xref: /freebsd/sys/dev/e1000/e1000_ich8lan.c (revision f4b37ed0f8b307b1f3f0f630ca725d68f1dff30d)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2014, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 /* 82562G 10/100 Network Connection
36  * 82562G-2 10/100 Network Connection
37  * 82562GT 10/100 Network Connection
38  * 82562GT-2 10/100 Network Connection
39  * 82562V 10/100 Network Connection
40  * 82562V-2 10/100 Network Connection
41  * 82566DC-2 Gigabit Network Connection
42  * 82566DC Gigabit Network Connection
43  * 82566DM-2 Gigabit Network Connection
44  * 82566DM Gigabit Network Connection
45  * 82566MC Gigabit Network Connection
46  * 82566MM Gigabit Network Connection
47  * 82567LM Gigabit Network Connection
48  * 82567LF Gigabit Network Connection
49  * 82567V Gigabit Network Connection
50  * 82567LM-2 Gigabit Network Connection
51  * 82567LF-2 Gigabit Network Connection
52  * 82567V-2 Gigabit Network Connection
53  * 82567LF-3 Gigabit Network Connection
54  * 82567LM-3 Gigabit Network Connection
55  * 82567LM-4 Gigabit Network Connection
56  * 82577LM Gigabit Network Connection
57  * 82577LC Gigabit Network Connection
58  * 82578DM Gigabit Network Connection
59  * 82578DC Gigabit Network Connection
60  * 82579LM Gigabit Network Connection
61  * 82579V Gigabit Network Connection
62  * Ethernet Connection I217-LM
63  * Ethernet Connection I217-V
64  * Ethernet Connection I218-V
65  * Ethernet Connection I218-LM
66  * Ethernet Connection (2) I218-LM
67  * Ethernet Connection (2) I218-V
68  * Ethernet Connection (3) I218-LM
69  * Ethernet Connection (3) I218-V
70  */
71 
72 #include "e1000_api.h"
73 
74 static s32  e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
75 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
76 static s32  e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
77 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
78 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
79 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
80 static int  e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
81 static int  e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
82 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
83 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
84 					      u8 *mc_addr_list,
85 					      u32 mc_addr_count);
86 static s32  e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
87 static s32  e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
88 static s32  e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
89 static s32  e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
90 					    bool active);
91 static s32  e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
92 					    bool active);
93 static s32  e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
94 				   u16 words, u16 *data);
95 static s32  e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
96 				    u16 words, u16 *data);
97 static s32  e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
98 static s32  e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
99 static s32  e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
100 					    u16 *data);
101 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
102 static s32  e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
103 static s32  e1000_reset_hw_ich8lan(struct e1000_hw *hw);
104 static s32  e1000_init_hw_ich8lan(struct e1000_hw *hw);
105 static s32  e1000_setup_link_ich8lan(struct e1000_hw *hw);
106 static s32  e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
107 static s32  e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
108 static s32  e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
109 					   u16 *speed, u16 *duplex);
110 static s32  e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
111 static s32  e1000_led_on_ich8lan(struct e1000_hw *hw);
112 static s32  e1000_led_off_ich8lan(struct e1000_hw *hw);
113 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
114 static s32  e1000_setup_led_pchlan(struct e1000_hw *hw);
115 static s32  e1000_cleanup_led_pchlan(struct e1000_hw *hw);
116 static s32  e1000_led_on_pchlan(struct e1000_hw *hw);
117 static s32  e1000_led_off_pchlan(struct e1000_hw *hw);
118 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
119 static s32  e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
120 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
121 static s32  e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
122 static s32  e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
123 					  u32 offset, u8 *data);
124 static s32  e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 					  u8 size, u16 *data);
126 static s32  e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
127 					  u32 offset, u16 *data);
128 static s32  e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
129 						 u32 offset, u8 byte);
130 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
131 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
132 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
133 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
134 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
135 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
136 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr);
137 
138 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
139 /* Offset 04h HSFSTS */
140 union ich8_hws_flash_status {
141 	struct ich8_hsfsts {
142 		u16 flcdone:1; /* bit 0 Flash Cycle Done */
143 		u16 flcerr:1; /* bit 1 Flash Cycle Error */
144 		u16 dael:1; /* bit 2 Direct Access error Log */
145 		u16 berasesz:2; /* bit 4:3 Sector Erase Size */
146 		u16 flcinprog:1; /* bit 5 flash cycle in Progress */
147 		u16 reserved1:2; /* bit 13:6 Reserved */
148 		u16 reserved2:6; /* bit 13:6 Reserved */
149 		u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
150 		u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
151 	} hsf_status;
152 	u16 regval;
153 };
154 
155 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
156 /* Offset 06h FLCTL */
157 union ich8_hws_flash_ctrl {
158 	struct ich8_hsflctl {
159 		u16 flcgo:1;   /* 0 Flash Cycle Go */
160 		u16 flcycle:2;   /* 2:1 Flash Cycle */
161 		u16 reserved:5;   /* 7:3 Reserved  */
162 		u16 fldbcount:2;   /* 9:8 Flash Data Byte Count */
163 		u16 flockdn:6;   /* 15:10 Reserved */
164 	} hsf_ctrl;
165 	u16 regval;
166 };
167 
168 /* ICH Flash Region Access Permissions */
169 union ich8_hws_flash_regacc {
170 	struct ich8_flracc {
171 		u32 grra:8; /* 0:7 GbE region Read Access */
172 		u32 grwa:8; /* 8:15 GbE region Write Access */
173 		u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
174 		u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
175 	} hsf_flregacc;
176 	u16 regval;
177 };
178 
179 /**
180  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
181  *  @hw: pointer to the HW structure
182  *
183  *  Test access to the PHY registers by reading the PHY ID registers.  If
184  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
185  *  otherwise assume the read PHY ID is correct if it is valid.
186  *
187  *  Assumes the sw/fw/hw semaphore is already acquired.
188  **/
189 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
190 {
191 	u16 phy_reg = 0;
192 	u32 phy_id = 0;
193 	s32 ret_val = 0;
194 	u16 retry_count;
195 	u32 mac_reg = 0;
196 
197 	for (retry_count = 0; retry_count < 2; retry_count++) {
198 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
199 		if (ret_val || (phy_reg == 0xFFFF))
200 			continue;
201 		phy_id = (u32)(phy_reg << 16);
202 
203 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
204 		if (ret_val || (phy_reg == 0xFFFF)) {
205 			phy_id = 0;
206 			continue;
207 		}
208 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
209 		break;
210 	}
211 
212 	if (hw->phy.id) {
213 		if  (hw->phy.id == phy_id)
214 			goto out;
215 	} else if (phy_id) {
216 		hw->phy.id = phy_id;
217 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
218 		goto out;
219 	}
220 
221 	/* In case the PHY needs to be in mdio slow mode,
222 	 * set slow mode and try to get the PHY id again.
223 	 */
224 	if (hw->mac.type < e1000_pch_lpt) {
225 		hw->phy.ops.release(hw);
226 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
227 		if (!ret_val)
228 			ret_val = e1000_get_phy_id(hw);
229 		hw->phy.ops.acquire(hw);
230 	}
231 
232 	if (ret_val)
233 		return FALSE;
234 out:
235 	if (hw->mac.type == e1000_pch_lpt) {
236 		/* Unforce SMBus mode in PHY */
237 		hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
238 		phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
239 		hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
240 
241 		/* Unforce SMBus mode in MAC */
242 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
243 		mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
244 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
245 	}
246 
247 	return TRUE;
248 }
249 
250 /**
251  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
252  *  @hw: pointer to the HW structure
253  *
254  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
255  *  used to reset the PHY to a quiescent state when necessary.
256  **/
257 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
258 {
259 	u32 mac_reg;
260 
261 	DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
262 
263 	/* Set Phy Config Counter to 50msec */
264 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
265 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
266 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
267 	E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
268 
269 	/* Toggle LANPHYPC Value bit */
270 	mac_reg = E1000_READ_REG(hw, E1000_CTRL);
271 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
272 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
273 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
274 	E1000_WRITE_FLUSH(hw);
275 	usec_delay(10);
276 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
277 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
278 	E1000_WRITE_FLUSH(hw);
279 
280 	if (hw->mac.type < e1000_pch_lpt) {
281 		msec_delay(50);
282 	} else {
283 		u16 count = 20;
284 
285 		do {
286 			msec_delay(5);
287 		} while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
288 			   E1000_CTRL_EXT_LPCD) && count--);
289 
290 		msec_delay(30);
291 	}
292 }
293 
294 /**
295  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
296  *  @hw: pointer to the HW structure
297  *
298  *  Workarounds/flow necessary for PHY initialization during driver load
299  *  and resume paths.
300  **/
301 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
302 {
303 	u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
304 	s32 ret_val;
305 
306 	DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
307 
308 	/* Gate automatic PHY configuration by hardware on managed and
309 	 * non-managed 82579 and newer adapters.
310 	 */
311 	e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
312 
313 	/* It is not possible to be certain of the current state of ULP
314 	 * so forcibly disable it.
315 	 */
316 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
317 	e1000_disable_ulp_lpt_lp(hw, TRUE);
318 
319 	ret_val = hw->phy.ops.acquire(hw);
320 	if (ret_val) {
321 		DEBUGOUT("Failed to initialize PHY flow\n");
322 		goto out;
323 	}
324 
325 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
326 	 * inaccessible and resetting the PHY is not blocked, toggle the
327 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
328 	 */
329 	switch (hw->mac.type) {
330 	case e1000_pch_lpt:
331 		if (e1000_phy_is_accessible_pchlan(hw))
332 			break;
333 
334 		/* Before toggling LANPHYPC, see if PHY is accessible by
335 		 * forcing MAC to SMBus mode first.
336 		 */
337 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
338 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
339 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
340 
341 		/* Wait 50 milliseconds for MAC to finish any retries
342 		 * that it might be trying to perform from previous
343 		 * attempts to acknowledge any phy read requests.
344 		 */
345 		 msec_delay(50);
346 
347 		/* fall-through */
348 	case e1000_pch2lan:
349 		if (e1000_phy_is_accessible_pchlan(hw))
350 			break;
351 
352 		/* fall-through */
353 	case e1000_pchlan:
354 		if ((hw->mac.type == e1000_pchlan) &&
355 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
356 			break;
357 
358 		if (hw->phy.ops.check_reset_block(hw)) {
359 			DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
360 			ret_val = -E1000_ERR_PHY;
361 			break;
362 		}
363 
364 		/* Toggle LANPHYPC Value bit */
365 		e1000_toggle_lanphypc_pch_lpt(hw);
366 		if (hw->mac.type >= e1000_pch_lpt) {
367 			if (e1000_phy_is_accessible_pchlan(hw))
368 				break;
369 
370 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
371 			 * so ensure that the MAC is also out of SMBus mode
372 			 */
373 			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
374 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
375 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
376 
377 			if (e1000_phy_is_accessible_pchlan(hw))
378 				break;
379 
380 			ret_val = -E1000_ERR_PHY;
381 		}
382 		break;
383 	default:
384 		break;
385 	}
386 
387 	hw->phy.ops.release(hw);
388 	if (!ret_val) {
389 
390 		/* Check to see if able to reset PHY.  Print error if not */
391 		if (hw->phy.ops.check_reset_block(hw)) {
392 			ERROR_REPORT("Reset blocked by ME\n");
393 			goto out;
394 		}
395 
396 		/* Reset the PHY before any access to it.  Doing so, ensures
397 		 * that the PHY is in a known good state before we read/write
398 		 * PHY registers.  The generic reset is sufficient here,
399 		 * because we haven't determined the PHY type yet.
400 		 */
401 		ret_val = e1000_phy_hw_reset_generic(hw);
402 		if (ret_val)
403 			goto out;
404 
405 		/* On a successful reset, possibly need to wait for the PHY
406 		 * to quiesce to an accessible state before returning control
407 		 * to the calling function.  If the PHY does not quiesce, then
408 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
409 		 *  the PHY is in.
410 		 */
411 		ret_val = hw->phy.ops.check_reset_block(hw);
412 		if (ret_val)
413 			ERROR_REPORT("ME blocked access to PHY after reset\n");
414 	}
415 
416 out:
417 	/* Ungate automatic PHY configuration on non-managed 82579 */
418 	if ((hw->mac.type == e1000_pch2lan) &&
419 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
420 		msec_delay(10);
421 		e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
422 	}
423 
424 	return ret_val;
425 }
426 
427 /**
428  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
429  *  @hw: pointer to the HW structure
430  *
431  *  Initialize family-specific PHY parameters and function pointers.
432  **/
433 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
434 {
435 	struct e1000_phy_info *phy = &hw->phy;
436 	s32 ret_val;
437 
438 	DEBUGFUNC("e1000_init_phy_params_pchlan");
439 
440 	phy->addr		= 1;
441 	phy->reset_delay_us	= 100;
442 
443 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
444 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
445 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
446 	phy->ops.set_page	= e1000_set_page_igp;
447 	phy->ops.read_reg	= e1000_read_phy_reg_hv;
448 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
449 	phy->ops.read_reg_page	= e1000_read_phy_reg_page_hv;
450 	phy->ops.release	= e1000_release_swflag_ich8lan;
451 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
452 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
453 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
454 	phy->ops.write_reg	= e1000_write_phy_reg_hv;
455 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
456 	phy->ops.write_reg_page	= e1000_write_phy_reg_page_hv;
457 	phy->ops.power_up	= e1000_power_up_phy_copper;
458 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
459 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
460 
461 	phy->id = e1000_phy_unknown;
462 
463 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
464 	if (ret_val)
465 		return ret_val;
466 
467 	if (phy->id == e1000_phy_unknown)
468 		switch (hw->mac.type) {
469 		default:
470 			ret_val = e1000_get_phy_id(hw);
471 			if (ret_val)
472 				return ret_val;
473 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
474 				break;
475 			/* fall-through */
476 		case e1000_pch2lan:
477 		case e1000_pch_lpt:
478 			/* In case the PHY needs to be in mdio slow mode,
479 			 * set slow mode and try to get the PHY id again.
480 			 */
481 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
482 			if (ret_val)
483 				return ret_val;
484 			ret_val = e1000_get_phy_id(hw);
485 			if (ret_val)
486 				return ret_val;
487 			break;
488 		}
489 	phy->type = e1000_get_phy_type_from_id(phy->id);
490 
491 	switch (phy->type) {
492 	case e1000_phy_82577:
493 	case e1000_phy_82579:
494 	case e1000_phy_i217:
495 		phy->ops.check_polarity = e1000_check_polarity_82577;
496 		phy->ops.force_speed_duplex =
497 			e1000_phy_force_speed_duplex_82577;
498 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
499 		phy->ops.get_info = e1000_get_phy_info_82577;
500 		phy->ops.commit = e1000_phy_sw_reset_generic;
501 		break;
502 	case e1000_phy_82578:
503 		phy->ops.check_polarity = e1000_check_polarity_m88;
504 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
505 		phy->ops.get_cable_length = e1000_get_cable_length_m88;
506 		phy->ops.get_info = e1000_get_phy_info_m88;
507 		break;
508 	default:
509 		ret_val = -E1000_ERR_PHY;
510 		break;
511 	}
512 
513 	return ret_val;
514 }
515 
516 /**
517  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
518  *  @hw: pointer to the HW structure
519  *
520  *  Initialize family-specific PHY parameters and function pointers.
521  **/
522 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
523 {
524 	struct e1000_phy_info *phy = &hw->phy;
525 	s32 ret_val;
526 	u16 i = 0;
527 
528 	DEBUGFUNC("e1000_init_phy_params_ich8lan");
529 
530 	phy->addr		= 1;
531 	phy->reset_delay_us	= 100;
532 
533 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
534 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
535 	phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
536 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
537 	phy->ops.read_reg	= e1000_read_phy_reg_igp;
538 	phy->ops.release	= e1000_release_swflag_ich8lan;
539 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
540 	phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
541 	phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
542 	phy->ops.write_reg	= e1000_write_phy_reg_igp;
543 	phy->ops.power_up	= e1000_power_up_phy_copper;
544 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
545 
546 	/* We may need to do this twice - once for IGP and if that fails,
547 	 * we'll set BM func pointers and try again
548 	 */
549 	ret_val = e1000_determine_phy_address(hw);
550 	if (ret_val) {
551 		phy->ops.write_reg = e1000_write_phy_reg_bm;
552 		phy->ops.read_reg  = e1000_read_phy_reg_bm;
553 		ret_val = e1000_determine_phy_address(hw);
554 		if (ret_val) {
555 			DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
556 			return ret_val;
557 		}
558 	}
559 
560 	phy->id = 0;
561 	while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
562 	       (i++ < 100)) {
563 		msec_delay(1);
564 		ret_val = e1000_get_phy_id(hw);
565 		if (ret_val)
566 			return ret_val;
567 	}
568 
569 	/* Verify phy id */
570 	switch (phy->id) {
571 	case IGP03E1000_E_PHY_ID:
572 		phy->type = e1000_phy_igp_3;
573 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
574 		phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
575 		phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
576 		phy->ops.get_info = e1000_get_phy_info_igp;
577 		phy->ops.check_polarity = e1000_check_polarity_igp;
578 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
579 		break;
580 	case IFE_E_PHY_ID:
581 	case IFE_PLUS_E_PHY_ID:
582 	case IFE_C_E_PHY_ID:
583 		phy->type = e1000_phy_ife;
584 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
585 		phy->ops.get_info = e1000_get_phy_info_ife;
586 		phy->ops.check_polarity = e1000_check_polarity_ife;
587 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
588 		break;
589 	case BME1000_E_PHY_ID:
590 		phy->type = e1000_phy_bm;
591 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
592 		phy->ops.read_reg = e1000_read_phy_reg_bm;
593 		phy->ops.write_reg = e1000_write_phy_reg_bm;
594 		phy->ops.commit = e1000_phy_sw_reset_generic;
595 		phy->ops.get_info = e1000_get_phy_info_m88;
596 		phy->ops.check_polarity = e1000_check_polarity_m88;
597 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
598 		break;
599 	default:
600 		return -E1000_ERR_PHY;
601 		break;
602 	}
603 
604 	return E1000_SUCCESS;
605 }
606 
607 /**
608  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
609  *  @hw: pointer to the HW structure
610  *
611  *  Initialize family-specific NVM parameters and function
612  *  pointers.
613  **/
614 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
615 {
616 	struct e1000_nvm_info *nvm = &hw->nvm;
617 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
618 	u32 gfpreg, sector_base_addr, sector_end_addr;
619 	u16 i;
620 
621 	DEBUGFUNC("e1000_init_nvm_params_ich8lan");
622 
623 	/* Can't read flash registers if the register set isn't mapped. */
624 	nvm->type = e1000_nvm_flash_sw;
625 	if (!hw->flash_address) {
626 		DEBUGOUT("ERROR: Flash registers not mapped\n");
627 		return -E1000_ERR_CONFIG;
628 	}
629 
630 	gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
631 
632 	/* sector_X_addr is a "sector"-aligned address (4096 bytes)
633 	 * Add 1 to sector_end_addr since this sector is included in
634 	 * the overall size.
635 	 */
636 	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
637 	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
638 
639 	/* flash_base_addr is byte-aligned */
640 	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
641 
642 	/* find total size of the NVM, then cut in half since the total
643 	 * size represents two separate NVM banks.
644 	 */
645 	nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
646 				<< FLASH_SECTOR_ADDR_SHIFT);
647 	nvm->flash_bank_size /= 2;
648 	/* Adjust to word count */
649 	nvm->flash_bank_size /= sizeof(u16);
650 
651 	nvm->word_size = E1000_SHADOW_RAM_WORDS;
652 
653 	/* Clear shadow ram */
654 	for (i = 0; i < nvm->word_size; i++) {
655 		dev_spec->shadow_ram[i].modified = FALSE;
656 		dev_spec->shadow_ram[i].value    = 0xFFFF;
657 	}
658 
659 	E1000_MUTEX_INIT(&dev_spec->nvm_mutex);
660 	E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
661 
662 	/* Function Pointers */
663 	nvm->ops.acquire	= e1000_acquire_nvm_ich8lan;
664 	nvm->ops.release	= e1000_release_nvm_ich8lan;
665 	nvm->ops.read		= e1000_read_nvm_ich8lan;
666 	nvm->ops.update		= e1000_update_nvm_checksum_ich8lan;
667 	nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
668 	nvm->ops.validate	= e1000_validate_nvm_checksum_ich8lan;
669 	nvm->ops.write		= e1000_write_nvm_ich8lan;
670 
671 	return E1000_SUCCESS;
672 }
673 
674 /**
675  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
676  *  @hw: pointer to the HW structure
677  *
678  *  Initialize family-specific MAC parameters and function
679  *  pointers.
680  **/
681 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
682 {
683 	struct e1000_mac_info *mac = &hw->mac;
684 #if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
685 	u16 pci_cfg;
686 #endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */
687 
688 	DEBUGFUNC("e1000_init_mac_params_ich8lan");
689 
690 	/* Set media type function pointer */
691 	hw->phy.media_type = e1000_media_type_copper;
692 
693 	/* Set mta register count */
694 	mac->mta_reg_count = 32;
695 	/* Set rar entry count */
696 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
697 	if (mac->type == e1000_ich8lan)
698 		mac->rar_entry_count--;
699 	/* Set if part includes ASF firmware */
700 	mac->asf_firmware_present = TRUE;
701 	/* FWSM register */
702 	mac->has_fwsm = TRUE;
703 	/* ARC subsystem not supported */
704 	mac->arc_subsystem_valid = FALSE;
705 	/* Adaptive IFS supported */
706 	mac->adaptive_ifs = TRUE;
707 
708 	/* Function pointers */
709 
710 	/* bus type/speed/width */
711 	mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
712 	/* function id */
713 	mac->ops.set_lan_id = e1000_set_lan_id_single_port;
714 	/* reset */
715 	mac->ops.reset_hw = e1000_reset_hw_ich8lan;
716 	/* hw initialization */
717 	mac->ops.init_hw = e1000_init_hw_ich8lan;
718 	/* link setup */
719 	mac->ops.setup_link = e1000_setup_link_ich8lan;
720 	/* physical interface setup */
721 	mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
722 	/* check for link */
723 	mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
724 	/* link info */
725 	mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
726 	/* multicast address update */
727 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
728 	/* clear hardware counters */
729 	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
730 
731 	/* LED and other operations */
732 	switch (mac->type) {
733 	case e1000_ich8lan:
734 	case e1000_ich9lan:
735 	case e1000_ich10lan:
736 		/* check management mode */
737 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
738 		/* ID LED init */
739 		mac->ops.id_led_init = e1000_id_led_init_generic;
740 		/* blink LED */
741 		mac->ops.blink_led = e1000_blink_led_generic;
742 		/* setup LED */
743 		mac->ops.setup_led = e1000_setup_led_generic;
744 		/* cleanup LED */
745 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
746 		/* turn on/off LED */
747 		mac->ops.led_on = e1000_led_on_ich8lan;
748 		mac->ops.led_off = e1000_led_off_ich8lan;
749 		break;
750 	case e1000_pch2lan:
751 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
752 		mac->ops.rar_set = e1000_rar_set_pch2lan;
753 		/* fall-through */
754 	case e1000_pch_lpt:
755 		/* multicast address update for pch2 */
756 		mac->ops.update_mc_addr_list =
757 			e1000_update_mc_addr_list_pch2lan;
758 	case e1000_pchlan:
759 #if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
760 		/* save PCH revision_id */
761 		e1000_read_pci_cfg(hw, E1000_PCI_REVISION_ID_REG, &pci_cfg);
762 		hw->revision_id = (u8)(pci_cfg &= 0x000F);
763 #endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */
764 		/* check management mode */
765 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
766 		/* ID LED init */
767 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
768 		/* setup LED */
769 		mac->ops.setup_led = e1000_setup_led_pchlan;
770 		/* cleanup LED */
771 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
772 		/* turn on/off LED */
773 		mac->ops.led_on = e1000_led_on_pchlan;
774 		mac->ops.led_off = e1000_led_off_pchlan;
775 		break;
776 	default:
777 		break;
778 	}
779 
780 	if (mac->type == e1000_pch_lpt) {
781 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
782 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
783 		mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
784 		mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt;
785 	}
786 
787 	/* Enable PCS Lock-loss workaround for ICH8 */
788 	if (mac->type == e1000_ich8lan)
789 		e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE);
790 
791 	return E1000_SUCCESS;
792 }
793 
794 /**
795  *  __e1000_access_emi_reg_locked - Read/write EMI register
796  *  @hw: pointer to the HW structure
797  *  @addr: EMI address to program
798  *  @data: pointer to value to read/write from/to the EMI address
799  *  @read: boolean flag to indicate read or write
800  *
801  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
802  **/
803 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
804 					 u16 *data, bool read)
805 {
806 	s32 ret_val;
807 
808 	DEBUGFUNC("__e1000_access_emi_reg_locked");
809 
810 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
811 	if (ret_val)
812 		return ret_val;
813 
814 	if (read)
815 		ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
816 						      data);
817 	else
818 		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
819 						       *data);
820 
821 	return ret_val;
822 }
823 
824 /**
825  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
826  *  @hw: pointer to the HW structure
827  *  @addr: EMI address to program
828  *  @data: value to be read from the EMI address
829  *
830  *  Assumes the SW/FW/HW Semaphore is already acquired.
831  **/
832 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
833 {
834 	DEBUGFUNC("e1000_read_emi_reg_locked");
835 
836 	return __e1000_access_emi_reg_locked(hw, addr, data, TRUE);
837 }
838 
839 /**
840  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
841  *  @hw: pointer to the HW structure
842  *  @addr: EMI address to program
843  *  @data: value to be written to the EMI address
844  *
845  *  Assumes the SW/FW/HW Semaphore is already acquired.
846  **/
847 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
848 {
849 	DEBUGFUNC("e1000_read_emi_reg_locked");
850 
851 	return __e1000_access_emi_reg_locked(hw, addr, &data, FALSE);
852 }
853 
854 /**
855  *  e1000_set_eee_pchlan - Enable/disable EEE support
856  *  @hw: pointer to the HW structure
857  *
858  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
859  *  the link and the EEE capabilities of the link partner.  The LPI Control
860  *  register bits will remain set only if/when link is up.
861  *
862  *  EEE LPI must not be asserted earlier than one second after link is up.
863  *  On 82579, EEE LPI should not be enabled until such time otherwise there
864  *  can be link issues with some switches.  Other devices can have EEE LPI
865  *  enabled immediately upon link up since they have a timer in hardware which
866  *  prevents LPI from being asserted too early.
867  **/
868 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
869 {
870 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
871 	s32 ret_val;
872 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
873 
874 	DEBUGFUNC("e1000_set_eee_pchlan");
875 
876 	switch (hw->phy.type) {
877 	case e1000_phy_82579:
878 		lpa = I82579_EEE_LP_ABILITY;
879 		pcs_status = I82579_EEE_PCS_STATUS;
880 		adv_addr = I82579_EEE_ADVERTISEMENT;
881 		break;
882 	case e1000_phy_i217:
883 		lpa = I217_EEE_LP_ABILITY;
884 		pcs_status = I217_EEE_PCS_STATUS;
885 		adv_addr = I217_EEE_ADVERTISEMENT;
886 		break;
887 	default:
888 		return E1000_SUCCESS;
889 	}
890 
891 	ret_val = hw->phy.ops.acquire(hw);
892 	if (ret_val)
893 		return ret_val;
894 
895 	ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
896 	if (ret_val)
897 		goto release;
898 
899 	/* Clear bits that enable EEE in various speeds */
900 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
901 
902 	/* Enable EEE if not disabled by user */
903 	if (!dev_spec->eee_disable) {
904 		/* Save off link partner's EEE ability */
905 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
906 						    &dev_spec->eee_lp_ability);
907 		if (ret_val)
908 			goto release;
909 
910 		/* Read EEE advertisement */
911 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
912 		if (ret_val)
913 			goto release;
914 
915 		/* Enable EEE only for speeds in which the link partner is
916 		 * EEE capable and for which we advertise EEE.
917 		 */
918 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
919 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
920 
921 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
922 			hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
923 			if (data & NWAY_LPAR_100TX_FD_CAPS)
924 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
925 			else
926 				/* EEE is not supported in 100Half, so ignore
927 				 * partner's EEE in 100 ability if full-duplex
928 				 * is not advertised.
929 				 */
930 				dev_spec->eee_lp_ability &=
931 				    ~I82579_EEE_100_SUPPORTED;
932 		}
933 	}
934 
935 	if (hw->phy.type == e1000_phy_82579) {
936 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
937 						    &data);
938 		if (ret_val)
939 			goto release;
940 
941 		data &= ~I82579_LPI_100_PLL_SHUT;
942 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
943 						     data);
944 	}
945 
946 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
947 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
948 	if (ret_val)
949 		goto release;
950 
951 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
952 release:
953 	hw->phy.ops.release(hw);
954 
955 	return ret_val;
956 }
957 
958 /**
959  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
960  *  @hw:   pointer to the HW structure
961  *  @link: link up bool flag
962  *
963  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
964  *  preventing further DMA write requests.  Workaround the issue by disabling
965  *  the de-assertion of the clock request when in 1Gpbs mode.
966  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
967  *  speeds in order to avoid Tx hangs.
968  **/
969 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
970 {
971 	u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
972 	u32 status = E1000_READ_REG(hw, E1000_STATUS);
973 	s32 ret_val = E1000_SUCCESS;
974 	u16 reg;
975 
976 	if (link && (status & E1000_STATUS_SPEED_1000)) {
977 		ret_val = hw->phy.ops.acquire(hw);
978 		if (ret_val)
979 			return ret_val;
980 
981 		ret_val =
982 		    e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
983 					       &reg);
984 		if (ret_val)
985 			goto release;
986 
987 		ret_val =
988 		    e1000_write_kmrn_reg_locked(hw,
989 						E1000_KMRNCTRLSTA_K1_CONFIG,
990 						reg &
991 						~E1000_KMRNCTRLSTA_K1_ENABLE);
992 		if (ret_val)
993 			goto release;
994 
995 		usec_delay(10);
996 
997 		E1000_WRITE_REG(hw, E1000_FEXTNVM6,
998 				fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
999 
1000 		ret_val =
1001 		    e1000_write_kmrn_reg_locked(hw,
1002 						E1000_KMRNCTRLSTA_K1_CONFIG,
1003 						reg);
1004 release:
1005 		hw->phy.ops.release(hw);
1006 	} else {
1007 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
1008 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1009 
1010 		if (!link || ((status & E1000_STATUS_SPEED_100) &&
1011 			      (status & E1000_STATUS_FD)))
1012 			goto update_fextnvm6;
1013 
1014 		ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
1015 		if (ret_val)
1016 			return ret_val;
1017 
1018 		/* Clear link status transmit timeout */
1019 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1020 
1021 		if (status & E1000_STATUS_SPEED_100) {
1022 			/* Set inband Tx timeout to 5x10us for 100Half */
1023 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1024 
1025 			/* Do not extend the K1 entry latency for 100Half */
1026 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1027 		} else {
1028 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
1029 			reg |= 50 <<
1030 			       I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1031 
1032 			/* Extend the K1 entry latency for 10 Mbps */
1033 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1034 		}
1035 
1036 		ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
1037 		if (ret_val)
1038 			return ret_val;
1039 
1040 update_fextnvm6:
1041 		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1042 	}
1043 
1044 	return ret_val;
1045 }
1046 
1047 static u64 e1000_ltr2ns(u16 ltr)
1048 {
1049 	u32 value, scale;
1050 
1051 	/* Determine the latency in nsec based on the LTR value & scale */
1052 	value = ltr & E1000_LTRV_VALUE_MASK;
1053 	scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT;
1054 
1055 	return value * (1 << (scale * E1000_LTRV_SCALE_FACTOR));
1056 }
1057 
1058 /**
1059  *  e1000_platform_pm_pch_lpt - Set platform power management values
1060  *  @hw: pointer to the HW structure
1061  *  @link: bool indicating link status
1062  *
1063  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1064  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1065  *  when link is up (which must not exceed the maximum latency supported
1066  *  by the platform), otherwise specify there is no LTR requirement.
1067  *  Unlike TRUE-PCIe devices which set the LTR maximum snoop/no-snoop
1068  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1069  *  Capability register set, on this device LTR is set by writing the
1070  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1071  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1072  *  message to the PMC.
1073  *
1074  *  Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF)
1075  *  high-water mark.
1076  **/
1077 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1078 {
1079 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1080 		  link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1081 	u16 lat_enc = 0;	/* latency encoded */
1082 	s32 obff_hwm = 0;
1083 
1084 	DEBUGFUNC("e1000_platform_pm_pch_lpt");
1085 
1086 	if (link) {
1087 		u16 speed, duplex, scale = 0;
1088 		u16 max_snoop, max_nosnoop;
1089 		u16 max_ltr_enc;	/* max LTR latency encoded */
1090 		s64 lat_ns;		/* latency (ns) */
1091 		s64 value;
1092 		u32 rxa;
1093 
1094 		if (!hw->mac.max_frame_size) {
1095 			DEBUGOUT("max_frame_size not set.\n");
1096 			return -E1000_ERR_CONFIG;
1097 		}
1098 
1099 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1100 		if (!speed) {
1101 			DEBUGOUT("Speed not set.\n");
1102 			return -E1000_ERR_CONFIG;
1103 		}
1104 
1105 		/* Rx Packet Buffer Allocation size (KB) */
1106 		rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK;
1107 
1108 		/* Determine the maximum latency tolerated by the device.
1109 		 *
1110 		 * Per the PCIe spec, the tolerated latencies are encoded as
1111 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1112 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1113 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1114 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1115 		 */
1116 		lat_ns = ((s64)rxa * 1024 -
1117 			  (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000;
1118 		if (lat_ns < 0)
1119 			lat_ns = 0;
1120 		else
1121 			lat_ns /= speed;
1122 
1123 		value = lat_ns;
1124 		while (value > E1000_LTRV_VALUE_MASK) {
1125 			scale++;
1126 			value = E1000_DIVIDE_ROUND_UP(value, (1 << 5));
1127 		}
1128 		if (scale > E1000_LTRV_SCALE_MAX) {
1129 			DEBUGOUT1("Invalid LTR latency scale %d\n", scale);
1130 			return -E1000_ERR_CONFIG;
1131 		}
1132 		lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value);
1133 
1134 		/* Determine the maximum latency tolerated by the platform */
1135 		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop);
1136 		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1137 		max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop);
1138 
1139 		if (lat_enc > max_ltr_enc) {
1140 			lat_enc = max_ltr_enc;
1141 			lat_ns = e1000_ltr2ns(max_ltr_enc);
1142 		}
1143 
1144 		if (lat_ns) {
1145 			lat_ns *= speed * 1000;
1146 			lat_ns /= 8;
1147 			lat_ns /= 1000000000;
1148 			obff_hwm = (s32)(rxa - lat_ns);
1149 		}
1150 		if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) {
1151 			DEBUGOUT1("Invalid high water mark %d\n", obff_hwm);
1152 			return -E1000_ERR_CONFIG;
1153 		}
1154 	}
1155 
1156 	/* Set Snoop and No-Snoop latencies the same */
1157 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1158 	E1000_WRITE_REG(hw, E1000_LTRV, reg);
1159 
1160 	/* Set OBFF high water mark */
1161 	reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK;
1162 	reg |= obff_hwm;
1163 	E1000_WRITE_REG(hw, E1000_SVT, reg);
1164 
1165 	/* Enable OBFF */
1166 	reg = E1000_READ_REG(hw, E1000_SVCR);
1167 	reg |= E1000_SVCR_OFF_EN;
1168 	/* Always unblock interrupts to the CPU even when the system is
1169 	 * in OBFF mode. This ensures that small round-robin traffic
1170 	 * (like ping) does not get dropped or experience long latency.
1171 	 */
1172 	reg |= E1000_SVCR_OFF_MASKINT;
1173 	E1000_WRITE_REG(hw, E1000_SVCR, reg);
1174 
1175 	return E1000_SUCCESS;
1176 }
1177 
1178 /**
1179  *  e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer
1180  *  @hw: pointer to the HW structure
1181  *  @itr: interrupt throttling rate
1182  *
1183  *  Configure OBFF with the updated interrupt rate.
1184  **/
1185 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr)
1186 {
1187 	u32 svcr;
1188 	s32 timer;
1189 
1190 	DEBUGFUNC("e1000_set_obff_timer_pch_lpt");
1191 
1192 	/* Convert ITR value into microseconds for OBFF timer */
1193 	timer = itr & E1000_ITR_MASK;
1194 	timer = (timer * E1000_ITR_MULT) / 1000;
1195 
1196 	if ((timer < 0) || (timer > E1000_ITR_MASK)) {
1197 		DEBUGOUT1("Invalid OBFF timer %d\n", timer);
1198 		return -E1000_ERR_CONFIG;
1199 	}
1200 
1201 	svcr = E1000_READ_REG(hw, E1000_SVCR);
1202 	svcr &= ~E1000_SVCR_OFF_TIMER_MASK;
1203 	svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT;
1204 	E1000_WRITE_REG(hw, E1000_SVCR, svcr);
1205 
1206 	return E1000_SUCCESS;
1207 }
1208 
1209 /**
1210  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1211  *  @hw: pointer to the HW structure
1212  *  @to_sx: boolean indicating a system power state transition to Sx
1213  *
1214  *  When link is down, configure ULP mode to significantly reduce the power
1215  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1216  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1217  *  system, configure the ULP mode by software.
1218  */
1219 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1220 {
1221 	u32 mac_reg;
1222 	s32 ret_val = E1000_SUCCESS;
1223 	u16 phy_reg;
1224 
1225 	if ((hw->mac.type < e1000_pch_lpt) ||
1226 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1227 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1228 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1229 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1230 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1231 		return 0;
1232 
1233 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1234 		/* Request ME configure ULP mode in the PHY */
1235 		mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1236 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1237 		E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1238 
1239 		goto out;
1240 	}
1241 
1242 	if (!to_sx) {
1243 		int i = 0;
1244 
1245 		/* Poll up to 5 seconds for Cable Disconnected indication */
1246 		while (!(E1000_READ_REG(hw, E1000_FEXT) &
1247 			 E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1248 			/* Bail if link is re-acquired */
1249 			if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
1250 				return -E1000_ERR_PHY;
1251 
1252 			if (i++ == 100)
1253 				break;
1254 
1255 			msec_delay(50);
1256 		}
1257 		DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
1258 			 (E1000_READ_REG(hw, E1000_FEXT) &
1259 			  E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
1260 			 i * 50);
1261 	}
1262 
1263 	ret_val = hw->phy.ops.acquire(hw);
1264 	if (ret_val)
1265 		goto out;
1266 
1267 	/* Force SMBus mode in PHY */
1268 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1269 	if (ret_val)
1270 		goto release;
1271 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1272 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1273 
1274 	/* Force SMBus mode in MAC */
1275 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1276 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1277 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1278 
1279 	/* Set Inband ULP Exit, Reset to SMBus mode and
1280 	 * Disable SMBus Release on PERST# in PHY
1281 	 */
1282 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1283 	if (ret_val)
1284 		goto release;
1285 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1286 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1287 	if (to_sx) {
1288 		if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
1289 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1290 
1291 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1292 	} else {
1293 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1294 	}
1295 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1296 
1297 	/* Set Disable SMBus Release on PERST# in MAC */
1298 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1299 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1300 	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1301 
1302 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1303 	phy_reg |= I218_ULP_CONFIG1_START;
1304 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1305 release:
1306 	hw->phy.ops.release(hw);
1307 out:
1308 	if (ret_val)
1309 		DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
1310 	else
1311 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1312 
1313 	return ret_val;
1314 }
1315 
1316 /**
1317  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1318  *  @hw: pointer to the HW structure
1319  *  @force: boolean indicating whether or not to force disabling ULP
1320  *
1321  *  Un-configure ULP mode when link is up, the system is transitioned from
1322  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1323  *  system, poll for an indication from ME that ULP has been un-configured.
1324  *  If not on an ME enabled system, un-configure the ULP mode by software.
1325  *
1326  *  During nominal operation, this function is called when link is acquired
1327  *  to disable ULP mode (force=FALSE); otherwise, for example when unloading
1328  *  the driver or during Sx->S0 transitions, this is called with force=TRUE
1329  *  to forcibly disable ULP.
1330  */
1331 s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1332 {
1333 	s32 ret_val = E1000_SUCCESS;
1334 	u32 mac_reg;
1335 	u16 phy_reg;
1336 	int i = 0;
1337 
1338 	if ((hw->mac.type < e1000_pch_lpt) ||
1339 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1340 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1341 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1342 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1343 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1344 		return 0;
1345 
1346 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1347 		if (force) {
1348 			/* Request ME un-configure ULP mode in the PHY */
1349 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1350 			mac_reg &= ~E1000_H2ME_ULP;
1351 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1352 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1353 		}
1354 
1355 		/* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1356 		while (E1000_READ_REG(hw, E1000_FWSM) &
1357 		       E1000_FWSM_ULP_CFG_DONE) {
1358 			if (i++ == 10) {
1359 				ret_val = -E1000_ERR_PHY;
1360 				goto out;
1361 			}
1362 
1363 			msec_delay(10);
1364 		}
1365 		DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1366 
1367 		if (force) {
1368 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1369 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1370 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1371 		} else {
1372 			/* Clear H2ME.ULP after ME ULP configuration */
1373 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1374 			mac_reg &= ~E1000_H2ME_ULP;
1375 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1376 		}
1377 
1378 		goto out;
1379 	}
1380 
1381 	ret_val = hw->phy.ops.acquire(hw);
1382 	if (ret_val)
1383 		goto out;
1384 
1385 	if (force)
1386 		/* Toggle LANPHYPC Value bit */
1387 		e1000_toggle_lanphypc_pch_lpt(hw);
1388 
1389 	/* Unforce SMBus mode in PHY */
1390 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1391 	if (ret_val) {
1392 		/* The MAC might be in PCIe mode, so temporarily force to
1393 		 * SMBus mode in order to access the PHY.
1394 		 */
1395 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1396 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1397 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1398 
1399 		msec_delay(50);
1400 
1401 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1402 						       &phy_reg);
1403 		if (ret_val)
1404 			goto release;
1405 	}
1406 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1407 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1408 
1409 	/* Unforce SMBus mode in MAC */
1410 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1411 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1412 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1413 
1414 	/* When ULP mode was previously entered, K1 was disabled by the
1415 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1416 	 */
1417 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1418 	if (ret_val)
1419 		goto release;
1420 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1421 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1422 
1423 	/* Clear ULP enabled configuration */
1424 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1425 	if (ret_val)
1426 		goto release;
1427 		phy_reg &= ~(I218_ULP_CONFIG1_IND |
1428 			     I218_ULP_CONFIG1_STICKY_ULP |
1429 			     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1430 			     I218_ULP_CONFIG1_WOL_HOST |
1431 			     I218_ULP_CONFIG1_INBAND_EXIT |
1432 			     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1433 		e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1434 
1435 		/* Commit ULP changes by starting auto ULP configuration */
1436 		phy_reg |= I218_ULP_CONFIG1_START;
1437 		e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1438 
1439 		/* Clear Disable SMBus Release on PERST# in MAC */
1440 		mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1441 		mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1442 		E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1443 
1444 release:
1445 	hw->phy.ops.release(hw);
1446 	if (force) {
1447 		hw->phy.ops.reset(hw);
1448 		msec_delay(50);
1449 	}
1450 out:
1451 	if (ret_val)
1452 		DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
1453 	else
1454 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1455 
1456 	return ret_val;
1457 }
1458 
1459 /**
1460  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1461  *  @hw: pointer to the HW structure
1462  *
1463  *  Checks to see of the link status of the hardware has changed.  If a
1464  *  change in link status has been detected, then we read the PHY registers
1465  *  to get the current speed/duplex if link exists.
1466  **/
1467 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1468 {
1469 	struct e1000_mac_info *mac = &hw->mac;
1470 	s32 ret_val;
1471 	bool link;
1472 	u16 phy_reg;
1473 
1474 	DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
1475 
1476 	/* We only want to go out to the PHY registers to see if Auto-Neg
1477 	 * has completed and/or if our link status has changed.  The
1478 	 * get_link_status flag is set upon receiving a Link Status
1479 	 * Change or Rx Sequence Error interrupt.
1480 	 */
1481 	if (!mac->get_link_status)
1482 		return E1000_SUCCESS;
1483 
1484 		/* First we want to see if the MII Status Register reports
1485 		 * link.  If so, then we want to get the current speed/duplex
1486 		 * of the PHY.
1487 		 */
1488 		ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1489 		if (ret_val)
1490 			return ret_val;
1491 
1492 	if (hw->mac.type == e1000_pchlan) {
1493 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1494 		if (ret_val)
1495 			return ret_val;
1496 	}
1497 
1498 	/* When connected at 10Mbps half-duplex, some parts are excessively
1499 	 * aggressive resulting in many collisions. To avoid this, increase
1500 	 * the IPG and reduce Rx latency in the PHY.
1501 	 */
1502 	if (((hw->mac.type == e1000_pch2lan) ||
1503 	     (hw->mac.type == e1000_pch_lpt)) && link) {
1504 		u32 reg;
1505 		reg = E1000_READ_REG(hw, E1000_STATUS);
1506 		if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
1507 			u16 emi_addr;
1508 
1509 			reg = E1000_READ_REG(hw, E1000_TIPG);
1510 			reg &= ~E1000_TIPG_IPGT_MASK;
1511 			reg |= 0xFF;
1512 			E1000_WRITE_REG(hw, E1000_TIPG, reg);
1513 
1514 			/* Reduce Rx latency in analog PHY */
1515 			ret_val = hw->phy.ops.acquire(hw);
1516 			if (ret_val)
1517 				return ret_val;
1518 
1519 			if (hw->mac.type == e1000_pch2lan)
1520 				emi_addr = I82579_RX_CONFIG;
1521 			else
1522 				emi_addr = I217_RX_CONFIG;
1523 			ret_val = e1000_write_emi_reg_locked(hw, emi_addr, 0);
1524 
1525 			hw->phy.ops.release(hw);
1526 
1527 			if (ret_val)
1528 				return ret_val;
1529 		}
1530 	}
1531 
1532 	/* Work-around I218 hang issue */
1533 	if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1534 	    (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1535 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) ||
1536 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) {
1537 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1538 		if (ret_val)
1539 			return ret_val;
1540 	}
1541 	if (hw->mac.type == e1000_pch_lpt) {
1542 		/* Set platform power management values for
1543 		 * Latency Tolerance Reporting (LTR)
1544 		 * Optimized Buffer Flush/Fill (OBFF)
1545 		 */
1546 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1547 		if (ret_val)
1548 			return ret_val;
1549 	}
1550 
1551 	/* Clear link partner's EEE ability */
1552 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1553 
1554 	if (!link)
1555 		return E1000_SUCCESS; /* No link detected */
1556 
1557 	mac->get_link_status = FALSE;
1558 
1559 	switch (hw->mac.type) {
1560 	case e1000_pch2lan:
1561 		ret_val = e1000_k1_workaround_lv(hw);
1562 		if (ret_val)
1563 			return ret_val;
1564 		/* fall-thru */
1565 	case e1000_pchlan:
1566 		if (hw->phy.type == e1000_phy_82578) {
1567 			ret_val = e1000_link_stall_workaround_hv(hw);
1568 			if (ret_val)
1569 				return ret_val;
1570 		}
1571 
1572 		/* Workaround for PCHx parts in half-duplex:
1573 		 * Set the number of preambles removed from the packet
1574 		 * when it is passed from the PHY to the MAC to prevent
1575 		 * the MAC from misinterpreting the packet type.
1576 		 */
1577 		hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1578 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1579 
1580 		if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
1581 		    E1000_STATUS_FD)
1582 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1583 
1584 		hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1585 		break;
1586 	default:
1587 		break;
1588 	}
1589 
1590 	/* Check if there was DownShift, must be checked
1591 	 * immediately after link-up
1592 	 */
1593 	e1000_check_downshift_generic(hw);
1594 
1595 	/* Enable/Disable EEE after link up */
1596 	if (hw->phy.type > e1000_phy_82579) {
1597 		ret_val = e1000_set_eee_pchlan(hw);
1598 		if (ret_val)
1599 			return ret_val;
1600 	}
1601 
1602 	/* If we are forcing speed/duplex, then we simply return since
1603 	 * we have already determined whether we have link or not.
1604 	 */
1605 	if (!mac->autoneg)
1606 		return -E1000_ERR_CONFIG;
1607 
1608 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1609 	 * of MAC speed/duplex configuration.  So we only need to
1610 	 * configure Collision Distance in the MAC.
1611 	 */
1612 	mac->ops.config_collision_dist(hw);
1613 
1614 	/* Configure Flow Control now that Auto-Neg has completed.
1615 	 * First, we need to restore the desired flow control
1616 	 * settings because we may have had to re-autoneg with a
1617 	 * different link partner.
1618 	 */
1619 	ret_val = e1000_config_fc_after_link_up_generic(hw);
1620 	if (ret_val)
1621 		DEBUGOUT("Error configuring flow control\n");
1622 
1623 	return ret_val;
1624 }
1625 
1626 /**
1627  *  e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
1628  *  @hw: pointer to the HW structure
1629  *
1630  *  Initialize family-specific function pointers for PHY, MAC, and NVM.
1631  **/
1632 void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
1633 {
1634 	DEBUGFUNC("e1000_init_function_pointers_ich8lan");
1635 
1636 	hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
1637 	hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
1638 	switch (hw->mac.type) {
1639 	case e1000_ich8lan:
1640 	case e1000_ich9lan:
1641 	case e1000_ich10lan:
1642 		hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
1643 		break;
1644 	case e1000_pchlan:
1645 	case e1000_pch2lan:
1646 	case e1000_pch_lpt:
1647 		hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
1648 		break;
1649 	default:
1650 		break;
1651 	}
1652 }
1653 
1654 /**
1655  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1656  *  @hw: pointer to the HW structure
1657  *
1658  *  Acquires the mutex for performing NVM operations.
1659  **/
1660 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1661 {
1662 	DEBUGFUNC("e1000_acquire_nvm_ich8lan");
1663 
1664 	E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1665 
1666 	return E1000_SUCCESS;
1667 }
1668 
1669 /**
1670  *  e1000_release_nvm_ich8lan - Release NVM mutex
1671  *  @hw: pointer to the HW structure
1672  *
1673  *  Releases the mutex used while performing NVM operations.
1674  **/
1675 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1676 {
1677 	DEBUGFUNC("e1000_release_nvm_ich8lan");
1678 
1679 	E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1680 
1681 	return;
1682 }
1683 
1684 /**
1685  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1686  *  @hw: pointer to the HW structure
1687  *
1688  *  Acquires the software control flag for performing PHY and select
1689  *  MAC CSR accesses.
1690  **/
1691 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1692 {
1693 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1694 	s32 ret_val = E1000_SUCCESS;
1695 
1696 	DEBUGFUNC("e1000_acquire_swflag_ich8lan");
1697 
1698 	E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1699 
1700 	while (timeout) {
1701 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1702 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1703 			break;
1704 
1705 		msec_delay_irq(1);
1706 		timeout--;
1707 	}
1708 
1709 	if (!timeout) {
1710 		DEBUGOUT("SW has already locked the resource.\n");
1711 		ret_val = -E1000_ERR_CONFIG;
1712 		goto out;
1713 	}
1714 
1715 	timeout = SW_FLAG_TIMEOUT;
1716 
1717 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1718 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1719 
1720 	while (timeout) {
1721 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1722 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1723 			break;
1724 
1725 		msec_delay_irq(1);
1726 		timeout--;
1727 	}
1728 
1729 	if (!timeout) {
1730 		DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1731 			  E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
1732 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1733 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1734 		ret_val = -E1000_ERR_CONFIG;
1735 		goto out;
1736 	}
1737 
1738 out:
1739 	if (ret_val)
1740 		E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1741 
1742 	return ret_val;
1743 }
1744 
1745 /**
1746  *  e1000_release_swflag_ich8lan - Release software control flag
1747  *  @hw: pointer to the HW structure
1748  *
1749  *  Releases the software control flag for performing PHY and select
1750  *  MAC CSR accesses.
1751  **/
1752 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1753 {
1754 	u32 extcnf_ctrl;
1755 
1756 	DEBUGFUNC("e1000_release_swflag_ich8lan");
1757 
1758 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1759 
1760 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1761 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1762 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1763 	} else {
1764 		DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
1765 	}
1766 
1767 	E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1768 
1769 	return;
1770 }
1771 
1772 /**
1773  *  e1000_check_mng_mode_ich8lan - Checks management mode
1774  *  @hw: pointer to the HW structure
1775  *
1776  *  This checks if the adapter has any manageability enabled.
1777  *  This is a function pointer entry point only called by read/write
1778  *  routines for the PHY and NVM parts.
1779  **/
1780 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1781 {
1782 	u32 fwsm;
1783 
1784 	DEBUGFUNC("e1000_check_mng_mode_ich8lan");
1785 
1786 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1787 
1788 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1789 	       ((fwsm & E1000_FWSM_MODE_MASK) ==
1790 		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1791 }
1792 
1793 /**
1794  *  e1000_check_mng_mode_pchlan - Checks management mode
1795  *  @hw: pointer to the HW structure
1796  *
1797  *  This checks if the adapter has iAMT enabled.
1798  *  This is a function pointer entry point only called by read/write
1799  *  routines for the PHY and NVM parts.
1800  **/
1801 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1802 {
1803 	u32 fwsm;
1804 
1805 	DEBUGFUNC("e1000_check_mng_mode_pchlan");
1806 
1807 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1808 
1809 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1810 	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1811 }
1812 
1813 /**
1814  *  e1000_rar_set_pch2lan - Set receive address register
1815  *  @hw: pointer to the HW structure
1816  *  @addr: pointer to the receive address
1817  *  @index: receive address array register
1818  *
1819  *  Sets the receive address array register at index to the address passed
1820  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1821  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1822  *  Use SHRA[0-3] in place of those reserved for ME.
1823  **/
1824 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1825 {
1826 	u32 rar_low, rar_high;
1827 
1828 	DEBUGFUNC("e1000_rar_set_pch2lan");
1829 
1830 	/* HW expects these in little endian so we reverse the byte order
1831 	 * from network order (big endian) to little endian
1832 	 */
1833 	rar_low = ((u32) addr[0] |
1834 		   ((u32) addr[1] << 8) |
1835 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
1836 
1837 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
1838 
1839 	/* If MAC address zero, no need to set the AV bit */
1840 	if (rar_low || rar_high)
1841 		rar_high |= E1000_RAH_AV;
1842 
1843 	if (index == 0) {
1844 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
1845 		E1000_WRITE_FLUSH(hw);
1846 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
1847 		E1000_WRITE_FLUSH(hw);
1848 		return E1000_SUCCESS;
1849 	}
1850 
1851 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1852 	 * next address into the SHRA register array.
1853 	 */
1854 	if (index < (u32) (hw->mac.rar_entry_count)) {
1855 		s32 ret_val;
1856 
1857 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1858 		if (ret_val)
1859 			goto out;
1860 
1861 		E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
1862 		E1000_WRITE_FLUSH(hw);
1863 		E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
1864 		E1000_WRITE_FLUSH(hw);
1865 
1866 		e1000_release_swflag_ich8lan(hw);
1867 
1868 		/* verify the register updates */
1869 		if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
1870 		    (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
1871 			return E1000_SUCCESS;
1872 
1873 		DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1874 			 (index - 1), E1000_READ_REG(hw, E1000_FWSM));
1875 	}
1876 
1877 out:
1878 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
1879 	return -E1000_ERR_CONFIG;
1880 }
1881 
1882 /**
1883  *  e1000_rar_set_pch_lpt - Set receive address registers
1884  *  @hw: pointer to the HW structure
1885  *  @addr: pointer to the receive address
1886  *  @index: receive address array register
1887  *
1888  *  Sets the receive address register array at index to the address passed
1889  *  in by addr. For LPT, RAR[0] is the base address register that is to
1890  *  contain the MAC address. SHRA[0-10] are the shared receive address
1891  *  registers that are shared between the Host and manageability engine (ME).
1892  **/
1893 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1894 {
1895 	u32 rar_low, rar_high;
1896 	u32 wlock_mac;
1897 
1898 	DEBUGFUNC("e1000_rar_set_pch_lpt");
1899 
1900 	/* HW expects these in little endian so we reverse the byte order
1901 	 * from network order (big endian) to little endian
1902 	 */
1903 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
1904 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
1905 
1906 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
1907 
1908 	/* If MAC address zero, no need to set the AV bit */
1909 	if (rar_low || rar_high)
1910 		rar_high |= E1000_RAH_AV;
1911 
1912 	if (index == 0) {
1913 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
1914 		E1000_WRITE_FLUSH(hw);
1915 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
1916 		E1000_WRITE_FLUSH(hw);
1917 		return E1000_SUCCESS;
1918 	}
1919 
1920 	/* The manageability engine (ME) can lock certain SHRAR registers that
1921 	 * it is using - those registers are unavailable for use.
1922 	 */
1923 	if (index < hw->mac.rar_entry_count) {
1924 		wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
1925 			    E1000_FWSM_WLOCK_MAC_MASK;
1926 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1927 
1928 		/* Check if all SHRAR registers are locked */
1929 		if (wlock_mac == 1)
1930 			goto out;
1931 
1932 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1933 			s32 ret_val;
1934 
1935 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1936 
1937 			if (ret_val)
1938 				goto out;
1939 
1940 			E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
1941 					rar_low);
1942 			E1000_WRITE_FLUSH(hw);
1943 			E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
1944 					rar_high);
1945 			E1000_WRITE_FLUSH(hw);
1946 
1947 			e1000_release_swflag_ich8lan(hw);
1948 
1949 			/* verify the register updates */
1950 			if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1951 			    (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
1952 				return E1000_SUCCESS;
1953 		}
1954 	}
1955 
1956 out:
1957 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
1958 	return -E1000_ERR_CONFIG;
1959 }
1960 
1961 /**
1962  *  e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
1963  *  @hw: pointer to the HW structure
1964  *  @mc_addr_list: array of multicast addresses to program
1965  *  @mc_addr_count: number of multicast addresses to program
1966  *
1967  *  Updates entire Multicast Table Array of the PCH2 MAC and PHY.
1968  *  The caller must have a packed mc_addr_list of multicast addresses.
1969  **/
1970 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
1971 					      u8 *mc_addr_list,
1972 					      u32 mc_addr_count)
1973 {
1974 	u16 phy_reg = 0;
1975 	int i;
1976 	s32 ret_val;
1977 
1978 	DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
1979 
1980 	e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
1981 
1982 	ret_val = hw->phy.ops.acquire(hw);
1983 	if (ret_val)
1984 		return;
1985 
1986 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1987 	if (ret_val)
1988 		goto release;
1989 
1990 	for (i = 0; i < hw->mac.mta_reg_count; i++) {
1991 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
1992 					   (u16)(hw->mac.mta_shadow[i] &
1993 						 0xFFFF));
1994 		hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
1995 					   (u16)((hw->mac.mta_shadow[i] >> 16) &
1996 						 0xFFFF));
1997 	}
1998 
1999 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2000 
2001 release:
2002 	hw->phy.ops.release(hw);
2003 }
2004 
2005 /**
2006  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2007  *  @hw: pointer to the HW structure
2008  *
2009  *  Checks if firmware is blocking the reset of the PHY.
2010  *  This is a function pointer entry point only called by
2011  *  reset routines.
2012  **/
2013 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2014 {
2015 	u32 fwsm;
2016 	bool blocked = FALSE;
2017 	int i = 0;
2018 
2019 	DEBUGFUNC("e1000_check_reset_block_ich8lan");
2020 
2021 	do {
2022 		fwsm = E1000_READ_REG(hw, E1000_FWSM);
2023 		if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
2024 			blocked = TRUE;
2025 			msec_delay(10);
2026 			continue;
2027 		}
2028 		blocked = FALSE;
2029 	} while (blocked && (i++ < 10));
2030 	return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
2031 }
2032 
2033 /**
2034  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2035  *  @hw: pointer to the HW structure
2036  *
2037  *  Assumes semaphore already acquired.
2038  *
2039  **/
2040 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2041 {
2042 	u16 phy_data;
2043 	u32 strap = E1000_READ_REG(hw, E1000_STRAP);
2044 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2045 		E1000_STRAP_SMT_FREQ_SHIFT;
2046 	s32 ret_val;
2047 
2048 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2049 
2050 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2051 	if (ret_val)
2052 		return ret_val;
2053 
2054 	phy_data &= ~HV_SMB_ADDR_MASK;
2055 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2056 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2057 
2058 	if (hw->phy.type == e1000_phy_i217) {
2059 		/* Restore SMBus frequency */
2060 		if (freq--) {
2061 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2062 			phy_data |= (freq & (1 << 0)) <<
2063 				HV_SMB_ADDR_FREQ_LOW_SHIFT;
2064 			phy_data |= (freq & (1 << 1)) <<
2065 				(HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2066 		} else {
2067 			DEBUGOUT("Unsupported SMB frequency in PHY\n");
2068 		}
2069 	}
2070 
2071 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2072 }
2073 
2074 /**
2075  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2076  *  @hw:   pointer to the HW structure
2077  *
2078  *  SW should configure the LCD from the NVM extended configuration region
2079  *  as a workaround for certain parts.
2080  **/
2081 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2082 {
2083 	struct e1000_phy_info *phy = &hw->phy;
2084 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2085 	s32 ret_val = E1000_SUCCESS;
2086 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2087 
2088 	DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
2089 
2090 	/* Initialize the PHY from the NVM on ICH platforms.  This
2091 	 * is needed due to an issue where the NVM configuration is
2092 	 * not properly autoloaded after power transitions.
2093 	 * Therefore, after each PHY reset, we will load the
2094 	 * configuration data out of the NVM manually.
2095 	 */
2096 	switch (hw->mac.type) {
2097 	case e1000_ich8lan:
2098 		if (phy->type != e1000_phy_igp_3)
2099 			return ret_val;
2100 
2101 		if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
2102 		    (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
2103 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2104 			break;
2105 		}
2106 		/* Fall-thru */
2107 	case e1000_pchlan:
2108 	case e1000_pch2lan:
2109 	case e1000_pch_lpt:
2110 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2111 		break;
2112 	default:
2113 		return ret_val;
2114 	}
2115 
2116 	ret_val = hw->phy.ops.acquire(hw);
2117 	if (ret_val)
2118 		return ret_val;
2119 
2120 	data = E1000_READ_REG(hw, E1000_FEXTNVM);
2121 	if (!(data & sw_cfg_mask))
2122 		goto release;
2123 
2124 	/* Make sure HW does not configure LCD from PHY
2125 	 * extended configuration before SW configuration
2126 	 */
2127 	data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2128 	if ((hw->mac.type < e1000_pch2lan) &&
2129 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2130 			goto release;
2131 
2132 	cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
2133 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2134 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2135 	if (!cnf_size)
2136 		goto release;
2137 
2138 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2139 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2140 
2141 	if (((hw->mac.type == e1000_pchlan) &&
2142 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2143 	    (hw->mac.type > e1000_pchlan)) {
2144 		/* HW configures the SMBus address and LEDs when the
2145 		 * OEM and LCD Write Enable bits are set in the NVM.
2146 		 * When both NVM bits are cleared, SW will configure
2147 		 * them instead.
2148 		 */
2149 		ret_val = e1000_write_smbus_addr(hw);
2150 		if (ret_val)
2151 			goto release;
2152 
2153 		data = E1000_READ_REG(hw, E1000_LEDCTL);
2154 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2155 							(u16)data);
2156 		if (ret_val)
2157 			goto release;
2158 	}
2159 
2160 	/* Configure LCD from extended configuration region. */
2161 
2162 	/* cnf_base_addr is in DWORD */
2163 	word_addr = (u16)(cnf_base_addr << 1);
2164 
2165 	for (i = 0; i < cnf_size; i++) {
2166 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
2167 					   &reg_data);
2168 		if (ret_val)
2169 			goto release;
2170 
2171 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
2172 					   1, &reg_addr);
2173 		if (ret_val)
2174 			goto release;
2175 
2176 		/* Save off the PHY page for future writes. */
2177 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2178 			phy_page = reg_data;
2179 			continue;
2180 		}
2181 
2182 		reg_addr &= PHY_REG_MASK;
2183 		reg_addr |= phy_page;
2184 
2185 		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
2186 						    reg_data);
2187 		if (ret_val)
2188 			goto release;
2189 	}
2190 
2191 release:
2192 	hw->phy.ops.release(hw);
2193 	return ret_val;
2194 }
2195 
2196 /**
2197  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2198  *  @hw:   pointer to the HW structure
2199  *  @link: link up bool flag
2200  *
2201  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2202  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2203  *  If link is down, the function will restore the default K1 setting located
2204  *  in the NVM.
2205  **/
2206 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2207 {
2208 	s32 ret_val = E1000_SUCCESS;
2209 	u16 status_reg = 0;
2210 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2211 
2212 	DEBUGFUNC("e1000_k1_gig_workaround_hv");
2213 
2214 	if (hw->mac.type != e1000_pchlan)
2215 		return E1000_SUCCESS;
2216 
2217 	/* Wrap the whole flow with the sw flag */
2218 	ret_val = hw->phy.ops.acquire(hw);
2219 	if (ret_val)
2220 		return ret_val;
2221 
2222 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2223 	if (link) {
2224 		if (hw->phy.type == e1000_phy_82578) {
2225 			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
2226 							      &status_reg);
2227 			if (ret_val)
2228 				goto release;
2229 
2230 			status_reg &= (BM_CS_STATUS_LINK_UP |
2231 				       BM_CS_STATUS_RESOLVED |
2232 				       BM_CS_STATUS_SPEED_MASK);
2233 
2234 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2235 					   BM_CS_STATUS_RESOLVED |
2236 					   BM_CS_STATUS_SPEED_1000))
2237 				k1_enable = FALSE;
2238 		}
2239 
2240 		if (hw->phy.type == e1000_phy_82577) {
2241 			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
2242 							      &status_reg);
2243 			if (ret_val)
2244 				goto release;
2245 
2246 			status_reg &= (HV_M_STATUS_LINK_UP |
2247 				       HV_M_STATUS_AUTONEG_COMPLETE |
2248 				       HV_M_STATUS_SPEED_MASK);
2249 
2250 			if (status_reg == (HV_M_STATUS_LINK_UP |
2251 					   HV_M_STATUS_AUTONEG_COMPLETE |
2252 					   HV_M_STATUS_SPEED_1000))
2253 				k1_enable = FALSE;
2254 		}
2255 
2256 		/* Link stall fix for link up */
2257 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2258 						       0x0100);
2259 		if (ret_val)
2260 			goto release;
2261 
2262 	} else {
2263 		/* Link stall fix for link down */
2264 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2265 						       0x4100);
2266 		if (ret_val)
2267 			goto release;
2268 	}
2269 
2270 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2271 
2272 release:
2273 	hw->phy.ops.release(hw);
2274 
2275 	return ret_val;
2276 }
2277 
2278 /**
2279  *  e1000_configure_k1_ich8lan - Configure K1 power state
2280  *  @hw: pointer to the HW structure
2281  *  @enable: K1 state to configure
2282  *
2283  *  Configure the K1 power state based on the provided parameter.
2284  *  Assumes semaphore already acquired.
2285  *
2286  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2287  **/
2288 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2289 {
2290 	s32 ret_val;
2291 	u32 ctrl_reg = 0;
2292 	u32 ctrl_ext = 0;
2293 	u32 reg = 0;
2294 	u16 kmrn_reg = 0;
2295 
2296 	DEBUGFUNC("e1000_configure_k1_ich8lan");
2297 
2298 	ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2299 					     &kmrn_reg);
2300 	if (ret_val)
2301 		return ret_val;
2302 
2303 	if (k1_enable)
2304 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2305 	else
2306 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2307 
2308 	ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2309 					      kmrn_reg);
2310 	if (ret_val)
2311 		return ret_val;
2312 
2313 	usec_delay(20);
2314 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2315 	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
2316 
2317 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2318 	reg |= E1000_CTRL_FRCSPD;
2319 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2320 
2321 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2322 	E1000_WRITE_FLUSH(hw);
2323 	usec_delay(20);
2324 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
2325 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
2326 	E1000_WRITE_FLUSH(hw);
2327 	usec_delay(20);
2328 
2329 	return E1000_SUCCESS;
2330 }
2331 
2332 /**
2333  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2334  *  @hw:       pointer to the HW structure
2335  *  @d0_state: boolean if entering d0 or d3 device state
2336  *
2337  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2338  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2339  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2340  **/
2341 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2342 {
2343 	s32 ret_val = 0;
2344 	u32 mac_reg;
2345 	u16 oem_reg;
2346 
2347 	DEBUGFUNC("e1000_oem_bits_config_ich8lan");
2348 
2349 	if (hw->mac.type < e1000_pchlan)
2350 		return ret_val;
2351 
2352 	ret_val = hw->phy.ops.acquire(hw);
2353 	if (ret_val)
2354 		return ret_val;
2355 
2356 	if (hw->mac.type == e1000_pchlan) {
2357 		mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2358 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2359 			goto release;
2360 	}
2361 
2362 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
2363 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2364 		goto release;
2365 
2366 	mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
2367 
2368 	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
2369 	if (ret_val)
2370 		goto release;
2371 
2372 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2373 
2374 	if (d0_state) {
2375 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2376 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2377 
2378 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2379 			oem_reg |= HV_OEM_BITS_LPLU;
2380 	} else {
2381 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2382 		    E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2383 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2384 
2385 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2386 		    E1000_PHY_CTRL_NOND0A_LPLU))
2387 			oem_reg |= HV_OEM_BITS_LPLU;
2388 	}
2389 
2390 	/* Set Restart auto-neg to activate the bits */
2391 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2392 	    !hw->phy.ops.check_reset_block(hw))
2393 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2394 
2395 	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
2396 
2397 release:
2398 	hw->phy.ops.release(hw);
2399 
2400 	return ret_val;
2401 }
2402 
2403 
2404 /**
2405  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2406  *  @hw:   pointer to the HW structure
2407  **/
2408 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2409 {
2410 	s32 ret_val;
2411 	u16 data;
2412 
2413 	DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
2414 
2415 	ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
2416 	if (ret_val)
2417 		return ret_val;
2418 
2419 	data |= HV_KMRN_MDIO_SLOW;
2420 
2421 	ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
2422 
2423 	return ret_val;
2424 }
2425 
2426 /**
2427  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2428  *  done after every PHY reset.
2429  **/
2430 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2431 {
2432 	s32 ret_val = E1000_SUCCESS;
2433 	u16 phy_data;
2434 
2435 	DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
2436 
2437 	if (hw->mac.type != e1000_pchlan)
2438 		return E1000_SUCCESS;
2439 
2440 	/* Set MDIO slow mode before any other MDIO access */
2441 	if (hw->phy.type == e1000_phy_82577) {
2442 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2443 		if (ret_val)
2444 			return ret_val;
2445 	}
2446 
2447 	if (((hw->phy.type == e1000_phy_82577) &&
2448 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2449 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2450 		/* Disable generation of early preamble */
2451 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
2452 		if (ret_val)
2453 			return ret_val;
2454 
2455 		/* Preamble tuning for SSC */
2456 		ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
2457 						0xA204);
2458 		if (ret_val)
2459 			return ret_val;
2460 	}
2461 
2462 	if (hw->phy.type == e1000_phy_82578) {
2463 		/* Return registers to default by doing a soft reset then
2464 		 * writing 0x3140 to the control register.
2465 		 */
2466 		if (hw->phy.revision < 2) {
2467 			e1000_phy_sw_reset_generic(hw);
2468 			ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
2469 							0x3140);
2470 		}
2471 	}
2472 
2473 	/* Select page 0 */
2474 	ret_val = hw->phy.ops.acquire(hw);
2475 	if (ret_val)
2476 		return ret_val;
2477 
2478 	hw->phy.addr = 1;
2479 	ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2480 	hw->phy.ops.release(hw);
2481 	if (ret_val)
2482 		return ret_val;
2483 
2484 	/* Configure the K1 Si workaround during phy reset assuming there is
2485 	 * link so that it disables K1 if link is in 1Gbps.
2486 	 */
2487 	ret_val = e1000_k1_gig_workaround_hv(hw, TRUE);
2488 	if (ret_val)
2489 		return ret_val;
2490 
2491 	/* Workaround for link disconnects on a busy hub in half duplex */
2492 	ret_val = hw->phy.ops.acquire(hw);
2493 	if (ret_val)
2494 		return ret_val;
2495 	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2496 	if (ret_val)
2497 		goto release;
2498 	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
2499 					       phy_data & 0x00FF);
2500 	if (ret_val)
2501 		goto release;
2502 
2503 	/* set MSE higher to enable link to stay up when noise is high */
2504 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2505 release:
2506 	hw->phy.ops.release(hw);
2507 
2508 	return ret_val;
2509 }
2510 
2511 /**
2512  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2513  *  @hw:   pointer to the HW structure
2514  **/
2515 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2516 {
2517 	u32 mac_reg;
2518 	u16 i, phy_reg = 0;
2519 	s32 ret_val;
2520 
2521 	DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
2522 
2523 	ret_val = hw->phy.ops.acquire(hw);
2524 	if (ret_val)
2525 		return;
2526 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2527 	if (ret_val)
2528 		goto release;
2529 
2530 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2531 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2532 		mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
2533 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2534 					   (u16)(mac_reg & 0xFFFF));
2535 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2536 					   (u16)((mac_reg >> 16) & 0xFFFF));
2537 
2538 		mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
2539 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2540 					   (u16)(mac_reg & 0xFFFF));
2541 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2542 					   (u16)((mac_reg & E1000_RAH_AV)
2543 						 >> 16));
2544 	}
2545 
2546 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2547 
2548 release:
2549 	hw->phy.ops.release(hw);
2550 }
2551 
2552 static u32 e1000_calc_rx_da_crc(u8 mac[])
2553 {
2554 	u32 poly = 0xEDB88320;	/* Polynomial for 802.3 CRC calculation */
2555 	u32 i, j, mask, crc;
2556 
2557 	DEBUGFUNC("e1000_calc_rx_da_crc");
2558 
2559 	crc = 0xffffffff;
2560 	for (i = 0; i < 6; i++) {
2561 		crc = crc ^ mac[i];
2562 		for (j = 8; j > 0; j--) {
2563 			mask = (crc & 1) * (-1);
2564 			crc = (crc >> 1) ^ (poly & mask);
2565 		}
2566 	}
2567 	return ~crc;
2568 }
2569 
2570 /**
2571  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2572  *  with 82579 PHY
2573  *  @hw: pointer to the HW structure
2574  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2575  **/
2576 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2577 {
2578 	s32 ret_val = E1000_SUCCESS;
2579 	u16 phy_reg, data;
2580 	u32 mac_reg;
2581 	u16 i;
2582 
2583 	DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
2584 
2585 	if (hw->mac.type < e1000_pch2lan)
2586 		return E1000_SUCCESS;
2587 
2588 	/* disable Rx path while enabling/disabling workaround */
2589 	hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
2590 	ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
2591 					phy_reg | (1 << 14));
2592 	if (ret_val)
2593 		return ret_val;
2594 
2595 	if (enable) {
2596 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2597 		 * SHRAL/H) and initial CRC values to the MAC
2598 		 */
2599 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2600 			u8 mac_addr[ETH_ADDR_LEN] = {0};
2601 			u32 addr_high, addr_low;
2602 
2603 			addr_high = E1000_READ_REG(hw, E1000_RAH(i));
2604 			if (!(addr_high & E1000_RAH_AV))
2605 				continue;
2606 			addr_low = E1000_READ_REG(hw, E1000_RAL(i));
2607 			mac_addr[0] = (addr_low & 0xFF);
2608 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2609 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2610 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2611 			mac_addr[4] = (addr_high & 0xFF);
2612 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2613 
2614 			E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2615 					e1000_calc_rx_da_crc(mac_addr));
2616 		}
2617 
2618 		/* Write Rx addresses to the PHY */
2619 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2620 
2621 		/* Enable jumbo frame workaround in the MAC */
2622 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2623 		mac_reg &= ~(1 << 14);
2624 		mac_reg |= (7 << 15);
2625 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2626 
2627 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2628 		mac_reg |= E1000_RCTL_SECRC;
2629 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2630 
2631 		ret_val = e1000_read_kmrn_reg_generic(hw,
2632 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2633 						&data);
2634 		if (ret_val)
2635 			return ret_val;
2636 		ret_val = e1000_write_kmrn_reg_generic(hw,
2637 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2638 						data | (1 << 0));
2639 		if (ret_val)
2640 			return ret_val;
2641 		ret_val = e1000_read_kmrn_reg_generic(hw,
2642 						E1000_KMRNCTRLSTA_HD_CTRL,
2643 						&data);
2644 		if (ret_val)
2645 			return ret_val;
2646 		data &= ~(0xF << 8);
2647 		data |= (0xB << 8);
2648 		ret_val = e1000_write_kmrn_reg_generic(hw,
2649 						E1000_KMRNCTRLSTA_HD_CTRL,
2650 						data);
2651 		if (ret_val)
2652 			return ret_val;
2653 
2654 		/* Enable jumbo frame workaround in the PHY */
2655 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2656 		data &= ~(0x7F << 5);
2657 		data |= (0x37 << 5);
2658 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2659 		if (ret_val)
2660 			return ret_val;
2661 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2662 		data &= ~(1 << 13);
2663 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2664 		if (ret_val)
2665 			return ret_val;
2666 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2667 		data &= ~(0x3FF << 2);
2668 		data |= (E1000_TX_PTR_GAP << 2);
2669 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2670 		if (ret_val)
2671 			return ret_val;
2672 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
2673 		if (ret_val)
2674 			return ret_val;
2675 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2676 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
2677 						(1 << 10));
2678 		if (ret_val)
2679 			return ret_val;
2680 	} else {
2681 		/* Write MAC register values back to h/w defaults */
2682 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2683 		mac_reg &= ~(0xF << 14);
2684 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2685 
2686 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2687 		mac_reg &= ~E1000_RCTL_SECRC;
2688 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2689 
2690 		ret_val = e1000_read_kmrn_reg_generic(hw,
2691 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2692 						&data);
2693 		if (ret_val)
2694 			return ret_val;
2695 		ret_val = e1000_write_kmrn_reg_generic(hw,
2696 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2697 						data & ~(1 << 0));
2698 		if (ret_val)
2699 			return ret_val;
2700 		ret_val = e1000_read_kmrn_reg_generic(hw,
2701 						E1000_KMRNCTRLSTA_HD_CTRL,
2702 						&data);
2703 		if (ret_val)
2704 			return ret_val;
2705 		data &= ~(0xF << 8);
2706 		data |= (0xB << 8);
2707 		ret_val = e1000_write_kmrn_reg_generic(hw,
2708 						E1000_KMRNCTRLSTA_HD_CTRL,
2709 						data);
2710 		if (ret_val)
2711 			return ret_val;
2712 
2713 		/* Write PHY register values back to h/w defaults */
2714 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2715 		data &= ~(0x7F << 5);
2716 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2717 		if (ret_val)
2718 			return ret_val;
2719 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2720 		data |= (1 << 13);
2721 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2722 		if (ret_val)
2723 			return ret_val;
2724 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2725 		data &= ~(0x3FF << 2);
2726 		data |= (0x8 << 2);
2727 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2728 		if (ret_val)
2729 			return ret_val;
2730 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
2731 		if (ret_val)
2732 			return ret_val;
2733 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2734 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
2735 						~(1 << 10));
2736 		if (ret_val)
2737 			return ret_val;
2738 	}
2739 
2740 	/* re-enable Rx path after enabling/disabling workaround */
2741 	return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
2742 				     ~(1 << 14));
2743 }
2744 
2745 /**
2746  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2747  *  done after every PHY reset.
2748  **/
2749 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2750 {
2751 	s32 ret_val = E1000_SUCCESS;
2752 
2753 	DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
2754 
2755 	if (hw->mac.type != e1000_pch2lan)
2756 		return E1000_SUCCESS;
2757 
2758 	/* Set MDIO slow mode before any other MDIO access */
2759 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2760 	if (ret_val)
2761 		return ret_val;
2762 
2763 	ret_val = hw->phy.ops.acquire(hw);
2764 	if (ret_val)
2765 		return ret_val;
2766 	/* set MSE higher to enable link to stay up when noise is high */
2767 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2768 	if (ret_val)
2769 		goto release;
2770 	/* drop link after 5 times MSE threshold was reached */
2771 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2772 release:
2773 	hw->phy.ops.release(hw);
2774 
2775 	return ret_val;
2776 }
2777 
2778 /**
2779  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2780  *  @hw:   pointer to the HW structure
2781  *
2782  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2783  *  Disable K1 for 1000 and 100 speeds
2784  **/
2785 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2786 {
2787 	s32 ret_val = E1000_SUCCESS;
2788 	u16 status_reg = 0;
2789 
2790 	DEBUGFUNC("e1000_k1_workaround_lv");
2791 
2792 	if (hw->mac.type != e1000_pch2lan)
2793 		return E1000_SUCCESS;
2794 
2795 	/* Set K1 beacon duration based on 10Mbs speed */
2796 	ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
2797 	if (ret_val)
2798 		return ret_val;
2799 
2800 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2801 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2802 		if (status_reg &
2803 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2804 			u16 pm_phy_reg;
2805 
2806 			/* LV 1G/100 Packet drop issue wa  */
2807 			ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
2808 						       &pm_phy_reg);
2809 			if (ret_val)
2810 				return ret_val;
2811 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2812 			ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
2813 							pm_phy_reg);
2814 			if (ret_val)
2815 				return ret_val;
2816 		} else {
2817 			u32 mac_reg;
2818 			mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
2819 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2820 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2821 			E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
2822 		}
2823 	}
2824 
2825 	return ret_val;
2826 }
2827 
2828 /**
2829  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2830  *  @hw:   pointer to the HW structure
2831  *  @gate: boolean set to TRUE to gate, FALSE to ungate
2832  *
2833  *  Gate/ungate the automatic PHY configuration via hardware; perform
2834  *  the configuration via software instead.
2835  **/
2836 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2837 {
2838 	u32 extcnf_ctrl;
2839 
2840 	DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
2841 
2842 	if (hw->mac.type < e1000_pch2lan)
2843 		return;
2844 
2845 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2846 
2847 	if (gate)
2848 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2849 	else
2850 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2851 
2852 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
2853 }
2854 
2855 /**
2856  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2857  *  @hw: pointer to the HW structure
2858  *
2859  *  Check the appropriate indication the MAC has finished configuring the
2860  *  PHY after a software reset.
2861  **/
2862 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2863 {
2864 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2865 
2866 	DEBUGFUNC("e1000_lan_init_done_ich8lan");
2867 
2868 	/* Wait for basic configuration completes before proceeding */
2869 	do {
2870 		data = E1000_READ_REG(hw, E1000_STATUS);
2871 		data &= E1000_STATUS_LAN_INIT_DONE;
2872 		usec_delay(100);
2873 	} while ((!data) && --loop);
2874 
2875 	/* If basic configuration is incomplete before the above loop
2876 	 * count reaches 0, loading the configuration from NVM will
2877 	 * leave the PHY in a bad state possibly resulting in no link.
2878 	 */
2879 	if (loop == 0)
2880 		DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
2881 
2882 	/* Clear the Init Done bit for the next init event */
2883 	data = E1000_READ_REG(hw, E1000_STATUS);
2884 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2885 	E1000_WRITE_REG(hw, E1000_STATUS, data);
2886 }
2887 
2888 /**
2889  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2890  *  @hw: pointer to the HW structure
2891  **/
2892 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2893 {
2894 	s32 ret_val = E1000_SUCCESS;
2895 	u16 reg;
2896 
2897 	DEBUGFUNC("e1000_post_phy_reset_ich8lan");
2898 
2899 	if (hw->phy.ops.check_reset_block(hw))
2900 		return E1000_SUCCESS;
2901 
2902 	/* Allow time for h/w to get to quiescent state after reset */
2903 	msec_delay(10);
2904 
2905 	/* Perform any necessary post-reset workarounds */
2906 	switch (hw->mac.type) {
2907 	case e1000_pchlan:
2908 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2909 		if (ret_val)
2910 			return ret_val;
2911 		break;
2912 	case e1000_pch2lan:
2913 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2914 		if (ret_val)
2915 			return ret_val;
2916 		break;
2917 	default:
2918 		break;
2919 	}
2920 
2921 	/* Clear the host wakeup bit after lcd reset */
2922 	if (hw->mac.type >= e1000_pchlan) {
2923 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
2924 		reg &= ~BM_WUC_HOST_WU_BIT;
2925 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
2926 	}
2927 
2928 	/* Configure the LCD with the extended configuration region in NVM */
2929 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2930 	if (ret_val)
2931 		return ret_val;
2932 
2933 	/* Configure the LCD with the OEM bits in NVM */
2934 	ret_val = e1000_oem_bits_config_ich8lan(hw, TRUE);
2935 
2936 	if (hw->mac.type == e1000_pch2lan) {
2937 		/* Ungate automatic PHY configuration on non-managed 82579 */
2938 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
2939 		    E1000_ICH_FWSM_FW_VALID)) {
2940 			msec_delay(10);
2941 			e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
2942 		}
2943 
2944 		/* Set EEE LPI Update Timer to 200usec */
2945 		ret_val = hw->phy.ops.acquire(hw);
2946 		if (ret_val)
2947 			return ret_val;
2948 		ret_val = e1000_write_emi_reg_locked(hw,
2949 						     I82579_LPI_UPDATE_TIMER,
2950 						     0x1387);
2951 		hw->phy.ops.release(hw);
2952 	}
2953 
2954 	return ret_val;
2955 }
2956 
2957 /**
2958  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2959  *  @hw: pointer to the HW structure
2960  *
2961  *  Resets the PHY
2962  *  This is a function pointer entry point called by drivers
2963  *  or other shared routines.
2964  **/
2965 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2966 {
2967 	s32 ret_val = E1000_SUCCESS;
2968 
2969 	DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
2970 
2971 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2972 	if ((hw->mac.type == e1000_pch2lan) &&
2973 	    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
2974 		e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
2975 
2976 	ret_val = e1000_phy_hw_reset_generic(hw);
2977 	if (ret_val)
2978 		return ret_val;
2979 
2980 	return e1000_post_phy_reset_ich8lan(hw);
2981 }
2982 
2983 /**
2984  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2985  *  @hw: pointer to the HW structure
2986  *  @active: TRUE to enable LPLU, FALSE to disable
2987  *
2988  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2989  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2990  *  the phy speed. This function will manually set the LPLU bit and restart
2991  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2992  *  since it configures the same bit.
2993  **/
2994 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2995 {
2996 	s32 ret_val;
2997 	u16 oem_reg;
2998 
2999 	DEBUGFUNC("e1000_set_lplu_state_pchlan");
3000 
3001 	ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
3002 	if (ret_val)
3003 		return ret_val;
3004 
3005 	if (active)
3006 		oem_reg |= HV_OEM_BITS_LPLU;
3007 	else
3008 		oem_reg &= ~HV_OEM_BITS_LPLU;
3009 
3010 	if (!hw->phy.ops.check_reset_block(hw))
3011 		oem_reg |= HV_OEM_BITS_RESTART_AN;
3012 
3013 	return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
3014 }
3015 
3016 /**
3017  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3018  *  @hw: pointer to the HW structure
3019  *  @active: TRUE to enable LPLU, FALSE to disable
3020  *
3021  *  Sets the LPLU D0 state according to the active flag.  When
3022  *  activating LPLU this function also disables smart speed
3023  *  and vice versa.  LPLU will not be activated unless the
3024  *  device autonegotiation advertisement meets standards of
3025  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3026  *  This is a function pointer entry point only called by
3027  *  PHY setup routines.
3028  **/
3029 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3030 {
3031 	struct e1000_phy_info *phy = &hw->phy;
3032 	u32 phy_ctrl;
3033 	s32 ret_val = E1000_SUCCESS;
3034 	u16 data;
3035 
3036 	DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
3037 
3038 	if (phy->type == e1000_phy_ife)
3039 		return E1000_SUCCESS;
3040 
3041 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3042 
3043 	if (active) {
3044 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3045 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3046 
3047 		if (phy->type != e1000_phy_igp_3)
3048 			return E1000_SUCCESS;
3049 
3050 		/* Call gig speed drop workaround on LPLU before accessing
3051 		 * any PHY registers
3052 		 */
3053 		if (hw->mac.type == e1000_ich8lan)
3054 			e1000_gig_downshift_workaround_ich8lan(hw);
3055 
3056 		/* When LPLU is enabled, we should disable SmartSpeed */
3057 		ret_val = phy->ops.read_reg(hw,
3058 					    IGP01E1000_PHY_PORT_CONFIG,
3059 					    &data);
3060 		if (ret_val)
3061 			return ret_val;
3062 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3063 		ret_val = phy->ops.write_reg(hw,
3064 					     IGP01E1000_PHY_PORT_CONFIG,
3065 					     data);
3066 		if (ret_val)
3067 			return ret_val;
3068 	} else {
3069 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3070 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3071 
3072 		if (phy->type != e1000_phy_igp_3)
3073 			return E1000_SUCCESS;
3074 
3075 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3076 		 * during Dx states where the power conservation is most
3077 		 * important.  During driver activity we should enable
3078 		 * SmartSpeed, so performance is maintained.
3079 		 */
3080 		if (phy->smart_speed == e1000_smart_speed_on) {
3081 			ret_val = phy->ops.read_reg(hw,
3082 						    IGP01E1000_PHY_PORT_CONFIG,
3083 						    &data);
3084 			if (ret_val)
3085 				return ret_val;
3086 
3087 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3088 			ret_val = phy->ops.write_reg(hw,
3089 						     IGP01E1000_PHY_PORT_CONFIG,
3090 						     data);
3091 			if (ret_val)
3092 				return ret_val;
3093 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3094 			ret_val = phy->ops.read_reg(hw,
3095 						    IGP01E1000_PHY_PORT_CONFIG,
3096 						    &data);
3097 			if (ret_val)
3098 				return ret_val;
3099 
3100 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3101 			ret_val = phy->ops.write_reg(hw,
3102 						     IGP01E1000_PHY_PORT_CONFIG,
3103 						     data);
3104 			if (ret_val)
3105 				return ret_val;
3106 		}
3107 	}
3108 
3109 	return E1000_SUCCESS;
3110 }
3111 
3112 /**
3113  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3114  *  @hw: pointer to the HW structure
3115  *  @active: TRUE to enable LPLU, FALSE to disable
3116  *
3117  *  Sets the LPLU D3 state according to the active flag.  When
3118  *  activating LPLU this function also disables smart speed
3119  *  and vice versa.  LPLU will not be activated unless the
3120  *  device autonegotiation advertisement meets standards of
3121  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3122  *  This is a function pointer entry point only called by
3123  *  PHY setup routines.
3124  **/
3125 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3126 {
3127 	struct e1000_phy_info *phy = &hw->phy;
3128 	u32 phy_ctrl;
3129 	s32 ret_val = E1000_SUCCESS;
3130 	u16 data;
3131 
3132 	DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
3133 
3134 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3135 
3136 	if (!active) {
3137 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3138 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3139 
3140 		if (phy->type != e1000_phy_igp_3)
3141 			return E1000_SUCCESS;
3142 
3143 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3144 		 * during Dx states where the power conservation is most
3145 		 * important.  During driver activity we should enable
3146 		 * SmartSpeed, so performance is maintained.
3147 		 */
3148 		if (phy->smart_speed == e1000_smart_speed_on) {
3149 			ret_val = phy->ops.read_reg(hw,
3150 						    IGP01E1000_PHY_PORT_CONFIG,
3151 						    &data);
3152 			if (ret_val)
3153 				return ret_val;
3154 
3155 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3156 			ret_val = phy->ops.write_reg(hw,
3157 						     IGP01E1000_PHY_PORT_CONFIG,
3158 						     data);
3159 			if (ret_val)
3160 				return ret_val;
3161 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3162 			ret_val = phy->ops.read_reg(hw,
3163 						    IGP01E1000_PHY_PORT_CONFIG,
3164 						    &data);
3165 			if (ret_val)
3166 				return ret_val;
3167 
3168 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3169 			ret_val = phy->ops.write_reg(hw,
3170 						     IGP01E1000_PHY_PORT_CONFIG,
3171 						     data);
3172 			if (ret_val)
3173 				return ret_val;
3174 		}
3175 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3176 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3177 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3178 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3179 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3180 
3181 		if (phy->type != e1000_phy_igp_3)
3182 			return E1000_SUCCESS;
3183 
3184 		/* Call gig speed drop workaround on LPLU before accessing
3185 		 * any PHY registers
3186 		 */
3187 		if (hw->mac.type == e1000_ich8lan)
3188 			e1000_gig_downshift_workaround_ich8lan(hw);
3189 
3190 		/* When LPLU is enabled, we should disable SmartSpeed */
3191 		ret_val = phy->ops.read_reg(hw,
3192 					    IGP01E1000_PHY_PORT_CONFIG,
3193 					    &data);
3194 		if (ret_val)
3195 			return ret_val;
3196 
3197 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3198 		ret_val = phy->ops.write_reg(hw,
3199 					     IGP01E1000_PHY_PORT_CONFIG,
3200 					     data);
3201 	}
3202 
3203 	return ret_val;
3204 }
3205 
3206 /**
3207  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3208  *  @hw: pointer to the HW structure
3209  *  @bank:  pointer to the variable that returns the active bank
3210  *
3211  *  Reads signature byte from the NVM using the flash access registers.
3212  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3213  **/
3214 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3215 {
3216 	u32 eecd;
3217 	struct e1000_nvm_info *nvm = &hw->nvm;
3218 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3219 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3220 	u8 sig_byte = 0;
3221 	s32 ret_val;
3222 
3223 	DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
3224 
3225 	switch (hw->mac.type) {
3226 	case e1000_ich8lan:
3227 	case e1000_ich9lan:
3228 		eecd = E1000_READ_REG(hw, E1000_EECD);
3229 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3230 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3231 			if (eecd & E1000_EECD_SEC1VAL)
3232 				*bank = 1;
3233 			else
3234 				*bank = 0;
3235 
3236 			return E1000_SUCCESS;
3237 		}
3238 		DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3239 		/* fall-thru */
3240 	default:
3241 		/* set bank to 0 in case flash read fails */
3242 		*bank = 0;
3243 
3244 		/* Check bank 0 */
3245 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3246 							&sig_byte);
3247 		if (ret_val)
3248 			return ret_val;
3249 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3250 		    E1000_ICH_NVM_SIG_VALUE) {
3251 			*bank = 0;
3252 			return E1000_SUCCESS;
3253 		}
3254 
3255 		/* Check bank 1 */
3256 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3257 							bank1_offset,
3258 							&sig_byte);
3259 		if (ret_val)
3260 			return ret_val;
3261 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3262 		    E1000_ICH_NVM_SIG_VALUE) {
3263 			*bank = 1;
3264 			return E1000_SUCCESS;
3265 		}
3266 
3267 		DEBUGOUT("ERROR: No valid NVM bank present\n");
3268 		return -E1000_ERR_NVM;
3269 	}
3270 }
3271 
3272 /**
3273  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3274  *  @hw: pointer to the HW structure
3275  *  @offset: The offset (in bytes) of the word(s) to read.
3276  *  @words: Size of data to read in words
3277  *  @data: Pointer to the word(s) to read at offset.
3278  *
3279  *  Reads a word(s) from the NVM using the flash access registers.
3280  **/
3281 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3282 				  u16 *data)
3283 {
3284 	struct e1000_nvm_info *nvm = &hw->nvm;
3285 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3286 	u32 act_offset;
3287 	s32 ret_val = E1000_SUCCESS;
3288 	u32 bank = 0;
3289 	u16 i, word;
3290 
3291 	DEBUGFUNC("e1000_read_nvm_ich8lan");
3292 
3293 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3294 	    (words == 0)) {
3295 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3296 		ret_val = -E1000_ERR_NVM;
3297 		goto out;
3298 	}
3299 
3300 	nvm->ops.acquire(hw);
3301 
3302 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3303 	if (ret_val != E1000_SUCCESS) {
3304 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3305 		bank = 0;
3306 	}
3307 
3308 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3309 	act_offset += offset;
3310 
3311 	ret_val = E1000_SUCCESS;
3312 	for (i = 0; i < words; i++) {
3313 		if (dev_spec->shadow_ram[offset+i].modified) {
3314 			data[i] = dev_spec->shadow_ram[offset+i].value;
3315 		} else {
3316 			ret_val = e1000_read_flash_word_ich8lan(hw,
3317 								act_offset + i,
3318 								&word);
3319 			if (ret_val)
3320 				break;
3321 			data[i] = word;
3322 		}
3323 	}
3324 
3325 	nvm->ops.release(hw);
3326 
3327 out:
3328 	if (ret_val)
3329 		DEBUGOUT1("NVM read error: %d\n", ret_val);
3330 
3331 	return ret_val;
3332 }
3333 
3334 /**
3335  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3336  *  @hw: pointer to the HW structure
3337  *
3338  *  This function does initial flash setup so that a new read/write/erase cycle
3339  *  can be started.
3340  **/
3341 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3342 {
3343 	union ich8_hws_flash_status hsfsts;
3344 	s32 ret_val = -E1000_ERR_NVM;
3345 
3346 	DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
3347 
3348 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3349 
3350 	/* Check if the flash descriptor is valid */
3351 	if (!hsfsts.hsf_status.fldesvalid) {
3352 		DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.\n");
3353 		return -E1000_ERR_NVM;
3354 	}
3355 
3356 	/* Clear FCERR and DAEL in hw status by writing 1 */
3357 	hsfsts.hsf_status.flcerr = 1;
3358 	hsfsts.hsf_status.dael = 1;
3359 	E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3360 
3361 	/* Either we should have a hardware SPI cycle in progress
3362 	 * bit to check against, in order to start a new cycle or
3363 	 * FDONE bit should be changed in the hardware so that it
3364 	 * is 1 after hardware reset, which can then be used as an
3365 	 * indication whether a cycle is in progress or has been
3366 	 * completed.
3367 	 */
3368 
3369 	if (!hsfsts.hsf_status.flcinprog) {
3370 		/* There is no cycle running at present,
3371 		 * so we can start a cycle.
3372 		 * Begin by setting Flash Cycle Done.
3373 		 */
3374 		hsfsts.hsf_status.flcdone = 1;
3375 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3376 		ret_val = E1000_SUCCESS;
3377 	} else {
3378 		s32 i;
3379 
3380 		/* Otherwise poll for sometime so the current
3381 		 * cycle has a chance to end before giving up.
3382 		 */
3383 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3384 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3385 							      ICH_FLASH_HSFSTS);
3386 			if (!hsfsts.hsf_status.flcinprog) {
3387 				ret_val = E1000_SUCCESS;
3388 				break;
3389 			}
3390 			usec_delay(1);
3391 		}
3392 		if (ret_val == E1000_SUCCESS) {
3393 			/* Successful in waiting for previous cycle to timeout,
3394 			 * now set the Flash Cycle Done.
3395 			 */
3396 			hsfsts.hsf_status.flcdone = 1;
3397 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3398 						hsfsts.regval);
3399 		} else {
3400 			DEBUGOUT("Flash controller busy, cannot get access\n");
3401 		}
3402 	}
3403 
3404 	return ret_val;
3405 }
3406 
3407 /**
3408  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3409  *  @hw: pointer to the HW structure
3410  *  @timeout: maximum time to wait for completion
3411  *
3412  *  This function starts a flash cycle and waits for its completion.
3413  **/
3414 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3415 {
3416 	union ich8_hws_flash_ctrl hsflctl;
3417 	union ich8_hws_flash_status hsfsts;
3418 	u32 i = 0;
3419 
3420 	DEBUGFUNC("e1000_flash_cycle_ich8lan");
3421 
3422 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3423 	hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3424 	hsflctl.hsf_ctrl.flcgo = 1;
3425 
3426 	E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3427 
3428 	/* wait till FDONE bit is set to 1 */
3429 	do {
3430 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3431 		if (hsfsts.hsf_status.flcdone)
3432 			break;
3433 		usec_delay(1);
3434 	} while (i++ < timeout);
3435 
3436 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3437 		return E1000_SUCCESS;
3438 
3439 	return -E1000_ERR_NVM;
3440 }
3441 
3442 /**
3443  *  e1000_read_flash_word_ich8lan - Read word from flash
3444  *  @hw: pointer to the HW structure
3445  *  @offset: offset to data location
3446  *  @data: pointer to the location for storing the data
3447  *
3448  *  Reads the flash word at offset into data.  Offset is converted
3449  *  to bytes before read.
3450  **/
3451 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3452 					 u16 *data)
3453 {
3454 	DEBUGFUNC("e1000_read_flash_word_ich8lan");
3455 
3456 	if (!data)
3457 		return -E1000_ERR_NVM;
3458 
3459 	/* Must convert offset into bytes. */
3460 	offset <<= 1;
3461 
3462 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3463 }
3464 
3465 /**
3466  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3467  *  @hw: pointer to the HW structure
3468  *  @offset: The offset of the byte to read.
3469  *  @data: Pointer to a byte to store the value read.
3470  *
3471  *  Reads a single byte from the NVM using the flash access registers.
3472  **/
3473 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3474 					 u8 *data)
3475 {
3476 	s32 ret_val;
3477 	u16 word = 0;
3478 
3479 	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3480 
3481 	if (ret_val)
3482 		return ret_val;
3483 
3484 	*data = (u8)word;
3485 
3486 	return E1000_SUCCESS;
3487 }
3488 
3489 /**
3490  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3491  *  @hw: pointer to the HW structure
3492  *  @offset: The offset (in bytes) of the byte or word to read.
3493  *  @size: Size of data to read, 1=byte 2=word
3494  *  @data: Pointer to the word to store the value read.
3495  *
3496  *  Reads a byte or word from the NVM using the flash access registers.
3497  **/
3498 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3499 					 u8 size, u16 *data)
3500 {
3501 	union ich8_hws_flash_status hsfsts;
3502 	union ich8_hws_flash_ctrl hsflctl;
3503 	u32 flash_linear_addr;
3504 	u32 flash_data = 0;
3505 	s32 ret_val = -E1000_ERR_NVM;
3506 	u8 count = 0;
3507 
3508 	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3509 
3510 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3511 		return -E1000_ERR_NVM;
3512 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3513 			     hw->nvm.flash_base_addr);
3514 
3515 	do {
3516 		usec_delay(1);
3517 		/* Steps */
3518 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3519 		if (ret_val != E1000_SUCCESS)
3520 			break;
3521 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3522 
3523 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3524 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3525 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3526 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3527 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3528 
3529 		ret_val = e1000_flash_cycle_ich8lan(hw,
3530 						ICH_FLASH_READ_COMMAND_TIMEOUT);
3531 
3532 		/* Check if FCERR is set to 1, if set to 1, clear it
3533 		 * and try the whole sequence a few more times, else
3534 		 * read in (shift in) the Flash Data0, the order is
3535 		 * least significant byte first msb to lsb
3536 		 */
3537 		if (ret_val == E1000_SUCCESS) {
3538 			flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3539 			if (size == 1)
3540 				*data = (u8)(flash_data & 0x000000FF);
3541 			else if (size == 2)
3542 				*data = (u16)(flash_data & 0x0000FFFF);
3543 			break;
3544 		} else {
3545 			/* If we've gotten here, then things are probably
3546 			 * completely hosed, but if the error condition is
3547 			 * detected, it won't hurt to give it another try...
3548 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3549 			 */
3550 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3551 							      ICH_FLASH_HSFSTS);
3552 			if (hsfsts.hsf_status.flcerr) {
3553 				/* Repeat for some time before giving up. */
3554 				continue;
3555 			} else if (!hsfsts.hsf_status.flcdone) {
3556 				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3557 				break;
3558 			}
3559 		}
3560 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3561 
3562 	return ret_val;
3563 }
3564 
3565 
3566 /**
3567  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3568  *  @hw: pointer to the HW structure
3569  *  @offset: The offset (in bytes) of the word(s) to write.
3570  *  @words: Size of data to write in words
3571  *  @data: Pointer to the word(s) to write at offset.
3572  *
3573  *  Writes a byte or word to the NVM using the flash access registers.
3574  **/
3575 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3576 				   u16 *data)
3577 {
3578 	struct e1000_nvm_info *nvm = &hw->nvm;
3579 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3580 	u16 i;
3581 
3582 	DEBUGFUNC("e1000_write_nvm_ich8lan");
3583 
3584 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3585 	    (words == 0)) {
3586 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3587 		return -E1000_ERR_NVM;
3588 	}
3589 
3590 	nvm->ops.acquire(hw);
3591 
3592 	for (i = 0; i < words; i++) {
3593 		dev_spec->shadow_ram[offset+i].modified = TRUE;
3594 		dev_spec->shadow_ram[offset+i].value = data[i];
3595 	}
3596 
3597 	nvm->ops.release(hw);
3598 
3599 	return E1000_SUCCESS;
3600 }
3601 
3602 /**
3603  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3604  *  @hw: pointer to the HW structure
3605  *
3606  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3607  *  which writes the checksum to the shadow ram.  The changes in the shadow
3608  *  ram are then committed to the EEPROM by processing each bank at a time
3609  *  checking for the modified bit and writing only the pending changes.
3610  *  After a successful commit, the shadow ram is cleared and is ready for
3611  *  future writes.
3612  **/
3613 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3614 {
3615 	struct e1000_nvm_info *nvm = &hw->nvm;
3616 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3617 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3618 	s32 ret_val;
3619 	u16 data = 0;
3620 
3621 	DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
3622 
3623 	ret_val = e1000_update_nvm_checksum_generic(hw);
3624 	if (ret_val)
3625 		goto out;
3626 
3627 	if (nvm->type != e1000_nvm_flash_sw)
3628 		goto out;
3629 
3630 	nvm->ops.acquire(hw);
3631 
3632 	/* We're writing to the opposite bank so if we're on bank 1,
3633 	 * write to bank 0 etc.  We also need to erase the segment that
3634 	 * is going to be written
3635 	 */
3636 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3637 	if (ret_val != E1000_SUCCESS) {
3638 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3639 		bank = 0;
3640 	}
3641 
3642 	if (bank == 0) {
3643 		new_bank_offset = nvm->flash_bank_size;
3644 		old_bank_offset = 0;
3645 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3646 		if (ret_val)
3647 			goto release;
3648 	} else {
3649 		old_bank_offset = nvm->flash_bank_size;
3650 		new_bank_offset = 0;
3651 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3652 		if (ret_val)
3653 			goto release;
3654 	}
3655 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
3656 		if (dev_spec->shadow_ram[i].modified) {
3657 			data = dev_spec->shadow_ram[i].value;
3658 		} else {
3659 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3660 								old_bank_offset,
3661 								&data);
3662 			if (ret_val)
3663 				break;
3664 		}
3665 		/* If the word is 0x13, then make sure the signature bits
3666 		 * (15:14) are 11b until the commit has completed.
3667 		 * This will allow us to write 10b which indicates the
3668 		 * signature is valid.  We want to do this after the write
3669 		 * has completed so that we don't mark the segment valid
3670 		 * while the write is still in progress
3671 		 */
3672 		if (i == E1000_ICH_NVM_SIG_WORD)
3673 			data |= E1000_ICH_NVM_SIG_MASK;
3674 
3675 		/* Convert offset to bytes. */
3676 		act_offset = (i + new_bank_offset) << 1;
3677 
3678 		usec_delay(100);
3679 
3680 		/* Write the bytes to the new bank. */
3681 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3682 							       act_offset,
3683 							       (u8)data);
3684 		if (ret_val)
3685 			break;
3686 
3687 		usec_delay(100);
3688 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3689 							  act_offset + 1,
3690 							  (u8)(data >> 8));
3691 		if (ret_val)
3692 			break;
3693 	 }
3694 
3695 	/* Don't bother writing the segment valid bits if sector
3696 	 * programming failed.
3697 	 */
3698 	if (ret_val) {
3699 		DEBUGOUT("Flash commit failed.\n");
3700 		goto release;
3701 	}
3702 
3703 	/* Finally validate the new segment by setting bit 15:14
3704 	 * to 10b in word 0x13 , this can be done without an
3705 	 * erase as well since these bits are 11 to start with
3706 	 * and we need to change bit 14 to 0b
3707 	 */
3708 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3709 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3710 	if (ret_val)
3711 		goto release;
3712 
3713 	data &= 0xBFFF;
3714 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1,
3715 						       (u8)(data >> 8));
3716 	if (ret_val)
3717 		goto release;
3718 
3719 	/* And invalidate the previously valid segment by setting
3720 	 * its signature word (0x13) high_byte to 0b. This can be
3721 	 * done without an erase because flash erase sets all bits
3722 	 * to 1's. We can write 1's to 0's without an erase
3723 	 */
3724 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3725 
3726 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3727 
3728 	if (ret_val)
3729 		goto release;
3730 
3731 	/* Great!  Everything worked, we can now clear the cached entries. */
3732 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
3733 		dev_spec->shadow_ram[i].modified = FALSE;
3734 		dev_spec->shadow_ram[i].value = 0xFFFF;
3735 	}
3736 
3737 release:
3738 	nvm->ops.release(hw);
3739 
3740 	/* Reload the EEPROM, or else modifications will not appear
3741 	 * until after the next adapter reset.
3742 	 */
3743 	if (!ret_val) {
3744 		nvm->ops.reload(hw);
3745 		msec_delay(10);
3746 	}
3747 
3748 out:
3749 	if (ret_val)
3750 		DEBUGOUT1("NVM update error: %d\n", ret_val);
3751 
3752 	return ret_val;
3753 }
3754 
3755 /**
3756  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3757  *  @hw: pointer to the HW structure
3758  *
3759  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3760  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
3761  *  calculated, in which case we need to calculate the checksum and set bit 6.
3762  **/
3763 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3764 {
3765 	s32 ret_val;
3766 	u16 data;
3767 	u16 word;
3768 	u16 valid_csum_mask;
3769 
3770 	DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
3771 
3772 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
3773 	 * the checksum needs to be fixed.  This bit is an indication that
3774 	 * the NVM was prepared by OEM software and did not calculate
3775 	 * the checksum...a likely scenario.
3776 	 */
3777 	switch (hw->mac.type) {
3778 	case e1000_pch_lpt:
3779 		word = NVM_COMPAT;
3780 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3781 		break;
3782 	default:
3783 		word = NVM_FUTURE_INIT_WORD1;
3784 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3785 		break;
3786 	}
3787 
3788 	ret_val = hw->nvm.ops.read(hw, word, 1, &data);
3789 	if (ret_val)
3790 		return ret_val;
3791 
3792 	if (!(data & valid_csum_mask)) {
3793 		data |= valid_csum_mask;
3794 		ret_val = hw->nvm.ops.write(hw, word, 1, &data);
3795 		if (ret_val)
3796 			return ret_val;
3797 		ret_val = hw->nvm.ops.update(hw);
3798 		if (ret_val)
3799 			return ret_val;
3800 	}
3801 
3802 	return e1000_validate_nvm_checksum_generic(hw);
3803 }
3804 
3805 /**
3806  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3807  *  @hw: pointer to the HW structure
3808  *  @offset: The offset (in bytes) of the byte/word to read.
3809  *  @size: Size of data to read, 1=byte 2=word
3810  *  @data: The byte(s) to write to the NVM.
3811  *
3812  *  Writes one/two bytes to the NVM using the flash access registers.
3813  **/
3814 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3815 					  u8 size, u16 data)
3816 {
3817 	union ich8_hws_flash_status hsfsts;
3818 	union ich8_hws_flash_ctrl hsflctl;
3819 	u32 flash_linear_addr;
3820 	u32 flash_data = 0;
3821 	s32 ret_val;
3822 	u8 count = 0;
3823 
3824 	DEBUGFUNC("e1000_write_ich8_data");
3825 
3826 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3827 		return -E1000_ERR_NVM;
3828 
3829 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3830 			     hw->nvm.flash_base_addr);
3831 
3832 	do {
3833 		usec_delay(1);
3834 		/* Steps */
3835 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3836 		if (ret_val != E1000_SUCCESS)
3837 			break;
3838 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3839 
3840 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3841 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3842 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3843 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3844 
3845 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3846 
3847 		if (size == 1)
3848 			flash_data = (u32)data & 0x00FF;
3849 		else
3850 			flash_data = (u32)data;
3851 
3852 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
3853 
3854 		/* check if FCERR is set to 1 , if set to 1, clear it
3855 		 * and try the whole sequence a few more times else done
3856 		 */
3857 		ret_val =
3858 		    e1000_flash_cycle_ich8lan(hw,
3859 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3860 		if (ret_val == E1000_SUCCESS)
3861 			break;
3862 
3863 		/* If we're here, then things are most likely
3864 		 * completely hosed, but if the error condition
3865 		 * is detected, it won't hurt to give it another
3866 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3867 		 */
3868 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3869 		if (hsfsts.hsf_status.flcerr)
3870 			/* Repeat for some time before giving up. */
3871 			continue;
3872 		if (!hsfsts.hsf_status.flcdone) {
3873 			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3874 			break;
3875 		}
3876 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3877 
3878 	return ret_val;
3879 }
3880 
3881 
3882 /**
3883  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3884  *  @hw: pointer to the HW structure
3885  *  @offset: The index of the byte to read.
3886  *  @data: The byte to write to the NVM.
3887  *
3888  *  Writes a single byte to the NVM using the flash access registers.
3889  **/
3890 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3891 					  u8 data)
3892 {
3893 	u16 word = (u16)data;
3894 
3895 	DEBUGFUNC("e1000_write_flash_byte_ich8lan");
3896 
3897 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3898 }
3899 
3900 
3901 
3902 /**
3903  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3904  *  @hw: pointer to the HW structure
3905  *  @offset: The offset of the byte to write.
3906  *  @byte: The byte to write to the NVM.
3907  *
3908  *  Writes a single byte to the NVM using the flash access registers.
3909  *  Goes through a retry algorithm before giving up.
3910  **/
3911 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3912 						u32 offset, u8 byte)
3913 {
3914 	s32 ret_val;
3915 	u16 program_retries;
3916 
3917 	DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
3918 
3919 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3920 	if (!ret_val)
3921 		return ret_val;
3922 
3923 	for (program_retries = 0; program_retries < 100; program_retries++) {
3924 		DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
3925 		usec_delay(100);
3926 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3927 		if (ret_val == E1000_SUCCESS)
3928 			break;
3929 	}
3930 	if (program_retries == 100)
3931 		return -E1000_ERR_NVM;
3932 
3933 	return E1000_SUCCESS;
3934 }
3935 
3936 /**
3937  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3938  *  @hw: pointer to the HW structure
3939  *  @bank: 0 for first bank, 1 for second bank, etc.
3940  *
3941  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3942  *  bank N is 4096 * N + flash_reg_addr.
3943  **/
3944 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3945 {
3946 	struct e1000_nvm_info *nvm = &hw->nvm;
3947 	union ich8_hws_flash_status hsfsts;
3948 	union ich8_hws_flash_ctrl hsflctl;
3949 	u32 flash_linear_addr;
3950 	/* bank size is in 16bit words - adjust to bytes */
3951 	u32 flash_bank_size = nvm->flash_bank_size * 2;
3952 	s32 ret_val;
3953 	s32 count = 0;
3954 	s32 j, iteration, sector_size;
3955 
3956 	DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
3957 
3958 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3959 
3960 	/* Determine HW Sector size: Read BERASE bits of hw flash status
3961 	 * register
3962 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3963 	 *     consecutive sectors.  The start index for the nth Hw sector
3964 	 *     can be calculated as = bank * 4096 + n * 256
3965 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3966 	 *     The start index for the nth Hw sector can be calculated
3967 	 *     as = bank * 4096
3968 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3969 	 *     (ich9 only, otherwise error condition)
3970 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3971 	 */
3972 	switch (hsfsts.hsf_status.berasesz) {
3973 	case 0:
3974 		/* Hw sector size 256 */
3975 		sector_size = ICH_FLASH_SEG_SIZE_256;
3976 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3977 		break;
3978 	case 1:
3979 		sector_size = ICH_FLASH_SEG_SIZE_4K;
3980 		iteration = 1;
3981 		break;
3982 	case 2:
3983 		sector_size = ICH_FLASH_SEG_SIZE_8K;
3984 		iteration = 1;
3985 		break;
3986 	case 3:
3987 		sector_size = ICH_FLASH_SEG_SIZE_64K;
3988 		iteration = 1;
3989 		break;
3990 	default:
3991 		return -E1000_ERR_NVM;
3992 	}
3993 
3994 	/* Start with the base address, then add the sector offset. */
3995 	flash_linear_addr = hw->nvm.flash_base_addr;
3996 	flash_linear_addr += (bank) ? flash_bank_size : 0;
3997 
3998 	for (j = 0; j < iteration; j++) {
3999 		do {
4000 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4001 
4002 			/* Steps */
4003 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4004 			if (ret_val)
4005 				return ret_val;
4006 
4007 			/* Write a value 11 (block Erase) in Flash
4008 			 * Cycle field in hw flash control
4009 			 */
4010 			hsflctl.regval =
4011 			    E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
4012 
4013 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4014 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4015 						hsflctl.regval);
4016 
4017 			/* Write the last 24 bits of an index within the
4018 			 * block into Flash Linear address field in Flash
4019 			 * Address.
4020 			 */
4021 			flash_linear_addr += (j * sector_size);
4022 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
4023 					      flash_linear_addr);
4024 
4025 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4026 			if (ret_val == E1000_SUCCESS)
4027 				break;
4028 
4029 			/* Check if FCERR is set to 1.  If 1,
4030 			 * clear it and try the whole sequence
4031 			 * a few more times else Done
4032 			 */
4033 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4034 						      ICH_FLASH_HSFSTS);
4035 			if (hsfsts.hsf_status.flcerr)
4036 				/* repeat for some time before giving up */
4037 				continue;
4038 			else if (!hsfsts.hsf_status.flcdone)
4039 				return ret_val;
4040 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4041 	}
4042 
4043 	return E1000_SUCCESS;
4044 }
4045 
4046 /**
4047  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4048  *  @hw: pointer to the HW structure
4049  *  @data: Pointer to the LED settings
4050  *
4051  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4052  *  settings is all 0's or F's, set the LED default to a valid LED default
4053  *  setting.
4054  **/
4055 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4056 {
4057 	s32 ret_val;
4058 
4059 	DEBUGFUNC("e1000_valid_led_default_ich8lan");
4060 
4061 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
4062 	if (ret_val) {
4063 		DEBUGOUT("NVM Read Error\n");
4064 		return ret_val;
4065 	}
4066 
4067 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4068 		*data = ID_LED_DEFAULT_ICH8LAN;
4069 
4070 	return E1000_SUCCESS;
4071 }
4072 
4073 /**
4074  *  e1000_id_led_init_pchlan - store LED configurations
4075  *  @hw: pointer to the HW structure
4076  *
4077  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4078  *  the PHY LED configuration register.
4079  *
4080  *  PCH also does not have an "always on" or "always off" mode which
4081  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4082  *  in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
4083  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4084  *  link based on logic in e1000_led_[on|off]_pchlan().
4085  **/
4086 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4087 {
4088 	struct e1000_mac_info *mac = &hw->mac;
4089 	s32 ret_val;
4090 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4091 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4092 	u16 data, i, temp, shift;
4093 
4094 	DEBUGFUNC("e1000_id_led_init_pchlan");
4095 
4096 	/* Get default ID LED modes */
4097 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4098 	if (ret_val)
4099 		return ret_val;
4100 
4101 	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
4102 	mac->ledctl_mode1 = mac->ledctl_default;
4103 	mac->ledctl_mode2 = mac->ledctl_default;
4104 
4105 	for (i = 0; i < 4; i++) {
4106 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4107 		shift = (i * 5);
4108 		switch (temp) {
4109 		case ID_LED_ON1_DEF2:
4110 		case ID_LED_ON1_ON2:
4111 		case ID_LED_ON1_OFF2:
4112 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4113 			mac->ledctl_mode1 |= (ledctl_on << shift);
4114 			break;
4115 		case ID_LED_OFF1_DEF2:
4116 		case ID_LED_OFF1_ON2:
4117 		case ID_LED_OFF1_OFF2:
4118 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4119 			mac->ledctl_mode1 |= (ledctl_off << shift);
4120 			break;
4121 		default:
4122 			/* Do nothing */
4123 			break;
4124 		}
4125 		switch (temp) {
4126 		case ID_LED_DEF1_ON2:
4127 		case ID_LED_ON1_ON2:
4128 		case ID_LED_OFF1_ON2:
4129 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4130 			mac->ledctl_mode2 |= (ledctl_on << shift);
4131 			break;
4132 		case ID_LED_DEF1_OFF2:
4133 		case ID_LED_ON1_OFF2:
4134 		case ID_LED_OFF1_OFF2:
4135 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4136 			mac->ledctl_mode2 |= (ledctl_off << shift);
4137 			break;
4138 		default:
4139 			/* Do nothing */
4140 			break;
4141 		}
4142 	}
4143 
4144 	return E1000_SUCCESS;
4145 }
4146 
4147 /**
4148  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4149  *  @hw: pointer to the HW structure
4150  *
4151  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4152  *  register, so the the bus width is hard coded.
4153  **/
4154 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4155 {
4156 	struct e1000_bus_info *bus = &hw->bus;
4157 	s32 ret_val;
4158 
4159 	DEBUGFUNC("e1000_get_bus_info_ich8lan");
4160 
4161 	ret_val = e1000_get_bus_info_pcie_generic(hw);
4162 
4163 	/* ICH devices are "PCI Express"-ish.  They have
4164 	 * a configuration space, but do not contain
4165 	 * PCI Express Capability registers, so bus width
4166 	 * must be hardcoded.
4167 	 */
4168 	if (bus->width == e1000_bus_width_unknown)
4169 		bus->width = e1000_bus_width_pcie_x1;
4170 
4171 	return ret_val;
4172 }
4173 
4174 /**
4175  *  e1000_reset_hw_ich8lan - Reset the hardware
4176  *  @hw: pointer to the HW structure
4177  *
4178  *  Does a full reset of the hardware which includes a reset of the PHY and
4179  *  MAC.
4180  **/
4181 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4182 {
4183 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4184 	u16 kum_cfg;
4185 	u32 ctrl, reg;
4186 	s32 ret_val;
4187 
4188 	DEBUGFUNC("e1000_reset_hw_ich8lan");
4189 
4190 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4191 	 * on the last TLP read/write transaction when MAC is reset.
4192 	 */
4193 	ret_val = e1000_disable_pcie_master_generic(hw);
4194 	if (ret_val)
4195 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
4196 
4197 	DEBUGOUT("Masking off all interrupts\n");
4198 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4199 
4200 	/* Disable the Transmit and Receive units.  Then delay to allow
4201 	 * any pending transactions to complete before we hit the MAC
4202 	 * with the global reset.
4203 	 */
4204 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
4205 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
4206 	E1000_WRITE_FLUSH(hw);
4207 
4208 	msec_delay(10);
4209 
4210 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4211 	if (hw->mac.type == e1000_ich8lan) {
4212 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4213 		E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
4214 		/* Set Packet Buffer Size to 16k. */
4215 		E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
4216 	}
4217 
4218 	if (hw->mac.type == e1000_pchlan) {
4219 		/* Save the NVM K1 bit setting*/
4220 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4221 		if (ret_val)
4222 			return ret_val;
4223 
4224 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4225 			dev_spec->nvm_k1_enabled = TRUE;
4226 		else
4227 			dev_spec->nvm_k1_enabled = FALSE;
4228 	}
4229 
4230 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4231 
4232 	if (!hw->phy.ops.check_reset_block(hw)) {
4233 		/* Full-chip reset requires MAC and PHY reset at the same
4234 		 * time to make sure the interface between MAC and the
4235 		 * external PHY is reset.
4236 		 */
4237 		ctrl |= E1000_CTRL_PHY_RST;
4238 
4239 		/* Gate automatic PHY configuration by hardware on
4240 		 * non-managed 82579
4241 		 */
4242 		if ((hw->mac.type == e1000_pch2lan) &&
4243 		    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
4244 			e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
4245 	}
4246 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4247 	DEBUGOUT("Issuing a global reset to ich8lan\n");
4248 	E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
4249 	/* cannot issue a flush here because it hangs the hardware */
4250 	msec_delay(20);
4251 
4252 	/* Set Phy Config Counter to 50msec */
4253 	if (hw->mac.type == e1000_pch2lan) {
4254 		reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
4255 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4256 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4257 		E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
4258 	}
4259 
4260 	if (!ret_val)
4261 		E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
4262 
4263 	if (ctrl & E1000_CTRL_PHY_RST) {
4264 		ret_val = hw->phy.ops.get_cfg_done(hw);
4265 		if (ret_val)
4266 			return ret_val;
4267 
4268 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4269 		if (ret_val)
4270 			return ret_val;
4271 	}
4272 
4273 	/* For PCH, this write will make sure that any noise
4274 	 * will be detected as a CRC error and be dropped rather than show up
4275 	 * as a bad packet to the DMA engine.
4276 	 */
4277 	if (hw->mac.type == e1000_pchlan)
4278 		E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
4279 
4280 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4281 	E1000_READ_REG(hw, E1000_ICR);
4282 
4283 	reg = E1000_READ_REG(hw, E1000_KABGTXD);
4284 	reg |= E1000_KABGTXD_BGSQLBIAS;
4285 	E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
4286 
4287 	return E1000_SUCCESS;
4288 }
4289 
4290 /**
4291  *  e1000_init_hw_ich8lan - Initialize the hardware
4292  *  @hw: pointer to the HW structure
4293  *
4294  *  Prepares the hardware for transmit and receive by doing the following:
4295  *   - initialize hardware bits
4296  *   - initialize LED identification
4297  *   - setup receive address registers
4298  *   - setup flow control
4299  *   - setup transmit descriptors
4300  *   - clear statistics
4301  **/
4302 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4303 {
4304 	struct e1000_mac_info *mac = &hw->mac;
4305 	u32 ctrl_ext, txdctl, snoop;
4306 	s32 ret_val;
4307 	u16 i;
4308 
4309 	DEBUGFUNC("e1000_init_hw_ich8lan");
4310 
4311 	e1000_initialize_hw_bits_ich8lan(hw);
4312 
4313 	/* Initialize identification LED */
4314 	ret_val = mac->ops.id_led_init(hw);
4315 	/* An error is not fatal and we should not stop init due to this */
4316 	if (ret_val)
4317 		DEBUGOUT("Error initializing identification LED\n");
4318 
4319 	/* Setup the receive address. */
4320 	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
4321 
4322 	/* Zero out the Multicast HASH table */
4323 	DEBUGOUT("Zeroing the MTA\n");
4324 	for (i = 0; i < mac->mta_reg_count; i++)
4325 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4326 
4327 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4328 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4329 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4330 	 */
4331 	if (hw->phy.type == e1000_phy_82578) {
4332 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
4333 		i &= ~BM_WUC_HOST_WU_BIT;
4334 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
4335 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4336 		if (ret_val)
4337 			return ret_val;
4338 	}
4339 
4340 	/* Setup link and flow control */
4341 	ret_val = mac->ops.setup_link(hw);
4342 
4343 	/* Set the transmit descriptor write-back policy for both queues */
4344 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
4345 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4346 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4347 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4348 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4349 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
4350 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
4351 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4352 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4353 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4354 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4355 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
4356 
4357 	/* ICH8 has opposite polarity of no_snoop bits.
4358 	 * By default, we should use snoop behavior.
4359 	 */
4360 	if (mac->type == e1000_ich8lan)
4361 		snoop = PCIE_ICH8_SNOOP_ALL;
4362 	else
4363 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
4364 	e1000_set_pcie_no_snoop_generic(hw, snoop);
4365 
4366 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
4367 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4368 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
4369 
4370 	/* Clear all of the statistics registers (clear on read).  It is
4371 	 * important that we do this after we have tried to establish link
4372 	 * because the symbol error count will increment wildly if there
4373 	 * is no link.
4374 	 */
4375 	e1000_clear_hw_cntrs_ich8lan(hw);
4376 
4377 	return ret_val;
4378 }
4379 
4380 /**
4381  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4382  *  @hw: pointer to the HW structure
4383  *
4384  *  Sets/Clears required hardware bits necessary for correctly setting up the
4385  *  hardware for transmit and receive.
4386  **/
4387 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4388 {
4389 	u32 reg;
4390 
4391 	DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
4392 
4393 	/* Extended Device Control */
4394 	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
4395 	reg |= (1 << 22);
4396 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4397 	if (hw->mac.type >= e1000_pchlan)
4398 		reg |= E1000_CTRL_EXT_PHYPDEN;
4399 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
4400 
4401 	/* Transmit Descriptor Control 0 */
4402 	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
4403 	reg |= (1 << 22);
4404 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
4405 
4406 	/* Transmit Descriptor Control 1 */
4407 	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
4408 	reg |= (1 << 22);
4409 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
4410 
4411 	/* Transmit Arbitration Control 0 */
4412 	reg = E1000_READ_REG(hw, E1000_TARC(0));
4413 	if (hw->mac.type == e1000_ich8lan)
4414 		reg |= (1 << 28) | (1 << 29);
4415 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4416 	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
4417 
4418 	/* Transmit Arbitration Control 1 */
4419 	reg = E1000_READ_REG(hw, E1000_TARC(1));
4420 	if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
4421 		reg &= ~(1 << 28);
4422 	else
4423 		reg |= (1 << 28);
4424 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
4425 	E1000_WRITE_REG(hw, E1000_TARC(1), reg);
4426 
4427 	/* Device Status */
4428 	if (hw->mac.type == e1000_ich8lan) {
4429 		reg = E1000_READ_REG(hw, E1000_STATUS);
4430 		reg &= ~(1 << 31);
4431 		E1000_WRITE_REG(hw, E1000_STATUS, reg);
4432 	}
4433 
4434 	/* work-around descriptor data corruption issue during nfs v2 udp
4435 	 * traffic, just disable the nfs filtering capability
4436 	 */
4437 	reg = E1000_READ_REG(hw, E1000_RFCTL);
4438 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4439 
4440 	/* Disable IPv6 extension header parsing because some malformed
4441 	 * IPv6 headers can hang the Rx.
4442 	 */
4443 	if (hw->mac.type == e1000_ich8lan)
4444 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4445 	E1000_WRITE_REG(hw, E1000_RFCTL, reg);
4446 
4447 	/* Enable ECC on Lynxpoint */
4448 	if (hw->mac.type == e1000_pch_lpt) {
4449 		reg = E1000_READ_REG(hw, E1000_PBECCSTS);
4450 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4451 		E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
4452 
4453 		reg = E1000_READ_REG(hw, E1000_CTRL);
4454 		reg |= E1000_CTRL_MEHE;
4455 		E1000_WRITE_REG(hw, E1000_CTRL, reg);
4456 	}
4457 
4458 	return;
4459 }
4460 
4461 /**
4462  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4463  *  @hw: pointer to the HW structure
4464  *
4465  *  Determines which flow control settings to use, then configures flow
4466  *  control.  Calls the appropriate media-specific link configuration
4467  *  function.  Assuming the adapter has a valid link partner, a valid link
4468  *  should be established.  Assumes the hardware has previously been reset
4469  *  and the transmitter and receiver are not enabled.
4470  **/
4471 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4472 {
4473 	s32 ret_val;
4474 
4475 	DEBUGFUNC("e1000_setup_link_ich8lan");
4476 
4477 	if (hw->phy.ops.check_reset_block(hw))
4478 		return E1000_SUCCESS;
4479 
4480 	/* ICH parts do not have a word in the NVM to determine
4481 	 * the default flow control setting, so we explicitly
4482 	 * set it to full.
4483 	 */
4484 	if (hw->fc.requested_mode == e1000_fc_default)
4485 		hw->fc.requested_mode = e1000_fc_full;
4486 
4487 	/* Save off the requested flow control mode for use later.  Depending
4488 	 * on the link partner's capabilities, we may or may not use this mode.
4489 	 */
4490 	hw->fc.current_mode = hw->fc.requested_mode;
4491 
4492 	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
4493 		hw->fc.current_mode);
4494 
4495 	/* Continue to configure the copper link. */
4496 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4497 	if (ret_val)
4498 		return ret_val;
4499 
4500 	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
4501 	if ((hw->phy.type == e1000_phy_82578) ||
4502 	    (hw->phy.type == e1000_phy_82579) ||
4503 	    (hw->phy.type == e1000_phy_i217) ||
4504 	    (hw->phy.type == e1000_phy_82577)) {
4505 		E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
4506 
4507 		ret_val = hw->phy.ops.write_reg(hw,
4508 					     PHY_REG(BM_PORT_CTRL_PAGE, 27),
4509 					     hw->fc.pause_time);
4510 		if (ret_val)
4511 			return ret_val;
4512 	}
4513 
4514 	return e1000_set_fc_watermarks_generic(hw);
4515 }
4516 
4517 /**
4518  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4519  *  @hw: pointer to the HW structure
4520  *
4521  *  Configures the kumeran interface to the PHY to wait the appropriate time
4522  *  when polling the PHY, then call the generic setup_copper_link to finish
4523  *  configuring the copper link.
4524  **/
4525 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4526 {
4527 	u32 ctrl;
4528 	s32 ret_val;
4529 	u16 reg_data;
4530 
4531 	DEBUGFUNC("e1000_setup_copper_link_ich8lan");
4532 
4533 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4534 	ctrl |= E1000_CTRL_SLU;
4535 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4536 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4537 
4538 	/* Set the mac to wait the maximum time between each iteration
4539 	 * and increase the max iterations when polling the phy;
4540 	 * this fixes erroneous timeouts at 10Mbps.
4541 	 */
4542 	ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
4543 					       0xFFFF);
4544 	if (ret_val)
4545 		return ret_val;
4546 	ret_val = e1000_read_kmrn_reg_generic(hw,
4547 					      E1000_KMRNCTRLSTA_INBAND_PARAM,
4548 					      &reg_data);
4549 	if (ret_val)
4550 		return ret_val;
4551 	reg_data |= 0x3F;
4552 	ret_val = e1000_write_kmrn_reg_generic(hw,
4553 					       E1000_KMRNCTRLSTA_INBAND_PARAM,
4554 					       reg_data);
4555 	if (ret_val)
4556 		return ret_val;
4557 
4558 	switch (hw->phy.type) {
4559 	case e1000_phy_igp_3:
4560 		ret_val = e1000_copper_link_setup_igp(hw);
4561 		if (ret_val)
4562 			return ret_val;
4563 		break;
4564 	case e1000_phy_bm:
4565 	case e1000_phy_82578:
4566 		ret_val = e1000_copper_link_setup_m88(hw);
4567 		if (ret_val)
4568 			return ret_val;
4569 		break;
4570 	case e1000_phy_82577:
4571 	case e1000_phy_82579:
4572 		ret_val = e1000_copper_link_setup_82577(hw);
4573 		if (ret_val)
4574 			return ret_val;
4575 		break;
4576 	case e1000_phy_ife:
4577 		ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
4578 					       &reg_data);
4579 		if (ret_val)
4580 			return ret_val;
4581 
4582 		reg_data &= ~IFE_PMC_AUTO_MDIX;
4583 
4584 		switch (hw->phy.mdix) {
4585 		case 1:
4586 			reg_data &= ~IFE_PMC_FORCE_MDIX;
4587 			break;
4588 		case 2:
4589 			reg_data |= IFE_PMC_FORCE_MDIX;
4590 			break;
4591 		case 0:
4592 		default:
4593 			reg_data |= IFE_PMC_AUTO_MDIX;
4594 			break;
4595 		}
4596 		ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
4597 						reg_data);
4598 		if (ret_val)
4599 			return ret_val;
4600 		break;
4601 	default:
4602 		break;
4603 	}
4604 
4605 	return e1000_setup_copper_link_generic(hw);
4606 }
4607 
4608 /**
4609  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
4610  *  @hw: pointer to the HW structure
4611  *
4612  *  Calls the PHY specific link setup function and then calls the
4613  *  generic setup_copper_link to finish configuring the link for
4614  *  Lynxpoint PCH devices
4615  **/
4616 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
4617 {
4618 	u32 ctrl;
4619 	s32 ret_val;
4620 
4621 	DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
4622 
4623 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4624 	ctrl |= E1000_CTRL_SLU;
4625 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4626 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4627 
4628 	ret_val = e1000_copper_link_setup_82577(hw);
4629 	if (ret_val)
4630 		return ret_val;
4631 
4632 	return e1000_setup_copper_link_generic(hw);
4633 }
4634 
4635 /**
4636  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
4637  *  @hw: pointer to the HW structure
4638  *  @speed: pointer to store current link speed
4639  *  @duplex: pointer to store the current link duplex
4640  *
4641  *  Calls the generic get_speed_and_duplex to retrieve the current link
4642  *  information and then calls the Kumeran lock loss workaround for links at
4643  *  gigabit speeds.
4644  **/
4645 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
4646 					  u16 *duplex)
4647 {
4648 	s32 ret_val;
4649 
4650 	DEBUGFUNC("e1000_get_link_up_info_ich8lan");
4651 
4652 	ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
4653 	if (ret_val)
4654 		return ret_val;
4655 
4656 	if ((hw->mac.type == e1000_ich8lan) &&
4657 	    (hw->phy.type == e1000_phy_igp_3) &&
4658 	    (*speed == SPEED_1000)) {
4659 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
4660 	}
4661 
4662 	return ret_val;
4663 }
4664 
4665 /**
4666  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
4667  *  @hw: pointer to the HW structure
4668  *
4669  *  Work-around for 82566 Kumeran PCS lock loss:
4670  *  On link status change (i.e. PCI reset, speed change) and link is up and
4671  *  speed is gigabit-
4672  *    0) if workaround is optionally disabled do nothing
4673  *    1) wait 1ms for Kumeran link to come up
4674  *    2) check Kumeran Diagnostic register PCS lock loss bit
4675  *    3) if not set the link is locked (all is good), otherwise...
4676  *    4) reset the PHY
4677  *    5) repeat up to 10 times
4678  *  Note: this is only called for IGP3 copper when speed is 1gb.
4679  **/
4680 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
4681 {
4682 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4683 	u32 phy_ctrl;
4684 	s32 ret_val;
4685 	u16 i, data;
4686 	bool link;
4687 
4688 	DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
4689 
4690 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
4691 		return E1000_SUCCESS;
4692 
4693 	/* Make sure link is up before proceeding.  If not just return.
4694 	 * Attempting this while link is negotiating fouled up link
4695 	 * stability
4696 	 */
4697 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
4698 	if (!link)
4699 		return E1000_SUCCESS;
4700 
4701 	for (i = 0; i < 10; i++) {
4702 		/* read once to clear */
4703 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
4704 		if (ret_val)
4705 			return ret_val;
4706 		/* and again to get new status */
4707 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
4708 		if (ret_val)
4709 			return ret_val;
4710 
4711 		/* check for PCS lock */
4712 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
4713 			return E1000_SUCCESS;
4714 
4715 		/* Issue PHY reset */
4716 		hw->phy.ops.reset(hw);
4717 		msec_delay_irq(5);
4718 	}
4719 	/* Disable GigE link negotiation */
4720 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
4721 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
4722 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4723 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
4724 
4725 	/* Call gig speed drop workaround on Gig disable before accessing
4726 	 * any PHY registers
4727 	 */
4728 	e1000_gig_downshift_workaround_ich8lan(hw);
4729 
4730 	/* unable to acquire PCS lock */
4731 	return -E1000_ERR_PHY;
4732 }
4733 
4734 /**
4735  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
4736  *  @hw: pointer to the HW structure
4737  *  @state: boolean value used to set the current Kumeran workaround state
4738  *
4739  *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
4740  *  /disabled - FALSE).
4741  **/
4742 void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
4743 						 bool state)
4744 {
4745 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4746 
4747 	DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
4748 
4749 	if (hw->mac.type != e1000_ich8lan) {
4750 		DEBUGOUT("Workaround applies to ICH8 only.\n");
4751 		return;
4752 	}
4753 
4754 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
4755 
4756 	return;
4757 }
4758 
4759 /**
4760  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
4761  *  @hw: pointer to the HW structure
4762  *
4763  *  Workaround for 82566 power-down on D3 entry:
4764  *    1) disable gigabit link
4765  *    2) write VR power-down enable
4766  *    3) read it back
4767  *  Continue if successful, else issue LCD reset and repeat
4768  **/
4769 void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
4770 {
4771 	u32 reg;
4772 	u16 data;
4773 	u8  retry = 0;
4774 
4775 	DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
4776 
4777 	if (hw->phy.type != e1000_phy_igp_3)
4778 		return;
4779 
4780 	/* Try the workaround twice (if needed) */
4781 	do {
4782 		/* Disable link */
4783 		reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
4784 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
4785 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4786 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
4787 
4788 		/* Call gig speed drop workaround on Gig disable before
4789 		 * accessing any PHY registers
4790 		 */
4791 		if (hw->mac.type == e1000_ich8lan)
4792 			e1000_gig_downshift_workaround_ich8lan(hw);
4793 
4794 		/* Write VR power-down enable */
4795 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
4796 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4797 		hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
4798 				      data | IGP3_VR_CTRL_MODE_SHUTDOWN);
4799 
4800 		/* Read it back and test */
4801 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
4802 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4803 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4804 			break;
4805 
4806 		/* Issue PHY reset and repeat at most one more time */
4807 		reg = E1000_READ_REG(hw, E1000_CTRL);
4808 		E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
4809 		retry++;
4810 	} while (retry);
4811 }
4812 
4813 /**
4814  *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4815  *  @hw: pointer to the HW structure
4816  *
4817  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4818  *  LPLU, Gig disable, MDIC PHY reset):
4819  *    1) Set Kumeran Near-end loopback
4820  *    2) Clear Kumeran Near-end loopback
4821  *  Should only be called for ICH8[m] devices with any 1G Phy.
4822  **/
4823 void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4824 {
4825 	s32 ret_val;
4826 	u16 reg_data;
4827 
4828 	DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
4829 
4830 	if ((hw->mac.type != e1000_ich8lan) ||
4831 	    (hw->phy.type == e1000_phy_ife))
4832 		return;
4833 
4834 	ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4835 					      &reg_data);
4836 	if (ret_val)
4837 		return;
4838 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4839 	ret_val = e1000_write_kmrn_reg_generic(hw,
4840 					       E1000_KMRNCTRLSTA_DIAG_OFFSET,
4841 					       reg_data);
4842 	if (ret_val)
4843 		return;
4844 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4845 	e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4846 				     reg_data);
4847 }
4848 
4849 /**
4850  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4851  *  @hw: pointer to the HW structure
4852  *
4853  *  During S0 to Sx transition, it is possible the link remains at gig
4854  *  instead of negotiating to a lower speed.  Before going to Sx, set
4855  *  'Gig Disable' to force link speed negotiation to a lower speed based on
4856  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4857  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4858  *  needs to be written.
4859  *  Parts that support (and are linked to a partner which support) EEE in
4860  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4861  *  than 10Mbps w/o EEE.
4862  **/
4863 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4864 {
4865 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4866 	u32 phy_ctrl;
4867 	s32 ret_val;
4868 
4869 	DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
4870 
4871 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
4872 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4873 
4874 	if (hw->phy.type == e1000_phy_i217) {
4875 		u16 phy_reg, device_id = hw->device_id;
4876 
4877 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
4878 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
4879 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
4880 		    (device_id == E1000_DEV_ID_PCH_I218_V3)) {
4881 			u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
4882 
4883 			E1000_WRITE_REG(hw, E1000_FEXTNVM6,
4884 					fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
4885 		}
4886 
4887 		ret_val = hw->phy.ops.acquire(hw);
4888 		if (ret_val)
4889 			goto out;
4890 
4891 		if (!dev_spec->eee_disable) {
4892 			u16 eee_advert;
4893 
4894 			ret_val =
4895 			    e1000_read_emi_reg_locked(hw,
4896 						      I217_EEE_ADVERTISEMENT,
4897 						      &eee_advert);
4898 			if (ret_val)
4899 				goto release;
4900 
4901 			/* Disable LPLU if both link partners support 100BaseT
4902 			 * EEE and 100Full is advertised on both ends of the
4903 			 * link, and enable Auto Enable LPI since there will
4904 			 * be no driver to enable LPI while in Sx.
4905 			 */
4906 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
4907 			    (dev_spec->eee_lp_ability &
4908 			     I82579_EEE_100_SUPPORTED) &&
4909 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
4910 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4911 					      E1000_PHY_CTRL_NOND0A_LPLU);
4912 
4913 				/* Set Auto Enable LPI after link up */
4914 				hw->phy.ops.read_reg_locked(hw,
4915 							    I217_LPI_GPIO_CTRL,
4916 							    &phy_reg);
4917 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
4918 				hw->phy.ops.write_reg_locked(hw,
4919 							     I217_LPI_GPIO_CTRL,
4920 							     phy_reg);
4921 			}
4922 		}
4923 
4924 		/* For i217 Intel Rapid Start Technology support,
4925 		 * when the system is going into Sx and no manageability engine
4926 		 * is present, the driver must configure proxy to reset only on
4927 		 * power good.  LPI (Low Power Idle) state must also reset only
4928 		 * on power good, as well as the MTA (Multicast table array).
4929 		 * The SMBus release must also be disabled on LCD reset.
4930 		 */
4931 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
4932 		      E1000_ICH_FWSM_FW_VALID)) {
4933 			/* Enable proxy to reset only on power good. */
4934 			hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
4935 						    &phy_reg);
4936 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4937 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
4938 						     phy_reg);
4939 
4940 			/* Set bit enable LPI (EEE) to reset only on
4941 			 * power good.
4942 			*/
4943 			hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
4944 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4945 			hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
4946 
4947 			/* Disable the SMB release on LCD reset. */
4948 			hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
4949 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4950 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
4951 		}
4952 
4953 		/* Enable MTA to reset for Intel Rapid Start Technology
4954 		 * Support
4955 		 */
4956 		hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
4957 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4958 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
4959 
4960 release:
4961 		hw->phy.ops.release(hw);
4962 	}
4963 out:
4964 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
4965 
4966 	if (hw->mac.type == e1000_ich8lan)
4967 		e1000_gig_downshift_workaround_ich8lan(hw);
4968 
4969 	if (hw->mac.type >= e1000_pchlan) {
4970 		e1000_oem_bits_config_ich8lan(hw, FALSE);
4971 
4972 		/* Reset PHY to activate OEM bits on 82577/8 */
4973 		if (hw->mac.type == e1000_pchlan)
4974 			e1000_phy_hw_reset_generic(hw);
4975 
4976 		ret_val = hw->phy.ops.acquire(hw);
4977 		if (ret_val)
4978 			return;
4979 		e1000_write_smbus_addr(hw);
4980 		hw->phy.ops.release(hw);
4981 	}
4982 
4983 	return;
4984 }
4985 
4986 /**
4987  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4988  *  @hw: pointer to the HW structure
4989  *
4990  *  During Sx to S0 transitions on non-managed devices or managed devices
4991  *  on which PHY resets are not blocked, if the PHY registers cannot be
4992  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4993  *  the PHY.
4994  *  On i217, setup Intel Rapid Start Technology.
4995  **/
4996 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4997 {
4998 	s32 ret_val;
4999 
5000 	DEBUGFUNC("e1000_resume_workarounds_pchlan");
5001 
5002 	if (hw->mac.type < e1000_pch2lan)
5003 		return;
5004 
5005 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5006 	if (ret_val) {
5007 		DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
5008 		return;
5009 	}
5010 
5011 	/* For i217 Intel Rapid Start Technology support when the system
5012 	 * is transitioning from Sx and no manageability engine is present
5013 	 * configure SMBus to restore on reset, disable proxy, and enable
5014 	 * the reset on MTA (Multicast table array).
5015 	 */
5016 	if (hw->phy.type == e1000_phy_i217) {
5017 		u16 phy_reg;
5018 
5019 		ret_val = hw->phy.ops.acquire(hw);
5020 		if (ret_val) {
5021 			DEBUGOUT("Failed to setup iRST\n");
5022 			return;
5023 		}
5024 
5025 		/* Clear Auto Enable LPI after link up */
5026 		hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5027 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5028 		hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5029 
5030 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5031 		    E1000_ICH_FWSM_FW_VALID)) {
5032 			/* Restore clear on SMB if no manageability engine
5033 			 * is present
5034 			 */
5035 			ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
5036 							      &phy_reg);
5037 			if (ret_val)
5038 				goto release;
5039 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5040 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5041 
5042 			/* Disable Proxy */
5043 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
5044 		}
5045 		/* Enable reset on MTA */
5046 		ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
5047 						      &phy_reg);
5048 		if (ret_val)
5049 			goto release;
5050 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5051 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5052 release:
5053 		if (ret_val)
5054 			DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
5055 		hw->phy.ops.release(hw);
5056 	}
5057 }
5058 
5059 /**
5060  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5061  *  @hw: pointer to the HW structure
5062  *
5063  *  Return the LED back to the default configuration.
5064  **/
5065 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5066 {
5067 	DEBUGFUNC("e1000_cleanup_led_ich8lan");
5068 
5069 	if (hw->phy.type == e1000_phy_ife)
5070 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5071 					     0);
5072 
5073 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
5074 	return E1000_SUCCESS;
5075 }
5076 
5077 /**
5078  *  e1000_led_on_ich8lan - Turn LEDs on
5079  *  @hw: pointer to the HW structure
5080  *
5081  *  Turn on the LEDs.
5082  **/
5083 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5084 {
5085 	DEBUGFUNC("e1000_led_on_ich8lan");
5086 
5087 	if (hw->phy.type == e1000_phy_ife)
5088 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5089 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5090 
5091 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
5092 	return E1000_SUCCESS;
5093 }
5094 
5095 /**
5096  *  e1000_led_off_ich8lan - Turn LEDs off
5097  *  @hw: pointer to the HW structure
5098  *
5099  *  Turn off the LEDs.
5100  **/
5101 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5102 {
5103 	DEBUGFUNC("e1000_led_off_ich8lan");
5104 
5105 	if (hw->phy.type == e1000_phy_ife)
5106 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5107 			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
5108 
5109 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
5110 	return E1000_SUCCESS;
5111 }
5112 
5113 /**
5114  *  e1000_setup_led_pchlan - Configures SW controllable LED
5115  *  @hw: pointer to the HW structure
5116  *
5117  *  This prepares the SW controllable LED for use.
5118  **/
5119 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5120 {
5121 	DEBUGFUNC("e1000_setup_led_pchlan");
5122 
5123 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5124 				     (u16)hw->mac.ledctl_mode1);
5125 }
5126 
5127 /**
5128  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5129  *  @hw: pointer to the HW structure
5130  *
5131  *  Return the LED back to the default configuration.
5132  **/
5133 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5134 {
5135 	DEBUGFUNC("e1000_cleanup_led_pchlan");
5136 
5137 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5138 				     (u16)hw->mac.ledctl_default);
5139 }
5140 
5141 /**
5142  *  e1000_led_on_pchlan - Turn LEDs on
5143  *  @hw: pointer to the HW structure
5144  *
5145  *  Turn on the LEDs.
5146  **/
5147 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5148 {
5149 	u16 data = (u16)hw->mac.ledctl_mode2;
5150 	u32 i, led;
5151 
5152 	DEBUGFUNC("e1000_led_on_pchlan");
5153 
5154 	/* If no link, then turn LED on by setting the invert bit
5155 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5156 	 */
5157 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5158 		for (i = 0; i < 3; i++) {
5159 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5160 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5161 			    E1000_LEDCTL_MODE_LINK_UP)
5162 				continue;
5163 			if (led & E1000_PHY_LED0_IVRT)
5164 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5165 			else
5166 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5167 		}
5168 	}
5169 
5170 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5171 }
5172 
5173 /**
5174  *  e1000_led_off_pchlan - Turn LEDs off
5175  *  @hw: pointer to the HW structure
5176  *
5177  *  Turn off the LEDs.
5178  **/
5179 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5180 {
5181 	u16 data = (u16)hw->mac.ledctl_mode1;
5182 	u32 i, led;
5183 
5184 	DEBUGFUNC("e1000_led_off_pchlan");
5185 
5186 	/* If no link, then turn LED off by clearing the invert bit
5187 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5188 	 */
5189 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5190 		for (i = 0; i < 3; i++) {
5191 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5192 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5193 			    E1000_LEDCTL_MODE_LINK_UP)
5194 				continue;
5195 			if (led & E1000_PHY_LED0_IVRT)
5196 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5197 			else
5198 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5199 		}
5200 	}
5201 
5202 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5203 }
5204 
5205 /**
5206  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5207  *  @hw: pointer to the HW structure
5208  *
5209  *  Read appropriate register for the config done bit for completion status
5210  *  and configure the PHY through s/w for EEPROM-less parts.
5211  *
5212  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5213  *  config done bit, so only an error is logged and continues.  If we were
5214  *  to return with error, EEPROM-less silicon would not be able to be reset
5215  *  or change link.
5216  **/
5217 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5218 {
5219 	s32 ret_val = E1000_SUCCESS;
5220 	u32 bank = 0;
5221 	u32 status;
5222 
5223 	DEBUGFUNC("e1000_get_cfg_done_ich8lan");
5224 
5225 	e1000_get_cfg_done_generic(hw);
5226 
5227 	/* Wait for indication from h/w that it has completed basic config */
5228 	if (hw->mac.type >= e1000_ich10lan) {
5229 		e1000_lan_init_done_ich8lan(hw);
5230 	} else {
5231 		ret_val = e1000_get_auto_rd_done_generic(hw);
5232 		if (ret_val) {
5233 			/* When auto config read does not complete, do not
5234 			 * return with an error. This can happen in situations
5235 			 * where there is no eeprom and prevents getting link.
5236 			 */
5237 			DEBUGOUT("Auto Read Done did not complete\n");
5238 			ret_val = E1000_SUCCESS;
5239 		}
5240 	}
5241 
5242 	/* Clear PHY Reset Asserted bit */
5243 	status = E1000_READ_REG(hw, E1000_STATUS);
5244 	if (status & E1000_STATUS_PHYRA)
5245 		E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
5246 	else
5247 		DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
5248 
5249 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5250 	if (hw->mac.type <= e1000_ich9lan) {
5251 		if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
5252 		    (hw->phy.type == e1000_phy_igp_3)) {
5253 			e1000_phy_init_script_igp3(hw);
5254 		}
5255 	} else {
5256 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5257 			/* Maybe we should do a basic PHY config */
5258 			DEBUGOUT("EEPROM not present\n");
5259 			ret_val = -E1000_ERR_CONFIG;
5260 		}
5261 	}
5262 
5263 	return ret_val;
5264 }
5265 
5266 /**
5267  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5268  * @hw: pointer to the HW structure
5269  *
5270  * In the case of a PHY power down to save power, or to turn off link during a
5271  * driver unload, or wake on lan is not enabled, remove the link.
5272  **/
5273 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5274 {
5275 	/* If the management interface is not enabled, then power down */
5276 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5277 	      hw->phy.ops.check_reset_block(hw)))
5278 		e1000_power_down_phy_copper(hw);
5279 
5280 	return;
5281 }
5282 
5283 /**
5284  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5285  *  @hw: pointer to the HW structure
5286  *
5287  *  Clears hardware counters specific to the silicon family and calls
5288  *  clear_hw_cntrs_generic to clear all general purpose counters.
5289  **/
5290 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5291 {
5292 	u16 phy_data;
5293 	s32 ret_val;
5294 
5295 	DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
5296 
5297 	e1000_clear_hw_cntrs_base_generic(hw);
5298 
5299 	E1000_READ_REG(hw, E1000_ALGNERRC);
5300 	E1000_READ_REG(hw, E1000_RXERRC);
5301 	E1000_READ_REG(hw, E1000_TNCRS);
5302 	E1000_READ_REG(hw, E1000_CEXTERR);
5303 	E1000_READ_REG(hw, E1000_TSCTC);
5304 	E1000_READ_REG(hw, E1000_TSCTFC);
5305 
5306 	E1000_READ_REG(hw, E1000_MGTPRC);
5307 	E1000_READ_REG(hw, E1000_MGTPDC);
5308 	E1000_READ_REG(hw, E1000_MGTPTC);
5309 
5310 	E1000_READ_REG(hw, E1000_IAC);
5311 	E1000_READ_REG(hw, E1000_ICRXOC);
5312 
5313 	/* Clear PHY statistics registers */
5314 	if ((hw->phy.type == e1000_phy_82578) ||
5315 	    (hw->phy.type == e1000_phy_82579) ||
5316 	    (hw->phy.type == e1000_phy_i217) ||
5317 	    (hw->phy.type == e1000_phy_82577)) {
5318 		ret_val = hw->phy.ops.acquire(hw);
5319 		if (ret_val)
5320 			return;
5321 		ret_val = hw->phy.ops.set_page(hw,
5322 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5323 		if (ret_val)
5324 			goto release;
5325 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5326 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5327 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5328 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5329 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5330 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5331 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5332 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5333 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5334 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5335 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5336 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5337 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5338 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5339 release:
5340 		hw->phy.ops.release(hw);
5341 	}
5342 }
5343 
5344