xref: /freebsd/sys/dev/e1000/e1000_vf.c (revision 5e3190f700637fcfc1a52daeaa4a031fdd2557c7)
1 /******************************************************************************
2   SPDX-License-Identifier: BSD-3-Clause
3 
4   Copyright (c) 2001-2020, Intel Corporation
5   All rights reserved.
6 
7   Redistribution and use in source and binary forms, with or without
8   modification, are permitted provided that the following conditions are met:
9 
10    1. Redistributions of source code must retain the above copyright notice,
11       this list of conditions and the following disclaimer.
12 
13    2. Redistributions in binary form must reproduce the above copyright
14       notice, this list of conditions and the following disclaimer in the
15       documentation and/or other materials provided with the distribution.
16 
17    3. Neither the name of the Intel Corporation nor the names of its
18       contributors may be used to endorse or promote products derived from
19       this software without specific prior written permission.
20 
21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31   POSSIBILITY OF SUCH DAMAGE.
32 
33 ******************************************************************************/
34 
35 
36 #include "e1000_api.h"
37 
38 
39 static s32 e1000_init_phy_params_vf(struct e1000_hw *hw);
40 static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw);
41 static void e1000_release_vf(struct e1000_hw *hw);
42 static s32 e1000_acquire_vf(struct e1000_hw *hw);
43 static s32 e1000_setup_link_vf(struct e1000_hw *hw);
44 static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
45 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw);
46 static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
47 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
48 				     u16 *duplex);
49 static s32 e1000_init_hw_vf(struct e1000_hw *hw);
50 static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
51 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
52 static int  e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
53 static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
54 
55 /**
56  *  e1000_init_phy_params_vf - Inits PHY params
57  *  @hw: pointer to the HW structure
58  *
59  *  Doesn't do much - there's no PHY available to the VF.
60  **/
61 static s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
62 {
63 	DEBUGFUNC("e1000_init_phy_params_vf");
64 	hw->phy.type = e1000_phy_vf;
65 	hw->phy.ops.acquire = e1000_acquire_vf;
66 	hw->phy.ops.release = e1000_release_vf;
67 
68 	return E1000_SUCCESS;
69 }
70 
71 /**
72  *  e1000_init_nvm_params_vf - Inits NVM params
73  *  @hw: pointer to the HW structure
74  *
75  *  Doesn't do much - there's no NVM available to the VF.
76  **/
77 static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
78 {
79 	DEBUGFUNC("e1000_init_nvm_params_vf");
80 	hw->nvm.type = e1000_nvm_none;
81 	hw->nvm.ops.acquire = e1000_acquire_vf;
82 	hw->nvm.ops.release = e1000_release_vf;
83 
84 	return E1000_SUCCESS;
85 }
86 
87 /**
88  *  e1000_init_mac_params_vf - Inits MAC params
89  *  @hw: pointer to the HW structure
90  **/
91 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
92 {
93 	struct e1000_mac_info *mac = &hw->mac;
94 
95 	DEBUGFUNC("e1000_init_mac_params_vf");
96 
97 	/* Set media type */
98 	/*
99 	 * Virtual functions don't care what they're media type is as they
100 	 * have no direct access to the PHY, or the media.  That is handled
101 	 * by the physical function driver.
102 	 */
103 	hw->phy.media_type = e1000_media_type_unknown;
104 
105 	/* No ASF features for the VF driver */
106 	mac->asf_firmware_present = false;
107 	/* ARC subsystem not supported */
108 	mac->arc_subsystem_valid = false;
109 	/* Disable adaptive IFS mode so the generic funcs don't do anything */
110 	mac->adaptive_ifs = false;
111 	/* VF's have no MTA Registers - PF feature only */
112 	mac->mta_reg_count = 128;
113 	/* VF's have no access to RAR entries  */
114 	mac->rar_entry_count = 1;
115 
116 	/* Function pointers */
117 	/* link setup */
118 	mac->ops.setup_link = e1000_setup_link_vf;
119 	/* bus type/speed/width */
120 	mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
121 	/* reset */
122 	mac->ops.reset_hw = e1000_reset_hw_vf;
123 	/* hw initialization */
124 	mac->ops.init_hw = e1000_init_hw_vf;
125 	/* check for link */
126 	mac->ops.check_for_link = e1000_check_for_link_vf;
127 	/* link info */
128 	mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
129 	/* multicast address update */
130 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
131 	/* set mac address */
132 	mac->ops.rar_set = e1000_rar_set_vf;
133 	/* read mac address */
134 	mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
135 
136 
137 	return E1000_SUCCESS;
138 }
139 
140 /**
141  *  e1000_init_function_pointers_vf - Inits function pointers
142  *  @hw: pointer to the HW structure
143  **/
144 void e1000_init_function_pointers_vf(struct e1000_hw *hw)
145 {
146 	DEBUGFUNC("e1000_init_function_pointers_vf");
147 
148 	hw->mac.ops.init_params = e1000_init_mac_params_vf;
149 	hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
150 	hw->phy.ops.init_params = e1000_init_phy_params_vf;
151 	hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
152 }
153 
154 /**
155  *  e1000_acquire_vf - Acquire rights to access PHY or NVM.
156  *  @hw: pointer to the HW structure
157  *
158  *  There is no PHY or NVM so we want all attempts to acquire these to fail.
159  *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
160  *  even want any SW to attempt to use them.
161  **/
162 static s32 e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG *hw)
163 {
164 	return -E1000_ERR_PHY;
165 }
166 
167 /**
168  *  e1000_release_vf - Release PHY or NVM
169  *  @hw: pointer to the HW structure
170  *
171  *  There is no PHY or NVM so we want all attempts to acquire these to fail.
172  *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
173  *  even want any SW to attempt to use them.
174  **/
175 static void e1000_release_vf(struct e1000_hw E1000_UNUSEDARG *hw)
176 {
177 	return;
178 }
179 
180 /**
181  *  e1000_setup_link_vf - Sets up link.
182  *  @hw: pointer to the HW structure
183  *
184  *  Virtual functions cannot change link.
185  **/
186 static s32 e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG *hw)
187 {
188 	DEBUGFUNC("e1000_setup_link_vf");
189 
190 	return E1000_SUCCESS;
191 }
192 
193 /**
194  *  e1000_get_bus_info_pcie_vf - Gets the bus info.
195  *  @hw: pointer to the HW structure
196  *
197  *  Virtual functions are not really on their own bus.
198  **/
199 static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
200 {
201 	struct e1000_bus_info *bus = &hw->bus;
202 
203 	DEBUGFUNC("e1000_get_bus_info_pcie_vf");
204 
205 	/* Do not set type PCI-E because we don't want disable master to run */
206 	bus->type = e1000_bus_type_reserved;
207 	bus->speed = e1000_bus_speed_2500;
208 
209 	return 0;
210 }
211 
212 /**
213  *  e1000_get_link_up_info_vf - Gets link info.
214  *  @hw: pointer to the HW structure
215  *  @speed: pointer to 16 bit value to store link speed.
216  *  @duplex: pointer to 16 bit value to store duplex.
217  *
218  *  Since we cannot read the PHY and get accurate link info, we must rely upon
219  *  the status register's data which is often stale and inaccurate.
220  **/
221 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
222 				     u16 *duplex)
223 {
224 	s32 status;
225 
226 	DEBUGFUNC("e1000_get_link_up_info_vf");
227 
228 	status = E1000_READ_REG(hw, E1000_STATUS);
229 	if (status & E1000_STATUS_SPEED_1000) {
230 		*speed = SPEED_1000;
231 		DEBUGOUT("1000 Mbs, ");
232 	} else if (status & E1000_STATUS_SPEED_100) {
233 		*speed = SPEED_100;
234 		DEBUGOUT("100 Mbs, ");
235 	} else {
236 		*speed = SPEED_10;
237 		DEBUGOUT("10 Mbs, ");
238 	}
239 
240 	if (status & E1000_STATUS_FD) {
241 		*duplex = FULL_DUPLEX;
242 		DEBUGOUT("Full Duplex\n");
243 	} else {
244 		*duplex = HALF_DUPLEX;
245 		DEBUGOUT("Half Duplex\n");
246 	}
247 
248 	return E1000_SUCCESS;
249 }
250 
251 /**
252  *  e1000_reset_hw_vf - Resets the HW
253  *  @hw: pointer to the HW structure
254  *
255  *  VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
256  *  This is all the reset we can perform on a VF.
257  **/
258 static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
259 {
260 	struct e1000_mbx_info *mbx = &hw->mbx;
261 	u32 timeout = E1000_VF_INIT_TIMEOUT;
262 	s32 ret_val = -E1000_ERR_MAC_INIT;
263 	u32 ctrl, msgbuf[3];
264 	u8 *addr = (u8 *)(&msgbuf[1]);
265 
266 	DEBUGFUNC("e1000_reset_hw_vf");
267 
268 	DEBUGOUT("Issuing a function level reset to MAC\n");
269 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
270 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
271 
272 	/* we cannot reset while the RSTI / RSTD bits are asserted */
273 	while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
274 		timeout--;
275 		usec_delay(5);
276 	}
277 
278 	if (timeout) {
279 		/* mailbox timeout can now become active */
280 		mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
281 
282 		msgbuf[0] = E1000_VF_RESET;
283 		mbx->ops.write_posted(hw, msgbuf, 1, 0);
284 
285 		msec_delay(10);
286 
287 		/* set our "perm_addr" based on info provided by PF */
288 		ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
289 		if (!ret_val) {
290 			if (msgbuf[0] == (E1000_VF_RESET |
291 			    E1000_VT_MSGTYPE_ACK))
292 				memcpy(hw->mac.perm_addr, addr, 6);
293 			else
294 				ret_val = -E1000_ERR_MAC_INIT;
295 		}
296 	}
297 
298 	return ret_val;
299 }
300 
301 /**
302  *  e1000_init_hw_vf - Inits the HW
303  *  @hw: pointer to the HW structure
304  *
305  *  Not much to do here except clear the PF Reset indication if there is one.
306  **/
307 static s32 e1000_init_hw_vf(struct e1000_hw *hw)
308 {
309 	DEBUGFUNC("e1000_init_hw_vf");
310 
311 	/* attempt to set and restore our mac address */
312 	e1000_rar_set_vf(hw, hw->mac.addr, 0);
313 
314 	return E1000_SUCCESS;
315 }
316 
317 /**
318  *  e1000_rar_set_vf - set device MAC address
319  *  @hw: pointer to the HW structure
320  *  @addr: pointer to the receive address
321  *  @index receive address array register
322  **/
323 static int e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr,
324 			     u32 E1000_UNUSEDARG index)
325 {
326 	struct e1000_mbx_info *mbx = &hw->mbx;
327 	u32 msgbuf[3];
328 	u8 *msg_addr = (u8 *)(&msgbuf[1]);
329 	s32 ret_val;
330 
331 	memset(msgbuf, 0, 12);
332 	msgbuf[0] = E1000_VF_SET_MAC_ADDR;
333 	memcpy(msg_addr, addr, 6);
334 	ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);
335 
336 	if (!ret_val)
337 		ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
338 
339 	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
340 
341 	/* if nacked the address was rejected, use "perm_addr" */
342 	if (!ret_val &&
343 	    (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
344 		e1000_read_mac_addr_vf(hw);
345 
346 	return E1000_SUCCESS;
347 }
348 
349 /**
350  *  e1000_hash_mc_addr_vf - Generate a multicast hash value
351  *  @hw: pointer to the HW structure
352  *  @mc_addr: pointer to a multicast address
353  *
354  *  Generates a multicast address hash value which is used to determine
355  *  the multicast filter table array address and new table value.
356  **/
357 static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
358 {
359 	u32 hash_value, hash_mask;
360 	u8 bit_shift = 0;
361 
362 	DEBUGFUNC("e1000_hash_mc_addr_generic");
363 
364 	/* Register count multiplied by bits per register */
365 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
366 
367 	/*
368 	 * The bit_shift is the number of left-shifts
369 	 * where 0xFF would still fall within the hash mask.
370 	 */
371 	while (hash_mask >> bit_shift != 0xFF)
372 		bit_shift++;
373 
374 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
375 				  (((u16) mc_addr[5]) << bit_shift)));
376 
377 	return hash_value;
378 }
379 
380 static void e1000_write_msg_read_ack(struct e1000_hw *hw,
381 				     u32 *msg, u16 size)
382 {
383 	struct e1000_mbx_info *mbx = &hw->mbx;
384 	u32 retmsg[E1000_VFMAILBOX_SIZE];
385 	s32 retval = mbx->ops.write_posted(hw, msg, size, 0);
386 
387 	if (!retval)
388 		mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0);
389 }
390 
391 /**
392  *  e1000_update_mc_addr_list_vf - Update Multicast addresses
393  *  @hw: pointer to the HW structure
394  *  @mc_addr_list: array of multicast addresses to program
395  *  @mc_addr_count: number of multicast addresses to program
396  *
397  *  Updates the Multicast Table Array.
398  *  The caller must have a packed mc_addr_list of multicast addresses.
399  **/
400 void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
401 				  u8 *mc_addr_list, u32 mc_addr_count)
402 {
403 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
404 	u16 *hash_list = (u16 *)&msgbuf[1];
405 	u32 hash_value;
406 	u32 i;
407 
408 	DEBUGFUNC("e1000_update_mc_addr_list_vf");
409 
410 	/* Each entry in the list uses 1 16 bit word.  We have 30
411 	 * 16 bit words available in our HW msg buffer (minus 1 for the
412 	 * msg type).  That's 30 hash values if we pack 'em right.  If
413 	 * there are more than 30 MC addresses to add then punt the
414 	 * extras for now and then add code to handle more than 30 later.
415 	 * It would be unusual for a server to request that many multi-cast
416 	 * addresses except for in large enterprise network environments.
417 	 */
418 
419 	DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);
420 
421 	msgbuf[0] = E1000_VF_SET_MULTICAST;
422 
423 	if (mc_addr_count > 30) {
424 		msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
425 		mc_addr_count = 30;
426 	}
427 
428 	msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;
429 
430 	for (i = 0; i < mc_addr_count; i++) {
431 		hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
432 		DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
433 		hash_list[i] = hash_value & 0x0FFF;
434 		mc_addr_list += ETHER_ADDR_LEN;
435 	}
436 
437 	e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE);
438 }
439 
440 /**
441  *  e1000_vfta_set_vf - Set/Unset vlan filter table address
442  *  @hw: pointer to the HW structure
443  *  @vid: determines the vfta register and bit to set/unset
444  *  @set: if true then set bit, else clear bit
445  **/
446 void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
447 {
448 	u32 msgbuf[2];
449 
450 	msgbuf[0] = E1000_VF_SET_VLAN;
451 	msgbuf[1] = vid;
452 	/* Setting the 8 bit field MSG INFO to true indicates "add" */
453 	if (set)
454 		msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
455 
456 	e1000_write_msg_read_ack(hw, msgbuf, 2);
457 }
458 
459 /** e1000_rlpml_set_vf - Set the maximum receive packet length
460  *  @hw: pointer to the HW structure
461  *  @max_size: value to assign to max frame size
462  **/
463 void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
464 {
465 	u32 msgbuf[2];
466 
467 	msgbuf[0] = E1000_VF_SET_LPE;
468 	msgbuf[1] = max_size;
469 
470 	e1000_write_msg_read_ack(hw, msgbuf, 2);
471 }
472 
473 /**
474  *  e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
475  *  @hw: pointer to the HW structure
476  *  @uni: boolean indicating unicast promisc status
477  *  @multi: boolean indicating multicast promisc status
478  **/
479 s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
480 {
481 	struct e1000_mbx_info *mbx = &hw->mbx;
482 	u32 msgbuf = E1000_VF_SET_PROMISC;
483 	s32 ret_val;
484 
485 	switch (type) {
486 	case e1000_promisc_multicast:
487 		msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
488 		break;
489 	case e1000_promisc_enabled:
490 		msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
491 		/* FALLTHROUGH */
492 	case e1000_promisc_unicast:
493 		msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
494 		/* FALLTHROUGH */
495 	case e1000_promisc_disabled:
496 		break;
497 	default:
498 		return -E1000_ERR_MAC_INIT;
499 	}
500 
501 	 ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);
502 
503 	if (!ret_val)
504 		ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);
505 
506 	if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
507 		ret_val = -E1000_ERR_MAC_INIT;
508 
509 	return ret_val;
510 }
511 
512 /**
513  *  e1000_read_mac_addr_vf - Read device MAC address
514  *  @hw: pointer to the HW structure
515  **/
516 static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
517 {
518 	int i;
519 
520 	for (i = 0; i < ETHER_ADDR_LEN; i++)
521 		hw->mac.addr[i] = hw->mac.perm_addr[i];
522 
523 	return E1000_SUCCESS;
524 }
525 
526 /**
527  *  e1000_check_for_link_vf - Check for link for a virtual interface
528  *  @hw: pointer to the HW structure
529  *
530  *  Checks to see if the underlying PF is still talking to the VF and
531  *  if it is then it reports the link state to the hardware, otherwise
532  *  it reports link down and returns an error.
533  **/
534 static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
535 {
536 	struct e1000_mbx_info *mbx = &hw->mbx;
537 	struct e1000_mac_info *mac = &hw->mac;
538 	s32 ret_val = E1000_SUCCESS;
539 	u32 in_msg = 0;
540 
541 	DEBUGFUNC("e1000_check_for_link_vf");
542 
543 	/*
544 	 * We only want to run this if there has been a rst asserted.
545 	 * in this case that could mean a link change, device reset,
546 	 * or a virtual function reset
547 	 */
548 
549 	/* If we were hit with a reset or timeout drop the link */
550 	if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout)
551 		mac->get_link_status = true;
552 
553 	if (!mac->get_link_status)
554 		goto out;
555 
556 	/* if link status is down no point in checking to see if pf is up */
557 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
558 		goto out;
559 
560 	/* if the read failed it could just be a mailbox collision, best wait
561 	 * until we are called again and don't report an error */
562 	if (mbx->ops.read(hw, &in_msg, 1, 0))
563 		goto out;
564 
565 	/* if incoming message isn't clear to send we are waiting on response */
566 	if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
567 		/* message is not CTS and is NACK we have lost CTS status */
568 		if (in_msg & E1000_VT_MSGTYPE_NACK)
569 			ret_val = -E1000_ERR_MAC_INIT;
570 		goto out;
571 	}
572 
573 	/* at this point we know the PF is talking to us, check and see if
574 	 * we are still accepting timeout or if we had a timeout failure.
575 	 * if we failed then we will need to reinit */
576 	if (!mbx->timeout) {
577 		ret_val = -E1000_ERR_MAC_INIT;
578 		goto out;
579 	}
580 
581 	/* if we passed all the tests above then the link is up and we no
582 	 * longer need to check for link */
583 	mac->get_link_status = false;
584 
585 out:
586 	return ret_val;
587 }
588 
589