1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* $FreeBSD$ */ 30 #include "if_em.h" 31 #include <sys/sbuf.h> 32 #include <machine/_inttypes.h> 33 34 #define em_mac_min e1000_82547 35 #define igb_mac_min e1000_82575 36 37 /********************************************************************* 38 * Driver version: 39 *********************************************************************/ 40 char em_driver_version[] = "7.6.1-k"; 41 42 /********************************************************************* 43 * PCI Device ID Table 44 * 45 * Used by probe to select devices to load on 46 * Last field stores an index into e1000_strings 47 * Last entry must be all 0s 48 * 49 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index } 50 *********************************************************************/ 51 52 static pci_vendor_info_t em_vendor_info_array[] = 53 { 54 /* Intel(R) PRO/1000 Network Connection - Legacy em*/ 55 PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) PRO/1000 Network Connection"), 56 PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) PRO/1000 Network Connection"), 57 PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) PRO/1000 Network Connection"), 58 PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) PRO/1000 Network Connection"), 59 PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) PRO/1000 Network Connection"), 60 61 PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) PRO/1000 Network Connection"), 62 PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) PRO/1000 Network Connection"), 63 PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) PRO/1000 Network Connection"), 64 PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) PRO/1000 Network Connection"), 65 PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) PRO/1000 Network Connection"), 66 PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) PRO/1000 Network Connection"), 67 PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) PRO/1000 Network Connection"), 68 69 PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) PRO/1000 Network Connection"), 70 71 PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) PRO/1000 Network Connection"), 72 PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) PRO/1000 Network Connection"), 73 74 PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) PRO/1000 Network Connection"), 75 PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) PRO/1000 Network Connection"), 76 PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) PRO/1000 Network Connection"), 77 PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) PRO/1000 Network Connection"), 78 79 PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) PRO/1000 Network Connection"), 80 PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) PRO/1000 Network Connection"), 81 PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) PRO/1000 Network Connection"), 82 PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) PRO/1000 Network Connection"), 83 PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) PRO/1000 Network Connection"), 84 85 PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) PRO/1000 Network Connection"), 86 PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) PRO/1000 Network Connection"), 87 PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), 88 PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) PRO/1000 Network Connection"), 89 PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) PRO/1000 Network Connection"), 90 PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) PRO/1000 Network Connection"), 91 PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) PRO/1000 Network Connection"), 92 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), 93 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) PRO/1000 Network Connection"), 94 95 PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) PRO/1000 Network Connection"), 96 PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) PRO/1000 Network Connection"), 97 PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) PRO/1000 Network Connection"), 98 99 /* Intel(R) PRO/1000 Network Connection - em */ 100 PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 Network Connection"), 101 PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 Network Connection"), 102 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 Network Connection"), 103 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 Network Connection"), 104 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 Network Connection"), 105 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), 106 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 Network Connection"), 107 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 Network Connection"), 108 PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), 109 PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 Network Connection"), 110 PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 Network Connection"), 111 PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 Network Connection"), 112 PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 Network Connection"), 113 PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 Network Connection"), 114 PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 Network Connection"), 115 PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 Network Connection"), 116 PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) PRO/1000 Network Connection"), 117 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) PRO/1000 Network Connection"), 118 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) PRO/1000 Network Connection"), 119 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) PRO/1000 Network Connection"), 120 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) PRO/1000 Network Connection"), 121 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"), 122 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) PRO/1000 Network Connection"), 123 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) PRO/1000 Network Connection"), 124 PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) PRO/1000 Network Connection"), 125 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) PRO/1000 Network Connection"), 126 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) PRO/1000 Network Connection"), 127 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) PRO/1000 Network Connection"), 128 PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) PRO/1000 Network Connection"), 129 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"), 130 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) PRO/1000 Network Connection"), 131 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) PRO/1000 Network Connection"), 132 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) PRO/1000 Network Connection"), 133 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) PRO/1000 Network Connection"), 134 PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) PRO/1000 Network Connection"), 135 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) PRO/1000 Network Connection"), 136 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) PRO/1000 Network Connection"), 137 PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) PRO/1000 Network Connection"), 138 PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) PRO/1000 Network Connection"), 139 PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) PRO/1000 Network Connection"), 140 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) PRO/1000 Network Connection"), 141 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) PRO/1000 Network Connection"), 142 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) PRO/1000 Network Connection"), 143 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) PRO/1000 Network Connection"), 144 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) PRO/1000 Network Connection"), 145 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) PRO/1000 Network Connection"), 146 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) PRO/1000 Network Connection"), 147 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) PRO/1000 Network Connection"), 148 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) PRO/1000 Network Connection"), 149 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) PRO/1000 Network Connection"), 150 PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) PRO/1000 Network Connection"), 151 PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) PRO/1000 Network Connection"), 152 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) PRO/1000 Network Connection"), 153 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) PRO/1000 Network Connection"), 154 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) PRO/1000 Network Connection"), 155 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) PRO/1000 Network Connection"), 156 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) PRO/1000 Network Connection"), 157 PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) PRO/1000 Network Connection"), 158 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) PRO/1000 Network Connection"), 159 PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) PRO/1000 Network Connection"), 160 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) PRO/1000 Network Connection"), 161 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) PRO/1000 Network Connection"), 162 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) PRO/1000 Network Connection"), 163 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) PRO/1000 Network Connection"), 164 PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) PRO/1000 Network Connection"), 165 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) PRO/1000 Network Connection"), 166 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) PRO/1000 Network Connection"), 167 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) PRO/1000 Network Connection"), 168 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) PRO/1000 Network Connection"), 169 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) PRO/1000 Network Connection"), 170 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) PRO/1000 Network Connection"), 171 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) PRO/1000 Network Connection"), 172 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) PRO/1000 Network Connection"), 173 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) PRO/1000 Network Connection"), 174 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) PRO/1000 Network Connection"), 175 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) PRO/1000 Network Connection"), 176 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) PRO/1000 Network Connection"), 177 /* required last entry */ 178 PVID_END 179 }; 180 181 static pci_vendor_info_t igb_vendor_info_array[] = 182 { 183 /* Intel(R) PRO/1000 Network Connection - igb */ 184 PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 185 PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 186 PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 187 PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 PCI-Express Network Driver"), 188 PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 189 PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 190 PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 191 PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 192 PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 PCI-Express Network Driver"), 193 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 194 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 PCI-Express Network Driver"), 195 PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"), 196 PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 197 PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 198 PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 199 PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 200 PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) PRO/1000 PCI-Express Network Driver"), 201 PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 202 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 203 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 204 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) PRO/1000 PCI-Express Network Driver"), 205 PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) PRO/1000 PCI-Express Network Driver"), 206 PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 207 PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 208 PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 209 PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 210 PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"), 211 PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 212 PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) PRO/1000 PCI-Express Network Driver"), 213 PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) PRO/1000 PCI-Express Network Driver"), 214 PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 215 PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 216 PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 217 PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), 218 PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 219 PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 220 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 221 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"), 222 PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), 223 /* required last entry */ 224 PVID_END 225 }; 226 227 /********************************************************************* 228 * Function prototypes 229 *********************************************************************/ 230 static void *em_register(device_t dev); 231 static void *igb_register(device_t dev); 232 static int em_if_attach_pre(if_ctx_t ctx); 233 static int em_if_attach_post(if_ctx_t ctx); 234 static int em_if_detach(if_ctx_t ctx); 235 static int em_if_shutdown(if_ctx_t ctx); 236 static int em_if_suspend(if_ctx_t ctx); 237 static int em_if_resume(if_ctx_t ctx); 238 239 static int em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets); 240 static int em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets); 241 static void em_if_queues_free(if_ctx_t ctx); 242 243 static uint64_t em_if_get_counter(if_ctx_t, ift_counter); 244 static void em_if_init(if_ctx_t ctx); 245 static void em_if_stop(if_ctx_t ctx); 246 static void em_if_media_status(if_ctx_t, struct ifmediareq *); 247 static int em_if_media_change(if_ctx_t ctx); 248 static int em_if_mtu_set(if_ctx_t ctx, uint32_t mtu); 249 static void em_if_timer(if_ctx_t ctx, uint16_t qid); 250 static void em_if_vlan_register(if_ctx_t ctx, u16 vtag); 251 static void em_if_vlan_unregister(if_ctx_t ctx, u16 vtag); 252 static void em_if_watchdog_reset(if_ctx_t ctx); 253 254 static void em_identify_hardware(if_ctx_t ctx); 255 static int em_allocate_pci_resources(if_ctx_t ctx); 256 static void em_free_pci_resources(if_ctx_t ctx); 257 static void em_reset(if_ctx_t ctx); 258 static int em_setup_interface(if_ctx_t ctx); 259 static int em_setup_msix(if_ctx_t ctx); 260 261 static void em_initialize_transmit_unit(if_ctx_t ctx); 262 static void em_initialize_receive_unit(if_ctx_t ctx); 263 264 static void em_if_enable_intr(if_ctx_t ctx); 265 static void em_if_disable_intr(if_ctx_t ctx); 266 static int em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid); 267 static int em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid); 268 static void em_if_multi_set(if_ctx_t ctx); 269 static void em_if_update_admin_status(if_ctx_t ctx); 270 static void em_if_debug(if_ctx_t ctx); 271 static void em_update_stats_counters(struct adapter *); 272 static void em_add_hw_stats(struct adapter *adapter); 273 static int em_if_set_promisc(if_ctx_t ctx, int flags); 274 static void em_setup_vlan_hw_support(struct adapter *); 275 static int em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS); 276 static void em_print_nvm_info(struct adapter *); 277 static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS); 278 static int em_get_rs(SYSCTL_HANDLER_ARGS); 279 static void em_print_debug_info(struct adapter *); 280 static int em_is_valid_ether_addr(u8 *); 281 static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS); 282 static void em_add_int_delay_sysctl(struct adapter *, const char *, 283 const char *, struct em_int_delay_info *, int, int); 284 /* Management and WOL Support */ 285 static void em_init_manageability(struct adapter *); 286 static void em_release_manageability(struct adapter *); 287 static void em_get_hw_control(struct adapter *); 288 static void em_release_hw_control(struct adapter *); 289 static void em_get_wakeup(if_ctx_t ctx); 290 static void em_enable_wakeup(if_ctx_t ctx); 291 static int em_enable_phy_wakeup(struct adapter *); 292 static void em_disable_aspm(struct adapter *); 293 294 int em_intr(void *arg); 295 static void em_disable_promisc(if_ctx_t ctx); 296 297 /* MSI-X handlers */ 298 static int em_if_msix_intr_assign(if_ctx_t, int); 299 static int em_msix_link(void *); 300 static void em_handle_link(void *context); 301 302 static void em_enable_vectors_82574(if_ctx_t); 303 304 static int em_set_flowcntl(SYSCTL_HANDLER_ARGS); 305 static int em_sysctl_eee(SYSCTL_HANDLER_ARGS); 306 static void em_if_led_func(if_ctx_t ctx, int onoff); 307 308 static int em_get_regs(SYSCTL_HANDLER_ARGS); 309 310 static void lem_smartspeed(struct adapter *adapter); 311 static void igb_configure_queues(struct adapter *adapter); 312 313 314 /********************************************************************* 315 * FreeBSD Device Interface Entry Points 316 *********************************************************************/ 317 static device_method_t em_methods[] = { 318 /* Device interface */ 319 DEVMETHOD(device_register, em_register), 320 DEVMETHOD(device_probe, iflib_device_probe), 321 DEVMETHOD(device_attach, iflib_device_attach), 322 DEVMETHOD(device_detach, iflib_device_detach), 323 DEVMETHOD(device_shutdown, iflib_device_shutdown), 324 DEVMETHOD(device_suspend, iflib_device_suspend), 325 DEVMETHOD(device_resume, iflib_device_resume), 326 DEVMETHOD_END 327 }; 328 329 static device_method_t igb_methods[] = { 330 /* Device interface */ 331 DEVMETHOD(device_register, igb_register), 332 DEVMETHOD(device_probe, iflib_device_probe), 333 DEVMETHOD(device_attach, iflib_device_attach), 334 DEVMETHOD(device_detach, iflib_device_detach), 335 DEVMETHOD(device_shutdown, iflib_device_shutdown), 336 DEVMETHOD(device_suspend, iflib_device_suspend), 337 DEVMETHOD(device_resume, iflib_device_resume), 338 DEVMETHOD_END 339 }; 340 341 342 static driver_t em_driver = { 343 "em", em_methods, sizeof(struct adapter), 344 }; 345 346 static devclass_t em_devclass; 347 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0); 348 349 MODULE_DEPEND(em, pci, 1, 1, 1); 350 MODULE_DEPEND(em, ether, 1, 1, 1); 351 MODULE_DEPEND(em, iflib, 1, 1, 1); 352 353 IFLIB_PNP_INFO(pci, em, em_vendor_info_array); 354 355 static driver_t igb_driver = { 356 "igb", igb_methods, sizeof(struct adapter), 357 }; 358 359 static devclass_t igb_devclass; 360 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0); 361 362 MODULE_DEPEND(igb, pci, 1, 1, 1); 363 MODULE_DEPEND(igb, ether, 1, 1, 1); 364 MODULE_DEPEND(igb, iflib, 1, 1, 1); 365 366 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array); 367 368 static device_method_t em_if_methods[] = { 369 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre), 370 DEVMETHOD(ifdi_attach_post, em_if_attach_post), 371 DEVMETHOD(ifdi_detach, em_if_detach), 372 DEVMETHOD(ifdi_shutdown, em_if_shutdown), 373 DEVMETHOD(ifdi_suspend, em_if_suspend), 374 DEVMETHOD(ifdi_resume, em_if_resume), 375 DEVMETHOD(ifdi_init, em_if_init), 376 DEVMETHOD(ifdi_stop, em_if_stop), 377 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign), 378 DEVMETHOD(ifdi_intr_enable, em_if_enable_intr), 379 DEVMETHOD(ifdi_intr_disable, em_if_disable_intr), 380 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc), 381 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc), 382 DEVMETHOD(ifdi_queues_free, em_if_queues_free), 383 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status), 384 DEVMETHOD(ifdi_multi_set, em_if_multi_set), 385 DEVMETHOD(ifdi_media_status, em_if_media_status), 386 DEVMETHOD(ifdi_media_change, em_if_media_change), 387 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set), 388 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc), 389 DEVMETHOD(ifdi_timer, em_if_timer), 390 DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset), 391 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register), 392 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister), 393 DEVMETHOD(ifdi_get_counter, em_if_get_counter), 394 DEVMETHOD(ifdi_led_func, em_if_led_func), 395 DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable), 396 DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable), 397 DEVMETHOD(ifdi_debug, em_if_debug), 398 DEVMETHOD_END 399 }; 400 401 /* 402 * note that if (adapter->msix_mem) is replaced by: 403 * if (adapter->intr_type == IFLIB_INTR_MSIX) 404 */ 405 static driver_t em_if_driver = { 406 "em_if", em_if_methods, sizeof(struct adapter) 407 }; 408 409 /********************************************************************* 410 * Tunable default values. 411 *********************************************************************/ 412 413 #define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000) 414 #define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024) 415 416 #define MAX_INTS_PER_SEC 8000 417 #define DEFAULT_ITR (1000000000/(MAX_INTS_PER_SEC * 256)) 418 419 /* Allow common code without TSO */ 420 #ifndef CSUM_TSO 421 #define CSUM_TSO 0 422 #endif 423 424 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD, 0, "EM driver parameters"); 425 426 static int em_disable_crc_stripping = 0; 427 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN, 428 &em_disable_crc_stripping, 0, "Disable CRC Stripping"); 429 430 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV); 431 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR); 432 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt, 433 0, "Default transmit interrupt delay in usecs"); 434 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt, 435 0, "Default receive interrupt delay in usecs"); 436 437 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV); 438 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV); 439 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN, 440 &em_tx_abs_int_delay_dflt, 0, 441 "Default transmit interrupt delay limit in usecs"); 442 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN, 443 &em_rx_abs_int_delay_dflt, 0, 444 "Default receive interrupt delay limit in usecs"); 445 446 static int em_smart_pwr_down = FALSE; 447 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down, 448 0, "Set to true to leave smart power down enabled on newer adapters"); 449 450 /* Controls whether promiscuous also shows bad packets */ 451 static int em_debug_sbp = TRUE; 452 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0, 453 "Show bad packets in promiscuous mode"); 454 455 /* How many packets rxeof tries to clean at a time */ 456 static int em_rx_process_limit = 100; 457 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN, 458 &em_rx_process_limit, 0, 459 "Maximum number of received packets to process " 460 "at a time, -1 means unlimited"); 461 462 /* Energy efficient ethernet - default to OFF */ 463 static int eee_setting = 1; 464 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0, 465 "Enable Energy Efficient Ethernet"); 466 467 /* 468 ** Tuneable Interrupt rate 469 */ 470 static int em_max_interrupt_rate = 8000; 471 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN, 472 &em_max_interrupt_rate, 0, "Maximum interrupts per second"); 473 474 475 476 /* Global used in WOL setup with multiport cards */ 477 static int global_quad_port_a = 0; 478 479 extern struct if_txrx igb_txrx; 480 extern struct if_txrx em_txrx; 481 extern struct if_txrx lem_txrx; 482 483 static struct if_shared_ctx em_sctx_init = { 484 .isc_magic = IFLIB_MAGIC, 485 .isc_q_align = PAGE_SIZE, 486 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 487 .isc_tx_maxsegsize = PAGE_SIZE, 488 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 489 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE, 490 .isc_rx_maxsize = MJUM9BYTES, 491 .isc_rx_nsegments = 1, 492 .isc_rx_maxsegsize = MJUM9BYTES, 493 .isc_nfl = 1, 494 .isc_nrxqs = 1, 495 .isc_ntxqs = 1, 496 .isc_admin_intrcnt = 1, 497 .isc_vendor_info = em_vendor_info_array, 498 .isc_driver_version = em_driver_version, 499 .isc_driver = &em_if_driver, 500 .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM, 501 502 .isc_nrxd_min = {EM_MIN_RXD}, 503 .isc_ntxd_min = {EM_MIN_TXD}, 504 .isc_nrxd_max = {EM_MAX_RXD}, 505 .isc_ntxd_max = {EM_MAX_TXD}, 506 .isc_nrxd_default = {EM_DEFAULT_RXD}, 507 .isc_ntxd_default = {EM_DEFAULT_TXD}, 508 }; 509 510 if_shared_ctx_t em_sctx = &em_sctx_init; 511 512 static struct if_shared_ctx igb_sctx_init = { 513 .isc_magic = IFLIB_MAGIC, 514 .isc_q_align = PAGE_SIZE, 515 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 516 .isc_tx_maxsegsize = PAGE_SIZE, 517 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), 518 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE, 519 .isc_rx_maxsize = MJUM9BYTES, 520 .isc_rx_nsegments = 1, 521 .isc_rx_maxsegsize = MJUM9BYTES, 522 .isc_nfl = 1, 523 .isc_nrxqs = 1, 524 .isc_ntxqs = 1, 525 .isc_admin_intrcnt = 1, 526 .isc_vendor_info = igb_vendor_info_array, 527 .isc_driver_version = em_driver_version, 528 .isc_driver = &em_if_driver, 529 .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM, 530 531 .isc_nrxd_min = {EM_MIN_RXD}, 532 .isc_ntxd_min = {EM_MIN_TXD}, 533 .isc_nrxd_max = {IGB_MAX_RXD}, 534 .isc_ntxd_max = {IGB_MAX_TXD}, 535 .isc_nrxd_default = {EM_DEFAULT_RXD}, 536 .isc_ntxd_default = {EM_DEFAULT_TXD}, 537 }; 538 539 if_shared_ctx_t igb_sctx = &igb_sctx_init; 540 541 /***************************************************************** 542 * 543 * Dump Registers 544 * 545 ****************************************************************/ 546 #define IGB_REGS_LEN 739 547 548 static int em_get_regs(SYSCTL_HANDLER_ARGS) 549 { 550 struct adapter *adapter = (struct adapter *)arg1; 551 struct e1000_hw *hw = &adapter->hw; 552 struct sbuf *sb; 553 u32 *regs_buff; 554 int rc; 555 556 regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK); 557 memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32)); 558 559 rc = sysctl_wire_old_buffer(req, 0); 560 MPASS(rc == 0); 561 if (rc != 0) { 562 free(regs_buff, M_DEVBUF); 563 return (rc); 564 } 565 566 sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req); 567 MPASS(sb != NULL); 568 if (sb == NULL) { 569 free(regs_buff, M_DEVBUF); 570 return (ENOMEM); 571 } 572 573 /* General Registers */ 574 regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL); 575 regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS); 576 regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT); 577 regs_buff[3] = E1000_READ_REG(hw, E1000_ICR); 578 regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL); 579 regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0)); 580 regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0)); 581 regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0)); 582 regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0)); 583 regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0)); 584 regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0)); 585 regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL); 586 regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0)); 587 regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0)); 588 regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0)); 589 regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0)); 590 regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0)); 591 regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0)); 592 regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH); 593 regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT); 594 regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS); 595 regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC); 596 597 sbuf_printf(sb, "General Registers\n"); 598 sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]); 599 sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]); 600 sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]); 601 602 sbuf_printf(sb, "Interrupt Registers\n"); 603 sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]); 604 605 sbuf_printf(sb, "RX Registers\n"); 606 sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]); 607 sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]); 608 sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]); 609 sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]); 610 sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]); 611 sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]); 612 sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]); 613 614 sbuf_printf(sb, "TX Registers\n"); 615 sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]); 616 sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]); 617 sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]); 618 sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]); 619 sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]); 620 sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]); 621 sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]); 622 sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]); 623 sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]); 624 sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]); 625 sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]); 626 627 free(regs_buff, M_DEVBUF); 628 629 #ifdef DUMP_DESCS 630 { 631 if_softc_ctx_t scctx = adapter->shared; 632 struct rx_ring *rxr = &rx_que->rxr; 633 struct tx_ring *txr = &tx_que->txr; 634 int ntxd = scctx->isc_ntxd[0]; 635 int nrxd = scctx->isc_nrxd[0]; 636 int j; 637 638 for (j = 0; j < nrxd; j++) { 639 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error); 640 u32 length = le32toh(rxr->rx_base[j].wb.upper.length); 641 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 " Error:%d Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length); 642 } 643 644 for (j = 0; j < min(ntxd, 256); j++) { 645 unsigned int *ptr = (unsigned int *)&txr->tx_base[j]; 646 647 sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x eop: %d DD=%d\n", 648 j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop, 649 buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0); 650 651 } 652 } 653 #endif 654 655 rc = sbuf_finish(sb); 656 sbuf_delete(sb); 657 return(rc); 658 } 659 660 static void * 661 em_register(device_t dev) 662 { 663 return (em_sctx); 664 } 665 666 static void * 667 igb_register(device_t dev) 668 { 669 return (igb_sctx); 670 } 671 672 static int 673 em_set_num_queues(if_ctx_t ctx) 674 { 675 struct adapter *adapter = iflib_get_softc(ctx); 676 int maxqueues; 677 678 /* Sanity check based on HW */ 679 switch (adapter->hw.mac.type) { 680 case e1000_82576: 681 case e1000_82580: 682 case e1000_i350: 683 case e1000_i354: 684 maxqueues = 8; 685 break; 686 case e1000_i210: 687 case e1000_82575: 688 maxqueues = 4; 689 break; 690 case e1000_i211: 691 case e1000_82574: 692 maxqueues = 2; 693 break; 694 default: 695 maxqueues = 1; 696 break; 697 } 698 699 return (maxqueues); 700 } 701 702 #define LEM_CAPS \ 703 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ 704 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER 705 706 #define EM_CAPS \ 707 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ 708 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \ 709 IFCAP_LRO | IFCAP_VLAN_HWTSO 710 711 #define IGB_CAPS \ 712 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ 713 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \ 714 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 |\ 715 IFCAP_TSO6 716 717 /********************************************************************* 718 * Device initialization routine 719 * 720 * The attach entry point is called when the driver is being loaded. 721 * This routine identifies the type of hardware, allocates all resources 722 * and initializes the hardware. 723 * 724 * return 0 on success, positive on failure 725 *********************************************************************/ 726 static int 727 em_if_attach_pre(if_ctx_t ctx) 728 { 729 struct adapter *adapter; 730 if_softc_ctx_t scctx; 731 device_t dev; 732 struct e1000_hw *hw; 733 int error = 0; 734 735 INIT_DEBUGOUT("em_if_attach_pre: begin"); 736 dev = iflib_get_dev(ctx); 737 adapter = iflib_get_softc(ctx); 738 739 adapter->ctx = adapter->osdep.ctx = ctx; 740 adapter->dev = adapter->osdep.dev = dev; 741 scctx = adapter->shared = iflib_get_softc_ctx(ctx); 742 adapter->media = iflib_get_media(ctx); 743 hw = &adapter->hw; 744 745 adapter->tx_process_limit = scctx->isc_ntxd[0]; 746 747 /* SYSCTL stuff */ 748 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 749 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 750 OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, 751 em_sysctl_nvm_info, "I", "NVM Information"); 752 753 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 754 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 755 OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, 756 em_sysctl_debug_info, "I", "Debug Information"); 757 758 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 759 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 760 OID_AUTO, "fc", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, 761 em_set_flowcntl, "I", "Flow Control"); 762 763 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 764 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 765 OID_AUTO, "reg_dump", CTLTYPE_STRING | CTLFLAG_RD, adapter, 0, 766 em_get_regs, "A", "Dump Registers"); 767 768 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 769 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 770 OID_AUTO, "rs_dump", CTLTYPE_INT | CTLFLAG_RW, adapter, 0, 771 em_get_rs, "I", "Dump RS indexes"); 772 773 /* Determine hardware and mac info */ 774 em_identify_hardware(ctx); 775 776 scctx->isc_tx_nsegments = EM_MAX_SCATTER; 777 scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx); 778 if (bootverbose) 779 device_printf(dev, "attach_pre capping queues at %d\n", 780 scctx->isc_ntxqsets_max); 781 782 if (adapter->hw.mac.type >= igb_mac_min) { 783 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN); 784 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN); 785 scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc); 786 scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc); 787 scctx->isc_txrx = &igb_txrx; 788 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER; 789 scctx->isc_tx_tso_size_max = EM_TSO_SIZE; 790 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE; 791 scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS; 792 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO | 793 CSUM_IP6_TCP | CSUM_IP6_UDP; 794 if (adapter->hw.mac.type != e1000_82575) 795 scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP; 796 /* 797 ** Some new devices, as with ixgbe, now may 798 ** use a different BAR, so we need to keep 799 ** track of which is used. 800 */ 801 scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR); 802 if (pci_read_config(dev, scctx->isc_msix_bar, 4) == 0) 803 scctx->isc_msix_bar += 4; 804 } else if (adapter->hw.mac.type >= em_mac_min) { 805 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN); 806 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN); 807 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc); 808 scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended); 809 scctx->isc_txrx = &em_txrx; 810 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER; 811 scctx->isc_tx_tso_size_max = EM_TSO_SIZE; 812 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE; 813 scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS; 814 /* 815 * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO} 816 * by default as we don't have workarounds for all associated 817 * silicon errata. E. g., with several MACs such as 82573E, 818 * TSO only works at Gigabit speed and otherwise can cause the 819 * hardware to hang (which also would be next to impossible to 820 * work around given that already queued TSO-using descriptors 821 * would need to be flushed and vlan(4) reconfigured at runtime 822 * in case of a link speed change). Moreover, MACs like 82579 823 * still can hang at Gigabit even with all publicly documented 824 * TSO workarounds implemented. Generally, the penality of 825 * these workarounds is rather high and may involve copying 826 * mbuf data around so advantages of TSO lapse. Still, TSO may 827 * work for a few MACs of this class - at least when sticking 828 * with Gigabit - in which case users may enable TSO manually. 829 */ 830 scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO); 831 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO; 832 /* 833 * We support MSI-X with 82574 only, but indicate to iflib(4) 834 * that it shall give MSI at least a try with other devices. 835 */ 836 if (adapter->hw.mac.type == e1000_82574) { 837 scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR); 838 } else { 839 scctx->isc_msix_bar = -1; 840 scctx->isc_disable_msix = 1; 841 } 842 } else { 843 scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN); 844 scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN); 845 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc); 846 scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc); 847 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP; 848 scctx->isc_txrx = &lem_txrx; 849 scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS; 850 if (adapter->hw.mac.type < e1000_82543) 851 scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM); 852 /* INTx only */ 853 scctx->isc_msix_bar = 0; 854 } 855 856 /* Setup PCI resources */ 857 if (em_allocate_pci_resources(ctx)) { 858 device_printf(dev, "Allocation of PCI resources failed\n"); 859 error = ENXIO; 860 goto err_pci; 861 } 862 863 /* 864 ** For ICH8 and family we need to 865 ** map the flash memory, and this 866 ** must happen after the MAC is 867 ** identified 868 */ 869 if ((hw->mac.type == e1000_ich8lan) || 870 (hw->mac.type == e1000_ich9lan) || 871 (hw->mac.type == e1000_ich10lan) || 872 (hw->mac.type == e1000_pchlan) || 873 (hw->mac.type == e1000_pch2lan) || 874 (hw->mac.type == e1000_pch_lpt)) { 875 int rid = EM_BAR_TYPE_FLASH; 876 adapter->flash = bus_alloc_resource_any(dev, 877 SYS_RES_MEMORY, &rid, RF_ACTIVE); 878 if (adapter->flash == NULL) { 879 device_printf(dev, "Mapping of Flash failed\n"); 880 error = ENXIO; 881 goto err_pci; 882 } 883 /* This is used in the shared code */ 884 hw->flash_address = (u8 *)adapter->flash; 885 adapter->osdep.flash_bus_space_tag = 886 rman_get_bustag(adapter->flash); 887 adapter->osdep.flash_bus_space_handle = 888 rman_get_bushandle(adapter->flash); 889 } 890 /* 891 ** In the new SPT device flash is not a 892 ** separate BAR, rather it is also in BAR0, 893 ** so use the same tag and an offset handle for the 894 ** FLASH read/write macros in the shared code. 895 */ 896 else if (hw->mac.type >= e1000_pch_spt) { 897 adapter->osdep.flash_bus_space_tag = 898 adapter->osdep.mem_bus_space_tag; 899 adapter->osdep.flash_bus_space_handle = 900 adapter->osdep.mem_bus_space_handle 901 + E1000_FLASH_BASE_ADDR; 902 } 903 904 /* Do Shared Code initialization */ 905 error = e1000_setup_init_funcs(hw, TRUE); 906 if (error) { 907 device_printf(dev, "Setup of Shared code failed, error %d\n", 908 error); 909 error = ENXIO; 910 goto err_pci; 911 } 912 913 em_setup_msix(ctx); 914 e1000_get_bus_info(hw); 915 916 /* Set up some sysctls for the tunable interrupt delays */ 917 em_add_int_delay_sysctl(adapter, "rx_int_delay", 918 "receive interrupt delay in usecs", &adapter->rx_int_delay, 919 E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt); 920 em_add_int_delay_sysctl(adapter, "tx_int_delay", 921 "transmit interrupt delay in usecs", &adapter->tx_int_delay, 922 E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt); 923 em_add_int_delay_sysctl(adapter, "rx_abs_int_delay", 924 "receive interrupt delay limit in usecs", 925 &adapter->rx_abs_int_delay, 926 E1000_REGISTER(hw, E1000_RADV), 927 em_rx_abs_int_delay_dflt); 928 em_add_int_delay_sysctl(adapter, "tx_abs_int_delay", 929 "transmit interrupt delay limit in usecs", 930 &adapter->tx_abs_int_delay, 931 E1000_REGISTER(hw, E1000_TADV), 932 em_tx_abs_int_delay_dflt); 933 em_add_int_delay_sysctl(adapter, "itr", 934 "interrupt delay limit in usecs/4", 935 &adapter->tx_itr, 936 E1000_REGISTER(hw, E1000_ITR), 937 DEFAULT_ITR); 938 939 hw->mac.autoneg = DO_AUTO_NEG; 940 hw->phy.autoneg_wait_to_complete = FALSE; 941 hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; 942 943 if (adapter->hw.mac.type < em_mac_min) { 944 e1000_init_script_state_82541(&adapter->hw, TRUE); 945 e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE); 946 } 947 /* Copper options */ 948 if (hw->phy.media_type == e1000_media_type_copper) { 949 hw->phy.mdix = AUTO_ALL_MODES; 950 hw->phy.disable_polarity_correction = FALSE; 951 hw->phy.ms_type = EM_MASTER_SLAVE; 952 } 953 954 /* 955 * Set the frame limits assuming 956 * standard ethernet sized frames. 957 */ 958 scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size = 959 ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE; 960 961 /* 962 * This controls when hardware reports transmit completion 963 * status. 964 */ 965 hw->mac.report_tx_early = 1; 966 967 /* Allocate multicast array memory. */ 968 adapter->mta = malloc(sizeof(u8) * ETH_ADDR_LEN * 969 MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT); 970 if (adapter->mta == NULL) { 971 device_printf(dev, "Can not allocate multicast setup array\n"); 972 error = ENOMEM; 973 goto err_late; 974 } 975 976 /* Check SOL/IDER usage */ 977 if (e1000_check_reset_block(hw)) 978 device_printf(dev, "PHY reset is blocked" 979 " due to SOL/IDER session.\n"); 980 981 /* Sysctl for setting Energy Efficient Ethernet */ 982 hw->dev_spec.ich8lan.eee_disable = eee_setting; 983 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 984 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 985 OID_AUTO, "eee_control", CTLTYPE_INT|CTLFLAG_RW, 986 adapter, 0, em_sysctl_eee, "I", 987 "Disable Energy Efficient Ethernet"); 988 989 /* 990 ** Start from a known state, this is 991 ** important in reading the nvm and 992 ** mac from that. 993 */ 994 e1000_reset_hw(hw); 995 996 /* Make sure we have a good EEPROM before we read from it */ 997 if (e1000_validate_nvm_checksum(hw) < 0) { 998 /* 999 ** Some PCI-E parts fail the first check due to 1000 ** the link being in sleep state, call it again, 1001 ** if it fails a second time its a real issue. 1002 */ 1003 if (e1000_validate_nvm_checksum(hw) < 0) { 1004 device_printf(dev, 1005 "The EEPROM Checksum Is Not Valid\n"); 1006 error = EIO; 1007 goto err_late; 1008 } 1009 } 1010 1011 /* Copy the permanent MAC address out of the EEPROM */ 1012 if (e1000_read_mac_addr(hw) < 0) { 1013 device_printf(dev, "EEPROM read error while reading MAC" 1014 " address\n"); 1015 error = EIO; 1016 goto err_late; 1017 } 1018 1019 if (!em_is_valid_ether_addr(hw->mac.addr)) { 1020 device_printf(dev, "Invalid MAC address\n"); 1021 error = EIO; 1022 goto err_late; 1023 } 1024 1025 /* Disable ULP support */ 1026 e1000_disable_ulp_lpt_lp(hw, TRUE); 1027 1028 /* 1029 * Get Wake-on-Lan and Management info for later use 1030 */ 1031 em_get_wakeup(ctx); 1032 1033 /* Enable only WOL MAGIC by default */ 1034 scctx->isc_capenable &= ~IFCAP_WOL; 1035 if (adapter->wol != 0) 1036 scctx->isc_capenable |= IFCAP_WOL_MAGIC; 1037 1038 iflib_set_mac(ctx, hw->mac.addr); 1039 1040 return (0); 1041 1042 err_late: 1043 em_release_hw_control(adapter); 1044 err_pci: 1045 em_free_pci_resources(ctx); 1046 free(adapter->mta, M_DEVBUF); 1047 1048 return (error); 1049 } 1050 1051 static int 1052 em_if_attach_post(if_ctx_t ctx) 1053 { 1054 struct adapter *adapter = iflib_get_softc(ctx); 1055 struct e1000_hw *hw = &adapter->hw; 1056 int error = 0; 1057 1058 /* Setup OS specific network interface */ 1059 error = em_setup_interface(ctx); 1060 if (error != 0) { 1061 goto err_late; 1062 } 1063 1064 em_reset(ctx); 1065 1066 /* Initialize statistics */ 1067 em_update_stats_counters(adapter); 1068 hw->mac.get_link_status = 1; 1069 em_if_update_admin_status(ctx); 1070 em_add_hw_stats(adapter); 1071 1072 /* Non-AMT based hardware can now take control from firmware */ 1073 if (adapter->has_manage && !adapter->has_amt) 1074 em_get_hw_control(adapter); 1075 1076 INIT_DEBUGOUT("em_if_attach_post: end"); 1077 1078 return (error); 1079 1080 err_late: 1081 em_release_hw_control(adapter); 1082 em_free_pci_resources(ctx); 1083 em_if_queues_free(ctx); 1084 free(adapter->mta, M_DEVBUF); 1085 1086 return (error); 1087 } 1088 1089 /********************************************************************* 1090 * Device removal routine 1091 * 1092 * The detach entry point is called when the driver is being removed. 1093 * This routine stops the adapter and deallocates all the resources 1094 * that were allocated for driver operation. 1095 * 1096 * return 0 on success, positive on failure 1097 *********************************************************************/ 1098 static int 1099 em_if_detach(if_ctx_t ctx) 1100 { 1101 struct adapter *adapter = iflib_get_softc(ctx); 1102 1103 INIT_DEBUGOUT("em_if_detach: begin"); 1104 1105 e1000_phy_hw_reset(&adapter->hw); 1106 1107 em_release_manageability(adapter); 1108 em_release_hw_control(adapter); 1109 em_free_pci_resources(ctx); 1110 1111 return (0); 1112 } 1113 1114 /********************************************************************* 1115 * 1116 * Shutdown entry point 1117 * 1118 **********************************************************************/ 1119 1120 static int 1121 em_if_shutdown(if_ctx_t ctx) 1122 { 1123 return em_if_suspend(ctx); 1124 } 1125 1126 /* 1127 * Suspend/resume device methods. 1128 */ 1129 static int 1130 em_if_suspend(if_ctx_t ctx) 1131 { 1132 struct adapter *adapter = iflib_get_softc(ctx); 1133 1134 em_release_manageability(adapter); 1135 em_release_hw_control(adapter); 1136 em_enable_wakeup(ctx); 1137 return (0); 1138 } 1139 1140 static int 1141 em_if_resume(if_ctx_t ctx) 1142 { 1143 struct adapter *adapter = iflib_get_softc(ctx); 1144 1145 if (adapter->hw.mac.type == e1000_pch2lan) 1146 e1000_resume_workarounds_pchlan(&adapter->hw); 1147 em_if_init(ctx); 1148 em_init_manageability(adapter); 1149 1150 return(0); 1151 } 1152 1153 static int 1154 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu) 1155 { 1156 int max_frame_size; 1157 struct adapter *adapter = iflib_get_softc(ctx); 1158 if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx); 1159 1160 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)"); 1161 1162 switch (adapter->hw.mac.type) { 1163 case e1000_82571: 1164 case e1000_82572: 1165 case e1000_ich9lan: 1166 case e1000_ich10lan: 1167 case e1000_pch2lan: 1168 case e1000_pch_lpt: 1169 case e1000_pch_spt: 1170 case e1000_pch_cnp: 1171 case e1000_82574: 1172 case e1000_82583: 1173 case e1000_80003es2lan: 1174 /* 9K Jumbo Frame size */ 1175 max_frame_size = 9234; 1176 break; 1177 case e1000_pchlan: 1178 max_frame_size = 4096; 1179 break; 1180 case e1000_82542: 1181 case e1000_ich8lan: 1182 /* Adapters that do not support jumbo frames */ 1183 max_frame_size = ETHER_MAX_LEN; 1184 break; 1185 default: 1186 if (adapter->hw.mac.type >= igb_mac_min) 1187 max_frame_size = 9234; 1188 else /* lem */ 1189 max_frame_size = MAX_JUMBO_FRAME_SIZE; 1190 } 1191 if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) { 1192 return (EINVAL); 1193 } 1194 1195 scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size = 1196 mtu + ETHER_HDR_LEN + ETHER_CRC_LEN; 1197 return (0); 1198 } 1199 1200 /********************************************************************* 1201 * Init entry point 1202 * 1203 * This routine is used in two ways. It is used by the stack as 1204 * init entry point in network interface structure. It is also used 1205 * by the driver as a hw/sw initialization routine to get to a 1206 * consistent state. 1207 * 1208 **********************************************************************/ 1209 static void 1210 em_if_init(if_ctx_t ctx) 1211 { 1212 struct adapter *adapter = iflib_get_softc(ctx); 1213 if_softc_ctx_t scctx = adapter->shared; 1214 struct ifnet *ifp = iflib_get_ifp(ctx); 1215 struct em_tx_queue *tx_que; 1216 int i; 1217 1218 INIT_DEBUGOUT("em_if_init: begin"); 1219 1220 /* Get the latest mac address, User can use a LAA */ 1221 bcopy(if_getlladdr(ifp), adapter->hw.mac.addr, 1222 ETHER_ADDR_LEN); 1223 1224 /* Put the address into the Receive Address Array */ 1225 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); 1226 1227 /* 1228 * With the 82571 adapter, RAR[0] may be overwritten 1229 * when the other port is reset, we make a duplicate 1230 * in RAR[14] for that eventuality, this assures 1231 * the interface continues to function. 1232 */ 1233 if (adapter->hw.mac.type == e1000_82571) { 1234 e1000_set_laa_state_82571(&adapter->hw, TRUE); 1235 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 1236 E1000_RAR_ENTRIES - 1); 1237 } 1238 1239 1240 /* Initialize the hardware */ 1241 em_reset(ctx); 1242 em_if_update_admin_status(ctx); 1243 1244 for (i = 0, tx_que = adapter->tx_queues; i < adapter->tx_num_queues; i++, tx_que++) { 1245 struct tx_ring *txr = &tx_que->txr; 1246 1247 txr->tx_rs_cidx = txr->tx_rs_pidx; 1248 1249 /* Initialize the last processed descriptor to be the end of 1250 * the ring, rather than the start, so that we avoid an 1251 * off-by-one error when calculating how many descriptors are 1252 * done in the credits_update function. 1253 */ 1254 txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1; 1255 } 1256 1257 /* Setup VLAN support, basic and offload if available */ 1258 E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN); 1259 1260 /* Clear bad data from Rx FIFOs */ 1261 if (adapter->hw.mac.type >= igb_mac_min) 1262 e1000_rx_fifo_flush_82575(&adapter->hw); 1263 1264 /* Configure for OS presence */ 1265 em_init_manageability(adapter); 1266 1267 /* Prepare transmit descriptors and buffers */ 1268 em_initialize_transmit_unit(ctx); 1269 1270 /* Setup Multicast table */ 1271 em_if_multi_set(ctx); 1272 1273 /* 1274 * Figure out the desired mbuf 1275 * pool for doing jumbos 1276 */ 1277 if (adapter->hw.mac.max_frame_size <= 2048) 1278 adapter->rx_mbuf_sz = MCLBYTES; 1279 else 1280 adapter->rx_mbuf_sz = MJUMPAGESIZE; 1281 em_initialize_receive_unit(ctx); 1282 1283 /* Use real VLAN Filter support? */ 1284 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) { 1285 if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) 1286 /* Use real VLAN Filter support */ 1287 em_setup_vlan_hw_support(adapter); 1288 else { 1289 u32 ctrl; 1290 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL); 1291 ctrl |= E1000_CTRL_VME; 1292 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl); 1293 } 1294 } 1295 1296 /* Don't lose promiscuous settings */ 1297 em_if_set_promisc(ctx, IFF_PROMISC); 1298 e1000_clear_hw_cntrs_base_generic(&adapter->hw); 1299 1300 /* MSI-X configuration for 82574 */ 1301 if (adapter->hw.mac.type == e1000_82574) { 1302 int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); 1303 1304 tmp |= E1000_CTRL_EXT_PBA_CLR; 1305 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp); 1306 /* Set the IVAR - interrupt vector routing. */ 1307 E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars); 1308 } else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */ 1309 igb_configure_queues(adapter); 1310 1311 /* this clears any pending interrupts */ 1312 E1000_READ_REG(&adapter->hw, E1000_ICR); 1313 E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC); 1314 1315 /* AMT based hardware can now take control from firmware */ 1316 if (adapter->has_manage && adapter->has_amt) 1317 em_get_hw_control(adapter); 1318 1319 /* Set Energy Efficient Ethernet */ 1320 if (adapter->hw.mac.type >= igb_mac_min && 1321 adapter->hw.phy.media_type == e1000_media_type_copper) { 1322 if (adapter->hw.mac.type == e1000_i354) 1323 e1000_set_eee_i354(&adapter->hw, TRUE, TRUE); 1324 else 1325 e1000_set_eee_i350(&adapter->hw, TRUE, TRUE); 1326 } 1327 } 1328 1329 /********************************************************************* 1330 * 1331 * Fast Legacy/MSI Combined Interrupt Service routine 1332 * 1333 *********************************************************************/ 1334 int 1335 em_intr(void *arg) 1336 { 1337 struct adapter *adapter = arg; 1338 if_ctx_t ctx = adapter->ctx; 1339 u32 reg_icr; 1340 1341 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR); 1342 1343 if (adapter->intr_type != IFLIB_INTR_LEGACY) 1344 goto skip_stray; 1345 /* Hot eject? */ 1346 if (reg_icr == 0xffffffff) 1347 return FILTER_STRAY; 1348 1349 /* Definitely not our interrupt. */ 1350 if (reg_icr == 0x0) 1351 return FILTER_STRAY; 1352 1353 /* 1354 * Starting with the 82571 chip, bit 31 should be used to 1355 * determine whether the interrupt belongs to us. 1356 */ 1357 if (adapter->hw.mac.type >= e1000_82571 && 1358 (reg_icr & E1000_ICR_INT_ASSERTED) == 0) 1359 return FILTER_STRAY; 1360 1361 skip_stray: 1362 /* Link status change */ 1363 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 1364 adapter->hw.mac.get_link_status = 1; 1365 iflib_admin_intr_deferred(ctx); 1366 } 1367 1368 if (reg_icr & E1000_ICR_RXO) 1369 adapter->rx_overruns++; 1370 1371 return (FILTER_SCHEDULE_THREAD); 1372 } 1373 1374 static void 1375 igb_rx_enable_queue(struct adapter *adapter, struct em_rx_queue *rxq) 1376 { 1377 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims); 1378 } 1379 1380 static void 1381 em_rx_enable_queue(struct adapter *adapter, struct em_rx_queue *rxq) 1382 { 1383 E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims); 1384 } 1385 1386 static void 1387 igb_tx_enable_queue(struct adapter *adapter, struct em_tx_queue *txq) 1388 { 1389 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txq->eims); 1390 } 1391 1392 static void 1393 em_tx_enable_queue(struct adapter *adapter, struct em_tx_queue *txq) 1394 { 1395 E1000_WRITE_REG(&adapter->hw, E1000_IMS, txq->eims); 1396 } 1397 1398 static int 1399 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid) 1400 { 1401 struct adapter *adapter = iflib_get_softc(ctx); 1402 struct em_rx_queue *rxq = &adapter->rx_queues[rxqid]; 1403 1404 if (adapter->hw.mac.type >= igb_mac_min) 1405 igb_rx_enable_queue(adapter, rxq); 1406 else 1407 em_rx_enable_queue(adapter, rxq); 1408 return (0); 1409 } 1410 1411 static int 1412 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid) 1413 { 1414 struct adapter *adapter = iflib_get_softc(ctx); 1415 struct em_tx_queue *txq = &adapter->tx_queues[txqid]; 1416 1417 if (adapter->hw.mac.type >= igb_mac_min) 1418 igb_tx_enable_queue(adapter, txq); 1419 else 1420 em_tx_enable_queue(adapter, txq); 1421 return (0); 1422 } 1423 1424 /********************************************************************* 1425 * 1426 * MSI-X RX Interrupt Service routine 1427 * 1428 **********************************************************************/ 1429 static int 1430 em_msix_que(void *arg) 1431 { 1432 struct em_rx_queue *que = arg; 1433 1434 ++que->irqs; 1435 1436 return (FILTER_SCHEDULE_THREAD); 1437 } 1438 1439 /********************************************************************* 1440 * 1441 * MSI-X Link Fast Interrupt Service routine 1442 * 1443 **********************************************************************/ 1444 static int 1445 em_msix_link(void *arg) 1446 { 1447 struct adapter *adapter = arg; 1448 u32 reg_icr; 1449 1450 ++adapter->link_irq; 1451 MPASS(adapter->hw.back != NULL); 1452 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR); 1453 1454 if (reg_icr & E1000_ICR_RXO) 1455 adapter->rx_overruns++; 1456 1457 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 1458 em_handle_link(adapter->ctx); 1459 } else { 1460 E1000_WRITE_REG(&adapter->hw, E1000_IMS, 1461 EM_MSIX_LINK | E1000_IMS_LSC); 1462 if (adapter->hw.mac.type >= igb_mac_min) 1463 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask); 1464 } 1465 1466 /* 1467 * Because we must read the ICR for this interrupt 1468 * it may clear other causes using autoclear, for 1469 * this reason we simply create a soft interrupt 1470 * for all these vectors. 1471 */ 1472 if (reg_icr && adapter->hw.mac.type < igb_mac_min) { 1473 E1000_WRITE_REG(&adapter->hw, 1474 E1000_ICS, adapter->ims); 1475 } 1476 1477 return (FILTER_HANDLED); 1478 } 1479 1480 static void 1481 em_handle_link(void *context) 1482 { 1483 if_ctx_t ctx = context; 1484 struct adapter *adapter = iflib_get_softc(ctx); 1485 1486 adapter->hw.mac.get_link_status = 1; 1487 iflib_admin_intr_deferred(ctx); 1488 } 1489 1490 1491 /********************************************************************* 1492 * 1493 * Media Ioctl callback 1494 * 1495 * This routine is called whenever the user queries the status of 1496 * the interface using ifconfig. 1497 * 1498 **********************************************************************/ 1499 static void 1500 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr) 1501 { 1502 struct adapter *adapter = iflib_get_softc(ctx); 1503 u_char fiber_type = IFM_1000_SX; 1504 1505 INIT_DEBUGOUT("em_if_media_status: begin"); 1506 1507 iflib_admin_intr_deferred(ctx); 1508 1509 ifmr->ifm_status = IFM_AVALID; 1510 ifmr->ifm_active = IFM_ETHER; 1511 1512 if (!adapter->link_active) { 1513 return; 1514 } 1515 1516 ifmr->ifm_status |= IFM_ACTIVE; 1517 1518 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || 1519 (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) { 1520 if (adapter->hw.mac.type == e1000_82545) 1521 fiber_type = IFM_1000_LX; 1522 ifmr->ifm_active |= fiber_type | IFM_FDX; 1523 } else { 1524 switch (adapter->link_speed) { 1525 case 10: 1526 ifmr->ifm_active |= IFM_10_T; 1527 break; 1528 case 100: 1529 ifmr->ifm_active |= IFM_100_TX; 1530 break; 1531 case 1000: 1532 ifmr->ifm_active |= IFM_1000_T; 1533 break; 1534 } 1535 if (adapter->link_duplex == FULL_DUPLEX) 1536 ifmr->ifm_active |= IFM_FDX; 1537 else 1538 ifmr->ifm_active |= IFM_HDX; 1539 } 1540 } 1541 1542 /********************************************************************* 1543 * 1544 * Media Ioctl callback 1545 * 1546 * This routine is called when the user changes speed/duplex using 1547 * media/mediopt option with ifconfig. 1548 * 1549 **********************************************************************/ 1550 static int 1551 em_if_media_change(if_ctx_t ctx) 1552 { 1553 struct adapter *adapter = iflib_get_softc(ctx); 1554 struct ifmedia *ifm = iflib_get_media(ctx); 1555 1556 INIT_DEBUGOUT("em_if_media_change: begin"); 1557 1558 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 1559 return (EINVAL); 1560 1561 switch (IFM_SUBTYPE(ifm->ifm_media)) { 1562 case IFM_AUTO: 1563 adapter->hw.mac.autoneg = DO_AUTO_NEG; 1564 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; 1565 break; 1566 case IFM_1000_LX: 1567 case IFM_1000_SX: 1568 case IFM_1000_T: 1569 adapter->hw.mac.autoneg = DO_AUTO_NEG; 1570 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 1571 break; 1572 case IFM_100_TX: 1573 adapter->hw.mac.autoneg = FALSE; 1574 adapter->hw.phy.autoneg_advertised = 0; 1575 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) 1576 adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL; 1577 else 1578 adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF; 1579 break; 1580 case IFM_10_T: 1581 adapter->hw.mac.autoneg = FALSE; 1582 adapter->hw.phy.autoneg_advertised = 0; 1583 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) 1584 adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL; 1585 else 1586 adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF; 1587 break; 1588 default: 1589 device_printf(adapter->dev, "Unsupported media type\n"); 1590 } 1591 1592 em_if_init(ctx); 1593 1594 return (0); 1595 } 1596 1597 static int 1598 em_if_set_promisc(if_ctx_t ctx, int flags) 1599 { 1600 struct adapter *adapter = iflib_get_softc(ctx); 1601 u32 reg_rctl; 1602 1603 em_disable_promisc(ctx); 1604 1605 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1606 1607 if (flags & IFF_PROMISC) { 1608 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 1609 /* Turn this on if you want to see bad packets */ 1610 if (em_debug_sbp) 1611 reg_rctl |= E1000_RCTL_SBP; 1612 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1613 } else if (flags & IFF_ALLMULTI) { 1614 reg_rctl |= E1000_RCTL_MPE; 1615 reg_rctl &= ~E1000_RCTL_UPE; 1616 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1617 } 1618 return (0); 1619 } 1620 1621 static void 1622 em_disable_promisc(if_ctx_t ctx) 1623 { 1624 struct adapter *adapter = iflib_get_softc(ctx); 1625 struct ifnet *ifp = iflib_get_ifp(ctx); 1626 u32 reg_rctl; 1627 int mcnt = 0; 1628 1629 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1630 reg_rctl &= (~E1000_RCTL_UPE); 1631 if (if_getflags(ifp) & IFF_ALLMULTI) 1632 mcnt = MAX_NUM_MULTICAST_ADDRESSES; 1633 else 1634 mcnt = if_multiaddr_count(ifp, MAX_NUM_MULTICAST_ADDRESSES); 1635 /* Don't disable if in MAX groups */ 1636 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES) 1637 reg_rctl &= (~E1000_RCTL_MPE); 1638 reg_rctl &= (~E1000_RCTL_SBP); 1639 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1640 } 1641 1642 1643 /********************************************************************* 1644 * Multicast Update 1645 * 1646 * This routine is called whenever multicast address list is updated. 1647 * 1648 **********************************************************************/ 1649 1650 static void 1651 em_if_multi_set(if_ctx_t ctx) 1652 { 1653 struct adapter *adapter = iflib_get_softc(ctx); 1654 struct ifnet *ifp = iflib_get_ifp(ctx); 1655 u32 reg_rctl = 0; 1656 u8 *mta; /* Multicast array memory */ 1657 int mcnt = 0; 1658 1659 IOCTL_DEBUGOUT("em_set_multi: begin"); 1660 1661 mta = adapter->mta; 1662 bzero(mta, sizeof(u8) * ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES); 1663 1664 if (adapter->hw.mac.type == e1000_82542 && 1665 adapter->hw.revision_id == E1000_REVISION_2) { 1666 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1667 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) 1668 e1000_pci_clear_mwi(&adapter->hw); 1669 reg_rctl |= E1000_RCTL_RST; 1670 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1671 msec_delay(5); 1672 } 1673 1674 if_multiaddr_array(ifp, mta, &mcnt, MAX_NUM_MULTICAST_ADDRESSES); 1675 1676 if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) { 1677 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1678 reg_rctl |= E1000_RCTL_MPE; 1679 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1680 } else 1681 e1000_update_mc_addr_list(&adapter->hw, mta, mcnt); 1682 1683 if (adapter->hw.mac.type == e1000_82542 && 1684 adapter->hw.revision_id == E1000_REVISION_2) { 1685 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 1686 reg_rctl &= ~E1000_RCTL_RST; 1687 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); 1688 msec_delay(5); 1689 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) 1690 e1000_pci_set_mwi(&adapter->hw); 1691 } 1692 } 1693 1694 /********************************************************************* 1695 * Timer routine 1696 * 1697 * This routine schedules em_if_update_admin_status() to check for 1698 * link status and to gather statistics as well as to perform some 1699 * controller-specific hardware patting. 1700 * 1701 **********************************************************************/ 1702 static void 1703 em_if_timer(if_ctx_t ctx, uint16_t qid) 1704 { 1705 1706 if (qid != 0) 1707 return; 1708 1709 iflib_admin_intr_deferred(ctx); 1710 } 1711 1712 static void 1713 em_if_update_admin_status(if_ctx_t ctx) 1714 { 1715 struct adapter *adapter = iflib_get_softc(ctx); 1716 struct e1000_hw *hw = &adapter->hw; 1717 device_t dev = iflib_get_dev(ctx); 1718 u32 link_check, thstat, ctrl; 1719 1720 link_check = thstat = ctrl = 0; 1721 /* Get the cached link value or read phy for real */ 1722 switch (hw->phy.media_type) { 1723 case e1000_media_type_copper: 1724 if (hw->mac.get_link_status) { 1725 if (hw->mac.type == e1000_pch_spt) 1726 msec_delay(50); 1727 /* Do the work to read phy */ 1728 e1000_check_for_link(hw); 1729 link_check = !hw->mac.get_link_status; 1730 if (link_check) /* ESB2 fix */ 1731 e1000_cfg_on_link_up(hw); 1732 } else { 1733 link_check = TRUE; 1734 } 1735 break; 1736 case e1000_media_type_fiber: 1737 e1000_check_for_link(hw); 1738 link_check = (E1000_READ_REG(hw, E1000_STATUS) & 1739 E1000_STATUS_LU); 1740 break; 1741 case e1000_media_type_internal_serdes: 1742 e1000_check_for_link(hw); 1743 link_check = adapter->hw.mac.serdes_has_link; 1744 break; 1745 /* VF device is type_unknown */ 1746 case e1000_media_type_unknown: 1747 e1000_check_for_link(hw); 1748 link_check = !hw->mac.get_link_status; 1749 /* FALLTHROUGH */ 1750 default: 1751 break; 1752 } 1753 1754 /* Check for thermal downshift or shutdown */ 1755 if (hw->mac.type == e1000_i350) { 1756 thstat = E1000_READ_REG(hw, E1000_THSTAT); 1757 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT); 1758 } 1759 1760 /* Now check for a transition */ 1761 if (link_check && (adapter->link_active == 0)) { 1762 e1000_get_speed_and_duplex(hw, &adapter->link_speed, 1763 &adapter->link_duplex); 1764 /* Check if we must disable SPEED_MODE bit on PCI-E */ 1765 if ((adapter->link_speed != SPEED_1000) && 1766 ((hw->mac.type == e1000_82571) || 1767 (hw->mac.type == e1000_82572))) { 1768 int tarc0; 1769 tarc0 = E1000_READ_REG(hw, E1000_TARC(0)); 1770 tarc0 &= ~TARC_SPEED_MODE_BIT; 1771 E1000_WRITE_REG(hw, E1000_TARC(0), tarc0); 1772 } 1773 if (bootverbose) 1774 device_printf(dev, "Link is up %d Mbps %s\n", 1775 adapter->link_speed, 1776 ((adapter->link_duplex == FULL_DUPLEX) ? 1777 "Full Duplex" : "Half Duplex")); 1778 adapter->link_active = 1; 1779 adapter->smartspeed = 0; 1780 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) == 1781 E1000_CTRL_EXT_LINK_MODE_GMII && 1782 (thstat & E1000_THSTAT_LINK_THROTTLE)) 1783 device_printf(dev, "Link: thermal downshift\n"); 1784 /* Delay Link Up for Phy update */ 1785 if (((hw->mac.type == e1000_i210) || 1786 (hw->mac.type == e1000_i211)) && 1787 (hw->phy.id == I210_I_PHY_ID)) 1788 msec_delay(I210_LINK_DELAY); 1789 /* Reset if the media type changed. */ 1790 if ((hw->dev_spec._82575.media_changed) && 1791 (adapter->hw.mac.type >= igb_mac_min)) { 1792 hw->dev_spec._82575.media_changed = false; 1793 adapter->flags |= IGB_MEDIA_RESET; 1794 em_reset(ctx); 1795 } 1796 iflib_link_state_change(ctx, LINK_STATE_UP, 1797 IF_Mbps(adapter->link_speed)); 1798 } else if (!link_check && (adapter->link_active == 1)) { 1799 adapter->link_speed = 0; 1800 adapter->link_duplex = 0; 1801 adapter->link_active = 0; 1802 iflib_link_state_change(ctx, LINK_STATE_DOWN, 0); 1803 } 1804 em_update_stats_counters(adapter); 1805 1806 /* Reset LAA into RAR[0] on 82571 */ 1807 if ((adapter->hw.mac.type == e1000_82571) && 1808 e1000_get_laa_state_82571(&adapter->hw)) 1809 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); 1810 1811 if (adapter->hw.mac.type < em_mac_min) 1812 lem_smartspeed(adapter); 1813 1814 E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK | E1000_IMS_LSC); 1815 } 1816 1817 static void 1818 em_if_watchdog_reset(if_ctx_t ctx) 1819 { 1820 struct adapter *adapter = iflib_get_softc(ctx); 1821 1822 /* 1823 * Just count the event; iflib(4) will already trigger a 1824 * sufficient reset of the controller. 1825 */ 1826 adapter->watchdog_events++; 1827 } 1828 1829 /********************************************************************* 1830 * 1831 * This routine disables all traffic on the adapter by issuing a 1832 * global reset on the MAC. 1833 * 1834 **********************************************************************/ 1835 static void 1836 em_if_stop(if_ctx_t ctx) 1837 { 1838 struct adapter *adapter = iflib_get_softc(ctx); 1839 1840 INIT_DEBUGOUT("em_if_stop: begin"); 1841 1842 e1000_reset_hw(&adapter->hw); 1843 if (adapter->hw.mac.type >= e1000_82544) 1844 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0); 1845 1846 e1000_led_off(&adapter->hw); 1847 e1000_cleanup_led(&adapter->hw); 1848 } 1849 1850 /********************************************************************* 1851 * 1852 * Determine hardware revision. 1853 * 1854 **********************************************************************/ 1855 static void 1856 em_identify_hardware(if_ctx_t ctx) 1857 { 1858 device_t dev = iflib_get_dev(ctx); 1859 struct adapter *adapter = iflib_get_softc(ctx); 1860 1861 /* Make sure our PCI config space has the necessary stuff set */ 1862 adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2); 1863 1864 /* Save off the information about this board */ 1865 adapter->hw.vendor_id = pci_get_vendor(dev); 1866 adapter->hw.device_id = pci_get_device(dev); 1867 adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1); 1868 adapter->hw.subsystem_vendor_id = 1869 pci_read_config(dev, PCIR_SUBVEND_0, 2); 1870 adapter->hw.subsystem_device_id = 1871 pci_read_config(dev, PCIR_SUBDEV_0, 2); 1872 1873 /* Do Shared Code Init and Setup */ 1874 if (e1000_set_mac_type(&adapter->hw)) { 1875 device_printf(dev, "Setup init failure\n"); 1876 return; 1877 } 1878 } 1879 1880 static int 1881 em_allocate_pci_resources(if_ctx_t ctx) 1882 { 1883 struct adapter *adapter = iflib_get_softc(ctx); 1884 device_t dev = iflib_get_dev(ctx); 1885 int rid, val; 1886 1887 rid = PCIR_BAR(0); 1888 adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 1889 &rid, RF_ACTIVE); 1890 if (adapter->memory == NULL) { 1891 device_printf(dev, "Unable to allocate bus resource: memory\n"); 1892 return (ENXIO); 1893 } 1894 adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->memory); 1895 adapter->osdep.mem_bus_space_handle = 1896 rman_get_bushandle(adapter->memory); 1897 adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle; 1898 1899 /* Only older adapters use IO mapping */ 1900 if (adapter->hw.mac.type < em_mac_min && 1901 adapter->hw.mac.type > e1000_82543) { 1902 /* Figure our where our IO BAR is ? */ 1903 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) { 1904 val = pci_read_config(dev, rid, 4); 1905 if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) { 1906 break; 1907 } 1908 rid += 4; 1909 /* check for 64bit BAR */ 1910 if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT) 1911 rid += 4; 1912 } 1913 if (rid >= PCIR_CIS) { 1914 device_printf(dev, "Unable to locate IO BAR\n"); 1915 return (ENXIO); 1916 } 1917 adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT, 1918 &rid, RF_ACTIVE); 1919 if (adapter->ioport == NULL) { 1920 device_printf(dev, "Unable to allocate bus resource: " 1921 "ioport\n"); 1922 return (ENXIO); 1923 } 1924 adapter->hw.io_base = 0; 1925 adapter->osdep.io_bus_space_tag = 1926 rman_get_bustag(adapter->ioport); 1927 adapter->osdep.io_bus_space_handle = 1928 rman_get_bushandle(adapter->ioport); 1929 } 1930 1931 adapter->hw.back = &adapter->osdep; 1932 1933 return (0); 1934 } 1935 1936 /********************************************************************* 1937 * 1938 * Set up the MSI-X Interrupt handlers 1939 * 1940 **********************************************************************/ 1941 static int 1942 em_if_msix_intr_assign(if_ctx_t ctx, int msix) 1943 { 1944 struct adapter *adapter = iflib_get_softc(ctx); 1945 struct em_rx_queue *rx_que = adapter->rx_queues; 1946 struct em_tx_queue *tx_que = adapter->tx_queues; 1947 int error, rid, i, vector = 0, rx_vectors; 1948 char buf[16]; 1949 1950 /* First set up ring resources */ 1951 for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) { 1952 rid = vector + 1; 1953 snprintf(buf, sizeof(buf), "rxq%d", i); 1954 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf); 1955 if (error) { 1956 device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error); 1957 adapter->rx_num_queues = i + 1; 1958 goto fail; 1959 } 1960 1961 rx_que->msix = vector; 1962 1963 /* 1964 * Set the bit to enable interrupt 1965 * in E1000_IMS -- bits 20 and 21 1966 * are for RX0 and RX1, note this has 1967 * NOTHING to do with the MSI-X vector 1968 */ 1969 if (adapter->hw.mac.type == e1000_82574) { 1970 rx_que->eims = 1 << (20 + i); 1971 adapter->ims |= rx_que->eims; 1972 adapter->ivars |= (8 | rx_que->msix) << (i * 4); 1973 } else if (adapter->hw.mac.type == e1000_82575) 1974 rx_que->eims = E1000_EICR_TX_QUEUE0 << vector; 1975 else 1976 rx_que->eims = 1 << vector; 1977 } 1978 rx_vectors = vector; 1979 1980 vector = 0; 1981 for (i = 0; i < adapter->tx_num_queues; i++, tx_que++, vector++) { 1982 snprintf(buf, sizeof(buf), "txq%d", i); 1983 tx_que = &adapter->tx_queues[i]; 1984 iflib_softirq_alloc_generic(ctx, 1985 &adapter->rx_queues[i % adapter->rx_num_queues].que_irq, 1986 IFLIB_INTR_TX, tx_que, tx_que->me, buf); 1987 1988 tx_que->msix = (vector % adapter->rx_num_queues); 1989 1990 /* 1991 * Set the bit to enable interrupt 1992 * in E1000_IMS -- bits 22 and 23 1993 * are for TX0 and TX1, note this has 1994 * NOTHING to do with the MSI-X vector 1995 */ 1996 if (adapter->hw.mac.type == e1000_82574) { 1997 tx_que->eims = 1 << (22 + i); 1998 adapter->ims |= tx_que->eims; 1999 adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4)); 2000 } else if (adapter->hw.mac.type == e1000_82575) { 2001 tx_que->eims = E1000_EICR_TX_QUEUE0 << i; 2002 } else { 2003 tx_que->eims = 1 << i; 2004 } 2005 } 2006 2007 /* Link interrupt */ 2008 rid = rx_vectors + 1; 2009 error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq"); 2010 2011 if (error) { 2012 device_printf(iflib_get_dev(ctx), "Failed to register admin handler"); 2013 goto fail; 2014 } 2015 adapter->linkvec = rx_vectors; 2016 if (adapter->hw.mac.type < igb_mac_min) { 2017 adapter->ivars |= (8 | rx_vectors) << 16; 2018 adapter->ivars |= 0x80000000; 2019 } 2020 return (0); 2021 fail: 2022 iflib_irq_free(ctx, &adapter->irq); 2023 rx_que = adapter->rx_queues; 2024 for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++) 2025 iflib_irq_free(ctx, &rx_que->que_irq); 2026 return (error); 2027 } 2028 2029 static void 2030 igb_configure_queues(struct adapter *adapter) 2031 { 2032 struct e1000_hw *hw = &adapter->hw; 2033 struct em_rx_queue *rx_que; 2034 struct em_tx_queue *tx_que; 2035 u32 tmp, ivar = 0, newitr = 0; 2036 2037 /* First turn on RSS capability */ 2038 if (adapter->hw.mac.type != e1000_82575) 2039 E1000_WRITE_REG(hw, E1000_GPIE, 2040 E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME | 2041 E1000_GPIE_PBA | E1000_GPIE_NSICR); 2042 2043 /* Turn on MSI-X */ 2044 switch (adapter->hw.mac.type) { 2045 case e1000_82580: 2046 case e1000_i350: 2047 case e1000_i354: 2048 case e1000_i210: 2049 case e1000_i211: 2050 case e1000_vfadapt: 2051 case e1000_vfadapt_i350: 2052 /* RX entries */ 2053 for (int i = 0; i < adapter->rx_num_queues; i++) { 2054 u32 index = i >> 1; 2055 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2056 rx_que = &adapter->rx_queues[i]; 2057 if (i & 1) { 2058 ivar &= 0xFF00FFFF; 2059 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16; 2060 } else { 2061 ivar &= 0xFFFFFF00; 2062 ivar |= rx_que->msix | E1000_IVAR_VALID; 2063 } 2064 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2065 } 2066 /* TX entries */ 2067 for (int i = 0; i < adapter->tx_num_queues; i++) { 2068 u32 index = i >> 1; 2069 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2070 tx_que = &adapter->tx_queues[i]; 2071 if (i & 1) { 2072 ivar &= 0x00FFFFFF; 2073 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24; 2074 } else { 2075 ivar &= 0xFFFF00FF; 2076 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8; 2077 } 2078 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2079 adapter->que_mask |= tx_que->eims; 2080 } 2081 2082 /* And for the link interrupt */ 2083 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8; 2084 adapter->link_mask = 1 << adapter->linkvec; 2085 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); 2086 break; 2087 case e1000_82576: 2088 /* RX entries */ 2089 for (int i = 0; i < adapter->rx_num_queues; i++) { 2090 u32 index = i & 0x7; /* Each IVAR has two entries */ 2091 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2092 rx_que = &adapter->rx_queues[i]; 2093 if (i < 8) { 2094 ivar &= 0xFFFFFF00; 2095 ivar |= rx_que->msix | E1000_IVAR_VALID; 2096 } else { 2097 ivar &= 0xFF00FFFF; 2098 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16; 2099 } 2100 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2101 adapter->que_mask |= rx_que->eims; 2102 } 2103 /* TX entries */ 2104 for (int i = 0; i < adapter->tx_num_queues; i++) { 2105 u32 index = i & 0x7; /* Each IVAR has two entries */ 2106 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); 2107 tx_que = &adapter->tx_queues[i]; 2108 if (i < 8) { 2109 ivar &= 0xFFFF00FF; 2110 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8; 2111 } else { 2112 ivar &= 0x00FFFFFF; 2113 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24; 2114 } 2115 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); 2116 adapter->que_mask |= tx_que->eims; 2117 } 2118 2119 /* And for the link interrupt */ 2120 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8; 2121 adapter->link_mask = 1 << adapter->linkvec; 2122 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); 2123 break; 2124 2125 case e1000_82575: 2126 /* enable MSI-X support*/ 2127 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT); 2128 tmp |= E1000_CTRL_EXT_PBA_CLR; 2129 /* Auto-Mask interrupts upon ICR read. */ 2130 tmp |= E1000_CTRL_EXT_EIAME; 2131 tmp |= E1000_CTRL_EXT_IRCA; 2132 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp); 2133 2134 /* Queues */ 2135 for (int i = 0; i < adapter->rx_num_queues; i++) { 2136 rx_que = &adapter->rx_queues[i]; 2137 tmp = E1000_EICR_RX_QUEUE0 << i; 2138 tmp |= E1000_EICR_TX_QUEUE0 << i; 2139 rx_que->eims = tmp; 2140 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 2141 i, rx_que->eims); 2142 adapter->que_mask |= rx_que->eims; 2143 } 2144 2145 /* Link */ 2146 E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec), 2147 E1000_EIMS_OTHER); 2148 adapter->link_mask |= E1000_EIMS_OTHER; 2149 default: 2150 break; 2151 } 2152 2153 /* Set the starting interrupt rate */ 2154 if (em_max_interrupt_rate > 0) 2155 newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC; 2156 2157 if (hw->mac.type == e1000_82575) 2158 newitr |= newitr << 16; 2159 else 2160 newitr |= E1000_EITR_CNT_IGNR; 2161 2162 for (int i = 0; i < adapter->rx_num_queues; i++) { 2163 rx_que = &adapter->rx_queues[i]; 2164 E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr); 2165 } 2166 2167 return; 2168 } 2169 2170 static void 2171 em_free_pci_resources(if_ctx_t ctx) 2172 { 2173 struct adapter *adapter = iflib_get_softc(ctx); 2174 struct em_rx_queue *que = adapter->rx_queues; 2175 device_t dev = iflib_get_dev(ctx); 2176 2177 /* Release all MSI-X queue resources */ 2178 if (adapter->intr_type == IFLIB_INTR_MSIX) 2179 iflib_irq_free(ctx, &adapter->irq); 2180 2181 for (int i = 0; i < adapter->rx_num_queues; i++, que++) { 2182 iflib_irq_free(ctx, &que->que_irq); 2183 } 2184 2185 if (adapter->memory != NULL) { 2186 bus_release_resource(dev, SYS_RES_MEMORY, 2187 rman_get_rid(adapter->memory), adapter->memory); 2188 adapter->memory = NULL; 2189 } 2190 2191 if (adapter->flash != NULL) { 2192 bus_release_resource(dev, SYS_RES_MEMORY, 2193 rman_get_rid(adapter->flash), adapter->flash); 2194 adapter->flash = NULL; 2195 } 2196 2197 if (adapter->ioport != NULL) { 2198 bus_release_resource(dev, SYS_RES_IOPORT, 2199 rman_get_rid(adapter->ioport), adapter->ioport); 2200 adapter->ioport = NULL; 2201 } 2202 } 2203 2204 /* Set up MSI or MSI-X */ 2205 static int 2206 em_setup_msix(if_ctx_t ctx) 2207 { 2208 struct adapter *adapter = iflib_get_softc(ctx); 2209 2210 if (adapter->hw.mac.type == e1000_82574) { 2211 em_enable_vectors_82574(ctx); 2212 } 2213 return (0); 2214 } 2215 2216 /********************************************************************* 2217 * 2218 * Workaround for SmartSpeed on 82541 and 82547 controllers 2219 * 2220 **********************************************************************/ 2221 static void 2222 lem_smartspeed(struct adapter *adapter) 2223 { 2224 u16 phy_tmp; 2225 2226 if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) || 2227 adapter->hw.mac.autoneg == 0 || 2228 (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0) 2229 return; 2230 2231 if (adapter->smartspeed == 0) { 2232 /* If Master/Slave config fault is asserted twice, 2233 * we assume back-to-back */ 2234 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp); 2235 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT)) 2236 return; 2237 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp); 2238 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) { 2239 e1000_read_phy_reg(&adapter->hw, 2240 PHY_1000T_CTRL, &phy_tmp); 2241 if(phy_tmp & CR_1000T_MS_ENABLE) { 2242 phy_tmp &= ~CR_1000T_MS_ENABLE; 2243 e1000_write_phy_reg(&adapter->hw, 2244 PHY_1000T_CTRL, phy_tmp); 2245 adapter->smartspeed++; 2246 if(adapter->hw.mac.autoneg && 2247 !e1000_copper_link_autoneg(&adapter->hw) && 2248 !e1000_read_phy_reg(&adapter->hw, 2249 PHY_CONTROL, &phy_tmp)) { 2250 phy_tmp |= (MII_CR_AUTO_NEG_EN | 2251 MII_CR_RESTART_AUTO_NEG); 2252 e1000_write_phy_reg(&adapter->hw, 2253 PHY_CONTROL, phy_tmp); 2254 } 2255 } 2256 } 2257 return; 2258 } else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) { 2259 /* If still no link, perhaps using 2/3 pair cable */ 2260 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp); 2261 phy_tmp |= CR_1000T_MS_ENABLE; 2262 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp); 2263 if(adapter->hw.mac.autoneg && 2264 !e1000_copper_link_autoneg(&adapter->hw) && 2265 !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) { 2266 phy_tmp |= (MII_CR_AUTO_NEG_EN | 2267 MII_CR_RESTART_AUTO_NEG); 2268 e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp); 2269 } 2270 } 2271 /* Restart process after EM_SMARTSPEED_MAX iterations */ 2272 if(adapter->smartspeed++ == EM_SMARTSPEED_MAX) 2273 adapter->smartspeed = 0; 2274 } 2275 2276 /********************************************************************* 2277 * 2278 * Initialize the DMA Coalescing feature 2279 * 2280 **********************************************************************/ 2281 static void 2282 igb_init_dmac(struct adapter *adapter, u32 pba) 2283 { 2284 device_t dev = adapter->dev; 2285 struct e1000_hw *hw = &adapter->hw; 2286 u32 dmac, reg = ~E1000_DMACR_DMAC_EN; 2287 u16 hwm; 2288 u16 max_frame_size; 2289 2290 if (hw->mac.type == e1000_i211) 2291 return; 2292 2293 max_frame_size = adapter->shared->isc_max_frame_size; 2294 if (hw->mac.type > e1000_82580) { 2295 2296 if (adapter->dmac == 0) { /* Disabling it */ 2297 E1000_WRITE_REG(hw, E1000_DMACR, reg); 2298 return; 2299 } else 2300 device_printf(dev, "DMA Coalescing enabled\n"); 2301 2302 /* Set starting threshold */ 2303 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0); 2304 2305 hwm = 64 * pba - max_frame_size / 16; 2306 if (hwm < 64 * (pba - 6)) 2307 hwm = 64 * (pba - 6); 2308 reg = E1000_READ_REG(hw, E1000_FCRTC); 2309 reg &= ~E1000_FCRTC_RTH_COAL_MASK; 2310 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) 2311 & E1000_FCRTC_RTH_COAL_MASK); 2312 E1000_WRITE_REG(hw, E1000_FCRTC, reg); 2313 2314 2315 dmac = pba - max_frame_size / 512; 2316 if (dmac < pba - 10) 2317 dmac = pba - 10; 2318 reg = E1000_READ_REG(hw, E1000_DMACR); 2319 reg &= ~E1000_DMACR_DMACTHR_MASK; 2320 reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT) 2321 & E1000_DMACR_DMACTHR_MASK); 2322 2323 /* transition to L0x or L1 if available..*/ 2324 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); 2325 2326 /* Check if status is 2.5Gb backplane connection 2327 * before configuration of watchdog timer, which is 2328 * in msec values in 12.8usec intervals 2329 * watchdog timer= msec values in 32usec intervals 2330 * for non 2.5Gb connection 2331 */ 2332 if (hw->mac.type == e1000_i354) { 2333 int status = E1000_READ_REG(hw, E1000_STATUS); 2334 if ((status & E1000_STATUS_2P5_SKU) && 2335 (!(status & E1000_STATUS_2P5_SKU_OVER))) 2336 reg |= ((adapter->dmac * 5) >> 6); 2337 else 2338 reg |= (adapter->dmac >> 5); 2339 } else { 2340 reg |= (adapter->dmac >> 5); 2341 } 2342 2343 E1000_WRITE_REG(hw, E1000_DMACR, reg); 2344 2345 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0); 2346 2347 /* Set the interval before transition */ 2348 reg = E1000_READ_REG(hw, E1000_DMCTLX); 2349 if (hw->mac.type == e1000_i350) 2350 reg |= IGB_DMCTLX_DCFLUSH_DIS; 2351 /* 2352 ** in 2.5Gb connection, TTLX unit is 0.4 usec 2353 ** which is 0x4*2 = 0xA. But delay is still 4 usec 2354 */ 2355 if (hw->mac.type == e1000_i354) { 2356 int status = E1000_READ_REG(hw, E1000_STATUS); 2357 if ((status & E1000_STATUS_2P5_SKU) && 2358 (!(status & E1000_STATUS_2P5_SKU_OVER))) 2359 reg |= 0xA; 2360 else 2361 reg |= 0x4; 2362 } else { 2363 reg |= 0x4; 2364 } 2365 2366 E1000_WRITE_REG(hw, E1000_DMCTLX, reg); 2367 2368 /* free space in tx packet buffer to wake from DMA coal */ 2369 E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE - 2370 (2 * max_frame_size)) >> 6); 2371 2372 /* make low power state decision controlled by DMA coal */ 2373 reg = E1000_READ_REG(hw, E1000_PCIEMISC); 2374 reg &= ~E1000_PCIEMISC_LX_DECISION; 2375 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg); 2376 2377 } else if (hw->mac.type == e1000_82580) { 2378 u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC); 2379 E1000_WRITE_REG(hw, E1000_PCIEMISC, 2380 reg & ~E1000_PCIEMISC_LX_DECISION); 2381 E1000_WRITE_REG(hw, E1000_DMACR, 0); 2382 } 2383 } 2384 2385 /********************************************************************* 2386 * 2387 * Initialize the hardware to a configuration as specified by the 2388 * adapter structure. 2389 * 2390 **********************************************************************/ 2391 static void 2392 em_reset(if_ctx_t ctx) 2393 { 2394 device_t dev = iflib_get_dev(ctx); 2395 struct adapter *adapter = iflib_get_softc(ctx); 2396 struct ifnet *ifp = iflib_get_ifp(ctx); 2397 struct e1000_hw *hw = &adapter->hw; 2398 u16 rx_buffer_size; 2399 u32 pba; 2400 2401 INIT_DEBUGOUT("em_reset: begin"); 2402 /* Let the firmware know the OS is in control */ 2403 em_get_hw_control(adapter); 2404 2405 /* Set up smart power down as default off on newer adapters. */ 2406 if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 || 2407 hw->mac.type == e1000_82572)) { 2408 u16 phy_tmp = 0; 2409 2410 /* Speed up time to link by disabling smart power down. */ 2411 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp); 2412 phy_tmp &= ~IGP02E1000_PM_SPD; 2413 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp); 2414 } 2415 2416 /* 2417 * Packet Buffer Allocation (PBA) 2418 * Writing PBA sets the receive portion of the buffer 2419 * the remainder is used for the transmit buffer. 2420 */ 2421 switch (hw->mac.type) { 2422 /* Total Packet Buffer on these is 48K */ 2423 case e1000_82571: 2424 case e1000_82572: 2425 case e1000_80003es2lan: 2426 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */ 2427 break; 2428 case e1000_82573: /* 82573: Total Packet Buffer is 32K */ 2429 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */ 2430 break; 2431 case e1000_82574: 2432 case e1000_82583: 2433 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */ 2434 break; 2435 case e1000_ich8lan: 2436 pba = E1000_PBA_8K; 2437 break; 2438 case e1000_ich9lan: 2439 case e1000_ich10lan: 2440 /* Boost Receive side for jumbo frames */ 2441 if (adapter->hw.mac.max_frame_size > 4096) 2442 pba = E1000_PBA_14K; 2443 else 2444 pba = E1000_PBA_10K; 2445 break; 2446 case e1000_pchlan: 2447 case e1000_pch2lan: 2448 case e1000_pch_lpt: 2449 case e1000_pch_spt: 2450 case e1000_pch_cnp: 2451 pba = E1000_PBA_26K; 2452 break; 2453 case e1000_82575: 2454 pba = E1000_PBA_32K; 2455 break; 2456 case e1000_82576: 2457 case e1000_vfadapt: 2458 pba = E1000_READ_REG(hw, E1000_RXPBS); 2459 pba &= E1000_RXPBS_SIZE_MASK_82576; 2460 break; 2461 case e1000_82580: 2462 case e1000_i350: 2463 case e1000_i354: 2464 case e1000_vfadapt_i350: 2465 pba = E1000_READ_REG(hw, E1000_RXPBS); 2466 pba = e1000_rxpbs_adjust_82580(pba); 2467 break; 2468 case e1000_i210: 2469 case e1000_i211: 2470 pba = E1000_PBA_34K; 2471 break; 2472 default: 2473 if (adapter->hw.mac.max_frame_size > 8192) 2474 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */ 2475 else 2476 pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */ 2477 } 2478 2479 /* Special needs in case of Jumbo frames */ 2480 if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) { 2481 u32 tx_space, min_tx, min_rx; 2482 pba = E1000_READ_REG(hw, E1000_PBA); 2483 tx_space = pba >> 16; 2484 pba &= 0xffff; 2485 min_tx = (adapter->hw.mac.max_frame_size + 2486 sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2; 2487 min_tx = roundup2(min_tx, 1024); 2488 min_tx >>= 10; 2489 min_rx = adapter->hw.mac.max_frame_size; 2490 min_rx = roundup2(min_rx, 1024); 2491 min_rx >>= 10; 2492 if (tx_space < min_tx && 2493 ((min_tx - tx_space) < pba)) { 2494 pba = pba - (min_tx - tx_space); 2495 /* 2496 * if short on rx space, rx wins 2497 * and must trump tx adjustment 2498 */ 2499 if (pba < min_rx) 2500 pba = min_rx; 2501 } 2502 E1000_WRITE_REG(hw, E1000_PBA, pba); 2503 } 2504 2505 if (hw->mac.type < igb_mac_min) 2506 E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba); 2507 2508 INIT_DEBUGOUT1("em_reset: pba=%dK",pba); 2509 2510 /* 2511 * These parameters control the automatic generation (Tx) and 2512 * response (Rx) to Ethernet PAUSE frames. 2513 * - High water mark should allow for at least two frames to be 2514 * received after sending an XOFF. 2515 * - Low water mark works best when it is very near the high water mark. 2516 * This allows the receiver to restart by sending XON when it has 2517 * drained a bit. Here we use an arbitrary value of 1500 which will 2518 * restart after one full frame is pulled from the buffer. There 2519 * could be several smaller frames in the buffer and if so they will 2520 * not trigger the XON until their total number reduces the buffer 2521 * by 1500. 2522 * - The pause time is fairly large at 1000 x 512ns = 512 usec. 2523 */ 2524 rx_buffer_size = (pba & 0xffff) << 10; 2525 hw->fc.high_water = rx_buffer_size - 2526 roundup2(adapter->hw.mac.max_frame_size, 1024); 2527 hw->fc.low_water = hw->fc.high_water - 1500; 2528 2529 if (adapter->fc) /* locally set flow control value? */ 2530 hw->fc.requested_mode = adapter->fc; 2531 else 2532 hw->fc.requested_mode = e1000_fc_full; 2533 2534 if (hw->mac.type == e1000_80003es2lan) 2535 hw->fc.pause_time = 0xFFFF; 2536 else 2537 hw->fc.pause_time = EM_FC_PAUSE_TIME; 2538 2539 hw->fc.send_xon = TRUE; 2540 2541 /* Device specific overrides/settings */ 2542 switch (hw->mac.type) { 2543 case e1000_pchlan: 2544 /* Workaround: no TX flow ctrl for PCH */ 2545 hw->fc.requested_mode = e1000_fc_rx_pause; 2546 hw->fc.pause_time = 0xFFFF; /* override */ 2547 if (if_getmtu(ifp) > ETHERMTU) { 2548 hw->fc.high_water = 0x3500; 2549 hw->fc.low_water = 0x1500; 2550 } else { 2551 hw->fc.high_water = 0x5000; 2552 hw->fc.low_water = 0x3000; 2553 } 2554 hw->fc.refresh_time = 0x1000; 2555 break; 2556 case e1000_pch2lan: 2557 case e1000_pch_lpt: 2558 case e1000_pch_spt: 2559 case e1000_pch_cnp: 2560 hw->fc.high_water = 0x5C20; 2561 hw->fc.low_water = 0x5048; 2562 hw->fc.pause_time = 0x0650; 2563 hw->fc.refresh_time = 0x0400; 2564 /* Jumbos need adjusted PBA */ 2565 if (if_getmtu(ifp) > ETHERMTU) 2566 E1000_WRITE_REG(hw, E1000_PBA, 12); 2567 else 2568 E1000_WRITE_REG(hw, E1000_PBA, 26); 2569 break; 2570 case e1000_82575: 2571 case e1000_82576: 2572 /* 8-byte granularity */ 2573 hw->fc.low_water = hw->fc.high_water - 8; 2574 break; 2575 case e1000_82580: 2576 case e1000_i350: 2577 case e1000_i354: 2578 case e1000_i210: 2579 case e1000_i211: 2580 case e1000_vfadapt: 2581 case e1000_vfadapt_i350: 2582 /* 16-byte granularity */ 2583 hw->fc.low_water = hw->fc.high_water - 16; 2584 break; 2585 case e1000_ich9lan: 2586 case e1000_ich10lan: 2587 if (if_getmtu(ifp) > ETHERMTU) { 2588 hw->fc.high_water = 0x2800; 2589 hw->fc.low_water = hw->fc.high_water - 8; 2590 break; 2591 } 2592 /* FALLTHROUGH */ 2593 default: 2594 if (hw->mac.type == e1000_80003es2lan) 2595 hw->fc.pause_time = 0xFFFF; 2596 break; 2597 } 2598 2599 /* Issue a global reset */ 2600 e1000_reset_hw(hw); 2601 if (adapter->hw.mac.type >= igb_mac_min) { 2602 E1000_WRITE_REG(hw, E1000_WUC, 0); 2603 } else { 2604 E1000_WRITE_REG(hw, E1000_WUFC, 0); 2605 em_disable_aspm(adapter); 2606 } 2607 if (adapter->flags & IGB_MEDIA_RESET) { 2608 e1000_setup_init_funcs(hw, TRUE); 2609 e1000_get_bus_info(hw); 2610 adapter->flags &= ~IGB_MEDIA_RESET; 2611 } 2612 /* and a re-init */ 2613 if (e1000_init_hw(hw) < 0) { 2614 device_printf(dev, "Hardware Initialization Failed\n"); 2615 return; 2616 } 2617 if (adapter->hw.mac.type >= igb_mac_min) 2618 igb_init_dmac(adapter, pba); 2619 2620 E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN); 2621 e1000_get_phy_info(hw); 2622 e1000_check_for_link(hw); 2623 } 2624 2625 /* 2626 * Initialise the RSS mapping for NICs that support multiple transmit/ 2627 * receive rings. 2628 */ 2629 2630 #define RSSKEYLEN 10 2631 static void 2632 em_initialize_rss_mapping(struct adapter *adapter) 2633 { 2634 uint8_t rss_key[4 * RSSKEYLEN]; 2635 uint32_t reta = 0; 2636 struct e1000_hw *hw = &adapter->hw; 2637 int i; 2638 2639 /* 2640 * Configure RSS key 2641 */ 2642 arc4rand(rss_key, sizeof(rss_key), 0); 2643 for (i = 0; i < RSSKEYLEN; ++i) { 2644 uint32_t rssrk = 0; 2645 2646 rssrk = EM_RSSRK_VAL(rss_key, i); 2647 E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk); 2648 } 2649 2650 /* 2651 * Configure RSS redirect table in following fashion: 2652 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)] 2653 */ 2654 for (i = 0; i < sizeof(reta); ++i) { 2655 uint32_t q; 2656 2657 q = (i % adapter->rx_num_queues) << 7; 2658 reta |= q << (8 * i); 2659 } 2660 2661 for (i = 0; i < 32; ++i) 2662 E1000_WRITE_REG(hw, E1000_RETA(i), reta); 2663 2664 E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q | 2665 E1000_MRQC_RSS_FIELD_IPV4_TCP | 2666 E1000_MRQC_RSS_FIELD_IPV4 | 2667 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX | 2668 E1000_MRQC_RSS_FIELD_IPV6_EX | 2669 E1000_MRQC_RSS_FIELD_IPV6); 2670 } 2671 2672 static void 2673 igb_initialize_rss_mapping(struct adapter *adapter) 2674 { 2675 struct e1000_hw *hw = &adapter->hw; 2676 int i; 2677 int queue_id; 2678 u32 reta; 2679 u32 rss_key[10], mrqc, shift = 0; 2680 2681 /* XXX? */ 2682 if (adapter->hw.mac.type == e1000_82575) 2683 shift = 6; 2684 2685 /* 2686 * The redirection table controls which destination 2687 * queue each bucket redirects traffic to. 2688 * Each DWORD represents four queues, with the LSB 2689 * being the first queue in the DWORD. 2690 * 2691 * This just allocates buckets to queues using round-robin 2692 * allocation. 2693 * 2694 * NOTE: It Just Happens to line up with the default 2695 * RSS allocation method. 2696 */ 2697 2698 /* Warning FM follows */ 2699 reta = 0; 2700 for (i = 0; i < 128; i++) { 2701 #ifdef RSS 2702 queue_id = rss_get_indirection_to_bucket(i); 2703 /* 2704 * If we have more queues than buckets, we'll 2705 * end up mapping buckets to a subset of the 2706 * queues. 2707 * 2708 * If we have more buckets than queues, we'll 2709 * end up instead assigning multiple buckets 2710 * to queues. 2711 * 2712 * Both are suboptimal, but we need to handle 2713 * the case so we don't go out of bounds 2714 * indexing arrays and such. 2715 */ 2716 queue_id = queue_id % adapter->rx_num_queues; 2717 #else 2718 queue_id = (i % adapter->rx_num_queues); 2719 #endif 2720 /* Adjust if required */ 2721 queue_id = queue_id << shift; 2722 2723 /* 2724 * The low 8 bits are for hash value (n+0); 2725 * The next 8 bits are for hash value (n+1), etc. 2726 */ 2727 reta = reta >> 8; 2728 reta = reta | ( ((uint32_t) queue_id) << 24); 2729 if ((i & 3) == 3) { 2730 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta); 2731 reta = 0; 2732 } 2733 } 2734 2735 /* Now fill in hash table */ 2736 2737 /* 2738 * MRQC: Multiple Receive Queues Command 2739 * Set queuing to RSS control, number depends on the device. 2740 */ 2741 mrqc = E1000_MRQC_ENABLE_RSS_8Q; 2742 2743 #ifdef RSS 2744 /* XXX ew typecasting */ 2745 rss_getkey((uint8_t *) &rss_key); 2746 #else 2747 arc4rand(&rss_key, sizeof(rss_key), 0); 2748 #endif 2749 for (i = 0; i < 10; i++) 2750 E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]); 2751 2752 /* 2753 * Configure the RSS fields to hash upon. 2754 */ 2755 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 | 2756 E1000_MRQC_RSS_FIELD_IPV4_TCP); 2757 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 | 2758 E1000_MRQC_RSS_FIELD_IPV6_TCP); 2759 mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP | 2760 E1000_MRQC_RSS_FIELD_IPV6_UDP); 2761 mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX | 2762 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); 2763 2764 E1000_WRITE_REG(hw, E1000_MRQC, mrqc); 2765 } 2766 2767 /********************************************************************* 2768 * 2769 * Setup networking device structure and register interface media. 2770 * 2771 **********************************************************************/ 2772 static int 2773 em_setup_interface(if_ctx_t ctx) 2774 { 2775 struct ifnet *ifp = iflib_get_ifp(ctx); 2776 struct adapter *adapter = iflib_get_softc(ctx); 2777 if_softc_ctx_t scctx = adapter->shared; 2778 2779 INIT_DEBUGOUT("em_setup_interface: begin"); 2780 2781 /* Single Queue */ 2782 if (adapter->tx_num_queues == 1) { 2783 if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1); 2784 if_setsendqready(ifp); 2785 } 2786 2787 /* 2788 * Specify the media types supported by this adapter and register 2789 * callbacks to update media and link information 2790 */ 2791 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || 2792 (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) { 2793 u_char fiber_type = IFM_1000_SX; /* default type */ 2794 2795 if (adapter->hw.mac.type == e1000_82545) 2796 fiber_type = IFM_1000_LX; 2797 ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL); 2798 ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL); 2799 } else { 2800 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL); 2801 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL); 2802 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL); 2803 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); 2804 if (adapter->hw.phy.type != e1000_phy_ife) { 2805 ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); 2806 ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL); 2807 } 2808 } 2809 ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL); 2810 ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO); 2811 return (0); 2812 } 2813 2814 static int 2815 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets) 2816 { 2817 struct adapter *adapter = iflib_get_softc(ctx); 2818 if_softc_ctx_t scctx = adapter->shared; 2819 int error = E1000_SUCCESS; 2820 struct em_tx_queue *que; 2821 int i, j; 2822 2823 MPASS(adapter->tx_num_queues > 0); 2824 MPASS(adapter->tx_num_queues == ntxqsets); 2825 2826 /* First allocate the top level queue structs */ 2827 if (!(adapter->tx_queues = 2828 (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) * 2829 adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { 2830 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n"); 2831 return(ENOMEM); 2832 } 2833 2834 for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) { 2835 /* Set up some basics */ 2836 2837 struct tx_ring *txr = &que->txr; 2838 txr->adapter = que->adapter = adapter; 2839 que->me = txr->me = i; 2840 2841 /* Allocate report status array */ 2842 if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) { 2843 device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n"); 2844 error = ENOMEM; 2845 goto fail; 2846 } 2847 for (j = 0; j < scctx->isc_ntxd[0]; j++) 2848 txr->tx_rsq[j] = QIDX_INVALID; 2849 /* get the virtual and physical address of the hardware queues */ 2850 txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs]; 2851 txr->tx_paddr = paddrs[i*ntxqs]; 2852 } 2853 2854 if (bootverbose) 2855 device_printf(iflib_get_dev(ctx), 2856 "allocated for %d tx_queues\n", adapter->tx_num_queues); 2857 return (0); 2858 fail: 2859 em_if_queues_free(ctx); 2860 return (error); 2861 } 2862 2863 static int 2864 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets) 2865 { 2866 struct adapter *adapter = iflib_get_softc(ctx); 2867 int error = E1000_SUCCESS; 2868 struct em_rx_queue *que; 2869 int i; 2870 2871 MPASS(adapter->rx_num_queues > 0); 2872 MPASS(adapter->rx_num_queues == nrxqsets); 2873 2874 /* First allocate the top level queue structs */ 2875 if (!(adapter->rx_queues = 2876 (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) * 2877 adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { 2878 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n"); 2879 error = ENOMEM; 2880 goto fail; 2881 } 2882 2883 for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) { 2884 /* Set up some basics */ 2885 struct rx_ring *rxr = &que->rxr; 2886 rxr->adapter = que->adapter = adapter; 2887 rxr->que = que; 2888 que->me = rxr->me = i; 2889 2890 /* get the virtual and physical address of the hardware queues */ 2891 rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs]; 2892 rxr->rx_paddr = paddrs[i*nrxqs]; 2893 } 2894 2895 if (bootverbose) 2896 device_printf(iflib_get_dev(ctx), 2897 "allocated for %d rx_queues\n", adapter->rx_num_queues); 2898 2899 return (0); 2900 fail: 2901 em_if_queues_free(ctx); 2902 return (error); 2903 } 2904 2905 static void 2906 em_if_queues_free(if_ctx_t ctx) 2907 { 2908 struct adapter *adapter = iflib_get_softc(ctx); 2909 struct em_tx_queue *tx_que = adapter->tx_queues; 2910 struct em_rx_queue *rx_que = adapter->rx_queues; 2911 2912 if (tx_que != NULL) { 2913 for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) { 2914 struct tx_ring *txr = &tx_que->txr; 2915 if (txr->tx_rsq == NULL) 2916 break; 2917 2918 free(txr->tx_rsq, M_DEVBUF); 2919 txr->tx_rsq = NULL; 2920 } 2921 free(adapter->tx_queues, M_DEVBUF); 2922 adapter->tx_queues = NULL; 2923 } 2924 2925 if (rx_que != NULL) { 2926 free(adapter->rx_queues, M_DEVBUF); 2927 adapter->rx_queues = NULL; 2928 } 2929 2930 em_release_hw_control(adapter); 2931 2932 if (adapter->mta != NULL) { 2933 free(adapter->mta, M_DEVBUF); 2934 } 2935 } 2936 2937 /********************************************************************* 2938 * 2939 * Enable transmit unit. 2940 * 2941 **********************************************************************/ 2942 static void 2943 em_initialize_transmit_unit(if_ctx_t ctx) 2944 { 2945 struct adapter *adapter = iflib_get_softc(ctx); 2946 if_softc_ctx_t scctx = adapter->shared; 2947 struct em_tx_queue *que; 2948 struct tx_ring *txr; 2949 struct e1000_hw *hw = &adapter->hw; 2950 u32 tctl, txdctl = 0, tarc, tipg = 0; 2951 2952 INIT_DEBUGOUT("em_initialize_transmit_unit: begin"); 2953 2954 for (int i = 0; i < adapter->tx_num_queues; i++, txr++) { 2955 u64 bus_addr; 2956 caddr_t offp, endp; 2957 2958 que = &adapter->tx_queues[i]; 2959 txr = &que->txr; 2960 bus_addr = txr->tx_paddr; 2961 2962 /* Clear checksum offload context. */ 2963 offp = (caddr_t)&txr->csum_flags; 2964 endp = (caddr_t)(txr + 1); 2965 bzero(offp, endp - offp); 2966 2967 /* Base and Len of TX Ring */ 2968 E1000_WRITE_REG(hw, E1000_TDLEN(i), 2969 scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc)); 2970 E1000_WRITE_REG(hw, E1000_TDBAH(i), 2971 (u32)(bus_addr >> 32)); 2972 E1000_WRITE_REG(hw, E1000_TDBAL(i), 2973 (u32)bus_addr); 2974 /* Init the HEAD/TAIL indices */ 2975 E1000_WRITE_REG(hw, E1000_TDT(i), 0); 2976 E1000_WRITE_REG(hw, E1000_TDH(i), 0); 2977 2978 HW_DEBUGOUT2("Base = %x, Length = %x\n", 2979 E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)), 2980 E1000_READ_REG(&adapter->hw, E1000_TDLEN(i))); 2981 2982 txdctl = 0; /* clear txdctl */ 2983 txdctl |= 0x1f; /* PTHRESH */ 2984 txdctl |= 1 << 8; /* HTHRESH */ 2985 txdctl |= 1 << 16;/* WTHRESH */ 2986 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */ 2987 txdctl |= E1000_TXDCTL_GRAN; 2988 txdctl |= 1 << 25; /* LWTHRESH */ 2989 2990 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl); 2991 } 2992 2993 /* Set the default values for the Tx Inter Packet Gap timer */ 2994 switch (adapter->hw.mac.type) { 2995 case e1000_80003es2lan: 2996 tipg = DEFAULT_82543_TIPG_IPGR1; 2997 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 << 2998 E1000_TIPG_IPGR2_SHIFT; 2999 break; 3000 case e1000_82542: 3001 tipg = DEFAULT_82542_TIPG_IPGT; 3002 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; 3003 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; 3004 break; 3005 default: 3006 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || 3007 (adapter->hw.phy.media_type == 3008 e1000_media_type_internal_serdes)) 3009 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 3010 else 3011 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 3012 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; 3013 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; 3014 } 3015 3016 E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg); 3017 E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value); 3018 3019 if(adapter->hw.mac.type >= e1000_82540) 3020 E1000_WRITE_REG(&adapter->hw, E1000_TADV, 3021 adapter->tx_abs_int_delay.value); 3022 3023 if ((adapter->hw.mac.type == e1000_82571) || 3024 (adapter->hw.mac.type == e1000_82572)) { 3025 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0)); 3026 tarc |= TARC_SPEED_MODE_BIT; 3027 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); 3028 } else if (adapter->hw.mac.type == e1000_80003es2lan) { 3029 /* errata: program both queues to unweighted RR */ 3030 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0)); 3031 tarc |= 1; 3032 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); 3033 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1)); 3034 tarc |= 1; 3035 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc); 3036 } else if (adapter->hw.mac.type == e1000_82574) { 3037 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0)); 3038 tarc |= TARC_ERRATA_BIT; 3039 if ( adapter->tx_num_queues > 1) { 3040 tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX); 3041 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); 3042 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc); 3043 } else 3044 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); 3045 } 3046 3047 if (adapter->tx_int_delay.value > 0) 3048 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 3049 3050 /* Program the Transmit Control Register */ 3051 tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL); 3052 tctl &= ~E1000_TCTL_CT; 3053 tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN | 3054 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT)); 3055 3056 if (adapter->hw.mac.type >= e1000_82571) 3057 tctl |= E1000_TCTL_MULR; 3058 3059 /* This write will effectively turn on the transmit unit. */ 3060 E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl); 3061 3062 /* SPT and KBL errata workarounds */ 3063 if (hw->mac.type == e1000_pch_spt) { 3064 u32 reg; 3065 reg = E1000_READ_REG(hw, E1000_IOSFPC); 3066 reg |= E1000_RCTL_RDMTS_HEX; 3067 E1000_WRITE_REG(hw, E1000_IOSFPC, reg); 3068 /* i218-i219 Specification Update 1.5.4.5 */ 3069 reg = E1000_READ_REG(hw, E1000_TARC(0)); 3070 reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ; 3071 reg |= E1000_TARC0_CB_MULTIQ_2_REQ; 3072 E1000_WRITE_REG(hw, E1000_TARC(0), reg); 3073 } 3074 } 3075 3076 /********************************************************************* 3077 * 3078 * Enable receive unit. 3079 * 3080 **********************************************************************/ 3081 3082 static void 3083 em_initialize_receive_unit(if_ctx_t ctx) 3084 { 3085 struct adapter *adapter = iflib_get_softc(ctx); 3086 if_softc_ctx_t scctx = adapter->shared; 3087 struct ifnet *ifp = iflib_get_ifp(ctx); 3088 struct e1000_hw *hw = &adapter->hw; 3089 struct em_rx_queue *que; 3090 int i; 3091 u32 rctl, rxcsum, rfctl; 3092 3093 INIT_DEBUGOUT("em_initialize_receive_units: begin"); 3094 3095 /* 3096 * Make sure receives are disabled while setting 3097 * up the descriptor ring 3098 */ 3099 rctl = E1000_READ_REG(hw, E1000_RCTL); 3100 /* Do not disable if ever enabled on this hardware */ 3101 if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583)) 3102 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); 3103 3104 /* Setup the Receive Control Register */ 3105 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 3106 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | 3107 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 3108 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 3109 3110 /* Do not store bad packets */ 3111 rctl &= ~E1000_RCTL_SBP; 3112 3113 /* Enable Long Packet receive */ 3114 if (if_getmtu(ifp) > ETHERMTU) 3115 rctl |= E1000_RCTL_LPE; 3116 else 3117 rctl &= ~E1000_RCTL_LPE; 3118 3119 /* Strip the CRC */ 3120 if (!em_disable_crc_stripping) 3121 rctl |= E1000_RCTL_SECRC; 3122 3123 if (adapter->hw.mac.type >= e1000_82540) { 3124 E1000_WRITE_REG(&adapter->hw, E1000_RADV, 3125 adapter->rx_abs_int_delay.value); 3126 3127 /* 3128 * Set the interrupt throttling rate. Value is calculated 3129 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) 3130 */ 3131 E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR); 3132 } 3133 E1000_WRITE_REG(&adapter->hw, E1000_RDTR, 3134 adapter->rx_int_delay.value); 3135 3136 /* Use extended rx descriptor formats */ 3137 rfctl = E1000_READ_REG(hw, E1000_RFCTL); 3138 rfctl |= E1000_RFCTL_EXTEN; 3139 /* 3140 * When using MSI-X interrupts we need to throttle 3141 * using the EITR register (82574 only) 3142 */ 3143 if (hw->mac.type == e1000_82574) { 3144 for (int i = 0; i < 4; i++) 3145 E1000_WRITE_REG(hw, E1000_EITR_82574(i), 3146 DEFAULT_ITR); 3147 /* Disable accelerated acknowledge */ 3148 rfctl |= E1000_RFCTL_ACK_DIS; 3149 } 3150 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); 3151 3152 rxcsum = E1000_READ_REG(hw, E1000_RXCSUM); 3153 if (if_getcapenable(ifp) & IFCAP_RXCSUM && 3154 adapter->hw.mac.type >= e1000_82543) { 3155 if (adapter->tx_num_queues > 1) { 3156 if (adapter->hw.mac.type >= igb_mac_min) { 3157 rxcsum |= E1000_RXCSUM_PCSD; 3158 if (hw->mac.type != e1000_82575) 3159 rxcsum |= E1000_RXCSUM_CRCOFL; 3160 } else 3161 rxcsum |= E1000_RXCSUM_TUOFL | 3162 E1000_RXCSUM_IPOFL | 3163 E1000_RXCSUM_PCSD; 3164 } else { 3165 if (adapter->hw.mac.type >= igb_mac_min) 3166 rxcsum |= E1000_RXCSUM_IPPCSE; 3167 else 3168 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL; 3169 if (adapter->hw.mac.type > e1000_82575) 3170 rxcsum |= E1000_RXCSUM_CRCOFL; 3171 } 3172 } else 3173 rxcsum &= ~E1000_RXCSUM_TUOFL; 3174 3175 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum); 3176 3177 if (adapter->rx_num_queues > 1) { 3178 if (adapter->hw.mac.type >= igb_mac_min) 3179 igb_initialize_rss_mapping(adapter); 3180 else 3181 em_initialize_rss_mapping(adapter); 3182 } 3183 3184 /* 3185 * XXX TEMPORARY WORKAROUND: on some systems with 82573 3186 * long latencies are observed, like Lenovo X60. This 3187 * change eliminates the problem, but since having positive 3188 * values in RDTR is a known source of problems on other 3189 * platforms another solution is being sought. 3190 */ 3191 if (hw->mac.type == e1000_82573) 3192 E1000_WRITE_REG(hw, E1000_RDTR, 0x20); 3193 3194 for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) { 3195 struct rx_ring *rxr = &que->rxr; 3196 /* Setup the Base and Length of the Rx Descriptor Ring */ 3197 u64 bus_addr = rxr->rx_paddr; 3198 #if 0 3199 u32 rdt = adapter->rx_num_queues -1; /* default */ 3200 #endif 3201 3202 E1000_WRITE_REG(hw, E1000_RDLEN(i), 3203 scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended)); 3204 E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32)); 3205 E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr); 3206 /* Setup the Head and Tail Descriptor Pointers */ 3207 E1000_WRITE_REG(hw, E1000_RDH(i), 0); 3208 E1000_WRITE_REG(hw, E1000_RDT(i), 0); 3209 } 3210 3211 /* 3212 * Set PTHRESH for improved jumbo performance 3213 * According to 10.2.5.11 of Intel 82574 Datasheet, 3214 * RXDCTL(1) is written whenever RXDCTL(0) is written. 3215 * Only write to RXDCTL(1) if there is a need for different 3216 * settings. 3217 */ 3218 3219 if (((adapter->hw.mac.type == e1000_ich9lan) || 3220 (adapter->hw.mac.type == e1000_pch2lan) || 3221 (adapter->hw.mac.type == e1000_ich10lan)) && 3222 (if_getmtu(ifp) > ETHERMTU)) { 3223 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0)); 3224 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3); 3225 } else if (adapter->hw.mac.type == e1000_82574) { 3226 for (int i = 0; i < adapter->rx_num_queues; i++) { 3227 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i)); 3228 rxdctl |= 0x20; /* PTHRESH */ 3229 rxdctl |= 4 << 8; /* HTHRESH */ 3230 rxdctl |= 4 << 16;/* WTHRESH */ 3231 rxdctl |= 1 << 24; /* Switch to granularity */ 3232 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); 3233 } 3234 } else if (adapter->hw.mac.type >= igb_mac_min) { 3235 u32 psize, srrctl = 0; 3236 3237 if (if_getmtu(ifp) > ETHERMTU) { 3238 /* Set maximum packet len */ 3239 if (adapter->rx_mbuf_sz <= 4096) { 3240 srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 3241 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX; 3242 } else if (adapter->rx_mbuf_sz > 4096) { 3243 srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 3244 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX; 3245 } 3246 psize = scctx->isc_max_frame_size; 3247 /* are we on a vlan? */ 3248 if (ifp->if_vlantrunk != NULL) 3249 psize += VLAN_TAG_SIZE; 3250 E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize); 3251 } else { 3252 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 3253 rctl |= E1000_RCTL_SZ_2048; 3254 } 3255 3256 /* 3257 * If TX flow control is disabled and there's >1 queue defined, 3258 * enable DROP. 3259 * 3260 * This drops frames rather than hanging the RX MAC for all queues. 3261 */ 3262 if ((adapter->rx_num_queues > 1) && 3263 (adapter->fc == e1000_fc_none || 3264 adapter->fc == e1000_fc_rx_pause)) { 3265 srrctl |= E1000_SRRCTL_DROP_EN; 3266 } 3267 /* Setup the Base and Length of the Rx Descriptor Rings */ 3268 for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) { 3269 struct rx_ring *rxr = &que->rxr; 3270 u64 bus_addr = rxr->rx_paddr; 3271 u32 rxdctl; 3272 3273 #ifdef notyet 3274 /* Configure for header split? -- ignore for now */ 3275 rxr->hdr_split = igb_header_split; 3276 #else 3277 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 3278 #endif 3279 3280 E1000_WRITE_REG(hw, E1000_RDLEN(i), 3281 scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc)); 3282 E1000_WRITE_REG(hw, E1000_RDBAH(i), 3283 (uint32_t)(bus_addr >> 32)); 3284 E1000_WRITE_REG(hw, E1000_RDBAL(i), 3285 (uint32_t)bus_addr); 3286 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl); 3287 /* Enable this Queue */ 3288 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i)); 3289 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 3290 rxdctl &= 0xFFF00000; 3291 rxdctl |= IGB_RX_PTHRESH; 3292 rxdctl |= IGB_RX_HTHRESH << 8; 3293 rxdctl |= IGB_RX_WTHRESH << 16; 3294 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); 3295 } 3296 } else if (adapter->hw.mac.type >= e1000_pch2lan) { 3297 if (if_getmtu(ifp) > ETHERMTU) 3298 e1000_lv_jumbo_workaround_ich8lan(hw, TRUE); 3299 else 3300 e1000_lv_jumbo_workaround_ich8lan(hw, FALSE); 3301 } 3302 3303 /* Make sure VLAN Filters are off */ 3304 rctl &= ~E1000_RCTL_VFE; 3305 3306 if (adapter->hw.mac.type < igb_mac_min) { 3307 if (adapter->rx_mbuf_sz == MCLBYTES) 3308 rctl |= E1000_RCTL_SZ_2048; 3309 else if (adapter->rx_mbuf_sz == MJUMPAGESIZE) 3310 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX; 3311 else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) 3312 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX; 3313 3314 /* ensure we clear use DTYPE of 00 here */ 3315 rctl &= ~0x00000C00; 3316 } 3317 3318 /* Write out the settings */ 3319 E1000_WRITE_REG(hw, E1000_RCTL, rctl); 3320 3321 return; 3322 } 3323 3324 static void 3325 em_if_vlan_register(if_ctx_t ctx, u16 vtag) 3326 { 3327 struct adapter *adapter = iflib_get_softc(ctx); 3328 u32 index, bit; 3329 3330 index = (vtag >> 5) & 0x7F; 3331 bit = vtag & 0x1F; 3332 adapter->shadow_vfta[index] |= (1 << bit); 3333 ++adapter->num_vlans; 3334 } 3335 3336 static void 3337 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag) 3338 { 3339 struct adapter *adapter = iflib_get_softc(ctx); 3340 u32 index, bit; 3341 3342 index = (vtag >> 5) & 0x7F; 3343 bit = vtag & 0x1F; 3344 adapter->shadow_vfta[index] &= ~(1 << bit); 3345 --adapter->num_vlans; 3346 } 3347 3348 static void 3349 em_setup_vlan_hw_support(struct adapter *adapter) 3350 { 3351 struct e1000_hw *hw = &adapter->hw; 3352 u32 reg; 3353 3354 /* 3355 * We get here thru init_locked, meaning 3356 * a soft reset, this has already cleared 3357 * the VFTA and other state, so if there 3358 * have been no vlan's registered do nothing. 3359 */ 3360 if (adapter->num_vlans == 0) 3361 return; 3362 3363 /* 3364 * A soft reset zero's out the VFTA, so 3365 * we need to repopulate it now. 3366 */ 3367 for (int i = 0; i < EM_VFTA_SIZE; i++) 3368 if (adapter->shadow_vfta[i] != 0) 3369 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, 3370 i, adapter->shadow_vfta[i]); 3371 3372 reg = E1000_READ_REG(hw, E1000_CTRL); 3373 reg |= E1000_CTRL_VME; 3374 E1000_WRITE_REG(hw, E1000_CTRL, reg); 3375 3376 /* Enable the Filter Table */ 3377 reg = E1000_READ_REG(hw, E1000_RCTL); 3378 reg &= ~E1000_RCTL_CFIEN; 3379 reg |= E1000_RCTL_VFE; 3380 E1000_WRITE_REG(hw, E1000_RCTL, reg); 3381 } 3382 3383 static void 3384 em_if_enable_intr(if_ctx_t ctx) 3385 { 3386 struct adapter *adapter = iflib_get_softc(ctx); 3387 struct e1000_hw *hw = &adapter->hw; 3388 u32 ims_mask = IMS_ENABLE_MASK; 3389 3390 if (hw->mac.type == e1000_82574) { 3391 E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK); 3392 ims_mask |= adapter->ims; 3393 } else if (adapter->intr_type == IFLIB_INTR_MSIX && hw->mac.type >= igb_mac_min) { 3394 u32 mask = (adapter->que_mask | adapter->link_mask); 3395 3396 E1000_WRITE_REG(&adapter->hw, E1000_EIAC, mask); 3397 E1000_WRITE_REG(&adapter->hw, E1000_EIAM, mask); 3398 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, mask); 3399 ims_mask = E1000_IMS_LSC; 3400 } 3401 3402 E1000_WRITE_REG(hw, E1000_IMS, ims_mask); 3403 } 3404 3405 static void 3406 em_if_disable_intr(if_ctx_t ctx) 3407 { 3408 struct adapter *adapter = iflib_get_softc(ctx); 3409 struct e1000_hw *hw = &adapter->hw; 3410 3411 if (adapter->intr_type == IFLIB_INTR_MSIX) { 3412 if (hw->mac.type >= igb_mac_min) 3413 E1000_WRITE_REG(&adapter->hw, E1000_EIMC, ~0); 3414 E1000_WRITE_REG(&adapter->hw, E1000_EIAC, 0); 3415 } 3416 E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff); 3417 } 3418 3419 /* 3420 * Bit of a misnomer, what this really means is 3421 * to enable OS management of the system... aka 3422 * to disable special hardware management features 3423 */ 3424 static void 3425 em_init_manageability(struct adapter *adapter) 3426 { 3427 /* A shared code workaround */ 3428 #define E1000_82542_MANC2H E1000_MANC2H 3429 if (adapter->has_manage) { 3430 int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H); 3431 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC); 3432 3433 /* disable hardware interception of ARP */ 3434 manc &= ~(E1000_MANC_ARP_EN); 3435 3436 /* enable receiving management packets to the host */ 3437 manc |= E1000_MANC_EN_MNG2HOST; 3438 #define E1000_MNG2HOST_PORT_623 (1 << 5) 3439 #define E1000_MNG2HOST_PORT_664 (1 << 6) 3440 manc2h |= E1000_MNG2HOST_PORT_623; 3441 manc2h |= E1000_MNG2HOST_PORT_664; 3442 E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h); 3443 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc); 3444 } 3445 } 3446 3447 /* 3448 * Give control back to hardware management 3449 * controller if there is one. 3450 */ 3451 static void 3452 em_release_manageability(struct adapter *adapter) 3453 { 3454 if (adapter->has_manage) { 3455 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC); 3456 3457 /* re-enable hardware interception of ARP */ 3458 manc |= E1000_MANC_ARP_EN; 3459 manc &= ~E1000_MANC_EN_MNG2HOST; 3460 3461 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc); 3462 } 3463 } 3464 3465 /* 3466 * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit. 3467 * For ASF and Pass Through versions of f/w this means 3468 * that the driver is loaded. For AMT version type f/w 3469 * this means that the network i/f is open. 3470 */ 3471 static void 3472 em_get_hw_control(struct adapter *adapter) 3473 { 3474 u32 ctrl_ext, swsm; 3475 3476 if (adapter->vf_ifp) 3477 return; 3478 3479 if (adapter->hw.mac.type == e1000_82573) { 3480 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM); 3481 E1000_WRITE_REG(&adapter->hw, E1000_SWSM, 3482 swsm | E1000_SWSM_DRV_LOAD); 3483 return; 3484 } 3485 /* else */ 3486 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); 3487 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, 3488 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 3489 } 3490 3491 /* 3492 * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. 3493 * For ASF and Pass Through versions of f/w this means that 3494 * the driver is no longer loaded. For AMT versions of the 3495 * f/w this means that the network i/f is closed. 3496 */ 3497 static void 3498 em_release_hw_control(struct adapter *adapter) 3499 { 3500 u32 ctrl_ext, swsm; 3501 3502 if (!adapter->has_manage) 3503 return; 3504 3505 if (adapter->hw.mac.type == e1000_82573) { 3506 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM); 3507 E1000_WRITE_REG(&adapter->hw, E1000_SWSM, 3508 swsm & ~E1000_SWSM_DRV_LOAD); 3509 return; 3510 } 3511 /* else */ 3512 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); 3513 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, 3514 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 3515 return; 3516 } 3517 3518 static int 3519 em_is_valid_ether_addr(u8 *addr) 3520 { 3521 char zero_addr[6] = { 0, 0, 0, 0, 0, 0 }; 3522 3523 if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) { 3524 return (FALSE); 3525 } 3526 3527 return (TRUE); 3528 } 3529 3530 /* 3531 ** Parse the interface capabilities with regard 3532 ** to both system management and wake-on-lan for 3533 ** later use. 3534 */ 3535 static void 3536 em_get_wakeup(if_ctx_t ctx) 3537 { 3538 struct adapter *adapter = iflib_get_softc(ctx); 3539 device_t dev = iflib_get_dev(ctx); 3540 u16 eeprom_data = 0, device_id, apme_mask; 3541 3542 adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw); 3543 apme_mask = EM_EEPROM_APME; 3544 3545 switch (adapter->hw.mac.type) { 3546 case e1000_82542: 3547 case e1000_82543: 3548 break; 3549 case e1000_82544: 3550 e1000_read_nvm(&adapter->hw, 3551 NVM_INIT_CONTROL2_REG, 1, &eeprom_data); 3552 apme_mask = EM_82544_APME; 3553 break; 3554 case e1000_82546: 3555 case e1000_82546_rev_3: 3556 if (adapter->hw.bus.func == 1) { 3557 e1000_read_nvm(&adapter->hw, 3558 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 3559 break; 3560 } else 3561 e1000_read_nvm(&adapter->hw, 3562 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3563 break; 3564 case e1000_82573: 3565 case e1000_82583: 3566 adapter->has_amt = TRUE; 3567 /* FALLTHROUGH */ 3568 case e1000_82571: 3569 case e1000_82572: 3570 case e1000_80003es2lan: 3571 if (adapter->hw.bus.func == 1) { 3572 e1000_read_nvm(&adapter->hw, 3573 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 3574 break; 3575 } else 3576 e1000_read_nvm(&adapter->hw, 3577 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3578 break; 3579 case e1000_ich8lan: 3580 case e1000_ich9lan: 3581 case e1000_ich10lan: 3582 case e1000_pchlan: 3583 case e1000_pch2lan: 3584 case e1000_pch_lpt: 3585 case e1000_pch_spt: 3586 case e1000_82575: /* listing all igb devices */ 3587 case e1000_82576: 3588 case e1000_82580: 3589 case e1000_i350: 3590 case e1000_i354: 3591 case e1000_i210: 3592 case e1000_i211: 3593 case e1000_vfadapt: 3594 case e1000_vfadapt_i350: 3595 apme_mask = E1000_WUC_APME; 3596 adapter->has_amt = TRUE; 3597 eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC); 3598 break; 3599 default: 3600 e1000_read_nvm(&adapter->hw, 3601 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3602 break; 3603 } 3604 if (eeprom_data & apme_mask) 3605 adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC); 3606 /* 3607 * We have the eeprom settings, now apply the special cases 3608 * where the eeprom may be wrong or the board won't support 3609 * wake on lan on a particular port 3610 */ 3611 device_id = pci_get_device(dev); 3612 switch (device_id) { 3613 case E1000_DEV_ID_82546GB_PCIE: 3614 adapter->wol = 0; 3615 break; 3616 case E1000_DEV_ID_82546EB_FIBER: 3617 case E1000_DEV_ID_82546GB_FIBER: 3618 /* Wake events only supported on port A for dual fiber 3619 * regardless of eeprom setting */ 3620 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) & 3621 E1000_STATUS_FUNC_1) 3622 adapter->wol = 0; 3623 break; 3624 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 3625 /* if quad port adapter, disable WoL on all but port A */ 3626 if (global_quad_port_a != 0) 3627 adapter->wol = 0; 3628 /* Reset for multiple quad port adapters */ 3629 if (++global_quad_port_a == 4) 3630 global_quad_port_a = 0; 3631 break; 3632 case E1000_DEV_ID_82571EB_FIBER: 3633 /* Wake events only supported on port A for dual fiber 3634 * regardless of eeprom setting */ 3635 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) & 3636 E1000_STATUS_FUNC_1) 3637 adapter->wol = 0; 3638 break; 3639 case E1000_DEV_ID_82571EB_QUAD_COPPER: 3640 case E1000_DEV_ID_82571EB_QUAD_FIBER: 3641 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 3642 /* if quad port adapter, disable WoL on all but port A */ 3643 if (global_quad_port_a != 0) 3644 adapter->wol = 0; 3645 /* Reset for multiple quad port adapters */ 3646 if (++global_quad_port_a == 4) 3647 global_quad_port_a = 0; 3648 break; 3649 } 3650 return; 3651 } 3652 3653 3654 /* 3655 * Enable PCI Wake On Lan capability 3656 */ 3657 static void 3658 em_enable_wakeup(if_ctx_t ctx) 3659 { 3660 struct adapter *adapter = iflib_get_softc(ctx); 3661 device_t dev = iflib_get_dev(ctx); 3662 if_t ifp = iflib_get_ifp(ctx); 3663 int error = 0; 3664 u32 pmc, ctrl, ctrl_ext, rctl; 3665 u16 status; 3666 3667 if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0) 3668 return; 3669 3670 /* 3671 * Determine type of Wakeup: note that wol 3672 * is set with all bits on by default. 3673 */ 3674 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0) 3675 adapter->wol &= ~E1000_WUFC_MAG; 3676 3677 if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0) 3678 adapter->wol &= ~E1000_WUFC_EX; 3679 3680 if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0) 3681 adapter->wol &= ~E1000_WUFC_MC; 3682 else { 3683 rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); 3684 rctl |= E1000_RCTL_MPE; 3685 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl); 3686 } 3687 3688 if (!(adapter->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC))) 3689 goto pme; 3690 3691 /* Advertise the wakeup capability */ 3692 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL); 3693 ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3); 3694 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl); 3695 3696 /* Keep the laser running on Fiber adapters */ 3697 if (adapter->hw.phy.media_type == e1000_media_type_fiber || 3698 adapter->hw.phy.media_type == e1000_media_type_internal_serdes) { 3699 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); 3700 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; 3701 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext); 3702 } 3703 3704 if ((adapter->hw.mac.type == e1000_ich8lan) || 3705 (adapter->hw.mac.type == e1000_pchlan) || 3706 (adapter->hw.mac.type == e1000_ich9lan) || 3707 (adapter->hw.mac.type == e1000_ich10lan)) 3708 e1000_suspend_workarounds_ich8lan(&adapter->hw); 3709 3710 if ( adapter->hw.mac.type >= e1000_pchlan) { 3711 error = em_enable_phy_wakeup(adapter); 3712 if (error) 3713 goto pme; 3714 } else { 3715 /* Enable wakeup by the MAC */ 3716 E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN); 3717 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol); 3718 } 3719 3720 if (adapter->hw.phy.type == e1000_phy_igp_3) 3721 e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); 3722 3723 pme: 3724 status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2); 3725 status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 3726 if (!error && (if_getcapenable(ifp) & IFCAP_WOL)) 3727 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 3728 pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2); 3729 3730 return; 3731 } 3732 3733 /* 3734 * WOL in the newer chipset interfaces (pchlan) 3735 * require thing to be copied into the phy 3736 */ 3737 static int 3738 em_enable_phy_wakeup(struct adapter *adapter) 3739 { 3740 struct e1000_hw *hw = &adapter->hw; 3741 u32 mreg, ret = 0; 3742 u16 preg; 3743 3744 /* copy MAC RARs to PHY RARs */ 3745 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 3746 3747 /* copy MAC MTA to PHY MTA */ 3748 for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) { 3749 mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); 3750 e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF)); 3751 e1000_write_phy_reg(hw, BM_MTA(i) + 1, 3752 (u16)((mreg >> 16) & 0xFFFF)); 3753 } 3754 3755 /* configure PHY Rx Control register */ 3756 e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg); 3757 mreg = E1000_READ_REG(hw, E1000_RCTL); 3758 if (mreg & E1000_RCTL_UPE) 3759 preg |= BM_RCTL_UPE; 3760 if (mreg & E1000_RCTL_MPE) 3761 preg |= BM_RCTL_MPE; 3762 preg &= ~(BM_RCTL_MO_MASK); 3763 if (mreg & E1000_RCTL_MO_3) 3764 preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) 3765 << BM_RCTL_MO_SHIFT); 3766 if (mreg & E1000_RCTL_BAM) 3767 preg |= BM_RCTL_BAM; 3768 if (mreg & E1000_RCTL_PMCF) 3769 preg |= BM_RCTL_PMCF; 3770 mreg = E1000_READ_REG(hw, E1000_CTRL); 3771 if (mreg & E1000_CTRL_RFCE) 3772 preg |= BM_RCTL_RFCE; 3773 e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg); 3774 3775 /* enable PHY wakeup in MAC register */ 3776 E1000_WRITE_REG(hw, E1000_WUC, 3777 E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME); 3778 E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol); 3779 3780 /* configure and enable PHY wakeup in PHY registers */ 3781 e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol); 3782 e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN); 3783 3784 /* activate PHY wakeup */ 3785 ret = hw->phy.ops.acquire(hw); 3786 if (ret) { 3787 printf("Could not acquire PHY\n"); 3788 return ret; 3789 } 3790 e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 3791 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT)); 3792 ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg); 3793 if (ret) { 3794 printf("Could not read PHY page 769\n"); 3795 goto out; 3796 } 3797 preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; 3798 ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg); 3799 if (ret) 3800 printf("Could not set PHY Host Wakeup bit\n"); 3801 out: 3802 hw->phy.ops.release(hw); 3803 3804 return ret; 3805 } 3806 3807 static void 3808 em_if_led_func(if_ctx_t ctx, int onoff) 3809 { 3810 struct adapter *adapter = iflib_get_softc(ctx); 3811 3812 if (onoff) { 3813 e1000_setup_led(&adapter->hw); 3814 e1000_led_on(&adapter->hw); 3815 } else { 3816 e1000_led_off(&adapter->hw); 3817 e1000_cleanup_led(&adapter->hw); 3818 } 3819 } 3820 3821 /* 3822 * Disable the L0S and L1 LINK states 3823 */ 3824 static void 3825 em_disable_aspm(struct adapter *adapter) 3826 { 3827 int base, reg; 3828 u16 link_cap,link_ctrl; 3829 device_t dev = adapter->dev; 3830 3831 switch (adapter->hw.mac.type) { 3832 case e1000_82573: 3833 case e1000_82574: 3834 case e1000_82583: 3835 break; 3836 default: 3837 return; 3838 } 3839 if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0) 3840 return; 3841 reg = base + PCIER_LINK_CAP; 3842 link_cap = pci_read_config(dev, reg, 2); 3843 if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0) 3844 return; 3845 reg = base + PCIER_LINK_CTL; 3846 link_ctrl = pci_read_config(dev, reg, 2); 3847 link_ctrl &= ~PCIEM_LINK_CTL_ASPMC; 3848 pci_write_config(dev, reg, link_ctrl, 2); 3849 return; 3850 } 3851 3852 /********************************************************************** 3853 * 3854 * Update the board statistics counters. 3855 * 3856 **********************************************************************/ 3857 static void 3858 em_update_stats_counters(struct adapter *adapter) 3859 { 3860 3861 if(adapter->hw.phy.media_type == e1000_media_type_copper || 3862 (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) { 3863 adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS); 3864 adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC); 3865 } 3866 adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS); 3867 adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC); 3868 adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC); 3869 adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL); 3870 3871 adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC); 3872 adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL); 3873 adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC); 3874 adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC); 3875 adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC); 3876 adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC); 3877 adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC); 3878 adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC); 3879 /* 3880 ** For watchdog management we need to know if we have been 3881 ** paused during the last interval, so capture that here. 3882 */ 3883 adapter->shared->isc_pause_frames = adapter->stats.xoffrxc; 3884 adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC); 3885 adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC); 3886 adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64); 3887 adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127); 3888 adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255); 3889 adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511); 3890 adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023); 3891 adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522); 3892 adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC); 3893 adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC); 3894 adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC); 3895 adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC); 3896 3897 /* For the 64-bit byte counters the low dword must be read first. */ 3898 /* Both registers clear on the read of the high dword */ 3899 3900 adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) + 3901 ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32); 3902 adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) + 3903 ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32); 3904 3905 adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC); 3906 adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC); 3907 adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC); 3908 adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC); 3909 adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC); 3910 3911 adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH); 3912 adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH); 3913 3914 adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR); 3915 adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT); 3916 adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64); 3917 adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127); 3918 adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255); 3919 adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511); 3920 adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023); 3921 adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522); 3922 adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC); 3923 adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC); 3924 3925 /* Interrupt Counts */ 3926 3927 adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC); 3928 adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC); 3929 adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC); 3930 adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC); 3931 adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC); 3932 adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC); 3933 adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC); 3934 adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC); 3935 adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC); 3936 3937 if (adapter->hw.mac.type >= e1000_82543) { 3938 adapter->stats.algnerrc += 3939 E1000_READ_REG(&adapter->hw, E1000_ALGNERRC); 3940 adapter->stats.rxerrc += 3941 E1000_READ_REG(&adapter->hw, E1000_RXERRC); 3942 adapter->stats.tncrs += 3943 E1000_READ_REG(&adapter->hw, E1000_TNCRS); 3944 adapter->stats.cexterr += 3945 E1000_READ_REG(&adapter->hw, E1000_CEXTERR); 3946 adapter->stats.tsctc += 3947 E1000_READ_REG(&adapter->hw, E1000_TSCTC); 3948 adapter->stats.tsctfc += 3949 E1000_READ_REG(&adapter->hw, E1000_TSCTFC); 3950 } 3951 } 3952 3953 static uint64_t 3954 em_if_get_counter(if_ctx_t ctx, ift_counter cnt) 3955 { 3956 struct adapter *adapter = iflib_get_softc(ctx); 3957 struct ifnet *ifp = iflib_get_ifp(ctx); 3958 3959 switch (cnt) { 3960 case IFCOUNTER_COLLISIONS: 3961 return (adapter->stats.colc); 3962 case IFCOUNTER_IERRORS: 3963 return (adapter->dropped_pkts + adapter->stats.rxerrc + 3964 adapter->stats.crcerrs + adapter->stats.algnerrc + 3965 adapter->stats.ruc + adapter->stats.roc + 3966 adapter->stats.mpc + adapter->stats.cexterr); 3967 case IFCOUNTER_OERRORS: 3968 return (adapter->stats.ecol + adapter->stats.latecol + 3969 adapter->watchdog_events); 3970 default: 3971 return (if_get_counter_default(ifp, cnt)); 3972 } 3973 } 3974 3975 /* Export a single 32-bit register via a read-only sysctl. */ 3976 static int 3977 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS) 3978 { 3979 struct adapter *adapter; 3980 u_int val; 3981 3982 adapter = oidp->oid_arg1; 3983 val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2); 3984 return (sysctl_handle_int(oidp, &val, 0, req)); 3985 } 3986 3987 /* 3988 * Add sysctl variables, one per statistic, to the system. 3989 */ 3990 static void 3991 em_add_hw_stats(struct adapter *adapter) 3992 { 3993 device_t dev = iflib_get_dev(adapter->ctx); 3994 struct em_tx_queue *tx_que = adapter->tx_queues; 3995 struct em_rx_queue *rx_que = adapter->rx_queues; 3996 3997 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev); 3998 struct sysctl_oid *tree = device_get_sysctl_tree(dev); 3999 struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree); 4000 struct e1000_hw_stats *stats = &adapter->stats; 4001 4002 struct sysctl_oid *stat_node, *queue_node, *int_node; 4003 struct sysctl_oid_list *stat_list, *queue_list, *int_list; 4004 4005 #define QUEUE_NAME_LEN 32 4006 char namebuf[QUEUE_NAME_LEN]; 4007 4008 /* Driver Statistics */ 4009 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped", 4010 CTLFLAG_RD, &adapter->dropped_pkts, 4011 "Driver dropped packets"); 4012 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq", 4013 CTLFLAG_RD, &adapter->link_irq, 4014 "Link MSI-X IRQ Handled"); 4015 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns", 4016 CTLFLAG_RD, &adapter->rx_overruns, 4017 "RX overruns"); 4018 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts", 4019 CTLFLAG_RD, &adapter->watchdog_events, 4020 "Watchdog timeouts"); 4021 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control", 4022 CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_CTRL, 4023 em_sysctl_reg_handler, "IU", 4024 "Device Control Register"); 4025 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control", 4026 CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_RCTL, 4027 em_sysctl_reg_handler, "IU", 4028 "Receiver Control Register"); 4029 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water", 4030 CTLFLAG_RD, &adapter->hw.fc.high_water, 0, 4031 "Flow Control High Watermark"); 4032 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water", 4033 CTLFLAG_RD, &adapter->hw.fc.low_water, 0, 4034 "Flow Control Low Watermark"); 4035 4036 for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) { 4037 struct tx_ring *txr = &tx_que->txr; 4038 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i); 4039 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, 4040 CTLFLAG_RD, NULL, "TX Queue Name"); 4041 queue_list = SYSCTL_CHILDREN(queue_node); 4042 4043 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head", 4044 CTLTYPE_UINT | CTLFLAG_RD, adapter, 4045 E1000_TDH(txr->me), 4046 em_sysctl_reg_handler, "IU", 4047 "Transmit Descriptor Head"); 4048 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail", 4049 CTLTYPE_UINT | CTLFLAG_RD, adapter, 4050 E1000_TDT(txr->me), 4051 em_sysctl_reg_handler, "IU", 4052 "Transmit Descriptor Tail"); 4053 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq", 4054 CTLFLAG_RD, &txr->tx_irq, 4055 "Queue MSI-X Transmit Interrupts"); 4056 } 4057 4058 for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) { 4059 struct rx_ring *rxr = &rx_que->rxr; 4060 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j); 4061 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, 4062 CTLFLAG_RD, NULL, "RX Queue Name"); 4063 queue_list = SYSCTL_CHILDREN(queue_node); 4064 4065 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head", 4066 CTLTYPE_UINT | CTLFLAG_RD, adapter, 4067 E1000_RDH(rxr->me), 4068 em_sysctl_reg_handler, "IU", 4069 "Receive Descriptor Head"); 4070 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail", 4071 CTLTYPE_UINT | CTLFLAG_RD, adapter, 4072 E1000_RDT(rxr->me), 4073 em_sysctl_reg_handler, "IU", 4074 "Receive Descriptor Tail"); 4075 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq", 4076 CTLFLAG_RD, &rxr->rx_irq, 4077 "Queue MSI-X Receive Interrupts"); 4078 } 4079 4080 /* MAC stats get their own sub node */ 4081 4082 stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats", 4083 CTLFLAG_RD, NULL, "Statistics"); 4084 stat_list = SYSCTL_CHILDREN(stat_node); 4085 4086 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll", 4087 CTLFLAG_RD, &stats->ecol, 4088 "Excessive collisions"); 4089 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll", 4090 CTLFLAG_RD, &stats->scc, 4091 "Single collisions"); 4092 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll", 4093 CTLFLAG_RD, &stats->mcc, 4094 "Multiple collisions"); 4095 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll", 4096 CTLFLAG_RD, &stats->latecol, 4097 "Late collisions"); 4098 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count", 4099 CTLFLAG_RD, &stats->colc, 4100 "Collision Count"); 4101 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors", 4102 CTLFLAG_RD, &adapter->stats.symerrs, 4103 "Symbol Errors"); 4104 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors", 4105 CTLFLAG_RD, &adapter->stats.sec, 4106 "Sequence Errors"); 4107 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count", 4108 CTLFLAG_RD, &adapter->stats.dc, 4109 "Defer Count"); 4110 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets", 4111 CTLFLAG_RD, &adapter->stats.mpc, 4112 "Missed Packets"); 4113 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff", 4114 CTLFLAG_RD, &adapter->stats.rnbc, 4115 "Receive No Buffers"); 4116 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize", 4117 CTLFLAG_RD, &adapter->stats.ruc, 4118 "Receive Undersize"); 4119 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented", 4120 CTLFLAG_RD, &adapter->stats.rfc, 4121 "Fragmented Packets Received "); 4122 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize", 4123 CTLFLAG_RD, &adapter->stats.roc, 4124 "Oversized Packets Received"); 4125 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber", 4126 CTLFLAG_RD, &adapter->stats.rjc, 4127 "Recevied Jabber"); 4128 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs", 4129 CTLFLAG_RD, &adapter->stats.rxerrc, 4130 "Receive Errors"); 4131 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs", 4132 CTLFLAG_RD, &adapter->stats.crcerrs, 4133 "CRC errors"); 4134 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs", 4135 CTLFLAG_RD, &adapter->stats.algnerrc, 4136 "Alignment Errors"); 4137 /* On 82575 these are collision counts */ 4138 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs", 4139 CTLFLAG_RD, &adapter->stats.cexterr, 4140 "Collision/Carrier extension errors"); 4141 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd", 4142 CTLFLAG_RD, &adapter->stats.xonrxc, 4143 "XON Received"); 4144 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd", 4145 CTLFLAG_RD, &adapter->stats.xontxc, 4146 "XON Transmitted"); 4147 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd", 4148 CTLFLAG_RD, &adapter->stats.xoffrxc, 4149 "XOFF Received"); 4150 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd", 4151 CTLFLAG_RD, &adapter->stats.xofftxc, 4152 "XOFF Transmitted"); 4153 4154 /* Packet Reception Stats */ 4155 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd", 4156 CTLFLAG_RD, &adapter->stats.tpr, 4157 "Total Packets Received "); 4158 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd", 4159 CTLFLAG_RD, &adapter->stats.gprc, 4160 "Good Packets Received"); 4161 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd", 4162 CTLFLAG_RD, &adapter->stats.bprc, 4163 "Broadcast Packets Received"); 4164 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd", 4165 CTLFLAG_RD, &adapter->stats.mprc, 4166 "Multicast Packets Received"); 4167 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64", 4168 CTLFLAG_RD, &adapter->stats.prc64, 4169 "64 byte frames received "); 4170 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127", 4171 CTLFLAG_RD, &adapter->stats.prc127, 4172 "65-127 byte frames received"); 4173 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255", 4174 CTLFLAG_RD, &adapter->stats.prc255, 4175 "128-255 byte frames received"); 4176 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511", 4177 CTLFLAG_RD, &adapter->stats.prc511, 4178 "256-511 byte frames received"); 4179 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023", 4180 CTLFLAG_RD, &adapter->stats.prc1023, 4181 "512-1023 byte frames received"); 4182 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522", 4183 CTLFLAG_RD, &adapter->stats.prc1522, 4184 "1023-1522 byte frames received"); 4185 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd", 4186 CTLFLAG_RD, &adapter->stats.gorc, 4187 "Good Octets Received"); 4188 4189 /* Packet Transmission Stats */ 4190 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd", 4191 CTLFLAG_RD, &adapter->stats.gotc, 4192 "Good Octets Transmitted"); 4193 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd", 4194 CTLFLAG_RD, &adapter->stats.tpt, 4195 "Total Packets Transmitted"); 4196 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd", 4197 CTLFLAG_RD, &adapter->stats.gptc, 4198 "Good Packets Transmitted"); 4199 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd", 4200 CTLFLAG_RD, &adapter->stats.bptc, 4201 "Broadcast Packets Transmitted"); 4202 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd", 4203 CTLFLAG_RD, &adapter->stats.mptc, 4204 "Multicast Packets Transmitted"); 4205 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64", 4206 CTLFLAG_RD, &adapter->stats.ptc64, 4207 "64 byte frames transmitted "); 4208 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127", 4209 CTLFLAG_RD, &adapter->stats.ptc127, 4210 "65-127 byte frames transmitted"); 4211 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255", 4212 CTLFLAG_RD, &adapter->stats.ptc255, 4213 "128-255 byte frames transmitted"); 4214 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511", 4215 CTLFLAG_RD, &adapter->stats.ptc511, 4216 "256-511 byte frames transmitted"); 4217 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023", 4218 CTLFLAG_RD, &adapter->stats.ptc1023, 4219 "512-1023 byte frames transmitted"); 4220 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522", 4221 CTLFLAG_RD, &adapter->stats.ptc1522, 4222 "1024-1522 byte frames transmitted"); 4223 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd", 4224 CTLFLAG_RD, &adapter->stats.tsctc, 4225 "TSO Contexts Transmitted"); 4226 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail", 4227 CTLFLAG_RD, &adapter->stats.tsctfc, 4228 "TSO Contexts Failed"); 4229 4230 4231 /* Interrupt Stats */ 4232 4233 int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts", 4234 CTLFLAG_RD, NULL, "Interrupt Statistics"); 4235 int_list = SYSCTL_CHILDREN(int_node); 4236 4237 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts", 4238 CTLFLAG_RD, &adapter->stats.iac, 4239 "Interrupt Assertion Count"); 4240 4241 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer", 4242 CTLFLAG_RD, &adapter->stats.icrxptc, 4243 "Interrupt Cause Rx Pkt Timer Expire Count"); 4244 4245 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer", 4246 CTLFLAG_RD, &adapter->stats.icrxatc, 4247 "Interrupt Cause Rx Abs Timer Expire Count"); 4248 4249 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer", 4250 CTLFLAG_RD, &adapter->stats.ictxptc, 4251 "Interrupt Cause Tx Pkt Timer Expire Count"); 4252 4253 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer", 4254 CTLFLAG_RD, &adapter->stats.ictxatc, 4255 "Interrupt Cause Tx Abs Timer Expire Count"); 4256 4257 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty", 4258 CTLFLAG_RD, &adapter->stats.ictxqec, 4259 "Interrupt Cause Tx Queue Empty Count"); 4260 4261 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh", 4262 CTLFLAG_RD, &adapter->stats.ictxqmtc, 4263 "Interrupt Cause Tx Queue Min Thresh Count"); 4264 4265 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh", 4266 CTLFLAG_RD, &adapter->stats.icrxdmtc, 4267 "Interrupt Cause Rx Desc Min Thresh Count"); 4268 4269 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun", 4270 CTLFLAG_RD, &adapter->stats.icrxoc, 4271 "Interrupt Cause Receiver Overrun Count"); 4272 } 4273 4274 /********************************************************************** 4275 * 4276 * This routine provides a way to dump out the adapter eeprom, 4277 * often a useful debug/service tool. This only dumps the first 4278 * 32 words, stuff that matters is in that extent. 4279 * 4280 **********************************************************************/ 4281 static int 4282 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS) 4283 { 4284 struct adapter *adapter = (struct adapter *)arg1; 4285 int error; 4286 int result; 4287 4288 result = -1; 4289 error = sysctl_handle_int(oidp, &result, 0, req); 4290 4291 if (error || !req->newptr) 4292 return (error); 4293 4294 /* 4295 * This value will cause a hex dump of the 4296 * first 32 16-bit words of the EEPROM to 4297 * the screen. 4298 */ 4299 if (result == 1) 4300 em_print_nvm_info(adapter); 4301 4302 return (error); 4303 } 4304 4305 static void 4306 em_print_nvm_info(struct adapter *adapter) 4307 { 4308 u16 eeprom_data; 4309 int i, j, row = 0; 4310 4311 /* Its a bit crude, but it gets the job done */ 4312 printf("\nInterface EEPROM Dump:\n"); 4313 printf("Offset\n0x0000 "); 4314 for (i = 0, j = 0; i < 32; i++, j++) { 4315 if (j == 8) { /* Make the offset block */ 4316 j = 0; ++row; 4317 printf("\n0x00%x0 ",row); 4318 } 4319 e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data); 4320 printf("%04x ", eeprom_data); 4321 } 4322 printf("\n"); 4323 } 4324 4325 static int 4326 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS) 4327 { 4328 struct em_int_delay_info *info; 4329 struct adapter *adapter; 4330 u32 regval; 4331 int error, usecs, ticks; 4332 4333 info = (struct em_int_delay_info *) arg1; 4334 usecs = info->value; 4335 error = sysctl_handle_int(oidp, &usecs, 0, req); 4336 if (error != 0 || req->newptr == NULL) 4337 return (error); 4338 if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535)) 4339 return (EINVAL); 4340 info->value = usecs; 4341 ticks = EM_USECS_TO_TICKS(usecs); 4342 if (info->offset == E1000_ITR) /* units are 256ns here */ 4343 ticks *= 4; 4344 4345 adapter = info->adapter; 4346 4347 regval = E1000_READ_OFFSET(&adapter->hw, info->offset); 4348 regval = (regval & ~0xffff) | (ticks & 0xffff); 4349 /* Handle a few special cases. */ 4350 switch (info->offset) { 4351 case E1000_RDTR: 4352 break; 4353 case E1000_TIDV: 4354 if (ticks == 0) { 4355 adapter->txd_cmd &= ~E1000_TXD_CMD_IDE; 4356 /* Don't write 0 into the TIDV register. */ 4357 regval++; 4358 } else 4359 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 4360 break; 4361 } 4362 E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval); 4363 return (0); 4364 } 4365 4366 static void 4367 em_add_int_delay_sysctl(struct adapter *adapter, const char *name, 4368 const char *description, struct em_int_delay_info *info, 4369 int offset, int value) 4370 { 4371 info->adapter = adapter; 4372 info->offset = offset; 4373 info->value = value; 4374 SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev), 4375 SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)), 4376 OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, 4377 info, 0, em_sysctl_int_delay, "I", description); 4378 } 4379 4380 /* 4381 * Set flow control using sysctl: 4382 * Flow control values: 4383 * 0 - off 4384 * 1 - rx pause 4385 * 2 - tx pause 4386 * 3 - full 4387 */ 4388 static int 4389 em_set_flowcntl(SYSCTL_HANDLER_ARGS) 4390 { 4391 int error; 4392 static int input = 3; /* default is full */ 4393 struct adapter *adapter = (struct adapter *) arg1; 4394 4395 error = sysctl_handle_int(oidp, &input, 0, req); 4396 4397 if ((error) || (req->newptr == NULL)) 4398 return (error); 4399 4400 if (input == adapter->fc) /* no change? */ 4401 return (error); 4402 4403 switch (input) { 4404 case e1000_fc_rx_pause: 4405 case e1000_fc_tx_pause: 4406 case e1000_fc_full: 4407 case e1000_fc_none: 4408 adapter->hw.fc.requested_mode = input; 4409 adapter->fc = input; 4410 break; 4411 default: 4412 /* Do nothing */ 4413 return (error); 4414 } 4415 4416 adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode; 4417 e1000_force_mac_fc(&adapter->hw); 4418 return (error); 4419 } 4420 4421 /* 4422 * Manage Energy Efficient Ethernet: 4423 * Control values: 4424 * 0/1 - enabled/disabled 4425 */ 4426 static int 4427 em_sysctl_eee(SYSCTL_HANDLER_ARGS) 4428 { 4429 struct adapter *adapter = (struct adapter *) arg1; 4430 int error, value; 4431 4432 value = adapter->hw.dev_spec.ich8lan.eee_disable; 4433 error = sysctl_handle_int(oidp, &value, 0, req); 4434 if (error || req->newptr == NULL) 4435 return (error); 4436 adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0); 4437 em_if_init(adapter->ctx); 4438 4439 return (0); 4440 } 4441 4442 static int 4443 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS) 4444 { 4445 struct adapter *adapter; 4446 int error; 4447 int result; 4448 4449 result = -1; 4450 error = sysctl_handle_int(oidp, &result, 0, req); 4451 4452 if (error || !req->newptr) 4453 return (error); 4454 4455 if (result == 1) { 4456 adapter = (struct adapter *) arg1; 4457 em_print_debug_info(adapter); 4458 } 4459 4460 return (error); 4461 } 4462 4463 static int 4464 em_get_rs(SYSCTL_HANDLER_ARGS) 4465 { 4466 struct adapter *adapter = (struct adapter *) arg1; 4467 int error; 4468 int result; 4469 4470 result = 0; 4471 error = sysctl_handle_int(oidp, &result, 0, req); 4472 4473 if (error || !req->newptr || result != 1) 4474 return (error); 4475 em_dump_rs(adapter); 4476 4477 return (error); 4478 } 4479 4480 static void 4481 em_if_debug(if_ctx_t ctx) 4482 { 4483 em_dump_rs(iflib_get_softc(ctx)); 4484 } 4485 4486 /* 4487 * This routine is meant to be fluid, add whatever is 4488 * needed for debugging a problem. -jfv 4489 */ 4490 static void 4491 em_print_debug_info(struct adapter *adapter) 4492 { 4493 device_t dev = iflib_get_dev(adapter->ctx); 4494 struct ifnet *ifp = iflib_get_ifp(adapter->ctx); 4495 struct tx_ring *txr = &adapter->tx_queues->txr; 4496 struct rx_ring *rxr = &adapter->rx_queues->rxr; 4497 4498 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 4499 printf("Interface is RUNNING "); 4500 else 4501 printf("Interface is NOT RUNNING\n"); 4502 4503 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) 4504 printf("and INACTIVE\n"); 4505 else 4506 printf("and ACTIVE\n"); 4507 4508 for (int i = 0; i < adapter->tx_num_queues; i++, txr++) { 4509 device_printf(dev, "TX Queue %d ------\n", i); 4510 device_printf(dev, "hw tdh = %d, hw tdt = %d\n", 4511 E1000_READ_REG(&adapter->hw, E1000_TDH(i)), 4512 E1000_READ_REG(&adapter->hw, E1000_TDT(i))); 4513 4514 } 4515 for (int j=0; j < adapter->rx_num_queues; j++, rxr++) { 4516 device_printf(dev, "RX Queue %d ------\n", j); 4517 device_printf(dev, "hw rdh = %d, hw rdt = %d\n", 4518 E1000_READ_REG(&adapter->hw, E1000_RDH(j)), 4519 E1000_READ_REG(&adapter->hw, E1000_RDT(j))); 4520 } 4521 } 4522 4523 /* 4524 * 82574 only: 4525 * Write a new value to the EEPROM increasing the number of MSI-X 4526 * vectors from 3 to 5, for proper multiqueue support. 4527 */ 4528 static void 4529 em_enable_vectors_82574(if_ctx_t ctx) 4530 { 4531 struct adapter *adapter = iflib_get_softc(ctx); 4532 struct e1000_hw *hw = &adapter->hw; 4533 device_t dev = iflib_get_dev(ctx); 4534 u16 edata; 4535 4536 e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata); 4537 if (bootverbose) 4538 device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata); 4539 if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) { 4540 device_printf(dev, "Writing to eeprom: increasing " 4541 "reported MSI-X vectors from 3 to 5...\n"); 4542 edata &= ~(EM_NVM_MSIX_N_MASK); 4543 edata |= 4 << EM_NVM_MSIX_N_SHIFT; 4544 e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata); 4545 e1000_update_nvm_checksum(hw); 4546 device_printf(dev, "Writing to eeprom: done\n"); 4547 } 4548 } 4549