4272 device_t dev; 4273 dev = devclass_get_device(dc, index); 4274 if (device_get_driver(dev) == &em_driver) { 4275 struct adapter *adapter = device_get_softc(dev); 4276 em_if_init(adapter->ctx); 4277 } 4278 } 4279 } 4280 DB_COMMAND(em_dump_queue, em_ddb_dump_queue) 4281 { 4282 devclass_t dc; 4283 int max_em; 4284 4285 dc = devclass_find("em"); 4286 max_em = devclass_get_maxunit(dc); 4287 4288 for (int index = 0; index < (max_em - 1); index++) { 4289 device_t dev; 4290 dev = devclass_get_device(dc, index); 4291 if (device_get_driver(dev) == &em_driver) 4292 em_print_debug_info(device_get_softc(dev)); 4293 } 4294 4295 } 4296 #endif 4297