xref: /freebsd/sys/dev/e1000/if_em.c (revision 052d159a8b83f03d7dc5eb31cd9a9b4a6fe3d9da)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* $FreeBSD$ */
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33 
34 #define em_mac_min e1000_82547
35 #define igb_mac_min e1000_82575
36 
37 /*********************************************************************
38  *  Driver version:
39  *********************************************************************/
40 char em_driver_version[] = "7.6.1-k";
41 
42 /*********************************************************************
43  *  PCI Device ID Table
44  *
45  *  Used by probe to select devices to load on
46  *  Last field stores an index into e1000_strings
47  *  Last entry must be all 0s
48  *
49  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
50  *********************************************************************/
51 
52 static pci_vendor_info_t em_vendor_info_array[] =
53 {
54 	/* Intel(R) PRO/1000 Network Connection - Legacy em*/
55 	PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) PRO/1000 Network Connection"),
56 	PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) PRO/1000 Network Connection"),
57 	PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) PRO/1000 Network Connection"),
58 	PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) PRO/1000 Network Connection"),
59 	PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) PRO/1000 Network Connection"),
60 
61 	PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) PRO/1000 Network Connection"),
62 	PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) PRO/1000 Network Connection"),
63 	PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) PRO/1000 Network Connection"),
64 	PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
65 	PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) PRO/1000 Network Connection"),
66 	PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) PRO/1000 Network Connection"),
67 	PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
68 
69 	PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) PRO/1000 Network Connection"),
70 
71 	PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) PRO/1000 Network Connection"),
72 	PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
73 
74 	PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
75 	PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
76 	PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
77 	PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) PRO/1000 Network Connection"),
78 
79 	PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) PRO/1000 Network Connection"),
80 	PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) PRO/1000 Network Connection"),
81 	PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) PRO/1000 Network Connection"),
82 	PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) PRO/1000 Network Connection"),
83 	PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) PRO/1000 Network Connection"),
84 
85 	PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
86 	PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
87 	PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
88 	PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) PRO/1000 Network Connection"),
89 	PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) PRO/1000 Network Connection"),
90 	PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) PRO/1000 Network Connection"),
91 	PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) PRO/1000 Network Connection"),
92 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
93 	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) PRO/1000 Network Connection"),
94 
95 	PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) PRO/1000 Network Connection"),
96 	PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
97 	PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) PRO/1000 Network Connection"),
98 
99 	/* Intel(R) PRO/1000 Network Connection - em */
100 	PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
101 	PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
102 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 Network Connection"),
103 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 Network Connection"),
104 	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 Network Connection"),
105 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
106 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 Network Connection"),
107 	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 Network Connection"),
108 	PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
109 	PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 Network Connection"),
110 	PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
111 	PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
112 	PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 Network Connection"),
113 	PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 Network Connection"),
114 	PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 Network Connection"),
115 	PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 Network Connection"),
116 	PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) PRO/1000 Network Connection"),
117 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) PRO/1000 Network Connection"),
118 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) PRO/1000 Network Connection"),
119 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) PRO/1000 Network Connection"),
120 	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) PRO/1000 Network Connection"),
121 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
122 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
123 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) PRO/1000 Network Connection"),
124 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) PRO/1000 Network Connection"),
125 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
126 	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) PRO/1000 Network Connection"),
127 	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) PRO/1000 Network Connection"),
128 	PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) PRO/1000 Network Connection"),
129 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
130 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
131 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) PRO/1000 Network Connection"),
132 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) PRO/1000 Network Connection"),
133 	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) PRO/1000 Network Connection"),
134 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) PRO/1000 Network Connection"),
135 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
136 	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) PRO/1000 Network Connection"),
137 	PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) PRO/1000 Network Connection"),
138 	PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) PRO/1000 Network Connection"),
139 	PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) PRO/1000 Network Connection"),
140 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) PRO/1000 Network Connection"),
141 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) PRO/1000 Network Connection"),
142 	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) PRO/1000 Network Connection"),
143 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) PRO/1000 Network Connection"),
144 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) PRO/1000 Network Connection"),
145 	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) PRO/1000 Network Connection"),
146 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) PRO/1000 Network Connection"),
147 	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) PRO/1000 Network Connection"),
148 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) PRO/1000 Network Connection"),
149 	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) PRO/1000 Network Connection"),
150 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) PRO/1000 Network Connection"),
151 	PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) PRO/1000 Network Connection"),
152 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) PRO/1000 Network Connection"),
153 	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) PRO/1000 Network Connection"),
154 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) PRO/1000 Network Connection"),
155 	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) PRO/1000 Network Connection"),
156 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) PRO/1000 Network Connection"),
157 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) PRO/1000 Network Connection"),
158 	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) PRO/1000 Network Connection"),
159 	PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) PRO/1000 Network Connection"),
160 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) PRO/1000 Network Connection"),
161 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) PRO/1000 Network Connection"),
162 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) PRO/1000 Network Connection"),
163 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) PRO/1000 Network Connection"),
164 	PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) PRO/1000 Network Connection"),
165 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) PRO/1000 Network Connection"),
166 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) PRO/1000 Network Connection"),
167 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) PRO/1000 Network Connection"),
168 	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) PRO/1000 Network Connection"),
169 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) PRO/1000 Network Connection"),
170 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) PRO/1000 Network Connection"),
171 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) PRO/1000 Network Connection"),
172 	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) PRO/1000 Network Connection"),
173 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) PRO/1000 Network Connection"),
174 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) PRO/1000 Network Connection"),
175 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) PRO/1000 Network Connection"),
176 	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) PRO/1000 Network Connection"),
177 	/* required last entry */
178 	PVID_END
179 };
180 
181 static pci_vendor_info_t igb_vendor_info_array[] =
182 {
183 	/* Intel(R) PRO/1000 Network Connection - igb */
184 	PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
185 	PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
186 	PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
187 	PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 PCI-Express Network Driver"),
188 	PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
189 	PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
190 	PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
191 	PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
192 	PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 PCI-Express Network Driver"),
193 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
194 	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 PCI-Express Network Driver"),
195 	PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
196 	PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
197 	PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
198 	PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
199 	PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
200 	PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) PRO/1000 PCI-Express Network Driver"),
201 	PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
202 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
203 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
204 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) PRO/1000 PCI-Express Network Driver"),
205 	PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) PRO/1000 PCI-Express Network Driver"),
206 	PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
207 	PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
208 	PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
209 	PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
210 	PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
211 	PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
212 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) PRO/1000 PCI-Express Network Driver"),
213 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) PRO/1000 PCI-Express Network Driver"),
214 	PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
215 	PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
216 	PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
217 	PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
218 	PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
219 	PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
220 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
221 	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
222 	PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
223 	/* required last entry */
224 	PVID_END
225 };
226 
227 /*********************************************************************
228  *  Function prototypes
229  *********************************************************************/
230 static void	*em_register(device_t dev);
231 static void	*igb_register(device_t dev);
232 static int	em_if_attach_pre(if_ctx_t ctx);
233 static int	em_if_attach_post(if_ctx_t ctx);
234 static int	em_if_detach(if_ctx_t ctx);
235 static int	em_if_shutdown(if_ctx_t ctx);
236 static int	em_if_suspend(if_ctx_t ctx);
237 static int	em_if_resume(if_ctx_t ctx);
238 
239 static int	em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets);
240 static int	em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets);
241 static void	em_if_queues_free(if_ctx_t ctx);
242 
243 static uint64_t	em_if_get_counter(if_ctx_t, ift_counter);
244 static void	em_if_init(if_ctx_t ctx);
245 static void	em_if_stop(if_ctx_t ctx);
246 static void	em_if_media_status(if_ctx_t, struct ifmediareq *);
247 static int	em_if_media_change(if_ctx_t ctx);
248 static int	em_if_mtu_set(if_ctx_t ctx, uint32_t mtu);
249 static void	em_if_timer(if_ctx_t ctx, uint16_t qid);
250 static void	em_if_vlan_register(if_ctx_t ctx, u16 vtag);
251 static void	em_if_vlan_unregister(if_ctx_t ctx, u16 vtag);
252 static void	em_if_watchdog_reset(if_ctx_t ctx);
253 
254 static void	em_identify_hardware(if_ctx_t ctx);
255 static int	em_allocate_pci_resources(if_ctx_t ctx);
256 static void	em_free_pci_resources(if_ctx_t ctx);
257 static void	em_reset(if_ctx_t ctx);
258 static int	em_setup_interface(if_ctx_t ctx);
259 static int	em_setup_msix(if_ctx_t ctx);
260 
261 static void	em_initialize_transmit_unit(if_ctx_t ctx);
262 static void	em_initialize_receive_unit(if_ctx_t ctx);
263 
264 static void	em_if_enable_intr(if_ctx_t ctx);
265 static void	em_if_disable_intr(if_ctx_t ctx);
266 static int	em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
267 static int	em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
268 static void	em_if_multi_set(if_ctx_t ctx);
269 static void	em_if_update_admin_status(if_ctx_t ctx);
270 static void	em_if_debug(if_ctx_t ctx);
271 static void	em_update_stats_counters(struct adapter *);
272 static void	em_add_hw_stats(struct adapter *adapter);
273 static int	em_if_set_promisc(if_ctx_t ctx, int flags);
274 static void	em_setup_vlan_hw_support(struct adapter *);
275 static int	em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
276 static void	em_print_nvm_info(struct adapter *);
277 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
278 static int	em_get_rs(SYSCTL_HANDLER_ARGS);
279 static void	em_print_debug_info(struct adapter *);
280 static int 	em_is_valid_ether_addr(u8 *);
281 static int	em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
282 static void	em_add_int_delay_sysctl(struct adapter *, const char *,
283 		    const char *, struct em_int_delay_info *, int, int);
284 /* Management and WOL Support */
285 static void	em_init_manageability(struct adapter *);
286 static void	em_release_manageability(struct adapter *);
287 static void	em_get_hw_control(struct adapter *);
288 static void	em_release_hw_control(struct adapter *);
289 static void	em_get_wakeup(if_ctx_t ctx);
290 static void	em_enable_wakeup(if_ctx_t ctx);
291 static int	em_enable_phy_wakeup(struct adapter *);
292 static void	em_disable_aspm(struct adapter *);
293 
294 int		em_intr(void *arg);
295 static void	em_disable_promisc(if_ctx_t ctx);
296 
297 /* MSI-X handlers */
298 static int	em_if_msix_intr_assign(if_ctx_t, int);
299 static int	em_msix_link(void *);
300 static void	em_handle_link(void *context);
301 
302 static void	em_enable_vectors_82574(if_ctx_t);
303 
304 static int	em_set_flowcntl(SYSCTL_HANDLER_ARGS);
305 static int	em_sysctl_eee(SYSCTL_HANDLER_ARGS);
306 static void	em_if_led_func(if_ctx_t ctx, int onoff);
307 
308 static int	em_get_regs(SYSCTL_HANDLER_ARGS);
309 
310 static void	lem_smartspeed(struct adapter *adapter);
311 static void	igb_configure_queues(struct adapter *adapter);
312 
313 
314 /*********************************************************************
315  *  FreeBSD Device Interface Entry Points
316  *********************************************************************/
317 static device_method_t em_methods[] = {
318 	/* Device interface */
319 	DEVMETHOD(device_register, em_register),
320 	DEVMETHOD(device_probe, iflib_device_probe),
321 	DEVMETHOD(device_attach, iflib_device_attach),
322 	DEVMETHOD(device_detach, iflib_device_detach),
323 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
324 	DEVMETHOD(device_suspend, iflib_device_suspend),
325 	DEVMETHOD(device_resume, iflib_device_resume),
326 	DEVMETHOD_END
327 };
328 
329 static device_method_t igb_methods[] = {
330 	/* Device interface */
331 	DEVMETHOD(device_register, igb_register),
332 	DEVMETHOD(device_probe, iflib_device_probe),
333 	DEVMETHOD(device_attach, iflib_device_attach),
334 	DEVMETHOD(device_detach, iflib_device_detach),
335 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
336 	DEVMETHOD(device_suspend, iflib_device_suspend),
337 	DEVMETHOD(device_resume, iflib_device_resume),
338 	DEVMETHOD_END
339 };
340 
341 
342 static driver_t em_driver = {
343 	"em", em_methods, sizeof(struct adapter),
344 };
345 
346 static devclass_t em_devclass;
347 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
348 
349 MODULE_DEPEND(em, pci, 1, 1, 1);
350 MODULE_DEPEND(em, ether, 1, 1, 1);
351 MODULE_DEPEND(em, iflib, 1, 1, 1);
352 
353 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
354 
355 static driver_t igb_driver = {
356 	"igb", igb_methods, sizeof(struct adapter),
357 };
358 
359 static devclass_t igb_devclass;
360 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
361 
362 MODULE_DEPEND(igb, pci, 1, 1, 1);
363 MODULE_DEPEND(igb, ether, 1, 1, 1);
364 MODULE_DEPEND(igb, iflib, 1, 1, 1);
365 
366 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
367 
368 static device_method_t em_if_methods[] = {
369 	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
370 	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
371 	DEVMETHOD(ifdi_detach, em_if_detach),
372 	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
373 	DEVMETHOD(ifdi_suspend, em_if_suspend),
374 	DEVMETHOD(ifdi_resume, em_if_resume),
375 	DEVMETHOD(ifdi_init, em_if_init),
376 	DEVMETHOD(ifdi_stop, em_if_stop),
377 	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
378 	DEVMETHOD(ifdi_intr_enable, em_if_enable_intr),
379 	DEVMETHOD(ifdi_intr_disable, em_if_disable_intr),
380 	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
381 	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
382 	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
383 	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
384 	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
385 	DEVMETHOD(ifdi_media_status, em_if_media_status),
386 	DEVMETHOD(ifdi_media_change, em_if_media_change),
387 	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
388 	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
389 	DEVMETHOD(ifdi_timer, em_if_timer),
390 	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
391 	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
392 	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
393 	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
394 	DEVMETHOD(ifdi_led_func, em_if_led_func),
395 	DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
396 	DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
397 	DEVMETHOD(ifdi_debug, em_if_debug),
398 	DEVMETHOD_END
399 };
400 
401 /*
402  * note that if (adapter->msix_mem) is replaced by:
403  * if (adapter->intr_type == IFLIB_INTR_MSIX)
404  */
405 static driver_t em_if_driver = {
406 	"em_if", em_if_methods, sizeof(struct adapter)
407 };
408 
409 /*********************************************************************
410  *  Tunable default values.
411  *********************************************************************/
412 
413 #define EM_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
414 #define EM_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
415 
416 #define MAX_INTS_PER_SEC	8000
417 #define DEFAULT_ITR		(1000000000/(MAX_INTS_PER_SEC * 256))
418 
419 /* Allow common code without TSO */
420 #ifndef CSUM_TSO
421 #define CSUM_TSO	0
422 #endif
423 
424 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD, 0, "EM driver parameters");
425 
426 static int em_disable_crc_stripping = 0;
427 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
428     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
429 
430 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
431 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
432 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
433     0, "Default transmit interrupt delay in usecs");
434 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
435     0, "Default receive interrupt delay in usecs");
436 
437 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
438 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
439 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
440     &em_tx_abs_int_delay_dflt, 0,
441     "Default transmit interrupt delay limit in usecs");
442 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
443     &em_rx_abs_int_delay_dflt, 0,
444     "Default receive interrupt delay limit in usecs");
445 
446 static int em_smart_pwr_down = FALSE;
447 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
448     0, "Set to true to leave smart power down enabled on newer adapters");
449 
450 /* Controls whether promiscuous also shows bad packets */
451 static int em_debug_sbp = TRUE;
452 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
453     "Show bad packets in promiscuous mode");
454 
455 /* How many packets rxeof tries to clean at a time */
456 static int em_rx_process_limit = 100;
457 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
458     &em_rx_process_limit, 0,
459     "Maximum number of received packets to process "
460     "at a time, -1 means unlimited");
461 
462 /* Energy efficient ethernet - default to OFF */
463 static int eee_setting = 1;
464 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
465     "Enable Energy Efficient Ethernet");
466 
467 /*
468 ** Tuneable Interrupt rate
469 */
470 static int em_max_interrupt_rate = 8000;
471 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
472     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
473 
474 
475 
476 /* Global used in WOL setup with multiport cards */
477 static int global_quad_port_a = 0;
478 
479 extern struct if_txrx igb_txrx;
480 extern struct if_txrx em_txrx;
481 extern struct if_txrx lem_txrx;
482 
483 static struct if_shared_ctx em_sctx_init = {
484 	.isc_magic = IFLIB_MAGIC,
485 	.isc_q_align = PAGE_SIZE,
486 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
487 	.isc_tx_maxsegsize = PAGE_SIZE,
488 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
489 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
490 	.isc_rx_maxsize = MJUM9BYTES,
491 	.isc_rx_nsegments = 1,
492 	.isc_rx_maxsegsize = MJUM9BYTES,
493 	.isc_nfl = 1,
494 	.isc_nrxqs = 1,
495 	.isc_ntxqs = 1,
496 	.isc_admin_intrcnt = 1,
497 	.isc_vendor_info = em_vendor_info_array,
498 	.isc_driver_version = em_driver_version,
499 	.isc_driver = &em_if_driver,
500 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
501 
502 	.isc_nrxd_min = {EM_MIN_RXD},
503 	.isc_ntxd_min = {EM_MIN_TXD},
504 	.isc_nrxd_max = {EM_MAX_RXD},
505 	.isc_ntxd_max = {EM_MAX_TXD},
506 	.isc_nrxd_default = {EM_DEFAULT_RXD},
507 	.isc_ntxd_default = {EM_DEFAULT_TXD},
508 };
509 
510 if_shared_ctx_t em_sctx = &em_sctx_init;
511 
512 static struct if_shared_ctx igb_sctx_init = {
513 	.isc_magic = IFLIB_MAGIC,
514 	.isc_q_align = PAGE_SIZE,
515 	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
516 	.isc_tx_maxsegsize = PAGE_SIZE,
517 	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
518 	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
519 	.isc_rx_maxsize = MJUM9BYTES,
520 	.isc_rx_nsegments = 1,
521 	.isc_rx_maxsegsize = MJUM9BYTES,
522 	.isc_nfl = 1,
523 	.isc_nrxqs = 1,
524 	.isc_ntxqs = 1,
525 	.isc_admin_intrcnt = 1,
526 	.isc_vendor_info = igb_vendor_info_array,
527 	.isc_driver_version = em_driver_version,
528 	.isc_driver = &em_if_driver,
529 	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
530 
531 	.isc_nrxd_min = {EM_MIN_RXD},
532 	.isc_ntxd_min = {EM_MIN_TXD},
533 	.isc_nrxd_max = {IGB_MAX_RXD},
534 	.isc_ntxd_max = {IGB_MAX_TXD},
535 	.isc_nrxd_default = {EM_DEFAULT_RXD},
536 	.isc_ntxd_default = {EM_DEFAULT_TXD},
537 };
538 
539 if_shared_ctx_t igb_sctx = &igb_sctx_init;
540 
541 /*****************************************************************
542  *
543  * Dump Registers
544  *
545  ****************************************************************/
546 #define IGB_REGS_LEN 739
547 
548 static int em_get_regs(SYSCTL_HANDLER_ARGS)
549 {
550 	struct adapter *adapter = (struct adapter *)arg1;
551 	struct e1000_hw *hw = &adapter->hw;
552 	struct sbuf *sb;
553 	u32 *regs_buff;
554 	int rc;
555 
556 	regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
557 	memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
558 
559 	rc = sysctl_wire_old_buffer(req, 0);
560 	MPASS(rc == 0);
561 	if (rc != 0) {
562 		free(regs_buff, M_DEVBUF);
563 		return (rc);
564 	}
565 
566 	sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
567 	MPASS(sb != NULL);
568 	if (sb == NULL) {
569 		free(regs_buff, M_DEVBUF);
570 		return (ENOMEM);
571 	}
572 
573 	/* General Registers */
574 	regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
575 	regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
576 	regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
577 	regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
578 	regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
579 	regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
580 	regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
581 	regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
582 	regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
583 	regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
584 	regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
585 	regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
586 	regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
587 	regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
588 	regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
589 	regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
590 	regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
591 	regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
592 	regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
593 	regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
594 	regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
595 	regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
596 
597 	sbuf_printf(sb, "General Registers\n");
598 	sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
599 	sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
600 	sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]);
601 
602 	sbuf_printf(sb, "Interrupt Registers\n");
603 	sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
604 
605 	sbuf_printf(sb, "RX Registers\n");
606 	sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
607 	sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
608 	sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
609 	sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
610 	sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
611 	sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
612 	sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
613 
614 	sbuf_printf(sb, "TX Registers\n");
615 	sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
616 	sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
617 	sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
618 	sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
619 	sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
620 	sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
621 	sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
622 	sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
623 	sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
624 	sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
625 	sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
626 
627 	free(regs_buff, M_DEVBUF);
628 
629 #ifdef DUMP_DESCS
630 	{
631 		if_softc_ctx_t scctx = adapter->shared;
632 		struct rx_ring *rxr = &rx_que->rxr;
633 		struct tx_ring *txr = &tx_que->txr;
634 		int ntxd = scctx->isc_ntxd[0];
635 		int nrxd = scctx->isc_nrxd[0];
636 		int j;
637 
638 	for (j = 0; j < nrxd; j++) {
639 		u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
640 		u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
641 		sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
642 	}
643 
644 	for (j = 0; j < min(ntxd, 256); j++) {
645 		unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
646 
647 		sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
648 			    j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
649 			    buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
650 
651 	}
652 	}
653 #endif
654 
655 	rc = sbuf_finish(sb);
656 	sbuf_delete(sb);
657 	return(rc);
658 }
659 
660 static void *
661 em_register(device_t dev)
662 {
663 	return (em_sctx);
664 }
665 
666 static void *
667 igb_register(device_t dev)
668 {
669 	return (igb_sctx);
670 }
671 
672 static int
673 em_set_num_queues(if_ctx_t ctx)
674 {
675 	struct adapter *adapter = iflib_get_softc(ctx);
676 	int maxqueues;
677 
678 	/* Sanity check based on HW */
679 	switch (adapter->hw.mac.type) {
680 	case e1000_82576:
681 	case e1000_82580:
682 	case e1000_i350:
683 	case e1000_i354:
684 		maxqueues = 8;
685 		break;
686 	case e1000_i210:
687 	case e1000_82575:
688 		maxqueues = 4;
689 		break;
690 	case e1000_i211:
691 	case e1000_82574:
692 		maxqueues = 2;
693 		break;
694 	default:
695 		maxqueues = 1;
696 		break;
697 	}
698 
699 	return (maxqueues);
700 }
701 
702 #define	LEM_CAPS							\
703     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
704     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER
705 
706 #define	EM_CAPS								\
707     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
708     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |	\
709     IFCAP_LRO | IFCAP_VLAN_HWTSO
710 
711 #define	IGB_CAPS							\
712     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
713     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |	\
714     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 |\
715     IFCAP_TSO6
716 
717 /*********************************************************************
718  *  Device initialization routine
719  *
720  *  The attach entry point is called when the driver is being loaded.
721  *  This routine identifies the type of hardware, allocates all resources
722  *  and initializes the hardware.
723  *
724  *  return 0 on success, positive on failure
725  *********************************************************************/
726 static int
727 em_if_attach_pre(if_ctx_t ctx)
728 {
729 	struct adapter *adapter;
730 	if_softc_ctx_t scctx;
731 	device_t dev;
732 	struct e1000_hw *hw;
733 	int error = 0;
734 
735 	INIT_DEBUGOUT("em_if_attach_pre: begin");
736 	dev = iflib_get_dev(ctx);
737 	adapter = iflib_get_softc(ctx);
738 
739 	adapter->ctx = adapter->osdep.ctx = ctx;
740 	adapter->dev = adapter->osdep.dev = dev;
741 	scctx = adapter->shared = iflib_get_softc_ctx(ctx);
742 	adapter->media = iflib_get_media(ctx);
743 	hw = &adapter->hw;
744 
745 	adapter->tx_process_limit = scctx->isc_ntxd[0];
746 
747 	/* SYSCTL stuff */
748 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
749 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
750 	    OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
751 	    em_sysctl_nvm_info, "I", "NVM Information");
752 
753 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
754 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
755 	    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
756 	    em_sysctl_debug_info, "I", "Debug Information");
757 
758 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
759 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
760 	    OID_AUTO, "fc", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
761 	    em_set_flowcntl, "I", "Flow Control");
762 
763 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
764 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
765 	    OID_AUTO, "reg_dump", CTLTYPE_STRING | CTLFLAG_RD, adapter, 0,
766 	    em_get_regs, "A", "Dump Registers");
767 
768 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
769 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
770 	    OID_AUTO, "rs_dump", CTLTYPE_INT | CTLFLAG_RW, adapter, 0,
771 	    em_get_rs, "I", "Dump RS indexes");
772 
773 	/* Determine hardware and mac info */
774 	em_identify_hardware(ctx);
775 
776 	scctx->isc_tx_nsegments = EM_MAX_SCATTER;
777 	scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
778 	if (bootverbose)
779 		device_printf(dev, "attach_pre capping queues at %d\n",
780 		    scctx->isc_ntxqsets_max);
781 
782 	if (adapter->hw.mac.type >= igb_mac_min) {
783 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
784 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
785 		scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
786 		scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
787 		scctx->isc_txrx = &igb_txrx;
788 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
789 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
790 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
791 		scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
792 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
793 		     CSUM_IP6_TCP | CSUM_IP6_UDP;
794 		if (adapter->hw.mac.type != e1000_82575)
795 			scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
796 		/*
797 		** Some new devices, as with ixgbe, now may
798 		** use a different BAR, so we need to keep
799 		** track of which is used.
800 		*/
801 		scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR);
802 		if (pci_read_config(dev, scctx->isc_msix_bar, 4) == 0)
803 			scctx->isc_msix_bar += 4;
804 	} else if (adapter->hw.mac.type >= em_mac_min) {
805 		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
806 		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
807 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
808 		scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
809 		scctx->isc_txrx = &em_txrx;
810 		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
811 		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
812 		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
813 		scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
814 		/*
815 		 * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO}
816 		 * by default as we don't have workarounds for all associated
817 		 * silicon errata.  E. g., with several MACs such as 82573E,
818 		 * TSO only works at Gigabit speed and otherwise can cause the
819 		 * hardware to hang (which also would be next to impossible to
820 		 * work around given that already queued TSO-using descriptors
821 		 * would need to be flushed and vlan(4) reconfigured at runtime
822 		 * in case of a link speed change).  Moreover, MACs like 82579
823 		 * still can hang at Gigabit even with all publicly documented
824 		 * TSO workarounds implemented.  Generally, the penality of
825 		 * these workarounds is rather high and may involve copying
826 		 * mbuf data around so advantages of TSO lapse.  Still, TSO may
827 		 * work for a few MACs of this class - at least when sticking
828 		 * with Gigabit - in which case users may enable TSO manually.
829 		 */
830 		scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
831 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
832 		/*
833 		 * We support MSI-X with 82574 only, but indicate to iflib(4)
834 		 * that it shall give MSI at least a try with other devices.
835 		 */
836 		if (adapter->hw.mac.type == e1000_82574) {
837 			scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR);
838 		} else {
839 			scctx->isc_msix_bar = -1;
840 			scctx->isc_disable_msix = 1;
841 		}
842 	} else {
843 		scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
844 		scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
845 		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
846 		scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
847 		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP;
848 		scctx->isc_txrx = &lem_txrx;
849 		scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
850 		if (adapter->hw.mac.type < e1000_82543)
851 			scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM);
852 		/* INTx only */
853 		scctx->isc_msix_bar = 0;
854 	}
855 
856 	/* Setup PCI resources */
857 	if (em_allocate_pci_resources(ctx)) {
858 		device_printf(dev, "Allocation of PCI resources failed\n");
859 		error = ENXIO;
860 		goto err_pci;
861 	}
862 
863 	/*
864 	** For ICH8 and family we need to
865 	** map the flash memory, and this
866 	** must happen after the MAC is
867 	** identified
868 	*/
869 	if ((hw->mac.type == e1000_ich8lan) ||
870 	    (hw->mac.type == e1000_ich9lan) ||
871 	    (hw->mac.type == e1000_ich10lan) ||
872 	    (hw->mac.type == e1000_pchlan) ||
873 	    (hw->mac.type == e1000_pch2lan) ||
874 	    (hw->mac.type == e1000_pch_lpt)) {
875 		int rid = EM_BAR_TYPE_FLASH;
876 		adapter->flash = bus_alloc_resource_any(dev,
877 		    SYS_RES_MEMORY, &rid, RF_ACTIVE);
878 		if (adapter->flash == NULL) {
879 			device_printf(dev, "Mapping of Flash failed\n");
880 			error = ENXIO;
881 			goto err_pci;
882 		}
883 		/* This is used in the shared code */
884 		hw->flash_address = (u8 *)adapter->flash;
885 		adapter->osdep.flash_bus_space_tag =
886 		    rman_get_bustag(adapter->flash);
887 		adapter->osdep.flash_bus_space_handle =
888 		    rman_get_bushandle(adapter->flash);
889 	}
890 	/*
891 	** In the new SPT device flash is not  a
892 	** separate BAR, rather it is also in BAR0,
893 	** so use the same tag and an offset handle for the
894 	** FLASH read/write macros in the shared code.
895 	*/
896 	else if (hw->mac.type >= e1000_pch_spt) {
897 		adapter->osdep.flash_bus_space_tag =
898 		    adapter->osdep.mem_bus_space_tag;
899 		adapter->osdep.flash_bus_space_handle =
900 		    adapter->osdep.mem_bus_space_handle
901 		    + E1000_FLASH_BASE_ADDR;
902 	}
903 
904 	/* Do Shared Code initialization */
905 	error = e1000_setup_init_funcs(hw, TRUE);
906 	if (error) {
907 		device_printf(dev, "Setup of Shared code failed, error %d\n",
908 		    error);
909 		error = ENXIO;
910 		goto err_pci;
911 	}
912 
913 	em_setup_msix(ctx);
914 	e1000_get_bus_info(hw);
915 
916 	/* Set up some sysctls for the tunable interrupt delays */
917 	em_add_int_delay_sysctl(adapter, "rx_int_delay",
918 	    "receive interrupt delay in usecs", &adapter->rx_int_delay,
919 	    E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
920 	em_add_int_delay_sysctl(adapter, "tx_int_delay",
921 	    "transmit interrupt delay in usecs", &adapter->tx_int_delay,
922 	    E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
923 	em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
924 	    "receive interrupt delay limit in usecs",
925 	    &adapter->rx_abs_int_delay,
926 	    E1000_REGISTER(hw, E1000_RADV),
927 	    em_rx_abs_int_delay_dflt);
928 	em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
929 	    "transmit interrupt delay limit in usecs",
930 	    &adapter->tx_abs_int_delay,
931 	    E1000_REGISTER(hw, E1000_TADV),
932 	    em_tx_abs_int_delay_dflt);
933 	em_add_int_delay_sysctl(adapter, "itr",
934 	    "interrupt delay limit in usecs/4",
935 	    &adapter->tx_itr,
936 	    E1000_REGISTER(hw, E1000_ITR),
937 	    DEFAULT_ITR);
938 
939 	hw->mac.autoneg = DO_AUTO_NEG;
940 	hw->phy.autoneg_wait_to_complete = FALSE;
941 	hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
942 
943 	if (adapter->hw.mac.type < em_mac_min) {
944 		e1000_init_script_state_82541(&adapter->hw, TRUE);
945 		e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
946 	}
947 	/* Copper options */
948 	if (hw->phy.media_type == e1000_media_type_copper) {
949 		hw->phy.mdix = AUTO_ALL_MODES;
950 		hw->phy.disable_polarity_correction = FALSE;
951 		hw->phy.ms_type = EM_MASTER_SLAVE;
952 	}
953 
954 	/*
955 	 * Set the frame limits assuming
956 	 * standard ethernet sized frames.
957 	 */
958 	scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
959 	    ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
960 
961 	/*
962 	 * This controls when hardware reports transmit completion
963 	 * status.
964 	 */
965 	hw->mac.report_tx_early = 1;
966 
967 	/* Allocate multicast array memory. */
968 	adapter->mta = malloc(sizeof(u8) * ETH_ADDR_LEN *
969 	    MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
970 	if (adapter->mta == NULL) {
971 		device_printf(dev, "Can not allocate multicast setup array\n");
972 		error = ENOMEM;
973 		goto err_late;
974 	}
975 
976 	/* Check SOL/IDER usage */
977 	if (e1000_check_reset_block(hw))
978 		device_printf(dev, "PHY reset is blocked"
979 			      " due to SOL/IDER session.\n");
980 
981 	/* Sysctl for setting Energy Efficient Ethernet */
982 	hw->dev_spec.ich8lan.eee_disable = eee_setting;
983 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
984 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
985 	    OID_AUTO, "eee_control", CTLTYPE_INT|CTLFLAG_RW,
986 	    adapter, 0, em_sysctl_eee, "I",
987 	    "Disable Energy Efficient Ethernet");
988 
989 	/*
990 	** Start from a known state, this is
991 	** important in reading the nvm and
992 	** mac from that.
993 	*/
994 	e1000_reset_hw(hw);
995 
996 	/* Make sure we have a good EEPROM before we read from it */
997 	if (e1000_validate_nvm_checksum(hw) < 0) {
998 		/*
999 		** Some PCI-E parts fail the first check due to
1000 		** the link being in sleep state, call it again,
1001 		** if it fails a second time its a real issue.
1002 		*/
1003 		if (e1000_validate_nvm_checksum(hw) < 0) {
1004 			device_printf(dev,
1005 			    "The EEPROM Checksum Is Not Valid\n");
1006 			error = EIO;
1007 			goto err_late;
1008 		}
1009 	}
1010 
1011 	/* Copy the permanent MAC address out of the EEPROM */
1012 	if (e1000_read_mac_addr(hw) < 0) {
1013 		device_printf(dev, "EEPROM read error while reading MAC"
1014 			      " address\n");
1015 		error = EIO;
1016 		goto err_late;
1017 	}
1018 
1019 	if (!em_is_valid_ether_addr(hw->mac.addr)) {
1020 		device_printf(dev, "Invalid MAC address\n");
1021 		error = EIO;
1022 		goto err_late;
1023 	}
1024 
1025 	/* Disable ULP support */
1026 	e1000_disable_ulp_lpt_lp(hw, TRUE);
1027 
1028 	/*
1029 	 * Get Wake-on-Lan and Management info for later use
1030 	 */
1031 	em_get_wakeup(ctx);
1032 
1033 	/* Enable only WOL MAGIC by default */
1034 	scctx->isc_capenable &= ~IFCAP_WOL;
1035 	if (adapter->wol != 0)
1036 		scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1037 
1038 	iflib_set_mac(ctx, hw->mac.addr);
1039 
1040 	return (0);
1041 
1042 err_late:
1043 	em_release_hw_control(adapter);
1044 err_pci:
1045 	em_free_pci_resources(ctx);
1046 	free(adapter->mta, M_DEVBUF);
1047 
1048 	return (error);
1049 }
1050 
1051 static int
1052 em_if_attach_post(if_ctx_t ctx)
1053 {
1054 	struct adapter *adapter = iflib_get_softc(ctx);
1055 	struct e1000_hw *hw = &adapter->hw;
1056 	int error = 0;
1057 
1058 	/* Setup OS specific network interface */
1059 	error = em_setup_interface(ctx);
1060 	if (error != 0) {
1061 		goto err_late;
1062 	}
1063 
1064 	em_reset(ctx);
1065 
1066 	/* Initialize statistics */
1067 	em_update_stats_counters(adapter);
1068 	hw->mac.get_link_status = 1;
1069 	em_if_update_admin_status(ctx);
1070 	em_add_hw_stats(adapter);
1071 
1072 	/* Non-AMT based hardware can now take control from firmware */
1073 	if (adapter->has_manage && !adapter->has_amt)
1074 		em_get_hw_control(adapter);
1075 
1076 	INIT_DEBUGOUT("em_if_attach_post: end");
1077 
1078 	return (error);
1079 
1080 err_late:
1081 	em_release_hw_control(adapter);
1082 	em_free_pci_resources(ctx);
1083 	em_if_queues_free(ctx);
1084 	free(adapter->mta, M_DEVBUF);
1085 
1086 	return (error);
1087 }
1088 
1089 /*********************************************************************
1090  *  Device removal routine
1091  *
1092  *  The detach entry point is called when the driver is being removed.
1093  *  This routine stops the adapter and deallocates all the resources
1094  *  that were allocated for driver operation.
1095  *
1096  *  return 0 on success, positive on failure
1097  *********************************************************************/
1098 static int
1099 em_if_detach(if_ctx_t ctx)
1100 {
1101 	struct adapter	*adapter = iflib_get_softc(ctx);
1102 
1103 	INIT_DEBUGOUT("em_if_detach: begin");
1104 
1105 	e1000_phy_hw_reset(&adapter->hw);
1106 
1107 	em_release_manageability(adapter);
1108 	em_release_hw_control(adapter);
1109 	em_free_pci_resources(ctx);
1110 
1111 	return (0);
1112 }
1113 
1114 /*********************************************************************
1115  *
1116  *  Shutdown entry point
1117  *
1118  **********************************************************************/
1119 
1120 static int
1121 em_if_shutdown(if_ctx_t ctx)
1122 {
1123 	return em_if_suspend(ctx);
1124 }
1125 
1126 /*
1127  * Suspend/resume device methods.
1128  */
1129 static int
1130 em_if_suspend(if_ctx_t ctx)
1131 {
1132 	struct adapter *adapter = iflib_get_softc(ctx);
1133 
1134 	em_release_manageability(adapter);
1135 	em_release_hw_control(adapter);
1136 	em_enable_wakeup(ctx);
1137 	return (0);
1138 }
1139 
1140 static int
1141 em_if_resume(if_ctx_t ctx)
1142 {
1143 	struct adapter *adapter = iflib_get_softc(ctx);
1144 
1145 	if (adapter->hw.mac.type == e1000_pch2lan)
1146 		e1000_resume_workarounds_pchlan(&adapter->hw);
1147 	em_if_init(ctx);
1148 	em_init_manageability(adapter);
1149 
1150 	return(0);
1151 }
1152 
1153 static int
1154 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1155 {
1156 	int max_frame_size;
1157 	struct adapter *adapter = iflib_get_softc(ctx);
1158 	if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1159 
1160 	 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1161 
1162 	switch (adapter->hw.mac.type) {
1163 	case e1000_82571:
1164 	case e1000_82572:
1165 	case e1000_ich9lan:
1166 	case e1000_ich10lan:
1167 	case e1000_pch2lan:
1168 	case e1000_pch_lpt:
1169 	case e1000_pch_spt:
1170 	case e1000_pch_cnp:
1171 	case e1000_82574:
1172 	case e1000_82583:
1173 	case e1000_80003es2lan:
1174 		/* 9K Jumbo Frame size */
1175 		max_frame_size = 9234;
1176 		break;
1177 	case e1000_pchlan:
1178 		max_frame_size = 4096;
1179 		break;
1180 	case e1000_82542:
1181 	case e1000_ich8lan:
1182 		/* Adapters that do not support jumbo frames */
1183 		max_frame_size = ETHER_MAX_LEN;
1184 		break;
1185 	default:
1186 		if (adapter->hw.mac.type >= igb_mac_min)
1187 			max_frame_size = 9234;
1188 		else /* lem */
1189 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1190 	}
1191 	if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1192 		return (EINVAL);
1193 	}
1194 
1195 	scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
1196 	    mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1197 	return (0);
1198 }
1199 
1200 /*********************************************************************
1201  *  Init entry point
1202  *
1203  *  This routine is used in two ways. It is used by the stack as
1204  *  init entry point in network interface structure. It is also used
1205  *  by the driver as a hw/sw initialization routine to get to a
1206  *  consistent state.
1207  *
1208  **********************************************************************/
1209 static void
1210 em_if_init(if_ctx_t ctx)
1211 {
1212 	struct adapter *adapter = iflib_get_softc(ctx);
1213 	if_softc_ctx_t scctx = adapter->shared;
1214 	struct ifnet *ifp = iflib_get_ifp(ctx);
1215 	struct em_tx_queue *tx_que;
1216 	int i;
1217 
1218 	INIT_DEBUGOUT("em_if_init: begin");
1219 
1220 	/* Get the latest mac address, User can use a LAA */
1221 	bcopy(if_getlladdr(ifp), adapter->hw.mac.addr,
1222 	    ETHER_ADDR_LEN);
1223 
1224 	/* Put the address into the Receive Address Array */
1225 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1226 
1227 	/*
1228 	 * With the 82571 adapter, RAR[0] may be overwritten
1229 	 * when the other port is reset, we make a duplicate
1230 	 * in RAR[14] for that eventuality, this assures
1231 	 * the interface continues to function.
1232 	 */
1233 	if (adapter->hw.mac.type == e1000_82571) {
1234 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1235 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1236 		    E1000_RAR_ENTRIES - 1);
1237 	}
1238 
1239 
1240 	/* Initialize the hardware */
1241 	em_reset(ctx);
1242 	em_if_update_admin_status(ctx);
1243 
1244 	for (i = 0, tx_que = adapter->tx_queues; i < adapter->tx_num_queues; i++, tx_que++) {
1245 		struct tx_ring *txr = &tx_que->txr;
1246 
1247 		txr->tx_rs_cidx = txr->tx_rs_pidx;
1248 
1249 		/* Initialize the last processed descriptor to be the end of
1250 		 * the ring, rather than the start, so that we avoid an
1251 		 * off-by-one error when calculating how many descriptors are
1252 		 * done in the credits_update function.
1253 		 */
1254 		txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1255 	}
1256 
1257 	/* Setup VLAN support, basic and offload if available */
1258 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1259 
1260 	/* Clear bad data from Rx FIFOs */
1261 	if (adapter->hw.mac.type >= igb_mac_min)
1262 		e1000_rx_fifo_flush_82575(&adapter->hw);
1263 
1264 	/* Configure for OS presence */
1265 	em_init_manageability(adapter);
1266 
1267 	/* Prepare transmit descriptors and buffers */
1268 	em_initialize_transmit_unit(ctx);
1269 
1270 	/* Setup Multicast table */
1271 	em_if_multi_set(ctx);
1272 
1273 	/*
1274 	 * Figure out the desired mbuf
1275 	 * pool for doing jumbos
1276 	 */
1277 	if (adapter->hw.mac.max_frame_size <= 2048)
1278 		adapter->rx_mbuf_sz = MCLBYTES;
1279 	else
1280 		adapter->rx_mbuf_sz = MJUMPAGESIZE;
1281 	em_initialize_receive_unit(ctx);
1282 
1283 	/* Use real VLAN Filter support? */
1284 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
1285 		if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
1286 			/* Use real VLAN Filter support */
1287 			em_setup_vlan_hw_support(adapter);
1288 		else {
1289 			u32 ctrl;
1290 			ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1291 			ctrl |= E1000_CTRL_VME;
1292 			E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1293 		}
1294 	}
1295 
1296 	/* Don't lose promiscuous settings */
1297 	em_if_set_promisc(ctx, IFF_PROMISC);
1298 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1299 
1300 	/* MSI-X configuration for 82574 */
1301 	if (adapter->hw.mac.type == e1000_82574) {
1302 		int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1303 
1304 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1305 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1306 		/* Set the IVAR - interrupt vector routing. */
1307 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars);
1308 	} else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1309 		igb_configure_queues(adapter);
1310 
1311 	/* this clears any pending interrupts */
1312 	E1000_READ_REG(&adapter->hw, E1000_ICR);
1313 	E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
1314 
1315 	/* AMT based hardware can now take control from firmware */
1316 	if (adapter->has_manage && adapter->has_amt)
1317 		em_get_hw_control(adapter);
1318 
1319 	/* Set Energy Efficient Ethernet */
1320 	if (adapter->hw.mac.type >= igb_mac_min &&
1321 	    adapter->hw.phy.media_type == e1000_media_type_copper) {
1322 		if (adapter->hw.mac.type == e1000_i354)
1323 			e1000_set_eee_i354(&adapter->hw, TRUE, TRUE);
1324 		else
1325 			e1000_set_eee_i350(&adapter->hw, TRUE, TRUE);
1326 	}
1327 }
1328 
1329 /*********************************************************************
1330  *
1331  *  Fast Legacy/MSI Combined Interrupt Service routine
1332  *
1333  *********************************************************************/
1334 int
1335 em_intr(void *arg)
1336 {
1337 	struct adapter *adapter = arg;
1338 	if_ctx_t ctx = adapter->ctx;
1339 	u32 reg_icr;
1340 
1341 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1342 
1343 	if (adapter->intr_type != IFLIB_INTR_LEGACY)
1344 		goto skip_stray;
1345 	/* Hot eject? */
1346 	if (reg_icr == 0xffffffff)
1347 		return FILTER_STRAY;
1348 
1349 	/* Definitely not our interrupt. */
1350 	if (reg_icr == 0x0)
1351 		return FILTER_STRAY;
1352 
1353 	/*
1354 	 * Starting with the 82571 chip, bit 31 should be used to
1355 	 * determine whether the interrupt belongs to us.
1356 	 */
1357 	if (adapter->hw.mac.type >= e1000_82571 &&
1358 	    (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1359 		return FILTER_STRAY;
1360 
1361 skip_stray:
1362 	/* Link status change */
1363 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1364 		adapter->hw.mac.get_link_status = 1;
1365 		iflib_admin_intr_deferred(ctx);
1366 	}
1367 
1368 	if (reg_icr & E1000_ICR_RXO)
1369 		adapter->rx_overruns++;
1370 
1371 	return (FILTER_SCHEDULE_THREAD);
1372 }
1373 
1374 static void
1375 igb_rx_enable_queue(struct adapter *adapter, struct em_rx_queue *rxq)
1376 {
1377 	E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims);
1378 }
1379 
1380 static void
1381 em_rx_enable_queue(struct adapter *adapter, struct em_rx_queue *rxq)
1382 {
1383 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims);
1384 }
1385 
1386 static void
1387 igb_tx_enable_queue(struct adapter *adapter, struct em_tx_queue *txq)
1388 {
1389 	E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txq->eims);
1390 }
1391 
1392 static void
1393 em_tx_enable_queue(struct adapter *adapter, struct em_tx_queue *txq)
1394 {
1395 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, txq->eims);
1396 }
1397 
1398 static int
1399 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1400 {
1401 	struct adapter *adapter = iflib_get_softc(ctx);
1402 	struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1403 
1404 	if (adapter->hw.mac.type >= igb_mac_min)
1405 		igb_rx_enable_queue(adapter, rxq);
1406 	else
1407 		em_rx_enable_queue(adapter, rxq);
1408 	return (0);
1409 }
1410 
1411 static int
1412 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1413 {
1414 	struct adapter *adapter = iflib_get_softc(ctx);
1415 	struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1416 
1417 	if (adapter->hw.mac.type >= igb_mac_min)
1418 		igb_tx_enable_queue(adapter, txq);
1419 	else
1420 		em_tx_enable_queue(adapter, txq);
1421 	return (0);
1422 }
1423 
1424 /*********************************************************************
1425  *
1426  *  MSI-X RX Interrupt Service routine
1427  *
1428  **********************************************************************/
1429 static int
1430 em_msix_que(void *arg)
1431 {
1432 	struct em_rx_queue *que = arg;
1433 
1434 	++que->irqs;
1435 
1436 	return (FILTER_SCHEDULE_THREAD);
1437 }
1438 
1439 /*********************************************************************
1440  *
1441  *  MSI-X Link Fast Interrupt Service routine
1442  *
1443  **********************************************************************/
1444 static int
1445 em_msix_link(void *arg)
1446 {
1447 	struct adapter *adapter = arg;
1448 	u32 reg_icr;
1449 
1450 	++adapter->link_irq;
1451 	MPASS(adapter->hw.back != NULL);
1452 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1453 
1454 	if (reg_icr & E1000_ICR_RXO)
1455 		adapter->rx_overruns++;
1456 
1457 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1458 		em_handle_link(adapter->ctx);
1459 	} else {
1460 		E1000_WRITE_REG(&adapter->hw, E1000_IMS,
1461 				EM_MSIX_LINK | E1000_IMS_LSC);
1462 		if (adapter->hw.mac.type >= igb_mac_min)
1463 			E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
1464 	}
1465 
1466 	/*
1467 	 * Because we must read the ICR for this interrupt
1468 	 * it may clear other causes using autoclear, for
1469 	 * this reason we simply create a soft interrupt
1470 	 * for all these vectors.
1471 	 */
1472 	if (reg_icr && adapter->hw.mac.type < igb_mac_min) {
1473 		E1000_WRITE_REG(&adapter->hw,
1474 			E1000_ICS, adapter->ims);
1475 	}
1476 
1477 	return (FILTER_HANDLED);
1478 }
1479 
1480 static void
1481 em_handle_link(void *context)
1482 {
1483 	if_ctx_t ctx = context;
1484 	struct adapter *adapter = iflib_get_softc(ctx);
1485 
1486 	adapter->hw.mac.get_link_status = 1;
1487 	iflib_admin_intr_deferred(ctx);
1488 }
1489 
1490 
1491 /*********************************************************************
1492  *
1493  *  Media Ioctl callback
1494  *
1495  *  This routine is called whenever the user queries the status of
1496  *  the interface using ifconfig.
1497  *
1498  **********************************************************************/
1499 static void
1500 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1501 {
1502 	struct adapter *adapter = iflib_get_softc(ctx);
1503 	u_char fiber_type = IFM_1000_SX;
1504 
1505 	INIT_DEBUGOUT("em_if_media_status: begin");
1506 
1507 	iflib_admin_intr_deferred(ctx);
1508 
1509 	ifmr->ifm_status = IFM_AVALID;
1510 	ifmr->ifm_active = IFM_ETHER;
1511 
1512 	if (!adapter->link_active) {
1513 		return;
1514 	}
1515 
1516 	ifmr->ifm_status |= IFM_ACTIVE;
1517 
1518 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
1519 	    (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1520 		if (adapter->hw.mac.type == e1000_82545)
1521 			fiber_type = IFM_1000_LX;
1522 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1523 	} else {
1524 		switch (adapter->link_speed) {
1525 		case 10:
1526 			ifmr->ifm_active |= IFM_10_T;
1527 			break;
1528 		case 100:
1529 			ifmr->ifm_active |= IFM_100_TX;
1530 			break;
1531 		case 1000:
1532 			ifmr->ifm_active |= IFM_1000_T;
1533 			break;
1534 		}
1535 		if (adapter->link_duplex == FULL_DUPLEX)
1536 			ifmr->ifm_active |= IFM_FDX;
1537 		else
1538 			ifmr->ifm_active |= IFM_HDX;
1539 	}
1540 }
1541 
1542 /*********************************************************************
1543  *
1544  *  Media Ioctl callback
1545  *
1546  *  This routine is called when the user changes speed/duplex using
1547  *  media/mediopt option with ifconfig.
1548  *
1549  **********************************************************************/
1550 static int
1551 em_if_media_change(if_ctx_t ctx)
1552 {
1553 	struct adapter *adapter = iflib_get_softc(ctx);
1554 	struct ifmedia *ifm = iflib_get_media(ctx);
1555 
1556 	INIT_DEBUGOUT("em_if_media_change: begin");
1557 
1558 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1559 		return (EINVAL);
1560 
1561 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1562 	case IFM_AUTO:
1563 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1564 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1565 		break;
1566 	case IFM_1000_LX:
1567 	case IFM_1000_SX:
1568 	case IFM_1000_T:
1569 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1570 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1571 		break;
1572 	case IFM_100_TX:
1573 		adapter->hw.mac.autoneg = FALSE;
1574 		adapter->hw.phy.autoneg_advertised = 0;
1575 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1576 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1577 		else
1578 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1579 		break;
1580 	case IFM_10_T:
1581 		adapter->hw.mac.autoneg = FALSE;
1582 		adapter->hw.phy.autoneg_advertised = 0;
1583 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1584 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1585 		else
1586 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1587 		break;
1588 	default:
1589 		device_printf(adapter->dev, "Unsupported media type\n");
1590 	}
1591 
1592 	em_if_init(ctx);
1593 
1594 	return (0);
1595 }
1596 
1597 static int
1598 em_if_set_promisc(if_ctx_t ctx, int flags)
1599 {
1600 	struct adapter *adapter = iflib_get_softc(ctx);
1601 	u32 reg_rctl;
1602 
1603 	em_disable_promisc(ctx);
1604 
1605 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1606 
1607 	if (flags & IFF_PROMISC) {
1608 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1609 		/* Turn this on if you want to see bad packets */
1610 		if (em_debug_sbp)
1611 			reg_rctl |= E1000_RCTL_SBP;
1612 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1613 	} else if (flags & IFF_ALLMULTI) {
1614 		reg_rctl |= E1000_RCTL_MPE;
1615 		reg_rctl &= ~E1000_RCTL_UPE;
1616 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1617 	}
1618 	return (0);
1619 }
1620 
1621 static void
1622 em_disable_promisc(if_ctx_t ctx)
1623 {
1624 	struct adapter *adapter = iflib_get_softc(ctx);
1625 	struct ifnet *ifp = iflib_get_ifp(ctx);
1626 	u32 reg_rctl;
1627 	int mcnt = 0;
1628 
1629 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1630 	reg_rctl &= (~E1000_RCTL_UPE);
1631 	if (if_getflags(ifp) & IFF_ALLMULTI)
1632 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1633 	else
1634 		mcnt = if_multiaddr_count(ifp, MAX_NUM_MULTICAST_ADDRESSES);
1635 	/* Don't disable if in MAX groups */
1636 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1637 		reg_rctl &=  (~E1000_RCTL_MPE);
1638 	reg_rctl &=  (~E1000_RCTL_SBP);
1639 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1640 }
1641 
1642 
1643 /*********************************************************************
1644  *  Multicast Update
1645  *
1646  *  This routine is called whenever multicast address list is updated.
1647  *
1648  **********************************************************************/
1649 
1650 static void
1651 em_if_multi_set(if_ctx_t ctx)
1652 {
1653 	struct adapter *adapter = iflib_get_softc(ctx);
1654 	struct ifnet *ifp = iflib_get_ifp(ctx);
1655 	u32 reg_rctl = 0;
1656 	u8  *mta; /* Multicast array memory */
1657 	int mcnt = 0;
1658 
1659 	IOCTL_DEBUGOUT("em_set_multi: begin");
1660 
1661 	mta = adapter->mta;
1662 	bzero(mta, sizeof(u8) * ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1663 
1664 	if (adapter->hw.mac.type == e1000_82542 &&
1665 	    adapter->hw.revision_id == E1000_REVISION_2) {
1666 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1667 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1668 			e1000_pci_clear_mwi(&adapter->hw);
1669 		reg_rctl |= E1000_RCTL_RST;
1670 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1671 		msec_delay(5);
1672 	}
1673 
1674 	if_multiaddr_array(ifp, mta, &mcnt, MAX_NUM_MULTICAST_ADDRESSES);
1675 
1676 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1677 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1678 		reg_rctl |= E1000_RCTL_MPE;
1679 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1680 	} else
1681 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1682 
1683 	if (adapter->hw.mac.type == e1000_82542 &&
1684 	    adapter->hw.revision_id == E1000_REVISION_2) {
1685 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1686 		reg_rctl &= ~E1000_RCTL_RST;
1687 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1688 		msec_delay(5);
1689 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1690 			e1000_pci_set_mwi(&adapter->hw);
1691 	}
1692 }
1693 
1694 /*********************************************************************
1695  *  Timer routine
1696  *
1697  *  This routine schedules em_if_update_admin_status() to check for
1698  *  link status and to gather statistics as well as to perform some
1699  *  controller-specific hardware patting.
1700  *
1701  **********************************************************************/
1702 static void
1703 em_if_timer(if_ctx_t ctx, uint16_t qid)
1704 {
1705 
1706 	if (qid != 0)
1707 		return;
1708 
1709 	iflib_admin_intr_deferred(ctx);
1710 }
1711 
1712 static void
1713 em_if_update_admin_status(if_ctx_t ctx)
1714 {
1715 	struct adapter *adapter = iflib_get_softc(ctx);
1716 	struct e1000_hw *hw = &adapter->hw;
1717 	device_t dev = iflib_get_dev(ctx);
1718 	u32 link_check, thstat, ctrl;
1719 
1720 	link_check = thstat = ctrl = 0;
1721 	/* Get the cached link value or read phy for real */
1722 	switch (hw->phy.media_type) {
1723 	case e1000_media_type_copper:
1724 		if (hw->mac.get_link_status) {
1725 			if (hw->mac.type == e1000_pch_spt)
1726 				msec_delay(50);
1727 			/* Do the work to read phy */
1728 			e1000_check_for_link(hw);
1729 			link_check = !hw->mac.get_link_status;
1730 			if (link_check) /* ESB2 fix */
1731 				e1000_cfg_on_link_up(hw);
1732 		} else {
1733 			link_check = TRUE;
1734 		}
1735 		break;
1736 	case e1000_media_type_fiber:
1737 		e1000_check_for_link(hw);
1738 		link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1739 			    E1000_STATUS_LU);
1740 		break;
1741 	case e1000_media_type_internal_serdes:
1742 		e1000_check_for_link(hw);
1743 		link_check = adapter->hw.mac.serdes_has_link;
1744 		break;
1745 	/* VF device is type_unknown */
1746 	case e1000_media_type_unknown:
1747 		e1000_check_for_link(hw);
1748 		link_check = !hw->mac.get_link_status;
1749 		/* FALLTHROUGH */
1750 	default:
1751 		break;
1752 	}
1753 
1754 	/* Check for thermal downshift or shutdown */
1755 	if (hw->mac.type == e1000_i350) {
1756 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1757 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1758 	}
1759 
1760 	/* Now check for a transition */
1761 	if (link_check && (adapter->link_active == 0)) {
1762 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
1763 		    &adapter->link_duplex);
1764 		/* Check if we must disable SPEED_MODE bit on PCI-E */
1765 		if ((adapter->link_speed != SPEED_1000) &&
1766 		    ((hw->mac.type == e1000_82571) ||
1767 		    (hw->mac.type == e1000_82572))) {
1768 			int tarc0;
1769 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1770 			tarc0 &= ~TARC_SPEED_MODE_BIT;
1771 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1772 		}
1773 		if (bootverbose)
1774 			device_printf(dev, "Link is up %d Mbps %s\n",
1775 			    adapter->link_speed,
1776 			    ((adapter->link_duplex == FULL_DUPLEX) ?
1777 			    "Full Duplex" : "Half Duplex"));
1778 		adapter->link_active = 1;
1779 		adapter->smartspeed = 0;
1780 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
1781 		    E1000_CTRL_EXT_LINK_MODE_GMII &&
1782 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1783 			device_printf(dev, "Link: thermal downshift\n");
1784 		/* Delay Link Up for Phy update */
1785 		if (((hw->mac.type == e1000_i210) ||
1786 		    (hw->mac.type == e1000_i211)) &&
1787 		    (hw->phy.id == I210_I_PHY_ID))
1788 			msec_delay(I210_LINK_DELAY);
1789 		/* Reset if the media type changed. */
1790 		if ((hw->dev_spec._82575.media_changed) &&
1791 			(adapter->hw.mac.type >= igb_mac_min)) {
1792 			hw->dev_spec._82575.media_changed = false;
1793 			adapter->flags |= IGB_MEDIA_RESET;
1794 			em_reset(ctx);
1795 		}
1796 		iflib_link_state_change(ctx, LINK_STATE_UP,
1797 		    IF_Mbps(adapter->link_speed));
1798 	} else if (!link_check && (adapter->link_active == 1)) {
1799 		adapter->link_speed = 0;
1800 		adapter->link_duplex = 0;
1801 		adapter->link_active = 0;
1802 		iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
1803 	}
1804 	em_update_stats_counters(adapter);
1805 
1806 	/* Reset LAA into RAR[0] on 82571 */
1807 	if ((adapter->hw.mac.type == e1000_82571) &&
1808 	    e1000_get_laa_state_82571(&adapter->hw))
1809 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1810 
1811 	if (adapter->hw.mac.type < em_mac_min)
1812 		lem_smartspeed(adapter);
1813 
1814 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK | E1000_IMS_LSC);
1815 }
1816 
1817 static void
1818 em_if_watchdog_reset(if_ctx_t ctx)
1819 {
1820 	struct adapter *adapter = iflib_get_softc(ctx);
1821 
1822 	/*
1823 	 * Just count the event; iflib(4) will already trigger a
1824 	 * sufficient reset of the controller.
1825 	 */
1826 	adapter->watchdog_events++;
1827 }
1828 
1829 /*********************************************************************
1830  *
1831  *  This routine disables all traffic on the adapter by issuing a
1832  *  global reset on the MAC.
1833  *
1834  **********************************************************************/
1835 static void
1836 em_if_stop(if_ctx_t ctx)
1837 {
1838 	struct adapter *adapter = iflib_get_softc(ctx);
1839 
1840 	INIT_DEBUGOUT("em_if_stop: begin");
1841 
1842 	e1000_reset_hw(&adapter->hw);
1843 	if (adapter->hw.mac.type >= e1000_82544)
1844 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0);
1845 
1846 	e1000_led_off(&adapter->hw);
1847 	e1000_cleanup_led(&adapter->hw);
1848 }
1849 
1850 /*********************************************************************
1851  *
1852  *  Determine hardware revision.
1853  *
1854  **********************************************************************/
1855 static void
1856 em_identify_hardware(if_ctx_t ctx)
1857 {
1858 	device_t dev = iflib_get_dev(ctx);
1859 	struct adapter *adapter = iflib_get_softc(ctx);
1860 
1861 	/* Make sure our PCI config space has the necessary stuff set */
1862 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1863 
1864 	/* Save off the information about this board */
1865 	adapter->hw.vendor_id = pci_get_vendor(dev);
1866 	adapter->hw.device_id = pci_get_device(dev);
1867 	adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1868 	adapter->hw.subsystem_vendor_id =
1869 	    pci_read_config(dev, PCIR_SUBVEND_0, 2);
1870 	adapter->hw.subsystem_device_id =
1871 	    pci_read_config(dev, PCIR_SUBDEV_0, 2);
1872 
1873 	/* Do Shared Code Init and Setup */
1874 	if (e1000_set_mac_type(&adapter->hw)) {
1875 		device_printf(dev, "Setup init failure\n");
1876 		return;
1877 	}
1878 }
1879 
1880 static int
1881 em_allocate_pci_resources(if_ctx_t ctx)
1882 {
1883 	struct adapter *adapter = iflib_get_softc(ctx);
1884 	device_t dev = iflib_get_dev(ctx);
1885 	int rid, val;
1886 
1887 	rid = PCIR_BAR(0);
1888 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1889 	    &rid, RF_ACTIVE);
1890 	if (adapter->memory == NULL) {
1891 		device_printf(dev, "Unable to allocate bus resource: memory\n");
1892 		return (ENXIO);
1893 	}
1894 	adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->memory);
1895 	adapter->osdep.mem_bus_space_handle =
1896 	    rman_get_bushandle(adapter->memory);
1897 	adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
1898 
1899 	/* Only older adapters use IO mapping */
1900 	if (adapter->hw.mac.type < em_mac_min &&
1901 	    adapter->hw.mac.type > e1000_82543) {
1902 		/* Figure our where our IO BAR is ? */
1903 		for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1904 			val = pci_read_config(dev, rid, 4);
1905 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1906 				break;
1907 			}
1908 			rid += 4;
1909 			/* check for 64bit BAR */
1910 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1911 				rid += 4;
1912 		}
1913 		if (rid >= PCIR_CIS) {
1914 			device_printf(dev, "Unable to locate IO BAR\n");
1915 			return (ENXIO);
1916 		}
1917 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
1918 		    &rid, RF_ACTIVE);
1919 		if (adapter->ioport == NULL) {
1920 			device_printf(dev, "Unable to allocate bus resource: "
1921 			    "ioport\n");
1922 			return (ENXIO);
1923 		}
1924 		adapter->hw.io_base = 0;
1925 		adapter->osdep.io_bus_space_tag =
1926 		    rman_get_bustag(adapter->ioport);
1927 		adapter->osdep.io_bus_space_handle =
1928 		    rman_get_bushandle(adapter->ioport);
1929 	}
1930 
1931 	adapter->hw.back = &adapter->osdep;
1932 
1933 	return (0);
1934 }
1935 
1936 /*********************************************************************
1937  *
1938  *  Set up the MSI-X Interrupt handlers
1939  *
1940  **********************************************************************/
1941 static int
1942 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
1943 {
1944 	struct adapter *adapter = iflib_get_softc(ctx);
1945 	struct em_rx_queue *rx_que = adapter->rx_queues;
1946 	struct em_tx_queue *tx_que = adapter->tx_queues;
1947 	int error, rid, i, vector = 0, rx_vectors;
1948 	char buf[16];
1949 
1950 	/* First set up ring resources */
1951 	for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) {
1952 		rid = vector + 1;
1953 		snprintf(buf, sizeof(buf), "rxq%d", i);
1954 		error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
1955 		if (error) {
1956 			device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
1957 			adapter->rx_num_queues = i + 1;
1958 			goto fail;
1959 		}
1960 
1961 		rx_que->msix =  vector;
1962 
1963 		/*
1964 		 * Set the bit to enable interrupt
1965 		 * in E1000_IMS -- bits 20 and 21
1966 		 * are for RX0 and RX1, note this has
1967 		 * NOTHING to do with the MSI-X vector
1968 		 */
1969 		if (adapter->hw.mac.type == e1000_82574) {
1970 			rx_que->eims = 1 << (20 + i);
1971 			adapter->ims |= rx_que->eims;
1972 			adapter->ivars |= (8 | rx_que->msix) << (i * 4);
1973 		} else if (adapter->hw.mac.type == e1000_82575)
1974 			rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
1975 		else
1976 			rx_que->eims = 1 << vector;
1977 	}
1978 	rx_vectors = vector;
1979 
1980 	vector = 0;
1981 	for (i = 0; i < adapter->tx_num_queues; i++, tx_que++, vector++) {
1982 		snprintf(buf, sizeof(buf), "txq%d", i);
1983 		tx_que = &adapter->tx_queues[i];
1984 		iflib_softirq_alloc_generic(ctx,
1985 		    &adapter->rx_queues[i % adapter->rx_num_queues].que_irq,
1986 		    IFLIB_INTR_TX, tx_que, tx_que->me, buf);
1987 
1988 		tx_que->msix = (vector % adapter->rx_num_queues);
1989 
1990 		/*
1991 		 * Set the bit to enable interrupt
1992 		 * in E1000_IMS -- bits 22 and 23
1993 		 * are for TX0 and TX1, note this has
1994 		 * NOTHING to do with the MSI-X vector
1995 		 */
1996 		if (adapter->hw.mac.type == e1000_82574) {
1997 			tx_que->eims = 1 << (22 + i);
1998 			adapter->ims |= tx_que->eims;
1999 			adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2000 		} else if (adapter->hw.mac.type == e1000_82575) {
2001 			tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2002 		} else {
2003 			tx_que->eims = 1 << i;
2004 		}
2005 	}
2006 
2007 	/* Link interrupt */
2008 	rid = rx_vectors + 1;
2009 	error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq");
2010 
2011 	if (error) {
2012 		device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
2013 		goto fail;
2014 	}
2015 	adapter->linkvec = rx_vectors;
2016 	if (adapter->hw.mac.type < igb_mac_min) {
2017 		adapter->ivars |=  (8 | rx_vectors) << 16;
2018 		adapter->ivars |= 0x80000000;
2019 	}
2020 	return (0);
2021 fail:
2022 	iflib_irq_free(ctx, &adapter->irq);
2023 	rx_que = adapter->rx_queues;
2024 	for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++)
2025 		iflib_irq_free(ctx, &rx_que->que_irq);
2026 	return (error);
2027 }
2028 
2029 static void
2030 igb_configure_queues(struct adapter *adapter)
2031 {
2032 	struct e1000_hw *hw = &adapter->hw;
2033 	struct em_rx_queue *rx_que;
2034 	struct em_tx_queue *tx_que;
2035 	u32 tmp, ivar = 0, newitr = 0;
2036 
2037 	/* First turn on RSS capability */
2038 	if (adapter->hw.mac.type != e1000_82575)
2039 		E1000_WRITE_REG(hw, E1000_GPIE,
2040 		    E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2041 		    E1000_GPIE_PBA | E1000_GPIE_NSICR);
2042 
2043 	/* Turn on MSI-X */
2044 	switch (adapter->hw.mac.type) {
2045 	case e1000_82580:
2046 	case e1000_i350:
2047 	case e1000_i354:
2048 	case e1000_i210:
2049 	case e1000_i211:
2050 	case e1000_vfadapt:
2051 	case e1000_vfadapt_i350:
2052 		/* RX entries */
2053 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2054 			u32 index = i >> 1;
2055 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2056 			rx_que = &adapter->rx_queues[i];
2057 			if (i & 1) {
2058 				ivar &= 0xFF00FFFF;
2059 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2060 			} else {
2061 				ivar &= 0xFFFFFF00;
2062 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2063 			}
2064 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2065 		}
2066 		/* TX entries */
2067 		for (int i = 0; i < adapter->tx_num_queues; i++) {
2068 			u32 index = i >> 1;
2069 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2070 			tx_que = &adapter->tx_queues[i];
2071 			if (i & 1) {
2072 				ivar &= 0x00FFFFFF;
2073 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2074 			} else {
2075 				ivar &= 0xFFFF00FF;
2076 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2077 			}
2078 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2079 			adapter->que_mask |= tx_que->eims;
2080 		}
2081 
2082 		/* And for the link interrupt */
2083 		ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2084 		adapter->link_mask = 1 << adapter->linkvec;
2085 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2086 		break;
2087 	case e1000_82576:
2088 		/* RX entries */
2089 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2090 			u32 index = i & 0x7; /* Each IVAR has two entries */
2091 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2092 			rx_que = &adapter->rx_queues[i];
2093 			if (i < 8) {
2094 				ivar &= 0xFFFFFF00;
2095 				ivar |= rx_que->msix | E1000_IVAR_VALID;
2096 			} else {
2097 				ivar &= 0xFF00FFFF;
2098 				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2099 			}
2100 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2101 			adapter->que_mask |= rx_que->eims;
2102 		}
2103 		/* TX entries */
2104 		for (int i = 0; i < adapter->tx_num_queues; i++) {
2105 			u32 index = i & 0x7; /* Each IVAR has two entries */
2106 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2107 			tx_que = &adapter->tx_queues[i];
2108 			if (i < 8) {
2109 				ivar &= 0xFFFF00FF;
2110 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2111 			} else {
2112 				ivar &= 0x00FFFFFF;
2113 				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2114 			}
2115 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2116 			adapter->que_mask |= tx_que->eims;
2117 		}
2118 
2119 		/* And for the link interrupt */
2120 		ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2121 		adapter->link_mask = 1 << adapter->linkvec;
2122 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2123 		break;
2124 
2125 	case e1000_82575:
2126 		/* enable MSI-X support*/
2127 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2128 		tmp |= E1000_CTRL_EXT_PBA_CLR;
2129 		/* Auto-Mask interrupts upon ICR read. */
2130 		tmp |= E1000_CTRL_EXT_EIAME;
2131 		tmp |= E1000_CTRL_EXT_IRCA;
2132 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2133 
2134 		/* Queues */
2135 		for (int i = 0; i < adapter->rx_num_queues; i++) {
2136 			rx_que = &adapter->rx_queues[i];
2137 			tmp = E1000_EICR_RX_QUEUE0 << i;
2138 			tmp |= E1000_EICR_TX_QUEUE0 << i;
2139 			rx_que->eims = tmp;
2140 			E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2141 			    i, rx_que->eims);
2142 			adapter->que_mask |= rx_que->eims;
2143 		}
2144 
2145 		/* Link */
2146 		E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
2147 		    E1000_EIMS_OTHER);
2148 		adapter->link_mask |= E1000_EIMS_OTHER;
2149 	default:
2150 		break;
2151 	}
2152 
2153 	/* Set the starting interrupt rate */
2154 	if (em_max_interrupt_rate > 0)
2155 		newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2156 
2157 	if (hw->mac.type == e1000_82575)
2158 		newitr |= newitr << 16;
2159 	else
2160 		newitr |= E1000_EITR_CNT_IGNR;
2161 
2162 	for (int i = 0; i < adapter->rx_num_queues; i++) {
2163 		rx_que = &adapter->rx_queues[i];
2164 		E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2165 	}
2166 
2167 	return;
2168 }
2169 
2170 static void
2171 em_free_pci_resources(if_ctx_t ctx)
2172 {
2173 	struct adapter *adapter = iflib_get_softc(ctx);
2174 	struct em_rx_queue *que = adapter->rx_queues;
2175 	device_t dev = iflib_get_dev(ctx);
2176 
2177 	/* Release all MSI-X queue resources */
2178 	if (adapter->intr_type == IFLIB_INTR_MSIX)
2179 		iflib_irq_free(ctx, &adapter->irq);
2180 
2181 	for (int i = 0; i < adapter->rx_num_queues; i++, que++) {
2182 		iflib_irq_free(ctx, &que->que_irq);
2183 	}
2184 
2185 	if (adapter->memory != NULL) {
2186 		bus_release_resource(dev, SYS_RES_MEMORY,
2187 		    rman_get_rid(adapter->memory), adapter->memory);
2188 		adapter->memory = NULL;
2189 	}
2190 
2191 	if (adapter->flash != NULL) {
2192 		bus_release_resource(dev, SYS_RES_MEMORY,
2193 		    rman_get_rid(adapter->flash), adapter->flash);
2194 		adapter->flash = NULL;
2195 	}
2196 
2197 	if (adapter->ioport != NULL) {
2198 		bus_release_resource(dev, SYS_RES_IOPORT,
2199 		    rman_get_rid(adapter->ioport), adapter->ioport);
2200 		adapter->ioport = NULL;
2201 	}
2202 }
2203 
2204 /* Set up MSI or MSI-X */
2205 static int
2206 em_setup_msix(if_ctx_t ctx)
2207 {
2208 	struct adapter *adapter = iflib_get_softc(ctx);
2209 
2210 	if (adapter->hw.mac.type == e1000_82574) {
2211 		em_enable_vectors_82574(ctx);
2212 	}
2213 	return (0);
2214 }
2215 
2216 /*********************************************************************
2217  *
2218  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2219  *
2220  **********************************************************************/
2221 static void
2222 lem_smartspeed(struct adapter *adapter)
2223 {
2224 	u16 phy_tmp;
2225 
2226 	if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
2227 	    adapter->hw.mac.autoneg == 0 ||
2228 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2229 		return;
2230 
2231 	if (adapter->smartspeed == 0) {
2232 		/* If Master/Slave config fault is asserted twice,
2233 		 * we assume back-to-back */
2234 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2235 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2236 			return;
2237 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2238 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2239 			e1000_read_phy_reg(&adapter->hw,
2240 			    PHY_1000T_CTRL, &phy_tmp);
2241 			if(phy_tmp & CR_1000T_MS_ENABLE) {
2242 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2243 				e1000_write_phy_reg(&adapter->hw,
2244 				    PHY_1000T_CTRL, phy_tmp);
2245 				adapter->smartspeed++;
2246 				if(adapter->hw.mac.autoneg &&
2247 				   !e1000_copper_link_autoneg(&adapter->hw) &&
2248 				   !e1000_read_phy_reg(&adapter->hw,
2249 				    PHY_CONTROL, &phy_tmp)) {
2250 					phy_tmp |= (MII_CR_AUTO_NEG_EN |
2251 						    MII_CR_RESTART_AUTO_NEG);
2252 					e1000_write_phy_reg(&adapter->hw,
2253 					    PHY_CONTROL, phy_tmp);
2254 				}
2255 			}
2256 		}
2257 		return;
2258 	} else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2259 		/* If still no link, perhaps using 2/3 pair cable */
2260 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2261 		phy_tmp |= CR_1000T_MS_ENABLE;
2262 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2263 		if(adapter->hw.mac.autoneg &&
2264 		   !e1000_copper_link_autoneg(&adapter->hw) &&
2265 		   !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2266 			phy_tmp |= (MII_CR_AUTO_NEG_EN |
2267 				    MII_CR_RESTART_AUTO_NEG);
2268 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2269 		}
2270 	}
2271 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2272 	if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2273 		adapter->smartspeed = 0;
2274 }
2275 
2276 /*********************************************************************
2277  *
2278  *  Initialize the DMA Coalescing feature
2279  *
2280  **********************************************************************/
2281 static void
2282 igb_init_dmac(struct adapter *adapter, u32 pba)
2283 {
2284 	device_t	dev = adapter->dev;
2285 	struct e1000_hw *hw = &adapter->hw;
2286 	u32 		dmac, reg = ~E1000_DMACR_DMAC_EN;
2287 	u16		hwm;
2288 	u16		max_frame_size;
2289 
2290 	if (hw->mac.type == e1000_i211)
2291 		return;
2292 
2293 	max_frame_size = adapter->shared->isc_max_frame_size;
2294 	if (hw->mac.type > e1000_82580) {
2295 
2296 		if (adapter->dmac == 0) { /* Disabling it */
2297 			E1000_WRITE_REG(hw, E1000_DMACR, reg);
2298 			return;
2299 		} else
2300 			device_printf(dev, "DMA Coalescing enabled\n");
2301 
2302 		/* Set starting threshold */
2303 		E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2304 
2305 		hwm = 64 * pba - max_frame_size / 16;
2306 		if (hwm < 64 * (pba - 6))
2307 			hwm = 64 * (pba - 6);
2308 		reg = E1000_READ_REG(hw, E1000_FCRTC);
2309 		reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2310 		reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2311 		    & E1000_FCRTC_RTH_COAL_MASK);
2312 		E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2313 
2314 
2315 		dmac = pba - max_frame_size / 512;
2316 		if (dmac < pba - 10)
2317 			dmac = pba - 10;
2318 		reg = E1000_READ_REG(hw, E1000_DMACR);
2319 		reg &= ~E1000_DMACR_DMACTHR_MASK;
2320 		reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2321 		    & E1000_DMACR_DMACTHR_MASK);
2322 
2323 		/* transition to L0x or L1 if available..*/
2324 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2325 
2326 		/* Check if status is 2.5Gb backplane connection
2327 		* before configuration of watchdog timer, which is
2328 		* in msec values in 12.8usec intervals
2329 		* watchdog timer= msec values in 32usec intervals
2330 		* for non 2.5Gb connection
2331 		*/
2332 		if (hw->mac.type == e1000_i354) {
2333 			int status = E1000_READ_REG(hw, E1000_STATUS);
2334 			if ((status & E1000_STATUS_2P5_SKU) &&
2335 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2336 				reg |= ((adapter->dmac * 5) >> 6);
2337 			else
2338 				reg |= (adapter->dmac >> 5);
2339 		} else {
2340 			reg |= (adapter->dmac >> 5);
2341 		}
2342 
2343 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
2344 
2345 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2346 
2347 		/* Set the interval before transition */
2348 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
2349 		if (hw->mac.type == e1000_i350)
2350 			reg |= IGB_DMCTLX_DCFLUSH_DIS;
2351 		/*
2352 		** in 2.5Gb connection, TTLX unit is 0.4 usec
2353 		** which is 0x4*2 = 0xA. But delay is still 4 usec
2354 		*/
2355 		if (hw->mac.type == e1000_i354) {
2356 			int status = E1000_READ_REG(hw, E1000_STATUS);
2357 			if ((status & E1000_STATUS_2P5_SKU) &&
2358 			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2359 				reg |= 0xA;
2360 			else
2361 				reg |= 0x4;
2362 		} else {
2363 			reg |= 0x4;
2364 		}
2365 
2366 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2367 
2368 		/* free space in tx packet buffer to wake from DMA coal */
2369 		E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2370 		    (2 * max_frame_size)) >> 6);
2371 
2372 		/* make low power state decision controlled by DMA coal */
2373 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2374 		reg &= ~E1000_PCIEMISC_LX_DECISION;
2375 		E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2376 
2377 	} else if (hw->mac.type == e1000_82580) {
2378 		u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2379 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
2380 		    reg & ~E1000_PCIEMISC_LX_DECISION);
2381 		E1000_WRITE_REG(hw, E1000_DMACR, 0);
2382 	}
2383 }
2384 
2385 /*********************************************************************
2386  *
2387  *  Initialize the hardware to a configuration as specified by the
2388  *  adapter structure.
2389  *
2390  **********************************************************************/
2391 static void
2392 em_reset(if_ctx_t ctx)
2393 {
2394 	device_t dev = iflib_get_dev(ctx);
2395 	struct adapter *adapter = iflib_get_softc(ctx);
2396 	struct ifnet *ifp = iflib_get_ifp(ctx);
2397 	struct e1000_hw *hw = &adapter->hw;
2398 	u16 rx_buffer_size;
2399 	u32 pba;
2400 
2401 	INIT_DEBUGOUT("em_reset: begin");
2402 	/* Let the firmware know the OS is in control */
2403 	em_get_hw_control(adapter);
2404 
2405 	/* Set up smart power down as default off on newer adapters. */
2406 	if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2407 	    hw->mac.type == e1000_82572)) {
2408 		u16 phy_tmp = 0;
2409 
2410 		/* Speed up time to link by disabling smart power down. */
2411 		e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2412 		phy_tmp &= ~IGP02E1000_PM_SPD;
2413 		e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2414 	}
2415 
2416 	/*
2417 	 * Packet Buffer Allocation (PBA)
2418 	 * Writing PBA sets the receive portion of the buffer
2419 	 * the remainder is used for the transmit buffer.
2420 	 */
2421 	switch (hw->mac.type) {
2422 	/* Total Packet Buffer on these is 48K */
2423 	case e1000_82571:
2424 	case e1000_82572:
2425 	case e1000_80003es2lan:
2426 			pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2427 		break;
2428 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2429 			pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2430 		break;
2431 	case e1000_82574:
2432 	case e1000_82583:
2433 			pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2434 		break;
2435 	case e1000_ich8lan:
2436 		pba = E1000_PBA_8K;
2437 		break;
2438 	case e1000_ich9lan:
2439 	case e1000_ich10lan:
2440 		/* Boost Receive side for jumbo frames */
2441 		if (adapter->hw.mac.max_frame_size > 4096)
2442 			pba = E1000_PBA_14K;
2443 		else
2444 			pba = E1000_PBA_10K;
2445 		break;
2446 	case e1000_pchlan:
2447 	case e1000_pch2lan:
2448 	case e1000_pch_lpt:
2449 	case e1000_pch_spt:
2450 	case e1000_pch_cnp:
2451 		pba = E1000_PBA_26K;
2452 		break;
2453 	case e1000_82575:
2454 		pba = E1000_PBA_32K;
2455 		break;
2456 	case e1000_82576:
2457 	case e1000_vfadapt:
2458 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2459 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2460 		break;
2461 	case e1000_82580:
2462 	case e1000_i350:
2463 	case e1000_i354:
2464 	case e1000_vfadapt_i350:
2465 		pba = E1000_READ_REG(hw, E1000_RXPBS);
2466 		pba = e1000_rxpbs_adjust_82580(pba);
2467 		break;
2468 	case e1000_i210:
2469 	case e1000_i211:
2470 		pba = E1000_PBA_34K;
2471 		break;
2472 	default:
2473 		if (adapter->hw.mac.max_frame_size > 8192)
2474 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2475 		else
2476 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2477 	}
2478 
2479 	/* Special needs in case of Jumbo frames */
2480 	if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
2481 		u32 tx_space, min_tx, min_rx;
2482 		pba = E1000_READ_REG(hw, E1000_PBA);
2483 		tx_space = pba >> 16;
2484 		pba &= 0xffff;
2485 		min_tx = (adapter->hw.mac.max_frame_size +
2486 		    sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
2487 		min_tx = roundup2(min_tx, 1024);
2488 		min_tx >>= 10;
2489 		min_rx = adapter->hw.mac.max_frame_size;
2490 		min_rx = roundup2(min_rx, 1024);
2491 		min_rx >>= 10;
2492 		if (tx_space < min_tx &&
2493 		    ((min_tx - tx_space) < pba)) {
2494 			pba = pba - (min_tx - tx_space);
2495 			/*
2496 			 * if short on rx space, rx wins
2497 			 * and must trump tx adjustment
2498 			 */
2499 			if (pba < min_rx)
2500 				pba = min_rx;
2501 		}
2502 		E1000_WRITE_REG(hw, E1000_PBA, pba);
2503 	}
2504 
2505 	if (hw->mac.type < igb_mac_min)
2506 		E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2507 
2508 	INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
2509 
2510 	/*
2511 	 * These parameters control the automatic generation (Tx) and
2512 	 * response (Rx) to Ethernet PAUSE frames.
2513 	 * - High water mark should allow for at least two frames to be
2514 	 *   received after sending an XOFF.
2515 	 * - Low water mark works best when it is very near the high water mark.
2516 	 *   This allows the receiver to restart by sending XON when it has
2517 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
2518 	 *   restart after one full frame is pulled from the buffer. There
2519 	 *   could be several smaller frames in the buffer and if so they will
2520 	 *   not trigger the XON until their total number reduces the buffer
2521 	 *   by 1500.
2522 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2523 	 */
2524 	rx_buffer_size = (pba & 0xffff) << 10;
2525 	hw->fc.high_water = rx_buffer_size -
2526 	    roundup2(adapter->hw.mac.max_frame_size, 1024);
2527 	hw->fc.low_water = hw->fc.high_water - 1500;
2528 
2529 	if (adapter->fc) /* locally set flow control value? */
2530 		hw->fc.requested_mode = adapter->fc;
2531 	else
2532 		hw->fc.requested_mode = e1000_fc_full;
2533 
2534 	if (hw->mac.type == e1000_80003es2lan)
2535 		hw->fc.pause_time = 0xFFFF;
2536 	else
2537 		hw->fc.pause_time = EM_FC_PAUSE_TIME;
2538 
2539 	hw->fc.send_xon = TRUE;
2540 
2541 	/* Device specific overrides/settings */
2542 	switch (hw->mac.type) {
2543 	case e1000_pchlan:
2544 		/* Workaround: no TX flow ctrl for PCH */
2545 		hw->fc.requested_mode = e1000_fc_rx_pause;
2546 		hw->fc.pause_time = 0xFFFF; /* override */
2547 		if (if_getmtu(ifp) > ETHERMTU) {
2548 			hw->fc.high_water = 0x3500;
2549 			hw->fc.low_water = 0x1500;
2550 		} else {
2551 			hw->fc.high_water = 0x5000;
2552 			hw->fc.low_water = 0x3000;
2553 		}
2554 		hw->fc.refresh_time = 0x1000;
2555 		break;
2556 	case e1000_pch2lan:
2557 	case e1000_pch_lpt:
2558 	case e1000_pch_spt:
2559 	case e1000_pch_cnp:
2560 		hw->fc.high_water = 0x5C20;
2561 		hw->fc.low_water = 0x5048;
2562 		hw->fc.pause_time = 0x0650;
2563 		hw->fc.refresh_time = 0x0400;
2564 		/* Jumbos need adjusted PBA */
2565 		if (if_getmtu(ifp) > ETHERMTU)
2566 			E1000_WRITE_REG(hw, E1000_PBA, 12);
2567 		else
2568 			E1000_WRITE_REG(hw, E1000_PBA, 26);
2569 		break;
2570 	case e1000_82575:
2571 	case e1000_82576:
2572 		/* 8-byte granularity */
2573 		hw->fc.low_water = hw->fc.high_water - 8;
2574 		break;
2575 	case e1000_82580:
2576 	case e1000_i350:
2577 	case e1000_i354:
2578 	case e1000_i210:
2579 	case e1000_i211:
2580 	case e1000_vfadapt:
2581 	case e1000_vfadapt_i350:
2582 		/* 16-byte granularity */
2583 		hw->fc.low_water = hw->fc.high_water - 16;
2584 		break;
2585 	case e1000_ich9lan:
2586 	case e1000_ich10lan:
2587 		if (if_getmtu(ifp) > ETHERMTU) {
2588 			hw->fc.high_water = 0x2800;
2589 			hw->fc.low_water = hw->fc.high_water - 8;
2590 			break;
2591 		}
2592 		/* FALLTHROUGH */
2593 	default:
2594 		if (hw->mac.type == e1000_80003es2lan)
2595 			hw->fc.pause_time = 0xFFFF;
2596 		break;
2597 	}
2598 
2599 	/* Issue a global reset */
2600 	e1000_reset_hw(hw);
2601 	if (adapter->hw.mac.type >= igb_mac_min) {
2602 		E1000_WRITE_REG(hw, E1000_WUC, 0);
2603 	} else {
2604 		E1000_WRITE_REG(hw, E1000_WUFC, 0);
2605 		em_disable_aspm(adapter);
2606 	}
2607 	if (adapter->flags & IGB_MEDIA_RESET) {
2608 		e1000_setup_init_funcs(hw, TRUE);
2609 		e1000_get_bus_info(hw);
2610 		adapter->flags &= ~IGB_MEDIA_RESET;
2611 	}
2612 	/* and a re-init */
2613 	if (e1000_init_hw(hw) < 0) {
2614 		device_printf(dev, "Hardware Initialization Failed\n");
2615 		return;
2616 	}
2617 	if (adapter->hw.mac.type >= igb_mac_min)
2618 		igb_init_dmac(adapter, pba);
2619 
2620 	E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2621 	e1000_get_phy_info(hw);
2622 	e1000_check_for_link(hw);
2623 }
2624 
2625 /*
2626  * Initialise the RSS mapping for NICs that support multiple transmit/
2627  * receive rings.
2628  */
2629 
2630 #define RSSKEYLEN 10
2631 static void
2632 em_initialize_rss_mapping(struct adapter *adapter)
2633 {
2634 	uint8_t  rss_key[4 * RSSKEYLEN];
2635 	uint32_t reta = 0;
2636 	struct e1000_hw	*hw = &adapter->hw;
2637 	int i;
2638 
2639 	/*
2640 	 * Configure RSS key
2641 	 */
2642 	arc4rand(rss_key, sizeof(rss_key), 0);
2643 	for (i = 0; i < RSSKEYLEN; ++i) {
2644 		uint32_t rssrk = 0;
2645 
2646 		rssrk = EM_RSSRK_VAL(rss_key, i);
2647 		E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2648 	}
2649 
2650 	/*
2651 	 * Configure RSS redirect table in following fashion:
2652 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2653 	 */
2654 	for (i = 0; i < sizeof(reta); ++i) {
2655 		uint32_t q;
2656 
2657 		q = (i % adapter->rx_num_queues) << 7;
2658 		reta |= q << (8 * i);
2659 	}
2660 
2661 	for (i = 0; i < 32; ++i)
2662 		E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2663 
2664 	E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
2665 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2666 			E1000_MRQC_RSS_FIELD_IPV4 |
2667 			E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2668 			E1000_MRQC_RSS_FIELD_IPV6_EX |
2669 			E1000_MRQC_RSS_FIELD_IPV6);
2670 }
2671 
2672 static void
2673 igb_initialize_rss_mapping(struct adapter *adapter)
2674 {
2675 	struct e1000_hw *hw = &adapter->hw;
2676 	int i;
2677 	int queue_id;
2678 	u32 reta;
2679 	u32 rss_key[10], mrqc, shift = 0;
2680 
2681 	/* XXX? */
2682 	if (adapter->hw.mac.type == e1000_82575)
2683 		shift = 6;
2684 
2685 	/*
2686 	 * The redirection table controls which destination
2687 	 * queue each bucket redirects traffic to.
2688 	 * Each DWORD represents four queues, with the LSB
2689 	 * being the first queue in the DWORD.
2690 	 *
2691 	 * This just allocates buckets to queues using round-robin
2692 	 * allocation.
2693 	 *
2694 	 * NOTE: It Just Happens to line up with the default
2695 	 * RSS allocation method.
2696 	 */
2697 
2698 	/* Warning FM follows */
2699 	reta = 0;
2700 	for (i = 0; i < 128; i++) {
2701 #ifdef RSS
2702 		queue_id = rss_get_indirection_to_bucket(i);
2703 		/*
2704 		 * If we have more queues than buckets, we'll
2705 		 * end up mapping buckets to a subset of the
2706 		 * queues.
2707 		 *
2708 		 * If we have more buckets than queues, we'll
2709 		 * end up instead assigning multiple buckets
2710 		 * to queues.
2711 		 *
2712 		 * Both are suboptimal, but we need to handle
2713 		 * the case so we don't go out of bounds
2714 		 * indexing arrays and such.
2715 		 */
2716 		queue_id = queue_id % adapter->rx_num_queues;
2717 #else
2718 		queue_id = (i % adapter->rx_num_queues);
2719 #endif
2720 		/* Adjust if required */
2721 		queue_id = queue_id << shift;
2722 
2723 		/*
2724 		 * The low 8 bits are for hash value (n+0);
2725 		 * The next 8 bits are for hash value (n+1), etc.
2726 		 */
2727 		reta = reta >> 8;
2728 		reta = reta | ( ((uint32_t) queue_id) << 24);
2729 		if ((i & 3) == 3) {
2730 			E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2731 			reta = 0;
2732 		}
2733 	}
2734 
2735 	/* Now fill in hash table */
2736 
2737 	/*
2738 	 * MRQC: Multiple Receive Queues Command
2739 	 * Set queuing to RSS control, number depends on the device.
2740 	 */
2741 	mrqc = E1000_MRQC_ENABLE_RSS_8Q;
2742 
2743 #ifdef RSS
2744 	/* XXX ew typecasting */
2745 	rss_getkey((uint8_t *) &rss_key);
2746 #else
2747 	arc4rand(&rss_key, sizeof(rss_key), 0);
2748 #endif
2749 	for (i = 0; i < 10; i++)
2750 		E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
2751 
2752 	/*
2753 	 * Configure the RSS fields to hash upon.
2754 	 */
2755 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2756 	    E1000_MRQC_RSS_FIELD_IPV4_TCP);
2757 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2758 	    E1000_MRQC_RSS_FIELD_IPV6_TCP);
2759 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2760 	    E1000_MRQC_RSS_FIELD_IPV6_UDP);
2761 	mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2762 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2763 
2764 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2765 }
2766 
2767 /*********************************************************************
2768  *
2769  *  Setup networking device structure and register interface media.
2770  *
2771  **********************************************************************/
2772 static int
2773 em_setup_interface(if_ctx_t ctx)
2774 {
2775 	struct ifnet *ifp = iflib_get_ifp(ctx);
2776 	struct adapter *adapter = iflib_get_softc(ctx);
2777 	if_softc_ctx_t scctx = adapter->shared;
2778 
2779 	INIT_DEBUGOUT("em_setup_interface: begin");
2780 
2781 	/* Single Queue */
2782 	if (adapter->tx_num_queues == 1) {
2783 		if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
2784 		if_setsendqready(ifp);
2785 	}
2786 
2787 	/*
2788 	 * Specify the media types supported by this adapter and register
2789 	 * callbacks to update media and link information
2790 	 */
2791 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
2792 	    (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
2793 		u_char fiber_type = IFM_1000_SX;	/* default type */
2794 
2795 		if (adapter->hw.mac.type == e1000_82545)
2796 			fiber_type = IFM_1000_LX;
2797 		ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
2798 		ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2799 	} else {
2800 		ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2801 		ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
2802 		ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2803 		ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
2804 		if (adapter->hw.phy.type != e1000_phy_ife) {
2805 			ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2806 			ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2807 		}
2808 	}
2809 	ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2810 	ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO);
2811 	return (0);
2812 }
2813 
2814 static int
2815 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
2816 {
2817 	struct adapter *adapter = iflib_get_softc(ctx);
2818 	if_softc_ctx_t scctx = adapter->shared;
2819 	int error = E1000_SUCCESS;
2820 	struct em_tx_queue *que;
2821 	int i, j;
2822 
2823 	MPASS(adapter->tx_num_queues > 0);
2824 	MPASS(adapter->tx_num_queues == ntxqsets);
2825 
2826 	/* First allocate the top level queue structs */
2827 	if (!(adapter->tx_queues =
2828 	    (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
2829 	    adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2830 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2831 		return(ENOMEM);
2832 	}
2833 
2834 	for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) {
2835 		/* Set up some basics */
2836 
2837 		struct tx_ring *txr = &que->txr;
2838 		txr->adapter = que->adapter = adapter;
2839 		que->me = txr->me =  i;
2840 
2841 		/* Allocate report status array */
2842 		if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2843 			device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
2844 			error = ENOMEM;
2845 			goto fail;
2846 		}
2847 		for (j = 0; j < scctx->isc_ntxd[0]; j++)
2848 			txr->tx_rsq[j] = QIDX_INVALID;
2849 		/* get the virtual and physical address of the hardware queues */
2850 		txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
2851 		txr->tx_paddr = paddrs[i*ntxqs];
2852 	}
2853 
2854 	if (bootverbose)
2855 		device_printf(iflib_get_dev(ctx),
2856 		    "allocated for %d tx_queues\n", adapter->tx_num_queues);
2857 	return (0);
2858 fail:
2859 	em_if_queues_free(ctx);
2860 	return (error);
2861 }
2862 
2863 static int
2864 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
2865 {
2866 	struct adapter *adapter = iflib_get_softc(ctx);
2867 	int error = E1000_SUCCESS;
2868 	struct em_rx_queue *que;
2869 	int i;
2870 
2871 	MPASS(adapter->rx_num_queues > 0);
2872 	MPASS(adapter->rx_num_queues == nrxqsets);
2873 
2874 	/* First allocate the top level queue structs */
2875 	if (!(adapter->rx_queues =
2876 	    (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
2877 	    adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2878 		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2879 		error = ENOMEM;
2880 		goto fail;
2881 	}
2882 
2883 	for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) {
2884 		/* Set up some basics */
2885 		struct rx_ring *rxr = &que->rxr;
2886 		rxr->adapter = que->adapter = adapter;
2887 		rxr->que = que;
2888 		que->me = rxr->me =  i;
2889 
2890 		/* get the virtual and physical address of the hardware queues */
2891 		rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
2892 		rxr->rx_paddr = paddrs[i*nrxqs];
2893 	}
2894 
2895 	if (bootverbose)
2896 		device_printf(iflib_get_dev(ctx),
2897 		    "allocated for %d rx_queues\n", adapter->rx_num_queues);
2898 
2899 	return (0);
2900 fail:
2901 	em_if_queues_free(ctx);
2902 	return (error);
2903 }
2904 
2905 static void
2906 em_if_queues_free(if_ctx_t ctx)
2907 {
2908 	struct adapter *adapter = iflib_get_softc(ctx);
2909 	struct em_tx_queue *tx_que = adapter->tx_queues;
2910 	struct em_rx_queue *rx_que = adapter->rx_queues;
2911 
2912 	if (tx_que != NULL) {
2913 		for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
2914 			struct tx_ring *txr = &tx_que->txr;
2915 			if (txr->tx_rsq == NULL)
2916 				break;
2917 
2918 			free(txr->tx_rsq, M_DEVBUF);
2919 			txr->tx_rsq = NULL;
2920 		}
2921 		free(adapter->tx_queues, M_DEVBUF);
2922 		adapter->tx_queues = NULL;
2923 	}
2924 
2925 	if (rx_que != NULL) {
2926 		free(adapter->rx_queues, M_DEVBUF);
2927 		adapter->rx_queues = NULL;
2928 	}
2929 
2930 	em_release_hw_control(adapter);
2931 
2932 	if (adapter->mta != NULL) {
2933 		free(adapter->mta, M_DEVBUF);
2934 	}
2935 }
2936 
2937 /*********************************************************************
2938  *
2939  *  Enable transmit unit.
2940  *
2941  **********************************************************************/
2942 static void
2943 em_initialize_transmit_unit(if_ctx_t ctx)
2944 {
2945 	struct adapter *adapter = iflib_get_softc(ctx);
2946 	if_softc_ctx_t scctx = adapter->shared;
2947 	struct em_tx_queue *que;
2948 	struct tx_ring	*txr;
2949 	struct e1000_hw	*hw = &adapter->hw;
2950 	u32 tctl, txdctl = 0, tarc, tipg = 0;
2951 
2952 	INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
2953 
2954 	for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
2955 		u64 bus_addr;
2956 		caddr_t offp, endp;
2957 
2958 		que = &adapter->tx_queues[i];
2959 		txr = &que->txr;
2960 		bus_addr = txr->tx_paddr;
2961 
2962 		/* Clear checksum offload context. */
2963 		offp = (caddr_t)&txr->csum_flags;
2964 		endp = (caddr_t)(txr + 1);
2965 		bzero(offp, endp - offp);
2966 
2967 		/* Base and Len of TX Ring */
2968 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
2969 		    scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
2970 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
2971 		    (u32)(bus_addr >> 32));
2972 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
2973 		    (u32)bus_addr);
2974 		/* Init the HEAD/TAIL indices */
2975 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
2976 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
2977 
2978 		HW_DEBUGOUT2("Base = %x, Length = %x\n",
2979 		    E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)),
2980 		    E1000_READ_REG(&adapter->hw, E1000_TDLEN(i)));
2981 
2982 		txdctl = 0; /* clear txdctl */
2983 		txdctl |= 0x1f; /* PTHRESH */
2984 		txdctl |= 1 << 8; /* HTHRESH */
2985 		txdctl |= 1 << 16;/* WTHRESH */
2986 		txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
2987 		txdctl |= E1000_TXDCTL_GRAN;
2988 		txdctl |= 1 << 25; /* LWTHRESH */
2989 
2990 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
2991 	}
2992 
2993 	/* Set the default values for the Tx Inter Packet Gap timer */
2994 	switch (adapter->hw.mac.type) {
2995 	case e1000_80003es2lan:
2996 		tipg = DEFAULT_82543_TIPG_IPGR1;
2997 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2998 		    E1000_TIPG_IPGR2_SHIFT;
2999 		break;
3000 	case e1000_82542:
3001 		tipg = DEFAULT_82542_TIPG_IPGT;
3002 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3003 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3004 		break;
3005 	default:
3006 		if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
3007 		    (adapter->hw.phy.media_type ==
3008 		    e1000_media_type_internal_serdes))
3009 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3010 		else
3011 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3012 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3013 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3014 	}
3015 
3016 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
3017 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value);
3018 
3019 	if(adapter->hw.mac.type >= e1000_82540)
3020 		E1000_WRITE_REG(&adapter->hw, E1000_TADV,
3021 		    adapter->tx_abs_int_delay.value);
3022 
3023 	if ((adapter->hw.mac.type == e1000_82571) ||
3024 	    (adapter->hw.mac.type == e1000_82572)) {
3025 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3026 		tarc |= TARC_SPEED_MODE_BIT;
3027 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3028 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
3029 		/* errata: program both queues to unweighted RR */
3030 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3031 		tarc |= 1;
3032 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3033 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
3034 		tarc |= 1;
3035 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3036 	} else if (adapter->hw.mac.type == e1000_82574) {
3037 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3038 		tarc |= TARC_ERRATA_BIT;
3039 		if ( adapter->tx_num_queues > 1) {
3040 			tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3041 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3042 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3043 		} else
3044 			E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3045 	}
3046 
3047 	if (adapter->tx_int_delay.value > 0)
3048 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3049 
3050 	/* Program the Transmit Control Register */
3051 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
3052 	tctl &= ~E1000_TCTL_CT;
3053 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3054 		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3055 
3056 	if (adapter->hw.mac.type >= e1000_82571)
3057 		tctl |= E1000_TCTL_MULR;
3058 
3059 	/* This write will effectively turn on the transmit unit. */
3060 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
3061 
3062 	/* SPT and KBL errata workarounds */
3063 	if (hw->mac.type == e1000_pch_spt) {
3064 		u32 reg;
3065 		reg = E1000_READ_REG(hw, E1000_IOSFPC);
3066 		reg |= E1000_RCTL_RDMTS_HEX;
3067 		E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3068 		/* i218-i219 Specification Update 1.5.4.5 */
3069 		reg = E1000_READ_REG(hw, E1000_TARC(0));
3070 		reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3071 		reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3072 		E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3073 	}
3074 }
3075 
3076 /*********************************************************************
3077  *
3078  *  Enable receive unit.
3079  *
3080  **********************************************************************/
3081 
3082 static void
3083 em_initialize_receive_unit(if_ctx_t ctx)
3084 {
3085 	struct adapter *adapter = iflib_get_softc(ctx);
3086 	if_softc_ctx_t scctx = adapter->shared;
3087 	struct ifnet *ifp = iflib_get_ifp(ctx);
3088 	struct e1000_hw	*hw = &adapter->hw;
3089 	struct em_rx_queue *que;
3090 	int i;
3091 	u32 rctl, rxcsum, rfctl;
3092 
3093 	INIT_DEBUGOUT("em_initialize_receive_units: begin");
3094 
3095 	/*
3096 	 * Make sure receives are disabled while setting
3097 	 * up the descriptor ring
3098 	 */
3099 	rctl = E1000_READ_REG(hw, E1000_RCTL);
3100 	/* Do not disable if ever enabled on this hardware */
3101 	if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3102 		E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3103 
3104 	/* Setup the Receive Control Register */
3105 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3106 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3107 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3108 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3109 
3110 	/* Do not store bad packets */
3111 	rctl &= ~E1000_RCTL_SBP;
3112 
3113 	/* Enable Long Packet receive */
3114 	if (if_getmtu(ifp) > ETHERMTU)
3115 		rctl |= E1000_RCTL_LPE;
3116 	else
3117 		rctl &= ~E1000_RCTL_LPE;
3118 
3119 	/* Strip the CRC */
3120 	if (!em_disable_crc_stripping)
3121 		rctl |= E1000_RCTL_SECRC;
3122 
3123 	if (adapter->hw.mac.type >= e1000_82540) {
3124 		E1000_WRITE_REG(&adapter->hw, E1000_RADV,
3125 			    adapter->rx_abs_int_delay.value);
3126 
3127 		/*
3128 		 * Set the interrupt throttling rate. Value is calculated
3129 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3130 		 */
3131 		E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
3132 	}
3133 	E1000_WRITE_REG(&adapter->hw, E1000_RDTR,
3134 	    adapter->rx_int_delay.value);
3135 
3136 	/* Use extended rx descriptor formats */
3137 	rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3138 	rfctl |= E1000_RFCTL_EXTEN;
3139 	/*
3140 	 * When using MSI-X interrupts we need to throttle
3141 	 * using the EITR register (82574 only)
3142 	 */
3143 	if (hw->mac.type == e1000_82574) {
3144 		for (int i = 0; i < 4; i++)
3145 			E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3146 			    DEFAULT_ITR);
3147 		/* Disable accelerated acknowledge */
3148 		rfctl |= E1000_RFCTL_ACK_DIS;
3149 	}
3150 	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3151 
3152 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3153 	if (if_getcapenable(ifp) & IFCAP_RXCSUM &&
3154 	    adapter->hw.mac.type >= e1000_82543) {
3155 		if (adapter->tx_num_queues > 1) {
3156 			if (adapter->hw.mac.type >= igb_mac_min) {
3157 				rxcsum |= E1000_RXCSUM_PCSD;
3158 				if (hw->mac.type != e1000_82575)
3159 					rxcsum |= E1000_RXCSUM_CRCOFL;
3160 			} else
3161 				rxcsum |= E1000_RXCSUM_TUOFL |
3162 					E1000_RXCSUM_IPOFL |
3163 					E1000_RXCSUM_PCSD;
3164 		} else {
3165 			if (adapter->hw.mac.type >= igb_mac_min)
3166 				rxcsum |= E1000_RXCSUM_IPPCSE;
3167 			else
3168 				rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3169 			if (adapter->hw.mac.type > e1000_82575)
3170 				rxcsum |= E1000_RXCSUM_CRCOFL;
3171 		}
3172 	} else
3173 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3174 
3175 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3176 
3177 	if (adapter->rx_num_queues > 1) {
3178 		if (adapter->hw.mac.type >= igb_mac_min)
3179 			igb_initialize_rss_mapping(adapter);
3180 		else
3181 			em_initialize_rss_mapping(adapter);
3182 	}
3183 
3184 	/*
3185 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3186 	 * long latencies are observed, like Lenovo X60. This
3187 	 * change eliminates the problem, but since having positive
3188 	 * values in RDTR is a known source of problems on other
3189 	 * platforms another solution is being sought.
3190 	 */
3191 	if (hw->mac.type == e1000_82573)
3192 		E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3193 
3194 	for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3195 		struct rx_ring *rxr = &que->rxr;
3196 		/* Setup the Base and Length of the Rx Descriptor Ring */
3197 		u64 bus_addr = rxr->rx_paddr;
3198 #if 0
3199 		u32 rdt = adapter->rx_num_queues -1;  /* default */
3200 #endif
3201 
3202 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
3203 		    scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
3204 		E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3205 		E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3206 		/* Setup the Head and Tail Descriptor Pointers */
3207 		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3208 		E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3209 	}
3210 
3211 	/*
3212 	 * Set PTHRESH for improved jumbo performance
3213 	 * According to 10.2.5.11 of Intel 82574 Datasheet,
3214 	 * RXDCTL(1) is written whenever RXDCTL(0) is written.
3215 	 * Only write to RXDCTL(1) if there is a need for different
3216 	 * settings.
3217 	 */
3218 
3219 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3220 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3221 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3222 	    (if_getmtu(ifp) > ETHERMTU)) {
3223 		u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3224 		E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3225 	} else if (adapter->hw.mac.type == e1000_82574) {
3226 		for (int i = 0; i < adapter->rx_num_queues; i++) {
3227 			u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3228 			rxdctl |= 0x20; /* PTHRESH */
3229 			rxdctl |= 4 << 8; /* HTHRESH */
3230 			rxdctl |= 4 << 16;/* WTHRESH */
3231 			rxdctl |= 1 << 24; /* Switch to granularity */
3232 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3233 		}
3234 	} else if (adapter->hw.mac.type >= igb_mac_min) {
3235 		u32 psize, srrctl = 0;
3236 
3237 		if (if_getmtu(ifp) > ETHERMTU) {
3238 			/* Set maximum packet len */
3239 			if (adapter->rx_mbuf_sz <= 4096) {
3240 				srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3241 				rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3242 			} else if (adapter->rx_mbuf_sz > 4096) {
3243 				srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3244 				rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3245 			}
3246 			psize = scctx->isc_max_frame_size;
3247 			/* are we on a vlan? */
3248 			if (ifp->if_vlantrunk != NULL)
3249 				psize += VLAN_TAG_SIZE;
3250 			E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
3251 		} else {
3252 			srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3253 			rctl |= E1000_RCTL_SZ_2048;
3254 		}
3255 
3256 		/*
3257 		 * If TX flow control is disabled and there's >1 queue defined,
3258 		 * enable DROP.
3259 		 *
3260 		 * This drops frames rather than hanging the RX MAC for all queues.
3261 		 */
3262 		if ((adapter->rx_num_queues > 1) &&
3263 		    (adapter->fc == e1000_fc_none ||
3264 		     adapter->fc == e1000_fc_rx_pause)) {
3265 			srrctl |= E1000_SRRCTL_DROP_EN;
3266 		}
3267 			/* Setup the Base and Length of the Rx Descriptor Rings */
3268 		for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3269 			struct rx_ring *rxr = &que->rxr;
3270 			u64 bus_addr = rxr->rx_paddr;
3271 			u32 rxdctl;
3272 
3273 #ifdef notyet
3274 			/* Configure for header split? -- ignore for now */
3275 			rxr->hdr_split = igb_header_split;
3276 #else
3277 			srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3278 #endif
3279 
3280 			E1000_WRITE_REG(hw, E1000_RDLEN(i),
3281 					scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3282 			E1000_WRITE_REG(hw, E1000_RDBAH(i),
3283 					(uint32_t)(bus_addr >> 32));
3284 			E1000_WRITE_REG(hw, E1000_RDBAL(i),
3285 					(uint32_t)bus_addr);
3286 			E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3287 			/* Enable this Queue */
3288 			rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3289 			rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3290 			rxdctl &= 0xFFF00000;
3291 			rxdctl |= IGB_RX_PTHRESH;
3292 			rxdctl |= IGB_RX_HTHRESH << 8;
3293 			rxdctl |= IGB_RX_WTHRESH << 16;
3294 			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3295 		}
3296 	} else if (adapter->hw.mac.type >= e1000_pch2lan) {
3297 		if (if_getmtu(ifp) > ETHERMTU)
3298 			e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
3299 		else
3300 			e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
3301 	}
3302 
3303 	/* Make sure VLAN Filters are off */
3304 	rctl &= ~E1000_RCTL_VFE;
3305 
3306 	if (adapter->hw.mac.type < igb_mac_min) {
3307 		if (adapter->rx_mbuf_sz == MCLBYTES)
3308 			rctl |= E1000_RCTL_SZ_2048;
3309 		else if (adapter->rx_mbuf_sz == MJUMPAGESIZE)
3310 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3311 		else if (adapter->rx_mbuf_sz > MJUMPAGESIZE)
3312 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3313 
3314 		/* ensure we clear use DTYPE of 00 here */
3315 		rctl &= ~0x00000C00;
3316 	}
3317 
3318 	/* Write out the settings */
3319 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3320 
3321 	return;
3322 }
3323 
3324 static void
3325 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3326 {
3327 	struct adapter *adapter = iflib_get_softc(ctx);
3328 	u32 index, bit;
3329 
3330 	index = (vtag >> 5) & 0x7F;
3331 	bit = vtag & 0x1F;
3332 	adapter->shadow_vfta[index] |= (1 << bit);
3333 	++adapter->num_vlans;
3334 }
3335 
3336 static void
3337 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3338 {
3339 	struct adapter *adapter = iflib_get_softc(ctx);
3340 	u32 index, bit;
3341 
3342 	index = (vtag >> 5) & 0x7F;
3343 	bit = vtag & 0x1F;
3344 	adapter->shadow_vfta[index] &= ~(1 << bit);
3345 	--adapter->num_vlans;
3346 }
3347 
3348 static void
3349 em_setup_vlan_hw_support(struct adapter *adapter)
3350 {
3351 	struct e1000_hw *hw = &adapter->hw;
3352 	u32 reg;
3353 
3354 	/*
3355 	 * We get here thru init_locked, meaning
3356 	 * a soft reset, this has already cleared
3357 	 * the VFTA and other state, so if there
3358 	 * have been no vlan's registered do nothing.
3359 	 */
3360 	if (adapter->num_vlans == 0)
3361 		return;
3362 
3363 	/*
3364 	 * A soft reset zero's out the VFTA, so
3365 	 * we need to repopulate it now.
3366 	 */
3367 	for (int i = 0; i < EM_VFTA_SIZE; i++)
3368 		if (adapter->shadow_vfta[i] != 0)
3369 			E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
3370 			    i, adapter->shadow_vfta[i]);
3371 
3372 	reg = E1000_READ_REG(hw, E1000_CTRL);
3373 	reg |= E1000_CTRL_VME;
3374 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
3375 
3376 	/* Enable the Filter Table */
3377 	reg = E1000_READ_REG(hw, E1000_RCTL);
3378 	reg &= ~E1000_RCTL_CFIEN;
3379 	reg |= E1000_RCTL_VFE;
3380 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
3381 }
3382 
3383 static void
3384 em_if_enable_intr(if_ctx_t ctx)
3385 {
3386 	struct adapter *adapter = iflib_get_softc(ctx);
3387 	struct e1000_hw *hw = &adapter->hw;
3388 	u32 ims_mask = IMS_ENABLE_MASK;
3389 
3390 	if (hw->mac.type == e1000_82574) {
3391 		E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK);
3392 		ims_mask |= adapter->ims;
3393 	} else if (adapter->intr_type == IFLIB_INTR_MSIX && hw->mac.type >= igb_mac_min)  {
3394 		u32 mask = (adapter->que_mask | adapter->link_mask);
3395 
3396 		E1000_WRITE_REG(&adapter->hw, E1000_EIAC, mask);
3397 		E1000_WRITE_REG(&adapter->hw, E1000_EIAM, mask);
3398 		E1000_WRITE_REG(&adapter->hw, E1000_EIMS, mask);
3399 		ims_mask = E1000_IMS_LSC;
3400 	}
3401 
3402 	E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3403 }
3404 
3405 static void
3406 em_if_disable_intr(if_ctx_t ctx)
3407 {
3408 	struct adapter *adapter = iflib_get_softc(ctx);
3409 	struct e1000_hw *hw = &adapter->hw;
3410 
3411 	if (adapter->intr_type == IFLIB_INTR_MSIX) {
3412 		if (hw->mac.type >= igb_mac_min)
3413 			E1000_WRITE_REG(&adapter->hw, E1000_EIMC, ~0);
3414 		E1000_WRITE_REG(&adapter->hw, E1000_EIAC, 0);
3415 	}
3416 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
3417 }
3418 
3419 /*
3420  * Bit of a misnomer, what this really means is
3421  * to enable OS management of the system... aka
3422  * to disable special hardware management features
3423  */
3424 static void
3425 em_init_manageability(struct adapter *adapter)
3426 {
3427 	/* A shared code workaround */
3428 #define E1000_82542_MANC2H E1000_MANC2H
3429 	if (adapter->has_manage) {
3430 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3431 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3432 
3433 		/* disable hardware interception of ARP */
3434 		manc &= ~(E1000_MANC_ARP_EN);
3435 
3436 		/* enable receiving management packets to the host */
3437 		manc |= E1000_MANC_EN_MNG2HOST;
3438 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3439 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3440 		manc2h |= E1000_MNG2HOST_PORT_623;
3441 		manc2h |= E1000_MNG2HOST_PORT_664;
3442 		E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3443 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3444 	}
3445 }
3446 
3447 /*
3448  * Give control back to hardware management
3449  * controller if there is one.
3450  */
3451 static void
3452 em_release_manageability(struct adapter *adapter)
3453 {
3454 	if (adapter->has_manage) {
3455 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3456 
3457 		/* re-enable hardware interception of ARP */
3458 		manc |= E1000_MANC_ARP_EN;
3459 		manc &= ~E1000_MANC_EN_MNG2HOST;
3460 
3461 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3462 	}
3463 }
3464 
3465 /*
3466  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3467  * For ASF and Pass Through versions of f/w this means
3468  * that the driver is loaded. For AMT version type f/w
3469  * this means that the network i/f is open.
3470  */
3471 static void
3472 em_get_hw_control(struct adapter *adapter)
3473 {
3474 	u32 ctrl_ext, swsm;
3475 
3476 	if (adapter->vf_ifp)
3477 		return;
3478 
3479 	if (adapter->hw.mac.type == e1000_82573) {
3480 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3481 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3482 		    swsm | E1000_SWSM_DRV_LOAD);
3483 		return;
3484 	}
3485 	/* else */
3486 	ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3487 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3488 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3489 }
3490 
3491 /*
3492  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3493  * For ASF and Pass Through versions of f/w this means that
3494  * the driver is no longer loaded. For AMT versions of the
3495  * f/w this means that the network i/f is closed.
3496  */
3497 static void
3498 em_release_hw_control(struct adapter *adapter)
3499 {
3500 	u32 ctrl_ext, swsm;
3501 
3502 	if (!adapter->has_manage)
3503 		return;
3504 
3505 	if (adapter->hw.mac.type == e1000_82573) {
3506 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3507 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3508 		    swsm & ~E1000_SWSM_DRV_LOAD);
3509 		return;
3510 	}
3511 	/* else */
3512 	ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3513 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3514 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3515 	return;
3516 }
3517 
3518 static int
3519 em_is_valid_ether_addr(u8 *addr)
3520 {
3521 	char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3522 
3523 	if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3524 		return (FALSE);
3525 	}
3526 
3527 	return (TRUE);
3528 }
3529 
3530 /*
3531 ** Parse the interface capabilities with regard
3532 ** to both system management and wake-on-lan for
3533 ** later use.
3534 */
3535 static void
3536 em_get_wakeup(if_ctx_t ctx)
3537 {
3538 	struct adapter *adapter = iflib_get_softc(ctx);
3539 	device_t dev = iflib_get_dev(ctx);
3540 	u16 eeprom_data = 0, device_id, apme_mask;
3541 
3542 	adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
3543 	apme_mask = EM_EEPROM_APME;
3544 
3545 	switch (adapter->hw.mac.type) {
3546 	case e1000_82542:
3547 	case e1000_82543:
3548 		break;
3549 	case e1000_82544:
3550 		e1000_read_nvm(&adapter->hw,
3551 		    NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3552 		apme_mask = EM_82544_APME;
3553 		break;
3554 	case e1000_82546:
3555 	case e1000_82546_rev_3:
3556 		if (adapter->hw.bus.func == 1) {
3557 			e1000_read_nvm(&adapter->hw,
3558 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3559 			break;
3560 		} else
3561 			e1000_read_nvm(&adapter->hw,
3562 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3563 		break;
3564 	case e1000_82573:
3565 	case e1000_82583:
3566 		adapter->has_amt = TRUE;
3567 		/* FALLTHROUGH */
3568 	case e1000_82571:
3569 	case e1000_82572:
3570 	case e1000_80003es2lan:
3571 		if (adapter->hw.bus.func == 1) {
3572 			e1000_read_nvm(&adapter->hw,
3573 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3574 			break;
3575 		} else
3576 			e1000_read_nvm(&adapter->hw,
3577 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3578 		break;
3579 	case e1000_ich8lan:
3580 	case e1000_ich9lan:
3581 	case e1000_ich10lan:
3582 	case e1000_pchlan:
3583 	case e1000_pch2lan:
3584 	case e1000_pch_lpt:
3585 	case e1000_pch_spt:
3586 	case e1000_82575:	/* listing all igb devices */
3587 	case e1000_82576:
3588 	case e1000_82580:
3589 	case e1000_i350:
3590 	case e1000_i354:
3591 	case e1000_i210:
3592 	case e1000_i211:
3593 	case e1000_vfadapt:
3594 	case e1000_vfadapt_i350:
3595 		apme_mask = E1000_WUC_APME;
3596 		adapter->has_amt = TRUE;
3597 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
3598 		break;
3599 	default:
3600 		e1000_read_nvm(&adapter->hw,
3601 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3602 		break;
3603 	}
3604 	if (eeprom_data & apme_mask)
3605 		adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
3606 	/*
3607 	 * We have the eeprom settings, now apply the special cases
3608 	 * where the eeprom may be wrong or the board won't support
3609 	 * wake on lan on a particular port
3610 	 */
3611 	device_id = pci_get_device(dev);
3612 	switch (device_id) {
3613 	case E1000_DEV_ID_82546GB_PCIE:
3614 		adapter->wol = 0;
3615 		break;
3616 	case E1000_DEV_ID_82546EB_FIBER:
3617 	case E1000_DEV_ID_82546GB_FIBER:
3618 		/* Wake events only supported on port A for dual fiber
3619 		 * regardless of eeprom setting */
3620 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3621 		    E1000_STATUS_FUNC_1)
3622 			adapter->wol = 0;
3623 		break;
3624 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
3625 		/* if quad port adapter, disable WoL on all but port A */
3626 		if (global_quad_port_a != 0)
3627 			adapter->wol = 0;
3628 		/* Reset for multiple quad port adapters */
3629 		if (++global_quad_port_a == 4)
3630 			global_quad_port_a = 0;
3631 		break;
3632 	case E1000_DEV_ID_82571EB_FIBER:
3633 		/* Wake events only supported on port A for dual fiber
3634 		 * regardless of eeprom setting */
3635 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3636 		    E1000_STATUS_FUNC_1)
3637 			adapter->wol = 0;
3638 		break;
3639 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
3640 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
3641 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
3642 		/* if quad port adapter, disable WoL on all but port A */
3643 		if (global_quad_port_a != 0)
3644 			adapter->wol = 0;
3645 		/* Reset for multiple quad port adapters */
3646 		if (++global_quad_port_a == 4)
3647 			global_quad_port_a = 0;
3648 		break;
3649 	}
3650 	return;
3651 }
3652 
3653 
3654 /*
3655  * Enable PCI Wake On Lan capability
3656  */
3657 static void
3658 em_enable_wakeup(if_ctx_t ctx)
3659 {
3660 	struct adapter *adapter = iflib_get_softc(ctx);
3661 	device_t dev = iflib_get_dev(ctx);
3662 	if_t ifp = iflib_get_ifp(ctx);
3663 	int error = 0;
3664 	u32 pmc, ctrl, ctrl_ext, rctl;
3665 	u16 status;
3666 
3667 	if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
3668 		return;
3669 
3670 	/*
3671 	 * Determine type of Wakeup: note that wol
3672 	 * is set with all bits on by default.
3673 	 */
3674 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
3675 		adapter->wol &= ~E1000_WUFC_MAG;
3676 
3677 	if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
3678 		adapter->wol &= ~E1000_WUFC_EX;
3679 
3680 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
3681 		adapter->wol &= ~E1000_WUFC_MC;
3682 	else {
3683 		rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3684 		rctl |= E1000_RCTL_MPE;
3685 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3686 	}
3687 
3688 	if (!(adapter->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
3689 		goto pme;
3690 
3691 	/* Advertise the wakeup capability */
3692 	ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
3693 	ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
3694 	E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
3695 
3696 	/* Keep the laser running on Fiber adapters */
3697 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3698 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
3699 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3700 		ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
3701 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext);
3702 	}
3703 
3704 	if ((adapter->hw.mac.type == e1000_ich8lan) ||
3705 	    (adapter->hw.mac.type == e1000_pchlan) ||
3706 	    (adapter->hw.mac.type == e1000_ich9lan) ||
3707 	    (adapter->hw.mac.type == e1000_ich10lan))
3708 		e1000_suspend_workarounds_ich8lan(&adapter->hw);
3709 
3710 	if ( adapter->hw.mac.type >= e1000_pchlan) {
3711 		error = em_enable_phy_wakeup(adapter);
3712 		if (error)
3713 			goto pme;
3714 	} else {
3715 		/* Enable wakeup by the MAC */
3716 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
3717 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
3718 	}
3719 
3720 	if (adapter->hw.phy.type == e1000_phy_igp_3)
3721 		e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3722 
3723 pme:
3724 	status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
3725 	status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3726 	if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
3727 		status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3728 	pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
3729 
3730 	return;
3731 }
3732 
3733 /*
3734  * WOL in the newer chipset interfaces (pchlan)
3735  * require thing to be copied into the phy
3736  */
3737 static int
3738 em_enable_phy_wakeup(struct adapter *adapter)
3739 {
3740 	struct e1000_hw *hw = &adapter->hw;
3741 	u32 mreg, ret = 0;
3742 	u16 preg;
3743 
3744 	/* copy MAC RARs to PHY RARs */
3745 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
3746 
3747 	/* copy MAC MTA to PHY MTA */
3748 	for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
3749 		mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
3750 		e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
3751 		e1000_write_phy_reg(hw, BM_MTA(i) + 1,
3752 		    (u16)((mreg >> 16) & 0xFFFF));
3753 	}
3754 
3755 	/* configure PHY Rx Control register */
3756 	e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg);
3757 	mreg = E1000_READ_REG(hw, E1000_RCTL);
3758 	if (mreg & E1000_RCTL_UPE)
3759 		preg |= BM_RCTL_UPE;
3760 	if (mreg & E1000_RCTL_MPE)
3761 		preg |= BM_RCTL_MPE;
3762 	preg &= ~(BM_RCTL_MO_MASK);
3763 	if (mreg & E1000_RCTL_MO_3)
3764 		preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
3765 				<< BM_RCTL_MO_SHIFT);
3766 	if (mreg & E1000_RCTL_BAM)
3767 		preg |= BM_RCTL_BAM;
3768 	if (mreg & E1000_RCTL_PMCF)
3769 		preg |= BM_RCTL_PMCF;
3770 	mreg = E1000_READ_REG(hw, E1000_CTRL);
3771 	if (mreg & E1000_CTRL_RFCE)
3772 		preg |= BM_RCTL_RFCE;
3773 	e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg);
3774 
3775 	/* enable PHY wakeup in MAC register */
3776 	E1000_WRITE_REG(hw, E1000_WUC,
3777 	    E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
3778 	E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol);
3779 
3780 	/* configure and enable PHY wakeup in PHY registers */
3781 	e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol);
3782 	e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
3783 
3784 	/* activate PHY wakeup */
3785 	ret = hw->phy.ops.acquire(hw);
3786 	if (ret) {
3787 		printf("Could not acquire PHY\n");
3788 		return ret;
3789 	}
3790 	e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3791 	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
3792 	ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
3793 	if (ret) {
3794 		printf("Could not read PHY page 769\n");
3795 		goto out;
3796 	}
3797 	preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
3798 	ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
3799 	if (ret)
3800 		printf("Could not set PHY Host Wakeup bit\n");
3801 out:
3802 	hw->phy.ops.release(hw);
3803 
3804 	return ret;
3805 }
3806 
3807 static void
3808 em_if_led_func(if_ctx_t ctx, int onoff)
3809 {
3810 	struct adapter *adapter = iflib_get_softc(ctx);
3811 
3812 	if (onoff) {
3813 		e1000_setup_led(&adapter->hw);
3814 		e1000_led_on(&adapter->hw);
3815 	} else {
3816 		e1000_led_off(&adapter->hw);
3817 		e1000_cleanup_led(&adapter->hw);
3818 	}
3819 }
3820 
3821 /*
3822  * Disable the L0S and L1 LINK states
3823  */
3824 static void
3825 em_disable_aspm(struct adapter *adapter)
3826 {
3827 	int base, reg;
3828 	u16 link_cap,link_ctrl;
3829 	device_t dev = adapter->dev;
3830 
3831 	switch (adapter->hw.mac.type) {
3832 	case e1000_82573:
3833 	case e1000_82574:
3834 	case e1000_82583:
3835 		break;
3836 	default:
3837 		return;
3838 	}
3839 	if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
3840 		return;
3841 	reg = base + PCIER_LINK_CAP;
3842 	link_cap = pci_read_config(dev, reg, 2);
3843 	if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
3844 		return;
3845 	reg = base + PCIER_LINK_CTL;
3846 	link_ctrl = pci_read_config(dev, reg, 2);
3847 	link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
3848 	pci_write_config(dev, reg, link_ctrl, 2);
3849 	return;
3850 }
3851 
3852 /**********************************************************************
3853  *
3854  *  Update the board statistics counters.
3855  *
3856  **********************************************************************/
3857 static void
3858 em_update_stats_counters(struct adapter *adapter)
3859 {
3860 
3861 	if(adapter->hw.phy.media_type == e1000_media_type_copper ||
3862 	   (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3863 		adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3864 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3865 	}
3866 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3867 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3868 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3869 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3870 
3871 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3872 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3873 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3874 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3875 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3876 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3877 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3878 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3879 	/*
3880 	 ** For watchdog management we need to know if we have been
3881 	 ** paused during the last interval, so capture that here.
3882 	*/
3883 	adapter->shared->isc_pause_frames = adapter->stats.xoffrxc;
3884 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3885 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3886 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3887 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3888 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3889 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3890 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3891 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3892 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3893 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3894 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3895 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3896 
3897 	/* For the 64-bit byte counters the low dword must be read first. */
3898 	/* Both registers clear on the read of the high dword */
3899 
3900 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) +
3901 	    ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32);
3902 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) +
3903 	    ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32);
3904 
3905 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3906 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3907 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3908 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3909 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3910 
3911 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3912 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3913 
3914 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3915 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3916 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3917 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3918 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3919 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3920 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3921 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3922 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3923 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3924 
3925 	/* Interrupt Counts */
3926 
3927 	adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC);
3928 	adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC);
3929 	adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC);
3930 	adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC);
3931 	adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC);
3932 	adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC);
3933 	adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC);
3934 	adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC);
3935 	adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC);
3936 
3937 	if (adapter->hw.mac.type >= e1000_82543) {
3938 		adapter->stats.algnerrc +=
3939 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3940 		adapter->stats.rxerrc +=
3941 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3942 		adapter->stats.tncrs +=
3943 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3944 		adapter->stats.cexterr +=
3945 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3946 		adapter->stats.tsctc +=
3947 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3948 		adapter->stats.tsctfc +=
3949 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3950 	}
3951 }
3952 
3953 static uint64_t
3954 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
3955 {
3956 	struct adapter *adapter = iflib_get_softc(ctx);
3957 	struct ifnet *ifp = iflib_get_ifp(ctx);
3958 
3959 	switch (cnt) {
3960 	case IFCOUNTER_COLLISIONS:
3961 		return (adapter->stats.colc);
3962 	case IFCOUNTER_IERRORS:
3963 		return (adapter->dropped_pkts + adapter->stats.rxerrc +
3964 		    adapter->stats.crcerrs + adapter->stats.algnerrc +
3965 		    adapter->stats.ruc + adapter->stats.roc +
3966 		    adapter->stats.mpc + adapter->stats.cexterr);
3967 	case IFCOUNTER_OERRORS:
3968 		return (adapter->stats.ecol + adapter->stats.latecol +
3969 		    adapter->watchdog_events);
3970 	default:
3971 		return (if_get_counter_default(ifp, cnt));
3972 	}
3973 }
3974 
3975 /* Export a single 32-bit register via a read-only sysctl. */
3976 static int
3977 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
3978 {
3979 	struct adapter *adapter;
3980 	u_int val;
3981 
3982 	adapter = oidp->oid_arg1;
3983 	val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
3984 	return (sysctl_handle_int(oidp, &val, 0, req));
3985 }
3986 
3987 /*
3988  * Add sysctl variables, one per statistic, to the system.
3989  */
3990 static void
3991 em_add_hw_stats(struct adapter *adapter)
3992 {
3993 	device_t dev = iflib_get_dev(adapter->ctx);
3994 	struct em_tx_queue *tx_que = adapter->tx_queues;
3995 	struct em_rx_queue *rx_que = adapter->rx_queues;
3996 
3997 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
3998 	struct sysctl_oid *tree = device_get_sysctl_tree(dev);
3999 	struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4000 	struct e1000_hw_stats *stats = &adapter->stats;
4001 
4002 	struct sysctl_oid *stat_node, *queue_node, *int_node;
4003 	struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4004 
4005 #define QUEUE_NAME_LEN 32
4006 	char namebuf[QUEUE_NAME_LEN];
4007 
4008 	/* Driver Statistics */
4009 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4010 			CTLFLAG_RD, &adapter->dropped_pkts,
4011 			"Driver dropped packets");
4012 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4013 			CTLFLAG_RD, &adapter->link_irq,
4014 			"Link MSI-X IRQ Handled");
4015 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4016 			CTLFLAG_RD, &adapter->rx_overruns,
4017 			"RX overruns");
4018 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4019 			CTLFLAG_RD, &adapter->watchdog_events,
4020 			"Watchdog timeouts");
4021 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4022 			CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_CTRL,
4023 			em_sysctl_reg_handler, "IU",
4024 			"Device Control Register");
4025 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4026 			CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_RCTL,
4027 			em_sysctl_reg_handler, "IU",
4028 			"Receiver Control Register");
4029 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4030 			CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
4031 			"Flow Control High Watermark");
4032 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4033 			CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
4034 			"Flow Control Low Watermark");
4035 
4036 	for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
4037 		struct tx_ring *txr = &tx_que->txr;
4038 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4039 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4040 					    CTLFLAG_RD, NULL, "TX Queue Name");
4041 		queue_list = SYSCTL_CHILDREN(queue_node);
4042 
4043 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4044 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
4045 				E1000_TDH(txr->me),
4046 				em_sysctl_reg_handler, "IU",
4047 				"Transmit Descriptor Head");
4048 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4049 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
4050 				E1000_TDT(txr->me),
4051 				em_sysctl_reg_handler, "IU",
4052 				"Transmit Descriptor Tail");
4053 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4054 				CTLFLAG_RD, &txr->tx_irq,
4055 				"Queue MSI-X Transmit Interrupts");
4056 	}
4057 
4058 	for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) {
4059 		struct rx_ring *rxr = &rx_que->rxr;
4060 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4061 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4062 					    CTLFLAG_RD, NULL, "RX Queue Name");
4063 		queue_list = SYSCTL_CHILDREN(queue_node);
4064 
4065 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4066 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
4067 				E1000_RDH(rxr->me),
4068 				em_sysctl_reg_handler, "IU",
4069 				"Receive Descriptor Head");
4070 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4071 				CTLTYPE_UINT | CTLFLAG_RD, adapter,
4072 				E1000_RDT(rxr->me),
4073 				em_sysctl_reg_handler, "IU",
4074 				"Receive Descriptor Tail");
4075 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
4076 				CTLFLAG_RD, &rxr->rx_irq,
4077 				"Queue MSI-X Receive Interrupts");
4078 	}
4079 
4080 	/* MAC stats get their own sub node */
4081 
4082 	stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
4083 				    CTLFLAG_RD, NULL, "Statistics");
4084 	stat_list = SYSCTL_CHILDREN(stat_node);
4085 
4086 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
4087 			CTLFLAG_RD, &stats->ecol,
4088 			"Excessive collisions");
4089 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
4090 			CTLFLAG_RD, &stats->scc,
4091 			"Single collisions");
4092 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
4093 			CTLFLAG_RD, &stats->mcc,
4094 			"Multiple collisions");
4095 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
4096 			CTLFLAG_RD, &stats->latecol,
4097 			"Late collisions");
4098 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
4099 			CTLFLAG_RD, &stats->colc,
4100 			"Collision Count");
4101 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
4102 			CTLFLAG_RD, &adapter->stats.symerrs,
4103 			"Symbol Errors");
4104 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
4105 			CTLFLAG_RD, &adapter->stats.sec,
4106 			"Sequence Errors");
4107 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
4108 			CTLFLAG_RD, &adapter->stats.dc,
4109 			"Defer Count");
4110 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
4111 			CTLFLAG_RD, &adapter->stats.mpc,
4112 			"Missed Packets");
4113 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
4114 			CTLFLAG_RD, &adapter->stats.rnbc,
4115 			"Receive No Buffers");
4116 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
4117 			CTLFLAG_RD, &adapter->stats.ruc,
4118 			"Receive Undersize");
4119 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
4120 			CTLFLAG_RD, &adapter->stats.rfc,
4121 			"Fragmented Packets Received ");
4122 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
4123 			CTLFLAG_RD, &adapter->stats.roc,
4124 			"Oversized Packets Received");
4125 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
4126 			CTLFLAG_RD, &adapter->stats.rjc,
4127 			"Recevied Jabber");
4128 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
4129 			CTLFLAG_RD, &adapter->stats.rxerrc,
4130 			"Receive Errors");
4131 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
4132 			CTLFLAG_RD, &adapter->stats.crcerrs,
4133 			"CRC errors");
4134 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
4135 			CTLFLAG_RD, &adapter->stats.algnerrc,
4136 			"Alignment Errors");
4137 	/* On 82575 these are collision counts */
4138 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
4139 			CTLFLAG_RD, &adapter->stats.cexterr,
4140 			"Collision/Carrier extension errors");
4141 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
4142 			CTLFLAG_RD, &adapter->stats.xonrxc,
4143 			"XON Received");
4144 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
4145 			CTLFLAG_RD, &adapter->stats.xontxc,
4146 			"XON Transmitted");
4147 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
4148 			CTLFLAG_RD, &adapter->stats.xoffrxc,
4149 			"XOFF Received");
4150 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
4151 			CTLFLAG_RD, &adapter->stats.xofftxc,
4152 			"XOFF Transmitted");
4153 
4154 	/* Packet Reception Stats */
4155 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
4156 			CTLFLAG_RD, &adapter->stats.tpr,
4157 			"Total Packets Received ");
4158 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
4159 			CTLFLAG_RD, &adapter->stats.gprc,
4160 			"Good Packets Received");
4161 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
4162 			CTLFLAG_RD, &adapter->stats.bprc,
4163 			"Broadcast Packets Received");
4164 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
4165 			CTLFLAG_RD, &adapter->stats.mprc,
4166 			"Multicast Packets Received");
4167 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
4168 			CTLFLAG_RD, &adapter->stats.prc64,
4169 			"64 byte frames received ");
4170 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
4171 			CTLFLAG_RD, &adapter->stats.prc127,
4172 			"65-127 byte frames received");
4173 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
4174 			CTLFLAG_RD, &adapter->stats.prc255,
4175 			"128-255 byte frames received");
4176 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
4177 			CTLFLAG_RD, &adapter->stats.prc511,
4178 			"256-511 byte frames received");
4179 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
4180 			CTLFLAG_RD, &adapter->stats.prc1023,
4181 			"512-1023 byte frames received");
4182 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
4183 			CTLFLAG_RD, &adapter->stats.prc1522,
4184 			"1023-1522 byte frames received");
4185 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
4186 			CTLFLAG_RD, &adapter->stats.gorc,
4187 			"Good Octets Received");
4188 
4189 	/* Packet Transmission Stats */
4190 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
4191 			CTLFLAG_RD, &adapter->stats.gotc,
4192 			"Good Octets Transmitted");
4193 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
4194 			CTLFLAG_RD, &adapter->stats.tpt,
4195 			"Total Packets Transmitted");
4196 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
4197 			CTLFLAG_RD, &adapter->stats.gptc,
4198 			"Good Packets Transmitted");
4199 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
4200 			CTLFLAG_RD, &adapter->stats.bptc,
4201 			"Broadcast Packets Transmitted");
4202 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
4203 			CTLFLAG_RD, &adapter->stats.mptc,
4204 			"Multicast Packets Transmitted");
4205 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
4206 			CTLFLAG_RD, &adapter->stats.ptc64,
4207 			"64 byte frames transmitted ");
4208 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
4209 			CTLFLAG_RD, &adapter->stats.ptc127,
4210 			"65-127 byte frames transmitted");
4211 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
4212 			CTLFLAG_RD, &adapter->stats.ptc255,
4213 			"128-255 byte frames transmitted");
4214 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
4215 			CTLFLAG_RD, &adapter->stats.ptc511,
4216 			"256-511 byte frames transmitted");
4217 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
4218 			CTLFLAG_RD, &adapter->stats.ptc1023,
4219 			"512-1023 byte frames transmitted");
4220 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
4221 			CTLFLAG_RD, &adapter->stats.ptc1522,
4222 			"1024-1522 byte frames transmitted");
4223 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
4224 			CTLFLAG_RD, &adapter->stats.tsctc,
4225 			"TSO Contexts Transmitted");
4226 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
4227 			CTLFLAG_RD, &adapter->stats.tsctfc,
4228 			"TSO Contexts Failed");
4229 
4230 
4231 	/* Interrupt Stats */
4232 
4233 	int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
4234 				    CTLFLAG_RD, NULL, "Interrupt Statistics");
4235 	int_list = SYSCTL_CHILDREN(int_node);
4236 
4237 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
4238 			CTLFLAG_RD, &adapter->stats.iac,
4239 			"Interrupt Assertion Count");
4240 
4241 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
4242 			CTLFLAG_RD, &adapter->stats.icrxptc,
4243 			"Interrupt Cause Rx Pkt Timer Expire Count");
4244 
4245 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
4246 			CTLFLAG_RD, &adapter->stats.icrxatc,
4247 			"Interrupt Cause Rx Abs Timer Expire Count");
4248 
4249 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
4250 			CTLFLAG_RD, &adapter->stats.ictxptc,
4251 			"Interrupt Cause Tx Pkt Timer Expire Count");
4252 
4253 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
4254 			CTLFLAG_RD, &adapter->stats.ictxatc,
4255 			"Interrupt Cause Tx Abs Timer Expire Count");
4256 
4257 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
4258 			CTLFLAG_RD, &adapter->stats.ictxqec,
4259 			"Interrupt Cause Tx Queue Empty Count");
4260 
4261 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
4262 			CTLFLAG_RD, &adapter->stats.ictxqmtc,
4263 			"Interrupt Cause Tx Queue Min Thresh Count");
4264 
4265 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4266 			CTLFLAG_RD, &adapter->stats.icrxdmtc,
4267 			"Interrupt Cause Rx Desc Min Thresh Count");
4268 
4269 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4270 			CTLFLAG_RD, &adapter->stats.icrxoc,
4271 			"Interrupt Cause Receiver Overrun Count");
4272 }
4273 
4274 /**********************************************************************
4275  *
4276  *  This routine provides a way to dump out the adapter eeprom,
4277  *  often a useful debug/service tool. This only dumps the first
4278  *  32 words, stuff that matters is in that extent.
4279  *
4280  **********************************************************************/
4281 static int
4282 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4283 {
4284 	struct adapter *adapter = (struct adapter *)arg1;
4285 	int error;
4286 	int result;
4287 
4288 	result = -1;
4289 	error = sysctl_handle_int(oidp, &result, 0, req);
4290 
4291 	if (error || !req->newptr)
4292 		return (error);
4293 
4294 	/*
4295 	 * This value will cause a hex dump of the
4296 	 * first 32 16-bit words of the EEPROM to
4297 	 * the screen.
4298 	 */
4299 	if (result == 1)
4300 		em_print_nvm_info(adapter);
4301 
4302 	return (error);
4303 }
4304 
4305 static void
4306 em_print_nvm_info(struct adapter *adapter)
4307 {
4308 	u16 eeprom_data;
4309 	int i, j, row = 0;
4310 
4311 	/* Its a bit crude, but it gets the job done */
4312 	printf("\nInterface EEPROM Dump:\n");
4313 	printf("Offset\n0x0000  ");
4314 	for (i = 0, j = 0; i < 32; i++, j++) {
4315 		if (j == 8) { /* Make the offset block */
4316 			j = 0; ++row;
4317 			printf("\n0x00%x0  ",row);
4318 		}
4319 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4320 		printf("%04x ", eeprom_data);
4321 	}
4322 	printf("\n");
4323 }
4324 
4325 static int
4326 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4327 {
4328 	struct em_int_delay_info *info;
4329 	struct adapter *adapter;
4330 	u32 regval;
4331 	int error, usecs, ticks;
4332 
4333 	info = (struct em_int_delay_info *) arg1;
4334 	usecs = info->value;
4335 	error = sysctl_handle_int(oidp, &usecs, 0, req);
4336 	if (error != 0 || req->newptr == NULL)
4337 		return (error);
4338 	if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4339 		return (EINVAL);
4340 	info->value = usecs;
4341 	ticks = EM_USECS_TO_TICKS(usecs);
4342 	if (info->offset == E1000_ITR)	/* units are 256ns here */
4343 		ticks *= 4;
4344 
4345 	adapter = info->adapter;
4346 
4347 	regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
4348 	regval = (regval & ~0xffff) | (ticks & 0xffff);
4349 	/* Handle a few special cases. */
4350 	switch (info->offset) {
4351 	case E1000_RDTR:
4352 		break;
4353 	case E1000_TIDV:
4354 		if (ticks == 0) {
4355 			adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
4356 			/* Don't write 0 into the TIDV register. */
4357 			regval++;
4358 		} else
4359 			adapter->txd_cmd |= E1000_TXD_CMD_IDE;
4360 		break;
4361 	}
4362 	E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
4363 	return (0);
4364 }
4365 
4366 static void
4367 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
4368 	const char *description, struct em_int_delay_info *info,
4369 	int offset, int value)
4370 {
4371 	info->adapter = adapter;
4372 	info->offset = offset;
4373 	info->value = value;
4374 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
4375 	    SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
4376 	    OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
4377 	    info, 0, em_sysctl_int_delay, "I", description);
4378 }
4379 
4380 /*
4381  * Set flow control using sysctl:
4382  * Flow control values:
4383  *      0 - off
4384  *      1 - rx pause
4385  *      2 - tx pause
4386  *      3 - full
4387  */
4388 static int
4389 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4390 {
4391 	int error;
4392 	static int input = 3; /* default is full */
4393 	struct adapter	*adapter = (struct adapter *) arg1;
4394 
4395 	error = sysctl_handle_int(oidp, &input, 0, req);
4396 
4397 	if ((error) || (req->newptr == NULL))
4398 		return (error);
4399 
4400 	if (input == adapter->fc) /* no change? */
4401 		return (error);
4402 
4403 	switch (input) {
4404 	case e1000_fc_rx_pause:
4405 	case e1000_fc_tx_pause:
4406 	case e1000_fc_full:
4407 	case e1000_fc_none:
4408 		adapter->hw.fc.requested_mode = input;
4409 		adapter->fc = input;
4410 		break;
4411 	default:
4412 		/* Do nothing */
4413 		return (error);
4414 	}
4415 
4416 	adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
4417 	e1000_force_mac_fc(&adapter->hw);
4418 	return (error);
4419 }
4420 
4421 /*
4422  * Manage Energy Efficient Ethernet:
4423  * Control values:
4424  *     0/1 - enabled/disabled
4425  */
4426 static int
4427 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
4428 {
4429 	struct adapter *adapter = (struct adapter *) arg1;
4430 	int error, value;
4431 
4432 	value = adapter->hw.dev_spec.ich8lan.eee_disable;
4433 	error = sysctl_handle_int(oidp, &value, 0, req);
4434 	if (error || req->newptr == NULL)
4435 		return (error);
4436 	adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0);
4437 	em_if_init(adapter->ctx);
4438 
4439 	return (0);
4440 }
4441 
4442 static int
4443 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4444 {
4445 	struct adapter *adapter;
4446 	int error;
4447 	int result;
4448 
4449 	result = -1;
4450 	error = sysctl_handle_int(oidp, &result, 0, req);
4451 
4452 	if (error || !req->newptr)
4453 		return (error);
4454 
4455 	if (result == 1) {
4456 		adapter = (struct adapter *) arg1;
4457 		em_print_debug_info(adapter);
4458 	}
4459 
4460 	return (error);
4461 }
4462 
4463 static int
4464 em_get_rs(SYSCTL_HANDLER_ARGS)
4465 {
4466 	struct adapter *adapter = (struct adapter *) arg1;
4467 	int error;
4468 	int result;
4469 
4470 	result = 0;
4471 	error = sysctl_handle_int(oidp, &result, 0, req);
4472 
4473 	if (error || !req->newptr || result != 1)
4474 		return (error);
4475 	em_dump_rs(adapter);
4476 
4477 	return (error);
4478 }
4479 
4480 static void
4481 em_if_debug(if_ctx_t ctx)
4482 {
4483 	em_dump_rs(iflib_get_softc(ctx));
4484 }
4485 
4486 /*
4487  * This routine is meant to be fluid, add whatever is
4488  * needed for debugging a problem.  -jfv
4489  */
4490 static void
4491 em_print_debug_info(struct adapter *adapter)
4492 {
4493 	device_t dev = iflib_get_dev(adapter->ctx);
4494 	struct ifnet *ifp = iflib_get_ifp(adapter->ctx);
4495 	struct tx_ring *txr = &adapter->tx_queues->txr;
4496 	struct rx_ring *rxr = &adapter->rx_queues->rxr;
4497 
4498 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
4499 		printf("Interface is RUNNING ");
4500 	else
4501 		printf("Interface is NOT RUNNING\n");
4502 
4503 	if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
4504 		printf("and INACTIVE\n");
4505 	else
4506 		printf("and ACTIVE\n");
4507 
4508 	for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
4509 		device_printf(dev, "TX Queue %d ------\n", i);
4510 		device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4511 			E1000_READ_REG(&adapter->hw, E1000_TDH(i)),
4512 			E1000_READ_REG(&adapter->hw, E1000_TDT(i)));
4513 
4514 	}
4515 	for (int j=0; j < adapter->rx_num_queues; j++, rxr++) {
4516 		device_printf(dev, "RX Queue %d ------\n", j);
4517 		device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4518 			E1000_READ_REG(&adapter->hw, E1000_RDH(j)),
4519 			E1000_READ_REG(&adapter->hw, E1000_RDT(j)));
4520 	}
4521 }
4522 
4523 /*
4524  * 82574 only:
4525  * Write a new value to the EEPROM increasing the number of MSI-X
4526  * vectors from 3 to 5, for proper multiqueue support.
4527  */
4528 static void
4529 em_enable_vectors_82574(if_ctx_t ctx)
4530 {
4531 	struct adapter *adapter = iflib_get_softc(ctx);
4532 	struct e1000_hw *hw = &adapter->hw;
4533 	device_t dev = iflib_get_dev(ctx);
4534 	u16 edata;
4535 
4536 	e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4537 	if (bootverbose)
4538 		device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
4539 	if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
4540 		device_printf(dev, "Writing to eeprom: increasing "
4541 		    "reported MSI-X vectors from 3 to 5...\n");
4542 		edata &= ~(EM_NVM_MSIX_N_MASK);
4543 		edata |= 4 << EM_NVM_MSIX_N_SHIFT;
4544 		e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4545 		e1000_update_nvm_checksum(hw);
4546 		device_printf(dev, "Writing to eeprom: done\n");
4547 	}
4548 }
4549