1 /****************************************************************************** 2 SPDX-License-Identifier: BSD-3-Clause 3 4 Copyright (c) 2001-2015, Intel Corporation 5 All rights reserved. 6 7 Redistribution and use in source and binary forms, with or without 8 modification, are permitted provided that the following conditions are met: 9 10 1. Redistributions of source code must retain the above copyright notice, 11 this list of conditions and the following disclaimer. 12 13 2. Redistributions in binary form must reproduce the above copyright 14 notice, this list of conditions and the following disclaimer in the 15 documentation and/or other materials provided with the distribution. 16 17 3. Neither the name of the Intel Corporation nor the names of its 18 contributors may be used to endorse or promote products derived from 19 this software without specific prior written permission. 20 21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 22 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 25 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 POSSIBILITY OF SUCH DAMAGE. 32 33 ******************************************************************************/ 34 /*$FreeBSD$*/ 35 36 #include "e1000_api.h" 37 38 static s32 e1000_wait_autoneg(struct e1000_hw *hw); 39 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, 40 u16 *data, bool read, bool page_set); 41 static u32 e1000_get_phy_addr_for_hv_page(u32 page); 42 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, 43 u16 *data, bool read); 44 45 /* Cable length tables */ 46 static const u16 e1000_m88_cable_length_table[] = { 47 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; 48 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \ 49 (sizeof(e1000_m88_cable_length_table) / \ 50 sizeof(e1000_m88_cable_length_table[0])) 51 52 static const u16 e1000_igp_2_cable_length_table[] = { 53 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, 54 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, 55 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, 56 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, 57 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, 58 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, 59 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, 60 124}; 61 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ 62 (sizeof(e1000_igp_2_cable_length_table) / \ 63 sizeof(e1000_igp_2_cable_length_table[0])) 64 65 /** 66 * e1000_init_phy_ops_generic - Initialize PHY function pointers 67 * @hw: pointer to the HW structure 68 * 69 * Setups up the function pointers to no-op functions 70 **/ 71 void e1000_init_phy_ops_generic(struct e1000_hw *hw) 72 { 73 struct e1000_phy_info *phy = &hw->phy; 74 DEBUGFUNC("e1000_init_phy_ops_generic"); 75 76 /* Initialize function pointers */ 77 phy->ops.init_params = e1000_null_ops_generic; 78 phy->ops.acquire = e1000_null_ops_generic; 79 phy->ops.check_polarity = e1000_null_ops_generic; 80 phy->ops.check_reset_block = e1000_null_ops_generic; 81 phy->ops.commit = e1000_null_ops_generic; 82 phy->ops.force_speed_duplex = e1000_null_ops_generic; 83 phy->ops.get_cfg_done = e1000_null_ops_generic; 84 phy->ops.get_cable_length = e1000_null_ops_generic; 85 phy->ops.get_info = e1000_null_ops_generic; 86 phy->ops.set_page = e1000_null_set_page; 87 phy->ops.read_reg = e1000_null_read_reg; 88 phy->ops.read_reg_locked = e1000_null_read_reg; 89 phy->ops.read_reg_page = e1000_null_read_reg; 90 phy->ops.release = e1000_null_phy_generic; 91 phy->ops.reset = e1000_null_ops_generic; 92 phy->ops.set_d0_lplu_state = e1000_null_lplu_state; 93 phy->ops.set_d3_lplu_state = e1000_null_lplu_state; 94 phy->ops.write_reg = e1000_null_write_reg; 95 phy->ops.write_reg_locked = e1000_null_write_reg; 96 phy->ops.write_reg_page = e1000_null_write_reg; 97 phy->ops.power_up = e1000_null_phy_generic; 98 phy->ops.power_down = e1000_null_phy_generic; 99 phy->ops.read_i2c_byte = e1000_read_i2c_byte_null; 100 phy->ops.write_i2c_byte = e1000_write_i2c_byte_null; 101 phy->ops.cfg_on_link_up = e1000_null_ops_generic; 102 } 103 104 /** 105 * e1000_null_set_page - No-op function, return 0 106 * @hw: pointer to the HW structure 107 **/ 108 s32 e1000_null_set_page(struct e1000_hw E1000_UNUSEDARG *hw, 109 u16 E1000_UNUSEDARG data) 110 { 111 DEBUGFUNC("e1000_null_set_page"); 112 return E1000_SUCCESS; 113 } 114 115 /** 116 * e1000_null_read_reg - No-op function, return 0 117 * @hw: pointer to the HW structure 118 **/ 119 s32 e1000_null_read_reg(struct e1000_hw E1000_UNUSEDARG *hw, 120 u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG *data) 121 { 122 DEBUGFUNC("e1000_null_read_reg"); 123 return E1000_SUCCESS; 124 } 125 126 /** 127 * e1000_null_phy_generic - No-op function, return void 128 * @hw: pointer to the HW structure 129 **/ 130 void e1000_null_phy_generic(struct e1000_hw E1000_UNUSEDARG *hw) 131 { 132 DEBUGFUNC("e1000_null_phy_generic"); 133 return; 134 } 135 136 /** 137 * e1000_null_lplu_state - No-op function, return 0 138 * @hw: pointer to the HW structure 139 **/ 140 s32 e1000_null_lplu_state(struct e1000_hw E1000_UNUSEDARG *hw, 141 bool E1000_UNUSEDARG active) 142 { 143 DEBUGFUNC("e1000_null_lplu_state"); 144 return E1000_SUCCESS; 145 } 146 147 /** 148 * e1000_null_write_reg - No-op function, return 0 149 * @hw: pointer to the HW structure 150 **/ 151 s32 e1000_null_write_reg(struct e1000_hw E1000_UNUSEDARG *hw, 152 u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG data) 153 { 154 DEBUGFUNC("e1000_null_write_reg"); 155 return E1000_SUCCESS; 156 } 157 158 /** 159 * e1000_read_i2c_byte_null - No-op function, return 0 160 * @hw: pointer to hardware structure 161 * @byte_offset: byte offset to write 162 * @dev_addr: device address 163 * @data: data value read 164 * 165 **/ 166 s32 e1000_read_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw, 167 u8 E1000_UNUSEDARG byte_offset, 168 u8 E1000_UNUSEDARG dev_addr, 169 u8 E1000_UNUSEDARG *data) 170 { 171 DEBUGFUNC("e1000_read_i2c_byte_null"); 172 return E1000_SUCCESS; 173 } 174 175 /** 176 * e1000_write_i2c_byte_null - No-op function, return 0 177 * @hw: pointer to hardware structure 178 * @byte_offset: byte offset to write 179 * @dev_addr: device address 180 * @data: data value to write 181 * 182 **/ 183 s32 e1000_write_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw, 184 u8 E1000_UNUSEDARG byte_offset, 185 u8 E1000_UNUSEDARG dev_addr, 186 u8 E1000_UNUSEDARG data) 187 { 188 DEBUGFUNC("e1000_write_i2c_byte_null"); 189 return E1000_SUCCESS; 190 } 191 192 /** 193 * e1000_check_reset_block_generic - Check if PHY reset is blocked 194 * @hw: pointer to the HW structure 195 * 196 * Read the PHY management control register and check whether a PHY reset 197 * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise 198 * return E1000_BLK_PHY_RESET (12). 199 **/ 200 s32 e1000_check_reset_block_generic(struct e1000_hw *hw) 201 { 202 u32 manc; 203 204 DEBUGFUNC("e1000_check_reset_block"); 205 206 manc = E1000_READ_REG(hw, E1000_MANC); 207 208 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? 209 E1000_BLK_PHY_RESET : E1000_SUCCESS; 210 } 211 212 /** 213 * e1000_get_phy_id - Retrieve the PHY ID and revision 214 * @hw: pointer to the HW structure 215 * 216 * Reads the PHY registers and stores the PHY ID and possibly the PHY 217 * revision in the hardware structure. 218 **/ 219 s32 e1000_get_phy_id(struct e1000_hw *hw) 220 { 221 struct e1000_phy_info *phy = &hw->phy; 222 s32 ret_val = E1000_SUCCESS; 223 u16 phy_id; 224 u16 retry_count = 0; 225 226 DEBUGFUNC("e1000_get_phy_id"); 227 228 if (!phy->ops.read_reg) 229 return E1000_SUCCESS; 230 231 while (retry_count < 2) { 232 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); 233 if (ret_val) 234 return ret_val; 235 236 phy->id = (u32)(phy_id << 16); 237 usec_delay(20); 238 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); 239 if (ret_val) 240 return ret_val; 241 242 phy->id |= (u32)(phy_id & PHY_REVISION_MASK); 243 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); 244 245 if (phy->id != 0 && phy->id != PHY_REVISION_MASK) 246 return E1000_SUCCESS; 247 248 retry_count++; 249 } 250 251 return E1000_SUCCESS; 252 } 253 254 /** 255 * e1000_phy_reset_dsp_generic - Reset PHY DSP 256 * @hw: pointer to the HW structure 257 * 258 * Reset the digital signal processor. 259 **/ 260 s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw) 261 { 262 s32 ret_val; 263 264 DEBUGFUNC("e1000_phy_reset_dsp_generic"); 265 266 if (!hw->phy.ops.write_reg) 267 return E1000_SUCCESS; 268 269 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); 270 if (ret_val) 271 return ret_val; 272 273 return hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0); 274 } 275 276 /** 277 * e1000_read_phy_reg_mdic - Read MDI control register 278 * @hw: pointer to the HW structure 279 * @offset: register offset to be read 280 * @data: pointer to the read data 281 * 282 * Reads the MDI control register in the PHY at offset and stores the 283 * information read to data. 284 **/ 285 s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) 286 { 287 struct e1000_phy_info *phy = &hw->phy; 288 u32 i, mdic = 0; 289 290 DEBUGFUNC("e1000_read_phy_reg_mdic"); 291 292 if (offset > MAX_PHY_REG_ADDRESS) { 293 DEBUGOUT1("PHY Address %d is out of range\n", offset); 294 return -E1000_ERR_PARAM; 295 } 296 297 /* Set up Op-code, Phy Address, and register offset in the MDI 298 * Control register. The MAC will take care of interfacing with the 299 * PHY to retrieve the desired data. 300 */ 301 mdic = ((offset << E1000_MDIC_REG_SHIFT) | 302 (phy->addr << E1000_MDIC_PHY_SHIFT) | 303 (E1000_MDIC_OP_READ)); 304 305 E1000_WRITE_REG(hw, E1000_MDIC, mdic); 306 307 /* Poll the ready bit to see if the MDI read completed 308 * Increasing the time out as testing showed failures with 309 * the lower time out 310 */ 311 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { 312 usec_delay_irq(50); 313 mdic = E1000_READ_REG(hw, E1000_MDIC); 314 if (mdic & E1000_MDIC_READY) 315 break; 316 } 317 if (!(mdic & E1000_MDIC_READY)) { 318 DEBUGOUT("MDI Read did not complete\n"); 319 return -E1000_ERR_PHY; 320 } 321 if (mdic & E1000_MDIC_ERROR) { 322 DEBUGOUT("MDI Error\n"); 323 return -E1000_ERR_PHY; 324 } 325 if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { 326 DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n", 327 offset, 328 (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); 329 return -E1000_ERR_PHY; 330 } 331 *data = (u16) mdic; 332 333 /* Allow some time after each MDIC transaction to avoid 334 * reading duplicate data in the next MDIC transaction. 335 */ 336 if (hw->mac.type == e1000_pch2lan) 337 usec_delay_irq(100); 338 339 return E1000_SUCCESS; 340 } 341 342 /** 343 * e1000_write_phy_reg_mdic - Write MDI control register 344 * @hw: pointer to the HW structure 345 * @offset: register offset to write to 346 * @data: data to write to register at offset 347 * 348 * Writes data to MDI control register in the PHY at offset. 349 **/ 350 s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) 351 { 352 struct e1000_phy_info *phy = &hw->phy; 353 u32 i, mdic = 0; 354 355 DEBUGFUNC("e1000_write_phy_reg_mdic"); 356 357 if (offset > MAX_PHY_REG_ADDRESS) { 358 DEBUGOUT1("PHY Address %d is out of range\n", offset); 359 return -E1000_ERR_PARAM; 360 } 361 362 /* Set up Op-code, Phy Address, and register offset in the MDI 363 * Control register. The MAC will take care of interfacing with the 364 * PHY to retrieve the desired data. 365 */ 366 mdic = (((u32)data) | 367 (offset << E1000_MDIC_REG_SHIFT) | 368 (phy->addr << E1000_MDIC_PHY_SHIFT) | 369 (E1000_MDIC_OP_WRITE)); 370 371 E1000_WRITE_REG(hw, E1000_MDIC, mdic); 372 373 /* Poll the ready bit to see if the MDI read completed 374 * Increasing the time out as testing showed failures with 375 * the lower time out 376 */ 377 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { 378 usec_delay_irq(50); 379 mdic = E1000_READ_REG(hw, E1000_MDIC); 380 if (mdic & E1000_MDIC_READY) 381 break; 382 } 383 if (!(mdic & E1000_MDIC_READY)) { 384 DEBUGOUT("MDI Write did not complete\n"); 385 return -E1000_ERR_PHY; 386 } 387 if (mdic & E1000_MDIC_ERROR) { 388 DEBUGOUT("MDI Error\n"); 389 return -E1000_ERR_PHY; 390 } 391 if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { 392 DEBUGOUT2("MDI Write offset error - requested %d, returned %d\n", 393 offset, 394 (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); 395 return -E1000_ERR_PHY; 396 } 397 398 /* Allow some time after each MDIC transaction to avoid 399 * reading duplicate data in the next MDIC transaction. 400 */ 401 if (hw->mac.type == e1000_pch2lan) 402 usec_delay_irq(100); 403 404 return E1000_SUCCESS; 405 } 406 407 /** 408 * e1000_read_phy_reg_i2c - Read PHY register using i2c 409 * @hw: pointer to the HW structure 410 * @offset: register offset to be read 411 * @data: pointer to the read data 412 * 413 * Reads the PHY register at offset using the i2c interface and stores the 414 * retrieved information in data. 415 **/ 416 s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data) 417 { 418 struct e1000_phy_info *phy = &hw->phy; 419 u32 i, i2ccmd = 0; 420 421 DEBUGFUNC("e1000_read_phy_reg_i2c"); 422 423 /* Set up Op-code, Phy Address, and register address in the I2CCMD 424 * register. The MAC will take care of interfacing with the 425 * PHY to retrieve the desired data. 426 */ 427 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | 428 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | 429 (E1000_I2CCMD_OPCODE_READ)); 430 431 E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); 432 433 /* Poll the ready bit to see if the I2C read completed */ 434 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { 435 usec_delay(50); 436 i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); 437 if (i2ccmd & E1000_I2CCMD_READY) 438 break; 439 } 440 if (!(i2ccmd & E1000_I2CCMD_READY)) { 441 DEBUGOUT("I2CCMD Read did not complete\n"); 442 return -E1000_ERR_PHY; 443 } 444 if (i2ccmd & E1000_I2CCMD_ERROR) { 445 DEBUGOUT("I2CCMD Error bit set\n"); 446 return -E1000_ERR_PHY; 447 } 448 449 /* Need to byte-swap the 16-bit value. */ 450 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00); 451 452 return E1000_SUCCESS; 453 } 454 455 /** 456 * e1000_write_phy_reg_i2c - Write PHY register using i2c 457 * @hw: pointer to the HW structure 458 * @offset: register offset to write to 459 * @data: data to write at register offset 460 * 461 * Writes the data to PHY register at the offset using the i2c interface. 462 **/ 463 s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data) 464 { 465 struct e1000_phy_info *phy = &hw->phy; 466 u32 i, i2ccmd = 0; 467 u16 phy_data_swapped; 468 469 DEBUGFUNC("e1000_write_phy_reg_i2c"); 470 471 /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/ 472 if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) { 473 DEBUGOUT1("PHY I2C Address %d is out of range.\n", 474 hw->phy.addr); 475 return -E1000_ERR_CONFIG; 476 } 477 478 /* Swap the data bytes for the I2C interface */ 479 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00); 480 481 /* Set up Op-code, Phy Address, and register address in the I2CCMD 482 * register. The MAC will take care of interfacing with the 483 * PHY to retrieve the desired data. 484 */ 485 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | 486 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | 487 E1000_I2CCMD_OPCODE_WRITE | 488 phy_data_swapped); 489 490 E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); 491 492 /* Poll the ready bit to see if the I2C read completed */ 493 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { 494 usec_delay(50); 495 i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); 496 if (i2ccmd & E1000_I2CCMD_READY) 497 break; 498 } 499 if (!(i2ccmd & E1000_I2CCMD_READY)) { 500 DEBUGOUT("I2CCMD Write did not complete\n"); 501 return -E1000_ERR_PHY; 502 } 503 if (i2ccmd & E1000_I2CCMD_ERROR) { 504 DEBUGOUT("I2CCMD Error bit set\n"); 505 return -E1000_ERR_PHY; 506 } 507 508 return E1000_SUCCESS; 509 } 510 511 /** 512 * e1000_read_sfp_data_byte - Reads SFP module data. 513 * @hw: pointer to the HW structure 514 * @offset: byte location offset to be read 515 * @data: read data buffer pointer 516 * 517 * Reads one byte from SFP module data stored 518 * in SFP resided EEPROM memory or SFP diagnostic area. 519 * Function should be called with 520 * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access 521 * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters 522 * access 523 **/ 524 s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data) 525 { 526 u32 i = 0; 527 u32 i2ccmd = 0; 528 u32 data_local = 0; 529 530 DEBUGFUNC("e1000_read_sfp_data_byte"); 531 532 if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) { 533 DEBUGOUT("I2CCMD command address exceeds upper limit\n"); 534 return -E1000_ERR_PHY; 535 } 536 537 /* Set up Op-code, EEPROM Address,in the I2CCMD 538 * register. The MAC will take care of interfacing with the 539 * EEPROM to retrieve the desired data. 540 */ 541 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | 542 E1000_I2CCMD_OPCODE_READ); 543 544 E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); 545 546 /* Poll the ready bit to see if the I2C read completed */ 547 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { 548 usec_delay(50); 549 data_local = E1000_READ_REG(hw, E1000_I2CCMD); 550 if (data_local & E1000_I2CCMD_READY) 551 break; 552 } 553 if (!(data_local & E1000_I2CCMD_READY)) { 554 DEBUGOUT("I2CCMD Read did not complete\n"); 555 return -E1000_ERR_PHY; 556 } 557 if (data_local & E1000_I2CCMD_ERROR) { 558 DEBUGOUT("I2CCMD Error bit set\n"); 559 return -E1000_ERR_PHY; 560 } 561 *data = (u8) data_local & 0xFF; 562 563 return E1000_SUCCESS; 564 } 565 566 /** 567 * e1000_write_sfp_data_byte - Writes SFP module data. 568 * @hw: pointer to the HW structure 569 * @offset: byte location offset to write to 570 * @data: data to write 571 * 572 * Writes one byte to SFP module data stored 573 * in SFP resided EEPROM memory or SFP diagnostic area. 574 * Function should be called with 575 * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access 576 * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters 577 * access 578 **/ 579 s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data) 580 { 581 u32 i = 0; 582 u32 i2ccmd = 0; 583 u32 data_local = 0; 584 585 DEBUGFUNC("e1000_write_sfp_data_byte"); 586 587 if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) { 588 DEBUGOUT("I2CCMD command address exceeds upper limit\n"); 589 return -E1000_ERR_PHY; 590 } 591 /* The programming interface is 16 bits wide 592 * so we need to read the whole word first 593 * then update appropriate byte lane and write 594 * the updated word back. 595 */ 596 /* Set up Op-code, EEPROM Address,in the I2CCMD 597 * register. The MAC will take care of interfacing 598 * with an EEPROM to write the data given. 599 */ 600 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | 601 E1000_I2CCMD_OPCODE_READ); 602 /* Set a command to read single word */ 603 E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); 604 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { 605 usec_delay(50); 606 /* Poll the ready bit to see if lastly 607 * launched I2C operation completed 608 */ 609 i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); 610 if (i2ccmd & E1000_I2CCMD_READY) { 611 /* Check if this is READ or WRITE phase */ 612 if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) == 613 E1000_I2CCMD_OPCODE_READ) { 614 /* Write the selected byte 615 * lane and update whole word 616 */ 617 data_local = i2ccmd & 0xFF00; 618 data_local |= data; 619 i2ccmd = ((offset << 620 E1000_I2CCMD_REG_ADDR_SHIFT) | 621 E1000_I2CCMD_OPCODE_WRITE | data_local); 622 E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); 623 } else { 624 break; 625 } 626 } 627 } 628 if (!(i2ccmd & E1000_I2CCMD_READY)) { 629 DEBUGOUT("I2CCMD Write did not complete\n"); 630 return -E1000_ERR_PHY; 631 } 632 if (i2ccmd & E1000_I2CCMD_ERROR) { 633 DEBUGOUT("I2CCMD Error bit set\n"); 634 return -E1000_ERR_PHY; 635 } 636 return E1000_SUCCESS; 637 } 638 639 /** 640 * e1000_read_phy_reg_m88 - Read m88 PHY register 641 * @hw: pointer to the HW structure 642 * @offset: register offset to be read 643 * @data: pointer to the read data 644 * 645 * Acquires semaphore, if necessary, then reads the PHY register at offset 646 * and storing the retrieved information in data. Release any acquired 647 * semaphores before exiting. 648 **/ 649 s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) 650 { 651 s32 ret_val; 652 653 DEBUGFUNC("e1000_read_phy_reg_m88"); 654 655 if (!hw->phy.ops.acquire) 656 return E1000_SUCCESS; 657 658 ret_val = hw->phy.ops.acquire(hw); 659 if (ret_val) 660 return ret_val; 661 662 ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 663 data); 664 665 hw->phy.ops.release(hw); 666 667 return ret_val; 668 } 669 670 /** 671 * e1000_write_phy_reg_m88 - Write m88 PHY register 672 * @hw: pointer to the HW structure 673 * @offset: register offset to write to 674 * @data: data to write at register offset 675 * 676 * Acquires semaphore, if necessary, then writes the data to PHY register 677 * at the offset. Release any acquired semaphores before exiting. 678 **/ 679 s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) 680 { 681 s32 ret_val; 682 683 DEBUGFUNC("e1000_write_phy_reg_m88"); 684 685 if (!hw->phy.ops.acquire) 686 return E1000_SUCCESS; 687 688 ret_val = hw->phy.ops.acquire(hw); 689 if (ret_val) 690 return ret_val; 691 692 ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 693 data); 694 695 hw->phy.ops.release(hw); 696 697 return ret_val; 698 } 699 700 /** 701 * e1000_set_page_igp - Set page as on IGP-like PHY(s) 702 * @hw: pointer to the HW structure 703 * @page: page to set (shifted left when necessary) 704 * 705 * Sets PHY page required for PHY register access. Assumes semaphore is 706 * already acquired. Note, this function sets phy.addr to 1 so the caller 707 * must set it appropriately (if necessary) after this function returns. 708 **/ 709 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page) 710 { 711 DEBUGFUNC("e1000_set_page_igp"); 712 713 DEBUGOUT1("Setting page 0x%x\n", page); 714 715 hw->phy.addr = 1; 716 717 return e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page); 718 } 719 720 /** 721 * __e1000_read_phy_reg_igp - Read igp PHY register 722 * @hw: pointer to the HW structure 723 * @offset: register offset to be read 724 * @data: pointer to the read data 725 * @locked: semaphore has already been acquired or not 726 * 727 * Acquires semaphore, if necessary, then reads the PHY register at offset 728 * and stores the retrieved information in data. Release any acquired 729 * semaphores before exiting. 730 **/ 731 static s32 __e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data, 732 bool locked) 733 { 734 s32 ret_val = E1000_SUCCESS; 735 736 DEBUGFUNC("__e1000_read_phy_reg_igp"); 737 738 if (!locked) { 739 if (!hw->phy.ops.acquire) 740 return E1000_SUCCESS; 741 742 ret_val = hw->phy.ops.acquire(hw); 743 if (ret_val) 744 return ret_val; 745 } 746 747 if (offset > MAX_PHY_MULTI_PAGE_REG) 748 ret_val = e1000_write_phy_reg_mdic(hw, 749 IGP01E1000_PHY_PAGE_SELECT, 750 (u16)offset); 751 if (!ret_val) 752 ret_val = e1000_read_phy_reg_mdic(hw, 753 MAX_PHY_REG_ADDRESS & offset, 754 data); 755 if (!locked) 756 hw->phy.ops.release(hw); 757 758 return ret_val; 759 } 760 761 /** 762 * e1000_read_phy_reg_igp - Read igp PHY register 763 * @hw: pointer to the HW structure 764 * @offset: register offset to be read 765 * @data: pointer to the read data 766 * 767 * Acquires semaphore then reads the PHY register at offset and stores the 768 * retrieved information in data. 769 * Release the acquired semaphore before exiting. 770 **/ 771 s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) 772 { 773 return __e1000_read_phy_reg_igp(hw, offset, data, FALSE); 774 } 775 776 /** 777 * e1000_read_phy_reg_igp_locked - Read igp PHY register 778 * @hw: pointer to the HW structure 779 * @offset: register offset to be read 780 * @data: pointer to the read data 781 * 782 * Reads the PHY register at offset and stores the retrieved information 783 * in data. Assumes semaphore already acquired. 784 **/ 785 s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data) 786 { 787 return __e1000_read_phy_reg_igp(hw, offset, data, TRUE); 788 } 789 790 /** 791 * e1000_write_phy_reg_igp - Write igp PHY register 792 * @hw: pointer to the HW structure 793 * @offset: register offset to write to 794 * @data: data to write at register offset 795 * @locked: semaphore has already been acquired or not 796 * 797 * Acquires semaphore, if necessary, then writes the data to PHY register 798 * at the offset. Release any acquired semaphores before exiting. 799 **/ 800 static s32 __e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data, 801 bool locked) 802 { 803 s32 ret_val = E1000_SUCCESS; 804 805 DEBUGFUNC("e1000_write_phy_reg_igp"); 806 807 if (!locked) { 808 if (!hw->phy.ops.acquire) 809 return E1000_SUCCESS; 810 811 ret_val = hw->phy.ops.acquire(hw); 812 if (ret_val) 813 return ret_val; 814 } 815 816 if (offset > MAX_PHY_MULTI_PAGE_REG) 817 ret_val = e1000_write_phy_reg_mdic(hw, 818 IGP01E1000_PHY_PAGE_SELECT, 819 (u16)offset); 820 if (!ret_val) 821 ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & 822 offset, 823 data); 824 if (!locked) 825 hw->phy.ops.release(hw); 826 827 return ret_val; 828 } 829 830 /** 831 * e1000_write_phy_reg_igp - Write igp PHY register 832 * @hw: pointer to the HW structure 833 * @offset: register offset to write to 834 * @data: data to write at register offset 835 * 836 * Acquires semaphore then writes the data to PHY register 837 * at the offset. Release any acquired semaphores before exiting. 838 **/ 839 s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) 840 { 841 return __e1000_write_phy_reg_igp(hw, offset, data, FALSE); 842 } 843 844 /** 845 * e1000_write_phy_reg_igp_locked - Write igp PHY register 846 * @hw: pointer to the HW structure 847 * @offset: register offset to write to 848 * @data: data to write at register offset 849 * 850 * Writes the data to PHY register at the offset. 851 * Assumes semaphore already acquired. 852 **/ 853 s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data) 854 { 855 return __e1000_write_phy_reg_igp(hw, offset, data, TRUE); 856 } 857 858 /** 859 * __e1000_read_kmrn_reg - Read kumeran register 860 * @hw: pointer to the HW structure 861 * @offset: register offset to be read 862 * @data: pointer to the read data 863 * @locked: semaphore has already been acquired or not 864 * 865 * Acquires semaphore, if necessary. Then reads the PHY register at offset 866 * using the kumeran interface. The information retrieved is stored in data. 867 * Release any acquired semaphores before exiting. 868 **/ 869 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data, 870 bool locked) 871 { 872 u32 kmrnctrlsta; 873 874 DEBUGFUNC("__e1000_read_kmrn_reg"); 875 876 if (!locked) { 877 s32 ret_val = E1000_SUCCESS; 878 879 if (!hw->phy.ops.acquire) 880 return E1000_SUCCESS; 881 882 ret_val = hw->phy.ops.acquire(hw); 883 if (ret_val) 884 return ret_val; 885 } 886 887 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & 888 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; 889 E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); 890 E1000_WRITE_FLUSH(hw); 891 892 usec_delay(2); 893 894 kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA); 895 *data = (u16)kmrnctrlsta; 896 897 if (!locked) 898 hw->phy.ops.release(hw); 899 900 return E1000_SUCCESS; 901 } 902 903 /** 904 * e1000_read_kmrn_reg_generic - Read kumeran register 905 * @hw: pointer to the HW structure 906 * @offset: register offset to be read 907 * @data: pointer to the read data 908 * 909 * Acquires semaphore then reads the PHY register at offset using the 910 * kumeran interface. The information retrieved is stored in data. 911 * Release the acquired semaphore before exiting. 912 **/ 913 s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data) 914 { 915 return __e1000_read_kmrn_reg(hw, offset, data, FALSE); 916 } 917 918 /** 919 * e1000_read_kmrn_reg_locked - Read kumeran register 920 * @hw: pointer to the HW structure 921 * @offset: register offset to be read 922 * @data: pointer to the read data 923 * 924 * Reads the PHY register at offset using the kumeran interface. The 925 * information retrieved is stored in data. 926 * Assumes semaphore already acquired. 927 **/ 928 s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data) 929 { 930 return __e1000_read_kmrn_reg(hw, offset, data, TRUE); 931 } 932 933 /** 934 * __e1000_write_kmrn_reg - Write kumeran register 935 * @hw: pointer to the HW structure 936 * @offset: register offset to write to 937 * @data: data to write at register offset 938 * @locked: semaphore has already been acquired or not 939 * 940 * Acquires semaphore, if necessary. Then write the data to PHY register 941 * at the offset using the kumeran interface. Release any acquired semaphores 942 * before exiting. 943 **/ 944 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data, 945 bool locked) 946 { 947 u32 kmrnctrlsta; 948 949 DEBUGFUNC("e1000_write_kmrn_reg_generic"); 950 951 if (!locked) { 952 s32 ret_val = E1000_SUCCESS; 953 954 if (!hw->phy.ops.acquire) 955 return E1000_SUCCESS; 956 957 ret_val = hw->phy.ops.acquire(hw); 958 if (ret_val) 959 return ret_val; 960 } 961 962 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & 963 E1000_KMRNCTRLSTA_OFFSET) | data; 964 E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); 965 E1000_WRITE_FLUSH(hw); 966 967 usec_delay(2); 968 969 if (!locked) 970 hw->phy.ops.release(hw); 971 972 return E1000_SUCCESS; 973 } 974 975 /** 976 * e1000_write_kmrn_reg_generic - Write kumeran register 977 * @hw: pointer to the HW structure 978 * @offset: register offset to write to 979 * @data: data to write at register offset 980 * 981 * Acquires semaphore then writes the data to the PHY register at the offset 982 * using the kumeran interface. Release the acquired semaphore before exiting. 983 **/ 984 s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data) 985 { 986 return __e1000_write_kmrn_reg(hw, offset, data, FALSE); 987 } 988 989 /** 990 * e1000_write_kmrn_reg_locked - Write kumeran register 991 * @hw: pointer to the HW structure 992 * @offset: register offset to write to 993 * @data: data to write at register offset 994 * 995 * Write the data to PHY register at the offset using the kumeran interface. 996 * Assumes semaphore already acquired. 997 **/ 998 s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data) 999 { 1000 return __e1000_write_kmrn_reg(hw, offset, data, TRUE); 1001 } 1002 1003 /** 1004 * e1000_set_master_slave_mode - Setup PHY for Master/slave mode 1005 * @hw: pointer to the HW structure 1006 * 1007 * Sets up Master/slave mode 1008 **/ 1009 static s32 e1000_set_master_slave_mode(struct e1000_hw *hw) 1010 { 1011 s32 ret_val; 1012 u16 phy_data; 1013 1014 /* Resolve Master/Slave mode */ 1015 ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data); 1016 if (ret_val) 1017 return ret_val; 1018 1019 /* load defaults for future use */ 1020 hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ? 1021 ((phy_data & CR_1000T_MS_VALUE) ? 1022 e1000_ms_force_master : 1023 e1000_ms_force_slave) : e1000_ms_auto; 1024 1025 switch (hw->phy.ms_type) { 1026 case e1000_ms_force_master: 1027 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); 1028 break; 1029 case e1000_ms_force_slave: 1030 phy_data |= CR_1000T_MS_ENABLE; 1031 phy_data &= ~(CR_1000T_MS_VALUE); 1032 break; 1033 case e1000_ms_auto: 1034 phy_data &= ~CR_1000T_MS_ENABLE; 1035 /* fall-through */ 1036 default: 1037 break; 1038 } 1039 1040 return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data); 1041 } 1042 1043 /** 1044 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link 1045 * @hw: pointer to the HW structure 1046 * 1047 * Sets up Carrier-sense on Transmit and downshift values. 1048 **/ 1049 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw) 1050 { 1051 s32 ret_val; 1052 u16 phy_data; 1053 1054 DEBUGFUNC("e1000_copper_link_setup_82577"); 1055 1056 if (hw->phy.type == e1000_phy_82580) { 1057 ret_val = hw->phy.ops.reset(hw); 1058 if (ret_val) { 1059 DEBUGOUT("Error resetting the PHY.\n"); 1060 return ret_val; 1061 } 1062 } 1063 1064 /* Enable CRS on Tx. This must be set for half-duplex operation. */ 1065 ret_val = hw->phy.ops.read_reg(hw, I82577_CFG_REG, &phy_data); 1066 if (ret_val) 1067 return ret_val; 1068 1069 phy_data |= I82577_CFG_ASSERT_CRS_ON_TX; 1070 1071 /* Enable downshift */ 1072 phy_data |= I82577_CFG_ENABLE_DOWNSHIFT; 1073 1074 ret_val = hw->phy.ops.write_reg(hw, I82577_CFG_REG, phy_data); 1075 if (ret_val) 1076 return ret_val; 1077 1078 /* Set MDI/MDIX mode */ 1079 ret_val = hw->phy.ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data); 1080 if (ret_val) 1081 return ret_val; 1082 phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK; 1083 /* Options: 1084 * 0 - Auto (default) 1085 * 1 - MDI mode 1086 * 2 - MDI-X mode 1087 */ 1088 switch (hw->phy.mdix) { 1089 case 1: 1090 break; 1091 case 2: 1092 phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX; 1093 break; 1094 case 0: 1095 default: 1096 phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX; 1097 break; 1098 } 1099 ret_val = hw->phy.ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data); 1100 if (ret_val) 1101 return ret_val; 1102 1103 return e1000_set_master_slave_mode(hw); 1104 } 1105 1106 /** 1107 * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link 1108 * @hw: pointer to the HW structure 1109 * 1110 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock 1111 * and downshift values are set also. 1112 **/ 1113 s32 e1000_copper_link_setup_m88(struct e1000_hw *hw) 1114 { 1115 struct e1000_phy_info *phy = &hw->phy; 1116 s32 ret_val; 1117 u16 phy_data; 1118 1119 DEBUGFUNC("e1000_copper_link_setup_m88"); 1120 1121 1122 /* Enable CRS on Tx. This must be set for half-duplex operation. */ 1123 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1124 if (ret_val) 1125 return ret_val; 1126 1127 /* For BM PHY this bit is downshift enable */ 1128 if (phy->type != e1000_phy_bm) 1129 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 1130 1131 /* Options: 1132 * MDI/MDI-X = 0 (default) 1133 * 0 - Auto for all speeds 1134 * 1 - MDI mode 1135 * 2 - MDI-X mode 1136 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) 1137 */ 1138 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 1139 1140 switch (phy->mdix) { 1141 case 1: 1142 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; 1143 break; 1144 case 2: 1145 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; 1146 break; 1147 case 3: 1148 phy_data |= M88E1000_PSCR_AUTO_X_1000T; 1149 break; 1150 case 0: 1151 default: 1152 phy_data |= M88E1000_PSCR_AUTO_X_MODE; 1153 break; 1154 } 1155 1156 /* Options: 1157 * disable_polarity_correction = 0 (default) 1158 * Automatic Correction for Reversed Cable Polarity 1159 * 0 - Disabled 1160 * 1 - Enabled 1161 */ 1162 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; 1163 if (phy->disable_polarity_correction) 1164 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; 1165 1166 /* Enable downshift on BM (disabled by default) */ 1167 if (phy->type == e1000_phy_bm) { 1168 /* For 82574/82583, first disable then enable downshift */ 1169 if (phy->id == BME1000_E_PHY_ID_R2) { 1170 phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT; 1171 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, 1172 phy_data); 1173 if (ret_val) 1174 return ret_val; 1175 /* Commit the changes. */ 1176 ret_val = phy->ops.commit(hw); 1177 if (ret_val) { 1178 DEBUGOUT("Error committing the PHY changes\n"); 1179 return ret_val; 1180 } 1181 } 1182 1183 phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT; 1184 } 1185 1186 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 1187 if (ret_val) 1188 return ret_val; 1189 1190 if ((phy->type == e1000_phy_m88) && 1191 (phy->revision < E1000_REVISION_4) && 1192 (phy->id != BME1000_E_PHY_ID_R2)) { 1193 /* Force TX_CLK in the Extended PHY Specific Control Register 1194 * to 25MHz clock. 1195 */ 1196 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, 1197 &phy_data); 1198 if (ret_val) 1199 return ret_val; 1200 1201 phy_data |= M88E1000_EPSCR_TX_CLK_25; 1202 1203 if ((phy->revision == E1000_REVISION_2) && 1204 (phy->id == M88E1111_I_PHY_ID)) { 1205 /* 82573L PHY - set the downshift counter to 5x. */ 1206 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; 1207 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; 1208 } else { 1209 /* Configure Master and Slave downshift values */ 1210 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | 1211 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); 1212 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | 1213 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); 1214 } 1215 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, 1216 phy_data); 1217 if (ret_val) 1218 return ret_val; 1219 } 1220 1221 if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) { 1222 /* Set PHY page 0, register 29 to 0x0003 */ 1223 ret_val = phy->ops.write_reg(hw, 29, 0x0003); 1224 if (ret_val) 1225 return ret_val; 1226 1227 /* Set PHY page 0, register 30 to 0x0000 */ 1228 ret_val = phy->ops.write_reg(hw, 30, 0x0000); 1229 if (ret_val) 1230 return ret_val; 1231 } 1232 1233 /* Commit the changes. */ 1234 ret_val = phy->ops.commit(hw); 1235 if (ret_val) { 1236 DEBUGOUT("Error committing the PHY changes\n"); 1237 return ret_val; 1238 } 1239 1240 if (phy->type == e1000_phy_82578) { 1241 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, 1242 &phy_data); 1243 if (ret_val) 1244 return ret_val; 1245 1246 /* 82578 PHY - set the downshift count to 1x. */ 1247 phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE; 1248 phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK; 1249 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, 1250 phy_data); 1251 if (ret_val) 1252 return ret_val; 1253 } 1254 1255 return E1000_SUCCESS; 1256 } 1257 1258 /** 1259 * e1000_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link 1260 * @hw: pointer to the HW structure 1261 * 1262 * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's. 1263 * Also enables and sets the downshift parameters. 1264 **/ 1265 s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw) 1266 { 1267 struct e1000_phy_info *phy = &hw->phy; 1268 s32 ret_val; 1269 u16 phy_data; 1270 1271 DEBUGFUNC("e1000_copper_link_setup_m88_gen2"); 1272 1273 1274 /* Enable CRS on Tx. This must be set for half-duplex operation. */ 1275 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1276 if (ret_val) 1277 return ret_val; 1278 1279 /* Options: 1280 * MDI/MDI-X = 0 (default) 1281 * 0 - Auto for all speeds 1282 * 1 - MDI mode 1283 * 2 - MDI-X mode 1284 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) 1285 */ 1286 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 1287 1288 switch (phy->mdix) { 1289 case 1: 1290 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; 1291 break; 1292 case 2: 1293 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; 1294 break; 1295 case 3: 1296 /* M88E1112 does not support this mode) */ 1297 if (phy->id != M88E1112_E_PHY_ID) { 1298 phy_data |= M88E1000_PSCR_AUTO_X_1000T; 1299 break; 1300 } 1301 case 0: 1302 default: 1303 phy_data |= M88E1000_PSCR_AUTO_X_MODE; 1304 break; 1305 } 1306 1307 /* Options: 1308 * disable_polarity_correction = 0 (default) 1309 * Automatic Correction for Reversed Cable Polarity 1310 * 0 - Disabled 1311 * 1 - Enabled 1312 */ 1313 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; 1314 if (phy->disable_polarity_correction) 1315 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; 1316 1317 /* Enable downshift and setting it to X6 */ 1318 if (phy->id == M88E1543_E_PHY_ID) { 1319 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE; 1320 ret_val = 1321 phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 1322 if (ret_val) 1323 return ret_val; 1324 1325 ret_val = phy->ops.commit(hw); 1326 if (ret_val) { 1327 DEBUGOUT("Error committing the PHY changes\n"); 1328 return ret_val; 1329 } 1330 } 1331 1332 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK; 1333 phy_data |= I347AT4_PSCR_DOWNSHIFT_6X; 1334 phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE; 1335 1336 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 1337 if (ret_val) 1338 return ret_val; 1339 1340 /* Commit the changes. */ 1341 ret_val = phy->ops.commit(hw); 1342 if (ret_val) { 1343 DEBUGOUT("Error committing the PHY changes\n"); 1344 return ret_val; 1345 } 1346 1347 ret_val = e1000_set_master_slave_mode(hw); 1348 if (ret_val) 1349 return ret_val; 1350 1351 return E1000_SUCCESS; 1352 } 1353 1354 /** 1355 * e1000_copper_link_setup_igp - Setup igp PHY's for copper link 1356 * @hw: pointer to the HW structure 1357 * 1358 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for 1359 * igp PHY's. 1360 **/ 1361 s32 e1000_copper_link_setup_igp(struct e1000_hw *hw) 1362 { 1363 struct e1000_phy_info *phy = &hw->phy; 1364 s32 ret_val; 1365 u16 data; 1366 1367 DEBUGFUNC("e1000_copper_link_setup_igp"); 1368 1369 1370 ret_val = hw->phy.ops.reset(hw); 1371 if (ret_val) { 1372 DEBUGOUT("Error resetting the PHY.\n"); 1373 return ret_val; 1374 } 1375 1376 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid 1377 * timeout issues when LFS is enabled. 1378 */ 1379 msec_delay(100); 1380 1381 /* The NVM settings will configure LPLU in D3 for 1382 * non-IGP1 PHYs. 1383 */ 1384 if (phy->type == e1000_phy_igp) { 1385 /* disable lplu d3 during driver init */ 1386 ret_val = hw->phy.ops.set_d3_lplu_state(hw, FALSE); 1387 if (ret_val) { 1388 DEBUGOUT("Error Disabling LPLU D3\n"); 1389 return ret_val; 1390 } 1391 } 1392 1393 /* disable lplu d0 during driver init */ 1394 if (hw->phy.ops.set_d0_lplu_state) { 1395 ret_val = hw->phy.ops.set_d0_lplu_state(hw, FALSE); 1396 if (ret_val) { 1397 DEBUGOUT("Error Disabling LPLU D0\n"); 1398 return ret_val; 1399 } 1400 } 1401 /* Configure mdi-mdix settings */ 1402 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data); 1403 if (ret_val) 1404 return ret_val; 1405 1406 data &= ~IGP01E1000_PSCR_AUTO_MDIX; 1407 1408 switch (phy->mdix) { 1409 case 1: 1410 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; 1411 break; 1412 case 2: 1413 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; 1414 break; 1415 case 0: 1416 default: 1417 data |= IGP01E1000_PSCR_AUTO_MDIX; 1418 break; 1419 } 1420 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data); 1421 if (ret_val) 1422 return ret_val; 1423 1424 /* set auto-master slave resolution settings */ 1425 if (hw->mac.autoneg) { 1426 /* when autonegotiation advertisement is only 1000Mbps then we 1427 * should disable SmartSpeed and enable Auto MasterSlave 1428 * resolution as hardware default. 1429 */ 1430 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { 1431 /* Disable SmartSpeed */ 1432 ret_val = phy->ops.read_reg(hw, 1433 IGP01E1000_PHY_PORT_CONFIG, 1434 &data); 1435 if (ret_val) 1436 return ret_val; 1437 1438 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1439 ret_val = phy->ops.write_reg(hw, 1440 IGP01E1000_PHY_PORT_CONFIG, 1441 data); 1442 if (ret_val) 1443 return ret_val; 1444 1445 /* Set auto Master/Slave resolution process */ 1446 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); 1447 if (ret_val) 1448 return ret_val; 1449 1450 data &= ~CR_1000T_MS_ENABLE; 1451 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); 1452 if (ret_val) 1453 return ret_val; 1454 } 1455 1456 ret_val = e1000_set_master_slave_mode(hw); 1457 } 1458 1459 return ret_val; 1460 } 1461 1462 /** 1463 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation 1464 * @hw: pointer to the HW structure 1465 * 1466 * Reads the MII auto-neg advertisement register and/or the 1000T control 1467 * register and if the PHY is already setup for auto-negotiation, then 1468 * return successful. Otherwise, setup advertisement and flow control to 1469 * the appropriate values for the wanted auto-negotiation. 1470 **/ 1471 s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) 1472 { 1473 struct e1000_phy_info *phy = &hw->phy; 1474 s32 ret_val; 1475 u16 mii_autoneg_adv_reg; 1476 u16 mii_1000t_ctrl_reg = 0; 1477 1478 DEBUGFUNC("e1000_phy_setup_autoneg"); 1479 1480 phy->autoneg_advertised &= phy->autoneg_mask; 1481 1482 /* Read the MII Auto-Neg Advertisement Register (Address 4). */ 1483 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); 1484 if (ret_val) 1485 return ret_val; 1486 1487 if (phy->autoneg_mask & ADVERTISE_1000_FULL) { 1488 /* Read the MII 1000Base-T Control Register (Address 9). */ 1489 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, 1490 &mii_1000t_ctrl_reg); 1491 if (ret_val) 1492 return ret_val; 1493 } 1494 1495 /* Need to parse both autoneg_advertised and fc and set up 1496 * the appropriate PHY registers. First we will parse for 1497 * autoneg_advertised software override. Since we can advertise 1498 * a plethora of combinations, we need to check each bit 1499 * individually. 1500 */ 1501 1502 /* First we clear all the 10/100 mb speed bits in the Auto-Neg 1503 * Advertisement Register (Address 4) and the 1000 mb speed bits in 1504 * the 1000Base-T Control Register (Address 9). 1505 */ 1506 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | 1507 NWAY_AR_100TX_HD_CAPS | 1508 NWAY_AR_10T_FD_CAPS | 1509 NWAY_AR_10T_HD_CAPS); 1510 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); 1511 1512 DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised); 1513 1514 /* Do we want to advertise 10 Mb Half Duplex? */ 1515 if (phy->autoneg_advertised & ADVERTISE_10_HALF) { 1516 DEBUGOUT("Advertise 10mb Half duplex\n"); 1517 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; 1518 } 1519 1520 /* Do we want to advertise 10 Mb Full Duplex? */ 1521 if (phy->autoneg_advertised & ADVERTISE_10_FULL) { 1522 DEBUGOUT("Advertise 10mb Full duplex\n"); 1523 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; 1524 } 1525 1526 /* Do we want to advertise 100 Mb Half Duplex? */ 1527 if (phy->autoneg_advertised & ADVERTISE_100_HALF) { 1528 DEBUGOUT("Advertise 100mb Half duplex\n"); 1529 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; 1530 } 1531 1532 /* Do we want to advertise 100 Mb Full Duplex? */ 1533 if (phy->autoneg_advertised & ADVERTISE_100_FULL) { 1534 DEBUGOUT("Advertise 100mb Full duplex\n"); 1535 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; 1536 } 1537 1538 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ 1539 if (phy->autoneg_advertised & ADVERTISE_1000_HALF) 1540 DEBUGOUT("Advertise 1000mb Half duplex request denied!\n"); 1541 1542 /* Do we want to advertise 1000 Mb Full Duplex? */ 1543 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { 1544 DEBUGOUT("Advertise 1000mb Full duplex\n"); 1545 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; 1546 } 1547 1548 /* Check for a software override of the flow control settings, and 1549 * setup the PHY advertisement registers accordingly. If 1550 * auto-negotiation is enabled, then software will have to set the 1551 * "PAUSE" bits to the correct value in the Auto-Negotiation 1552 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- 1553 * negotiation. 1554 * 1555 * The possible values of the "fc" parameter are: 1556 * 0: Flow control is completely disabled 1557 * 1: Rx flow control is enabled (we can receive pause frames 1558 * but not send pause frames). 1559 * 2: Tx flow control is enabled (we can send pause frames 1560 * but we do not support receiving pause frames). 1561 * 3: Both Rx and Tx flow control (symmetric) are enabled. 1562 * other: No software override. The flow control configuration 1563 * in the EEPROM is used. 1564 */ 1565 switch (hw->fc.current_mode) { 1566 case e1000_fc_none: 1567 /* Flow control (Rx & Tx) is completely disabled by a 1568 * software over-ride. 1569 */ 1570 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 1571 break; 1572 case e1000_fc_rx_pause: 1573 /* Rx Flow control is enabled, and Tx Flow control is 1574 * disabled, by a software over-ride. 1575 * 1576 * Since there really isn't a way to advertise that we are 1577 * capable of Rx Pause ONLY, we will advertise that we 1578 * support both symmetric and asymmetric Rx PAUSE. Later 1579 * (in e1000_config_fc_after_link_up) we will disable the 1580 * hw's ability to send PAUSE frames. 1581 */ 1582 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 1583 break; 1584 case e1000_fc_tx_pause: 1585 /* Tx Flow control is enabled, and Rx Flow control is 1586 * disabled, by a software over-ride. 1587 */ 1588 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; 1589 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; 1590 break; 1591 case e1000_fc_full: 1592 /* Flow control (both Rx and Tx) is enabled by a software 1593 * over-ride. 1594 */ 1595 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 1596 break; 1597 default: 1598 DEBUGOUT("Flow control param set incorrectly\n"); 1599 return -E1000_ERR_CONFIG; 1600 } 1601 1602 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); 1603 if (ret_val) 1604 return ret_val; 1605 1606 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); 1607 1608 if (phy->autoneg_mask & ADVERTISE_1000_FULL) 1609 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, 1610 mii_1000t_ctrl_reg); 1611 1612 return ret_val; 1613 } 1614 1615 /** 1616 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link 1617 * @hw: pointer to the HW structure 1618 * 1619 * Performs initial bounds checking on autoneg advertisement parameter, then 1620 * configure to advertise the full capability. Setup the PHY to autoneg 1621 * and restart the negotiation process between the link partner. If 1622 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. 1623 **/ 1624 s32 e1000_copper_link_autoneg(struct e1000_hw *hw) 1625 { 1626 struct e1000_phy_info *phy = &hw->phy; 1627 s32 ret_val; 1628 u16 phy_ctrl; 1629 1630 DEBUGFUNC("e1000_copper_link_autoneg"); 1631 1632 /* Perform some bounds checking on the autoneg advertisement 1633 * parameter. 1634 */ 1635 phy->autoneg_advertised &= phy->autoneg_mask; 1636 1637 /* If autoneg_advertised is zero, we assume it was not defaulted 1638 * by the calling code so we set to advertise full capability. 1639 */ 1640 if (!phy->autoneg_advertised) 1641 phy->autoneg_advertised = phy->autoneg_mask; 1642 1643 DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); 1644 ret_val = e1000_phy_setup_autoneg(hw); 1645 if (ret_val) { 1646 DEBUGOUT("Error Setting up Auto-Negotiation\n"); 1647 return ret_val; 1648 } 1649 DEBUGOUT("Restarting Auto-Neg\n"); 1650 1651 /* Restart auto-negotiation by setting the Auto Neg Enable bit and 1652 * the Auto Neg Restart bit in the PHY control register. 1653 */ 1654 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); 1655 if (ret_val) 1656 return ret_val; 1657 1658 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); 1659 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); 1660 if (ret_val) 1661 return ret_val; 1662 1663 /* Does the user want to wait for Auto-Neg to complete here, or 1664 * check at a later time (for example, callback routine). 1665 */ 1666 if (phy->autoneg_wait_to_complete) { 1667 ret_val = e1000_wait_autoneg(hw); 1668 if (ret_val) { 1669 DEBUGOUT("Error while waiting for autoneg to complete\n"); 1670 return ret_val; 1671 } 1672 } 1673 1674 hw->mac.get_link_status = TRUE; 1675 1676 return ret_val; 1677 } 1678 1679 /** 1680 * e1000_setup_copper_link_generic - Configure copper link settings 1681 * @hw: pointer to the HW structure 1682 * 1683 * Calls the appropriate function to configure the link for auto-neg or forced 1684 * speed and duplex. Then we check for link, once link is established calls 1685 * to configure collision distance and flow control are called. If link is 1686 * not established, we return -E1000_ERR_PHY (-2). 1687 **/ 1688 s32 e1000_setup_copper_link_generic(struct e1000_hw *hw) 1689 { 1690 s32 ret_val; 1691 bool link; 1692 1693 DEBUGFUNC("e1000_setup_copper_link_generic"); 1694 1695 if (hw->mac.autoneg) { 1696 /* Setup autoneg and flow control advertisement and perform 1697 * autonegotiation. 1698 */ 1699 ret_val = e1000_copper_link_autoneg(hw); 1700 if (ret_val) 1701 return ret_val; 1702 } else { 1703 /* PHY will be set to 10H, 10F, 100H or 100F 1704 * depending on user settings. 1705 */ 1706 DEBUGOUT("Forcing Speed and Duplex\n"); 1707 ret_val = hw->phy.ops.force_speed_duplex(hw); 1708 if (ret_val) { 1709 DEBUGOUT("Error Forcing Speed and Duplex\n"); 1710 return ret_val; 1711 } 1712 } 1713 1714 /* Check link status. Wait up to 100 microseconds for link to become 1715 * valid. 1716 */ 1717 ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10, 1718 &link); 1719 if (ret_val) 1720 return ret_val; 1721 1722 if (link) { 1723 DEBUGOUT("Valid link established!!!\n"); 1724 hw->mac.ops.config_collision_dist(hw); 1725 ret_val = e1000_config_fc_after_link_up_generic(hw); 1726 } else { 1727 DEBUGOUT("Unable to establish link!!!\n"); 1728 } 1729 1730 return ret_val; 1731 } 1732 1733 /** 1734 * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY 1735 * @hw: pointer to the HW structure 1736 * 1737 * Calls the PHY setup function to force speed and duplex. Clears the 1738 * auto-crossover to force MDI manually. Waits for link and returns 1739 * successful if link up is successful, else -E1000_ERR_PHY (-2). 1740 **/ 1741 s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw) 1742 { 1743 struct e1000_phy_info *phy = &hw->phy; 1744 s32 ret_val; 1745 u16 phy_data; 1746 bool link; 1747 1748 DEBUGFUNC("e1000_phy_force_speed_duplex_igp"); 1749 1750 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); 1751 if (ret_val) 1752 return ret_val; 1753 1754 e1000_phy_force_speed_duplex_setup(hw, &phy_data); 1755 1756 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); 1757 if (ret_val) 1758 return ret_val; 1759 1760 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI 1761 * forced whenever speed and duplex are forced. 1762 */ 1763 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); 1764 if (ret_val) 1765 return ret_val; 1766 1767 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; 1768 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; 1769 1770 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); 1771 if (ret_val) 1772 return ret_val; 1773 1774 DEBUGOUT1("IGP PSCR: %X\n", phy_data); 1775 1776 usec_delay(1); 1777 1778 if (phy->autoneg_wait_to_complete) { 1779 DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n"); 1780 1781 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1782 100000, &link); 1783 if (ret_val) 1784 return ret_val; 1785 1786 if (!link) 1787 DEBUGOUT("Link taking longer than expected.\n"); 1788 1789 /* Try once more */ 1790 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1791 100000, &link); 1792 } 1793 1794 return ret_val; 1795 } 1796 1797 /** 1798 * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY 1799 * @hw: pointer to the HW structure 1800 * 1801 * Calls the PHY setup function to force speed and duplex. Clears the 1802 * auto-crossover to force MDI manually. Resets the PHY to commit the 1803 * changes. If time expires while waiting for link up, we reset the DSP. 1804 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon 1805 * successful completion, else return corresponding error code. 1806 **/ 1807 s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw) 1808 { 1809 struct e1000_phy_info *phy = &hw->phy; 1810 s32 ret_val; 1811 u16 phy_data; 1812 bool link; 1813 1814 DEBUGFUNC("e1000_phy_force_speed_duplex_m88"); 1815 1816 /* I210 and I211 devices support Auto-Crossover in forced operation. */ 1817 if (phy->type != e1000_phy_i210) { 1818 /* Clear Auto-Crossover to force MDI manually. M88E1000 1819 * requires MDI forced whenever speed and duplex are forced. 1820 */ 1821 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, 1822 &phy_data); 1823 if (ret_val) 1824 return ret_val; 1825 1826 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 1827 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, 1828 phy_data); 1829 if (ret_val) 1830 return ret_val; 1831 1832 DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data); 1833 } 1834 1835 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); 1836 if (ret_val) 1837 return ret_val; 1838 1839 e1000_phy_force_speed_duplex_setup(hw, &phy_data); 1840 1841 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); 1842 if (ret_val) 1843 return ret_val; 1844 1845 /* Reset the phy to commit changes. */ 1846 ret_val = hw->phy.ops.commit(hw); 1847 if (ret_val) 1848 return ret_val; 1849 1850 if (phy->autoneg_wait_to_complete) { 1851 DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n"); 1852 1853 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1854 100000, &link); 1855 if (ret_val) 1856 return ret_val; 1857 1858 if (!link) { 1859 bool reset_dsp = TRUE; 1860 1861 switch (hw->phy.id) { 1862 case I347AT4_E_PHY_ID: 1863 case M88E1340M_E_PHY_ID: 1864 case M88E1112_E_PHY_ID: 1865 case M88E1543_E_PHY_ID: 1866 case M88E1512_E_PHY_ID: 1867 case I210_I_PHY_ID: 1868 reset_dsp = FALSE; 1869 break; 1870 default: 1871 if (hw->phy.type != e1000_phy_m88) 1872 reset_dsp = FALSE; 1873 break; 1874 } 1875 1876 if (!reset_dsp) { 1877 DEBUGOUT("Link taking longer than expected.\n"); 1878 } else { 1879 /* We didn't get link. 1880 * Reset the DSP and cross our fingers. 1881 */ 1882 ret_val = phy->ops.write_reg(hw, 1883 M88E1000_PHY_PAGE_SELECT, 1884 0x001d); 1885 if (ret_val) 1886 return ret_val; 1887 ret_val = e1000_phy_reset_dsp_generic(hw); 1888 if (ret_val) 1889 return ret_val; 1890 } 1891 } 1892 1893 /* Try once more */ 1894 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1895 100000, &link); 1896 if (ret_val) 1897 return ret_val; 1898 } 1899 1900 if (hw->phy.type != e1000_phy_m88) 1901 return E1000_SUCCESS; 1902 1903 if (hw->phy.id == I347AT4_E_PHY_ID || 1904 hw->phy.id == M88E1340M_E_PHY_ID || 1905 hw->phy.id == M88E1112_E_PHY_ID) 1906 return E1000_SUCCESS; 1907 if (hw->phy.id == I210_I_PHY_ID) 1908 return E1000_SUCCESS; 1909 if ((hw->phy.id == M88E1543_E_PHY_ID) || 1910 (hw->phy.id == M88E1512_E_PHY_ID)) 1911 return E1000_SUCCESS; 1912 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); 1913 if (ret_val) 1914 return ret_val; 1915 1916 /* Resetting the phy means we need to re-force TX_CLK in the 1917 * Extended PHY Specific Control Register to 25MHz clock from 1918 * the reset value of 2.5MHz. 1919 */ 1920 phy_data |= M88E1000_EPSCR_TX_CLK_25; 1921 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); 1922 if (ret_val) 1923 return ret_val; 1924 1925 /* In addition, we must re-enable CRS on Tx for both half and full 1926 * duplex. 1927 */ 1928 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1929 if (ret_val) 1930 return ret_val; 1931 1932 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 1933 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 1934 1935 return ret_val; 1936 } 1937 1938 /** 1939 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex 1940 * @hw: pointer to the HW structure 1941 * 1942 * Forces the speed and duplex settings of the PHY. 1943 * This is a function pointer entry point only called by 1944 * PHY setup routines. 1945 **/ 1946 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw) 1947 { 1948 struct e1000_phy_info *phy = &hw->phy; 1949 s32 ret_val; 1950 u16 data; 1951 bool link; 1952 1953 DEBUGFUNC("e1000_phy_force_speed_duplex_ife"); 1954 1955 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data); 1956 if (ret_val) 1957 return ret_val; 1958 1959 e1000_phy_force_speed_duplex_setup(hw, &data); 1960 1961 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data); 1962 if (ret_val) 1963 return ret_val; 1964 1965 /* Disable MDI-X support for 10/100 */ 1966 ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data); 1967 if (ret_val) 1968 return ret_val; 1969 1970 data &= ~IFE_PMC_AUTO_MDIX; 1971 data &= ~IFE_PMC_FORCE_MDIX; 1972 1973 ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data); 1974 if (ret_val) 1975 return ret_val; 1976 1977 DEBUGOUT1("IFE PMC: %X\n", data); 1978 1979 usec_delay(1); 1980 1981 if (phy->autoneg_wait_to_complete) { 1982 DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n"); 1983 1984 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1985 100000, &link); 1986 if (ret_val) 1987 return ret_val; 1988 1989 if (!link) 1990 DEBUGOUT("Link taking longer than expected.\n"); 1991 1992 /* Try once more */ 1993 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1994 100000, &link); 1995 if (ret_val) 1996 return ret_val; 1997 } 1998 1999 return E1000_SUCCESS; 2000 } 2001 2002 /** 2003 * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex 2004 * @hw: pointer to the HW structure 2005 * @phy_ctrl: pointer to current value of PHY_CONTROL 2006 * 2007 * Forces speed and duplex on the PHY by doing the following: disable flow 2008 * control, force speed/duplex on the MAC, disable auto speed detection, 2009 * disable auto-negotiation, configure duplex, configure speed, configure 2010 * the collision distance, write configuration to CTRL register. The 2011 * caller must write to the PHY_CONTROL register for these settings to 2012 * take affect. 2013 **/ 2014 void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) 2015 { 2016 struct e1000_mac_info *mac = &hw->mac; 2017 u32 ctrl; 2018 2019 DEBUGFUNC("e1000_phy_force_speed_duplex_setup"); 2020 2021 /* Turn off flow control when forcing speed/duplex */ 2022 hw->fc.current_mode = e1000_fc_none; 2023 2024 /* Force speed/duplex on the mac */ 2025 ctrl = E1000_READ_REG(hw, E1000_CTRL); 2026 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 2027 ctrl &= ~E1000_CTRL_SPD_SEL; 2028 2029 /* Disable Auto Speed Detection */ 2030 ctrl &= ~E1000_CTRL_ASDE; 2031 2032 /* Disable autoneg on the phy */ 2033 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; 2034 2035 /* Forcing Full or Half Duplex? */ 2036 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { 2037 ctrl &= ~E1000_CTRL_FD; 2038 *phy_ctrl &= ~MII_CR_FULL_DUPLEX; 2039 DEBUGOUT("Half Duplex\n"); 2040 } else { 2041 ctrl |= E1000_CTRL_FD; 2042 *phy_ctrl |= MII_CR_FULL_DUPLEX; 2043 DEBUGOUT("Full Duplex\n"); 2044 } 2045 2046 /* Forcing 10mb or 100mb? */ 2047 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { 2048 ctrl |= E1000_CTRL_SPD_100; 2049 *phy_ctrl |= MII_CR_SPEED_100; 2050 *phy_ctrl &= ~MII_CR_SPEED_1000; 2051 DEBUGOUT("Forcing 100mb\n"); 2052 } else { 2053 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 2054 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); 2055 DEBUGOUT("Forcing 10mb\n"); 2056 } 2057 2058 hw->mac.ops.config_collision_dist(hw); 2059 2060 E1000_WRITE_REG(hw, E1000_CTRL, ctrl); 2061 } 2062 2063 /** 2064 * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3 2065 * @hw: pointer to the HW structure 2066 * @active: boolean used to enable/disable lplu 2067 * 2068 * Success returns 0, Failure returns 1 2069 * 2070 * The low power link up (lplu) state is set to the power management level D3 2071 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 2072 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 2073 * is used during Dx states where the power conservation is most important. 2074 * During driver activity, SmartSpeed should be enabled so performance is 2075 * maintained. 2076 **/ 2077 s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active) 2078 { 2079 struct e1000_phy_info *phy = &hw->phy; 2080 s32 ret_val; 2081 u16 data; 2082 2083 DEBUGFUNC("e1000_set_d3_lplu_state_generic"); 2084 2085 if (!hw->phy.ops.read_reg) 2086 return E1000_SUCCESS; 2087 2088 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); 2089 if (ret_val) 2090 return ret_val; 2091 2092 if (!active) { 2093 data &= ~IGP02E1000_PM_D3_LPLU; 2094 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, 2095 data); 2096 if (ret_val) 2097 return ret_val; 2098 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 2099 * during Dx states where the power conservation is most 2100 * important. During driver activity we should enable 2101 * SmartSpeed, so performance is maintained. 2102 */ 2103 if (phy->smart_speed == e1000_smart_speed_on) { 2104 ret_val = phy->ops.read_reg(hw, 2105 IGP01E1000_PHY_PORT_CONFIG, 2106 &data); 2107 if (ret_val) 2108 return ret_val; 2109 2110 data |= IGP01E1000_PSCFR_SMART_SPEED; 2111 ret_val = phy->ops.write_reg(hw, 2112 IGP01E1000_PHY_PORT_CONFIG, 2113 data); 2114 if (ret_val) 2115 return ret_val; 2116 } else if (phy->smart_speed == e1000_smart_speed_off) { 2117 ret_val = phy->ops.read_reg(hw, 2118 IGP01E1000_PHY_PORT_CONFIG, 2119 &data); 2120 if (ret_val) 2121 return ret_val; 2122 2123 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 2124 ret_val = phy->ops.write_reg(hw, 2125 IGP01E1000_PHY_PORT_CONFIG, 2126 data); 2127 if (ret_val) 2128 return ret_val; 2129 } 2130 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 2131 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 2132 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 2133 data |= IGP02E1000_PM_D3_LPLU; 2134 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, 2135 data); 2136 if (ret_val) 2137 return ret_val; 2138 2139 /* When LPLU is enabled, we should disable SmartSpeed */ 2140 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 2141 &data); 2142 if (ret_val) 2143 return ret_val; 2144 2145 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 2146 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 2147 data); 2148 } 2149 2150 return ret_val; 2151 } 2152 2153 /** 2154 * e1000_check_downshift_generic - Checks whether a downshift in speed occurred 2155 * @hw: pointer to the HW structure 2156 * 2157 * Success returns 0, Failure returns 1 2158 * 2159 * A downshift is detected by querying the PHY link health. 2160 **/ 2161 s32 e1000_check_downshift_generic(struct e1000_hw *hw) 2162 { 2163 struct e1000_phy_info *phy = &hw->phy; 2164 s32 ret_val; 2165 u16 phy_data, offset, mask; 2166 2167 DEBUGFUNC("e1000_check_downshift_generic"); 2168 2169 switch (phy->type) { 2170 case e1000_phy_i210: 2171 case e1000_phy_m88: 2172 case e1000_phy_gg82563: 2173 case e1000_phy_bm: 2174 case e1000_phy_82578: 2175 offset = M88E1000_PHY_SPEC_STATUS; 2176 mask = M88E1000_PSSR_DOWNSHIFT; 2177 break; 2178 case e1000_phy_igp: 2179 case e1000_phy_igp_2: 2180 case e1000_phy_igp_3: 2181 offset = IGP01E1000_PHY_LINK_HEALTH; 2182 mask = IGP01E1000_PLHR_SS_DOWNGRADE; 2183 break; 2184 default: 2185 /* speed downshift not supported */ 2186 phy->speed_downgraded = FALSE; 2187 return E1000_SUCCESS; 2188 } 2189 2190 ret_val = phy->ops.read_reg(hw, offset, &phy_data); 2191 2192 if (!ret_val) 2193 phy->speed_downgraded = !!(phy_data & mask); 2194 2195 return ret_val; 2196 } 2197 2198 /** 2199 * e1000_check_polarity_m88 - Checks the polarity. 2200 * @hw: pointer to the HW structure 2201 * 2202 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 2203 * 2204 * Polarity is determined based on the PHY specific status register. 2205 **/ 2206 s32 e1000_check_polarity_m88(struct e1000_hw *hw) 2207 { 2208 struct e1000_phy_info *phy = &hw->phy; 2209 s32 ret_val; 2210 u16 data; 2211 2212 DEBUGFUNC("e1000_check_polarity_m88"); 2213 2214 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data); 2215 2216 if (!ret_val) 2217 phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY) 2218 ? e1000_rev_polarity_reversed 2219 : e1000_rev_polarity_normal); 2220 2221 return ret_val; 2222 } 2223 2224 /** 2225 * e1000_check_polarity_igp - Checks the polarity. 2226 * @hw: pointer to the HW structure 2227 * 2228 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 2229 * 2230 * Polarity is determined based on the PHY port status register, and the 2231 * current speed (since there is no polarity at 100Mbps). 2232 **/ 2233 s32 e1000_check_polarity_igp(struct e1000_hw *hw) 2234 { 2235 struct e1000_phy_info *phy = &hw->phy; 2236 s32 ret_val; 2237 u16 data, offset, mask; 2238 2239 DEBUGFUNC("e1000_check_polarity_igp"); 2240 2241 /* Polarity is determined based on the speed of 2242 * our connection. 2243 */ 2244 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); 2245 if (ret_val) 2246 return ret_val; 2247 2248 if ((data & IGP01E1000_PSSR_SPEED_MASK) == 2249 IGP01E1000_PSSR_SPEED_1000MBPS) { 2250 offset = IGP01E1000_PHY_PCS_INIT_REG; 2251 mask = IGP01E1000_PHY_POLARITY_MASK; 2252 } else { 2253 /* This really only applies to 10Mbps since 2254 * there is no polarity for 100Mbps (always 0). 2255 */ 2256 offset = IGP01E1000_PHY_PORT_STATUS; 2257 mask = IGP01E1000_PSSR_POLARITY_REVERSED; 2258 } 2259 2260 ret_val = phy->ops.read_reg(hw, offset, &data); 2261 2262 if (!ret_val) 2263 phy->cable_polarity = ((data & mask) 2264 ? e1000_rev_polarity_reversed 2265 : e1000_rev_polarity_normal); 2266 2267 return ret_val; 2268 } 2269 2270 /** 2271 * e1000_check_polarity_ife - Check cable polarity for IFE PHY 2272 * @hw: pointer to the HW structure 2273 * 2274 * Polarity is determined on the polarity reversal feature being enabled. 2275 **/ 2276 s32 e1000_check_polarity_ife(struct e1000_hw *hw) 2277 { 2278 struct e1000_phy_info *phy = &hw->phy; 2279 s32 ret_val; 2280 u16 phy_data, offset, mask; 2281 2282 DEBUGFUNC("e1000_check_polarity_ife"); 2283 2284 /* Polarity is determined based on the reversal feature being enabled. 2285 */ 2286 if (phy->polarity_correction) { 2287 offset = IFE_PHY_EXTENDED_STATUS_CONTROL; 2288 mask = IFE_PESC_POLARITY_REVERSED; 2289 } else { 2290 offset = IFE_PHY_SPECIAL_CONTROL; 2291 mask = IFE_PSC_FORCE_POLARITY; 2292 } 2293 2294 ret_val = phy->ops.read_reg(hw, offset, &phy_data); 2295 2296 if (!ret_val) 2297 phy->cable_polarity = ((phy_data & mask) 2298 ? e1000_rev_polarity_reversed 2299 : e1000_rev_polarity_normal); 2300 2301 return ret_val; 2302 } 2303 2304 /** 2305 * e1000_wait_autoneg - Wait for auto-neg completion 2306 * @hw: pointer to the HW structure 2307 * 2308 * Waits for auto-negotiation to complete or for the auto-negotiation time 2309 * limit to expire, which ever happens first. 2310 **/ 2311 static s32 e1000_wait_autoneg(struct e1000_hw *hw) 2312 { 2313 s32 ret_val = E1000_SUCCESS; 2314 u16 i, phy_status; 2315 2316 DEBUGFUNC("e1000_wait_autoneg"); 2317 2318 if (!hw->phy.ops.read_reg) 2319 return E1000_SUCCESS; 2320 2321 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ 2322 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { 2323 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 2324 if (ret_val) 2325 break; 2326 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 2327 if (ret_val) 2328 break; 2329 if (phy_status & MII_SR_AUTONEG_COMPLETE) 2330 break; 2331 msec_delay(100); 2332 } 2333 2334 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation 2335 * has completed. 2336 */ 2337 return ret_val; 2338 } 2339 2340 /** 2341 * e1000_phy_has_link_generic - Polls PHY for link 2342 * @hw: pointer to the HW structure 2343 * @iterations: number of times to poll for link 2344 * @usec_interval: delay between polling attempts 2345 * @success: pointer to whether polling was successful or not 2346 * 2347 * Polls the PHY status register for link, 'iterations' number of times. 2348 **/ 2349 s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, 2350 u32 usec_interval, bool *success) 2351 { 2352 s32 ret_val = E1000_SUCCESS; 2353 u16 i, phy_status; 2354 2355 DEBUGFUNC("e1000_phy_has_link_generic"); 2356 2357 if (!hw->phy.ops.read_reg) 2358 return E1000_SUCCESS; 2359 2360 for (i = 0; i < iterations; i++) { 2361 /* Some PHYs require the PHY_STATUS register to be read 2362 * twice due to the link bit being sticky. No harm doing 2363 * it across the board. 2364 */ 2365 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 2366 if (ret_val) { 2367 /* If the first read fails, another entity may have 2368 * ownership of the resources, wait and try again to 2369 * see if they have relinquished the resources yet. 2370 */ 2371 if (usec_interval >= 1000) 2372 msec_delay(usec_interval/1000); 2373 else 2374 usec_delay(usec_interval); 2375 } 2376 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 2377 if (ret_val) 2378 break; 2379 if (phy_status & MII_SR_LINK_STATUS) 2380 break; 2381 if (usec_interval >= 1000) 2382 msec_delay(usec_interval/1000); 2383 else 2384 usec_delay(usec_interval); 2385 } 2386 2387 *success = (i < iterations); 2388 2389 return ret_val; 2390 } 2391 2392 /** 2393 * e1000_get_cable_length_m88 - Determine cable length for m88 PHY 2394 * @hw: pointer to the HW structure 2395 * 2396 * Reads the PHY specific status register to retrieve the cable length 2397 * information. The cable length is determined by averaging the minimum and 2398 * maximum values to get the "average" cable length. The m88 PHY has four 2399 * possible cable length values, which are: 2400 * Register Value Cable Length 2401 * 0 < 50 meters 2402 * 1 50 - 80 meters 2403 * 2 80 - 110 meters 2404 * 3 110 - 140 meters 2405 * 4 > 140 meters 2406 **/ 2407 s32 e1000_get_cable_length_m88(struct e1000_hw *hw) 2408 { 2409 struct e1000_phy_info *phy = &hw->phy; 2410 s32 ret_val; 2411 u16 phy_data, index; 2412 2413 DEBUGFUNC("e1000_get_cable_length_m88"); 2414 2415 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 2416 if (ret_val) 2417 return ret_val; 2418 2419 index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> 2420 M88E1000_PSSR_CABLE_LENGTH_SHIFT); 2421 2422 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) 2423 return -E1000_ERR_PHY; 2424 2425 phy->min_cable_length = e1000_m88_cable_length_table[index]; 2426 phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; 2427 2428 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; 2429 2430 return E1000_SUCCESS; 2431 } 2432 2433 s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw) 2434 { 2435 struct e1000_phy_info *phy = &hw->phy; 2436 s32 ret_val; 2437 u16 phy_data, phy_data2, is_cm; 2438 u16 index, default_page; 2439 2440 DEBUGFUNC("e1000_get_cable_length_m88_gen2"); 2441 2442 switch (hw->phy.id) { 2443 case I210_I_PHY_ID: 2444 /* Get cable length from PHY Cable Diagnostics Control Reg */ 2445 ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) + 2446 (I347AT4_PCDL + phy->addr), 2447 &phy_data); 2448 if (ret_val) 2449 return ret_val; 2450 2451 /* Check if the unit of cable length is meters or cm */ 2452 ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) + 2453 I347AT4_PCDC, &phy_data2); 2454 if (ret_val) 2455 return ret_val; 2456 2457 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); 2458 2459 /* Populate the phy structure with cable length in meters */ 2460 phy->min_cable_length = phy_data / (is_cm ? 100 : 1); 2461 phy->max_cable_length = phy_data / (is_cm ? 100 : 1); 2462 phy->cable_length = phy_data / (is_cm ? 100 : 1); 2463 break; 2464 case M88E1543_E_PHY_ID: 2465 case M88E1512_E_PHY_ID: 2466 case M88E1340M_E_PHY_ID: 2467 case I347AT4_E_PHY_ID: 2468 /* Remember the original page select and set it to 7 */ 2469 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, 2470 &default_page); 2471 if (ret_val) 2472 return ret_val; 2473 2474 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07); 2475 if (ret_val) 2476 return ret_val; 2477 2478 /* Get cable length from PHY Cable Diagnostics Control Reg */ 2479 ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr), 2480 &phy_data); 2481 if (ret_val) 2482 return ret_val; 2483 2484 /* Check if the unit of cable length is meters or cm */ 2485 ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2); 2486 if (ret_val) 2487 return ret_val; 2488 2489 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); 2490 2491 /* Populate the phy structure with cable length in meters */ 2492 phy->min_cable_length = phy_data / (is_cm ? 100 : 1); 2493 phy->max_cable_length = phy_data / (is_cm ? 100 : 1); 2494 phy->cable_length = phy_data / (is_cm ? 100 : 1); 2495 2496 /* Reset the page select to its original value */ 2497 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 2498 default_page); 2499 if (ret_val) 2500 return ret_val; 2501 break; 2502 2503 case M88E1112_E_PHY_ID: 2504 /* Remember the original page select and set it to 5 */ 2505 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, 2506 &default_page); 2507 if (ret_val) 2508 return ret_val; 2509 2510 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05); 2511 if (ret_val) 2512 return ret_val; 2513 2514 ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE, 2515 &phy_data); 2516 if (ret_val) 2517 return ret_val; 2518 2519 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> 2520 M88E1000_PSSR_CABLE_LENGTH_SHIFT; 2521 2522 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) 2523 return -E1000_ERR_PHY; 2524 2525 phy->min_cable_length = e1000_m88_cable_length_table[index]; 2526 phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; 2527 2528 phy->cable_length = (phy->min_cable_length + 2529 phy->max_cable_length) / 2; 2530 2531 /* Reset the page select to its original value */ 2532 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 2533 default_page); 2534 if (ret_val) 2535 return ret_val; 2536 2537 break; 2538 default: 2539 return -E1000_ERR_PHY; 2540 } 2541 2542 return ret_val; 2543 } 2544 2545 /** 2546 * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY 2547 * @hw: pointer to the HW structure 2548 * 2549 * The automatic gain control (agc) normalizes the amplitude of the 2550 * received signal, adjusting for the attenuation produced by the 2551 * cable. By reading the AGC registers, which represent the 2552 * combination of coarse and fine gain value, the value can be put 2553 * into a lookup table to obtain the approximate cable length 2554 * for each channel. 2555 **/ 2556 s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw) 2557 { 2558 struct e1000_phy_info *phy = &hw->phy; 2559 s32 ret_val; 2560 u16 phy_data, i, agc_value = 0; 2561 u16 cur_agc_index, max_agc_index = 0; 2562 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; 2563 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { 2564 IGP02E1000_PHY_AGC_A, 2565 IGP02E1000_PHY_AGC_B, 2566 IGP02E1000_PHY_AGC_C, 2567 IGP02E1000_PHY_AGC_D 2568 }; 2569 2570 DEBUGFUNC("e1000_get_cable_length_igp_2"); 2571 2572 /* Read the AGC registers for all channels */ 2573 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { 2574 ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data); 2575 if (ret_val) 2576 return ret_val; 2577 2578 /* Getting bits 15:9, which represent the combination of 2579 * coarse and fine gain values. The result is a number 2580 * that can be put into the lookup table to obtain the 2581 * approximate cable length. 2582 */ 2583 cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & 2584 IGP02E1000_AGC_LENGTH_MASK); 2585 2586 /* Array index bound check. */ 2587 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || 2588 (cur_agc_index == 0)) 2589 return -E1000_ERR_PHY; 2590 2591 /* Remove min & max AGC values from calculation. */ 2592 if (e1000_igp_2_cable_length_table[min_agc_index] > 2593 e1000_igp_2_cable_length_table[cur_agc_index]) 2594 min_agc_index = cur_agc_index; 2595 if (e1000_igp_2_cable_length_table[max_agc_index] < 2596 e1000_igp_2_cable_length_table[cur_agc_index]) 2597 max_agc_index = cur_agc_index; 2598 2599 agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; 2600 } 2601 2602 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + 2603 e1000_igp_2_cable_length_table[max_agc_index]); 2604 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); 2605 2606 /* Calculate cable length with the error range of +/- 10 meters. */ 2607 phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ? 2608 (agc_value - IGP02E1000_AGC_RANGE) : 0); 2609 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; 2610 2611 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; 2612 2613 return E1000_SUCCESS; 2614 } 2615 2616 /** 2617 * e1000_get_phy_info_m88 - Retrieve PHY information 2618 * @hw: pointer to the HW structure 2619 * 2620 * Valid for only copper links. Read the PHY status register (sticky read) 2621 * to verify that link is up. Read the PHY special control register to 2622 * determine the polarity and 10base-T extended distance. Read the PHY 2623 * special status register to determine MDI/MDIx and current speed. If 2624 * speed is 1000, then determine cable length, local and remote receiver. 2625 **/ 2626 s32 e1000_get_phy_info_m88(struct e1000_hw *hw) 2627 { 2628 struct e1000_phy_info *phy = &hw->phy; 2629 s32 ret_val; 2630 u16 phy_data; 2631 bool link; 2632 2633 DEBUGFUNC("e1000_get_phy_info_m88"); 2634 2635 if (phy->media_type != e1000_media_type_copper) { 2636 DEBUGOUT("Phy info is only valid for copper media\n"); 2637 return -E1000_ERR_CONFIG; 2638 } 2639 2640 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); 2641 if (ret_val) 2642 return ret_val; 2643 2644 if (!link) { 2645 DEBUGOUT("Phy info is only valid if link is up\n"); 2646 return -E1000_ERR_CONFIG; 2647 } 2648 2649 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 2650 if (ret_val) 2651 return ret_val; 2652 2653 phy->polarity_correction = !!(phy_data & 2654 M88E1000_PSCR_POLARITY_REVERSAL); 2655 2656 ret_val = e1000_check_polarity_m88(hw); 2657 if (ret_val) 2658 return ret_val; 2659 2660 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 2661 if (ret_val) 2662 return ret_val; 2663 2664 phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX); 2665 2666 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { 2667 ret_val = hw->phy.ops.get_cable_length(hw); 2668 if (ret_val) 2669 return ret_val; 2670 2671 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); 2672 if (ret_val) 2673 return ret_val; 2674 2675 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) 2676 ? e1000_1000t_rx_status_ok 2677 : e1000_1000t_rx_status_not_ok; 2678 2679 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) 2680 ? e1000_1000t_rx_status_ok 2681 : e1000_1000t_rx_status_not_ok; 2682 } else { 2683 /* Set values to "undefined" */ 2684 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 2685 phy->local_rx = e1000_1000t_rx_status_undefined; 2686 phy->remote_rx = e1000_1000t_rx_status_undefined; 2687 } 2688 2689 return ret_val; 2690 } 2691 2692 /** 2693 * e1000_get_phy_info_igp - Retrieve igp PHY information 2694 * @hw: pointer to the HW structure 2695 * 2696 * Read PHY status to determine if link is up. If link is up, then 2697 * set/determine 10base-T extended distance and polarity correction. Read 2698 * PHY port status to determine MDI/MDIx and speed. Based on the speed, 2699 * determine on the cable length, local and remote receiver. 2700 **/ 2701 s32 e1000_get_phy_info_igp(struct e1000_hw *hw) 2702 { 2703 struct e1000_phy_info *phy = &hw->phy; 2704 s32 ret_val; 2705 u16 data; 2706 bool link; 2707 2708 DEBUGFUNC("e1000_get_phy_info_igp"); 2709 2710 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); 2711 if (ret_val) 2712 return ret_val; 2713 2714 if (!link) { 2715 DEBUGOUT("Phy info is only valid if link is up\n"); 2716 return -E1000_ERR_CONFIG; 2717 } 2718 2719 phy->polarity_correction = TRUE; 2720 2721 ret_val = e1000_check_polarity_igp(hw); 2722 if (ret_val) 2723 return ret_val; 2724 2725 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); 2726 if (ret_val) 2727 return ret_val; 2728 2729 phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX); 2730 2731 if ((data & IGP01E1000_PSSR_SPEED_MASK) == 2732 IGP01E1000_PSSR_SPEED_1000MBPS) { 2733 ret_val = phy->ops.get_cable_length(hw); 2734 if (ret_val) 2735 return ret_val; 2736 2737 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); 2738 if (ret_val) 2739 return ret_val; 2740 2741 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) 2742 ? e1000_1000t_rx_status_ok 2743 : e1000_1000t_rx_status_not_ok; 2744 2745 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) 2746 ? e1000_1000t_rx_status_ok 2747 : e1000_1000t_rx_status_not_ok; 2748 } else { 2749 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 2750 phy->local_rx = e1000_1000t_rx_status_undefined; 2751 phy->remote_rx = e1000_1000t_rx_status_undefined; 2752 } 2753 2754 return ret_val; 2755 } 2756 2757 /** 2758 * e1000_get_phy_info_ife - Retrieves various IFE PHY states 2759 * @hw: pointer to the HW structure 2760 * 2761 * Populates "phy" structure with various feature states. 2762 **/ 2763 s32 e1000_get_phy_info_ife(struct e1000_hw *hw) 2764 { 2765 struct e1000_phy_info *phy = &hw->phy; 2766 s32 ret_val; 2767 u16 data; 2768 bool link; 2769 2770 DEBUGFUNC("e1000_get_phy_info_ife"); 2771 2772 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); 2773 if (ret_val) 2774 return ret_val; 2775 2776 if (!link) { 2777 DEBUGOUT("Phy info is only valid if link is up\n"); 2778 return -E1000_ERR_CONFIG; 2779 } 2780 2781 ret_val = phy->ops.read_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data); 2782 if (ret_val) 2783 return ret_val; 2784 phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE); 2785 2786 if (phy->polarity_correction) { 2787 ret_val = e1000_check_polarity_ife(hw); 2788 if (ret_val) 2789 return ret_val; 2790 } else { 2791 /* Polarity is forced */ 2792 phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY) 2793 ? e1000_rev_polarity_reversed 2794 : e1000_rev_polarity_normal); 2795 } 2796 2797 ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data); 2798 if (ret_val) 2799 return ret_val; 2800 2801 phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS); 2802 2803 /* The following parameters are undefined for 10/100 operation. */ 2804 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 2805 phy->local_rx = e1000_1000t_rx_status_undefined; 2806 phy->remote_rx = e1000_1000t_rx_status_undefined; 2807 2808 return E1000_SUCCESS; 2809 } 2810 2811 /** 2812 * e1000_phy_sw_reset_generic - PHY software reset 2813 * @hw: pointer to the HW structure 2814 * 2815 * Does a software reset of the PHY by reading the PHY control register and 2816 * setting/write the control register reset bit to the PHY. 2817 **/ 2818 s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw) 2819 { 2820 s32 ret_val; 2821 u16 phy_ctrl; 2822 2823 DEBUGFUNC("e1000_phy_sw_reset_generic"); 2824 2825 if (!hw->phy.ops.read_reg) 2826 return E1000_SUCCESS; 2827 2828 ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); 2829 if (ret_val) 2830 return ret_val; 2831 2832 phy_ctrl |= MII_CR_RESET; 2833 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl); 2834 if (ret_val) 2835 return ret_val; 2836 2837 usec_delay(1); 2838 2839 return ret_val; 2840 } 2841 2842 /** 2843 * e1000_phy_hw_reset_generic - PHY hardware reset 2844 * @hw: pointer to the HW structure 2845 * 2846 * Verify the reset block is not blocking us from resetting. Acquire 2847 * semaphore (if necessary) and read/set/write the device control reset 2848 * bit in the PHY. Wait the appropriate delay time for the device to 2849 * reset and release the semaphore (if necessary). 2850 **/ 2851 s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw) 2852 { 2853 struct e1000_phy_info *phy = &hw->phy; 2854 s32 ret_val; 2855 u32 ctrl; 2856 2857 DEBUGFUNC("e1000_phy_hw_reset_generic"); 2858 2859 if (phy->ops.check_reset_block) { 2860 ret_val = phy->ops.check_reset_block(hw); 2861 if (ret_val) 2862 return E1000_SUCCESS; 2863 } 2864 2865 ret_val = phy->ops.acquire(hw); 2866 if (ret_val) 2867 return ret_val; 2868 2869 ctrl = E1000_READ_REG(hw, E1000_CTRL); 2870 E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST); 2871 E1000_WRITE_FLUSH(hw); 2872 2873 usec_delay(phy->reset_delay_us); 2874 2875 E1000_WRITE_REG(hw, E1000_CTRL, ctrl); 2876 E1000_WRITE_FLUSH(hw); 2877 2878 usec_delay(150); 2879 2880 phy->ops.release(hw); 2881 2882 return phy->ops.get_cfg_done(hw); 2883 } 2884 2885 /** 2886 * e1000_get_cfg_done_generic - Generic configuration done 2887 * @hw: pointer to the HW structure 2888 * 2889 * Generic function to wait 10 milli-seconds for configuration to complete 2890 * and return success. 2891 **/ 2892 s32 e1000_get_cfg_done_generic(struct e1000_hw E1000_UNUSEDARG *hw) 2893 { 2894 DEBUGFUNC("e1000_get_cfg_done_generic"); 2895 2896 msec_delay_irq(10); 2897 2898 return E1000_SUCCESS; 2899 } 2900 2901 /** 2902 * e1000_phy_init_script_igp3 - Inits the IGP3 PHY 2903 * @hw: pointer to the HW structure 2904 * 2905 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. 2906 **/ 2907 s32 e1000_phy_init_script_igp3(struct e1000_hw *hw) 2908 { 2909 DEBUGOUT("Running IGP 3 PHY init script\n"); 2910 2911 /* PHY init IGP 3 */ 2912 /* Enable rise/fall, 10-mode work in class-A */ 2913 hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018); 2914 /* Remove all caps from Replica path filter */ 2915 hw->phy.ops.write_reg(hw, 0x2F52, 0x0000); 2916 /* Bias trimming for ADC, AFE and Driver (Default) */ 2917 hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24); 2918 /* Increase Hybrid poly bias */ 2919 hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0); 2920 /* Add 4% to Tx amplitude in Gig mode */ 2921 hw->phy.ops.write_reg(hw, 0x2010, 0x10B0); 2922 /* Disable trimming (TTT) */ 2923 hw->phy.ops.write_reg(hw, 0x2011, 0x0000); 2924 /* Poly DC correction to 94.6% + 2% for all channels */ 2925 hw->phy.ops.write_reg(hw, 0x20DD, 0x249A); 2926 /* ABS DC correction to 95.9% */ 2927 hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3); 2928 /* BG temp curve trim */ 2929 hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE); 2930 /* Increasing ADC OPAMP stage 1 currents to max */ 2931 hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4); 2932 /* Force 1000 ( required for enabling PHY regs configuration) */ 2933 hw->phy.ops.write_reg(hw, 0x0000, 0x0140); 2934 /* Set upd_freq to 6 */ 2935 hw->phy.ops.write_reg(hw, 0x1F30, 0x1606); 2936 /* Disable NPDFE */ 2937 hw->phy.ops.write_reg(hw, 0x1F31, 0xB814); 2938 /* Disable adaptive fixed FFE (Default) */ 2939 hw->phy.ops.write_reg(hw, 0x1F35, 0x002A); 2940 /* Enable FFE hysteresis */ 2941 hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067); 2942 /* Fixed FFE for short cable lengths */ 2943 hw->phy.ops.write_reg(hw, 0x1F54, 0x0065); 2944 /* Fixed FFE for medium cable lengths */ 2945 hw->phy.ops.write_reg(hw, 0x1F55, 0x002A); 2946 /* Fixed FFE for long cable lengths */ 2947 hw->phy.ops.write_reg(hw, 0x1F56, 0x002A); 2948 /* Enable Adaptive Clip Threshold */ 2949 hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0); 2950 /* AHT reset limit to 1 */ 2951 hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF); 2952 /* Set AHT master delay to 127 msec */ 2953 hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC); 2954 /* Set scan bits for AHT */ 2955 hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF); 2956 /* Set AHT Preset bits */ 2957 hw->phy.ops.write_reg(hw, 0x1F79, 0x0210); 2958 /* Change integ_factor of channel A to 3 */ 2959 hw->phy.ops.write_reg(hw, 0x1895, 0x0003); 2960 /* Change prop_factor of channels BCD to 8 */ 2961 hw->phy.ops.write_reg(hw, 0x1796, 0x0008); 2962 /* Change cg_icount + enable integbp for channels BCD */ 2963 hw->phy.ops.write_reg(hw, 0x1798, 0xD008); 2964 /* Change cg_icount + enable integbp + change prop_factor_master 2965 * to 8 for channel A 2966 */ 2967 hw->phy.ops.write_reg(hw, 0x1898, 0xD918); 2968 /* Disable AHT in Slave mode on channel A */ 2969 hw->phy.ops.write_reg(hw, 0x187A, 0x0800); 2970 /* Enable LPLU and disable AN to 1000 in non-D0a states, 2971 * Enable SPD+B2B 2972 */ 2973 hw->phy.ops.write_reg(hw, 0x0019, 0x008D); 2974 /* Enable restart AN on an1000_dis change */ 2975 hw->phy.ops.write_reg(hw, 0x001B, 0x2080); 2976 /* Enable wh_fifo read clock in 10/100 modes */ 2977 hw->phy.ops.write_reg(hw, 0x0014, 0x0045); 2978 /* Restart AN, Speed selection is 1000 */ 2979 hw->phy.ops.write_reg(hw, 0x0000, 0x1340); 2980 2981 return E1000_SUCCESS; 2982 } 2983 2984 /** 2985 * e1000_get_phy_type_from_id - Get PHY type from id 2986 * @phy_id: phy_id read from the phy 2987 * 2988 * Returns the phy type from the id. 2989 **/ 2990 enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id) 2991 { 2992 enum e1000_phy_type phy_type = e1000_phy_unknown; 2993 2994 switch (phy_id) { 2995 case M88E1000_I_PHY_ID: 2996 case M88E1000_E_PHY_ID: 2997 case M88E1111_I_PHY_ID: 2998 case M88E1011_I_PHY_ID: 2999 case M88E1543_E_PHY_ID: 3000 case M88E1512_E_PHY_ID: 3001 case I347AT4_E_PHY_ID: 3002 case M88E1112_E_PHY_ID: 3003 case M88E1340M_E_PHY_ID: 3004 phy_type = e1000_phy_m88; 3005 break; 3006 case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ 3007 phy_type = e1000_phy_igp_2; 3008 break; 3009 case GG82563_E_PHY_ID: 3010 phy_type = e1000_phy_gg82563; 3011 break; 3012 case IGP03E1000_E_PHY_ID: 3013 phy_type = e1000_phy_igp_3; 3014 break; 3015 case IFE_E_PHY_ID: 3016 case IFE_PLUS_E_PHY_ID: 3017 case IFE_C_E_PHY_ID: 3018 phy_type = e1000_phy_ife; 3019 break; 3020 case BME1000_E_PHY_ID: 3021 case BME1000_E_PHY_ID_R2: 3022 phy_type = e1000_phy_bm; 3023 break; 3024 case I82578_E_PHY_ID: 3025 phy_type = e1000_phy_82578; 3026 break; 3027 case I82577_E_PHY_ID: 3028 phy_type = e1000_phy_82577; 3029 break; 3030 case I82579_E_PHY_ID: 3031 phy_type = e1000_phy_82579; 3032 break; 3033 case I217_E_PHY_ID: 3034 phy_type = e1000_phy_i217; 3035 break; 3036 case I82580_I_PHY_ID: 3037 phy_type = e1000_phy_82580; 3038 break; 3039 case I210_I_PHY_ID: 3040 phy_type = e1000_phy_i210; 3041 break; 3042 default: 3043 phy_type = e1000_phy_unknown; 3044 break; 3045 } 3046 return phy_type; 3047 } 3048 3049 /** 3050 * e1000_determine_phy_address - Determines PHY address. 3051 * @hw: pointer to the HW structure 3052 * 3053 * This uses a trial and error method to loop through possible PHY 3054 * addresses. It tests each by reading the PHY ID registers and 3055 * checking for a match. 3056 **/ 3057 s32 e1000_determine_phy_address(struct e1000_hw *hw) 3058 { 3059 u32 phy_addr = 0; 3060 u32 i; 3061 enum e1000_phy_type phy_type = e1000_phy_unknown; 3062 3063 hw->phy.id = phy_type; 3064 3065 for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) { 3066 hw->phy.addr = phy_addr; 3067 i = 0; 3068 3069 do { 3070 e1000_get_phy_id(hw); 3071 phy_type = e1000_get_phy_type_from_id(hw->phy.id); 3072 3073 /* If phy_type is valid, break - we found our 3074 * PHY address 3075 */ 3076 if (phy_type != e1000_phy_unknown) 3077 return E1000_SUCCESS; 3078 3079 msec_delay(1); 3080 i++; 3081 } while (i < 10); 3082 } 3083 3084 return -E1000_ERR_PHY_TYPE; 3085 } 3086 3087 /** 3088 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address 3089 * @page: page to access 3090 * 3091 * Returns the phy address for the page requested. 3092 **/ 3093 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg) 3094 { 3095 u32 phy_addr = 2; 3096 3097 if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31)) 3098 phy_addr = 1; 3099 3100 return phy_addr; 3101 } 3102 3103 /** 3104 * e1000_write_phy_reg_bm - Write BM PHY register 3105 * @hw: pointer to the HW structure 3106 * @offset: register offset to write to 3107 * @data: data to write at register offset 3108 * 3109 * Acquires semaphore, if necessary, then writes the data to PHY register 3110 * at the offset. Release any acquired semaphores before exiting. 3111 **/ 3112 s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data) 3113 { 3114 s32 ret_val; 3115 u32 page = offset >> IGP_PAGE_SHIFT; 3116 3117 DEBUGFUNC("e1000_write_phy_reg_bm"); 3118 3119 ret_val = hw->phy.ops.acquire(hw); 3120 if (ret_val) 3121 return ret_val; 3122 3123 /* Page 800 works differently than the rest so it has its own func */ 3124 if (page == BM_WUC_PAGE) { 3125 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, 3126 FALSE, false); 3127 goto release; 3128 } 3129 3130 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); 3131 3132 if (offset > MAX_PHY_MULTI_PAGE_REG) { 3133 u32 page_shift, page_select; 3134 3135 /* Page select is register 31 for phy address 1 and 22 for 3136 * phy address 2 and 3. Page select is shifted only for 3137 * phy address 1. 3138 */ 3139 if (hw->phy.addr == 1) { 3140 page_shift = IGP_PAGE_SHIFT; 3141 page_select = IGP01E1000_PHY_PAGE_SELECT; 3142 } else { 3143 page_shift = 0; 3144 page_select = BM_PHY_PAGE_SELECT; 3145 } 3146 3147 /* Page is shifted left, PHY expects (page x 32) */ 3148 ret_val = e1000_write_phy_reg_mdic(hw, page_select, 3149 (page << page_shift)); 3150 if (ret_val) 3151 goto release; 3152 } 3153 3154 ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 3155 data); 3156 3157 release: 3158 hw->phy.ops.release(hw); 3159 return ret_val; 3160 } 3161 3162 /** 3163 * e1000_read_phy_reg_bm - Read BM PHY register 3164 * @hw: pointer to the HW structure 3165 * @offset: register offset to be read 3166 * @data: pointer to the read data 3167 * 3168 * Acquires semaphore, if necessary, then reads the PHY register at offset 3169 * and storing the retrieved information in data. Release any acquired 3170 * semaphores before exiting. 3171 **/ 3172 s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data) 3173 { 3174 s32 ret_val; 3175 u32 page = offset >> IGP_PAGE_SHIFT; 3176 3177 DEBUGFUNC("e1000_read_phy_reg_bm"); 3178 3179 ret_val = hw->phy.ops.acquire(hw); 3180 if (ret_val) 3181 return ret_val; 3182 3183 /* Page 800 works differently than the rest so it has its own func */ 3184 if (page == BM_WUC_PAGE) { 3185 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, 3186 TRUE, FALSE); 3187 goto release; 3188 } 3189 3190 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); 3191 3192 if (offset > MAX_PHY_MULTI_PAGE_REG) { 3193 u32 page_shift, page_select; 3194 3195 /* Page select is register 31 for phy address 1 and 22 for 3196 * phy address 2 and 3. Page select is shifted only for 3197 * phy address 1. 3198 */ 3199 if (hw->phy.addr == 1) { 3200 page_shift = IGP_PAGE_SHIFT; 3201 page_select = IGP01E1000_PHY_PAGE_SELECT; 3202 } else { 3203 page_shift = 0; 3204 page_select = BM_PHY_PAGE_SELECT; 3205 } 3206 3207 /* Page is shifted left, PHY expects (page x 32) */ 3208 ret_val = e1000_write_phy_reg_mdic(hw, page_select, 3209 (page << page_shift)); 3210 if (ret_val) 3211 goto release; 3212 } 3213 3214 ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 3215 data); 3216 release: 3217 hw->phy.ops.release(hw); 3218 return ret_val; 3219 } 3220 3221 /** 3222 * e1000_read_phy_reg_bm2 - Read BM PHY register 3223 * @hw: pointer to the HW structure 3224 * @offset: register offset to be read 3225 * @data: pointer to the read data 3226 * 3227 * Acquires semaphore, if necessary, then reads the PHY register at offset 3228 * and storing the retrieved information in data. Release any acquired 3229 * semaphores before exiting. 3230 **/ 3231 s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data) 3232 { 3233 s32 ret_val; 3234 u16 page = (u16)(offset >> IGP_PAGE_SHIFT); 3235 3236 DEBUGFUNC("e1000_read_phy_reg_bm2"); 3237 3238 ret_val = hw->phy.ops.acquire(hw); 3239 if (ret_val) 3240 return ret_val; 3241 3242 /* Page 800 works differently than the rest so it has its own func */ 3243 if (page == BM_WUC_PAGE) { 3244 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, 3245 TRUE, FALSE); 3246 goto release; 3247 } 3248 3249 hw->phy.addr = 1; 3250 3251 if (offset > MAX_PHY_MULTI_PAGE_REG) { 3252 /* Page is shifted left, PHY expects (page x 32) */ 3253 ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, 3254 page); 3255 3256 if (ret_val) 3257 goto release; 3258 } 3259 3260 ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 3261 data); 3262 release: 3263 hw->phy.ops.release(hw); 3264 return ret_val; 3265 } 3266 3267 /** 3268 * e1000_write_phy_reg_bm2 - Write BM PHY register 3269 * @hw: pointer to the HW structure 3270 * @offset: register offset to write to 3271 * @data: data to write at register offset 3272 * 3273 * Acquires semaphore, if necessary, then writes the data to PHY register 3274 * at the offset. Release any acquired semaphores before exiting. 3275 **/ 3276 s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data) 3277 { 3278 s32 ret_val; 3279 u16 page = (u16)(offset >> IGP_PAGE_SHIFT); 3280 3281 DEBUGFUNC("e1000_write_phy_reg_bm2"); 3282 3283 ret_val = hw->phy.ops.acquire(hw); 3284 if (ret_val) 3285 return ret_val; 3286 3287 /* Page 800 works differently than the rest so it has its own func */ 3288 if (page == BM_WUC_PAGE) { 3289 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, 3290 FALSE, false); 3291 goto release; 3292 } 3293 3294 hw->phy.addr = 1; 3295 3296 if (offset > MAX_PHY_MULTI_PAGE_REG) { 3297 /* Page is shifted left, PHY expects (page x 32) */ 3298 ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, 3299 page); 3300 3301 if (ret_val) 3302 goto release; 3303 } 3304 3305 ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 3306 data); 3307 3308 release: 3309 hw->phy.ops.release(hw); 3310 return ret_val; 3311 } 3312 3313 /** 3314 * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers 3315 * @hw: pointer to the HW structure 3316 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG 3317 * 3318 * Assumes semaphore already acquired and phy_reg points to a valid memory 3319 * address to store contents of the BM_WUC_ENABLE_REG register. 3320 **/ 3321 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) 3322 { 3323 s32 ret_val; 3324 u16 temp; 3325 3326 DEBUGFUNC("e1000_enable_phy_wakeup_reg_access_bm"); 3327 3328 if (!phy_reg) 3329 return -E1000_ERR_PARAM; 3330 3331 /* All page select, port ctrl and wakeup registers use phy address 1 */ 3332 hw->phy.addr = 1; 3333 3334 /* Select Port Control Registers page */ 3335 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); 3336 if (ret_val) { 3337 DEBUGOUT("Could not set Port Control page\n"); 3338 return ret_val; 3339 } 3340 3341 ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); 3342 if (ret_val) { 3343 DEBUGOUT2("Could not read PHY register %d.%d\n", 3344 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); 3345 return ret_val; 3346 } 3347 3348 /* Enable both PHY wakeup mode and Wakeup register page writes. 3349 * Prevent a power state change by disabling ME and Host PHY wakeup. 3350 */ 3351 temp = *phy_reg; 3352 temp |= BM_WUC_ENABLE_BIT; 3353 temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT); 3354 3355 ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp); 3356 if (ret_val) { 3357 DEBUGOUT2("Could not write PHY register %d.%d\n", 3358 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); 3359 return ret_val; 3360 } 3361 3362 /* Select Host Wakeup Registers page - caller now able to write 3363 * registers on the Wakeup registers page 3364 */ 3365 return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT)); 3366 } 3367 3368 /** 3369 * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs 3370 * @hw: pointer to the HW structure 3371 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG 3372 * 3373 * Restore BM_WUC_ENABLE_REG to its original value. 3374 * 3375 * Assumes semaphore already acquired and *phy_reg is the contents of the 3376 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by 3377 * caller. 3378 **/ 3379 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) 3380 { 3381 s32 ret_val; 3382 3383 DEBUGFUNC("e1000_disable_phy_wakeup_reg_access_bm"); 3384 3385 if (!phy_reg) 3386 return -E1000_ERR_PARAM; 3387 3388 /* Select Port Control Registers page */ 3389 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); 3390 if (ret_val) { 3391 DEBUGOUT("Could not set Port Control page\n"); 3392 return ret_val; 3393 } 3394 3395 /* Restore 769.17 to its original value */ 3396 ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg); 3397 if (ret_val) 3398 DEBUGOUT2("Could not restore PHY register %d.%d\n", 3399 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); 3400 3401 return ret_val; 3402 } 3403 3404 /** 3405 * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register 3406 * @hw: pointer to the HW structure 3407 * @offset: register offset to be read or written 3408 * @data: pointer to the data to read or write 3409 * @read: determines if operation is read or write 3410 * @page_set: BM_WUC_PAGE already set and access enabled 3411 * 3412 * Read the PHY register at offset and store the retrieved information in 3413 * data, or write data to PHY register at offset. Note the procedure to 3414 * access the PHY wakeup registers is different than reading the other PHY 3415 * registers. It works as such: 3416 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1 3417 * 2) Set page to 800 for host (801 if we were manageability) 3418 * 3) Write the address using the address opcode (0x11) 3419 * 4) Read or write the data using the data opcode (0x12) 3420 * 5) Restore 769.17.2 to its original value 3421 * 3422 * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and 3423 * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm(). 3424 * 3425 * Assumes semaphore is already acquired. When page_set==TRUE, assumes 3426 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack 3427 * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()). 3428 **/ 3429 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, 3430 u16 *data, bool read, bool page_set) 3431 { 3432 s32 ret_val; 3433 u16 reg = BM_PHY_REG_NUM(offset); 3434 u16 page = BM_PHY_REG_PAGE(offset); 3435 u16 phy_reg = 0; 3436 3437 DEBUGFUNC("e1000_access_phy_wakeup_reg_bm"); 3438 3439 /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */ 3440 if ((hw->mac.type == e1000_pchlan) && 3441 (!(E1000_READ_REG(hw, E1000_PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE))) 3442 DEBUGOUT1("Attempting to access page %d while gig enabled.\n", 3443 page); 3444 3445 if (!page_set) { 3446 /* Enable access to PHY wakeup registers */ 3447 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); 3448 if (ret_val) { 3449 DEBUGOUT("Could not enable PHY wakeup reg access\n"); 3450 return ret_val; 3451 } 3452 } 3453 3454 DEBUGOUT2("Accessing PHY page %d reg 0x%x\n", page, reg); 3455 3456 /* Write the Wakeup register page offset value using opcode 0x11 */ 3457 ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg); 3458 if (ret_val) { 3459 DEBUGOUT1("Could not write address opcode to page %d\n", page); 3460 return ret_val; 3461 } 3462 3463 if (read) { 3464 /* Read the Wakeup register page value using opcode 0x12 */ 3465 ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, 3466 data); 3467 } else { 3468 /* Write the Wakeup register page value using opcode 0x12 */ 3469 ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, 3470 *data); 3471 } 3472 3473 if (ret_val) { 3474 DEBUGOUT2("Could not access PHY reg %d.%d\n", page, reg); 3475 return ret_val; 3476 } 3477 3478 if (!page_set) 3479 ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); 3480 3481 return ret_val; 3482 } 3483 3484 /** 3485 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down 3486 * @hw: pointer to the HW structure 3487 * 3488 * In the case of a PHY power down to save power, or to turn off link during a 3489 * driver unload, or wake on lan is not enabled, restore the link to previous 3490 * settings. 3491 **/ 3492 void e1000_power_up_phy_copper(struct e1000_hw *hw) 3493 { 3494 u16 mii_reg = 0; 3495 3496 /* The PHY will retain its settings across a power down/up cycle */ 3497 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); 3498 mii_reg &= ~MII_CR_POWER_DOWN; 3499 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); 3500 } 3501 3502 /** 3503 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down 3504 * @hw: pointer to the HW structure 3505 * 3506 * In the case of a PHY power down to save power, or to turn off link during a 3507 * driver unload, or wake on lan is not enabled, restore the link to previous 3508 * settings. 3509 **/ 3510 void e1000_power_down_phy_copper(struct e1000_hw *hw) 3511 { 3512 u16 mii_reg = 0; 3513 3514 /* The PHY will retain its settings across a power down/up cycle */ 3515 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); 3516 mii_reg |= MII_CR_POWER_DOWN; 3517 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); 3518 msec_delay(1); 3519 } 3520 3521 /** 3522 * __e1000_read_phy_reg_hv - Read HV PHY register 3523 * @hw: pointer to the HW structure 3524 * @offset: register offset to be read 3525 * @data: pointer to the read data 3526 * @locked: semaphore has already been acquired or not 3527 * 3528 * Acquires semaphore, if necessary, then reads the PHY register at offset 3529 * and stores the retrieved information in data. Release any acquired 3530 * semaphore before exiting. 3531 **/ 3532 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data, 3533 bool locked, bool page_set) 3534 { 3535 s32 ret_val; 3536 u16 page = BM_PHY_REG_PAGE(offset); 3537 u16 reg = BM_PHY_REG_NUM(offset); 3538 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); 3539 3540 DEBUGFUNC("__e1000_read_phy_reg_hv"); 3541 3542 if (!locked) { 3543 ret_val = hw->phy.ops.acquire(hw); 3544 if (ret_val) 3545 return ret_val; 3546 } 3547 /* Page 800 works differently than the rest so it has its own func */ 3548 if (page == BM_WUC_PAGE) { 3549 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, 3550 TRUE, page_set); 3551 goto out; 3552 } 3553 3554 if (page > 0 && page < HV_INTC_FC_PAGE_START) { 3555 ret_val = e1000_access_phy_debug_regs_hv(hw, offset, 3556 data, TRUE); 3557 goto out; 3558 } 3559 3560 if (!page_set) { 3561 if (page == HV_INTC_FC_PAGE_START) 3562 page = 0; 3563 3564 if (reg > MAX_PHY_MULTI_PAGE_REG) { 3565 /* Page is shifted left, PHY expects (page x 32) */ 3566 ret_val = e1000_set_page_igp(hw, 3567 (page << IGP_PAGE_SHIFT)); 3568 3569 hw->phy.addr = phy_addr; 3570 3571 if (ret_val) 3572 goto out; 3573 } 3574 } 3575 3576 DEBUGOUT3("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page, 3577 page << IGP_PAGE_SHIFT, reg); 3578 3579 ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, 3580 data); 3581 out: 3582 if (!locked) 3583 hw->phy.ops.release(hw); 3584 3585 return ret_val; 3586 } 3587 3588 /** 3589 * e1000_read_phy_reg_hv - Read HV PHY register 3590 * @hw: pointer to the HW structure 3591 * @offset: register offset to be read 3592 * @data: pointer to the read data 3593 * 3594 * Acquires semaphore then reads the PHY register at offset and stores 3595 * the retrieved information in data. Release the acquired semaphore 3596 * before exiting. 3597 **/ 3598 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data) 3599 { 3600 return __e1000_read_phy_reg_hv(hw, offset, data, FALSE, false); 3601 } 3602 3603 /** 3604 * e1000_read_phy_reg_hv_locked - Read HV PHY register 3605 * @hw: pointer to the HW structure 3606 * @offset: register offset to be read 3607 * @data: pointer to the read data 3608 * 3609 * Reads the PHY register at offset and stores the retrieved information 3610 * in data. Assumes semaphore already acquired. 3611 **/ 3612 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data) 3613 { 3614 return __e1000_read_phy_reg_hv(hw, offset, data, TRUE, FALSE); 3615 } 3616 3617 /** 3618 * e1000_read_phy_reg_page_hv - Read HV PHY register 3619 * @hw: pointer to the HW structure 3620 * @offset: register offset to write to 3621 * @data: data to write at register offset 3622 * 3623 * Reads the PHY register at offset and stores the retrieved information 3624 * in data. Assumes semaphore already acquired and page already set. 3625 **/ 3626 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data) 3627 { 3628 return __e1000_read_phy_reg_hv(hw, offset, data, TRUE, true); 3629 } 3630 3631 /** 3632 * __e1000_write_phy_reg_hv - Write HV PHY register 3633 * @hw: pointer to the HW structure 3634 * @offset: register offset to write to 3635 * @data: data to write at register offset 3636 * @locked: semaphore has already been acquired or not 3637 * 3638 * Acquires semaphore, if necessary, then writes the data to PHY register 3639 * at the offset. Release any acquired semaphores before exiting. 3640 **/ 3641 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data, 3642 bool locked, bool page_set) 3643 { 3644 s32 ret_val; 3645 u16 page = BM_PHY_REG_PAGE(offset); 3646 u16 reg = BM_PHY_REG_NUM(offset); 3647 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); 3648 3649 DEBUGFUNC("__e1000_write_phy_reg_hv"); 3650 3651 if (!locked) { 3652 ret_val = hw->phy.ops.acquire(hw); 3653 if (ret_val) 3654 return ret_val; 3655 } 3656 /* Page 800 works differently than the rest so it has its own func */ 3657 if (page == BM_WUC_PAGE) { 3658 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, 3659 FALSE, page_set); 3660 goto out; 3661 } 3662 3663 if (page > 0 && page < HV_INTC_FC_PAGE_START) { 3664 ret_val = e1000_access_phy_debug_regs_hv(hw, offset, 3665 &data, FALSE); 3666 goto out; 3667 } 3668 3669 if (!page_set) { 3670 if (page == HV_INTC_FC_PAGE_START) 3671 page = 0; 3672 3673 /* Workaround MDIO accesses being disabled after entering IEEE 3674 * Power Down (when bit 11 of the PHY Control register is set) 3675 */ 3676 if ((hw->phy.type == e1000_phy_82578) && 3677 (hw->phy.revision >= 1) && 3678 (hw->phy.addr == 2) && 3679 !(MAX_PHY_REG_ADDRESS & reg) && 3680 (data & (1 << 11))) { 3681 u16 data2 = 0x7EFF; 3682 ret_val = e1000_access_phy_debug_regs_hv(hw, 3683 (1 << 6) | 0x3, 3684 &data2, FALSE); 3685 if (ret_val) 3686 goto out; 3687 } 3688 3689 if (reg > MAX_PHY_MULTI_PAGE_REG) { 3690 /* Page is shifted left, PHY expects (page x 32) */ 3691 ret_val = e1000_set_page_igp(hw, 3692 (page << IGP_PAGE_SHIFT)); 3693 3694 hw->phy.addr = phy_addr; 3695 3696 if (ret_val) 3697 goto out; 3698 } 3699 } 3700 3701 DEBUGOUT3("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page, 3702 page << IGP_PAGE_SHIFT, reg); 3703 3704 ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, 3705 data); 3706 3707 out: 3708 if (!locked) 3709 hw->phy.ops.release(hw); 3710 3711 return ret_val; 3712 } 3713 3714 /** 3715 * e1000_write_phy_reg_hv - Write HV PHY register 3716 * @hw: pointer to the HW structure 3717 * @offset: register offset to write to 3718 * @data: data to write at register offset 3719 * 3720 * Acquires semaphore then writes the data to PHY register at the offset. 3721 * Release the acquired semaphores before exiting. 3722 **/ 3723 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data) 3724 { 3725 return __e1000_write_phy_reg_hv(hw, offset, data, FALSE, false); 3726 } 3727 3728 /** 3729 * e1000_write_phy_reg_hv_locked - Write HV PHY register 3730 * @hw: pointer to the HW structure 3731 * @offset: register offset to write to 3732 * @data: data to write at register offset 3733 * 3734 * Writes the data to PHY register at the offset. Assumes semaphore 3735 * already acquired. 3736 **/ 3737 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data) 3738 { 3739 return __e1000_write_phy_reg_hv(hw, offset, data, TRUE, FALSE); 3740 } 3741 3742 /** 3743 * e1000_write_phy_reg_page_hv - Write HV PHY register 3744 * @hw: pointer to the HW structure 3745 * @offset: register offset to write to 3746 * @data: data to write at register offset 3747 * 3748 * Writes the data to PHY register at the offset. Assumes semaphore 3749 * already acquired and page already set. 3750 **/ 3751 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data) 3752 { 3753 return __e1000_write_phy_reg_hv(hw, offset, data, TRUE, true); 3754 } 3755 3756 /** 3757 * e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page 3758 * @page: page to be accessed 3759 **/ 3760 static u32 e1000_get_phy_addr_for_hv_page(u32 page) 3761 { 3762 u32 phy_addr = 2; 3763 3764 if (page >= HV_INTC_FC_PAGE_START) 3765 phy_addr = 1; 3766 3767 return phy_addr; 3768 } 3769 3770 /** 3771 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers 3772 * @hw: pointer to the HW structure 3773 * @offset: register offset to be read or written 3774 * @data: pointer to the data to be read or written 3775 * @read: determines if operation is read or write 3776 * 3777 * Reads the PHY register at offset and stores the retreived information 3778 * in data. Assumes semaphore already acquired. Note that the procedure 3779 * to access these regs uses the address port and data port to read/write. 3780 * These accesses done with PHY address 2 and without using pages. 3781 **/ 3782 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, 3783 u16 *data, bool read) 3784 { 3785 s32 ret_val; 3786 u32 addr_reg; 3787 u32 data_reg; 3788 3789 DEBUGFUNC("e1000_access_phy_debug_regs_hv"); 3790 3791 /* This takes care of the difference with desktop vs mobile phy */ 3792 addr_reg = ((hw->phy.type == e1000_phy_82578) ? 3793 I82578_ADDR_REG : I82577_ADDR_REG); 3794 data_reg = addr_reg + 1; 3795 3796 /* All operations in this function are phy address 2 */ 3797 hw->phy.addr = 2; 3798 3799 /* masking with 0x3F to remove the page from offset */ 3800 ret_val = e1000_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F); 3801 if (ret_val) { 3802 DEBUGOUT("Could not write the Address Offset port register\n"); 3803 return ret_val; 3804 } 3805 3806 /* Read or write the data value next */ 3807 if (read) 3808 ret_val = e1000_read_phy_reg_mdic(hw, data_reg, data); 3809 else 3810 ret_val = e1000_write_phy_reg_mdic(hw, data_reg, *data); 3811 3812 if (ret_val) 3813 DEBUGOUT("Could not access the Data port register\n"); 3814 3815 return ret_val; 3816 } 3817 3818 /** 3819 * e1000_link_stall_workaround_hv - Si workaround 3820 * @hw: pointer to the HW structure 3821 * 3822 * This function works around a Si bug where the link partner can get 3823 * a link up indication before the PHY does. If small packets are sent 3824 * by the link partner they can be placed in the packet buffer without 3825 * being properly accounted for by the PHY and will stall preventing 3826 * further packets from being received. The workaround is to clear the 3827 * packet buffer after the PHY detects link up. 3828 **/ 3829 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw) 3830 { 3831 s32 ret_val = E1000_SUCCESS; 3832 u16 data; 3833 3834 DEBUGFUNC("e1000_link_stall_workaround_hv"); 3835 3836 if (hw->phy.type != e1000_phy_82578) 3837 return E1000_SUCCESS; 3838 3839 /* Do not apply workaround if in PHY loopback bit 14 set */ 3840 hw->phy.ops.read_reg(hw, PHY_CONTROL, &data); 3841 if (data & PHY_CONTROL_LB) 3842 return E1000_SUCCESS; 3843 3844 /* check if link is up and at 1Gbps */ 3845 ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data); 3846 if (ret_val) 3847 return ret_val; 3848 3849 data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | 3850 BM_CS_STATUS_SPEED_MASK); 3851 3852 if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | 3853 BM_CS_STATUS_SPEED_1000)) 3854 return E1000_SUCCESS; 3855 3856 msec_delay(200); 3857 3858 /* flush the packets in the fifo buffer */ 3859 ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL, 3860 (HV_MUX_DATA_CTRL_GEN_TO_MAC | 3861 HV_MUX_DATA_CTRL_FORCE_SPEED)); 3862 if (ret_val) 3863 return ret_val; 3864 3865 return hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL, 3866 HV_MUX_DATA_CTRL_GEN_TO_MAC); 3867 } 3868 3869 /** 3870 * e1000_check_polarity_82577 - Checks the polarity. 3871 * @hw: pointer to the HW structure 3872 * 3873 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 3874 * 3875 * Polarity is determined based on the PHY specific status register. 3876 **/ 3877 s32 e1000_check_polarity_82577(struct e1000_hw *hw) 3878 { 3879 struct e1000_phy_info *phy = &hw->phy; 3880 s32 ret_val; 3881 u16 data; 3882 3883 DEBUGFUNC("e1000_check_polarity_82577"); 3884 3885 ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data); 3886 3887 if (!ret_val) 3888 phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY) 3889 ? e1000_rev_polarity_reversed 3890 : e1000_rev_polarity_normal); 3891 3892 return ret_val; 3893 } 3894 3895 /** 3896 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY 3897 * @hw: pointer to the HW structure 3898 * 3899 * Calls the PHY setup function to force speed and duplex. 3900 **/ 3901 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw) 3902 { 3903 struct e1000_phy_info *phy = &hw->phy; 3904 s32 ret_val; 3905 u16 phy_data; 3906 bool link; 3907 3908 DEBUGFUNC("e1000_phy_force_speed_duplex_82577"); 3909 3910 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); 3911 if (ret_val) 3912 return ret_val; 3913 3914 e1000_phy_force_speed_duplex_setup(hw, &phy_data); 3915 3916 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); 3917 if (ret_val) 3918 return ret_val; 3919 3920 usec_delay(1); 3921 3922 if (phy->autoneg_wait_to_complete) { 3923 DEBUGOUT("Waiting for forced speed/duplex link on 82577 phy\n"); 3924 3925 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 3926 100000, &link); 3927 if (ret_val) 3928 return ret_val; 3929 3930 if (!link) 3931 DEBUGOUT("Link taking longer than expected.\n"); 3932 3933 /* Try once more */ 3934 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 3935 100000, &link); 3936 } 3937 3938 return ret_val; 3939 } 3940 3941 /** 3942 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information 3943 * @hw: pointer to the HW structure 3944 * 3945 * Read PHY status to determine if link is up. If link is up, then 3946 * set/determine 10base-T extended distance and polarity correction. Read 3947 * PHY port status to determine MDI/MDIx and speed. Based on the speed, 3948 * determine on the cable length, local and remote receiver. 3949 **/ 3950 s32 e1000_get_phy_info_82577(struct e1000_hw *hw) 3951 { 3952 struct e1000_phy_info *phy = &hw->phy; 3953 s32 ret_val; 3954 u16 data; 3955 bool link; 3956 3957 DEBUGFUNC("e1000_get_phy_info_82577"); 3958 3959 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); 3960 if (ret_val) 3961 return ret_val; 3962 3963 if (!link) { 3964 DEBUGOUT("Phy info is only valid if link is up\n"); 3965 return -E1000_ERR_CONFIG; 3966 } 3967 3968 phy->polarity_correction = TRUE; 3969 3970 ret_val = e1000_check_polarity_82577(hw); 3971 if (ret_val) 3972 return ret_val; 3973 3974 ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data); 3975 if (ret_val) 3976 return ret_val; 3977 3978 phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX); 3979 3980 if ((data & I82577_PHY_STATUS2_SPEED_MASK) == 3981 I82577_PHY_STATUS2_SPEED_1000MBPS) { 3982 ret_val = hw->phy.ops.get_cable_length(hw); 3983 if (ret_val) 3984 return ret_val; 3985 3986 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); 3987 if (ret_val) 3988 return ret_val; 3989 3990 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) 3991 ? e1000_1000t_rx_status_ok 3992 : e1000_1000t_rx_status_not_ok; 3993 3994 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) 3995 ? e1000_1000t_rx_status_ok 3996 : e1000_1000t_rx_status_not_ok; 3997 } else { 3998 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 3999 phy->local_rx = e1000_1000t_rx_status_undefined; 4000 phy->remote_rx = e1000_1000t_rx_status_undefined; 4001 } 4002 4003 return E1000_SUCCESS; 4004 } 4005 4006 /** 4007 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY 4008 * @hw: pointer to the HW structure 4009 * 4010 * Reads the diagnostic status register and verifies result is valid before 4011 * placing it in the phy_cable_length field. 4012 **/ 4013 s32 e1000_get_cable_length_82577(struct e1000_hw *hw) 4014 { 4015 struct e1000_phy_info *phy = &hw->phy; 4016 s32 ret_val; 4017 u16 phy_data, length; 4018 4019 DEBUGFUNC("e1000_get_cable_length_82577"); 4020 4021 ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data); 4022 if (ret_val) 4023 return ret_val; 4024 4025 length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >> 4026 I82577_DSTATUS_CABLE_LENGTH_SHIFT); 4027 4028 if (length == E1000_CABLE_LENGTH_UNDEFINED) 4029 return -E1000_ERR_PHY; 4030 4031 phy->cable_length = length; 4032 4033 return E1000_SUCCESS; 4034 } 4035 4036 /** 4037 * e1000_write_phy_reg_gs40g - Write GS40G PHY register 4038 * @hw: pointer to the HW structure 4039 * @offset: register offset to write to 4040 * @data: data to write at register offset 4041 * 4042 * Acquires semaphore, if necessary, then writes the data to PHY register 4043 * at the offset. Release any acquired semaphores before exiting. 4044 **/ 4045 s32 e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data) 4046 { 4047 s32 ret_val; 4048 u16 page = offset >> GS40G_PAGE_SHIFT; 4049 4050 DEBUGFUNC("e1000_write_phy_reg_gs40g"); 4051 4052 offset = offset & GS40G_OFFSET_MASK; 4053 ret_val = hw->phy.ops.acquire(hw); 4054 if (ret_val) 4055 return ret_val; 4056 4057 ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page); 4058 if (ret_val) 4059 goto release; 4060 ret_val = e1000_write_phy_reg_mdic(hw, offset, data); 4061 4062 release: 4063 hw->phy.ops.release(hw); 4064 return ret_val; 4065 } 4066 4067 /** 4068 * e1000_read_phy_reg_gs40g - Read GS40G PHY register 4069 * @hw: pointer to the HW structure 4070 * @offset: lower half is register offset to read to 4071 * upper half is page to use. 4072 * @data: data to read at register offset 4073 * 4074 * Acquires semaphore, if necessary, then reads the data in the PHY register 4075 * at the offset. Release any acquired semaphores before exiting. 4076 **/ 4077 s32 e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data) 4078 { 4079 s32 ret_val; 4080 u16 page = offset >> GS40G_PAGE_SHIFT; 4081 4082 DEBUGFUNC("e1000_read_phy_reg_gs40g"); 4083 4084 offset = offset & GS40G_OFFSET_MASK; 4085 ret_val = hw->phy.ops.acquire(hw); 4086 if (ret_val) 4087 return ret_val; 4088 4089 ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page); 4090 if (ret_val) 4091 goto release; 4092 ret_val = e1000_read_phy_reg_mdic(hw, offset, data); 4093 4094 release: 4095 hw->phy.ops.release(hw); 4096 return ret_val; 4097 } 4098 4099 /** 4100 * e1000_read_phy_reg_mphy - Read mPHY control register 4101 * @hw: pointer to the HW structure 4102 * @address: address to be read 4103 * @data: pointer to the read data 4104 * 4105 * Reads the mPHY control register in the PHY at offset and stores the 4106 * information read to data. 4107 **/ 4108 s32 e1000_read_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 *data) 4109 { 4110 u32 mphy_ctrl = 0; 4111 bool locked = FALSE; 4112 bool ready; 4113 4114 DEBUGFUNC("e1000_read_phy_reg_mphy"); 4115 4116 /* Check if mPHY is ready to read/write operations */ 4117 ready = e1000_is_mphy_ready(hw); 4118 if (!ready) 4119 return -E1000_ERR_PHY; 4120 4121 /* Check if mPHY access is disabled and enable it if so */ 4122 mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL); 4123 if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) { 4124 locked = TRUE; 4125 ready = e1000_is_mphy_ready(hw); 4126 if (!ready) 4127 return -E1000_ERR_PHY; 4128 mphy_ctrl |= E1000_MPHY_ENA_ACCESS; 4129 E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl); 4130 } 4131 4132 /* Set the address that we want to read */ 4133 ready = e1000_is_mphy_ready(hw); 4134 if (!ready) 4135 return -E1000_ERR_PHY; 4136 4137 /* We mask address, because we want to use only current lane */ 4138 mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK & 4139 ~E1000_MPHY_ADDRESS_FNC_OVERRIDE) | 4140 (address & E1000_MPHY_ADDRESS_MASK); 4141 E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl); 4142 4143 /* Read data from the address */ 4144 ready = e1000_is_mphy_ready(hw); 4145 if (!ready) 4146 return -E1000_ERR_PHY; 4147 *data = E1000_READ_REG(hw, E1000_MPHY_DATA); 4148 4149 /* Disable access to mPHY if it was originally disabled */ 4150 if (locked) 4151 ready = e1000_is_mphy_ready(hw); 4152 if (!ready) 4153 return -E1000_ERR_PHY; 4154 E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, 4155 E1000_MPHY_DIS_ACCESS); 4156 4157 return E1000_SUCCESS; 4158 } 4159 4160 /** 4161 * e1000_write_phy_reg_mphy - Write mPHY control register 4162 * @hw: pointer to the HW structure 4163 * @address: address to write to 4164 * @data: data to write to register at offset 4165 * @line_override: used when we want to use different line than default one 4166 * 4167 * Writes data to mPHY control register. 4168 **/ 4169 s32 e1000_write_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 data, 4170 bool line_override) 4171 { 4172 u32 mphy_ctrl = 0; 4173 bool locked = FALSE; 4174 bool ready; 4175 4176 DEBUGFUNC("e1000_write_phy_reg_mphy"); 4177 4178 /* Check if mPHY is ready to read/write operations */ 4179 ready = e1000_is_mphy_ready(hw); 4180 if (!ready) 4181 return -E1000_ERR_PHY; 4182 4183 /* Check if mPHY access is disabled and enable it if so */ 4184 mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL); 4185 if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) { 4186 locked = TRUE; 4187 ready = e1000_is_mphy_ready(hw); 4188 if (!ready) 4189 return -E1000_ERR_PHY; 4190 mphy_ctrl |= E1000_MPHY_ENA_ACCESS; 4191 E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl); 4192 } 4193 4194 /* Set the address that we want to read */ 4195 ready = e1000_is_mphy_ready(hw); 4196 if (!ready) 4197 return -E1000_ERR_PHY; 4198 4199 /* We mask address, because we want to use only current lane */ 4200 if (line_override) 4201 mphy_ctrl |= E1000_MPHY_ADDRESS_FNC_OVERRIDE; 4202 else 4203 mphy_ctrl &= ~E1000_MPHY_ADDRESS_FNC_OVERRIDE; 4204 mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK) | 4205 (address & E1000_MPHY_ADDRESS_MASK); 4206 E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl); 4207 4208 /* Read data from the address */ 4209 ready = e1000_is_mphy_ready(hw); 4210 if (!ready) 4211 return -E1000_ERR_PHY; 4212 E1000_WRITE_REG(hw, E1000_MPHY_DATA, data); 4213 4214 /* Disable access to mPHY if it was originally disabled */ 4215 if (locked) 4216 ready = e1000_is_mphy_ready(hw); 4217 if (!ready) 4218 return -E1000_ERR_PHY; 4219 E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, 4220 E1000_MPHY_DIS_ACCESS); 4221 4222 return E1000_SUCCESS; 4223 } 4224 4225 /** 4226 * e1000_is_mphy_ready - Check if mPHY control register is not busy 4227 * @hw: pointer to the HW structure 4228 * 4229 * Returns mPHY control register status. 4230 **/ 4231 bool e1000_is_mphy_ready(struct e1000_hw *hw) 4232 { 4233 u16 retry_count = 0; 4234 u32 mphy_ctrl = 0; 4235 bool ready = FALSE; 4236 4237 while (retry_count < 2) { 4238 mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL); 4239 if (mphy_ctrl & E1000_MPHY_BUSY) { 4240 usec_delay(20); 4241 retry_count++; 4242 continue; 4243 } 4244 ready = TRUE; 4245 break; 4246 } 4247 4248 if (!ready) 4249 DEBUGOUT("ERROR READING mPHY control register, phy is busy.\n"); 4250 4251 return ready; 4252 } 4253