xref: /freebsd/sys/dev/e1000/if_em.c (revision 076ad2f836d5f49dc1375f1677335a48fe0d4b82)
1 /*-
2  * Copyright (c) 2016 Matt Macy <mmacy@nextbsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /* $FreeBSD$ */
28 #include "if_em.h"
29 #include <sys/sbuf.h>
30 #include <machine/_inttypes.h>
31 
32 #define em_mac_min e1000_82547
33 #define igb_mac_min e1000_82575
34 
35 /*********************************************************************
36  *  Driver version:
37  *********************************************************************/
38 char em_driver_version[] = "7.6.1-k";
39 
40 /*********************************************************************
41  *  PCI Device ID Table
42  *
43  *  Used by probe to select devices to load on
44  *  Last field stores an index into e1000_strings
45  *  Last entry must be all 0s
46  *
47  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
48  *********************************************************************/
49 
50 static pci_vendor_info_t em_vendor_info_array[] =
51 {
52 	/* Intel(R) PRO/1000 Network Connection - Legacy em*/
53 	PVID(0x8086, E1000_DEV_ID_82540EM,  "Intel(R) PRO/1000 Network Connection"),
54 	PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) PRO/1000 Network Connection"),
55 	PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) PRO/1000 Network Connection"),
56 	PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) PRO/1000 Network Connection"),
57 	PVID(0x8086, E1000_DEV_ID_82540EP_LP,  "Intel(R) PRO/1000 Network Connection"),
58 
59 	PVID(0x8086, E1000_DEV_ID_82541EI,  "Intel(R) PRO/1000 Network Connection"),
60 	PVID(0x8086, E1000_DEV_ID_82541ER,  "Intel(R) PRO/1000 Network Connection"),
61 	PVID(0x8086, E1000_DEV_ID_82541ER_LOM,  "Intel(R) PRO/1000 Network Connection"),
62 	PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE,   "Intel(R) PRO/1000 Network Connection"),
63 	PVID(0x8086, E1000_DEV_ID_82541GI,   "Intel(R) PRO/1000 Network Connection"),
64 	PVID(0x8086, E1000_DEV_ID_82541GI_LF,   "Intel(R) PRO/1000 Network Connection"),
65 	PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE,  "Intel(R) PRO/1000 Network Connection"),
66 
67 	PVID(0x8086, E1000_DEV_ID_82542,  "Intel(R) PRO/1000 Network Connection"),
68 
69 	PVID(0x8086, E1000_DEV_ID_82543GC_FIBER,  "Intel(R) PRO/1000 Network Connection"),
70 	PVID(0x8086, E1000_DEV_ID_82543GC_COPPER,  "Intel(R) PRO/1000 Network Connection"),
71 
72 	PVID(0x8086, E1000_DEV_ID_82544EI_COPPER,  "Intel(R) PRO/1000 Network Connection"),
73 	PVID(0x8086, E1000_DEV_ID_82544EI_FIBER,  "Intel(R) PRO/1000 Network Connection"),
74 	PVID(0x8086, E1000_DEV_ID_82544GC_COPPER,  "Intel(R) PRO/1000 Network Connection"),
75 	PVID(0x8086, E1000_DEV_ID_82544GC_LOM,  "Intel(R) PRO/1000 Network Connection"),
76 
77 	PVID(0x8086, E1000_DEV_ID_82545EM_COPPER,  "Intel(R) PRO/1000 Network Connection"),
78 	PVID(0x8086, E1000_DEV_ID_82545EM_FIBER,  "Intel(R) PRO/1000 Network Connection"),
79 	PVID(0x8086, E1000_DEV_ID_82545GM_COPPER,  "Intel(R) PRO/1000 Network Connection"),
80 	PVID(0x8086, E1000_DEV_ID_82545GM_FIBER,  "Intel(R) PRO/1000 Network Connection"),
81 	PVID(0x8086, E1000_DEV_ID_82545GM_SERDES,  "Intel(R) PRO/1000 Network Connection"),
82 
83 	PVID(0x8086, E1000_DEV_ID_82546EB_COPPER,  "Intel(R) PRO/1000 Network Connection"),
84 	PVID(0x8086, E1000_DEV_ID_82546EB_FIBER,  "Intel(R) PRO/1000 Network Connection"),
85 	PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER,  "Intel(R) PRO/1000 Network Connection"),
86 	PVID(0x8086, E1000_DEV_ID_82546GB_COPPER,  "Intel(R) PRO/1000 Network Connection"),
87 	PVID(0x8086, E1000_DEV_ID_82546GB_FIBER,  "Intel(R) PRO/1000 Network Connection"),
88 	PVID(0x8086, E1000_DEV_ID_82546GB_SERDES,  "Intel(R) PRO/1000 Network Connection"),
89 	PVID(0x8086, E1000_DEV_ID_82546GB_PCIE,  "Intel(R) PRO/1000 Network Connection"),
90 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER,  "Intel(R) PRO/1000 Network Connection"),
91 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3,  "Intel(R) PRO/1000 Network Connection"),
92 
93 	PVID(0x8086, E1000_DEV_ID_82547EI,  "Intel(R) PRO/1000 Network Connection"),
94 	PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE,  "Intel(R) PRO/1000 Network Connection"),
95 	PVID(0x8086, E1000_DEV_ID_82547GI,  "Intel(R) PRO/1000 Network Connection"),
96 
97 	/* Intel(R) PRO/1000 Network Connection - em */
98         PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
99 	PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
100         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 Network Connection"),
101 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 Network Connection"),
102 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 Network Connection"),
103 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
104 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 Network Connection"),
105 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 Network Connection"),
106 	PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
107 	PVID(0x8086, E1000_DEV_ID_82572EI,		"Intel(R) PRO/1000 Network Connection"),
108 	PVID(0x8086, E1000_DEV_ID_82572EI_COPPER,	"Intel(R) PRO/1000 Network Connection"),
109 	PVID(0x8086, E1000_DEV_ID_82572EI_FIBER,	"Intel(R) PRO/1000 Network Connection"),
110 	PVID(0x8086, E1000_DEV_ID_82572EI_SERDES,	"Intel(R) PRO/1000 Network Connection"),
111 	PVID(0x8086, E1000_DEV_ID_82573E,		"Intel(R) PRO/1000 Network Connection"),
112 	PVID(0x8086, E1000_DEV_ID_82573E_IAMT,	"Intel(R) PRO/1000 Network Connection"),
113 	PVID(0x8086, E1000_DEV_ID_82573L,		"Intel(R) PRO/1000 Network Connection"),
114 	PVID(0x8086, E1000_DEV_ID_82583V,		"Intel(R) PRO/1000 Network Connection"),
115 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) PRO/1000 Network Connection"),
116 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) PRO/1000 Network Connection"),
117 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) PRO/1000 Network Connection"),
118 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) PRO/1000 Network Connection"),
119 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT,	"Intel(R) PRO/1000 Network Connection"),
120 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT,	"Intel(R) PRO/1000 Network Connection"),
121 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C,	"Intel(R) PRO/1000 Network Connection"),
122 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE,	"Intel(R) PRO/1000 Network Connection"),
123 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT,	"Intel(R) PRO/1000 Network Connection"),
124 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G,	"Intel(R) PRO/1000 Network Connection"),
125 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M,	"Intel(R) PRO/1000 Network Connection"),
126 	PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3,	"Intel(R) PRO/1000 Network Connection"),
127 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT,	"Intel(R) PRO/1000 Network Connection"),
128 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT,	"Intel(R) PRO/1000 Network Connection"),
129 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C,	"Intel(R) PRO/1000 Network Connection"),
130 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M,	"Intel(R) PRO/1000 Network Connection"),
131 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V,	"Intel(R) PRO/1000 Network Connection"),
132 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE,	"Intel(R) PRO/1000 Network Connection"),
133 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT,	"Intel(R) PRO/1000 Network Connection"),
134 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G,	"Intel(R) PRO/1000 Network Connection"),
135 	PVID(0x8086, E1000_DEV_ID_ICH9_BM,		"Intel(R) PRO/1000 Network Connection"),
136 	PVID(0x8086, E1000_DEV_ID_82574L,		"Intel(R) PRO/1000 Network Connection"),
137 	PVID(0x8086, E1000_DEV_ID_82574LA,		"Intel(R) PRO/1000 Network Connection"),
138 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM,	"Intel(R) PRO/1000 Network Connection"),
139 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF,	"Intel(R) PRO/1000 Network Connection"),
140 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V,	"Intel(R) PRO/1000 Network Connection"),
141 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM,	"Intel(R) PRO/1000 Network Connection"),
142 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF,	"Intel(R) PRO/1000 Network Connection"),
143 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V,	"Intel(R) PRO/1000 Network Connection"),
144 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM,	"Intel(R) PRO/1000 Network Connection"),
145 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC,	"Intel(R) PRO/1000 Network Connection"),
146 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM,	"Intel(R) PRO/1000 Network Connection"),
147 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC,	"Intel(R) PRO/1000 Network Connection"),
148 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM,	"Intel(R) PRO/1000 Network Connection"),
149 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_V,	"Intel(R) PRO/1000 Network Connection"),
150 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM,	"Intel(R) PRO/1000 Network Connection"),
151 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V,	"Intel(R) PRO/1000 Network Connection"),
152 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) PRO/1000 Network Connection"),
153 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) PRO/1000 Network Connection"),
154 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2,	"Intel(R) PRO/1000 Network Connection"),
155 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V2,	"Intel(R) PRO/1000 Network Connection"),
156 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3,	"Intel(R) PRO/1000 Network Connection"),
157 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V3,	"Intel(R) PRO/1000 Network Connection"),
158 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) PRO/1000 Network Connection"),
159 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V,  "Intel(R) PRO/1000 Network Connection"),
160 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) PRO/1000 Network Connection"),
161 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) PRO/1000 Network Connection"),
162 	PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) PRO/1000 Network Connection"),
163 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) PRO/1000 Network Connection"),
164 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) PRO/1000 Network Connection"),
165 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) PRO/1000 Network Connection"),
166 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) PRO/1000 Network Connection"),
167 	/* required last entry */
168 	PVID_END
169 };
170 
171 static pci_vendor_info_t igb_vendor_info_array[] =
172 {
173 	/* Intel(R) PRO/1000 Network Connection - em */
174 	PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
175 	PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
176 	PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
177 	PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 PCI-Express Network Driver"),
178 	PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
179 	PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
180 	PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
181 	PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
182 	PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 PCI-Express Network Driver"),
183 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
184 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 PCI-Express Network Driver"),
185 	PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
186 	PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
187 	PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
188 	PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
189 	PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
190 	PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) PRO/1000 PCI-Express Network Driver"),
191 	PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
192 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
193 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
194 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) PRO/1000 PCI-Express Network Driver"),
195 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) PRO/1000 PCI-Express Network Driver"),
196 	PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
197 	PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
198 	PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
199 	PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
200 	PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
201 	PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
202 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) PRO/1000 PCI-Express Network Driver"),
203 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) PRO/1000 PCI-Express Network Driver"),
204 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
205 	PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
206 	PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
207 	PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
208 	PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
209 	PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
210 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
211 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
212 	PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
213 	/* required last entry */
214 	PVID_END
215 };
216 
217 /*********************************************************************
218  *  Function prototypes
219  *********************************************************************/
220 static void     *em_register(device_t dev);
221 static void     *igb_register(device_t dev);
222 static int	em_if_attach_pre(if_ctx_t ctx);
223 static int	em_if_attach_post(if_ctx_t ctx);
224 static int	em_if_detach(if_ctx_t ctx);
225 static int	em_if_shutdown(if_ctx_t ctx);
226 static int	em_if_suspend(if_ctx_t ctx);
227 static int	em_if_resume(if_ctx_t ctx);
228 
229 static int      em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets);
230 static int      em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets);
231 static void     em_if_queues_free(if_ctx_t ctx);
232 
233 static uint64_t	em_if_get_counter(if_ctx_t, ift_counter);
234 static void	em_if_init(if_ctx_t ctx);
235 static void	em_if_stop(if_ctx_t ctx);
236 static void	em_if_media_status(if_ctx_t, struct ifmediareq *);
237 static int	em_if_media_change(if_ctx_t ctx);
238 static int      em_if_mtu_set(if_ctx_t ctx, uint32_t mtu);
239 static void     em_if_timer(if_ctx_t ctx, uint16_t qid);
240 static void     em_if_vlan_register(if_ctx_t ctx, u16 vtag);
241 static void     em_if_vlan_unregister(if_ctx_t ctx, u16 vtag);
242 
243 static void	em_identify_hardware(if_ctx_t ctx);
244 static int	em_allocate_pci_resources(if_ctx_t ctx);
245 static void	em_free_pci_resources(if_ctx_t ctx);
246 static void	em_reset(if_ctx_t ctx);
247 static int	em_setup_interface(if_ctx_t ctx);
248 static int      em_setup_msix(if_ctx_t ctx);
249 
250 static void	em_initialize_transmit_unit(if_ctx_t ctx);
251 static void	em_initialize_receive_unit(if_ctx_t ctx);
252 
253 static void	em_if_enable_intr(if_ctx_t ctx);
254 static void	em_if_disable_intr(if_ctx_t ctx);
255 static int      em_if_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
256 static void     em_if_multi_set(if_ctx_t ctx);
257 static void     em_if_update_admin_status(if_ctx_t ctx);
258 static void	em_update_stats_counters(struct adapter *);
259 static void	em_add_hw_stats(struct adapter *adapter);
260 static int	em_if_set_promisc(if_ctx_t ctx, int flags);
261 static void	em_setup_vlan_hw_support(struct adapter *);
262 static int	em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
263 static void	em_print_nvm_info(struct adapter *);
264 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
265 static void	em_print_debug_info(struct adapter *);
266 static int 	em_is_valid_ether_addr(u8 *);
267 static int	em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
268 static void	em_add_int_delay_sysctl(struct adapter *, const char *,
269 		    const char *, struct em_int_delay_info *, int, int);
270 /* Management and WOL Support */
271 static void	em_init_manageability(struct adapter *);
272 static void	em_release_manageability(struct adapter *);
273 static void     em_get_hw_control(struct adapter *);
274 static void     em_release_hw_control(struct adapter *);
275 static void	em_get_wakeup(if_ctx_t ctx);
276 static void     em_enable_wakeup(if_ctx_t ctx);
277 static int	em_enable_phy_wakeup(struct adapter *);
278 static void	em_disable_aspm(struct adapter *);
279 
280 int             em_intr(void *arg);
281 static void     em_disable_promisc(if_ctx_t ctx);
282 
283 /* MSIX handlers */
284 static int      em_if_msix_intr_assign(if_ctx_t, int);
285 static int	em_msix_link(void *);
286 static void	em_handle_link(void *context);
287 
288 static void	em_enable_vectors_82574(if_ctx_t);
289 
290 static void	em_set_sysctl_value(struct adapter *, const char *,
291 		    const char *, int *, int);
292 static int	em_set_flowcntl(SYSCTL_HANDLER_ARGS);
293 static int	em_sysctl_eee(SYSCTL_HANDLER_ARGS);
294 static void     em_if_led_func(if_ctx_t ctx, int onoff);
295 
296 static void	em_init_tx_ring(struct em_tx_queue *que);
297 static int	em_get_regs(SYSCTL_HANDLER_ARGS);
298 
299 static void	lem_smartspeed(struct adapter *adapter);
300 static void	igb_configure_queues(struct adapter *adapter);
301 
302 
303 /*********************************************************************
304  *  FreeBSD Device Interface Entry Points
305  *********************************************************************/
306 static device_method_t em_methods[] = {
307 	/* Device interface */
308   DEVMETHOD(device_register, em_register),
309   DEVMETHOD(device_probe, iflib_device_probe),
310   DEVMETHOD(device_attach, iflib_device_attach),
311   DEVMETHOD(device_detach, iflib_device_detach),
312   DEVMETHOD(device_shutdown, iflib_device_shutdown),
313   DEVMETHOD(device_suspend, iflib_device_suspend),
314   DEVMETHOD(device_resume, iflib_device_resume),
315   DEVMETHOD_END
316 };
317 
318 static device_method_t igb_methods[] = {
319 	/* Device interface */
320   DEVMETHOD(device_register, igb_register),
321   DEVMETHOD(device_probe, iflib_device_probe),
322   DEVMETHOD(device_attach, iflib_device_attach),
323   DEVMETHOD(device_detach, iflib_device_detach),
324   DEVMETHOD(device_shutdown, iflib_device_shutdown),
325   DEVMETHOD(device_suspend, iflib_device_suspend),
326   DEVMETHOD(device_resume, iflib_device_resume),
327   DEVMETHOD_END
328 };
329 
330 
331 static driver_t em_driver = {
332 	"em", em_methods, sizeof(struct adapter),
333 };
334 
335 static devclass_t em_devclass;
336 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
337 
338 MODULE_DEPEND(em, pci, 1, 1, 1);
339 MODULE_DEPEND(em, ether, 1, 1, 1);
340 MODULE_DEPEND(em, iflib, 1, 1, 1);
341 
342 static driver_t igb_driver = {
343 	"igb", igb_methods, sizeof(struct adapter),
344 };
345 
346 static devclass_t igb_devclass;
347 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
348 
349 MODULE_DEPEND(igb, pci, 1, 1, 1);
350 MODULE_DEPEND(igb, ether, 1, 1, 1);
351 MODULE_DEPEND(igb, iflib, 1, 1, 1);
352 
353 
354 static device_method_t em_if_methods[] = {
355         DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
356   	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
357 	DEVMETHOD(ifdi_detach, em_if_detach),
358 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
359 	DEVMETHOD(ifdi_suspend, em_if_suspend),
360 	DEVMETHOD(ifdi_resume, em_if_resume),
361 	DEVMETHOD(ifdi_init, em_if_init),
362 	DEVMETHOD(ifdi_stop, em_if_stop),
363 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
364 	DEVMETHOD(ifdi_intr_enable, em_if_enable_intr),
365 	DEVMETHOD(ifdi_intr_disable, em_if_disable_intr),
366 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
367 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
368 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
369 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
370 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
371 	DEVMETHOD(ifdi_media_status, em_if_media_status),
372 	DEVMETHOD(ifdi_media_change, em_if_media_change),
373 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
374 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
375 	DEVMETHOD(ifdi_timer, em_if_timer),
376 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
377 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
378 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
379 	DEVMETHOD(ifdi_led_func, em_if_led_func),
380 	DEVMETHOD(ifdi_queue_intr_enable, em_if_queue_intr_enable),
381 	DEVMETHOD_END
382 };
383 
384   /*
385  * note that if (adapter->msix_mem) is replaced by:
386  * if (adapter->intr_type == IFLIB_INTR_MSIX)
387  */
388 static driver_t em_if_driver = {
389   "em_if", em_if_methods, sizeof(struct adapter)
390 };
391 
392 /*********************************************************************
393  *  Tunable default values.
394  *********************************************************************/
395 
396 #define EM_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
397 #define EM_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
398 #define M_TSO_LEN			66
399 
400 #define MAX_INTS_PER_SEC	8000
401 #define DEFAULT_ITR		(1000000000/(MAX_INTS_PER_SEC * 256))
402 
403 /* Allow common code without TSO */
404 #ifndef CSUM_TSO
405 #define CSUM_TSO	0
406 #endif
407 
408 #define TSO_WORKAROUND	4
409 
410 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD, 0, "EM driver parameters");
411 
412 static int em_disable_crc_stripping = 0;
413 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
414     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
415 
416 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
417 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
418 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
419     0, "Default transmit interrupt delay in usecs");
420 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
421     0, "Default receive interrupt delay in usecs");
422 
423 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
424 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
425 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
426     &em_tx_abs_int_delay_dflt, 0,
427     "Default transmit interrupt delay limit in usecs");
428 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
429     &em_rx_abs_int_delay_dflt, 0,
430     "Default receive interrupt delay limit in usecs");
431 
432 static int em_smart_pwr_down = FALSE;
433 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
434     0, "Set to true to leave smart power down enabled on newer adapters");
435 
436 /* Controls whether promiscuous also shows bad packets */
437 static int em_debug_sbp = TRUE;
438 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
439     "Show bad packets in promiscuous mode");
440 
441 /* How many packets rxeof tries to clean at a time */
442 static int em_rx_process_limit = 100;
443 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
444     &em_rx_process_limit, 0,
445     "Maximum number of received packets to process "
446     "at a time, -1 means unlimited");
447 
448 /* Energy efficient ethernet - default to OFF */
449 static int eee_setting = 1;
450 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
451     "Enable Energy Efficient Ethernet");
452 
453 /*
454 ** Tuneable Interrupt rate
455 */
456 static int em_max_interrupt_rate = 8000;
457 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
458     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
459 
460 
461 
462 /* Global used in WOL setup with multiport cards */
463 static int global_quad_port_a = 0;
464 
465 extern struct if_txrx igb_txrx;
466 extern struct if_txrx em_txrx;
467 extern struct if_txrx lem_txrx;
468 
469 static struct if_shared_ctx em_sctx_init = {
470     	.isc_magic = IFLIB_MAGIC,
471 	.isc_q_align = PAGE_SIZE,
472 	.isc_tx_maxsize = EM_TSO_SIZE,
473 	.isc_tx_maxsegsize = PAGE_SIZE,
474 	.isc_rx_maxsize = MJUM9BYTES,
475 	.isc_rx_nsegments = 1,
476 	.isc_rx_maxsegsize = MJUM9BYTES,
477 	.isc_nfl = 1,
478 	.isc_nrxqs = 1,
479 	.isc_ntxqs = 1,
480 	.isc_admin_intrcnt = 1,
481 	.isc_vendor_info = em_vendor_info_array,
482 	.isc_driver_version = em_driver_version,
483 	.isc_driver = &em_if_driver,
484 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP,
485 
486 	.isc_nrxd_min = {EM_MIN_RXD},
487 	.isc_ntxd_min = {EM_MIN_TXD},
488 	.isc_nrxd_max = {EM_MAX_RXD},
489 	.isc_ntxd_max = {EM_MAX_TXD},
490 	.isc_nrxd_default = {EM_DEFAULT_RXD},
491 	.isc_ntxd_default = {EM_DEFAULT_TXD},
492 };
493 
494 if_shared_ctx_t em_sctx = &em_sctx_init;
495 
496 
497 static struct if_shared_ctx igb_sctx_init = {
498     	.isc_magic = IFLIB_MAGIC,
499 	.isc_q_align = PAGE_SIZE,
500 	.isc_tx_maxsize = EM_TSO_SIZE,
501 	.isc_tx_maxsegsize = PAGE_SIZE,
502 	.isc_rx_maxsize = MJUM9BYTES,
503 	.isc_rx_nsegments = 1,
504 	.isc_rx_maxsegsize = MJUM9BYTES,
505 	.isc_nfl = 1,
506 	.isc_nrxqs = 1,
507 	.isc_ntxqs = 1,
508 	.isc_admin_intrcnt = 1,
509 	.isc_vendor_info = igb_vendor_info_array,
510 	.isc_driver_version = em_driver_version,
511 	.isc_driver = &em_if_driver,
512 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP,
513 
514 	.isc_nrxd_min = {EM_MIN_RXD},
515 	.isc_ntxd_min = {EM_MIN_TXD},
516 	.isc_nrxd_max = {EM_MAX_RXD},
517 	.isc_ntxd_max = {EM_MAX_TXD},
518 	.isc_nrxd_default = {EM_DEFAULT_RXD},
519 	.isc_ntxd_default = {EM_DEFAULT_TXD},
520 };
521 
522 if_shared_ctx_t igb_sctx = &igb_sctx_init;
523 
524 /*****************************************************************
525  *
526  * Dump Registers
527  *
528  ****************************************************************/
529 #define IGB_REGS_LEN 739
530 
531 static int em_get_regs(SYSCTL_HANDLER_ARGS)
532 {
533 	struct adapter *adapter = (struct adapter *)arg1;
534 	struct e1000_hw *hw = &adapter->hw;
535 
536 	struct sbuf *sb;
537 	u32 *regs_buff = (u32 *)malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_NOWAIT);
538 	int rc;
539 
540 	memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
541 
542 	rc = sysctl_wire_old_buffer(req, 0);
543 	MPASS(rc == 0);
544 	if (rc != 0)
545 	  return (rc);
546 
547 	sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
548 	MPASS(sb != NULL);
549 	if (sb == NULL)
550 		return (ENOMEM);
551 
552 	/* General Registers */
553 	regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
554 	regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
555 	regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
556 	regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
557 	regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
558 	regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
559 	regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
560 	regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
561 	regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
562 	regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
563 	regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
564 	regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
565 	regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
566 	regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
567 	regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
568 	regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
569 	regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
570 	regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
571 	regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
572 	regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
573 	regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
574 	regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
575 
576 	sbuf_printf(sb, "General Registers\n");
577 	sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
578 	sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
579 	sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]);
580 
581 	sbuf_printf(sb, "Interrupt Registers\n");
582 	sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
583 
584 	sbuf_printf(sb, "RX Registers\n");
585 	sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
586 	sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
587 	sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
588 	sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
589 	sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
590 	sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
591 	sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
592 
593 	sbuf_printf(sb, "TX Registers\n");
594 	sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
595 	sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
596 	sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
597 	sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
598 	sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
599 	sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
600 	sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
601 	sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
602 	sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
603 	sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
604 	sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
605 
606 #ifdef DUMP_DESCS
607 	{
608 		if_softc_ctx_t scctx = adapter->shared;
609 		struct rx_ring *rxr = &rx_que->rxr;
610 		struct tx_ring *txr = &tx_que->txr;
611 		int ntxd = scctx->isc_ntxd[0];
612 		int nrxd = scctx->isc_nrxd[0];
613 		int j;
614 
615 	for (j = 0; j < nrxd; j++) {
616 		u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
617 		u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
618 		sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
619 	}
620 
621 	for (j = 0; j < min(ntxd, 256); j++) {
622 		struct em_txbuffer *buf = &txr->tx_buffers[j];
623 		unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
624 
625 		sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
626 			    j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
627 			    buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
628 
629 	}
630 	}
631 #endif
632 
633         rc = sbuf_finish(sb);
634 	sbuf_delete(sb);
635         return(rc);
636 }
637 
638 static void *
639 em_register(device_t dev)
640 {
641 	return (em_sctx);
642 }
643 
644 static void *
645 igb_register(device_t dev)
646 {
647 	return (igb_sctx);
648 }
649 
650 static void
651 em_init_tx_ring(struct em_tx_queue *que)
652 {
653 	struct adapter *sc = que->adapter;
654 	if_softc_ctx_t scctx = sc->shared;
655 	struct tx_ring *txr = &que->txr;
656 	struct em_txbuffer *tx_buffer;
657 
658 	tx_buffer = txr->tx_buffers;
659 	for (int i = 0; i < scctx->isc_ntxd[0]; i++, tx_buffer++) {
660 		tx_buffer->eop = -1;
661 	}
662 }
663 
664 static int
665 em_set_num_queues(if_ctx_t ctx)
666 {
667 	struct adapter *adapter = iflib_get_softc(ctx);
668 	int maxqueues;
669 
670 	/* Sanity check based on HW */
671 	switch (adapter->hw.mac.type) {
672 		case e1000_82576:
673 		case e1000_82580:
674 		case e1000_i350:
675 		case e1000_i354:
676 			maxqueues = 8;
677 			break;
678 		case e1000_i210:
679 		case e1000_82575:
680 			maxqueues = 4;
681 			break;
682 		case e1000_i211:
683 		case e1000_82574:
684 			maxqueues = 2;
685 			break;
686 		default:
687 			maxqueues = 1;
688 			break;
689 	}
690 
691 	return (maxqueues);
692 }
693 
694 
695 #define EM_CAPS								\
696 	IFCAP_TSO4 | IFCAP_TXCSUM | IFCAP_LRO | IFCAP_RXCSUM | IFCAP_VLAN_HWFILTER | IFCAP_WOL_MAGIC | \
697 	IFCAP_WOL_MCAST | IFCAP_WOL | IFCAP_VLAN_HWTSO | IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | \
698 	IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU;
699 
700 #define IGB_CAPS							\
701 	IFCAP_TSO4 | IFCAP_TXCSUM | IFCAP_LRO | IFCAP_RXCSUM | IFCAP_VLAN_HWFILTER | IFCAP_WOL_MAGIC | \
702 	IFCAP_WOL_MCAST | IFCAP_WOL | IFCAP_VLAN_HWTSO | IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM | \
703 	IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU | IFCAP_TXCSUM_IPV6 | IFCAP_HWCSUM_IPV6 | IFCAP_JUMBO_MTU;
704 
705 /*********************************************************************
706  *  Device initialization routine
707  *
708  *  The attach entry point is called when the driver is being loaded.
709  *  This routine identifies the type of hardware, allocates all resources
710  *  and initializes the hardware.
711  *
712  *  return 0 on success, positive on failure
713  *********************************************************************/
714 
715 static int
716 em_if_attach_pre(if_ctx_t ctx)
717 {
718         struct adapter	*adapter;
719 	if_softc_ctx_t scctx;
720         device_t        dev;
721 	struct e1000_hw	*hw;
722 	int		error = 0;
723 
724 	INIT_DEBUGOUT("em_if_attach_pre begin");
725         dev = iflib_get_dev(ctx);
726 	adapter = iflib_get_softc(ctx);
727 
728 	if (resource_disabled("em", device_get_unit(dev))) {
729 		device_printf(dev, "Disabled by device hint\n");
730 		return (ENXIO);
731 	}
732 
733 	adapter->ctx = ctx;
734 	adapter->dev = adapter->osdep.dev = dev;
735 	scctx = adapter->shared = iflib_get_softc_ctx(ctx);
736 	adapter->media = iflib_get_media(ctx);
737         hw = &adapter->hw;
738 
739 	adapter->tx_process_limit = scctx->isc_ntxd[0];
740 
741 	/* SYSCTL stuff */
742 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
743 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
744 	    OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
745 	    em_sysctl_nvm_info, "I", "NVM Information");
746 
747 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
748 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
749 	    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
750 	    em_sysctl_debug_info, "I", "Debug Information");
751 
752 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
753 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
754 	    OID_AUTO, "fc", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
755 	    em_set_flowcntl, "I", "Flow Control");
756 
757 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
758 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
759 	    OID_AUTO, "reg_dump", CTLTYPE_STRING | CTLFLAG_RD, adapter, 0,
760 	    em_get_regs, "A", "Dump Registers");
761 
762 	/* Determine hardware and mac info */
763 	em_identify_hardware(ctx);
764 
765         /* Set isc_msix_bar */
766 	scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR);
767 	scctx->isc_tx_nsegments = EM_MAX_SCATTER;
768 	scctx->isc_tx_tso_segments_max = scctx->isc_tx_nsegments;
769 	scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
770 	scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
771 	scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
772 	device_printf(dev, "attach_pre capping queues at %d\n", scctx->isc_ntxqsets_max);
773 
774 	scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
775 
776 
777 	if (adapter->hw.mac.type >= igb_mac_min) {
778 		int try_second_bar;
779 
780 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
781 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
782 		scctx->isc_txrx = &igb_txrx;
783 		scctx->isc_capenable = IGB_CAPS;
784 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO | CSUM_IP6_TCP \
785 			| CSUM_IP6_UDP | CSUM_IP6_TCP;
786 		if (adapter->hw.mac.type != e1000_82575)
787 			scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
788 
789 		/*
790 		** Some new devices, as with ixgbe, now may
791 		** use a different BAR, so we need to keep
792 		** track of which is used.
793 		*/
794 		try_second_bar = pci_read_config(dev, scctx->isc_msix_bar, 4);
795 		if (try_second_bar == 0)
796 			scctx->isc_msix_bar += 4;
797 
798 	} else if (adapter->hw.mac.type >= em_mac_min) {
799 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
800 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
801 		scctx->isc_txrx = &em_txrx;
802 		scctx->isc_capenable = EM_CAPS;
803 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
804 	} else {
805 		scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
806 		scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
807 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
808 		scctx->isc_txrx = &lem_txrx;
809 		scctx->isc_capenable = EM_CAPS;
810 		if (adapter->hw.mac.type < e1000_82543)
811 			scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM);
812 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
813 		scctx->isc_msix_bar = 0;
814 	}
815 
816 	/* Setup PCI resources */
817 	if (em_allocate_pci_resources(ctx)) {
818 		device_printf(dev, "Allocation of PCI resources failed\n");
819 		error = ENXIO;
820 		goto err_pci;
821 	}
822 
823 	/*
824 	** For ICH8 and family we need to
825 	** map the flash memory, and this
826 	** must happen after the MAC is
827 	** identified
828 	*/
829 	if ((hw->mac.type == e1000_ich8lan) ||
830 	    (hw->mac.type == e1000_ich9lan) ||
831 	    (hw->mac.type == e1000_ich10lan) ||
832 	    (hw->mac.type == e1000_pchlan) ||
833 	    (hw->mac.type == e1000_pch2lan) ||
834 	    (hw->mac.type == e1000_pch_lpt)) {
835 		int rid = EM_BAR_TYPE_FLASH;
836 		adapter->flash = bus_alloc_resource_any(dev,
837 		    SYS_RES_MEMORY, &rid, RF_ACTIVE);
838 		if (adapter->flash == NULL) {
839 			device_printf(dev, "Mapping of Flash failed\n");
840 			error = ENXIO;
841 			goto err_pci;
842 		}
843 		/* This is used in the shared code */
844 		hw->flash_address = (u8 *)adapter->flash;
845 		adapter->osdep.flash_bus_space_tag =
846 		    rman_get_bustag(adapter->flash);
847 		adapter->osdep.flash_bus_space_handle =
848 		    rman_get_bushandle(adapter->flash);
849 	}
850 	/*
851 	** In the new SPT device flash is not  a
852 	** separate BAR, rather it is also in BAR0,
853 	** so use the same tag and an offset handle for the
854 	** FLASH read/write macros in the shared code.
855 	*/
856 	else if (hw->mac.type == e1000_pch_spt) {
857 		adapter->osdep.flash_bus_space_tag =
858 		    adapter->osdep.mem_bus_space_tag;
859 		adapter->osdep.flash_bus_space_handle =
860 		    adapter->osdep.mem_bus_space_handle
861 		    + E1000_FLASH_BASE_ADDR;
862 	}
863 
864 	/* Do Shared Code initialization */
865 	error = e1000_setup_init_funcs(hw, TRUE);
866 	if (error) {
867 		device_printf(dev, "Setup of Shared code failed, error %d\n",
868 		    error);
869 		error = ENXIO;
870 		goto err_pci;
871 	}
872 
873 	em_setup_msix(ctx);
874 	e1000_get_bus_info(hw);
875 
876 	/* Set up some sysctls for the tunable interrupt delays */
877 	em_add_int_delay_sysctl(adapter, "rx_int_delay",
878 	    "receive interrupt delay in usecs", &adapter->rx_int_delay,
879 	    E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
880 	em_add_int_delay_sysctl(adapter, "tx_int_delay",
881 	    "transmit interrupt delay in usecs", &adapter->tx_int_delay,
882 	    E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
883 	em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
884 	    "receive interrupt delay limit in usecs",
885 	    &adapter->rx_abs_int_delay,
886 	    E1000_REGISTER(hw, E1000_RADV),
887 	    em_rx_abs_int_delay_dflt);
888 	em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
889 	    "transmit interrupt delay limit in usecs",
890 	    &adapter->tx_abs_int_delay,
891 	    E1000_REGISTER(hw, E1000_TADV),
892 	    em_tx_abs_int_delay_dflt);
893 	em_add_int_delay_sysctl(adapter, "itr",
894 	    "interrupt delay limit in usecs/4",
895 	    &adapter->tx_itr,
896 	    E1000_REGISTER(hw, E1000_ITR),
897 	    DEFAULT_ITR);
898 
899 	/* Sysctl for limiting the amount of work done in the taskqueue */
900 	em_set_sysctl_value(adapter, "rx_processing_limit",
901 	    "max number of rx packets to process", &adapter->rx_process_limit,
902 	    em_rx_process_limit);
903 
904 	hw->mac.autoneg = DO_AUTO_NEG;
905 	hw->phy.autoneg_wait_to_complete = FALSE;
906 	hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
907 
908 	if (adapter->hw.mac.type < em_mac_min) {
909 		e1000_init_script_state_82541(&adapter->hw, TRUE);
910 		e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
911 	}
912 	/* Copper options */
913 	if (hw->phy.media_type == e1000_media_type_copper) {
914 		hw->phy.mdix = AUTO_ALL_MODES;
915 		hw->phy.disable_polarity_correction = FALSE;
916 		hw->phy.ms_type = EM_MASTER_SLAVE;
917 	}
918 
919 	/*
920 	 * Set the frame limits assuming
921 	 * standard ethernet sized frames.
922 	 */
923 	scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
924 	    ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
925 
926 	/*
927 	 * This controls when hardware reports transmit completion
928 	 * status.
929 	 */
930 	hw->mac.report_tx_early = 1;
931 
932 	/* Allocate multicast array memory. */
933 	adapter->mta = malloc(sizeof(u8) * ETH_ADDR_LEN *
934 	    MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
935 	if (adapter->mta == NULL) {
936 		device_printf(dev, "Can not allocate multicast setup array\n");
937 		error = ENOMEM;
938 		goto err_late;
939 	}
940 
941 	/* Check SOL/IDER usage */
942 	if (e1000_check_reset_block(hw))
943 		device_printf(dev, "PHY reset is blocked"
944 		    " due to SOL/IDER session.\n");
945 
946 	/* Sysctl for setting Energy Efficient Ethernet */
947 	hw->dev_spec.ich8lan.eee_disable = eee_setting;
948 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
949 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
950 	    OID_AUTO, "eee_control", CTLTYPE_INT|CTLFLAG_RW,
951 	    adapter, 0, em_sysctl_eee, "I",
952 	    "Disable Energy Efficient Ethernet");
953 
954 	/*
955 	** Start from a known state, this is
956 	** important in reading the nvm and
957 	** mac from that.
958 	*/
959 	e1000_reset_hw(hw);
960 
961 	/* Make sure we have a good EEPROM before we read from it */
962 	if (e1000_validate_nvm_checksum(hw) < 0) {
963 		/*
964 		** Some PCI-E parts fail the first check due to
965 		** the link being in sleep state, call it again,
966 		** if it fails a second time its a real issue.
967 		*/
968 		if (e1000_validate_nvm_checksum(hw) < 0) {
969 			device_printf(dev,
970 			    "The EEPROM Checksum Is Not Valid\n");
971 			error = EIO;
972 			goto err_late;
973 		}
974 	}
975 
976 	/* Copy the permanent MAC address out of the EEPROM */
977 	if (e1000_read_mac_addr(hw) < 0) {
978 		device_printf(dev, "EEPROM read error while reading MAC"
979 		    " address\n");
980 		error = EIO;
981 		goto err_late;
982 	}
983 
984 	if (!em_is_valid_ether_addr(hw->mac.addr)) {
985 		device_printf(dev, "Invalid MAC address\n");
986 		error = EIO;
987 		goto err_late;
988 	}
989 
990 	/* Disable ULP support */
991 	e1000_disable_ulp_lpt_lp(hw, TRUE);
992 
993         /*
994 	 * Get Wake-on-Lan and Management info for later use
995 	 */
996 	em_get_wakeup(ctx);
997 
998 	iflib_set_mac(ctx, hw->mac.addr);
999 
1000 	return (0);
1001 
1002 err_late:
1003 	em_release_hw_control(adapter);
1004 err_pci:
1005 	em_free_pci_resources(ctx);
1006 	free(adapter->mta, M_DEVBUF);
1007 
1008 	return (error);
1009 }
1010 
1011 static int
1012 em_if_attach_post(if_ctx_t ctx)
1013 {
1014         struct adapter *adapter = iflib_get_softc(ctx);
1015 	struct e1000_hw *hw = &adapter->hw;
1016  	int error = 0;
1017 
1018 	/* Setup OS specific network interface */
1019 	error = em_setup_interface(ctx);
1020 	if (error != 0) {
1021 		goto err_late;
1022 	}
1023 
1024 	em_reset(ctx);
1025 
1026 	/* Initialize statistics */
1027 	em_update_stats_counters(adapter);
1028 	hw->mac.get_link_status = 1;
1029 	em_if_update_admin_status(ctx);
1030 	em_add_hw_stats(adapter);
1031 
1032 	/* Non-AMT based hardware can now take control from firmware */
1033 	if (adapter->has_manage && !adapter->has_amt)
1034 		em_get_hw_control(adapter);
1035 
1036 	INIT_DEBUGOUT("em_if_attach_post: end");
1037 
1038 	return (error);
1039 
1040 err_late:
1041 	em_release_hw_control(adapter);
1042 	em_free_pci_resources(ctx);
1043 	em_if_queues_free(ctx);
1044 	free(adapter->mta, M_DEVBUF);
1045 
1046 	return (error);
1047 }
1048 
1049 /*********************************************************************
1050  *  Device removal routine
1051  *
1052  *  The detach entry point is called when the driver is being removed.
1053  *  This routine stops the adapter and deallocates all the resources
1054  *  that were allocated for driver operation.
1055  *
1056  *  return 0 on success, positive on failure
1057  *********************************************************************/
1058 
1059 static int
1060 em_if_detach(if_ctx_t ctx)
1061 {
1062 	struct adapter	*adapter = iflib_get_softc(ctx);
1063 
1064 	INIT_DEBUGOUT("em_detach: begin");
1065 
1066 	e1000_phy_hw_reset(&adapter->hw);
1067 
1068 	em_release_manageability(adapter);
1069 	em_release_hw_control(adapter);
1070 	em_free_pci_resources(ctx);
1071 
1072 	return (0);
1073 }
1074 
1075 /*********************************************************************
1076  *
1077  *  Shutdown entry point
1078  *
1079  **********************************************************************/
1080 
1081 static int
1082 em_if_shutdown(if_ctx_t ctx)
1083 {
1084 	return em_if_suspend(ctx);
1085 }
1086 
1087 /*
1088  * Suspend/resume device methods.
1089  */
1090 static int
1091 em_if_suspend(if_ctx_t ctx)
1092 {
1093 	struct adapter *adapter = iflib_get_softc(ctx);
1094 
1095         em_release_manageability(adapter);
1096 	em_release_hw_control(adapter);
1097 	em_enable_wakeup(ctx);
1098 	return (0);
1099 }
1100 
1101 static int
1102 em_if_resume(if_ctx_t ctx)
1103 {
1104 	struct adapter *adapter = iflib_get_softc(ctx);
1105 
1106 	if (adapter->hw.mac.type == e1000_pch2lan)
1107 		e1000_resume_workarounds_pchlan(&adapter->hw);
1108 	em_if_init(ctx);
1109 	em_init_manageability(adapter);
1110 
1111 	return(0);
1112 }
1113 
1114 static int
1115 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1116 {
1117   int max_frame_size;
1118   struct adapter *adapter = iflib_get_softc(ctx);
1119   struct ifnet *ifp = iflib_get_ifp(ctx);
1120   if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1121 
1122   IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1123 
1124   switch (adapter->hw.mac.type) {
1125   case e1000_82571:
1126   case e1000_82572:
1127   case e1000_ich9lan:
1128   case e1000_ich10lan:
1129   case e1000_pch2lan:
1130   case e1000_pch_lpt:
1131   case e1000_pch_spt:
1132   case e1000_82574:
1133   case e1000_82583:
1134   case e1000_80003es2lan:	/* 9K Jumbo Frame size */
1135 	  max_frame_size = 9234;
1136 	  break;
1137   case e1000_pchlan:
1138 	  max_frame_size = 4096;
1139 	  break;
1140 	  /* Adapters that do not support jumbo frames */
1141   case e1000_ich8lan:
1142 	  max_frame_size = ETHER_MAX_LEN;
1143 	  break;
1144   default:
1145 	  max_frame_size = MAX_JUMBO_FRAME_SIZE;
1146   }
1147   if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1148 	  return (EINVAL);
1149   }
1150 
1151   scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
1152       if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN;
1153   return (0);
1154 }
1155 
1156 /*********************************************************************
1157  *  Init entry point
1158  *
1159  *  This routine is used in two ways. It is used by the stack as
1160  *  init entry point in network interface structure. It is also used
1161  *  by the driver as a hw/sw initialization routine to get to a
1162  *  consistent state.
1163  *
1164  *  return 0 on success, positive on failure
1165  **********************************************************************/
1166 
1167 static void
1168 em_if_init(if_ctx_t ctx)
1169 {
1170         struct adapter *adapter = iflib_get_softc(ctx);
1171 	struct ifnet *ifp = iflib_get_ifp(ctx);
1172 
1173 	INIT_DEBUGOUT("em_if_init: begin");
1174 
1175 	/* Get the latest mac address, User can use a LAA */
1176         bcopy(if_getlladdr(ifp), adapter->hw.mac.addr,
1177               ETHER_ADDR_LEN);
1178 
1179 	/* Put the address into the Receive Address Array */
1180 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1181 
1182 	/*
1183 	 * With the 82571 adapter, RAR[0] may be overwritten
1184 	 * when the other port is reset, we make a duplicate
1185 	 * in RAR[14] for that eventuality, this assures
1186 	 * the interface continues to function.
1187 	 */
1188 	if (adapter->hw.mac.type == e1000_82571) {
1189 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1190 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1191 		    E1000_RAR_ENTRIES - 1);
1192 	}
1193 
1194 	/* Initialize the hardware */
1195 	em_reset(ctx);
1196 	em_if_update_admin_status(ctx);
1197 
1198 	/* Setup VLAN support, basic and offload if available */
1199 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1200 
1201 	/* Clear bad data from Rx FIFOs */
1202 	if (adapter->hw.mac.type >= igb_mac_min)
1203 		e1000_rx_fifo_flush_82575(&adapter->hw);
1204 
1205 	/* Configure for OS presence */
1206 	em_init_manageability(adapter);
1207 
1208 	/* Prepare transmit descriptors and buffers */
1209 	em_initialize_transmit_unit(ctx);
1210 
1211 	/* Setup Multicast table */
1212 	em_if_multi_set(ctx);
1213 
1214 	/*
1215 	** Figure out the desired mbuf
1216 	** pool for doing jumbos
1217 	*/
1218 	if (adapter->hw.mac.max_frame_size <= 2048)
1219 		adapter->rx_mbuf_sz = MCLBYTES;
1220 	else if (adapter->hw.mac.max_frame_size <= 4096)
1221 		adapter->rx_mbuf_sz = MJUMPAGESIZE;
1222 	else
1223 		adapter->rx_mbuf_sz = MJUM9BYTES;
1224 
1225 	em_initialize_receive_unit(ctx);
1226 
1227 	/* Use real VLAN Filter support? */
1228 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
1229 		if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
1230 			/* Use real VLAN Filter support */
1231 			em_setup_vlan_hw_support(adapter);
1232 		else {
1233 			u32 ctrl;
1234 			ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1235 			ctrl |= E1000_CTRL_VME;
1236 			E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1237 		}
1238 	}
1239 
1240 	/* Don't lose promiscuous settings */
1241 	em_if_set_promisc(ctx, IFF_PROMISC);
1242 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1243 
1244 	/* MSI/X configuration for 82574 */
1245 	if (adapter->hw.mac.type == e1000_82574) {
1246 		int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1247 
1248 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1249 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1250 		/* Set the IVAR - interrupt vector routing. */
1251 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars);
1252 	} else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1253 		igb_configure_queues(adapter);
1254 
1255 	/* this clears any pending interrupts */
1256 	E1000_READ_REG(&adapter->hw, E1000_ICR);
1257 	E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
1258 
1259 	/* AMT based hardware can now take control from firmware */
1260 	if (adapter->has_manage && adapter->has_amt)
1261 		em_get_hw_control(adapter);
1262 
1263 	/* Set Energy Efficient Ethernet */
1264 	if (adapter->hw.mac.type >= igb_mac_min &&
1265 	    adapter->hw.phy.media_type == e1000_media_type_copper) {
1266 		if (adapter->hw.mac.type == e1000_i354)
1267 			e1000_set_eee_i354(&adapter->hw, TRUE, TRUE);
1268 		else
1269 			e1000_set_eee_i350(&adapter->hw, TRUE, TRUE);
1270 	}
1271 }
1272 
1273 /*********************************************************************
1274  *
1275  *  Fast Legacy/MSI Combined Interrupt Service routine
1276  *
1277  *********************************************************************/
1278 int
1279 em_intr(void *arg)
1280 {
1281         struct adapter	*adapter = arg;
1282 	if_ctx_t ctx = adapter->ctx;
1283 	u32		reg_icr;
1284 
1285 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1286 
1287 	if (adapter->intr_type != IFLIB_INTR_LEGACY)
1288 		goto skip_stray;
1289 	/* Hot eject?  */
1290 	if (reg_icr == 0xffffffff)
1291 		return FILTER_STRAY;
1292 
1293 	/* Definitely not our interrupt.  */
1294 	if (reg_icr == 0x0)
1295 		return FILTER_STRAY;
1296 
1297 	/*
1298 	 * Starting with the 82571 chip, bit 31 should be used to
1299 	 * determine whether the interrupt belongs to us.
1300 	 */
1301 	if (adapter->hw.mac.type >= e1000_82571 &&
1302 	    (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1303 		return FILTER_STRAY;
1304 
1305 skip_stray:
1306 	/* Link status change */
1307 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1308 		adapter->hw.mac.get_link_status = 1;
1309 		iflib_admin_intr_deferred(ctx);
1310 	}
1311 
1312 	if (reg_icr & E1000_ICR_RXO)
1313 		adapter->rx_overruns++;
1314 
1315 	return (FILTER_SCHEDULE_THREAD);
1316 }
1317 
1318 static void
1319 igb_enable_queue(struct adapter *adapter, struct em_rx_queue *rxq)
1320 {
1321 	E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims);
1322 }
1323 
1324 static void
1325 em_enable_queue(struct adapter *adapter, struct em_rx_queue *rxq)
1326 {
1327 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims);
1328 }
1329 
1330 static int
1331 em_if_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1332 {
1333         struct adapter	*adapter = iflib_get_softc(ctx);
1334 	struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1335 
1336 	if (adapter->hw.mac.type >= igb_mac_min)
1337 		igb_enable_queue(adapter, rxq);
1338 	else
1339 		em_enable_queue(adapter, rxq);
1340 	return (0);
1341 }
1342 
1343 /*********************************************************************
1344  *
1345  *  MSIX RX Interrupt Service routine
1346  *
1347  **********************************************************************/
1348 static int
1349 em_msix_que(void *arg)
1350 {
1351 	struct em_rx_queue *que = arg;
1352 
1353 	++que->irqs;
1354 
1355         return (FILTER_SCHEDULE_THREAD);
1356 }
1357 
1358 /*********************************************************************
1359  *
1360  *  MSIX Link Fast Interrupt Service routine
1361  *
1362  **********************************************************************/
1363 static int
1364 em_msix_link(void *arg)
1365 {
1366 	struct adapter	*adapter = arg;
1367 	u32		reg_icr;
1368 
1369 	++adapter->link_irq;
1370 	MPASS(adapter->hw.back != NULL);
1371 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1372 
1373 	if (reg_icr & E1000_ICR_RXO)
1374 		adapter->rx_overruns++;
1375 
1376 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1377 		em_handle_link(adapter->ctx);
1378 	} else {
1379 		E1000_WRITE_REG(&adapter->hw, E1000_IMS,
1380 				EM_MSIX_LINK | E1000_IMS_LSC);
1381 		if (adapter->hw.mac.type >= igb_mac_min)
1382 			E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
1383 
1384 	}
1385 
1386 	/*
1387  	** Because we must read the ICR for this interrupt
1388  	** it may clear other causes using autoclear, for
1389  	** this reason we simply create a soft interrupt
1390  	** for all these vectors.
1391  	*/
1392 	if (reg_icr && adapter->hw.mac.type < igb_mac_min) {
1393 		E1000_WRITE_REG(&adapter->hw,
1394 			E1000_ICS, adapter->ims);
1395 	}
1396 
1397 	return (FILTER_HANDLED);
1398 }
1399 
1400 static void
1401 em_handle_link(void *context)
1402 {
1403         if_ctx_t ctx = context;
1404 	struct adapter	*adapter = iflib_get_softc(ctx);
1405 
1406 	adapter->hw.mac.get_link_status = 1;
1407 	iflib_admin_intr_deferred(ctx);
1408 }
1409 
1410 
1411 /*********************************************************************
1412  *
1413  *  Media Ioctl callback
1414  *
1415  *  This routine is called whenever the user queries the status of
1416  *  the interface using ifconfig.
1417  *
1418  **********************************************************************/
1419 static void
1420 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1421 {
1422   struct adapter *adapter = iflib_get_softc(ctx);
1423   u_char fiber_type = IFM_1000_SX;
1424 
1425   INIT_DEBUGOUT("em_if_media_status: begin");
1426 
1427         iflib_admin_intr_deferred(ctx);
1428 
1429 	ifmr->ifm_status = IFM_AVALID;
1430 	ifmr->ifm_active = IFM_ETHER;
1431 
1432 	if (!adapter->link_active) {
1433 		return;
1434 	}
1435 
1436 	ifmr->ifm_status |= IFM_ACTIVE;
1437 
1438 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
1439 	    (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1440 		if (adapter->hw.mac.type == e1000_82545)
1441 			fiber_type = IFM_1000_LX;
1442 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1443 	} else {
1444 		switch (adapter->link_speed) {
1445 		case 10:
1446 			ifmr->ifm_active |= IFM_10_T;
1447 			break;
1448 		case 100:
1449 			ifmr->ifm_active |= IFM_100_TX;
1450 			break;
1451 		case 1000:
1452 			ifmr->ifm_active |= IFM_1000_T;
1453 			break;
1454 		}
1455 		if (adapter->link_duplex == FULL_DUPLEX)
1456 			ifmr->ifm_active |= IFM_FDX;
1457 		else
1458 			ifmr->ifm_active |= IFM_HDX;
1459 	}
1460 }
1461 
1462 /*********************************************************************
1463  *
1464  *  Media Ioctl callback
1465  *
1466  *  This routine is called when the user changes speed/duplex using
1467  *  media/mediopt option with ifconfig.
1468  *
1469  **********************************************************************/
1470 static int
1471 em_if_media_change(if_ctx_t ctx)
1472 {
1473 	struct adapter *adapter = iflib_get_softc(ctx);
1474 	struct ifmedia  *ifm = iflib_get_media(ctx);
1475 
1476 	INIT_DEBUGOUT("em_if_media_change: begin");
1477 
1478 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1479 		return (EINVAL);
1480 
1481 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1482 	case IFM_AUTO:
1483 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1484 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1485 		break;
1486 	case IFM_1000_LX:
1487 	case IFM_1000_SX:
1488 	case IFM_1000_T:
1489 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1490 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1491 		break;
1492 	case IFM_100_TX:
1493 		adapter->hw.mac.autoneg = FALSE;
1494 		adapter->hw.phy.autoneg_advertised = 0;
1495 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1496 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1497 		else
1498 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1499 		break;
1500 	case IFM_10_T:
1501 		adapter->hw.mac.autoneg = FALSE;
1502 		adapter->hw.phy.autoneg_advertised = 0;
1503 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1504 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1505 		else
1506 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1507 		break;
1508 	default:
1509 		device_printf(adapter->dev, "Unsupported media type\n");
1510 	}
1511 
1512 	em_if_init(ctx);
1513 
1514 	return (0);
1515 }
1516 
1517 static int
1518 em_if_set_promisc(if_ctx_t ctx, int flags)
1519 {
1520         struct adapter *adapter = iflib_get_softc(ctx);
1521 	u32		reg_rctl;
1522 
1523 	em_disable_promisc(ctx);
1524 
1525 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1526 
1527 	if (flags & IFF_PROMISC) {
1528 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1529 		/* Turn this on if you want to see bad packets */
1530 		if (em_debug_sbp)
1531 			reg_rctl |= E1000_RCTL_SBP;
1532 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1533 	} else if (flags & IFF_ALLMULTI) {
1534 		reg_rctl |= E1000_RCTL_MPE;
1535 		reg_rctl &= ~E1000_RCTL_UPE;
1536 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1537 	}
1538 	return (0);
1539 }
1540 
1541 static void
1542 em_disable_promisc(if_ctx_t ctx)
1543 {
1544         struct adapter *adapter = iflib_get_softc(ctx);
1545 	struct ifnet *ifp = iflib_get_ifp(ctx);
1546 	u32		reg_rctl;
1547 	int		mcnt = 0;
1548 
1549 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1550 	reg_rctl &=  (~E1000_RCTL_UPE);
1551 	if (if_getflags(ifp) & IFF_ALLMULTI)
1552 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1553 	else
1554 		mcnt = if_multiaddr_count(ifp, MAX_NUM_MULTICAST_ADDRESSES);
1555 	/* Don't disable if in MAX groups */
1556 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1557 		reg_rctl &=  (~E1000_RCTL_MPE);
1558 	reg_rctl &=  (~E1000_RCTL_SBP);
1559 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1560 }
1561 
1562 
1563 /*********************************************************************
1564  *  Multicast Update
1565  *
1566  *  This routine is called whenever multicast address list is updated.
1567  *
1568  **********************************************************************/
1569 
1570 static void
1571 em_if_multi_set(if_ctx_t ctx)
1572 {
1573         struct adapter *adapter = iflib_get_softc(ctx);
1574 	struct ifnet *ifp = iflib_get_ifp(ctx);
1575 	u32 reg_rctl = 0;
1576 	u8  *mta; /* Multicast array memory */
1577 	int mcnt = 0;
1578 
1579 	IOCTL_DEBUGOUT("em_set_multi: begin");
1580 
1581 	mta = adapter->mta;
1582 	bzero(mta, sizeof(u8) * ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1583 
1584 	if (adapter->hw.mac.type == e1000_82542 &&
1585 	    adapter->hw.revision_id == E1000_REVISION_2) {
1586 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1587 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1588 			e1000_pci_clear_mwi(&adapter->hw);
1589 		reg_rctl |= E1000_RCTL_RST;
1590 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1591 		msec_delay(5);
1592 	}
1593 
1594 	if_multiaddr_array(ifp, mta, &mcnt, MAX_NUM_MULTICAST_ADDRESSES);
1595 
1596 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1597 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1598 		reg_rctl |= E1000_RCTL_MPE;
1599 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1600 	} else
1601 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1602 
1603 	if (adapter->hw.mac.type == e1000_82542 &&
1604 	    adapter->hw.revision_id == E1000_REVISION_2) {
1605 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1606 		reg_rctl &= ~E1000_RCTL_RST;
1607 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1608 		msec_delay(5);
1609 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1610 			e1000_pci_set_mwi(&adapter->hw);
1611 	}
1612 }
1613 
1614 
1615 /*********************************************************************
1616  *  Timer routine
1617  *
1618  *  This routine checks for link status and updates statistics.
1619  *
1620  **********************************************************************/
1621 
1622 static void
1623 em_if_timer(if_ctx_t ctx, uint16_t qid)
1624 {
1625         struct adapter	*adapter = iflib_get_softc(ctx);
1626 	struct em_rx_queue *que;
1627 	int i;
1628 	int trigger = 0;
1629 
1630 	if (qid != 0) {
1631 		/* XXX all this stuff is per-adapter */
1632 		return;
1633 	}
1634 
1635 	em_if_update_admin_status(ctx);
1636 	em_update_stats_counters(adapter);
1637 
1638 	/* Reset LAA into RAR[0] on 82571 */
1639 	if ((adapter->hw.mac.type == e1000_82571) &&
1640 	    e1000_get_laa_state_82571(&adapter->hw))
1641 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1642 
1643 	if (adapter->hw.mac.type < em_mac_min)
1644 		lem_smartspeed(adapter);
1645 
1646 	/* Mask to use in the irq trigger */
1647 	if (adapter->intr_type == IFLIB_INTR_MSIX) {
1648 		for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++)
1649 			trigger |= que->eims;
1650 	} else {
1651 		trigger = E1000_ICS_RXDMT0;
1652 	}
1653 }
1654 
1655 
1656 static void
1657 em_if_update_admin_status(if_ctx_t ctx)
1658 {
1659         struct adapter *adapter = iflib_get_softc(ctx);
1660 	struct e1000_hw *hw = &adapter->hw;
1661         struct ifnet *ifp = iflib_get_ifp(ctx);
1662 	device_t dev = iflib_get_dev(ctx);
1663 	u32 link_check = 0;
1664 
1665 	/* Get the cached link value or read phy for real */
1666 	switch (hw->phy.media_type) {
1667 	case e1000_media_type_copper:
1668 		if (hw->mac.get_link_status) {
1669 			if (hw->mac.type == e1000_pch_spt)
1670 				msec_delay(50);
1671 			/* Do the work to read phy */
1672 			e1000_check_for_link(hw);
1673 			link_check = !hw->mac.get_link_status;
1674 			if (link_check) /* ESB2 fix */
1675 				e1000_cfg_on_link_up(hw);
1676 		} else {
1677 			link_check = TRUE;
1678 		}
1679 		break;
1680 	case e1000_media_type_fiber:
1681 		e1000_check_for_link(hw);
1682 		link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1683                                  E1000_STATUS_LU);
1684 		break;
1685 	case e1000_media_type_internal_serdes:
1686 		e1000_check_for_link(hw);
1687 		link_check = adapter->hw.mac.serdes_has_link;
1688 		break;
1689 	default:
1690 	case e1000_media_type_unknown:
1691 		break;
1692 	}
1693 
1694 	/* Now check for a transition */
1695 	if (link_check && (adapter->link_active == 0)) {
1696 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
1697 		    &adapter->link_duplex);
1698 		/* Check if we must disable SPEED_MODE bit on PCI-E */
1699 		if ((adapter->link_speed != SPEED_1000) &&
1700 		    ((hw->mac.type == e1000_82571) ||
1701 		    (hw->mac.type == e1000_82572))) {
1702 			int tarc0;
1703 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1704 			tarc0 &= ~TARC_SPEED_MODE_BIT;
1705 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1706 		}
1707 		if (bootverbose)
1708 			device_printf(dev, "Link is up %d Mbps %s\n",
1709 			    adapter->link_speed,
1710 			    ((adapter->link_duplex == FULL_DUPLEX) ?
1711 			    "Full Duplex" : "Half Duplex"));
1712 		adapter->link_active = 1;
1713 		adapter->smartspeed = 0;
1714 		if_setbaudrate(ifp, adapter->link_speed * 1000000);
1715 		iflib_link_state_change(ctx, LINK_STATE_UP, ifp->if_baudrate);
1716 		printf("Link state changed to up\n");
1717 	} else if (!link_check && (adapter->link_active == 1)) {
1718 		if_setbaudrate(ifp, 0);
1719 		adapter->link_speed = 0;
1720 		adapter->link_duplex = 0;
1721 		if (bootverbose)
1722 			device_printf(dev, "Link is Down\n");
1723 		adapter->link_active = 0;
1724 		iflib_link_state_change(ctx, LINK_STATE_DOWN, ifp->if_baudrate);
1725 		printf("link state changed to down\n");
1726 	}
1727 
1728 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK | E1000_IMS_LSC);
1729 }
1730 
1731 /*********************************************************************
1732  *
1733  *  This routine disables all traffic on the adapter by issuing a
1734  *  global reset on the MAC and deallocates TX/RX buffers.
1735  *
1736  *  This routine should always be called with BOTH the CORE
1737  *  and TX locks.
1738  **********************************************************************/
1739 
1740 static void
1741 em_if_stop(if_ctx_t ctx)
1742 {
1743         struct adapter *adapter = iflib_get_softc(ctx);
1744 
1745 	INIT_DEBUGOUT("em_stop: begin");
1746 
1747 	e1000_reset_hw(&adapter->hw);
1748 	if (adapter->hw.mac.type >= e1000_82544)
1749 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0);
1750 
1751 	e1000_led_off(&adapter->hw);
1752 	e1000_cleanup_led(&adapter->hw);
1753 }
1754 
1755 
1756 /*********************************************************************
1757  *
1758  *  Determine hardware revision.
1759  *
1760  **********************************************************************/
1761 static void
1762 em_identify_hardware(if_ctx_t ctx)
1763 {
1764         device_t dev = iflib_get_dev(ctx);
1765         struct adapter *adapter = iflib_get_softc(ctx);
1766 
1767 	/* Make sure our PCI config space has the necessary stuff set */
1768 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1769 
1770 	/* Save off the information about this board */
1771 	adapter->hw.vendor_id = pci_get_vendor(dev);
1772 	adapter->hw.device_id = pci_get_device(dev);
1773 	adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1774 	adapter->hw.subsystem_vendor_id =
1775 	    pci_read_config(dev, PCIR_SUBVEND_0, 2);
1776 	adapter->hw.subsystem_device_id =
1777 	    pci_read_config(dev, PCIR_SUBDEV_0, 2);
1778 
1779 	/* Do Shared Code Init and Setup */
1780 	if (e1000_set_mac_type(&adapter->hw)) {
1781 		device_printf(dev, "Setup init failure\n");
1782 		return;
1783 	}
1784 }
1785 
1786 static int
1787 em_allocate_pci_resources(if_ctx_t ctx)
1788 {
1789         struct adapter *adapter = iflib_get_softc(ctx);
1790         device_t	dev = iflib_get_dev(ctx);
1791 	int		rid, val;
1792 
1793 	rid = PCIR_BAR(0);
1794 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1795 	    &rid, RF_ACTIVE);
1796 	if (adapter->memory == NULL) {
1797 		device_printf(dev, "Unable to allocate bus resource: memory\n");
1798 		return (ENXIO);
1799 	}
1800 	adapter->osdep.mem_bus_space_tag =
1801 	    rman_get_bustag(adapter->memory);
1802 	adapter->osdep.mem_bus_space_handle =
1803 	    rman_get_bushandle(adapter->memory);
1804 	adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
1805 
1806 	/* Only older adapters use IO mapping */
1807 	if (adapter->hw.mac.type < em_mac_min &&
1808 	    adapter->hw.mac.type > e1000_82543) {
1809 		/* Figure our where our IO BAR is ? */
1810 		for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1811 			val = pci_read_config(dev, rid, 4);
1812 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1813 				adapter->io_rid = rid;
1814 				break;
1815 			}
1816 			rid += 4;
1817 			/* check for 64bit BAR */
1818 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1819 				rid += 4;
1820 		}
1821 		if (rid >= PCIR_CIS) {
1822 			device_printf(dev, "Unable to locate IO BAR\n");
1823 			return (ENXIO);
1824 		}
1825 		adapter->ioport = bus_alloc_resource_any(dev,
1826 		    SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE);
1827 		if (adapter->ioport == NULL) {
1828 			device_printf(dev, "Unable to allocate bus resource: "
1829 			    "ioport\n");
1830 			return (ENXIO);
1831 		}
1832 		adapter->hw.io_base = 0;
1833 		adapter->osdep.io_bus_space_tag =
1834 		    rman_get_bustag(adapter->ioport);
1835 		adapter->osdep.io_bus_space_handle =
1836 		    rman_get_bushandle(adapter->ioport);
1837 	}
1838 
1839 	adapter->hw.back = &adapter->osdep;
1840 
1841 	return (0);
1842 }
1843 
1844 /*********************************************************************
1845  *
1846  *  Setup the MSIX Interrupt handlers
1847  *
1848  **********************************************************************/
1849 static int
1850 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
1851 {
1852         struct adapter     *adapter = iflib_get_softc(ctx);
1853 	struct em_rx_queue *rx_que = adapter->rx_queues;
1854 	struct em_tx_queue *tx_que = adapter->tx_queues;
1855 	int		   error, rid, i, vector = 0;
1856 	char buf[16];
1857 
1858 	/* First set up ring resources */
1859 	for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) {
1860 		rid = vector +1;
1861 		snprintf(buf, sizeof(buf), "rxq%d", i);
1862 		error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RX, em_msix_que, rx_que, rx_que->me, buf);
1863                 if (error) {
1864 		  	device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
1865 			adapter->rx_num_queues = i + 1;
1866 			goto fail;
1867 		}
1868 
1869 		rx_que->msix =  vector;
1870 
1871 		/*
1872 		** Set the bit to enable interrupt
1873 		** in E1000_IMS -- bits 20 and 21
1874 		** are for RX0 and RX1, note this has
1875 		** NOTHING to do with the MSIX vector
1876 		*/
1877 		if (adapter->hw.mac.type == e1000_82574) {
1878 			rx_que->eims = 1 << (20 + i);
1879 			adapter->ims |= rx_que->eims;
1880 			adapter->ivars |= (8 | rx_que->msix) << (i * 4);
1881 		} else if (adapter->hw.mac.type == e1000_82575)
1882 			rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
1883 		else
1884 			rx_que->eims = 1 << vector;
1885 	}
1886 
1887 	for (i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
1888 		rid = vector + 1;
1889 		snprintf(buf, sizeof(buf), "txq%d", i);
1890 		tx_que = &adapter->tx_queues[i];
1891 		iflib_softirq_alloc_generic(ctx, rid, IFLIB_INTR_TX, tx_que, tx_que->me, buf);
1892 
1893 		tx_que->msix = vector;
1894 
1895 		  /*
1896 		** Set the bit to enable interrupt
1897 		** in E1000_IMS -- bits 22 and 23
1898 		** are for TX0 and TX1, note this has
1899 		** NOTHING to do with the MSIX vector
1900 		*/
1901 		if (adapter->hw.mac.type < igb_mac_min) {
1902 			tx_que->eims = 1 << (22 + i);
1903 			adapter->ims |= tx_que->eims;
1904 			adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
1905 		} if (adapter->hw.mac.type == e1000_82575)
1906 			tx_que->eims = E1000_EICR_TX_QUEUE0 << (i %  adapter->tx_num_queues);
1907 		else
1908 			tx_que->eims = 1 << (i %  adapter->tx_num_queues);
1909 	}
1910 
1911 	/* Link interrupt */
1912 	rid = vector + 1;
1913         error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq");
1914 
1915 	if (error) {
1916 		device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
1917 		goto fail;
1918 	}
1919 	adapter->linkvec = vector;
1920 	if (adapter->hw.mac.type < igb_mac_min) {
1921 		adapter->ivars |=  (8 | vector) << 16;
1922 		adapter->ivars |= 0x80000000;
1923 	}
1924 	return (0);
1925  fail:
1926 	iflib_irq_free(ctx, &adapter->irq);
1927 	rx_que = adapter->rx_queues;
1928 	for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++)
1929 		iflib_irq_free(ctx, &rx_que->que_irq);
1930 	return (error);
1931 }
1932 
1933 static void
1934 igb_configure_queues(struct adapter *adapter)
1935 {
1936 	struct	e1000_hw	*hw = &adapter->hw;
1937 	struct	em_rx_queue	*rx_que;
1938 	struct  em_tx_queue    *tx_que;
1939 	u32			tmp, ivar = 0, newitr = 0;
1940 
1941 	/* First turn on RSS capability */
1942 	if (adapter->hw.mac.type != e1000_82575)
1943 		E1000_WRITE_REG(hw, E1000_GPIE,
1944 		    E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
1945 		    E1000_GPIE_PBA | E1000_GPIE_NSICR);
1946 
1947 	/* Turn on MSIX */
1948 	switch (adapter->hw.mac.type) {
1949 	case e1000_82580:
1950 	case e1000_i350:
1951 	case e1000_i354:
1952 	case e1000_i210:
1953 	case e1000_i211:
1954 	case e1000_vfadapt:
1955 	case e1000_vfadapt_i350:
1956 		/* RX entries */
1957 		for (int i = 0; i < adapter->rx_num_queues; i++) {
1958 			u32 index = i >> 1;
1959 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
1960 			rx_que = &adapter->rx_queues[i];
1961 			if (i & 1) {
1962 				ivar &= 0xFF00FFFF;
1963 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
1964 			} else {
1965 				ivar &= 0xFFFFFF00;
1966 				ivar |= rx_que->msix | E1000_IVAR_VALID;
1967 			}
1968 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
1969 		}
1970 		/* TX entries */
1971 		for (int i = 0; i < adapter->tx_num_queues; i++) {
1972 			u32 index = i >> 1;
1973 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
1974 			tx_que = &adapter->tx_queues[i];
1975 			if (i & 1) {
1976 				ivar &= 0x00FFFFFF;
1977 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
1978 			} else {
1979 				ivar &= 0xFFFF00FF;
1980 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
1981 			}
1982 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
1983 			adapter->que_mask |= tx_que->eims;
1984 		}
1985 
1986 		/* And for the link interrupt */
1987 		ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
1988 		adapter->link_mask = 1 << adapter->linkvec;
1989 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
1990 		break;
1991 	case e1000_82576:
1992 		/* RX entries */
1993 		for (int i = 0; i < adapter->rx_num_queues; i++) {
1994 			u32 index = i & 0x7; /* Each IVAR has two entries */
1995 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
1996 			rx_que = &adapter->rx_queues[i];
1997 			if (i < 8) {
1998 				ivar &= 0xFFFFFF00;
1999 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2000 			} else {
2001 				ivar &= 0xFF00FFFF;
2002 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2003 			}
2004 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2005 			adapter->que_mask |= rx_que->eims;
2006 		}
2007 		/* TX entries */
2008 		for (int i = 0; i < adapter->tx_num_queues; i++) {
2009 			u32 index = i & 0x7; /* Each IVAR has two entries */
2010 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2011 			tx_que = &adapter->tx_queues[i];
2012 			if (i < 8) {
2013 				ivar &= 0xFFFF00FF;
2014 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2015 			} else {
2016 				ivar &= 0x00FFFFFF;
2017 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2018 			}
2019 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2020 			adapter->que_mask |= tx_que->eims;
2021 		}
2022 
2023 		/* And for the link interrupt */
2024 		ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2025 		adapter->link_mask = 1 << adapter->linkvec;
2026 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2027 		break;
2028 
2029 	case e1000_82575:
2030                 /* enable MSI-X support*/
2031 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2032                 tmp |= E1000_CTRL_EXT_PBA_CLR;
2033                 /* Auto-Mask interrupts upon ICR read. */
2034                 tmp |= E1000_CTRL_EXT_EIAME;
2035                 tmp |= E1000_CTRL_EXT_IRCA;
2036                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2037 
2038 		/* Queues */
2039 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2040 			rx_que = &adapter->rx_queues[i];
2041 			tmp = E1000_EICR_RX_QUEUE0 << i;
2042 			tmp |= E1000_EICR_TX_QUEUE0 << i;
2043 			rx_que->eims = tmp;
2044 			E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2045 			    i, rx_que->eims);
2046 			adapter->que_mask |= rx_que->eims;
2047 		}
2048 
2049 		/* Link */
2050 		E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
2051 		    E1000_EIMS_OTHER);
2052 		adapter->link_mask |= E1000_EIMS_OTHER;
2053 	default:
2054 		break;
2055 	}
2056 
2057 	/* Set the starting interrupt rate */
2058 	if (em_max_interrupt_rate > 0)
2059 		newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2060 
2061         if (hw->mac.type == e1000_82575)
2062                 newitr |= newitr << 16;
2063         else
2064                 newitr |= E1000_EITR_CNT_IGNR;
2065 
2066 	for (int i = 0; i < adapter->rx_num_queues; i++) {
2067 		rx_que = &adapter->rx_queues[i];
2068 		E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2069 	}
2070 
2071 	return;
2072 }
2073 
2074 static void
2075 em_free_pci_resources(if_ctx_t ctx)
2076 {
2077 	struct adapter *adapter = iflib_get_softc(ctx);
2078         struct 		em_rx_queue *que = adapter->rx_queues;
2079 	device_t	dev = iflib_get_dev(ctx);
2080 
2081 	/* Release all msix queue resources */
2082 	if (adapter->intr_type == IFLIB_INTR_MSIX)
2083 		iflib_irq_free(ctx, &adapter->irq);
2084 
2085 	for (int i = 0; i < adapter->rx_num_queues; i++, que++) {
2086 		iflib_irq_free(ctx, &que->que_irq);
2087 	}
2088 
2089 
2090 	/* First release all the interrupt resources */
2091 	if (adapter->memory != NULL) {
2092 		bus_release_resource(dev, SYS_RES_MEMORY,
2093 				     PCIR_BAR(0), adapter->memory);
2094 		adapter->memory = NULL;
2095 	}
2096 
2097 	if (adapter->flash != NULL) {
2098 		bus_release_resource(dev, SYS_RES_MEMORY,
2099 				     EM_FLASH, adapter->flash);
2100 		adapter->flash = NULL;
2101 	}
2102 	if (adapter->ioport != NULL)
2103 		bus_release_resource(dev, SYS_RES_IOPORT,
2104 		    adapter->io_rid, adapter->ioport);
2105 }
2106 
2107 /* Setup MSI or MSI/X */
2108 static int
2109 em_setup_msix(if_ctx_t ctx)
2110 {
2111 	struct adapter *adapter = iflib_get_softc(ctx);
2112 
2113 	if (adapter->hw.mac.type == e1000_82574) {
2114 		em_enable_vectors_82574(ctx);
2115 	}
2116 	return (0);
2117 }
2118 
2119 /*********************************************************************
2120  *
2121  *  Initialize the hardware to a configuration
2122  *  as specified by the adapter structure.
2123  *
2124  **********************************************************************/
2125 
2126 static void
2127 lem_smartspeed(struct adapter *adapter)
2128 {
2129 	u16 phy_tmp;
2130 
2131 	if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
2132 	    adapter->hw.mac.autoneg == 0 ||
2133 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2134 		return;
2135 
2136 	if (adapter->smartspeed == 0) {
2137 		/* If Master/Slave config fault is asserted twice,
2138 		 * we assume back-to-back */
2139 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2140 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2141 			return;
2142 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2143 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2144 			e1000_read_phy_reg(&adapter->hw,
2145 			    PHY_1000T_CTRL, &phy_tmp);
2146 			if(phy_tmp & CR_1000T_MS_ENABLE) {
2147 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2148 				e1000_write_phy_reg(&adapter->hw,
2149 				    PHY_1000T_CTRL, phy_tmp);
2150 				adapter->smartspeed++;
2151 				if(adapter->hw.mac.autoneg &&
2152 				   !e1000_copper_link_autoneg(&adapter->hw) &&
2153 				   !e1000_read_phy_reg(&adapter->hw,
2154 				    PHY_CONTROL, &phy_tmp)) {
2155 					phy_tmp |= (MII_CR_AUTO_NEG_EN |
2156 						    MII_CR_RESTART_AUTO_NEG);
2157 					e1000_write_phy_reg(&adapter->hw,
2158 					    PHY_CONTROL, phy_tmp);
2159 				}
2160 			}
2161 		}
2162 		return;
2163 	} else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2164 		/* If still no link, perhaps using 2/3 pair cable */
2165 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2166 		phy_tmp |= CR_1000T_MS_ENABLE;
2167 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2168 		if(adapter->hw.mac.autoneg &&
2169 		   !e1000_copper_link_autoneg(&adapter->hw) &&
2170 		   !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2171 			phy_tmp |= (MII_CR_AUTO_NEG_EN |
2172 				    MII_CR_RESTART_AUTO_NEG);
2173 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2174 		}
2175 	}
2176 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2177 	if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2178 		adapter->smartspeed = 0;
2179 }
2180 
2181 
2182 static void
2183 em_reset(if_ctx_t ctx)
2184 {
2185         device_t	dev = iflib_get_dev(ctx);
2186 	struct adapter *adapter = iflib_get_softc(ctx);
2187 	struct ifnet *ifp = iflib_get_ifp(ctx);
2188 	struct e1000_hw	*hw = &adapter->hw;
2189 	u16		rx_buffer_size;
2190 	u32		pba;
2191 
2192 	INIT_DEBUGOUT("em_reset: begin");
2193 
2194 	/* Set up smart power down as default off on newer adapters. */
2195 	if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2196 	    hw->mac.type == e1000_82572)) {
2197 		u16 phy_tmp = 0;
2198 
2199 		/* Speed up time to link by disabling smart power down. */
2200 		e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2201 		phy_tmp &= ~IGP02E1000_PM_SPD;
2202 		e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2203 	}
2204 
2205 	/*
2206 	 * Packet Buffer Allocation (PBA)
2207 	 * Writing PBA sets the receive portion of the buffer
2208 	 * the remainder is used for the transmit buffer.
2209 	 */
2210 	switch (hw->mac.type) {
2211 	/* Total Packet Buffer on these is 48K */
2212 	case e1000_82571:
2213 	case e1000_82572:
2214 	case e1000_80003es2lan:
2215 			pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2216 		break;
2217 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2218 			pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2219 		break;
2220 	case e1000_82574:
2221 	case e1000_82583:
2222 			pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2223 		break;
2224 	case e1000_ich8lan:
2225 		pba = E1000_PBA_8K;
2226 		break;
2227 	case e1000_ich9lan:
2228 	case e1000_ich10lan:
2229 		/* Boost Receive side for jumbo frames */
2230 		if (adapter->hw.mac.max_frame_size > 4096)
2231 			pba = E1000_PBA_14K;
2232 		else
2233 			pba = E1000_PBA_10K;
2234 		break;
2235 	case e1000_pchlan:
2236 	case e1000_pch2lan:
2237 	case e1000_pch_lpt:
2238 	case e1000_pch_spt:
2239 		pba = E1000_PBA_26K;
2240 		break;
2241 	case e1000_82575:
2242   		pba = E1000_PBA_32K;
2243 		break;
2244 	case e1000_82576:
2245 	case e1000_vfadapt:
2246 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2247 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2248 		break;
2249 	case e1000_82580:
2250 	case e1000_i350:
2251 	case e1000_i354:
2252 	case e1000_vfadapt_i350:
2253 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2254 		pba = e1000_rxpbs_adjust_82580(pba);
2255 		break;
2256 	case e1000_i210:
2257 	case e1000_i211:
2258 		pba = E1000_PBA_34K;
2259 		break;
2260 	default:
2261 		if (adapter->hw.mac.max_frame_size > 8192)
2262 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2263 		else
2264 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2265 	}
2266 
2267         /* Special needs in case of Jumbo frames */
2268         if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
2269                 u32 tx_space, min_tx, min_rx;
2270                 pba = E1000_READ_REG(hw, E1000_PBA);
2271                 tx_space = pba >> 16;
2272                 pba &= 0xffff;
2273                 min_tx = (adapter->hw.mac.max_frame_size +
2274                     sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
2275                 min_tx = roundup2(min_tx, 1024);
2276                 min_tx >>= 10;
2277                 min_rx = adapter->hw.mac.max_frame_size;
2278                 min_rx = roundup2(min_rx, 1024);
2279                 min_rx >>= 10;
2280                 if (tx_space < min_tx &&
2281                     ((min_tx - tx_space) < pba)) {
2282                         pba = pba - (min_tx - tx_space);
2283                         /*
2284                          * if short on rx space, rx wins
2285                          * and must trump tx adjustment
2286                          */
2287                         if (pba < min_rx)
2288                                 pba = min_rx;
2289                 }
2290                 E1000_WRITE_REG(hw, E1000_PBA, pba);
2291         }
2292 
2293 	if (hw->mac.type < igb_mac_min)
2294 		E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2295 
2296 	INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
2297 
2298 	/*
2299 	 * These parameters control the automatic generation (Tx) and
2300 	 * response (Rx) to Ethernet PAUSE frames.
2301 	 * - High water mark should allow for at least two frames to be
2302 	 *   received after sending an XOFF.
2303 	 * - Low water mark works best when it is very near the high water mark.
2304 	 *   This allows the receiver to restart by sending XON when it has
2305 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
2306 	 *   restart after one full frame is pulled from the buffer. There
2307 	 *   could be several smaller frames in the buffer and if so they will
2308 	 *   not trigger the XON until their total number reduces the buffer
2309 	 *   by 1500.
2310 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2311 	 */
2312 	rx_buffer_size = (pba & 0xffff) << 10;
2313 	hw->fc.high_water = rx_buffer_size -
2314 	    roundup2(adapter->hw.mac.max_frame_size, 1024);
2315 	hw->fc.low_water = hw->fc.high_water - 1500;
2316 
2317 	if (adapter->fc) /* locally set flow control value? */
2318 		hw->fc.requested_mode = adapter->fc;
2319 	else
2320 		hw->fc.requested_mode = e1000_fc_full;
2321 
2322 	if (hw->mac.type == e1000_80003es2lan)
2323 		hw->fc.pause_time = 0xFFFF;
2324 	else
2325 		hw->fc.pause_time = EM_FC_PAUSE_TIME;
2326 
2327 	hw->fc.send_xon = TRUE;
2328 
2329 	/* Device specific overrides/settings */
2330 	switch (hw->mac.type) {
2331 	case e1000_pchlan:
2332 		/* Workaround: no TX flow ctrl for PCH */
2333                 hw->fc.requested_mode = e1000_fc_rx_pause;
2334 		hw->fc.pause_time = 0xFFFF; /* override */
2335 		if (if_getmtu(ifp) > ETHERMTU) {
2336 			hw->fc.high_water = 0x3500;
2337 			hw->fc.low_water = 0x1500;
2338 		} else {
2339 			hw->fc.high_water = 0x5000;
2340 			hw->fc.low_water = 0x3000;
2341 		}
2342 		hw->fc.refresh_time = 0x1000;
2343 		break;
2344 	case e1000_pch2lan:
2345 	case e1000_pch_lpt:
2346 	case e1000_pch_spt:
2347 		hw->fc.high_water = 0x5C20;
2348 		hw->fc.low_water = 0x5048;
2349 		hw->fc.pause_time = 0x0650;
2350 		hw->fc.refresh_time = 0x0400;
2351 		/* Jumbos need adjusted PBA */
2352 		if (if_getmtu(ifp) > ETHERMTU)
2353 			E1000_WRITE_REG(hw, E1000_PBA, 12);
2354 		else
2355 			E1000_WRITE_REG(hw, E1000_PBA, 26);
2356 		break;
2357 	case e1000_82575:
2358 	case e1000_82576:
2359 		/* 8-byte granularity */
2360 		hw->fc.low_water = hw->fc.high_water - 8;
2361 		break;
2362 	case e1000_82580:
2363 	case e1000_i350:
2364 	case e1000_i354:
2365 	case e1000_i210:
2366 	case e1000_i211:
2367 	case e1000_vfadapt:
2368 	case e1000_vfadapt_i350:
2369 		/* 16-byte granularity */
2370 		hw->fc.low_water = hw->fc.high_water - 16;
2371 		break;
2372         case e1000_ich9lan:
2373         case e1000_ich10lan:
2374 		if (if_getmtu(ifp) > ETHERMTU) {
2375 			hw->fc.high_water = 0x2800;
2376 			hw->fc.low_water = hw->fc.high_water - 8;
2377 			break;
2378 		}
2379 		/* else fall thru */
2380 	default:
2381 		if (hw->mac.type == e1000_80003es2lan)
2382 			hw->fc.pause_time = 0xFFFF;
2383 		break;
2384 	}
2385 
2386 	/* Issue a global reset */
2387 	e1000_reset_hw(hw);
2388 	E1000_WRITE_REG(hw, E1000_WUFC, 0);
2389 	em_disable_aspm(adapter);
2390 	/* and a re-init */
2391 	if (e1000_init_hw(hw) < 0) {
2392 		device_printf(dev, "Hardware Initialization Failed\n");
2393 		return;
2394 	}
2395 
2396 	E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2397 	e1000_get_phy_info(hw);
2398 	e1000_check_for_link(hw);
2399 }
2400 
2401 #define RSSKEYLEN 10
2402 static void
2403 em_initialize_rss_mapping(struct adapter *adapter)
2404 {
2405 	uint8_t  rss_key[4 * RSSKEYLEN];
2406 	uint32_t reta = 0;
2407 	struct e1000_hw	*hw = &adapter->hw;
2408 	int i;
2409 
2410 	/*
2411 	 * Configure RSS key
2412 	 */
2413 	arc4rand(rss_key, sizeof(rss_key), 0);
2414 	for (i = 0; i < RSSKEYLEN; ++i) {
2415 		uint32_t rssrk = 0;
2416 
2417 		rssrk = EM_RSSRK_VAL(rss_key, i);
2418 		E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2419 	}
2420 
2421 	/*
2422 	 * Configure RSS redirect table in following fashion:
2423 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2424 	 */
2425 	for (i = 0; i < sizeof(reta); ++i) {
2426 		uint32_t q;
2427 
2428 		q = (i % adapter->rx_num_queues) << 7;
2429 		reta |= q << (8 * i);
2430 	}
2431 
2432 	for (i = 0; i < 32; ++i)
2433 		E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2434 
2435 	E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
2436 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2437 			E1000_MRQC_RSS_FIELD_IPV4 |
2438 			E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2439 			E1000_MRQC_RSS_FIELD_IPV6_EX |
2440 			E1000_MRQC_RSS_FIELD_IPV6);
2441 
2442 }
2443 
2444 static void
2445 igb_initialize_rss_mapping(struct adapter *adapter)
2446 {
2447 	struct e1000_hw *hw = &adapter->hw;
2448 	int i;
2449 	int queue_id;
2450 	u32 reta;
2451 	u32 rss_key[10], mrqc, shift = 0;
2452 
2453 	/* XXX? */
2454 	if (adapter->hw.mac.type == e1000_82575)
2455 		shift = 6;
2456 
2457 	/*
2458 	 * The redirection table controls which destination
2459 	 * queue each bucket redirects traffic to.
2460 	 * Each DWORD represents four queues, with the LSB
2461 	 * being the first queue in the DWORD.
2462 	 *
2463 	 * This just allocates buckets to queues using round-robin
2464 	 * allocation.
2465 	 *
2466 	 * NOTE: It Just Happens to line up with the default
2467 	 * RSS allocation method.
2468 	 */
2469 
2470 	/* Warning FM follows */
2471 	reta = 0;
2472 	for (i = 0; i < 128; i++) {
2473 #ifdef	RSS
2474 		queue_id = rss_get_indirection_to_bucket(i);
2475 		/*
2476 		 * If we have more queues than buckets, we'll
2477 		 * end up mapping buckets to a subset of the
2478 		 * queues.
2479 		 *
2480 		 * If we have more buckets than queues, we'll
2481 		 * end up instead assigning multiple buckets
2482 		 * to queues.
2483 		 *
2484 		 * Both are suboptimal, but we need to handle
2485 		 * the case so we don't go out of bounds
2486 		 * indexing arrays and such.
2487 		 */
2488 		queue_id = queue_id % adapter->rx_num_queues;
2489 #else
2490 		queue_id = (i % adapter->rx_num_queues);
2491 #endif
2492 		/* Adjust if required */
2493 		queue_id = queue_id << shift;
2494 
2495 		/*
2496 		 * The low 8 bits are for hash value (n+0);
2497 		 * The next 8 bits are for hash value (n+1), etc.
2498 		 */
2499 		reta = reta >> 8;
2500 		reta = reta | ( ((uint32_t) queue_id) << 24);
2501 		if ((i & 3) == 3) {
2502 			E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2503 			reta = 0;
2504 		}
2505 	}
2506 
2507 	/* Now fill in hash table */
2508 
2509 	/*
2510 	 * MRQC: Multiple Receive Queues Command
2511 	 * Set queuing to RSS control, number depends on the device.
2512 	 */
2513 	mrqc = E1000_MRQC_ENABLE_RSS_8Q;
2514 
2515 #ifdef	RSS
2516 	/* XXX ew typecasting */
2517 	rss_getkey((uint8_t *) &rss_key);
2518 #else
2519 	arc4rand(&rss_key, sizeof(rss_key), 0);
2520 #endif
2521 	for (i = 0; i < 10; i++)
2522 		E1000_WRITE_REG_ARRAY(hw,
2523 		    E1000_RSSRK(0), i, rss_key[i]);
2524 
2525 	/*
2526 	 * Configure the RSS fields to hash upon.
2527 	 */
2528 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2529 	    E1000_MRQC_RSS_FIELD_IPV4_TCP);
2530 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2531 	    E1000_MRQC_RSS_FIELD_IPV6_TCP);
2532 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2533 	    E1000_MRQC_RSS_FIELD_IPV6_UDP);
2534 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2535 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2536 
2537 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2538 }
2539 
2540 /*********************************************************************
2541  *
2542  *  Setup networking device structure and register an interface.
2543  *
2544  **********************************************************************/
2545 static int
2546 em_setup_interface(if_ctx_t ctx)
2547 {
2548         struct ifnet *ifp = iflib_get_ifp(ctx);
2549         struct adapter *adapter = iflib_get_softc(ctx);
2550 	if_softc_ctx_t scctx = adapter->shared;
2551 	uint64_t cap = 0;
2552 
2553 	INIT_DEBUGOUT("em_setup_interface: begin");
2554 
2555 	/* TSO parameters */
2556 	if_sethwtsomax(ifp, IP_MAXPACKET);
2557 	/* Take m_pullup(9)'s in em_xmit() w/ TSO into acount. */
2558 	if_sethwtsomaxsegcount(ifp, EM_MAX_SCATTER - 5);
2559 	if_sethwtsomaxsegsize(ifp, EM_TSO_SEG_SIZE);
2560 
2561 	/* Single Queue */
2562         if (adapter->tx_num_queues == 1) {
2563 	  if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
2564 	  if_setsendqready(ifp);
2565 	}
2566 
2567         cap = IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM | IFCAP_TSO4;
2568 	cap |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU;
2569 
2570 	/*
2571 	 * Tell the upper layer(s) we
2572 	 * support full VLAN capability
2573 	 */
2574 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
2575 	if_setcapabilitiesbit(ifp, cap, 0);
2576 
2577 	/*
2578 	** Don't turn this on by default, if vlans are
2579 	** created on another pseudo device (eg. lagg)
2580 	** then vlan events are not passed thru, breaking
2581 	** operation, but with HW FILTER off it works. If
2582 	** using vlans directly on the em driver you can
2583 	** enable this and get full hardware tag filtering.
2584 	*/
2585 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWFILTER,0);
2586 
2587 	/* Enable only WOL MAGIC by default */
2588 	if (adapter->wol) {
2589 		if_setcapenablebit(ifp, IFCAP_WOL_MAGIC,
2590 			     IFCAP_WOL_MCAST| IFCAP_WOL_UCAST);
2591 	} else {
2592 		if_setcapenablebit(ifp, 0, IFCAP_WOL_MAGIC |
2593 			     IFCAP_WOL_MCAST| IFCAP_WOL_UCAST);
2594 	}
2595 
2596 	/*
2597 	 * Specify the media types supported by this adapter and register
2598 	 * callbacks to update media and link information
2599 	 */
2600 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
2601 	    (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
2602 		u_char fiber_type = IFM_1000_SX;	/* default type */
2603 
2604 		if (adapter->hw.mac.type == e1000_82545)
2605 			fiber_type = IFM_1000_LX;
2606 		ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
2607 		ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2608 	} else {
2609 		ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2610 		ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
2611 		ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2612 		ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
2613 		if (adapter->hw.phy.type != e1000_phy_ife) {
2614 			ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2615 			ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2616 		}
2617 	}
2618 	ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2619 	ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO);
2620 	return (0);
2621 }
2622 
2623 static int
2624 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
2625 {
2626 	struct adapter *adapter = iflib_get_softc(ctx);
2627 	if_softc_ctx_t scctx = adapter->shared;
2628 	int error = E1000_SUCCESS;
2629 	struct em_tx_queue *que;
2630         int i;
2631 
2632 	MPASS(adapter->tx_num_queues > 0);
2633 	MPASS(adapter->tx_num_queues == ntxqsets);
2634 
2635 	/* First allocate the top level queue structs */
2636 	if (!(adapter->tx_queues =
2637 	    (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
2638 	    adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2639 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2640 		return(ENOMEM);
2641 	}
2642 
2643 	for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) {
2644 	     /* Set up some basics */
2645 	     struct tx_ring *txr = &que->txr;
2646 	     txr->adapter = que->adapter = adapter;
2647 	     txr->que = que;
2648 	     que->me = txr->me =  i;
2649 
2650 	     /* Allocate transmit buffer memory */
2651 	  if (!(txr->tx_buffers = (struct em_txbuffer *) malloc(sizeof(struct em_txbuffer) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2652 	       device_printf(iflib_get_dev(ctx), "failed to allocate tx_buffer memory\n");
2653 	       error = ENOMEM;
2654 	       goto fail;
2655 	  }
2656 
2657 	  /* get the virtual and physical address of the hardware queues */
2658 	  txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
2659 	  txr->tx_paddr = paddrs[i*ntxqs];
2660 
2661 	}
2662 
2663 	device_printf(iflib_get_dev(ctx), "allocated for %d tx_queues\n", adapter->tx_num_queues);
2664 	return (0);
2665  fail:
2666 	em_if_queues_free(ctx);
2667 	return (error);
2668 }
2669 
2670 static int
2671 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
2672 {
2673         struct adapter *adapter = iflib_get_softc(ctx);
2674 	int error = E1000_SUCCESS;
2675 	struct em_rx_queue *que;
2676         int i;
2677 
2678 	MPASS(adapter->rx_num_queues > 0);
2679 	MPASS(adapter->rx_num_queues == nrxqsets);
2680 
2681 	/* First allocate the top level queue structs */
2682 	if (!(adapter->rx_queues =
2683 	    (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
2684 	    adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2685 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2686 		error = ENOMEM;
2687 		goto fail;
2688 	}
2689 
2690 	for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) {
2691 		/* Set up some basics */
2692 		struct rx_ring *rxr = &que->rxr;
2693 		rxr->adapter = que->adapter = adapter;
2694 		rxr->que = que;
2695 		que->me = rxr->me =  i;
2696 
2697 		/* get the virtual and physical address of the hardware queues */
2698 		rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
2699 		rxr->rx_paddr = paddrs[i*nrxqs];
2700 	}
2701 
2702 	device_printf(iflib_get_dev(ctx), "allocated for %d rx_queues\n", adapter->rx_num_queues);
2703 
2704 	return (0);
2705 fail:
2706 	em_if_queues_free(ctx);
2707 	return (error);
2708 }
2709 
2710 static void
2711 em_if_queues_free(if_ctx_t ctx)
2712 {
2713     	struct adapter *adapter = iflib_get_softc(ctx);
2714 	struct em_tx_queue *tx_que = adapter->tx_queues;
2715 	struct em_rx_queue *rx_que = adapter->rx_queues;
2716 
2717 	if (tx_que != NULL) {
2718 	  for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
2719 		struct tx_ring *txr = &tx_que->txr;
2720 		if (txr->tx_buffers == NULL)
2721 			break;
2722 
2723 		free(txr->tx_buffers, M_DEVBUF);
2724 		txr->tx_buffers = NULL;
2725 	  }
2726 	  free(adapter->tx_queues, M_DEVBUF);
2727 	  adapter->tx_queues = NULL;
2728 	}
2729 
2730 	if (rx_que != NULL) {
2731 	  free(adapter->rx_queues, M_DEVBUF);
2732 	  adapter->rx_queues = NULL;
2733 	}
2734 
2735 	em_release_hw_control(adapter);
2736 
2737 	if (adapter->mta != NULL) {
2738 		free(adapter->mta, M_DEVBUF);
2739 	}
2740 }
2741 
2742 /*********************************************************************
2743  *
2744  *  Enable transmit unit.
2745  *
2746  **********************************************************************/
2747 static void
2748 em_initialize_transmit_unit(if_ctx_t ctx)
2749 {
2750         struct adapter *adapter = iflib_get_softc(ctx);
2751 	if_softc_ctx_t scctx = adapter->shared;
2752 	struct em_tx_queue *que;
2753 	struct tx_ring	*txr;
2754 	struct e1000_hw	*hw = &adapter->hw;
2755 	u32 tctl, txdctl = 0, tarc, tipg = 0;
2756 
2757 	 INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
2758 
2759 	for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
2760 		u64 bus_addr;
2761 		caddr_t offp, endp;
2762 
2763 	        que = &adapter->tx_queues[i];
2764 		txr = &que->txr;
2765 		bus_addr = txr->tx_paddr;
2766 
2767                 /*Enable all queues */
2768 		em_init_tx_ring(que);
2769 
2770 		/* Clear checksum offload context. */
2771 		offp = (caddr_t)&txr->csum_flags;
2772 		endp = (caddr_t)(txr + 1);
2773 		bzero(offp, endp - offp);
2774 
2775 		/* Base and Len of TX Ring */
2776 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
2777 		    scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
2778 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
2779 	    	    (u32)(bus_addr >> 32));
2780 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
2781 	    	    (u32)bus_addr);
2782 		/* Init the HEAD/TAIL indices */
2783 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
2784 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
2785 
2786 		HW_DEBUGOUT2("Base = %x, Length = %x\n",
2787 		    E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)),
2788 		    E1000_READ_REG(&adapter->hw, E1000_TDLEN(i)));
2789 
2790 		txdctl = 0; /* clear txdctl */
2791                 txdctl |= 0x1f; /* PTHRESH */
2792                 txdctl |= 1 << 8; /* HTHRESH */
2793                 txdctl |= 1 << 16;/* WTHRESH */
2794 		txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
2795 		txdctl |= E1000_TXDCTL_GRAN;
2796                 txdctl |= 1 << 25; /* LWTHRESH */
2797 
2798                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
2799 	}
2800 
2801 	/* Set the default values for the Tx Inter Packet Gap timer */
2802 	switch (adapter->hw.mac.type) {
2803 	case e1000_80003es2lan:
2804 		tipg = DEFAULT_82543_TIPG_IPGR1;
2805 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2806 		    E1000_TIPG_IPGR2_SHIFT;
2807 		break;
2808 	case e1000_82542:
2809 		tipg = DEFAULT_82542_TIPG_IPGT;
2810 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2811 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2812 		break;
2813 	default:
2814 		if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
2815 		    (adapter->hw.phy.media_type ==
2816 		    e1000_media_type_internal_serdes))
2817 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2818 		else
2819 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2820 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2821 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2822 	}
2823 
2824 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2825 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value);
2826 
2827 	if(adapter->hw.mac.type >= e1000_82540)
2828 		E1000_WRITE_REG(&adapter->hw, E1000_TADV,
2829 		    adapter->tx_abs_int_delay.value);
2830 
2831 	if ((adapter->hw.mac.type == e1000_82571) ||
2832 	    (adapter->hw.mac.type == e1000_82572)) {
2833 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2834 		tarc |= TARC_SPEED_MODE_BIT;
2835 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2836 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2837 		/* errata: program both queues to unweighted RR */
2838 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2839 		tarc |= 1;
2840 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2841 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2842 		tarc |= 1;
2843 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2844 	} else if (adapter->hw.mac.type == e1000_82574) {
2845 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2846 		tarc |= TARC_ERRATA_BIT;
2847 		if ( adapter->tx_num_queues > 1) {
2848 			tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
2849 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2850 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2851 		} else
2852 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2853 	}
2854 
2855 	if (adapter->tx_int_delay.value > 0)
2856 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2857 
2858 	/* Program the Transmit Control Register */
2859 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2860 	tctl &= ~E1000_TCTL_CT;
2861 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2862 		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2863 
2864 	if (adapter->hw.mac.type >= e1000_82571)
2865 		tctl |= E1000_TCTL_MULR;
2866 
2867 	/* This write will effectively turn on the transmit unit. */
2868 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2869 
2870 	if (hw->mac.type == e1000_pch_spt) {
2871 		u32 reg;
2872 		reg = E1000_READ_REG(hw, E1000_IOSFPC);
2873 		reg |= E1000_RCTL_RDMTS_HEX;
2874 		E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
2875 		reg = E1000_READ_REG(hw, E1000_TARC(0));
2876 		reg |= E1000_TARC0_CB_MULTIQ_3_REQ;
2877 		E1000_WRITE_REG(hw, E1000_TARC(0), reg);
2878 	}
2879 }
2880 
2881 /*********************************************************************
2882  *
2883  *  Enable receive unit.
2884  *
2885  **********************************************************************/
2886 
2887 static void
2888 em_initialize_receive_unit(if_ctx_t ctx)
2889 {
2890         struct adapter *adapter = iflib_get_softc(ctx);
2891 	if_softc_ctx_t scctx = adapter->shared;
2892 	struct ifnet *ifp = iflib_get_ifp(ctx);
2893 	struct e1000_hw	*hw = &adapter->hw;
2894 	struct em_rx_queue *que;
2895 	int i;
2896 	u32	rctl, rxcsum, rfctl;
2897 
2898 	INIT_DEBUGOUT("em_initialize_receive_units: begin");
2899 
2900 	/*
2901 	 * Make sure receives are disabled while setting
2902 	 * up the descriptor ring
2903 	 */
2904 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2905 	/* Do not disable if ever enabled on this hardware */
2906 	if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
2907 		E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2908 
2909 	/* Setup the Receive Control Register */
2910 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2911 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2912 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2913 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2914 
2915 	/* Do not store bad packets */
2916 	rctl &= ~E1000_RCTL_SBP;
2917 
2918 	/* Enable Long Packet receive */
2919 	if (if_getmtu(ifp) > ETHERMTU)
2920 		rctl |= E1000_RCTL_LPE;
2921 	else
2922 		rctl &= ~E1000_RCTL_LPE;
2923 
2924         /* Strip the CRC */
2925         if (!em_disable_crc_stripping)
2926 		rctl |= E1000_RCTL_SECRC;
2927 
2928 	if (adapter->hw.mac.type >= e1000_82540) {
2929 		E1000_WRITE_REG(&adapter->hw, E1000_RADV,
2930 				adapter->rx_abs_int_delay.value);
2931 
2932 		/*
2933 		 * Set the interrupt throttling rate. Value is calculated
2934 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
2935 		 */
2936 		E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
2937 	}
2938 	E1000_WRITE_REG(&adapter->hw, E1000_RDTR,
2939 	    adapter->rx_int_delay.value);
2940 
2941 	/* Use extended rx descriptor formats */
2942 	rfctl = E1000_READ_REG(hw, E1000_RFCTL);
2943 	rfctl |= E1000_RFCTL_EXTEN;
2944 	/*
2945 	** When using MSIX interrupts we need to throttle
2946 	** using the EITR register (82574 only)
2947 	*/
2948 	if (hw->mac.type == e1000_82574) {
2949 		for (int i = 0; i < 4; i++)
2950 			E1000_WRITE_REG(hw, E1000_EITR_82574(i),
2951 			    DEFAULT_ITR);
2952 		/* Disable accelerated acknowledge */
2953 		rfctl |= E1000_RFCTL_ACK_DIS;
2954 	}
2955 	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
2956 
2957 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2958 	if (if_getcapenable(ifp) & IFCAP_RXCSUM &&
2959 	    adapter->hw.mac.type >= e1000_82543) {
2960 		if (adapter->tx_num_queues > 1) {
2961 			if (adapter->hw.mac.type >= igb_mac_min) {
2962 				rxcsum |= E1000_RXCSUM_PCSD;
2963 				if (hw->mac.type != e1000_82575)
2964 					rxcsum |= E1000_RXCSUM_CRCOFL;
2965 			} else
2966 				rxcsum |= E1000_RXCSUM_TUOFL |
2967 					E1000_RXCSUM_IPOFL |
2968 					E1000_RXCSUM_PCSD;
2969 		} else {
2970 			if (adapter->hw.mac.type >= igb_mac_min)
2971 				rxcsum |= E1000_RXCSUM_IPPCSE;
2972 			else
2973 				rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
2974 			if (adapter->hw.mac.type > e1000_82575)
2975 				rxcsum |= E1000_RXCSUM_CRCOFL;
2976 		}
2977 	} else
2978 		rxcsum &= ~E1000_RXCSUM_TUOFL;
2979 
2980 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2981 
2982 	if (adapter->rx_num_queues > 1) {
2983 		if (adapter->hw.mac.type >= igb_mac_min)
2984 			igb_initialize_rss_mapping(adapter);
2985 		else
2986 			em_initialize_rss_mapping(adapter);
2987 	}
2988 
2989 	/*
2990 	** XXX TEMPORARY WORKAROUND: on some systems with 82573
2991 	** long latencies are observed, like Lenovo X60. This
2992 	** change eliminates the problem, but since having positive
2993 	** values in RDTR is a known source of problems on other
2994 	** platforms another solution is being sought.
2995 	*/
2996 	if (hw->mac.type == e1000_82573)
2997 		E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
2998 
2999 	for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3000 	        struct rx_ring *rxr = &que->rxr;
3001 		/* Setup the Base and Length of the Rx Descriptor Ring */
3002 		u64 bus_addr = rxr->rx_paddr;
3003 #if 0
3004 		u32 rdt = adapter->rx_num_queues -1;  /* default */
3005 #endif
3006 
3007 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
3008 		    scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
3009 		E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3010 		E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3011 		/* Setup the Head and Tail Descriptor Pointers */
3012 		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3013 		E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3014 	}
3015 
3016 	/*
3017 	 * Set PTHRESH for improved jumbo performance
3018 	 * According to 10.2.5.11 of Intel 82574 Datasheet,
3019 	 * RXDCTL(1) is written whenever RXDCTL(0) is written.
3020 	 * Only write to RXDCTL(1) if there is a need for different
3021 	 * settings.
3022 	 */
3023 
3024 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3025 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3026 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3027 	    (if_getmtu(ifp) > ETHERMTU)) {
3028 		u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3029 		E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3030 	} else if (adapter->hw.mac.type == e1000_82574) {
3031 		for (int i = 0; i < adapter->rx_num_queues; i++) {
3032 			u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3033 			rxdctl |= 0x20; /* PTHRESH */
3034 			rxdctl |= 4 << 8; /* HTHRESH */
3035 			rxdctl |= 4 << 16;/* WTHRESH */
3036 			rxdctl |= 1 << 24; /* Switch to granularity */
3037 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3038 		}
3039 	} else if (adapter->hw.mac.type >= igb_mac_min) {
3040 		u32 psize, srrctl = 0;
3041 
3042 		if (if_getmtu(ifp) > ETHERMTU) {
3043 			/* Set maximum packet len */
3044 			psize = scctx->isc_max_frame_size;
3045 			if (psize <= 4096) {
3046 				srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3047 				rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3048 			} else if (psize > 4096) {
3049 				srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3050 				rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3051 			}
3052 
3053 			/* are we on a vlan? */
3054 			if (ifp->if_vlantrunk != NULL)
3055 				psize += VLAN_TAG_SIZE;
3056 			E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
3057 		} else {
3058 			srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3059 			rctl |= E1000_RCTL_SZ_2048;
3060 		}
3061 
3062 		/*
3063 		 * If TX flow control is disabled and there's >1 queue defined,
3064 		 * enable DROP.
3065 		 *
3066 		 * This drops frames rather than hanging the RX MAC for all queues.
3067 		 */
3068 		if ((adapter->rx_num_queues > 1) &&
3069 		    (adapter->fc == e1000_fc_none ||
3070 		     adapter->fc == e1000_fc_rx_pause)) {
3071 			srrctl |= E1000_SRRCTL_DROP_EN;
3072 		}
3073 			/* Setup the Base and Length of the Rx Descriptor Rings */
3074 		for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3075 			struct rx_ring *rxr = &que->rxr;
3076 			u64 bus_addr = rxr->rx_paddr;
3077 			u32 rxdctl;
3078 
3079 #ifdef notyet
3080 			/* Configure for header split? -- ignore for now */
3081 			rxr->hdr_split = igb_header_split;
3082 #else
3083 			srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3084 #endif
3085 
3086 
3087 			E1000_WRITE_REG(hw, E1000_RDLEN(i),
3088 					scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3089 			E1000_WRITE_REG(hw, E1000_RDBAH(i),
3090 					(uint32_t)(bus_addr >> 32));
3091 			E1000_WRITE_REG(hw, E1000_RDBAL(i),
3092 					(uint32_t)bus_addr);
3093 			E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3094 			/* Enable this Queue */
3095 			rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3096 			rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3097 			rxdctl &= 0xFFF00000;
3098 			rxdctl |= IGB_RX_PTHRESH;
3099 			rxdctl |= IGB_RX_HTHRESH << 8;
3100 			rxdctl |= IGB_RX_WTHRESH << 16;
3101 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3102 		}
3103 	} else if (adapter->hw.mac.type >= e1000_pch2lan) {
3104 		if (if_getmtu(ifp) > ETHERMTU)
3105 			e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
3106 		else
3107 			e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
3108 	}
3109 
3110         /* Make sure VLAN Filters are off */
3111         rctl &= ~E1000_RCTL_VFE;
3112 
3113 	if (adapter->hw.mac.type < igb_mac_min) {
3114 		if (adapter->rx_mbuf_sz == MCLBYTES)
3115 			rctl |= E1000_RCTL_SZ_2048;
3116 		else if (adapter->rx_mbuf_sz == MJUMPAGESIZE)
3117 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3118 		else if (adapter->rx_mbuf_sz > MJUMPAGESIZE)
3119 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3120 
3121 		/* ensure we clear use DTYPE of 00 here */
3122 		rctl &= ~0x00000C00;
3123 	}
3124 
3125 	/* Write out the settings */
3126 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3127 
3128 	return;
3129 }
3130 
3131 static void
3132 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3133 {
3134         struct adapter  *adapter = iflib_get_softc(ctx);
3135 	u32		index, bit;
3136 
3137 	index = (vtag >> 5) & 0x7F;
3138 	bit = vtag & 0x1F;
3139 	adapter->shadow_vfta[index] |= (1 << bit);
3140 	++adapter->num_vlans;
3141 }
3142 
3143 static void
3144 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3145 {
3146         struct adapter	*adapter = iflib_get_softc(ctx);
3147 	u32		index, bit;
3148 
3149 	index = (vtag >> 5) & 0x7F;
3150 	bit = vtag & 0x1F;
3151 	adapter->shadow_vfta[index] &= ~(1 << bit);
3152 	--adapter->num_vlans;
3153 }
3154 
3155 static void
3156 em_setup_vlan_hw_support(struct adapter *adapter)
3157 {
3158 	struct e1000_hw *hw = &adapter->hw;
3159 	u32             reg;
3160 
3161 	/*
3162 	** We get here thru init_locked, meaning
3163 	** a soft reset, this has already cleared
3164 	** the VFTA and other state, so if there
3165 	** have been no vlan's registered do nothing.
3166 	*/
3167 	if (adapter->num_vlans == 0)
3168                 return;
3169 
3170 	/*
3171 	** A soft reset zero's out the VFTA, so
3172 	** we need to repopulate it now.
3173 	*/
3174 	for (int i = 0; i < EM_VFTA_SIZE; i++)
3175                 if (adapter->shadow_vfta[i] != 0)
3176 			E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
3177                             i, adapter->shadow_vfta[i]);
3178 
3179 	reg = E1000_READ_REG(hw, E1000_CTRL);
3180 	reg |= E1000_CTRL_VME;
3181 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
3182 
3183 	/* Enable the Filter Table */
3184 	reg = E1000_READ_REG(hw, E1000_RCTL);
3185 	reg &= ~E1000_RCTL_CFIEN;
3186 	reg |= E1000_RCTL_VFE;
3187 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
3188 }
3189 
3190 static void
3191 em_if_enable_intr(if_ctx_t ctx)
3192 {
3193         struct adapter *adapter = iflib_get_softc(ctx);
3194 	struct e1000_hw *hw = &adapter->hw;
3195 	u32 ims_mask = IMS_ENABLE_MASK;
3196 
3197 	if (hw->mac.type == e1000_82574) {
3198 		E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK);
3199 		ims_mask |= adapter->ims;
3200 	} if (adapter->intr_type == IFLIB_INTR_MSIX && hw->mac.type >= igb_mac_min)  {
3201 		u32 mask = (adapter->que_mask | adapter->link_mask);
3202 
3203 		E1000_WRITE_REG(&adapter->hw, E1000_EIAC, mask);
3204 		E1000_WRITE_REG(&adapter->hw, E1000_EIAM, mask);
3205 		E1000_WRITE_REG(&adapter->hw, E1000_EIMS, mask);
3206 		ims_mask = E1000_IMS_LSC;
3207 	}
3208 
3209 	E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3210 }
3211 
3212 static void
3213 em_if_disable_intr(if_ctx_t ctx)
3214 {
3215         struct adapter *adapter = iflib_get_softc(ctx);
3216 	struct e1000_hw *hw = &adapter->hw;
3217 
3218 	if (adapter->intr_type == IFLIB_INTR_MSIX) {
3219 		if (hw->mac.type >= igb_mac_min)
3220 			E1000_WRITE_REG(&adapter->hw, E1000_EIMC, ~0);
3221 		E1000_WRITE_REG(&adapter->hw, E1000_EIAC, 0);
3222 	}
3223 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
3224 }
3225 
3226 /*
3227  * Bit of a misnomer, what this really means is
3228  * to enable OS management of the system... aka
3229  * to disable special hardware management features
3230  */
3231 static void
3232 em_init_manageability(struct adapter *adapter)
3233 {
3234 	/* A shared code workaround */
3235 #define E1000_82542_MANC2H E1000_MANC2H
3236 	if (adapter->has_manage) {
3237 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3238 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3239 
3240 		/* disable hardware interception of ARP */
3241 		manc &= ~(E1000_MANC_ARP_EN);
3242 
3243                 /* enable receiving management packets to the host */
3244 		manc |= E1000_MANC_EN_MNG2HOST;
3245 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3246 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3247 		manc2h |= E1000_MNG2HOST_PORT_623;
3248 		manc2h |= E1000_MNG2HOST_PORT_664;
3249 		E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3250 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3251 	}
3252 }
3253 
3254 /*
3255  * Give control back to hardware management
3256  * controller if there is one.
3257  */
3258 static void
3259 em_release_manageability(struct adapter *adapter)
3260 {
3261 	if (adapter->has_manage) {
3262 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3263 
3264 		/* re-enable hardware interception of ARP */
3265 		manc |= E1000_MANC_ARP_EN;
3266 		manc &= ~E1000_MANC_EN_MNG2HOST;
3267 
3268 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3269 	}
3270 }
3271 
3272 /*
3273  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3274  * For ASF and Pass Through versions of f/w this means
3275  * that the driver is loaded. For AMT version type f/w
3276  * this means that the network i/f is open.
3277  */
3278 static void
3279 em_get_hw_control(struct adapter *adapter)
3280 {
3281 	u32 ctrl_ext, swsm;
3282 
3283 	if (adapter->hw.mac.type == e1000_82573) {
3284 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3285 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3286 		    swsm | E1000_SWSM_DRV_LOAD);
3287 		return;
3288 	}
3289 	/* else */
3290 	ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3291 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3292 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3293 	return;
3294 }
3295 
3296 /*
3297  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3298  * For ASF and Pass Through versions of f/w this means that
3299  * the driver is no longer loaded. For AMT versions of the
3300  * f/w this means that the network i/f is closed.
3301  */
3302 static void
3303 em_release_hw_control(struct adapter *adapter)
3304 {
3305 	u32 ctrl_ext, swsm;
3306 
3307 	if (!adapter->has_manage)
3308 		return;
3309 
3310 	if (adapter->hw.mac.type == e1000_82573) {
3311 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3312 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3313 		    swsm & ~E1000_SWSM_DRV_LOAD);
3314 		return;
3315 	}
3316 	/* else */
3317 	ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3318 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3319 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3320 	return;
3321 }
3322 
3323 static int
3324 em_is_valid_ether_addr(u8 *addr)
3325 {
3326 	char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3327 
3328 	if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3329 		return (FALSE);
3330 	}
3331 
3332 	return (TRUE);
3333 }
3334 
3335 /*
3336 ** Parse the interface capabilities with regard
3337 ** to both system management and wake-on-lan for
3338 ** later use.
3339 */
3340 static void
3341 em_get_wakeup(if_ctx_t ctx)
3342 {
3343 	struct adapter	*adapter = iflib_get_softc(ctx);
3344 	device_t dev = iflib_get_dev(ctx);
3345 	u16		eeprom_data = 0, device_id, apme_mask;
3346 
3347 	adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
3348 	apme_mask = EM_EEPROM_APME;
3349 
3350 	switch (adapter->hw.mac.type) {
3351 	case e1000_82542:
3352 	case e1000_82543:
3353 		break;
3354 	case e1000_82544:
3355 		e1000_read_nvm(&adapter->hw,
3356 		    NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3357 		apme_mask = EM_82544_APME;
3358 		break;
3359 	case e1000_82546:
3360 	case e1000_82546_rev_3:
3361 		if (adapter->hw.bus.func == 1) {
3362 			e1000_read_nvm(&adapter->hw,
3363 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3364 			break;
3365 		} else
3366 			e1000_read_nvm(&adapter->hw,
3367 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3368 		break;
3369 	case e1000_82573:
3370 	case e1000_82583:
3371 		adapter->has_amt = TRUE;
3372 		/* Falls thru */
3373 	case e1000_82571:
3374 	case e1000_82572:
3375 	case e1000_80003es2lan:
3376 		if (adapter->hw.bus.func == 1) {
3377 			e1000_read_nvm(&adapter->hw,
3378 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3379 			break;
3380 		} else
3381 			e1000_read_nvm(&adapter->hw,
3382 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3383 		break;
3384 	case e1000_ich8lan:
3385 	case e1000_ich9lan:
3386 	case e1000_ich10lan:
3387 	case e1000_pchlan:
3388 	case e1000_pch2lan:
3389 	case e1000_pch_lpt:
3390 	case e1000_pch_spt:
3391 	case e1000_82575:	/* listing all igb devices */
3392 	case e1000_82576:
3393 	case e1000_82580:
3394 	case e1000_i350:
3395 	case e1000_i354:
3396 	case e1000_i210:
3397 	case e1000_i211:
3398 	case e1000_vfadapt:
3399 	case e1000_vfadapt_i350:
3400 		apme_mask = E1000_WUC_APME;
3401 		adapter->has_amt = TRUE;
3402 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
3403 		break;
3404 	default:
3405 		e1000_read_nvm(&adapter->hw,
3406 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3407 		break;
3408 	}
3409 	if (eeprom_data & apme_mask)
3410 		adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
3411 	/*
3412          * We have the eeprom settings, now apply the special cases
3413          * where the eeprom may be wrong or the board won't support
3414          * wake on lan on a particular port
3415 	 */
3416 	device_id = pci_get_device(dev);
3417         switch (device_id) {
3418 	case E1000_DEV_ID_82546GB_PCIE:
3419 		adapter->wol = 0;
3420 		break;
3421 	case E1000_DEV_ID_82546EB_FIBER:
3422 	case E1000_DEV_ID_82546GB_FIBER:
3423 		/* Wake events only supported on port A for dual fiber
3424 		 * regardless of eeprom setting */
3425 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3426 		    E1000_STATUS_FUNC_1)
3427 			adapter->wol = 0;
3428 		break;
3429 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
3430                 /* if quad port adapter, disable WoL on all but port A */
3431 		if (global_quad_port_a != 0)
3432 			adapter->wol = 0;
3433 		/* Reset for multiple quad port adapters */
3434 		if (++global_quad_port_a == 4)
3435 			global_quad_port_a = 0;
3436                 break;
3437 	case E1000_DEV_ID_82571EB_FIBER:
3438 		/* Wake events only supported on port A for dual fiber
3439 		 * regardless of eeprom setting */
3440 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3441 		    E1000_STATUS_FUNC_1)
3442 			adapter->wol = 0;
3443 		break;
3444 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
3445 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
3446 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
3447                 /* if quad port adapter, disable WoL on all but port A */
3448 		if (global_quad_port_a != 0)
3449 			adapter->wol = 0;
3450 		/* Reset for multiple quad port adapters */
3451 		if (++global_quad_port_a == 4)
3452 			global_quad_port_a = 0;
3453                 break;
3454 	}
3455 	return;
3456 }
3457 
3458 
3459 /*
3460  * Enable PCI Wake On Lan capability
3461  */
3462 static void
3463 em_enable_wakeup(if_ctx_t ctx)
3464 {
3465 	struct adapter	*adapter = iflib_get_softc(ctx);
3466 	device_t dev = iflib_get_dev(ctx);
3467 	if_t ifp = iflib_get_ifp(ctx);
3468 	u32		pmc, ctrl, ctrl_ext, rctl, wuc;
3469 	u16     	status;
3470 
3471 	if ((pci_find_cap(dev, PCIY_PMG, &pmc) != 0))
3472 		return;
3473 
3474 	/* Advertise the wakeup capability */
3475 	ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
3476 	ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
3477 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
3478 	wuc = E1000_READ_REG(&adapter->hw, E1000_WUC);
3479 	wuc |= (E1000_WUC_PME_EN | E1000_WUC_APME);
3480 	E1000_WRITE_REG(&adapter->hw, E1000_WUC, wuc);
3481 
3482 	if ((adapter->hw.mac.type == e1000_ich8lan) ||
3483 	    (adapter->hw.mac.type == e1000_pchlan) ||
3484 	    (adapter->hw.mac.type == e1000_ich9lan) ||
3485 	    (adapter->hw.mac.type == e1000_ich10lan))
3486 		e1000_suspend_workarounds_ich8lan(&adapter->hw);
3487 
3488 	/* Keep the laser running on Fiber adapters */
3489 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3490 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
3491 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3492 		ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
3493 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext);
3494 	}
3495 
3496 	/*
3497 	** Determine type of Wakeup: note that wol
3498 	** is set with all bits on by default.
3499 	*/
3500 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
3501 		adapter->wol &= ~E1000_WUFC_MAG;
3502 
3503 	if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
3504 		adapter->wol &= ~E1000_WUFC_EX;
3505 
3506 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
3507 		adapter->wol &= ~E1000_WUFC_MC;
3508 	else {
3509 		rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3510 		rctl |= E1000_RCTL_MPE;
3511 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3512 	}
3513 
3514 	if ( adapter->hw.mac.type >= e1000_pchlan) {
3515 		if (em_enable_phy_wakeup(adapter))
3516 			return;
3517 	} else {
3518 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
3519 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
3520 	}
3521 
3522 	if (adapter->hw.phy.type == e1000_phy_igp_3)
3523 		e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3524 
3525         /* Request PME */
3526         status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
3527 	status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3528 	if (if_getcapenable(ifp) & IFCAP_WOL)
3529 		status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3530         pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
3531 
3532 	return;
3533 }
3534 
3535 /*
3536 ** WOL in the newer chipset interfaces (pchlan)
3537 ** require thing to be copied into the phy
3538 */
3539 static int
3540 em_enable_phy_wakeup(struct adapter *adapter)
3541 {
3542 	struct e1000_hw *hw = &adapter->hw;
3543 	u32 mreg, ret = 0;
3544 	u16 preg;
3545 
3546 	/* copy MAC RARs to PHY RARs */
3547 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
3548 
3549 	/* copy MAC MTA to PHY MTA */
3550 	for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
3551 		mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
3552 		e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
3553 		e1000_write_phy_reg(hw, BM_MTA(i) + 1,
3554 		    (u16)((mreg >> 16) & 0xFFFF));
3555 	}
3556 
3557 	/* configure PHY Rx Control register */
3558 	e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg);
3559 	mreg = E1000_READ_REG(hw, E1000_RCTL);
3560 	if (mreg & E1000_RCTL_UPE)
3561 		preg |= BM_RCTL_UPE;
3562 	if (mreg & E1000_RCTL_MPE)
3563 		preg |= BM_RCTL_MPE;
3564 	preg &= ~(BM_RCTL_MO_MASK);
3565 	if (mreg & E1000_RCTL_MO_3)
3566 		preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
3567 				<< BM_RCTL_MO_SHIFT);
3568 	if (mreg & E1000_RCTL_BAM)
3569 		preg |= BM_RCTL_BAM;
3570 	if (mreg & E1000_RCTL_PMCF)
3571 		preg |= BM_RCTL_PMCF;
3572 	mreg = E1000_READ_REG(hw, E1000_CTRL);
3573 	if (mreg & E1000_CTRL_RFCE)
3574 		preg |= BM_RCTL_RFCE;
3575 	e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg);
3576 
3577 	/* enable PHY wakeup in MAC register */
3578 	E1000_WRITE_REG(hw, E1000_WUC,
3579 	    E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
3580 	E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol);
3581 
3582 	/* configure and enable PHY wakeup in PHY registers */
3583 	e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol);
3584 	e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
3585 
3586 	/* activate PHY wakeup */
3587 	ret = hw->phy.ops.acquire(hw);
3588 	if (ret) {
3589 		printf("Could not acquire PHY\n");
3590 		return ret;
3591 	}
3592 	e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3593 	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
3594 	ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
3595 	if (ret) {
3596 		printf("Could not read PHY page 769\n");
3597 		goto out;
3598 	}
3599 	preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
3600 	ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
3601 	if (ret)
3602 		printf("Could not set PHY Host Wakeup bit\n");
3603 out:
3604 	hw->phy.ops.release(hw);
3605 
3606 	return ret;
3607 }
3608 
3609 static void
3610 em_if_led_func(if_ctx_t ctx, int onoff)
3611 {
3612 	struct adapter	*adapter = iflib_get_softc(ctx);
3613 
3614 	if (onoff) {
3615 		e1000_setup_led(&adapter->hw);
3616 		e1000_led_on(&adapter->hw);
3617 	} else {
3618 		e1000_led_off(&adapter->hw);
3619 		e1000_cleanup_led(&adapter->hw);
3620 	}
3621 }
3622 
3623 /*
3624 ** Disable the L0S and L1 LINK states
3625 */
3626 static void
3627 em_disable_aspm(struct adapter *adapter)
3628 {
3629 	int		base, reg;
3630 	u16		link_cap,link_ctrl;
3631 	device_t	dev = adapter->dev;
3632 
3633 	switch (adapter->hw.mac.type) {
3634 		case e1000_82573:
3635 		case e1000_82574:
3636 		case e1000_82583:
3637 			break;
3638 		default:
3639 			return;
3640 	}
3641 	if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
3642 		return;
3643 	reg = base + PCIER_LINK_CAP;
3644 	link_cap = pci_read_config(dev, reg, 2);
3645 	if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
3646 		return;
3647 	reg = base + PCIER_LINK_CTL;
3648 	link_ctrl = pci_read_config(dev, reg, 2);
3649 	link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
3650 	pci_write_config(dev, reg, link_ctrl, 2);
3651 	return;
3652 }
3653 
3654 /**********************************************************************
3655  *
3656  *  Update the board statistics counters.
3657  *
3658  **********************************************************************/
3659 static void
3660 em_update_stats_counters(struct adapter *adapter)
3661 {
3662 
3663 	if(adapter->hw.phy.media_type == e1000_media_type_copper ||
3664 	   (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3665 		adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3666 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3667 	}
3668 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3669 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3670 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3671 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3672 
3673 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3674 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3675 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3676 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3677 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3678 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3679 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3680 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3681 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3682 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3683 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3684 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3685 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3686 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3687 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3688 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3689 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3690 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3691 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3692 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3693 
3694 	/* For the 64-bit byte counters the low dword must be read first. */
3695 	/* Both registers clear on the read of the high dword */
3696 
3697 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) +
3698 	    ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32);
3699 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) +
3700 	    ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32);
3701 
3702 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3703 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3704 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3705 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3706 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3707 
3708 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3709 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3710 
3711 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3712 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3713 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3714 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3715 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3716 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3717 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3718 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3719 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3720 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3721 
3722 	/* Interrupt Counts */
3723 
3724 	adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC);
3725 	adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC);
3726 	adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC);
3727 	adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC);
3728 	adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC);
3729 	adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC);
3730 	adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC);
3731 	adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC);
3732 	adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC);
3733 
3734 	if (adapter->hw.mac.type >= e1000_82543) {
3735 		adapter->stats.algnerrc +=
3736 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3737 		adapter->stats.rxerrc +=
3738 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3739 		adapter->stats.tncrs +=
3740 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3741 		adapter->stats.cexterr +=
3742 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3743 		adapter->stats.tsctc +=
3744 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3745 		adapter->stats.tsctfc +=
3746 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3747 	}
3748 }
3749 
3750 static uint64_t
3751 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
3752 {
3753 	struct adapter *adapter = iflib_get_softc(ctx);
3754 	struct ifnet *ifp = iflib_get_ifp(ctx);
3755 
3756 	switch (cnt) {
3757 	case IFCOUNTER_COLLISIONS:
3758 		return (adapter->stats.colc);
3759 	case IFCOUNTER_IERRORS:
3760 		return (adapter->dropped_pkts + adapter->stats.rxerrc +
3761 		    adapter->stats.crcerrs + adapter->stats.algnerrc +
3762 		    adapter->stats.ruc + adapter->stats.roc +
3763 		    adapter->stats.mpc + adapter->stats.cexterr);
3764 	case IFCOUNTER_OERRORS:
3765 		return (adapter->stats.ecol + adapter->stats.latecol +
3766 		    adapter->watchdog_events);
3767 	default:
3768 		return (if_get_counter_default(ifp, cnt));
3769 	}
3770 }
3771 
3772 /* Export a single 32-bit register via a read-only sysctl. */
3773 static int
3774 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
3775 {
3776 	struct adapter *adapter;
3777 	u_int val;
3778 
3779 	adapter = oidp->oid_arg1;
3780 	val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
3781 	return (sysctl_handle_int(oidp, &val, 0, req));
3782 }
3783 
3784 /*
3785  * Add sysctl variables, one per statistic, to the system.
3786  */
3787 static void
3788 em_add_hw_stats(struct adapter *adapter)
3789 {
3790 	device_t dev = iflib_get_dev(adapter->ctx);
3791         struct em_tx_queue *tx_que = adapter->tx_queues;
3792 	struct em_rx_queue *rx_que = adapter->rx_queues;
3793 
3794 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
3795 	struct sysctl_oid *tree = device_get_sysctl_tree(dev);
3796 	struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
3797 	struct e1000_hw_stats *stats = &adapter->stats;
3798 
3799 	struct sysctl_oid *stat_node, *queue_node, *int_node;
3800 	struct sysctl_oid_list *stat_list, *queue_list, *int_list;
3801 
3802 #define QUEUE_NAME_LEN 32
3803 	char namebuf[QUEUE_NAME_LEN];
3804 
3805 	/* Driver Statistics */
3806 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
3807 			CTLFLAG_RD, &adapter->dropped_pkts,
3808 			"Driver dropped packets");
3809 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
3810 			CTLFLAG_RD, &adapter->link_irq,
3811 			"Link MSIX IRQ Handled");
3812 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "mbuf_defrag_fail",
3813 			 CTLFLAG_RD, &adapter->mbuf_defrag_failed,
3814 			 "Defragmenting mbuf chain failed");
3815 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_dma_fail",
3816 			CTLFLAG_RD, &adapter->no_tx_dma_setup,
3817 			"Driver tx dma failure in xmit");
3818 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
3819 			CTLFLAG_RD, &adapter->rx_overruns,
3820 			"RX overruns");
3821 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
3822 			CTLFLAG_RD, &adapter->watchdog_events,
3823 			"Watchdog timeouts");
3824 
3825 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
3826 			CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_CTRL,
3827 			em_sysctl_reg_handler, "IU",
3828 			"Device Control Register");
3829 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
3830 			CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_RCTL,
3831 			em_sysctl_reg_handler, "IU",
3832 			"Receiver Control Register");
3833 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
3834 			CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
3835 			"Flow Control High Watermark");
3836 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
3837 			CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
3838 			"Flow Control Low Watermark");
3839 
3840 	for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
3841 	        struct tx_ring *txr = &tx_que->txr;
3842 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
3843 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
3844 					    CTLFLAG_RD, NULL, "TX Queue Name");
3845 		queue_list = SYSCTL_CHILDREN(queue_node);
3846 
3847 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
3848 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
3849 				E1000_TDH(txr->me),
3850 				em_sysctl_reg_handler, "IU",
3851  				"Transmit Descriptor Head");
3852 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
3853 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
3854 				E1000_TDT(txr->me),
3855 				em_sysctl_reg_handler, "IU",
3856  				"Transmit Descriptor Tail");
3857 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
3858 				CTLFLAG_RD, &txr->tx_irq,
3859 				"Queue MSI-X Transmit Interrupts");
3860 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "no_desc_avail",
3861 				CTLFLAG_RD, &txr->no_desc_avail,
3862 				"Queue No Descriptor Available");
3863 	}
3864 
3865 	for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) {
3866 	        struct rx_ring *rxr = &rx_que->rxr;
3867 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
3868 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
3869 					    CTLFLAG_RD, NULL, "RX Queue Name");
3870 		queue_list = SYSCTL_CHILDREN(queue_node);
3871 
3872 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
3873 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
3874 				E1000_RDH(rxr->me),
3875 				em_sysctl_reg_handler, "IU",
3876 				"Receive Descriptor Head");
3877 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
3878 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
3879 				E1000_RDT(rxr->me),
3880 				em_sysctl_reg_handler, "IU",
3881 				"Receive Descriptor Tail");
3882 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
3883 				CTLFLAG_RD, &rxr->rx_irq,
3884 				"Queue MSI-X Receive Interrupts");
3885 	}
3886 
3887 	/* MAC stats get their own sub node */
3888 
3889 	stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
3890 				    CTLFLAG_RD, NULL, "Statistics");
3891 	stat_list = SYSCTL_CHILDREN(stat_node);
3892 
3893 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
3894 			CTLFLAG_RD, &stats->ecol,
3895 			"Excessive collisions");
3896 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
3897 			CTLFLAG_RD, &stats->scc,
3898 			"Single collisions");
3899 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
3900 			CTLFLAG_RD, &stats->mcc,
3901 			"Multiple collisions");
3902 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
3903 			CTLFLAG_RD, &stats->latecol,
3904 			"Late collisions");
3905 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
3906 			CTLFLAG_RD, &stats->colc,
3907 			"Collision Count");
3908 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
3909 			CTLFLAG_RD, &adapter->stats.symerrs,
3910 			"Symbol Errors");
3911 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
3912 			CTLFLAG_RD, &adapter->stats.sec,
3913 			"Sequence Errors");
3914 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
3915 			CTLFLAG_RD, &adapter->stats.dc,
3916 			"Defer Count");
3917 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
3918 			CTLFLAG_RD, &adapter->stats.mpc,
3919 			"Missed Packets");
3920 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
3921 			CTLFLAG_RD, &adapter->stats.rnbc,
3922 			"Receive No Buffers");
3923 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
3924 			CTLFLAG_RD, &adapter->stats.ruc,
3925 			"Receive Undersize");
3926 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
3927 			CTLFLAG_RD, &adapter->stats.rfc,
3928 			"Fragmented Packets Received ");
3929 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
3930 			CTLFLAG_RD, &adapter->stats.roc,
3931 			"Oversized Packets Received");
3932 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
3933 			CTLFLAG_RD, &adapter->stats.rjc,
3934 			"Recevied Jabber");
3935 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
3936 			CTLFLAG_RD, &adapter->stats.rxerrc,
3937 			"Receive Errors");
3938 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
3939 			CTLFLAG_RD, &adapter->stats.crcerrs,
3940 			"CRC errors");
3941 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
3942 			CTLFLAG_RD, &adapter->stats.algnerrc,
3943 			"Alignment Errors");
3944 	/* On 82575 these are collision counts */
3945 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
3946 			CTLFLAG_RD, &adapter->stats.cexterr,
3947 			"Collision/Carrier extension errors");
3948 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
3949 			CTLFLAG_RD, &adapter->stats.xonrxc,
3950 			"XON Received");
3951 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
3952 			CTLFLAG_RD, &adapter->stats.xontxc,
3953 			"XON Transmitted");
3954 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
3955 			CTLFLAG_RD, &adapter->stats.xoffrxc,
3956 			"XOFF Received");
3957 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
3958 			CTLFLAG_RD, &adapter->stats.xofftxc,
3959 			"XOFF Transmitted");
3960 
3961 	/* Packet Reception Stats */
3962 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
3963 			CTLFLAG_RD, &adapter->stats.tpr,
3964 			"Total Packets Received ");
3965 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
3966 			CTLFLAG_RD, &adapter->stats.gprc,
3967 			"Good Packets Received");
3968 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
3969 			CTLFLAG_RD, &adapter->stats.bprc,
3970 			"Broadcast Packets Received");
3971 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
3972 			CTLFLAG_RD, &adapter->stats.mprc,
3973 			"Multicast Packets Received");
3974 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
3975 			CTLFLAG_RD, &adapter->stats.prc64,
3976 			"64 byte frames received ");
3977 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
3978 			CTLFLAG_RD, &adapter->stats.prc127,
3979 			"65-127 byte frames received");
3980 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
3981 			CTLFLAG_RD, &adapter->stats.prc255,
3982 			"128-255 byte frames received");
3983 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
3984 			CTLFLAG_RD, &adapter->stats.prc511,
3985 			"256-511 byte frames received");
3986 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
3987 			CTLFLAG_RD, &adapter->stats.prc1023,
3988 			"512-1023 byte frames received");
3989 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
3990 			CTLFLAG_RD, &adapter->stats.prc1522,
3991 			"1023-1522 byte frames received");
3992  	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
3993  			CTLFLAG_RD, &adapter->stats.gorc,
3994  			"Good Octets Received");
3995 
3996 	/* Packet Transmission Stats */
3997  	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
3998  			CTLFLAG_RD, &adapter->stats.gotc,
3999  			"Good Octets Transmitted");
4000 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
4001 			CTLFLAG_RD, &adapter->stats.tpt,
4002 			"Total Packets Transmitted");
4003 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
4004 			CTLFLAG_RD, &adapter->stats.gptc,
4005 			"Good Packets Transmitted");
4006 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
4007 			CTLFLAG_RD, &adapter->stats.bptc,
4008 			"Broadcast Packets Transmitted");
4009 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
4010 			CTLFLAG_RD, &adapter->stats.mptc,
4011 			"Multicast Packets Transmitted");
4012 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
4013 			CTLFLAG_RD, &adapter->stats.ptc64,
4014 			"64 byte frames transmitted ");
4015 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
4016 			CTLFLAG_RD, &adapter->stats.ptc127,
4017 			"65-127 byte frames transmitted");
4018 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
4019 			CTLFLAG_RD, &adapter->stats.ptc255,
4020 			"128-255 byte frames transmitted");
4021 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
4022 			CTLFLAG_RD, &adapter->stats.ptc511,
4023 			"256-511 byte frames transmitted");
4024 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
4025 			CTLFLAG_RD, &adapter->stats.ptc1023,
4026 			"512-1023 byte frames transmitted");
4027 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
4028 			CTLFLAG_RD, &adapter->stats.ptc1522,
4029 			"1024-1522 byte frames transmitted");
4030 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
4031 			CTLFLAG_RD, &adapter->stats.tsctc,
4032 			"TSO Contexts Transmitted");
4033 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
4034 			CTLFLAG_RD, &adapter->stats.tsctfc,
4035 			"TSO Contexts Failed");
4036 
4037 
4038 	/* Interrupt Stats */
4039 
4040 	int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
4041 				    CTLFLAG_RD, NULL, "Interrupt Statistics");
4042 	int_list = SYSCTL_CHILDREN(int_node);
4043 
4044 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
4045 			CTLFLAG_RD, &adapter->stats.iac,
4046 			"Interrupt Assertion Count");
4047 
4048 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
4049 			CTLFLAG_RD, &adapter->stats.icrxptc,
4050 			"Interrupt Cause Rx Pkt Timer Expire Count");
4051 
4052 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
4053 			CTLFLAG_RD, &adapter->stats.icrxatc,
4054 			"Interrupt Cause Rx Abs Timer Expire Count");
4055 
4056 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
4057 			CTLFLAG_RD, &adapter->stats.ictxptc,
4058 			"Interrupt Cause Tx Pkt Timer Expire Count");
4059 
4060 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
4061 			CTLFLAG_RD, &adapter->stats.ictxatc,
4062 			"Interrupt Cause Tx Abs Timer Expire Count");
4063 
4064 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
4065 			CTLFLAG_RD, &adapter->stats.ictxqec,
4066 			"Interrupt Cause Tx Queue Empty Count");
4067 
4068 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
4069 			CTLFLAG_RD, &adapter->stats.ictxqmtc,
4070 			"Interrupt Cause Tx Queue Min Thresh Count");
4071 
4072 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4073 			CTLFLAG_RD, &adapter->stats.icrxdmtc,
4074 			"Interrupt Cause Rx Desc Min Thresh Count");
4075 
4076 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4077 			CTLFLAG_RD, &adapter->stats.icrxoc,
4078 			"Interrupt Cause Receiver Overrun Count");
4079 }
4080 
4081 /**********************************************************************
4082  *
4083  *  This routine provides a way to dump out the adapter eeprom,
4084  *  often a useful debug/service tool. This only dumps the first
4085  *  32 words, stuff that matters is in that extent.
4086  *
4087  **********************************************************************/
4088 static int
4089 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4090 {
4091 	struct adapter *adapter = (struct adapter *)arg1;
4092 	int error;
4093 	int result;
4094 
4095 	result = -1;
4096 	error = sysctl_handle_int(oidp, &result, 0, req);
4097 
4098 	if (error || !req->newptr)
4099 		return (error);
4100 
4101 	/*
4102 	 * This value will cause a hex dump of the
4103 	 * first 32 16-bit words of the EEPROM to
4104 	 * the screen.
4105 	 */
4106 	if (result == 1)
4107 		em_print_nvm_info(adapter);
4108 
4109 	return (error);
4110 }
4111 
4112 static void
4113 em_print_nvm_info(struct adapter *adapter)
4114 {
4115 	u16	eeprom_data;
4116 	int	i, j, row = 0;
4117 
4118 	/* Its a bit crude, but it gets the job done */
4119 	printf("\nInterface EEPROM Dump:\n");
4120 	printf("Offset\n0x0000  ");
4121 	for (i = 0, j = 0; i < 32; i++, j++) {
4122 		if (j == 8) { /* Make the offset block */
4123 			j = 0; ++row;
4124 			printf("\n0x00%x0  ",row);
4125 		}
4126 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4127 		printf("%04x ", eeprom_data);
4128 	}
4129 	printf("\n");
4130 }
4131 
4132 static int
4133 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4134 {
4135 	struct em_int_delay_info *info;
4136 	struct adapter *adapter;
4137 	u32 regval;
4138 	int error, usecs, ticks;
4139 
4140 	info = (struct em_int_delay_info *)arg1;
4141 	usecs = info->value;
4142 	error = sysctl_handle_int(oidp, &usecs, 0, req);
4143 	if (error != 0 || req->newptr == NULL)
4144 		return (error);
4145 	if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4146 		return (EINVAL);
4147 	info->value = usecs;
4148 	ticks = EM_USECS_TO_TICKS(usecs);
4149 	if (info->offset == E1000_ITR)	/* units are 256ns here */
4150 		ticks *= 4;
4151 
4152 	adapter = info->adapter;
4153 
4154 	regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
4155 	regval = (regval & ~0xffff) | (ticks & 0xffff);
4156 	/* Handle a few special cases. */
4157 	switch (info->offset) {
4158 	case E1000_RDTR:
4159 		break;
4160 	case E1000_TIDV:
4161 		if (ticks == 0) {
4162 			adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
4163 			/* Don't write 0 into the TIDV register. */
4164 			regval++;
4165 		} else
4166 			adapter->txd_cmd |= E1000_TXD_CMD_IDE;
4167 		break;
4168 	}
4169 	E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
4170 	return (0);
4171 }
4172 
4173 static void
4174 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
4175 	const char *description, struct em_int_delay_info *info,
4176 	int offset, int value)
4177 {
4178 	info->adapter = adapter;
4179 	info->offset = offset;
4180 	info->value = value;
4181 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
4182 	    SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
4183 	    OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
4184 	    info, 0, em_sysctl_int_delay, "I", description);
4185 }
4186 
4187 static void
4188 em_set_sysctl_value(struct adapter *adapter, const char *name,
4189 	const char *description, int *limit, int value)
4190 {
4191 	*limit = value;
4192 	SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev),
4193 	    SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
4194 	    OID_AUTO, name, CTLFLAG_RW, limit, value, description);
4195 }
4196 
4197 
4198 /*
4199 ** Set flow control using sysctl:
4200 ** Flow control values:
4201 **      0 - off
4202 **      1 - rx pause
4203 **      2 - tx pause
4204 **      3 - full
4205 */
4206 static int
4207 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4208 {
4209         int		error;
4210 	static int	input = 3; /* default is full */
4211         struct adapter	*adapter = (struct adapter *) arg1;
4212 
4213         error = sysctl_handle_int(oidp, &input, 0, req);
4214 
4215         if ((error) || (req->newptr == NULL))
4216                 return (error);
4217 
4218 	if (input == adapter->fc) /* no change? */
4219 		return (error);
4220 
4221         switch (input) {
4222                 case e1000_fc_rx_pause:
4223                 case e1000_fc_tx_pause:
4224                 case e1000_fc_full:
4225                 case e1000_fc_none:
4226                         adapter->hw.fc.requested_mode = input;
4227 			adapter->fc = input;
4228                         break;
4229                 default:
4230 			/* Do nothing */
4231 			return (error);
4232         }
4233 
4234         adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
4235         e1000_force_mac_fc(&adapter->hw);
4236         return (error);
4237 }
4238 
4239 /*
4240 ** Manage Energy Efficient Ethernet:
4241 ** Control values:
4242 **     0/1 - enabled/disabled
4243 */
4244 static int
4245 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
4246 {
4247        struct adapter *adapter = (struct adapter *) arg1;
4248        int             error, value;
4249 
4250        value = adapter->hw.dev_spec.ich8lan.eee_disable;
4251        error = sysctl_handle_int(oidp, &value, 0, req);
4252        if (error || req->newptr == NULL)
4253                return (error);
4254        adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0);
4255        em_if_init(adapter->ctx);
4256 
4257        return (0);
4258 }
4259 
4260 static int
4261 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4262 {
4263 	struct adapter *adapter;
4264 	int error;
4265 	int result;
4266 
4267 	result = -1;
4268 	error = sysctl_handle_int(oidp, &result, 0, req);
4269 
4270 	if (error || !req->newptr)
4271 		return (error);
4272 
4273 	if (result == 1) {
4274 		adapter = (struct adapter *)arg1;
4275 		em_print_debug_info(adapter);
4276         }
4277 
4278 	return (error);
4279 }
4280 
4281 /*
4282 ** This routine is meant to be fluid, add whatever is
4283 ** needed for debugging a problem.  -jfv
4284 */
4285 static void
4286 em_print_debug_info(struct adapter *adapter)
4287 {
4288 	device_t dev = adapter->dev;
4289 	struct tx_ring *txr = &adapter->tx_queues->txr;
4290 	struct rx_ring *rxr = &adapter->rx_queues->rxr;
4291 
4292 	if (if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING)
4293 		printf("Interface is RUNNING ");
4294 	else
4295 		printf("Interface is NOT RUNNING\n");
4296 
4297 	if (if_getdrvflags(adapter->ifp) & IFF_DRV_OACTIVE)
4298 		printf("and INACTIVE\n");
4299 	else
4300 		printf("and ACTIVE\n");
4301 
4302 	for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
4303 		device_printf(dev, "TX Queue %d ------\n", i);
4304 		device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4305 	    		E1000_READ_REG(&adapter->hw, E1000_TDH(i)),
4306 	    		E1000_READ_REG(&adapter->hw, E1000_TDT(i)));
4307 
4308 	}
4309 	for (int j=0; j < adapter->rx_num_queues; j++, rxr++) {
4310 		device_printf(dev, "RX Queue %d ------\n", j);
4311 		device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4312 	    		E1000_READ_REG(&adapter->hw, E1000_RDH(j)),
4313 	    		E1000_READ_REG(&adapter->hw, E1000_RDT(j)));
4314 	}
4315 }
4316 
4317 
4318 /*
4319  * 82574 only:
4320  * Write a new value to the EEPROM increasing the number of MSIX
4321  * vectors from 3 to 5, for proper multiqueue support.
4322  */
4323 static void
4324 em_enable_vectors_82574(if_ctx_t ctx)
4325 {
4326 	struct adapter *adapter = iflib_get_softc(ctx);
4327 	struct e1000_hw *hw = &adapter->hw;
4328 	device_t dev = iflib_get_dev(ctx);
4329 	u16 edata;
4330 
4331 	e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4332 	printf("Current cap: %#06x\n", edata);
4333 	if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
4334 		device_printf(dev, "Writing to eeprom: increasing "
4335 		    "reported MSIX vectors from 3 to 5...\n");
4336 		edata &= ~(EM_NVM_MSIX_N_MASK);
4337 		edata |= 4 << EM_NVM_MSIX_N_SHIFT;
4338 		e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4339 		e1000_update_nvm_checksum(hw);
4340 		device_printf(dev, "Writing to eeprom: done\n");
4341 	}
4342 }
4343 
4344 
4345 #ifdef DDB
4346 DB_COMMAND(em_reset_dev, em_ddb_reset_dev)
4347 {
4348 	devclass_t	dc;
4349 	int max_em;
4350 
4351 	dc = devclass_find("em");
4352 	max_em = devclass_get_maxunit(dc);
4353 
4354 	for (int index = 0; index < (max_em - 1); index++) {
4355 		device_t dev;
4356 		dev = devclass_get_device(dc, index);
4357 		if (device_get_driver(dev) == &em_driver) {
4358 			struct adapter *adapter = device_get_softc(dev);
4359 			em_if_init(adapter->ctx);
4360 		}
4361 	}
4362 }
4363 DB_COMMAND(em_dump_queue, em_ddb_dump_queue)
4364 {
4365 	devclass_t	dc;
4366 	int max_em;
4367 
4368 	dc = devclass_find("em");
4369 	max_em = devclass_get_maxunit(dc);
4370 
4371 	for (int index = 0; index < (max_em - 1); index++) {
4372 		device_t dev;
4373 		dev = devclass_get_device(dc, index);
4374 		if (device_get_driver(dev) == &em_driver)
4375 			em_print_debug_info(device_get_softc(dev));
4376 	}
4377 
4378 }
4379 #endif
4380