xref: /freebsd/sys/dev/e1000/em_txrx.c (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 /*-
2  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
3  * Copyright (c) 2017 Matthew Macy <mmacy@mattmacy.io>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* $FreeBSD$ */
29 #include "if_em.h"
30 
31 #ifdef RSS
32 #include <net/rss_config.h>
33 #include <netinet/in_rss.h>
34 #endif
35 
36 #ifdef VERBOSE_DEBUG
37 #define DPRINTF device_printf
38 #else
39 #define DPRINTF(...)
40 #endif
41 
42 /*********************************************************************
43  *  Local Function prototypes
44  *********************************************************************/
45 static int em_tso_setup(struct e1000_softc *sc, if_pkt_info_t pi, u32 *txd_upper,
46     u32 *txd_lower);
47 static int em_transmit_checksum_setup(struct e1000_softc *sc, if_pkt_info_t pi,
48     u32 *txd_upper, u32 *txd_lower);
49 static int em_isc_txd_encap(void *arg, if_pkt_info_t pi);
50 static void em_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx);
51 static int em_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear);
52 static void em_isc_rxd_refill(void *arg, if_rxd_update_t iru);
53 static void em_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused,
54     qidx_t pidx);
55 static int em_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx,
56     qidx_t budget);
57 static int em_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri);
58 
59 static void lem_isc_rxd_refill(void *arg, if_rxd_update_t iru);
60 
61 static int lem_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx,
62    qidx_t budget);
63 static int lem_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri);
64 
65 static void em_receive_checksum(uint16_t, uint8_t, if_rxd_info_t);
66 static int em_determine_rsstype(u32 pkt_info);
67 extern int em_intr(void *arg);
68 
69 struct if_txrx em_txrx = {
70 	.ift_txd_encap = em_isc_txd_encap,
71 	.ift_txd_flush = em_isc_txd_flush,
72 	.ift_txd_credits_update = em_isc_txd_credits_update,
73 	.ift_rxd_available = em_isc_rxd_available,
74 	.ift_rxd_pkt_get = em_isc_rxd_pkt_get,
75 	.ift_rxd_refill = em_isc_rxd_refill,
76 	.ift_rxd_flush = em_isc_rxd_flush,
77 	.ift_legacy_intr = em_intr
78 };
79 
80 struct if_txrx lem_txrx = {
81 	.ift_txd_encap = em_isc_txd_encap,
82 	.ift_txd_flush = em_isc_txd_flush,
83 	.ift_txd_credits_update = em_isc_txd_credits_update,
84 	.ift_rxd_available = lem_isc_rxd_available,
85 	.ift_rxd_pkt_get = lem_isc_rxd_pkt_get,
86 	.ift_rxd_refill = lem_isc_rxd_refill,
87 	.ift_rxd_flush = em_isc_rxd_flush,
88 	.ift_legacy_intr = em_intr
89 };
90 
91 extern if_shared_ctx_t em_sctx;
92 
93 void
94 em_dump_rs(struct e1000_softc *sc)
95 {
96 	if_softc_ctx_t scctx = sc->shared;
97 	struct em_tx_queue *que;
98 	struct tx_ring *txr;
99 	qidx_t i, ntxd, qid, cur;
100 	int16_t rs_cidx;
101 	uint8_t status;
102 
103 	printf("\n");
104 	ntxd = scctx->isc_ntxd[0];
105 	for (qid = 0; qid < sc->tx_num_queues; qid++) {
106 		que = &sc->tx_queues[qid];
107 		txr =  &que->txr;
108 		rs_cidx = txr->tx_rs_cidx;
109 		if (rs_cidx != txr->tx_rs_pidx) {
110 			cur = txr->tx_rsq[rs_cidx];
111 			status = txr->tx_base[cur].upper.fields.status;
112 			if (!(status & E1000_TXD_STAT_DD))
113 				printf("qid[%d]->tx_rsq[%d]: %d clear ", qid, rs_cidx, cur);
114 		} else {
115 			rs_cidx = (rs_cidx-1)&(ntxd-1);
116 			cur = txr->tx_rsq[rs_cidx];
117 			printf("qid[%d]->tx_rsq[rs_cidx-1=%d]: %d  ", qid, rs_cidx, cur);
118 		}
119 		printf("cidx_prev=%d rs_pidx=%d ",txr->tx_cidx_processed, txr->tx_rs_pidx);
120 		for (i = 0; i < ntxd; i++) {
121 			if (txr->tx_base[i].upper.fields.status & E1000_TXD_STAT_DD)
122 				printf("%d set ", i);
123 		}
124 		printf("\n");
125 	}
126 }
127 
128 /**********************************************************************
129  *
130  *  Setup work for hardware segmentation offload (TSO) on
131  *  adapters using advanced tx descriptors
132  *
133  **********************************************************************/
134 static int
135 em_tso_setup(struct e1000_softc *sc, if_pkt_info_t pi, u32 *txd_upper, u32 *txd_lower)
136 {
137 	if_softc_ctx_t scctx = sc->shared;
138 	struct em_tx_queue *que = &sc->tx_queues[pi->ipi_qsidx];
139 	struct tx_ring *txr = &que->txr;
140 	struct e1000_context_desc *TXD;
141 	int cur, hdr_len;
142 
143 	hdr_len = pi->ipi_ehdrlen + pi->ipi_ip_hlen + pi->ipi_tcp_hlen;
144 	*txd_lower = (E1000_TXD_CMD_DEXT |	/* Extended descr type */
145 		      E1000_TXD_DTYP_D |	/* Data descr type */
146 		      E1000_TXD_CMD_TSE);	/* Do TSE on this packet */
147 
148 	/* IP and/or TCP header checksum calculation and insertion. */
149 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
150 
151 	cur = pi->ipi_pidx;
152 	TXD = (struct e1000_context_desc *)&txr->tx_base[cur];
153 
154 	/*
155 	 * Start offset for header checksum calculation.
156 	 * End offset for header checksum calculation.
157 	 * Offset of place put the checksum.
158 	 */
159 	TXD->lower_setup.ip_fields.ipcss = pi->ipi_ehdrlen;
160 	TXD->lower_setup.ip_fields.ipcse =
161 	    htole16(pi->ipi_ehdrlen + pi->ipi_ip_hlen - 1);
162 	TXD->lower_setup.ip_fields.ipcso = pi->ipi_ehdrlen + offsetof(struct ip, ip_sum);
163 
164 	/*
165 	 * Start offset for payload checksum calculation.
166 	 * End offset for payload checksum calculation.
167 	 * Offset of place to put the checksum.
168 	 */
169 	TXD->upper_setup.tcp_fields.tucss = pi->ipi_ehdrlen + pi->ipi_ip_hlen;
170 	TXD->upper_setup.tcp_fields.tucse = 0;
171 	TXD->upper_setup.tcp_fields.tucso =
172 	    pi->ipi_ehdrlen + pi->ipi_ip_hlen + offsetof(struct tcphdr, th_sum);
173 
174 	/*
175 	 * Payload size per packet w/o any headers.
176 	 * Length of all headers up to payload.
177 	 */
178 	TXD->tcp_seg_setup.fields.mss = htole16(pi->ipi_tso_segsz);
179 	TXD->tcp_seg_setup.fields.hdr_len = hdr_len;
180 
181 	TXD->cmd_and_length = htole32(sc->txd_cmd |
182 				E1000_TXD_CMD_DEXT |	/* Extended descr */
183 				E1000_TXD_CMD_TSE |	/* TSE context */
184 				E1000_TXD_CMD_IP |	/* Do IP csum */
185 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
186 				      (pi->ipi_len - hdr_len)); /* Total len */
187 	txr->tx_tso = true;
188 
189 	if (++cur == scctx->isc_ntxd[0]) {
190 		cur = 0;
191 	}
192 	DPRINTF(iflib_get_dev(sc->ctx), "%s: pidx: %d cur: %d\n", __FUNCTION__, pi->ipi_pidx, cur);
193 	return (cur);
194 }
195 
196 #define TSO_WORKAROUND 4
197 #define DONT_FORCE_CTX 1
198 
199 
200 /*********************************************************************
201  *  The offload context is protocol specific (TCP/UDP) and thus
202  *  only needs to be set when the protocol changes. The occasion
203  *  of a context change can be a performance detriment, and
204  *  might be better just disabled. The reason arises in the way
205  *  in which the controller supports pipelined requests from the
206  *  Tx data DMA. Up to four requests can be pipelined, and they may
207  *  belong to the same packet or to multiple packets. However all
208  *  requests for one packet are issued before a request is issued
209  *  for a subsequent packet and if a request for the next packet
210  *  requires a context change, that request will be stalled
211  *  until the previous request completes. This means setting up
212  *  a new context effectively disables pipelined Tx data DMA which
213  *  in turn greatly slow down performance to send small sized
214  *  frames.
215  **********************************************************************/
216 
217 static int
218 em_transmit_checksum_setup(struct e1000_softc *sc, if_pkt_info_t pi, u32 *txd_upper, u32 *txd_lower)
219 {
220 	 struct e1000_context_desc *TXD = NULL;
221 	if_softc_ctx_t scctx = sc->shared;
222 	struct em_tx_queue *que = &sc->tx_queues[pi->ipi_qsidx];
223 	struct tx_ring *txr = &que->txr;
224 	int csum_flags = pi->ipi_csum_flags;
225 	int cur, hdr_len;
226 	u32 cmd;
227 
228 	cur = pi->ipi_pidx;
229 	hdr_len = pi->ipi_ehdrlen + pi->ipi_ip_hlen;
230 	cmd = sc->txd_cmd;
231 
232 	/*
233 	 * The 82574L can only remember the *last* context used
234 	 * regardless of queue that it was use for.  We cannot reuse
235 	 * contexts on this hardware platform and must generate a new
236 	 * context every time.  82574L hardware spec, section 7.2.6,
237 	 * second note.
238 	 */
239 	if (DONT_FORCE_CTX &&
240 	    sc->tx_num_queues == 1 &&
241 	    txr->csum_lhlen == pi->ipi_ehdrlen &&
242 	    txr->csum_iphlen == pi->ipi_ip_hlen &&
243 	    txr->csum_flags == csum_flags) {
244 		/*
245 		 * Same csum offload context as the previous packets;
246 		 * just return.
247 		 */
248 		*txd_upper = txr->csum_txd_upper;
249 		*txd_lower = txr->csum_txd_lower;
250 		return (cur);
251 	}
252 
253 	TXD = (struct e1000_context_desc *)&txr->tx_base[cur];
254 	if (csum_flags & CSUM_IP) {
255 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
256 		/*
257 		 * Start offset for header checksum calculation.
258 		 * End offset for header checksum calculation.
259 		 * Offset of place to put the checksum.
260 		 */
261 		TXD->lower_setup.ip_fields.ipcss = pi->ipi_ehdrlen;
262 		TXD->lower_setup.ip_fields.ipcse = htole16(hdr_len);
263 		TXD->lower_setup.ip_fields.ipcso = pi->ipi_ehdrlen + offsetof(struct ip, ip_sum);
264 		cmd |= E1000_TXD_CMD_IP;
265 	}
266 
267 	if (csum_flags & (CSUM_TCP|CSUM_UDP)) {
268 		uint8_t tucso;
269 
270 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
271 		*txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
272 
273 		if (csum_flags & CSUM_TCP) {
274 			tucso = hdr_len + offsetof(struct tcphdr, th_sum);
275 			cmd |= E1000_TXD_CMD_TCP;
276 		} else
277 			tucso = hdr_len + offsetof(struct udphdr, uh_sum);
278 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
279 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
280 		TXD->upper_setup.tcp_fields.tucso = tucso;
281 	}
282 
283 	txr->csum_lhlen = pi->ipi_ehdrlen;
284 	txr->csum_iphlen = pi->ipi_ip_hlen;
285 	txr->csum_flags = csum_flags;
286 	txr->csum_txd_upper = *txd_upper;
287 	txr->csum_txd_lower = *txd_lower;
288 
289 	TXD->tcp_seg_setup.data = htole32(0);
290 	TXD->cmd_and_length =
291 		htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
292 
293 	if (++cur == scctx->isc_ntxd[0]) {
294 		cur = 0;
295 	}
296 	DPRINTF(iflib_get_dev(sc->ctx), "checksum_setup csum_flags=%x txd_upper=%x txd_lower=%x hdr_len=%d cmd=%x\n",
297 		      csum_flags, *txd_upper, *txd_lower, hdr_len, cmd);
298 	return (cur);
299 }
300 
301 static int
302 em_isc_txd_encap(void *arg, if_pkt_info_t pi)
303 {
304 	struct e1000_softc *sc = arg;
305 	if_softc_ctx_t scctx = sc->shared;
306 	struct em_tx_queue *que = &sc->tx_queues[pi->ipi_qsidx];
307 	struct tx_ring *txr = &que->txr;
308 	bus_dma_segment_t *segs = pi->ipi_segs;
309 	int nsegs = pi->ipi_nsegs;
310 	int csum_flags = pi->ipi_csum_flags;
311 	int i, j, first, pidx_last;
312 	u32 txd_flags, txd_upper = 0, txd_lower = 0;
313 
314 	struct e1000_tx_desc *ctxd = NULL;
315 	bool do_tso, tso_desc;
316 	qidx_t ntxd;
317 
318 	txd_flags = pi->ipi_flags & IPI_TX_INTR ? E1000_TXD_CMD_RS : 0;
319 	i = first = pi->ipi_pidx;
320 	do_tso = (csum_flags & CSUM_TSO);
321 	tso_desc = false;
322 	ntxd = scctx->isc_ntxd[0];
323 	/*
324 	 * TSO Hardware workaround, if this packet is not
325 	 * TSO, and is only a single descriptor long, and
326 	 * it follows a TSO burst, then we need to add a
327 	 * sentinel descriptor to prevent premature writeback.
328 	 */
329 	if ((!do_tso) && (txr->tx_tso == true)) {
330 		if (nsegs == 1)
331 			tso_desc = true;
332 		txr->tx_tso = false;
333 	}
334 
335 	/* Do hardware assists */
336 	if (do_tso) {
337 		i = em_tso_setup(sc, pi, &txd_upper, &txd_lower);
338 		tso_desc = true;
339 	} else if (csum_flags & EM_CSUM_OFFLOAD) {
340 		i = em_transmit_checksum_setup(sc, pi, &txd_upper, &txd_lower);
341 	}
342 
343 	if (pi->ipi_mflags & M_VLANTAG) {
344 		/* Set the vlan id. */
345 		txd_upper |= htole16(pi->ipi_vtag) << 16;
346 		/* Tell hardware to add tag */
347 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
348 	}
349 
350 	DPRINTF(iflib_get_dev(sc->ctx), "encap: set up tx: nsegs=%d first=%d i=%d\n", nsegs, first, i);
351 	/* XXX sc->pcix_82544 -- lem_fill_descriptors */
352 
353 	/* Set up our transmit descriptors */
354 	for (j = 0; j < nsegs; j++) {
355 		bus_size_t seg_len;
356 		bus_addr_t seg_addr;
357 		uint32_t cmd;
358 
359 		ctxd = &txr->tx_base[i];
360 		seg_addr = segs[j].ds_addr;
361 		seg_len = segs[j].ds_len;
362 		cmd = E1000_TXD_CMD_IFCS | sc->txd_cmd;
363 
364 		/*
365 		 * TSO Workaround:
366 		 * If this is the last descriptor, we want to
367 		 * split it so we have a small final sentinel
368 		 */
369 		if (tso_desc && (j == (nsegs - 1)) && (seg_len > 8)) {
370 			seg_len -= TSO_WORKAROUND;
371 			ctxd->buffer_addr = htole64(seg_addr);
372 			ctxd->lower.data = htole32(cmd | txd_lower | seg_len);
373 			ctxd->upper.data = htole32(txd_upper);
374 
375 			if (++i == scctx->isc_ntxd[0])
376 				i = 0;
377 
378 			/* Now make the sentinel */
379 			ctxd = &txr->tx_base[i];
380 			ctxd->buffer_addr = htole64(seg_addr + seg_len);
381 			ctxd->lower.data = htole32(cmd | txd_lower | TSO_WORKAROUND);
382 			ctxd->upper.data = htole32(txd_upper);
383 			pidx_last = i;
384 			if (++i == scctx->isc_ntxd[0])
385 				i = 0;
386 			DPRINTF(iflib_get_dev(sc->ctx), "TSO path pidx_last=%d i=%d ntxd[0]=%d\n", pidx_last, i, scctx->isc_ntxd[0]);
387 		} else {
388 			ctxd->buffer_addr = htole64(seg_addr);
389 			ctxd->lower.data = htole32(cmd | txd_lower | seg_len);
390 			ctxd->upper.data = htole32(txd_upper);
391 			pidx_last = i;
392 			if (++i == scctx->isc_ntxd[0])
393 				i = 0;
394 			DPRINTF(iflib_get_dev(sc->ctx), "pidx_last=%d i=%d ntxd[0]=%d\n", pidx_last, i, scctx->isc_ntxd[0]);
395 		}
396 	}
397 
398 	/*
399 	 * Last Descriptor of Packet
400 	 * needs End Of Packet (EOP)
401 	 * and Report Status (RS)
402 	 */
403 	if (txd_flags && nsegs) {
404 		txr->tx_rsq[txr->tx_rs_pidx] = pidx_last;
405 		DPRINTF(iflib_get_dev(sc->ctx), "setting to RS on %d rs_pidx %d first: %d\n", pidx_last, txr->tx_rs_pidx, first);
406 		txr->tx_rs_pidx = (txr->tx_rs_pidx+1) & (ntxd-1);
407 		MPASS(txr->tx_rs_pidx != txr->tx_rs_cidx);
408 	}
409 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | txd_flags);
410 	DPRINTF(iflib_get_dev(sc->ctx), "tx_buffers[%d]->eop = %d ipi_new_pidx=%d\n", first, pidx_last, i);
411 	pi->ipi_new_pidx = i;
412 
413 	return (0);
414 }
415 
416 static void
417 em_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx)
418 {
419 	struct e1000_softc *sc = arg;
420 	struct em_tx_queue *que = &sc->tx_queues[txqid];
421 	struct tx_ring *txr = &que->txr;
422 
423 	E1000_WRITE_REG(&sc->hw, E1000_TDT(txr->me), pidx);
424 }
425 
426 static int
427 em_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear)
428 {
429 	struct e1000_softc *sc = arg;
430 	if_softc_ctx_t scctx = sc->shared;
431 	struct em_tx_queue *que = &sc->tx_queues[txqid];
432 	struct tx_ring *txr = &que->txr;
433 
434 	qidx_t processed = 0;
435 	int updated;
436 	qidx_t cur, prev, ntxd, rs_cidx;
437 	int32_t delta;
438 	uint8_t status;
439 
440 	rs_cidx = txr->tx_rs_cidx;
441 	if (rs_cidx == txr->tx_rs_pidx)
442 		return (0);
443 	cur = txr->tx_rsq[rs_cidx];
444 	MPASS(cur != QIDX_INVALID);
445 	status = txr->tx_base[cur].upper.fields.status;
446 	updated = !!(status & E1000_TXD_STAT_DD);
447 
448 	if (!updated)
449 		return (0);
450 
451 	/* If clear is false just let caller know that there
452 	 * are descriptors to reclaim */
453 	if (!clear)
454 		return (1);
455 
456 	prev = txr->tx_cidx_processed;
457 	ntxd = scctx->isc_ntxd[0];
458 	do {
459 		MPASS(prev != cur);
460 		delta = (int32_t)cur - (int32_t)prev;
461 		if (delta < 0)
462 			delta += ntxd;
463 		MPASS(delta > 0);
464 		DPRINTF(iflib_get_dev(sc->ctx),
465 			      "%s: cidx_processed=%u cur=%u clear=%d delta=%d\n",
466 			      __FUNCTION__, prev, cur, clear, delta);
467 
468 		processed += delta;
469 		prev  = cur;
470 		rs_cidx = (rs_cidx + 1) & (ntxd-1);
471 		if (rs_cidx  == txr->tx_rs_pidx)
472 			break;
473 		cur = txr->tx_rsq[rs_cidx];
474 		MPASS(cur != QIDX_INVALID);
475 		status = txr->tx_base[cur].upper.fields.status;
476 	} while ((status & E1000_TXD_STAT_DD));
477 
478 	txr->tx_rs_cidx = rs_cidx;
479 	txr->tx_cidx_processed = prev;
480 	return(processed);
481 }
482 
483 static void
484 lem_isc_rxd_refill(void *arg, if_rxd_update_t iru)
485 {
486 	struct e1000_softc *sc = arg;
487 	if_softc_ctx_t scctx = sc->shared;
488 	struct em_rx_queue *que = &sc->rx_queues[iru->iru_qsidx];
489 	struct rx_ring *rxr = &que->rxr;
490 	struct e1000_rx_desc *rxd;
491 	uint64_t *paddrs;
492 	uint32_t next_pidx, pidx;
493 	uint16_t count;
494 	int i;
495 
496 	paddrs = iru->iru_paddrs;
497 	pidx = iru->iru_pidx;
498 	count = iru->iru_count;
499 
500 	for (i = 0, next_pidx = pidx; i < count; i++) {
501 		rxd = (struct e1000_rx_desc *)&rxr->rx_base[next_pidx];
502 		rxd->buffer_addr = htole64(paddrs[i]);
503 		/* status bits must be cleared */
504 		rxd->status = 0;
505 
506 		if (++next_pidx == scctx->isc_nrxd[0])
507 			next_pidx = 0;
508 	}
509 }
510 
511 static void
512 em_isc_rxd_refill(void *arg, if_rxd_update_t iru)
513 {
514 	struct e1000_softc *sc = arg;
515 	if_softc_ctx_t scctx = sc->shared;
516 	uint16_t rxqid = iru->iru_qsidx;
517 	struct em_rx_queue *que = &sc->rx_queues[rxqid];
518 	struct rx_ring *rxr = &que->rxr;
519 	union e1000_rx_desc_extended *rxd;
520 	uint64_t *paddrs;
521 	uint32_t next_pidx, pidx;
522 	uint16_t count;
523 	int i;
524 
525 	paddrs = iru->iru_paddrs;
526 	pidx = iru->iru_pidx;
527 	count = iru->iru_count;
528 
529 	for (i = 0, next_pidx = pidx; i < count; i++) {
530 		rxd = &rxr->rx_base[next_pidx];
531 		rxd->read.buffer_addr = htole64(paddrs[i]);
532 		/* DD bits must be cleared */
533 		rxd->wb.upper.status_error = 0;
534 
535 		if (++next_pidx == scctx->isc_nrxd[0])
536 			next_pidx = 0;
537 	}
538 }
539 
540 static void
541 em_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused, qidx_t pidx)
542 {
543 	struct e1000_softc *sc = arg;
544 	struct em_rx_queue *que = &sc->rx_queues[rxqid];
545 	struct rx_ring *rxr = &que->rxr;
546 
547 	E1000_WRITE_REG(&sc->hw, E1000_RDT(rxr->me), pidx);
548 }
549 
550 static int
551 lem_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx, qidx_t budget)
552 {
553 	struct e1000_softc *sc = arg;
554 	if_softc_ctx_t scctx = sc->shared;
555 	struct em_rx_queue *que = &sc->rx_queues[rxqid];
556 	struct rx_ring *rxr = &que->rxr;
557 	struct e1000_rx_desc *rxd;
558 	u32 staterr = 0;
559 	int cnt, i;
560 
561 	for (cnt = 0, i = idx; cnt < scctx->isc_nrxd[0] && cnt <= budget;) {
562 		rxd = (struct e1000_rx_desc *)&rxr->rx_base[i];
563 		staterr = rxd->status;
564 
565 		if ((staterr & E1000_RXD_STAT_DD) == 0)
566 			break;
567 		if (++i == scctx->isc_nrxd[0])
568 			i = 0;
569 		if (staterr & E1000_RXD_STAT_EOP)
570 			cnt++;
571 	}
572 	return (cnt);
573 }
574 
575 static int
576 em_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx, qidx_t budget)
577 {
578 	struct e1000_softc *sc = arg;
579 	if_softc_ctx_t scctx = sc->shared;
580 	struct em_rx_queue *que = &sc->rx_queues[rxqid];
581 	struct rx_ring *rxr = &que->rxr;
582 	union e1000_rx_desc_extended *rxd;
583 	u32 staterr = 0;
584 	int cnt, i;
585 
586 	for (cnt = 0, i = idx; cnt < scctx->isc_nrxd[0] && cnt <= budget;) {
587 		rxd = &rxr->rx_base[i];
588 		staterr = le32toh(rxd->wb.upper.status_error);
589 
590 		if ((staterr & E1000_RXD_STAT_DD) == 0)
591 			break;
592 		if (++i == scctx->isc_nrxd[0])
593 			i = 0;
594 		if (staterr & E1000_RXD_STAT_EOP)
595 			cnt++;
596 	}
597 	return (cnt);
598 }
599 
600 static int
601 lem_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri)
602 {
603 	struct e1000_softc *sc = arg;
604 	if_softc_ctx_t scctx = sc->shared;
605 	struct em_rx_queue *que = &sc->rx_queues[ri->iri_qsidx];
606 	struct rx_ring *rxr = &que->rxr;
607 	struct e1000_rx_desc *rxd;
608 	u16 len;
609 	u32 status, errors;
610 	bool eop;
611 	int i, cidx;
612 
613 	status = errors = i = 0;
614 	cidx = ri->iri_cidx;
615 
616 	do {
617 		rxd = (struct e1000_rx_desc *)&rxr->rx_base[cidx];
618 		status = rxd->status;
619 		errors = rxd->errors;
620 
621 		/* Error Checking then decrement count */
622 		MPASS ((status & E1000_RXD_STAT_DD) != 0);
623 
624 		len = le16toh(rxd->length);
625 		ri->iri_len += len;
626 
627 		eop = (status & E1000_RXD_STAT_EOP) != 0;
628 
629 		/* Make sure bad packets are discarded */
630 		if (errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
631 			sc->dropped_pkts++;
632 			/* XXX fixup if common */
633 			return (EBADMSG);
634 		}
635 
636 		ri->iri_frags[i].irf_flid = 0;
637 		ri->iri_frags[i].irf_idx = cidx;
638 		ri->iri_frags[i].irf_len = len;
639 		/* Zero out the receive descriptors status. */
640 		rxd->status = 0;
641 
642 		if (++cidx == scctx->isc_nrxd[0])
643 			cidx = 0;
644 		i++;
645 	} while (!eop);
646 
647 	/* XXX add a faster way to look this up */
648 	if (sc->hw.mac.type >= e1000_82543)
649 		em_receive_checksum(status, errors, ri);
650 
651 	if (status & E1000_RXD_STAT_VP) {
652 		ri->iri_vtag = le16toh(rxd->special);
653 		ri->iri_flags |= M_VLANTAG;
654 	}
655 
656 	ri->iri_nfrags = i;
657 
658 	return (0);
659 }
660 
661 static int
662 em_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri)
663 {
664 	struct e1000_softc *sc = arg;
665 	if_softc_ctx_t scctx = sc->shared;
666 	struct em_rx_queue *que = &sc->rx_queues[ri->iri_qsidx];
667 	struct rx_ring *rxr = &que->rxr;
668 	union e1000_rx_desc_extended *rxd;
669 
670 	u16 len;
671 	u32 pkt_info;
672 	u32 staterr = 0;
673 	bool eop;
674 	int i, cidx;
675 
676 	i = 0;
677 	cidx = ri->iri_cidx;
678 
679 	do {
680 		rxd = &rxr->rx_base[cidx];
681 		staterr = le32toh(rxd->wb.upper.status_error);
682 		pkt_info = le32toh(rxd->wb.lower.mrq);
683 
684 		/* Error Checking then decrement count */
685 		MPASS ((staterr & E1000_RXD_STAT_DD) != 0);
686 
687 		len = le16toh(rxd->wb.upper.length);
688 		ri->iri_len += len;
689 
690 		eop = (staterr & E1000_RXD_STAT_EOP) != 0;
691 
692 		/* Make sure bad packets are discarded */
693 		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
694 			sc->dropped_pkts++;
695 			return EBADMSG;
696 		}
697 
698 		ri->iri_frags[i].irf_flid = 0;
699 		ri->iri_frags[i].irf_idx = cidx;
700 		ri->iri_frags[i].irf_len = len;
701 		/* Zero out the receive descriptors status. */
702 		rxd->wb.upper.status_error &= htole32(~0xFF);
703 
704 		if (++cidx == scctx->isc_nrxd[0])
705 			cidx = 0;
706 		i++;
707 	} while (!eop);
708 
709 	if (scctx->isc_capenable & IFCAP_RXCSUM)
710 		em_receive_checksum(staterr, staterr >> 24, ri);
711 
712 	if (staterr & E1000_RXD_STAT_VP) {
713 		ri->iri_vtag = le16toh(rxd->wb.upper.vlan);
714 		ri->iri_flags |= M_VLANTAG;
715 	}
716 
717 	ri->iri_flowid = le32toh(rxd->wb.lower.hi_dword.rss);
718 	ri->iri_rsstype = em_determine_rsstype(pkt_info);
719 
720 	ri->iri_nfrags = i;
721 	return (0);
722 }
723 
724 /*********************************************************************
725  *
726  *  Verify that the hardware indicated that the checksum is valid.
727  *  Inform the stack about the status of checksum so that stack
728  *  doesn't spend time verifying the checksum.
729  *
730  *********************************************************************/
731 static void
732 em_receive_checksum(uint16_t status, uint8_t errors, if_rxd_info_t ri)
733 {
734 	if (__predict_false(status & E1000_RXD_STAT_IXSM))
735 		return;
736 
737 	/* If there is a layer 3 or 4 error we are done */
738 	if (__predict_false(errors & (E1000_RXD_ERR_IPE | E1000_RXD_ERR_TCPE)))
739 		return;
740 
741 	/* IP Checksum Good */
742 	if (status & E1000_RXD_STAT_IPCS)
743 		ri->iri_csum_flags = (CSUM_IP_CHECKED | CSUM_IP_VALID);
744 
745 	/* Valid L4E checksum */
746 	if (__predict_true(status &
747 	    (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) {
748 		ri->iri_csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
749 		ri->iri_csum_data = htons(0xffff);
750 	}
751 }
752 
753 /********************************************************************
754  *
755  *  Parse the packet type to determine the appropriate hash
756  *
757  ******************************************************************/
758 static int
759 em_determine_rsstype(u32 pkt_info)
760 {
761 	switch (pkt_info & E1000_RXDADV_RSSTYPE_MASK) {
762 	case E1000_RXDADV_RSSTYPE_IPV4_TCP:
763 		return M_HASHTYPE_RSS_TCP_IPV4;
764 	case E1000_RXDADV_RSSTYPE_IPV4:
765 		return M_HASHTYPE_RSS_IPV4;
766 	case E1000_RXDADV_RSSTYPE_IPV6_TCP:
767 		return M_HASHTYPE_RSS_TCP_IPV6;
768 	case E1000_RXDADV_RSSTYPE_IPV6_EX:
769 		return M_HASHTYPE_RSS_IPV6_EX;
770 	case E1000_RXDADV_RSSTYPE_IPV6:
771 		return M_HASHTYPE_RSS_IPV6;
772 	case E1000_RXDADV_RSSTYPE_IPV6_TCP_EX:
773 		return M_HASHTYPE_RSS_TCP_IPV6_EX;
774 	default:
775 		return M_HASHTYPE_OPAQUE;
776 	}
777 }
778